WO2022206643A1 - 一种信号到达角度估计方法及电子设备 - Google Patents

一种信号到达角度估计方法及电子设备 Download PDF

Info

Publication number
WO2022206643A1
WO2022206643A1 PCT/CN2022/083231 CN2022083231W WO2022206643A1 WO 2022206643 A1 WO2022206643 A1 WO 2022206643A1 CN 2022083231 W CN2022083231 W CN 2022083231W WO 2022206643 A1 WO2022206643 A1 WO 2022206643A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
electronic device
arrival
gain ratio
angle
Prior art date
Application number
PCT/CN2022/083231
Other languages
English (en)
French (fr)
Inventor
林映辰
张志华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206643A1 publication Critical patent/WO2022206643A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction

Definitions

  • the present application relates to the field of electronic technologies, and in particular, to a method for estimating the angle of arrival of a signal and an electronic device.
  • the positioning algorithm based on the angle of arrival (AOA) of the signal is often used in the positioning technology of electronic equipment.
  • the electronic device receives the angle of arrival of the signal by means of the antenna, and determines the distance between the electronic device and the transmitting device of the signal. Thus, the electronic device can determine the current position of the electronic device.
  • the electronic device can estimate the arrival angle of the signal through the phase difference between the two antennas in the electronic device when the signal is received. As shown in Figure 1, the electronic device can calculate the arrival angle of the signal according to the phase difference when the two antennas (antenna 1 and antenna 2) receive the signal and the distance between the two antennas. However, since the antennas in electronic devices cannot simply be regarded as a point, the distance between the antennas cannot be accurately measured. In this way, the accuracy of the angle of arrival of the signal estimated by the electronic device through the phase difference between the antennas is not high.
  • the present application provides a signal arrival angle estimation method and an electronic device.
  • the electronic device can more accurately estimate the arrival angle of a radio signal received by the electronic device.
  • the present application provides a method for estimating an angle of arrival of a signal
  • the method may include: an electronic device receives a first radio signal through a first antenna and a second antenna, the electronic device stores a first mapping relationship table, and the electronic device stores a first mapping relationship table.
  • the first mapping relationship table includes different angles of arrival of radio signals and gain ratios of the first antenna and the second antenna corresponding to different angles of arrival of the radio signals; when receiving the first radio signal, the electronic device calculates The first gain ratio of the first antenna and the second antenna is obtained; the electronic device determines the arrival angle of the first radio signal according to the first gain ratio and the first mapping table.
  • the electronic device can estimate the angle of arrival of the radio signal through the gain ratio between the antennas and the mapping relationship table between the gain ratio and the angle of arrival stored in the electronic device. Since the gain ratios between the antennas corresponding to different angles of arrival are different, the phase differences between the antennas corresponding to different angles of arrival may be the same. Therefore, the electronic device can more accurately estimate the angle of arrival of the radio signal through the gain ratio between the antennas.
  • the electronic device determines the angle of arrival of the first radio signal according to the first gain ratio and the first mapping table, including: the electronic device calculates the first gain ratio and the radio signal in the first mapping table The similarity of the gain ratio of the first antenna and the second antenna corresponding to different arrival angles of the signal; The angle of arrival is the angle of arrival of the first radio signal.
  • the electronic device can more accurately find the gain ratio corresponding to the first gain ratio in the first mapping relationship table, that is, the gain ratio with the greatest similarity, and the angle of arrival corresponding to the gain ratio with the greatest similarity is the first gain ratio.
  • the angle of arrival of radio signals is the electronic device.
  • the electronic device can more accurately estimate the angle of arrival of the first radio signal.
  • the electronic device determines the angle of arrival of the first radio signal according to the first gain ratio and the first mapping table, including: the electronic device calculates the first gain ratio and the radio signal in the first mapping table The first similarity of the gain ratio of the first antenna and the second antenna corresponding to the first angle of arrival of the signal; if the first similarity is greater than the similarity threshold, the electronic device uses the first angle of arrival as the first The angle of arrival of radio signals.
  • the similarity threshold can be configured by the system of the electronic device.
  • the electronic device can use the angle of arrival corresponding to the gain ratio as the angle of arrival of the first radio signal.
  • the electronic device may stop calculating the similarity between the first gain ratio and other gain ratios in the first mapping table. In this way, the electronic device does not need to calculate the similarity between the first gain ratio and the gain ratio corresponding to each angle of arrival in the first mapping table, which reduces the calculation amount of the electronic device and saves the power consumption of the electronic device.
  • the first mapping relationship table further includes phase differences between the first antenna and the second antenna corresponding to different arrival angles of radio signals.
  • the electronic device when receiving the first radio signal, calculates the first gain ratio between the first antenna and the second antenna, including: the electronic device calculates, when receiving the first radio signal, a first gain ratio and a first phase difference of the first antenna and the second antenna;
  • the electronic device determines the angle of arrival of the first radio signal according to the first gain ratio and the first mapping table, including:
  • the electronic device determines the angle of arrival of the first radio signal according to the first gain ratio, the first phase difference and the first mapping table.
  • the electronic device can more accurately estimate the angle of arrival of the radio signal through the gain ratio and phase difference between the antennas.
  • the electronic device determines the arrival angle of the first radio signal according to the first gain ratio, the first phase difference and the first mapping table, including: the electronic device calculates the first gain ratio and the first phase difference and The similarity of the gain ratio and the phase difference of the first antenna and the second antenna corresponding to the different angles of arrival of the radio signal in the first mapping table; the electronic device compares the similarity of the first gain ratio and the first phase difference in the first mapping table The angle of arrival of the radio signal corresponding to the maximum gain ratio and phase difference is used as the angle of arrival of the first radio signal.
  • the electronic device can more accurately estimate the angle of arrival of the radio signal through the gain ratio and phase difference between the antennas.
  • the electronic device determines the arrival angle of the first radio signal according to the first gain ratio, the first phase difference and the first mapping table, including: the electronic device calculates the first gain ratio, the first phase difference and the The second similarity of the gain ratio and phase difference of the first antenna and the second antenna corresponding to the second angle of arrival of the radio signal in the first mapping table; if the second similarity is greater than the similarity threshold, the electronic device will use the second angle of arrival as the angle of arrival of the first radio signal.
  • the electronic device can use the angle of arrival corresponding to the gain ratio as the first radio The angle of arrival of the signal.
  • the electronic device can stop the first gain ratio and the first phase difference. A phase difference and the gain ratios corresponding to other angles of arrival in the first mapping table and the similarity of the phase differences are calculated.
  • the electronic device does not need to calculate the similarity between the first gain ratio, the first phase difference and the gain ratio and phase difference corresponding to each angle of arrival in the first mapping table, which reduces the amount of calculation of the electronic device and saves the electronic device power consumption.
  • the electronic device calculates the difference between the first gain ratio and the first phase difference and the gain ratio and phase difference of the first antenna and the second antenna corresponding to the second angle of arrival of the radio signal in the first mapping table
  • the similarity includes: the electronic device calculates the sum of the first difference between the first gain ratio and the gain ratio of the first antenna and the second antenna corresponding to the second angle of arrival of the radio signal in the first mapping table; the electronic device calculates The sum of the first phase difference and the second difference value of the phase difference of the first antenna and the second antenna corresponding to the second angle of arrival of the radio signal in the first mapping table; the electronic device compares the sum of the first difference value and the second difference value The sum of the values is added to obtain the sum of the third difference; the smaller the sum of the third difference, the greater the similarity between the first gain ratio and the first phase difference and the gain ratio and phase difference corresponding to the second angle of arrival.
  • the electronic device further includes a third antenna
  • the first mapping relationship table further includes gain ratios of the first antenna and the third antenna corresponding to different arrival angles of the radio signal.
  • the electronic device receives the first radio signal through the first antenna and the second antenna, including: the electronic device receives the first radio signal through the first antenna, the second antenna, and the third antenna;
  • the electronic device When receiving the first radio signal, calculates the first gain ratio of the first antenna and the second antenna, including: when receiving the first radio signal, the electronic device calculates the first gain of the first antenna and the second antenna ratio, the second gain ratio of the first antenna and the second antenna;
  • the electronic device determining the angle of arrival of the first radio signal according to the first gain ratio and the first mapping table includes: the electronic device determining the angle of arrival of the first radio signal according to the first gain ratio, the second gain ratio and the first mapping table.
  • the electronic device determines the angle of arrival of the first radio signal according to the first gain ratio, the second gain ratio and the first mapping table, including: the electronic device calculates the first gain ratio and the second gain ratio, The gain ratio of the first antenna and the second antenna corresponding to the different arrival angles of the radio signals in the first mapping table, and the similarity of the gain ratio of the first antenna and the third antenna; the electronic device compares the first mapping table with the first and second antennas.
  • the gain ratio of the first antenna and the second antenna with the greatest similarity between the gain ratio and the second gain ratio, and the angle of arrival of the radio signal corresponding to the gain ratio of the first antenna and the second antenna is taken as the angle of arrival of the first electrical signal.
  • the electronic device may estimate the angle of arrival of the radio signal through the gain ratio of the first antenna and the second antenna, and the gain ratio of the first antenna and the second antenna.
  • the electronic device determines the arrival angle of the first radio signal according to the first gain ratio, the second gain ratio and the first mapping table, including: the electronic device calculates the first gain ratio, the second gain ratio and the The gain ratio of the first antenna and the second antenna corresponding to the third angle of arrival of the radio signal in the first mapping table, and the third similarity of the gain ratio of the first antenna and the third antenna; if the third similarity is greater than the similarity threshold , the electronic device takes the third angle of arrival as the angle of arrival of the first radio signal.
  • the first mapping table further includes the phase difference of the first antenna and the second antenna corresponding to different angles of arrival of the radio signal, and the first antenna and the third antenna corresponding to the different angles of arrival of the radio signal phase difference of the antenna.
  • the electronic device when receiving the first radio signal, calculates a first gain ratio between the first antenna and the second antenna, the first antenna and The second gain ratio of the second antenna includes: when receiving the first radio signal, the electronic device calculates the first gain ratio of the first antenna and the second antenna, and the second gain ratio of the first antenna and the second antenna , the first phase difference between the first antenna and the second antenna, and the second phase difference between the first antenna and the third antenna;
  • the electronic device determines the angle of arrival of the first radio signal according to the first gain ratio and the first mapping table, including: the electronic device determines the arrival angle of the first radio signal according to the first gain ratio, the first phase difference, the second gain ratio, the second phase difference and the first mapping table The angle of arrival of the first radio signal is determined.
  • the electronic device determines the angle of arrival of the first radio signal according to the first gain ratio, the first phase difference, the second gain ratio, the second phase difference and the first mapping table, including: the electronic device calculates The first gain ratio, the second gain ratio, the first phase difference, and the second phase difference, the gain ratios of the first antenna and the second antenna corresponding to the different angles of arrival of the radio signals in the first mapping table, the first antenna and the second antenna The gain ratio of the three antennas, the phase difference between the first antenna and the second antenna, and the similarity of the phase difference between the first antenna and the third antenna; the electronic device compares the first mapping table with the first gain ratio, the second gain ratio, The gain ratio of the first antenna and the second antenna with the largest similarity between the first phase difference and the second phase difference, the gain ratio of the first antenna and the second antenna, the phase difference between the first antenna and the second antenna, and the first antenna
  • the arrival angle of the radio signal corresponding to the third antenna is used as the arrival angle of the first electrical signal.
  • the electronic device determines the angle of arrival of the first radio signal according to the first gain ratio, the first phase difference, the second gain ratio, the second phase difference and the first mapping table, including: the electronic device calculates The first gain ratio, the first phase difference, the second gain ratio, the second phase difference and the gain ratio and phase difference of the first antenna and the second antenna corresponding to the fourth angle of arrival of the radio signal in the first mapping table, the first The fourth similarity of the gain ratio and phase difference between the antenna and the third antenna; if the fourth similarity is greater than the similarity threshold, the electronic device takes the fourth angle of arrival as the angle of arrival of the first radio signal.
  • first angle of arrival, the second angle of arrival, the third angle of arrival, and the fourth angle of arrival may be equal.
  • the first degree of similarity and the second degree of similarity, the third degree of similarity, and the fourth degree of similarity may be equal.
  • the electronic device can more accurately estimate the angle of arrival of the radio signal through the gain ratio and phase difference between the antennas.
  • a second aspect provides an electronic device that may include two or more than two antennas, a display screen, one or more processors, and one or more memories; one or more processors and two or more than two
  • the two antennas, one or more memories, and a display screen are coupled, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions, which, when executed by one or more processors, cause the electronic device to perform the above-mentioned
  • an embodiment of the present application provides a computer storage medium, including computer instructions, when the computer instructions are executed on an electronic device, the electronic device can perform the signal arrival angle in any of the possible implementations of any of the above aspects estimation method.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on an electronic device, enables the electronic device to execute the method for estimating the angle of arrival of a signal in any possible implementation manner of any of the above aspects.
  • FIG. 1 is a schematic diagram of a model for estimating the angle of arrival of a signal using a phase difference provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of the correlation of different angles of arrival of signals provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of antenna placement in an electronic device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a scenario when a mobile phone according to an embodiment of the present application establishes a mapping relationship table
  • FIG. 6 is a schematic diagram of the implementation steps of establishing a mapping relationship table by a mobile phone according to an embodiment of the present application
  • FIG. 7 is a schematic flowchart of a method for estimating an angle of arrival of a signal provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another method for estimating the angle of arrival of a signal provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another method for estimating the angle of arrival of a signal provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the correlation of different angles of arrival of signals provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a software framework of an electronic device provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as implying or implying relative importance or implying the number of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • the angle of arrival may refer to the angle formed by the signal emitted by the signal transmitting device and the antenna in the electronic device, which is called the angle of arrival, and may also be called the angle of incidence.
  • the included angle ⁇ formed by the radio signal and the antenna 1 and the antenna 2 is the angle of arrival of the radio signal.
  • the signal transmitting device may be a router, a base station, etc., which is not limited in this application.
  • Radio signals can be cellular mobile signals, Bluetooth signals,
  • Wi-Fi wireless fidelity, wireless fidelity
  • UWB Ultra-wideband, ultra-wideband
  • the arrival angle of the signal may also be referred to as the direction of arrival of the signal.
  • a free space scenario can be described as a scenario in which an electronic device receives a radio signal without any obstruction, and the radio signal propagates only due to attenuation caused by signal energy diffusion, without any other form of loss.
  • the hand-holding scene may describe a scene in which the electronic device is held by the user's hand when the electronic device is receiving a radio signal.
  • the user's hand may block the electronic device, causing attenuation of the radio signal received by the electronic device's antenna.
  • the electronic device may have a positioning function.
  • the electronic device can obtain the positioning result through the AOA positioning algorithm.
  • the more accurate the angle of arrival of the signal estimated by the electronic device the more accurate the positioning result calculated by the electronic device using the angle of arrival.
  • the electronic device may be a smart device with two or more than two antennas, such as a mobile phone, a tablet computer, a personal computer, etc.
  • the specific type of the electronic device is not particularly limited in this embodiment of the present application.
  • the electronic device may also have a function of finding objects or a function of determining the direction of other devices.
  • the electronic device may determine the direction of the sought object through the AOA estimation, or determine the direction of other electronic devices through the AOA estimation, which is not limited here.
  • the electronic device may store a mapping relationship table between the phase difference between the antennas and the angle of arrival of the signal.
  • the electronic device estimates the angle of arrival of the signal
  • the electronic device can determine the phase difference PDi between the antennas when the signal is received. Then, the electronic device calculates the similarity between the phase difference PDi and the phase difference in the mapping relationship table, and the angle of arrival corresponding to the phase difference with the highest similarity to the phase difference PDi in the mapping relationship table is the estimated result of the angle of arrival.
  • the electronic device may store a mapping relationship table between the phase difference between antennas and the angle of arrival of the signal in the free space scene, and a mapping relationship table between the phase difference between the antennas and the angle of arrival of the signal in the hand-held scene.
  • the electronic device can establish the phase difference PD1 between Antenna 1 and Antenna 2, and the phase difference PD2 between Antenna 1 and Antenna 3 and the arrival of the signal.
  • Angle mapping table The mapping relationship table in the free space scene can be shown in Table 1.
  • the mapping relationship table in the hand-held scenario may be as shown in Table 2.
  • Table 1 is a mapping relationship table between the phase difference between the antennas in the electronic device and the angle of arrival of the received signal in the free space scene.
  • Table 1 shows the phase difference PD1 between antenna 1 and antenna 2 and the phase difference PD2 between antenna 1 and antenna 3 when the arrival angles of the signals are respectively 0° to 359°.
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 2 of the electronic device is A (0°)
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 3 of the electronic device is A (0°).
  • the phase difference PD2 to this signal is B(0°).
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 2 of the electronic device is A (1°), and the phase difference of the signal received by the antenna 1 and the antenna 3 PD2 is B(1°).
  • the arrival angle of the signal received by the electronic device is 2°
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 2 of the electronic device is A (2°)
  • the phase difference of the signal received by the antenna 1 and the antenna 3 PD2 is B(2°).
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 2 of the electronic device is A (359°)
  • the phase difference of the signal received by the antenna 1 and the antenna 3 PD2 is B (359°).
  • Table 2 is a mapping relationship table between the phase difference between the antennas in the electronic device in the hand-holding scene and the angle of arrival of the received signal.
  • Table 2 shows the phase difference PD1 between antenna 1 and antenna 2 and the phase difference PD2 between antenna 1 and antenna 3 when the arrival angles of the signals are respectively 0° to 359°.
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 2 of the electronic device is C(0°)
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 3 of the electronic device is C (0°).
  • the phase difference PD2 to this signal is D(0°).
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 2 of the electronic device is C (1°), and the phase difference of the signal received by the antenna 1 and the antenna 3 PD2 is D(1°).
  • the arrival angle of the signal received by the electronic device is 2°
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 2 of the electronic device is C (2°)
  • the phase difference of the signal received by the antenna 1 and the antenna 3 PD2 is D(2°).
  • the phase difference PD1 of the signal received by the antenna 1 and the antenna 2 of the electronic device is C (359°)
  • the phase difference of the signal received by the antenna 1 and the antenna 3 PD2 is D (359°).
  • the electronic device only determines the angle of arrival of the signal through the phase difference between the antennas and the mapping relationship between the phase difference and the angle of arrival, and the same phase difference value may occur corresponding to multiple angles of arrival. In this way, the angle of arrival estimated by the electronic device may be inaccurate.
  • FIG. 2 shows the correlation diagram of the arrival angle ⁇ 1 and the arrival angle ⁇ 2.
  • the correlation value of the arrival angle ⁇ 1 and the arrival angle ⁇ 2 may be ⁇ ( ⁇ 1) H ⁇ ( ⁇ 2).
  • ⁇ ( ⁇ 1) is the feature of the arrival angle ⁇ 1
  • the feature may be the phase difference corresponding to the arrival angle ⁇ 1.
  • ⁇ ( ⁇ 1) H is the Hermitian matrix of ⁇ ( ⁇ 1).
  • ⁇ ( ⁇ 2) is the feature of the arrival angle ⁇ 2, and the feature may be the phase difference corresponding to the arrival angle ⁇ 2.
  • the correlation value between the arrival angle ⁇ 1 and the arrival angle ⁇ 2 corresponds to the region 403 in FIG. 2 , and the correlation value is 1.
  • the phase difference between the antennas of the electronic device is the same when the arrival angles are 60° and 290°.
  • the electronic device may estimate the arrival angle as 290° based on the phase difference.
  • the electronic device may estimate the angle of arrival to be 60° based on the phase difference.
  • the correlation value between the arrival angle ⁇ 1 and the arrival angle ⁇ 2 corresponds to the region 402 in Fig. 2, and its correlation value is 1.
  • the phase difference between the antennas of the electronic device is the same when the arrival angle is 130°-145° and the arrival angle is 230°-280°.
  • the electronic device may estimate the arrival angle of 230°-280° based on the phase difference.
  • the electronic device may estimate the arrival angle as 130°-145° based on the phase difference.
  • the correlation value between the arrival angle ⁇ 1 and the arrival angle ⁇ 2 corresponds to the region 401 in Fig. 2, and its correlation value is 1.
  • the phase difference between the antennas of the electronic device is the same when the arrival angle is 130°-145° and the arrival angle is 230°-280°.
  • the electronic device may estimate the arrival angle of 230°-280° based on the phase difference.
  • the electronic device may estimate the arrival angle as 130°-145° based on the phase difference.
  • an embodiment of the present application provides a method for estimating the angle of arrival of the signal.
  • the method may include: the electronic device can receive radio signals, and the electronic device stores a phase difference between antennas and a The mapping relationship table between the gain ratio and the signal arrival angle; the electronic device can calculate the phase difference and gain ratio between the antennas when receiving the wireless signal; the electronic device will calculate the calculated phase difference and gain ratio with the phase difference in the mapping relationship table Calculate the similarity with the gain ratio, and the electronic device takes the angle of arrival corresponding to the phase difference and the gain ratio with the highest similarity in the mapping table as the angle of arrival of the wireless information.
  • the electronic device in this embodiment of the present application may have two antennas, or three antennas, or four antennas, or more antennas, which are not limited here.
  • the embodiments of the present application will be described by taking an electronic device having three antennas as an example.
  • FIG. 3 exemplarily shows a schematic diagram of an electronic device with 3 antennas.
  • the electronic device 100 in FIG. 3 may have three antennas in total: Antenna 1 , Antenna 2 and Antenna 3 . It can be understood that the embodiments of the present application do not limit the placement position of the antenna in the electronic device, and the specific shape, type, and the like of the antenna.
  • the energy of different antennas of an electronic device receiving the same signal in the same direction can be simply considered to be equal to the transmission path loss and the gain of the antenna in this direction.
  • the transmission path loss when receiving signals from different antennas can be regarded as the same. Therefore, the energy difference between different antennas of an electronic device receiving signals from the same incoming wave direction is only related to the gain of the different antennas in this direction.
  • Antenna patterns can be used to represent the power of an antenna to receive signals at different angles of arrival.
  • FIG. 4 exemplarily shows antenna patterns of three antennas in the electronic device 100 in FIG. 3 .
  • (a) in FIG. 4 is the antenna pattern (pattern) of antenna 1
  • (b) is the antenna pattern (pattern) of antenna 2
  • (c) is the antenna pattern (pattern) of antenna 3 .
  • the gain ratio of Antenna 1 and Antenna 2 in the same incoming wave direction can be regarded as the energy ratio of Antenna 1 and Antenna 2 in the incoming wave direction.
  • the gain ratio of the antenna 1 and the antenna 3 in the same incoming wave direction can also be regarded as the energy ratio of the antenna 1 and the antenna 3 in the incoming wave direction.
  • the energy ratios of the antenna 1 and the antenna 2 are different in different incoming wave directions (for example, the signal arrival angles are 0°, 30°, . . . , 330°).
  • the energy ratios of the antenna 1 and the antenna 3 in different incoming wave directions for example, the arrival angles of the signals are 0°, 30°, . . .
  • the electronic device can use the gain ratio of different antennas to estimate the angle of arrival of the signal. In this way, the accuracy of AOA estimation can be improved.
  • the electronic device may store a mapping relationship table of the phase difference between the antennas, the gain ratio and the angle of arrival of the signal.
  • the signal transmitter 300 can transmit signals in different directions of the mobile phone 200 .
  • the mobile phone 200 can record the phase difference and gain ratio between the antennas when receiving signals from different incoming wave directions.
  • FIG. 6 which exemplarily shows the specific process of the mobile phone 200 establishing the mapping relationship table between the phase difference and the gain ratio between the antennas and the angle of arrival of the signal.
  • the mobile phone 200 establishes the phase difference and gain ratio between the antennas, and the mapping relationship table with the angle of arrival of the signal may include the following steps:
  • the signal transmitter 300 is placed in different directions of the mobile phone 200, and continuously transmits radio signals.
  • the mobile phone 200 receives the radio signal sent by the signal transmitter 300 through the antenna 1 , the antenna 2 , and the antenna 3 .
  • the signal transmitters 300 can be placed in different directions of the mobile phone 200 to continuously transmit radio signals.
  • the mobile phone 200 can receive the radio signal sent by the signal transmitter 300 through the antenna 1 , the antenna 2 , and the antenna 3 .
  • the scene in which the mobile phone 200 receives the radio signal may be a free space scene or a hand holding scene.
  • the mobile phone 200 calculates and stores, when receiving radio signals in different directions, the phase difference PD1 between the antenna 1 and the antenna 2, the gain ratio GR1 between the antenna 1 and the antenna 2, the phase difference PD2 between the antenna 1 and the antenna 3, the phase difference between the antenna 1 and the antenna The gain ratio GR2 of 3 and the corresponding arrival angle ⁇ of the radio signal.
  • the mobile phone 200 When the signal transmitter 300 is placed in the 0° direction of the mobile phone 200 , the mobile phone 200 receives the radio signal transmitted by the signal transmitter 300 .
  • the mobile phone 200 can calculate the phase difference PD1 (0°) between the antenna 1 and the antenna 2, the gain ratio GR1 (0°) between the antenna 1 and the antenna 2, and the phase difference between the antenna 1 and the antenna 3 when receiving the radio signal in the 0° direction.
  • PD2 (0°) the gain ratio of Antenna 1 and Antenna 3 GR2 (0°).
  • the mobile phone 200 receives the radio signal transmitted by the signal transmitter 300 .
  • the mobile phone 200 can calculate the phase difference PD1 (1°) between the antenna 1 and the antenna 2 when receiving the radio signal in the 1° direction, the gain ratio GR1 (1°) between the antenna 1 and the antenna 2; the phase between the antenna 1 and the antenna 3 Difference PD2 (1°), and gain ratio GR2 (1°) of antenna 1 and antenna 3 .
  • the signal transmitter 300 transmits radio signals in different directions of the mobile phone 200 .
  • the signal transmitter 300 may transmit radio signals on the same plane as the mobile phone 200 .
  • the signal transmitter 300 transmits radio signals in different directions of the mobile phone 200 , the signal transmitter 300 is still in the same plane as the mobile phone 200 .
  • the arrival angle of the radio signal may be a plane angle. It can be understood that the signal transmitter 300 may be on a different plane from the mobile phone 200 .
  • the arrival angle of the radio signal may be a spatial angle, that is, the spatial angle may include the azimuth, pitch and roll formed by the radio signal and the antenna in the mobile phone 200 .
  • the mobile phone 200 has finished receiving radio signals in all directions, and stores the phase difference PD1 between antenna 1 and antenna 2 corresponding to all incoming wave directions, the gain ratio GR1 between antenna 1 and antenna 2, and the phase difference PD2 between antenna 1 and antenna 3 , the gain ratio of antenna 1 and antenna 3 is GR2.
  • the mobile phone 200 If the mobile phone 200 completes receiving radio signals in all directions, and stores the phase differences PD1 and PD2 corresponding to all incoming wave directions, and the gain ratios GR1 and GR2. Then the mobile phone 200 can execute step S605. Otherwise, the signal transmitter 300 executes step S601.
  • the embodiments of the present application are described by taking the signal transmitter 300 and the mobile phone 200 on the same plane as an example.
  • the signal transmitter 300 may take the mobile phone 200 as the center, and continuously transmit radio signals at a predetermined angle ⁇ on the circumference at a predetermined distance from the mobile phone 200 .
  • the preset angle ⁇ may be 1°, 2°, or 5°, and the preset angle ⁇ is not limited here.
  • the mobile phone 200 establishes and stores a mapping relationship table of the phase difference between the antennas, the gain ratio and the angle of arrival of the radio signal.
  • the mobile phone 200 can establish a mapping relationship table between the phase difference between the antennas, the gain ratio and the angle of arrival of the radio signal.
  • the mapping relationship table can record the signal transmitter 300 and the mobile phone 200 in the same plane, when the arrival angle of the radio signal is separated by a preset angle ⁇ , the corresponding phase difference PD1 of the antenna 1 and the antenna 2, and the gain ratio of the antenna 1 and the antenna 2 respectively.
  • GR1 the phase difference PD2 between the antenna 1 and the antenna 3
  • GR2 the gain ratio GR2 between the antenna 1 and the antenna 3.
  • the mapping relationship table can also record that the signal transmitter 300 and the mobile phone 200 are not on the same plane, and when the arrival angle of the radio signal is separated by a preset angle ⁇ , the corresponding phase difference PD1 of antenna 1 and antenna 2, and the gain of antenna 1 and antenna 2 respectively
  • the ratio GR1 is the phase difference PD2 between the antenna 1 and the antenna 3, and the gain ratio GR2 between the antenna 1 and the antenna 3.
  • the mobile phone 200 may establish a mapping relationship table of the phase difference between the antennas, the gain ratio and the angle of arrival of the radio signal in the free space scenario and the hand-held scenario.
  • mapping relationship table of the phase difference between the antennas, the gain ratio and the angle of arrival of the radio signal established by the mobile phone 200 in the free space scenario may be as shown in Table 3 below.
  • Table 3 records the phase difference PD1 between Antenna 1 and Antenna 2 and the gain ratio between Antenna 1 and Antenna 2 when the radio signal has a total of 360 angles from 0° to 359° in the free space scenario GR1, the phase difference PD2 between the antenna 1 and the antenna 3, and the gain ratio GR2 between the antenna 1 and the antenna 3.
  • the phase difference PD1 between the antenna 1 and the antenna 2 is E(0°)
  • the gain ratio GR1 is G(0°)
  • the phase difference PD2 between the antenna 1 and the antenna 3 is F(0°)
  • the gain ratio GR2 is H(0°).
  • the phase difference PD1 between the antenna 1 and the antenna 2 is E (1°), and the gain ratio GR1 is G (1°); the phase difference PD2 between the antenna 1 and the antenna 3 is F(1°), and the gain ratio GR2 is H(1°).
  • the arrival angle of the radio signal received by the mobile phone 200 is 2°, the phase difference PD1 between the antenna 1 and the antenna 2 is E (2°), and the gain ratio GR1 is G (2°); the phase difference PD2 between the antenna 1 and the antenna 3 is F(2°), and the gain ratio GR2 is H(2°).
  • the phase difference PD1 between the antenna 1 and the antenna 2 is E (359°)
  • the gain ratio GR1 is G (359°)
  • the phase difference PD2 between the antenna 1 and the antenna 3 is F(359°)
  • the gain ratio GR2 is H(359°).
  • mapping relationship table of the phase difference between the antennas, the gain ratio and the angle of arrival of the radio signal established by the mobile phone 200 in the hand-held scenario may be as shown in Table 4 below.
  • the table 4 records the phase difference PD1 between Antenna 1 and Antenna 2, and the gain ratio between Antenna 1 and Antenna 2 when the radio signal is at a total of 360 angles from 0° to 359° in the hand-held scenario GR1, the phase difference PD2 between the antenna 1 and the antenna 3, and the gain ratio GR2 between the antenna 1 and the antenna 3.
  • the arrival angle of the radio signal received by the mobile phone 200 is 0°
  • the phase difference PD1 between the antenna 1 and the antenna 2 is J (0°)
  • the gain ratio GR1 is L (0°
  • the phase difference PD2 between the antenna 1 and the antenna 3 is K(0°)
  • the gain ratio GR2 is M(0°).
  • the phase difference PD1 between the antenna 1 and the antenna 2 is J (1°), and the gain ratio GR1 is L (1°); the phase difference PD2 between the antenna 1 and the antenna 3 is K(1°), and the gain ratio GR2 is M(1°).
  • the arrival angle of the radio signal received by the mobile phone 200 is 2°, the phase difference PD1 between the antenna 1 and the antenna 2 is J (2°), and the gain ratio GR1 is L (2°); the phase difference PD2 between the antenna 1 and the antenna 3 is K(2°), and the gain ratio GR2 is M(2°).
  • the phase difference PD1 between the antenna 1 and the antenna 2 is J (359°), and the gain ratio GR1 is L (359°); the phase difference PD2 between the antenna 1 and the antenna 3 is K (359°), and the gain ratio GR2 is M (359°).
  • the mapping relationship table stored in the mobile phone 200 may not be limited to the mapping relationship table shown in Table 3 and the mapping relationship table shown in Table 4.
  • the mobile phone 200 may also store a mapping relationship table of the angle of arrival and the phase difference between the antennas of the mobile phone 200 and the gain ratio when the pitch angle of the angle of arrival of the radio signal is different. This embodiment of the present application does not limit this.
  • the mobile phone 200 may store the mapping relationship table of the free space scene and the mapping relationship table of the hand-held scene in one table.
  • Tables 3 and 4 above may be stored in one table. There is no limitation here.
  • the mobile phone 200 may store the mapping relationship table of the free space scene and the mapping relationship table of the hand-held scene established by the mobile phone 200 in a cloud server or a server, which is not limited here.
  • the mobile phone 200 may have two antennas in total, an antenna 1 and an antenna 2 .
  • the mobile phone 200 may store a mapping relationship table between the phase difference and the gain ratio of the antenna 1 and the antenna 2 and the angle of arrival of the radio signal.
  • the mapping table can store different arrival angles of radio signals, the corresponding phase difference and gain ratio between antenna 1 and antenna 2 .
  • the mobile phone 200 may store a mapping relationship table between the gain ratio of the antenna 1 and the antenna 2 and the angle of arrival of the radio signal.
  • the mapping relationship table can store different arrival angles of radio signals and the corresponding gain ratios of antenna 1 and antenna 2 .
  • the mobile phone 200 may have a total of four antennas: antenna 1 , antenna 2 , antenna 3 and antenna 4 .
  • the mobile phone 200 can store the phase difference and gain ratio between the antenna 1 and the antenna 2, the phase difference and the gain ratio between the antenna 1 and the antenna 3, and the phase difference and the gain ratio between the antenna 1 and the antenna 4, and A table of mapping relationships between radio signals.
  • the mapping table can store different angles of arrival of radio signals, the corresponding phase difference and gain ratio between antenna 1 and antenna 2, the phase difference and gain ratio between antenna 1 and antenna 3, and the corresponding phase difference and gain ratio between antenna 1 and antenna 2. Phase difference and gain ratio between antennas 4.
  • the mobile phone 200 may store the gain ratio between the antenna 1 and the antenna 2, the gain ratio between the antenna 1 and the antenna 3, and the gain ratio between the antenna 1 and the antenna 4, and the mapping relationship between the radio signals surface.
  • the mapping table can store different angles of arrival of radio signals, the corresponding gain ratios between Antenna 1 and Antenna 2, the gain ratio between Antenna 1 and Antenna 3, and the gain between Antenna 1 and Antenna 4. Compare.
  • the mobile phone 200 may have multiple N antennas, and N is greater than 4.
  • the mobile phone 200 may store a mapping relationship table between the phase difference and the gain ratio between any one of the N antennas and other antennas and the angle of arrival of the radio signal.
  • the mapping relationship table may store different arrival angles of radio signals, and the corresponding phase difference and gain ratio between any one of the N antennas and other antennas.
  • the mobile phone 200 may store a mapping relationship table between the gain ratio between any one of the N antennas and the other antennas and the angle of arrival of the radio signal.
  • the mapping relationship table may store different arrival angles of radio signals and the corresponding gain ratios between any one of the N antennas and other antennas.
  • the mobile phone 200 when the mobile phone 200 establishes the mapping relationship table between the phase difference between the antennas, the gain ratio and the angle of arrival of the radio signal, the mobile phone 200 can be in a fixed position, and the position of the signal transmitter 300 can be changed to change this.
  • the signal transmitter 300 can also be in a fixed position, and the angle of arrival of the radio signal received by the antenna in the mobile phone 200 can be changed by changing the position of the mobile phone 200 . This embodiment of the present application does not limit this.
  • antenna 1 may be referred to as a first antenna
  • antenna 2 may be referred to as a second antenna
  • antenna 3 may be referred to as a third antenna.
  • An embodiment of the present application provides a method for estimating the angle of arrival of a signal.
  • the method may include: an electronic device has a positioning function, and when a user uses the electronic device for positioning, the electronic device can receive a radio signal S1 through an antenna, and the electronic device stores an antenna The mapping relationship table between the phase difference, gain ratio, and the angle of arrival of the radio signal; the electronic device can calculate the phase difference and gain ratio between the antennas when receiving the radio signal S1, and the electronic device can calculate the received radio signal S1 The phase difference and gain ratio between the antennas, and the similarity between the phase difference and gain ratio in the mapping table; the electronic device can compare the phase difference and gain ratio between the antennas in the mapping table with when receiving the radio signal S1. The angle of arrival corresponding to the highest phase difference and gain ratio is taken as the angle of arrival of the radio signal S1. In this way, the electronic device can more accurately estimate the arrival angle of the radio signal received by the electronic device.
  • the electronic device in this embodiment of the present application may have two antennas, or three antennas, and four or more antennas.
  • This embodiment of the present application does not limit the number of antennas in the electronic device. The following embodiments are described by taking the electronic device having three antennas as an example.
  • FIG. 7 exemplarily shows a schematic flowchart of a method for estimating an angle of arrival of a signal provided by an embodiment of the present application.
  • a method for estimating an angle of arrival of a signal provided by an embodiment of the present application may include the following steps:
  • the electronic device receives the radio signal S1 through the first antenna, the second antenna, and the third antenna, and the electronic device stores the phase difference, gain ratio between the first antenna and the second antenna, and the first antenna when receiving radio signals in different directions.
  • the radio signal S1 may be a signal transmitted by a base station, a signal transmitted by a router, or a signal transmitted by other electronic devices, which is not limited here.
  • the electronic device Before receiving the radio signal S1, the electronic device may store the phase difference and gain ratio between the first antenna and the second antenna, and the phase difference and gain ratio between the first antenna and the third antenna when receiving radio signals in different azimuths
  • the mapping relationship table T1 may be established according to the above steps S601-S605.
  • the mapping relationship table T1 may be the mapping relationship table in the free space scene shown in Table 3 above, or the mapping relationship table in the hand-holding scene shown in Table 4 above.
  • the mapping relationship table T1 may also be the mapping relationship table in the free space scene shown in Table 3 and the mapping relationship table in the hand-holding scene shown in Table 4. This embodiment of the present application does not limit this.
  • the electronic device calculates the first phase difference between the first antenna and the second antenna, the first gain ratio between the first antenna and the second antenna, and the second phase between the first antenna and the third antenna when receiving the radio signal S1 difference, the third gain ratio of the first antenna to the third antenna.
  • the electronic device can calculate the first phase difference between the first antenna and the second antenna, the first gain ratio between the first antenna and the second antenna, and the second phase between the first antenna and the third antenna difference, the third gain ratio of the first antenna to the third antenna.
  • the electronic device can determine the phase of the radio signal S1 received by the first antenna
  • the electronic device can determine the phase of the radio signal S1 received by the second antenna
  • the electronic device can determine the phase of the radio signal S1 received by the second antenna
  • the electronic device can determine the phase of the radio signal S1 received by the third antenna
  • the electronic device can depend on the phase of the radio signal S1 received by the first antenna and the phase of the radio signal S2 received by the second antenna It is determined that when the radio signal S1 is received, the phase difference PD1 between the first antenna and the second antenna is
  • the electronic device can depend on the phase of the radio signal S1 received by the first antenna and the phase of the radio signal S2 received by the third antenna It is determined that when the radio signal S1 is received, the phase difference PD2 between the first antenna and the third antenna is
  • the electronic device may determine the received energy (Received Signal Strength1, RSS1) of the first antenna.
  • the electronic device can determine the received energy RSS2 of the second antenna.
  • the electronic device can determine the received energy RSS3 of the third antenna.
  • the electronic device can determine the gain ratio GR1 between the first antenna and the second antenna as (RSS1/RSS2) according to the received energy RSS1 of the first antenna and the received energy RSS2 of the second antenna.
  • the electronic device can determine the gain ratio GR2 between the first antenna and the third antenna as (RSS1/RSS3) according to the received energy RSS1 of the first antenna and the received energy RSS3 of the third antenna.
  • the electronic device calculates the similarity between the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2, and the second gain ratio GR2 and the phase differences and gain ratios corresponding to all the angles of arrival in the mapping table T1.
  • the electronic device may calculate the first phase difference, the first gain ratio, the second phase difference, and the similarity between the second gain ratio and the phase differences and gain ratios corresponding to all the angles of arrival in the mapping relationship table T1.
  • the electronic device may calculate the first phase difference, the first gain ratio, the second phase difference, and the phase difference and gain ratio difference corresponding to all the angles of arrival in the mapping relationship table T1 by calculating the first phase difference, the first gain ratio, the second phase difference, and the second gain ratio
  • the sum of the values is used to determine the similarity. The larger the sum of the differences, the lower the similarity; on the contrary, the higher the sum of the differences, the higher the similarity.
  • mapping relationship table T1 is the mapping relationship table shown in Table 3.
  • the calculation formula of the first phase difference, the first gain ratio, the second phase difference, and the sum of the phase differences and gain ratio differences corresponding to all the angles of arrival in the second gain ratio and the mapping relationship table T1 may be as follows:
  • Error0(i°) is, that is, the phase difference and gain ratio corresponding to the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2, and the second gain ratio GR2 and the angle of arrival i°. The higher the similarity.
  • the electronic device can calculate Error0(0°), Error0(1°), Error0(2°), ..., Error0(359°) according to the above formula 1.
  • mapping relationship table T1 is the mapping relationship table shown in Table 4.
  • the calculation formula of the first phase difference, the first gain ratio, the second phase difference, and the sum of the phase differences and gain ratio differences corresponding to all the angles of arrival in the second gain ratio and the mapping relationship table T1 may be as follows:
  • Error1(i°) is, that is, the phase difference and gain ratio corresponding to the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2, and the second gain ratio GR2 and the angle of arrival i°. The higher the similarity.
  • the electronic device can calculate Error1(0°), Error1(1°), Error1(2°), . . . , Error1(359°) according to the above formula 2.
  • Error1(i°) may be referred to as the third sum of differences
  • may be referred to as the second sum of differences
  • can be called the sum of the first difference.
  • the electronic device uses the angle of arrival corresponding to the phase difference with the highest similarity to the gain ratio as the angle of arrival of the radio signal S1.
  • mapping relationship table T1 is the mapping relationship table in the free space scenario shown in Table 3.
  • the electronic device calculates the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2, and the second gain ratio GR2 and the sum of the phase difference and gain ratio difference between the antennas in the mapping table T1 by formula 1.
  • the sum of the differences is Error0(0°), Error0(1°), Error0(2°), ..., Error0(359°).
  • the electronic device can compare the magnitudes of Error0(0°), Error0(1°), Error0(2°), ..., Error0(359°).
  • the electronic device takes the angle corresponding to the sum of the smallest difference as the arrival angle of the radio signal S1. For example, if Error0 (0°) is the smallest, the electronic device determines that the angle of arrival of the radio signal S1 is 0°. If Error0 (1°) is the smallest, then the electronic device determines that the angle of arrival of the radio signal S1 is 1°. If Error0 (359°) is the smallest, then the electronic device determines that the angle of arrival of the radio signal S1 is 359°.
  • mapping relationship table T1 is the mapping relationship table in the hand-holding scenario shown in Table 4.
  • the electronic device calculates the sum of the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2, and the second gain ratio GR2 and the difference between the antennas in the mapping table T1 and the gain ratio by formula 2.
  • the sum of the differences is Error1(0°), Error1(1°), Error1(2°), ..., Error1(359°).
  • the electronic device takes the angle corresponding to the sum of the smallest difference as the arrival angle of the radio signal S1.
  • the electronic device determines that the angle of arrival of the radio signal S1 is 0°. If Error1 (1°) is the smallest, then the electronic device determines that the angle of arrival of the radio signal S1 is 1°. If Error1 (359°) is the smallest, then the electronic device determines that the angle of arrival of the radio signal S1 is 359°.
  • the mapping relationship table T1 is the mapping relationship table in the free space scenario shown in Table 3, and the mapping relationship table in the hand-holding scenario shown in Table 4.
  • the electronic device can calculate the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2, the second gain ratio GR2 and the phase difference and gain ratio between the antennas in the mapping relationship table T1 by formula 1 and formula 2 respectively.
  • the sum of the differences is Error0(0°), Error0(1°), Error0(2°), ..., Error0(359°), Error1(0°), Error1(1°), Error1(2°) , ..., Error1 (359°).
  • the electronic device takes the angle corresponding to the sum of the smallest difference as the arrival angle of the radio signal S1.
  • Steps S702 and S703 are optional steps here, and steps S702 and S703 may not be executed after the electronic device executes S701. That is, after the electronic device executes S701, the electronic device can calculate the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2, and the second gain ratio GR2 according to the preset sequence and the corresponding angle of arrival in the mapping table T1. Similarity of phase difference and gain ratio.
  • the electronic device determines that the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2 and the second gain ratio GR2 and the phase difference and gain ratio corresponding to the angle of arrival AOA1 in the mapping table T1 are greater than the preset
  • the electronic device takes AOA1 as the arrival angle of the radio signal S1.
  • the electronic device calculates the similarity when the arrival angle is 1°, and if the similarity is greater than the preset threshold 1, the electronic device takes 1° as the arrival angle of the radio signal S1. The electronic device does not need to continue to calculate the similarity of other arrival angles in the mapping relationship table T1.
  • the electronic device does not need to calculate the similarity between the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2, and the second gain ratio GR2 and the phase difference and gain ratio corresponding to each angle of arrival in the mapping table T1 , which can reduce the amount of calculation and reduce the power consumption of electronic equipment.
  • the mapping relationship table T1 may be stored in an electronic device, or may be stored in a cloud server or a server.
  • the electronic device may send the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2 and the second gain ratio GR2 to the cloud server or the server, the The cloud server or server can calculate the similarity between the first phase difference PD1, the first gain ratio GR1, the second phase difference PD2, and the second gain ratio GR2 and the phase difference and gain ratio corresponding to the angle of arrival in the mapping table T1.
  • the preset threshold 1 may be referred to as a similarity threshold, and the similarity threshold may be configured by an electronic device system.
  • the electronic device when a user uses an electronic device for positioning, the electronic device can receive the radio signal S1 through an antenna, and the electronic device stores the phase difference and gain ratio between the antennas, which are the same as the radio signal S1.
  • the mapping relationship table between the angles of arrival of radio signals the electronic device can calculate the phase difference and gain ratio between the antennas when receiving the radio signal S1, and the electronic device can calculate the phase difference and gain ratio between the antennas when receiving the radio signal S1 , the similarity with the phase difference and gain ratio in the mapping relationship table; the electronic device can match the phase difference between the antennas in the mapping relationship table with the phase difference and gain ratio with the highest similarity to the gain ratio when the radio signal S1 is received.
  • the angle of arrival is used as the angle of arrival of the radio signal S1. Because, when the arrival angles of the signals received by the antennas are different, the gain ratios between the antennas are different. In this way, the electronic device can more accurately estimate the arrival angle of the radio signal received by the electronic device.
  • FIG. 8 shows a correlation diagram between the arrival angle ⁇ 1 and the arrival angle ⁇ 2 obtained by a signal arrival angle estimation method provided by an embodiment of the present application.
  • the correlation value of the arrival angle ⁇ 1 and the arrival angle ⁇ 2 may be ⁇ ( ⁇ 1) H ⁇ ( ⁇ 2).
  • ⁇ ( ⁇ 1) is the feature of the arrival angle ⁇ 1
  • the feature may be the phase difference and gain ratio corresponding to the arrival angle ⁇ 1.
  • ⁇ ( ⁇ 1) H is the Hermitian matrix of ⁇ ( ⁇ 1).
  • ⁇ ( ⁇ 2) is a feature of the arrival angle ⁇ 2, and the feature can be the phase difference and gain ratio corresponding to the arrival angle ⁇ 2.
  • the arrival angle ⁇ 1 and the arrival angle ⁇ 2 in FIG. 8 are not equal, but the cases where the correlation value is 1 are greatly reduced. It can be seen from this that the angle of arrival obtained by the method for estimating the angle of arrival of a signal provided by the embodiment of the present application is more accurate.
  • the electronic device provided in this embodiment of the present application may include a first antenna and a second antenna.
  • the electronic device may receive the radio signal S1 through the first antenna and the second antenna.
  • the electronic device receives the radio signal S1 through the first antenna and the second antenna.
  • the phase difference between the first antenna and the second antenna is proportional to the gain ratio.
  • steps S700-S703 which will not be repeated here.
  • For the process of establishing the mapping relationship table T2 reference may be made to the descriptions in the foregoing steps S601 to S605, which will not be repeated here.
  • the electronic device provided in the embodiment of the present application includes a first antenna, a second antenna, a third antenna, and a fourth antenna.
  • the electronic device can receive the radio signal S1 through the first antenna, the second antenna, the third antenna, and the fourth antenna.
  • the electronic device receives the radio signal S1 through the first antenna, the second antenna, the third antenna and the fourth antenna.
  • the first antenna and the second antenna The phase difference and gain ratio of the antenna, the phase difference and gain ratio of the first antenna and the third antenna, the mapping relationship table T3 of the phase difference and gain ratio of the first antenna and the fourth antenna; the electronic device calculates when receiving the radio signal S1 , the first phase difference and the first gain ratio between the first antenna and the second antenna, the second phase difference and the second gain ratio between the first antenna and the third antenna, the third phase difference between the first antenna and the fourth antenna, The third gain ratio; the electronic device can calculate the first phase difference, the first gain ratio, the second phase difference, the second gain ratio, the third phase difference, the third gain ratio and the first phase corresponding to all the angles of arrival in the mapping relationship table T3 The phase difference and gain ratio between the first antenna and the second antenna, the phase difference and gain ratio between the first antenna and the third antenna, and the fourth antenna.
  • the electronic device can have more antennas here.
  • the process of estimating the angle of arrival of the signal by the electronic device may refer to the descriptions in steps S700 to S703, which will not be repeated here.
  • mapping relationship table T1 the mapping relationship table T2, and the mapping relationship table T3 may all be referred to as the first mapping table.
  • an embodiment of the present application provides a method for estimating the angle of arrival of a signal.
  • the method may include: an electronic device may receive a radio signal S1 through an antenna, and the electronic device stores a mapping between different angles of arrival of the signal and gain ratios between the antennas Relationship table; when the electronic device receives the radio signal S1, it can calculate the gain ratio between the antennas, and the electronic device calculates the similarity between the calculated gain ratio and the gain ratio in the mapping relationship table; The angle of arrival corresponding to the gain ratio with the greatest similarity is taken as the angle of arrival of the radio signal.
  • FIG. 9 exemplarily shows a schematic flowchart of a method for estimating an angle of arrival of a signal provided by an embodiment of the present application.
  • a method for estimating an angle of arrival of a signal provided by an embodiment of the present application may include the following steps:
  • the electronic device receives the radio signal S1 through the first antenna, the second antenna, and the third antenna, and the electronic device stores the gain ratio between the first antenna and the second antenna, and the gain ratio of the first antenna and the second antenna when receiving radio signals in different directions in the electronic device.
  • the mapping relationship table T4 of the gain ratio of the third antenna and the angle of arrival of the radio signal is
  • the electronic device When receiving radio signals in different directions, the electronic device stores the gain ratio of the first antenna and the second antenna, and the mapping relationship table T4 between the gain ratio of the first antenna and the third antenna and the angle of arrival of the radio signal.
  • the mapping relationship table T4 may be a mapping relationship table established by the electronic device in the free space scene, or may be a mapping relationship table established by the electronic device in the hand holding scene, or may be the electronic device in the free space scene and the hand holding scene respectively.
  • the mapping relationship table established in For the process of establishing the mapping relationship table by the electronic device, reference may be made to the foregoing steps S601 to S605, which will not be repeated here.
  • the mapping relationship table T4 may be a mapping relationship table established in a free space scenario as shown in Table 5 below, or a mapping relationship table established in a hand-held scenario as shown in Table 6 below.
  • this table 5 records the gain ratio GR1 of Antenna 1 and Antenna 2, and the gain ratio of Antenna 1 and Antenna 3 when the radio signal is at 360 angles from 0° to 359° in the free space scene GR2.
  • the gain ratio GR1 between the antenna 1 and the antenna 2 is N(0°); the gain ratio GR2 between the antenna 1 and the antenna 3 is P(0°).
  • the gain ratio GR1 of the antenna 1 and the antenna 2 is N(1°); the gain ratio GR2 of the antenna 1 and the antenna 3 is P(1°).
  • the gain ratio GR1 of the antenna 1 and the antenna 2 is N(2°); the gain ratio GR2 of the antenna 1 and the antenna 3 is P(2°).
  • the gain ratio GR1 between the antenna 1 and the antenna 2 is N (359°); the gain ratio GR2 between the antenna 1 and the antenna 3 is P (359°).
  • the table 6 records the gain ratio GR1 of Antenna 1 and Antenna 2, and the gain ratio of Antenna 1 and Antenna 3 when the radio signal is at 360 angles from 0°-359° in the hand-held scenario GR2.
  • the gain ratio GR1 between the antenna 1 and the antenna 2 is Q(0°); the gain ratio GR2 between the antenna 1 and the antenna 3 is R(0°).
  • the gain ratio GR1 of the antenna 1 and the antenna 2 is Q(1°); the gain ratio GR2 of the antenna 1 and the antenna 3 is R(1°).
  • the gain ratio GR1 between the antenna 1 and the antenna 2 is Q (2°); the gain ratio GR2 between the antenna 1 and the antenna 3 is R (2°).
  • the gain ratio GR1 between the antenna 1 and the antenna 2 is Q (359°); the gain ratio GR2 between the antenna 1 and the antenna 3 is R (359°).
  • the mapping relationship table T4 stored in the mobile phone 200 may not be limited to the mapping relationship table shown in Table 5 and the mapping relationship table shown in Table 6.
  • the mobile phone 200 may also store a mapping relationship table of the angle of arrival and the gain ratio between the antennas of the mobile phone 200 when the pitch angles of the angles of arrival of the radio signals are different. This embodiment of the present application does not limit this.
  • step S800 reference may be made to the description in step S700, which will not be repeated here.
  • the electronic device calculates the first gain ratio between the first antenna and the second antenna and the second gain ratio between the first antenna and the third antenna when receiving the radio signal S1.
  • the electronic device can determine the received energy RSS1 of the first antenna.
  • the electronic device can determine the received energy RSS2 of the second antenna.
  • the electronic device can determine the received energy RSS3 of the third antenna.
  • the electronic device can determine the gain ratio GR1 between the first antenna and the second antenna as (RSS1/RSS2) according to the received energy RSS1 of the first antenna and the received energy RSS2 of the second antenna.
  • the electronic device can determine the gain ratio GR2 between the first antenna and the third antenna as (RSS1/RSS3) according to the received energy RSS1 of the first antenna and the received energy RSS3 of the third antenna.
  • the electronic device calculates the similarity between the first gain ratio and the second gain ratio and the gain ratios corresponding to all the angles of arrival in the mapping relationship table T4.
  • the electronic device may calculate the first phase difference, the first gain ratio, the second phase difference, and the similarity between the second gain ratio and the phase differences and gain ratios corresponding to all the angles of arrival in the mapping relationship table T4.
  • the electronic device may determine the similarity by calculating the sum of the first gain ratio and the second gain ratio and the difference values of the gain ratios corresponding to all the angles of arrival in the mapping relationship table T4. The larger the sum of the differences, the lower the similarity; on the contrary, the higher the sum of the differences, the higher the similarity.
  • mapping relationship table T4 is the mapping relationship table shown in Table 5.
  • the calculation formula of the first gain ratio and the second gain ratio and the sum of the gain ratio differences corresponding to all the angles of arrival in the mapping relationship table T4 may be as follows:
  • the electronic device can calculate Error2(0°), Error2(1°), Error2(2°), . . . , Error2(359°) according to the above formula 3.
  • mapping relationship table T4 is the mapping relationship table shown in Table 6.
  • the calculation formula of the first gain ratio and the second gain ratio and the sum of the gain ratio differences corresponding to all the angles of arrival in the mapping relationship table T4 may be as follows:
  • the electronic device can calculate Error3(0°), Error3(1°), Error3(2°), ..., Error3(359°) according to the above formula 4.
  • the electronic device uses the angle of arrival corresponding to the gain ratio with the largest similarity value as the angle of arrival of the radio signal S1.
  • mapping relation table T4 is the mapping relation table in the free space scenario shown in Table 5.
  • the electronic device calculates the sum of the difference between the first gain ratio GR1 and the second gain ratio GR2 and the gain ratio between the antennas in the mapping relationship table T1 by using formula 3.
  • the sum of the differences is Error2(0°), Error2(1°), Error2(2°), ..., Error2(359°).
  • the electronic device can compare the magnitudes of Error2(0°), Error2(1°), Error2(2°), ..., Error2(359°).
  • the electronic device takes the angle corresponding to the sum of the smallest difference as the arrival angle of the radio signal S1.
  • the electronic device determines that the angle of arrival of the radio signal S1 is 0°. If Error2(1°) is the smallest, then the electronic device determines that the angle of arrival of the radio signal S1 is 1°. If Error2 (359°) is the smallest, then the electronic device determines that the angle of arrival of the radio signal S1 is 359°.
  • mapping relationship table T4 is the mapping relationship table in the hand-holding scenario shown in Table 6.
  • the electronic device calculates the sum of the difference between the first gain ratio GR1 and the second gain ratio GR2 and the gain ratio between the antennas in the mapping relationship table T4 by using formula 4.
  • the sum of the differences is Error3(0°), Error3(1°), Error3(2°), ..., Error3(359°).
  • the electronic device can compare the magnitudes of Error3(0°), Error3(1°), Error3(2°), ..., Error3(359°).
  • the electronic device takes the angle corresponding to the sum of the smallest difference as the arrival angle of the radio signal S1.
  • the electronic device determines that the angle of arrival of the radio signal S1 is 0°. If Error3(1°) is the smallest, then the electronic device determines that the angle of arrival of the radio signal S1 is 1°. If Error3 (359°) is the smallest, then the electronic device determines that the angle of arrival of the radio signal S1 is 359°.
  • mapping relationship table T4 is the mapping relationship table in the free space scenario shown in Table 5, and the mapping relationship table in the hand-holding scenario shown in Table 6.
  • the electronic device can calculate the sum of the difference between the first gain ratio GR1 and the second gain ratio GR2 and the gain ratio between the antennas in the mapping relationship table T4 by using the formula 3 and the formula 4, respectively.
  • the sum of the differences is Error2(0°), Error2(1°), Error2(2°), ..., Error2(359°), Error3(0°), Error3(1°), Error3(2°) , ..., Error3 (359°).
  • the electronic device takes the angle corresponding to the sum of the smallest difference as the arrival angle of the radio signal S1.
  • Steps S802 and S803 are optional steps here, and steps S802 and S803 may not be executed after the electronic device executes S801. That is, after the electronic device executes S801, the electronic device can calculate the first gain ratio GR1 and the second gain ratio GR2 and the similarity of the phase difference and gain ratio corresponding to the angle of arrival in the mapping table T4 according to the preset sequence. If the electronic device determines that the similarity between the first gain ratio GR1 and the second gain ratio GR2 and the gain ratio corresponding to the arrival angle AOA2 in the mapping relationship table T4 is greater than the preset threshold 2, the electronic device regards AOA2 as the arrival of the radio signal S1 angle.
  • the electronic device calculates the similarity when the arrival angle is 1°, and if the similarity is greater than the preset threshold 2, the electronic device takes 1° as the arrival angle of the radio signal S1.
  • the electronic device does not need to continue to calculate the similarity of other arrival angles in the mapping relationship table T1.
  • the electronic device does not need to calculate the phase difference and gain ratio similarity of the first gain ratio GR1 and the second gain ratio GR2 to each angle of arrival in the mapping table T4, which can reduce the amount of calculation and reduce the power of the electronic device. consumption.
  • the mapping relationship table T4 may be stored in the electronic device, or may be stored in a cloud server or a server.
  • the electronic device can send the first gain ratio GR1 and the second gain ratio GR2 to the cloud server or server, and the cloud server or server can calculate the first gain ratio Similarity between GR1, the second phase difference PD2, and the second gain ratio GR2 and the gain ratio corresponding to the angle of arrival in the mapping relationship table T4.
  • the preset threshold 2 may be referred to as a similarity threshold.
  • the similarity threshold may be configured by the electronic device system.
  • the electronic device can receive the radio signal S1 through the antenna, and the electronic device stores the gain ratio between the antennas, which is different from the radio signal's gain ratio.
  • the electronic device can take the angle of arrival corresponding to the gain ratio with the highest similarity between the antennas in the mapping relationship table and the gain ratio between the antennas when the radio signal S1 is received as the angle of arrival of the radio signal S1. Because, when the arrival angles of the signals received by the antennas are different, the gain ratios between the antennas are different. In this way, the electronic device can more accurately estimate the arrival angle of the radio signal received by the electronic device.
  • the electronic device provided in this embodiment of the present application may include a first antenna and a second antenna.
  • the electronic device may receive the radio signal S1 through the first antenna and the second antenna.
  • the electronic device receives the radio signal S1 through the first antenna and the second antenna, and when the electronic device stores radio signals of different azimuths, the mapping relationship table of the gain ratio of the first antenna and the second antenna T5; the electronic device calculates the first gain ratio between the first antenna and the second antenna when receiving the radio signal S1; the electronic device can calculate the first gain ratio and the first antenna and the second antenna corresponding to all the angles of arrival in the mapping relationship table T5 The similarity of the gain ratios of the antennas; the electronic device takes the angle of arrival corresponding to the gain ratio with the greatest similarity in the mapping table T5 as the angle of arrival of the radio signal S1.
  • steps S800 to S803 which will not be repeated here.
  • For the process of establishing the mapping relationship table T5 reference may be made to the descriptions in the foregoing steps S601 to S605, which will not be repeated here.
  • the electronic device provided in the embodiment of the present application includes a first antenna, a second antenna, a third antenna, and a fourth antenna.
  • the electronic device can receive the radio signal S1 through the first antenna, the second antenna, the third antenna, and the fourth antenna.
  • the electronic device receives the radio signal S1 through the first antenna, the second antenna, the third antenna and the fourth antenna.
  • the first antenna and the second antenna The gain ratio of the antenna, the gain ratio of the first antenna and the third antenna, the mapping relationship table T6 of the gain ratio of the first antenna and the fourth antenna; the electronic device calculates the difference between the first antenna and the second antenna when receiving the radio signal S1.
  • steps S800 to S803 which will not be repeated here.
  • the electronic device may also select two antennas or three antennas to estimate the angle of arrival of the wireless signal.
  • the electronic device can have more antennas here.
  • the process of estimating the angle of arrival of the signal by the electronic device may refer to the descriptions in steps S800 to S803, which will not be repeated here.
  • the electronic device 100 may include an antenna unit 10 , a radio frequency front-end unit 20 , and a signal processing and control unit 30 .
  • FIG. 10 exemplarily shows a schematic flowchart of a method for estimating an angle of arrival of a signal provided by an embodiment of the present application.
  • a method for estimating the angle of arrival of a signal provided by an embodiment of the present application may include the following steps:
  • the electronic device 100 receives a radio signal through the antenna unit 10 .
  • the antenna unit 10 may include 2 antennas, or 3 antennas, or 4 antennas, or more than 4 antennas.
  • the number of antennas in the antenna unit 10 is not limited here.
  • the antenna unit 10 of the electronic device 100 sends the received radio signal to the radio frequency front-end unit 20 .
  • the RF front-end unit may include multiple RF front-end modules. It can be understood that one antenna may correspond to one RF front-end module. Each antenna can send the received radio signal to the corresponding RF front-end module.
  • the RF front-end unit 20 may include a RF front-end module 1 corresponding to the antenna 1 and a RF front-end module 2 corresponding to the antenna 2.
  • the antenna 1 can send the received radio signal to the radio frequency front-end module 1 .
  • the antenna 2 can send the received radio signal to the radio frequency front-end module 2 .
  • the radio frequency front-end unit 20 of the electronic device 100 converts the radio signal into a baseband signal.
  • the radio frequency front-end module 1 converts the radio signal received by the antenna 1 into the baseband signal 1 .
  • the radio frequency front-end module 2 can convert the radio signal received by the antenna 2 into a baseband signal 2 .
  • the radio frequency front-end unit 20 of the electronic device 100 sends a baseband signal to the signal processing and control unit 30 .
  • the RF front-end module 1 and the RF front-end module 2 in the RF front-end unit 20 may send the baseband signal 1 and the baseband signal 2 to the signal processing and control unit 30 respectively.
  • the signal processing and control unit 30 of the electronic device 100 calculates the phase difference and the gain ratio between the received baseband signals.
  • the signal processing and control unit 30 can calculate the phase difference and the gain ratio of the baseband signal 1 and the baseband signal 2 .
  • step S905 reference may be made to the description of the phase difference and gain ratio calculated by the electronic device in step 701, which will not be repeated here.
  • the signal processing and control unit 30 of the electronic device 100 compares the calculated phase difference and gain ratio with the phase difference and gain ratio in the mapping relation table T7, which stores the phases corresponding to all the angles of arrival in the mapping relation table T7 difference and gain ratio.
  • mapping relationship table T7 reference may be made to the description of the mapping relationship table T4 in the above steps, which will not be repeated here.
  • mapping relationship table T4 for the similarity between the phase difference and gain ratio calculated by the signal processing and control unit 30 and the phase difference and gain ratio in the mapping relationship table T7, reference may be made to the description in step S702, which will not be repeated here.
  • the signal processing and control unit 30 of the electronic device 100 takes the angle of arrival corresponding to the phase difference and gain ratio with the largest similarity in the mapping relation table T7 as the angle of arrival of the radio signal.
  • step 907 reference may be made to the description in step S703, which will not be repeated here.
  • step S905 can calculate the gain ratios between the antennas, and the mapping relationship table T7 can store the gain ratios corresponding to all the angles of arrival.
  • the descriptions in step 802 and step S803 may also be referred to here.
  • An embodiment of the present application provides a method for estimating the angle of arrival of a signal.
  • the method may include: an electronic device can receive a radio signal, and the electronic device stores a mapping relationship table between the phase difference and gain ratio between antennas and the angle of arrival of the signal; Calculate the phase difference and gain ratio between the antennas when receiving the wireless signal; the electronic device calculates the similarity between the calculated phase difference and gain ratio and the phase difference and gain ratio in the mapping relationship table, and the electronic device calculates the mapping relationship table.
  • the angle of arrival corresponding to the phase difference and gain ratio with the highest similarity in the middle is taken as the angle of arrival of the wireless information. In this way, the accuracy of estimating the angle of arrival of the signal by the electronic device can be improved.
  • FIG. 11 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 may have more or fewer components than those shown in the figures, may combine two or more components, or may have different component configurations.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194 and Subscriber identification module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • graphics processor graphics processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140 and supplies power to the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the wireless communication function of the electronic device 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the electronic device 100 may further include more antennas, such as antenna 3, antenna 4, . . . , and antenna N.
  • Antenna 3, Antenna 4, ..., and Antenna N are used to receive radio signals.
  • the antenna 1 and the antenna 2 in the electronic device may be external antennas or built-in antennas, which are not limited here.
  • the types of external antennas may include: monopole antennas, helical antennas and PCB (Printed circuit board, printed circuit board) helical antennas.
  • the built-in antenna can include: microstrip patch antenna, slot antenna, IFA antenna (Inverted-F Antenna, inverted F antenna), PIFA antenna (planar Inverted-F Antenna, planar inverted F antenna), FPC (flexible printed circuit, flexible printing) circuit) antenna, etc.
  • the transmit antenna has a maximum power rating
  • the receive antenna has noise suppression parameters.
  • the antenna 1 and the antenna 2 may further include a radio frequency front-end module.
  • the radio frequency front-end module corresponding to the antenna 1 is used to convert radio signals (eg, electromagnetic waves) received by the antenna 1 into baseband signals.
  • the radio frequency front-end module corresponding to the antenna 2 is used to convert the radio signal received by the antenna 2 into a baseband signal.
  • the antenna 1 and the radio frequency front-end module corresponding to the antenna 1 may be coupled in one antenna chip.
  • the antenna 2 and the radio frequency front-end module corresponding to the antenna 2 may be coupled in one antenna chip.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G etc. applied on the electronic device 100.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modulation and demodulation processor may be independent of the processor 110, and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites System (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellites System
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (global positioning system, GPS), global navigation satellite system (global navigation satellite system, GLONASS), Beidou navigation satellite system (beidou navigation satellite system, BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • global positioning system global positioning system, GPS
  • global navigation satellite system global navigation satellite system, GLONASS
  • Beidou navigation satellite system beidou navigation satellite system, BDS
  • quasi-zenith satellite system quadsi -zenith satellite system, QZSS
  • SBAS satellite based augmentation systems
  • the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • electronic device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the electronic device 100 may implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 193 .
  • Camera 193 is used to capture still images or video.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs.
  • the electronic device 100 can play or record videos of various encoding formats, such as: Moving Picture Experts Group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG Moving Picture Experts Group
  • MPEG2 moving picture experts group
  • MPEG3 MPEG4
  • MPEG4 Moving Picture Experts Group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the internal memory 121 may include one or more random access memories (RAM) and one or more non-volatile memories (NVM).
  • RAM random access memories
  • NVM non-volatile memories
  • Random access memory can include static random-access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronization Dynamic random access memory (double data rate synchronous dynamic random access memory, DDR SDRAM, such as the fifth generation DDR SDRAM is generally called DDR5 SDRAM) and so on.
  • SRAM static random-access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • DDR5 SDRAM double data rate synchronous dynamic random access memory
  • Non-volatile memory may include magnetic disk storage devices, flash memory.
  • Flash memory can be divided into NOR FLASH, NAND FLASH, 3D NAND FLASH, etc. according to the operating principle, and can include single-level memory cells (single-level cells, SLC), multi-level memory cells (multi-level memory cells) according to the level of storage cell potential cell, MLC), triple-level cell (TLC), fourth-level storage unit (quad-level cell, QLC), etc., according to the storage specification can include universal flash storage (English: universal flash storage, UFS) , embedded multimedia memory card (embedded multi media Card, eMMC) and so on.
  • SLC single-level memory cells
  • multi-level memory cells multi-level memory cells
  • MLC multi-level memory cells
  • TLC triple-level cell
  • QLC fourth-level storage unit
  • UFS universal flash storage
  • eMMC embedded multimedia memory card
  • the random access memory can be directly read and written by the processor 110, and can be used to store executable programs (eg, machine instructions) of an operating system or other running programs, and can also be used to store data of users and application programs.
  • executable programs eg, machine instructions
  • the random access memory can be directly read and written by the processor 110, and can be used to store executable programs (eg, machine instructions) of an operating system or other running programs, and can also be used to store data of users and application programs.
  • the non-volatile memory can also store executable programs and store data of user and application programs, etc., and can be loaded into the random access memory in advance for the processor 110 to directly read and write.
  • the electronic device 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also referred to as "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be answered by placing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through a human mouth, and input the sound signal into the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which can implement a noise reduction function in addition to collecting sound signals. In other embodiments, the electronic device 100 may further be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the earphone jack 170D is used to connect wired earphones.
  • the earphone interface 170D can be the USB interface 130, or can be a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • the gyro sensor 180B may be used to determine the motion attitude of the electronic device 100 .
  • the air pressure sensor 180C is used to measure air pressure.
  • the magnetic sensor 180D includes a Hall sensor.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes)
  • Distance sensor 180F for measuring distance.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the temperature sensor 180J is used to detect the temperature.
  • Touch sensor 180K also called “touch panel”.
  • the keys 190 include a power-on key, a volume key, and the like.
  • Motor 191 can generate vibrating cues.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging state, the change of the power, and can also be used to indicate a message, a missed call, a notification, and the like.
  • FIG. 12 is a block diagram of the software structure of the electronic device 100 according to the embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Layers communicate with each other through software interfaces.
  • the system is divided into four layers, which are, from top to bottom, an application layer, an application framework layer, a runtime (Runtime) and a system library, and a kernel layer.
  • the application layer can include a series of application packages.
  • the application package may include camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message and other applications (also referred to as applications).
  • the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
  • the application framework layer includes some predefined functions.
  • the application framework layer may include a window manager, a content provider, a view system, a telephony manager, a resource manager, a notification manager, and the like.
  • a window manager is used to manage window programs.
  • the window manager can get the size of the display screen, determine whether there is a status bar, lock the screen, take screenshots, etc.
  • Content providers are used to store and retrieve data and make these data accessible to applications.
  • the data may include video, images, audio, calls made and received, browsing history and bookmarks, phone book, etc.
  • the view system includes visual controls, such as controls for displaying text, controls for displaying pictures, and so on. View systems can be used to build applications.
  • a display interface can consist of one or more views.
  • the display interface including the short message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide the communication function of the electronic device 100 .
  • the management of call status including connecting, hanging up, etc.).
  • the resource manager provides various resources for the application, such as localization strings, icons, pictures, layout files, video files and so on.
  • the notification manager enables applications to display notification information in the status bar, which can be used to convey notification-type messages, and can disappear automatically after a brief pause without user interaction. For example, the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also display notifications in the status bar at the top of the system in the form of graphs or scroll bar text, such as notifications from applications running in the background, and can also display notifications on the screen in the form of a dialog interface. For example, text information is prompted in the status bar, a prompt sound is issued, the electronic device vibrates, and the indicator light flashes.
  • Runtime includes core libraries and virtual machines. Runtime is responsible for the scheduling and management of the system.
  • the core library consists of two parts: one part is the function functions that the programming language (for example, jave language) needs to call, and the other part is the core library of the system.
  • the application layer and the application framework layer run in virtual machines.
  • the virtual machine executes application layer and application framework layer programming files (eg, jave files) as binary files.
  • the virtual machine is used to perform functions such as object lifecycle management, stack management, thread management, safety and exception management, and garbage collection.
  • a system library can include multiple functional modules. For example: surface manager (surface manager), media library (Media Libraries), 3D graphics processing library (eg: OpenGL ES), 2D graphics engine (eg: SGL), etc.
  • surface manager surface manager
  • media library Media Libraries
  • 3D graphics processing library eg: OpenGL ES
  • 2D graphics engine eg: SGL
  • the Surface Manager is used to manage the display subsystem and provides a fusion of two-dimensional (2-Dimensional, 2D) and three-dimensional (3-Dimensional, 3D) layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as still image files.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, compositing, and layer processing.
  • 2D graphics engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display drivers, camera drivers, audio drivers, sensor drivers, and virtual card drivers.
  • a corresponding hardware interrupt is sent to the kernel layer.
  • the kernel layer processes touch operations into raw input events (including touch coordinates, timestamps of touch operations, etc.). Raw input events are stored at the kernel layer.
  • the application framework layer obtains the original input event from the kernel layer, and identifies the control corresponding to the input event. Taking the touch operation as a touch click operation, and the control corresponding to the click operation is the control of the camera application icon, for example, the camera application calls the interface of the application framework layer to start the camera application, and then starts the camera driver by calling the kernel layer.
  • the camera 193 captures still images or video.
  • the term “when” may be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting" depending on the context.
  • the phrases “in determining" or “if detecting (the stated condition or event)” can be interpreted to mean “if determining" or “in response to determining" or “on detecting (the stated condition or event)” or “in response to the detection of (the stated condition or event)”.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state drives), and the like.
  • the process can be completed by instructing the relevant hardware by a computer program, and the program can be stored in a computer-readable storage medium.
  • the program When the program is executed , which may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random storage memory RAM, magnetic disk or optical disk and other mediums that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radio Transmission System (AREA)

Abstract

一种信号到达角度估计方法及电子设备,在该方法中,电子设备通过第一天线和第二天线接收第一无线电信号,电子设备中存储有第一映射关系表,第一映射关系表中包括无线电信号的不同到达角度、以及无线电信号的不同到达角度对应的第一天线和第二天线的增益比;在接收第一无线电信号时,电子设备计算出第一天线和第二天线的第一增益比;电子设备根据第一增益比和第一映射表确定第一无线电信号的到达角度。由此,电子设备可以更准确地估计无线电信号的到达角度。

Description

一种信号到达角度估计方法及电子设备
本申请要求于2021年03月31日提交中国专利局、申请号为202110348956.0、申请名称为“一种信号到达角度估计方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种信号到达角度估计方法及电子设备。
背景技术
基于信号到达角度(angle of arrival,AOA)的定位算法,经常被用于电子设备定位技术中。电子设备借助于天线接收信号的到达角度,确定电子设备与该信号的发送设备之间的距离。从而,电子设备可以确定出当前电子设备所处的位置。
一般,电子设备可以通过电子设备中的两个天线在接收信号时的相位差估算出该信号的到达角度。如图1所示,电子设备可以根据两个天线(天线1和天线2)接收信号时的相位差,以及两个天线之间的距离可以计算出信号的到达角度。但是,由于电子设备中的天线不能简单的被视为一个点,因此天线间的距离不能准确地测量。这样,导致电子设备通过天线间的相位差估算出的信号到达角度准确率不高。
发明内容
本申请提供了一种信号到达角度估计方法及电子设备,通过该信号到达角度估计方法,电子设备可以更为准确地估计出电子设备接收的无线电信号的到达角度。
第一方面,本申请提供了一种信号到达角度估计方法,该方法可以包括:电子设备通过第一天线和第二天线接收第一无线电信号,该电子设备中存储有第一映射关系表,该第一映射关系表中包括无线电信号的不同到达角度、以及该无线电信号的不同到达角度对应的该第一天线和该第二天线的增益比;在接收该第一无线电信号时,该电子设备计算出该第一天线和该第二天线的第一增益比;该电子设备根据该第一增益比和该第一映射表确定该第一无线电信号的到达角度。
通过第一方面提供的信号到达角度估计方法,电子设备可以通过天线间的增益比,以及电子设备中存储的增益比与到达角度的映射关系表估计出无线电信号的到达角度。由于不同到达角度对应的天线间的增益比不同,而不同到达角度对应的天线间的相位差可能相同。因此,电子设备可以通过天线间的增益比更准确地估计无线电信号的到达角度。
在一种可能的实现方式中,电子设备根据第一增益比和第一映射表确定第一无线电信号的到达角度,包括:该电子设备计算该第一增益比与该第一映射表中该无线电信号的不同到达角度对应的该第一天线和该第二天线的增益比的相似度;该电子设备将该第一映射表中与该第一增益比相似度最大的增益比对应的无线电信号的到达角度作为该第一无线电信号的到达角度。
这样,电子设备可以更为准确地找到第一增益比在第一映射关系表中对应的增益比,即相似度最大的增益比,该相似度最大的增益比对应的到达角度即为该第一无线电信号的到达角度。从而,电子设备可以更准确地估计出该第一无线电信号的到达角度。
在一种可能的实现方式中,电子设备根据第一增益比和第一映射表确定第一无线电信号的到达角度,包括:该电子设备计算该第一增益比与该第一映射表中该无线电信号的第一到达角度对应的该第一天线和该第二天线的增益比的第一相似度;若该第一相似度大于相似度阈值,该电子设备将该第一到达角度作为该第一无线电信号的到达角度。
其中,该相似度阈值可以由电子设备的系统配置。
这样,电子设备只要计算出第一增益比与第一映射表中的一个增益比的相似度大于相似度阈值,电子设备便可以将该增益比对应的到达角度作为第一无线电信号的到达角度。当电子设备计算出第一增益比与第一映射表中的一个增益比的相似度大于相似度阈值时,电子设备可以停止第一增益比与第一映射表中其他增益比的相似度计算。这样,电子设备可以不用计算出第一增益比与第一映射表中每一个到达角度对应的增益比的相似度,减少了电子设备的计算量,节约了电子设备的功耗。
在一种可能的实现方式中,该第一映射关系表中还包括无线电信号的不同到达角度对应的该第一天线和该第二天线的相位差。
在一种可能的实现方式中,在接收所述第一无线电信号时,电子设备计算出第一天线和第二天线的第一增益比,包括:电子设备计算出,接收第一无线电信号时,第一天线和第二天线的第一增益比和第一相位差;
电子设备根据第一增益比和第一映射表确定第一无线电信号的到达角度,包括:
电子设备根据第一增益比、第一相位差和第一映射表确定第一无线电信号的到达角度。
这样,电子设备通过天线间的增益比和相位差可以更为准确地估计出无线电信号的到达角度。
在一种可能的实现方式中,电子设备根据第一增益比、第一相位差和第一映射表确定第一无线电信号的到达角度,包括:电子设备计算第一增益比和第一相位差与第一映射表中无线电信号的不同到达角度对应的第一天线和第二天线的增益比和相位差的相似度;电子设备将第一映射表中与第一增益比和第一相位差相似度最大的增益比和相位差对应的无线电信号的到达角度作为第一无线电信号的到达角度。
这样,电子设备通过天线间的增益比和相位差可以更为准确地估计出无线电信号的到达角度。
在一种可能的实现方式中,电子设备根据第一增益比、第一相位差和第一映射表确定第一无线电信号的到达角度,包括:电子设备计算第一增益比、第一相位差与第一映射表中无线电信号的第二到达角度对应的第一天线和第二天线的增益比和相位差的第二相似度;若第二相似度大于相似度阈值,电子设备将第二到达角度作为第一无线电信号的到达角度。
这样,电子设备只要计算出第一增益比、第一相位差与第一映射表中的一个增益比的相似度大于相似度阈值,电子设备便可以将该增益比对应的到达角度作为第一无线电信号的到达角度。当电子设备计算出第一增益比、第一相位差与第一映射表中的一个到达角度对应的增益比和相位差的相似度大于相似度阈值时,电子设备可以停止第一增益比、第一相位差与第一映射表中其他到达角度对应的增益比和相位差的相似度计算。这样,电子设备可以不用计算出第一增益比、第一相位差与第一映射表中每一个到达角度对应的增益比和相位差的相似度,减少了电子设备的计算量,节约了电子设备的功耗。
在一种可能的实现方式中,电子设备计算第一增益比和第一相位差与第一映射表中无线电信号的第二到达角度对应的第一天线和第二天线的增益比和相位差的相似度,包括:电子设备计算出第一增益比与第一映射表中无线电信号的第二到达角度对应的第一天线和第二天 线的增益比的第一差值之和;电子设备计算出第一相位差与第一映射表中无线电信号的第二到达角度对应的第一天线和第二天线的相位差的第二差值之和;电子设备将第一差值之和与第二差值之和相加,得到第三差值之和;第三差值之和越小,第一增益比和第一相位差与第二到达角度对应的增益比和相位差的相似度越大。
在一种可能的实现方式中,电子设备还包括第三天线,第一映射关系表中还包括无线电信号的不同到达角度对应的第一天线和第三天线的增益比。
在一种可能的实现方式中,电子设备通过第一天线和第二天线接收第一无线电信号,包括:电子设备通过第一天线、第二天线、以及第三天线接收第一无线电信号;
在接收第一无线电信号时,电子设备计算出第一天线和第二天线的第一增益比,包括:在接收第一无线电信号时,电子设备计算出第一天线和第二天线的第一增益比,第一天线和第二天线的第二增益比;
电子设备根据第一增益比和第一映射表确定第一无线电信号的到达角度,包括:电子设备根据第一增益比、第二增益比和第一映射表确定第一无线电信号的到达角度。
在一种可能的实现方式中,电子设备根据第一增益比、第二增益比和第一映射表确定第一无线电信号的到达角度,包括:电子设备计算第一增益比和第二增益比,与第一映射表中无线电信号的不同到达角度对应的第一天线和第二天线的增益比、以及第一天线和第三天线的增益比的相似度;电子设备将第一映射表中与第一增益比和第二增益比相似度最大的第一天线和第二天线的增益比、第一天线和第二天线的增益比对应的无线电信号的到达角度作为第一电信号的到达角度。
当电子设备具有三个天线时,电子设备可以通过第一天线和第二天线的增益比、第一天线和第二天线的增益比估计无线电信号的到达角度。
在一种可能的实现方式中,电子设备根据第一增益比、第二增益比和第一映射表确定第一无线电信号的到达角度,包括:电子设备计算第一增益比、第二增益比与第一映射表中无线电信号的第三到达角度对应的第一天线和第二天线的增益比,第一天线和第三天线的增益比的第三相似度;若第三相似度大于相似度阈值,电子设备将第三到达角度作第一无线电信号的到达角度。
在一种可能的实现方式中,第一映射表中还包括无线电信号的不同到达角度对应的第一天线和第二天线的相位差,以及无线电信号的不同到达角度对应的第一天线和第三天线的相位差。
在一种可能的实现方式中,所述在接收所述第一无线电信号时,所述电子设备计算出所述第一天线和所述第二天线的第一增益比,所述第一天线和所述第二天线的第二增益比,包括:在接收第一无线电信号时,电子设备计算出第一天线和第二天线的第一增益比,第一天线和第二天线的第二增益比,第一天线和第二天线的第一相位差,第一天线和第三天线的第二相位差;
电子设备根据第一增益比和第一映射表确定第一无线电信号的到达角度,包括:电子设备根据第一增益比、第一相位差、第二增益比、第二相位差和第一映射表确定第一无线电信号的到达角度。
在一种可能的实现方式中,电子设备根据第一增益比、第一相位差、第二增益比、第二相位差和第一映射表确定第一无线电信号的到达角度,包括:电子设备计算第一增益比、第二增益比、第一相位差以及第二相位差,与第一映射表中无线电信号的不同到达角度对应的第一天线和第二天线的增益比、第一天线和第三天线的增益比、第一天线和第二天线的相位 差以及第一天线和第三天线的相位差的相似度;电子设备将第一映射表中与第一增益比、第二增益比、第一相位差以及第二相位差相似度最大的第一天线和第二天线的增益比、第一天线和第二天线的增益比、第一天线和第二天线的相位差、以及第一天线和第三天线对应的无线电信号的到达角度作为第一电信号的到达角度。
在一种可能的实现方式中,电子设备根据第一增益比、第一相位差、第二增益比、第二相位差和第一映射表确定第一无线电信号的到达角度,包括:电子设备计算第一增益比、第一相位差、第二增益比、第二相位差与第一映射表中无线电信号的第四到达角度对应的第一天线和第二天线的增益比、相位差,第一天线和第三天线的增益比、相位差的第四相似度;若第四相似度大于相似度阈值,电子设备将第四到达角度作为第一无线电信号的到达角度。
其中,第一到达角度和第二到达角度、第三到达角度、第四到达角度可以相等。第一相似度和第二相似度、第三相似度、第四相似度可以相等。
这样,电子设备通过天线间的增益比和相位差可以更为准确地估计出无线电信号的到达角度。
第二方面,提供一种电子设备,该电子设备可以包括两个或大于两个天线、显示屏、一个或多个处理器和一个或多个存储器;一个或多个处理器与两个或大于两个天线、一个或多个存储器以及显示屏耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得电子设备执行上述第一方面的任一中可能的方式中的信号到达角度估计方法。
第三方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述任一方面任一项可能的实现方式中的信号到达角度估计方法。
第四方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备执行上述任一方面任一项可能的实现方式中的信号到达角度估计方法。
附图说明
图1是本申请实施例提供的利用相位差估算信号到达角度模型示意图;
图2是本申请实施例提供的信号的不同到达角度的相关性示意图;
图3是本申请实施例提供的一种电子设备中天线放置示意图;
图4是本申请实施例提供的一组电子设备中天线方向图;
图5是本申请实施例提供的手机建立映射关系表时的场景示意图;
图6是本申请实施例提供的手机建立映射关系表的实现步骤示意图;
图7是本申请实施例提供的一种信号到达角度估计方法流程示意图;
图8是本申请实施例提供的又一种信号到达角度估计方法流程示意图;
图9是本申请实施例提供的又一种信号到达角度估计方法流程示意图;
图10是本申请实施例提供的信号的不同到达角度的相关性示意图;
图11是本申请实施例提供的电子设备的结构示意图;
图12是本申请实施例提供的电子设备的软件框架示意图。
具体实施方式
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明 确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
由于本申请实施例涉及一种信号到达角度估计方法的应用,为了便于理解,下面先对本申请实施例涉及的相关术语及概念进行介绍。
1、到达角度
在本申请实施例中,到达角度可以是指信号发射装置发射的信号,与电子设备中天线所构成的夹角,称为到达角度,又可以称为入射角。如图1中所示,无线电信号与天线1和天线2所构成的夹角θ,即为无线电信号的到达角度。这里,信号发射装置可以是路由器,基站等等,本申请对此不作限定。无线电信号可以是蜂窝移动信号、蓝牙信号、
Wi-Fi(wireless fidelity,无线保真)信号、UWB(Ultra-wideband,超宽频)信号等等,此处不作限定。
在本申请实施例中,信号的到达角度又可以称为信号的来波方向。
2、自由空间场景
自由空间场景可以是描述,电子设备在接收无线电信号时没有任何遮挡,且该无线电信号传播时仅因信号能量扩散引发的衰减,不存在任何其他形式的损耗的场景。
3、手握场景
手握场景可以是描述,当电子设备在接收无线电信号时,该电子设备由用户手握着的场景。用户的手可能会遮挡住电子设备,从而导致电子设备的天线接收到的无线电信号产生衰减。
在本申请实施例中,电子设备可以有定位功能。当用户使用电子设备中的定位功能(例如点开地图应用)时,电子设备可以通过AOA定位算法得到定位结果。电子设备估算出的信号到达角度越准确,电子设备利用到达角度计算出的定位结果也就越准确。电子设备可以是手机、平板电脑、个人电脑等具有两个或多于两个天线的智能设备,本申请实施例中对电子设备的具体类型不作特殊限制。
可以理解的是,电子设备也可以具有寻物功能或确定其他设备方向的功能。电子设备可以通过AOA估计确定出所寻物体的方向,或者通过AOA估计确定出其他电子设备的方向,此处不作限定。
在一种可能的实现方式中,电子设备可以存储有天线间相位差和信号到达角度的映射关系表。当电子设备进行信号的到达角度估算时,电子设备可以确定接收该信号时天线间的相位差PDi。然后,电子设备将相位差PDi与映射关系表中的相位差做相似度计算,映射关系表中与该相位差PDi相似度最高的相为差对应的到达角度即为到达角度的估算结果。
这里,电子设备可以存储有自由空间场景的天线间相位差和信号到达角度的映射关系表,以及手握场景的天线间相位差和信号到达角度的映射关系表。
举例来说,若电子设备中存在天线1、天线2、天线3共3个天线,电子设备可以建立天线1和天线2的相位差PD1、以及天线1与天线3的相位差PD2与信号的到达角度的映射关系表。自由空间场景中的映射关系表可以如表1所示。手握场景中的映射关系表可以是表2所示。
表1
Figure PCTCN2022083231-appb-000001
表1为自由空间场景中电子设备中天线间的相位差与接收到的信号的到达角度之间的映射关系表。表1中展示了信号的到达角度分别为0°到359°时,天线1与天线2的相位差PD1以及天线1与天线3的相位差PD2。如表1所示,当电子设备接收到的信号的到达角度为0°时,电子设备的天线1与天线2接收到该信号的相位差PD1为A(0°),天线1与天线3接收到该信号的相位差PD2为B(0°)。当电子设备接收到的信号的到达角度为1°时,电子设备的天线1与天线2接收到该信号的相位差PD1为A(1°),天线1与天线3接收到该信号的相位差PD2为B(1°)。当电子设备接收到的信号的到达角度为2°时,电子设备的天线1与天线2接收到该信号的相位差PD1为A(2°),天线1与天线3接收到该信号的相位差PD2为B(2°)。当电子设备接收到的信号的到达角度为359°时,电子设备的天线1与天线2接收到该信号的相位差PD1为A(359°),天线1与天线3接收到该信号的相位差PD2为B(359°)。
表2
Figure PCTCN2022083231-appb-000002
表2为手握场景中电子设备中天线间的相位差与接收到的信号的到达角度之间的映射关系表。表2中展示了信号的到达角度分别为0°到359°时,天线1与天线2的相位差PD1以及天线1与天线3的相位差PD2。如表2所示,当电子设备接收到的信号的到达角度为0°时,电子设备的天线1与天线2接收到该信号的相位差PD1为C(0°),天线1与天线3接收到该信号的相位差PD2为D(0°)。当电子设备接收到的信号的到达角度为1°时,电子设备的天线1与天线2接收到该信号的相位差PD1为C(1°),天线1与天线3接收到该信号的相位差PD2为D(1°)。当电子设备接收到的信号的到达角度为2°时,电子设备的天线1与天线2接收到该信号的相位差PD1为C(2°),天线1与天线3接收到该信号的相位差PD2为D(2°)。当电子设备接收到的信号的到达角度为359°时,电子设备的天线1与天线2接收到该信号的相位差PD1为C(359°),天线1与天线3接收到该信号的相位差PD2为D(359°)。
但是,电子设备只通过天线间的相位差,以及相位差与到达角度的映射关系来确定信号的到达角度,可能会出现同一个相位差值,对应多个到达角度的情况。这样,可能会导致电子设备估计出的到达角度不准确。
例如,图2示出的到达角度θ1与到达角度θ2的相关性图。到达角度θ1与到达角度θ2的相关值可以为α(θ1) Hα(θ2)。其中,α(θ1)为到达角度θ1的特征,该特征可以是该到达角度θ1对应的相位差。α(θ1) H是α(θ1)的埃尔米特矩阵(Hermitian matrix)。α(θ2)为到达角度θ2的特征,该特征可以是该到达角度θ2对应的相位差。
如图2所示,当θ1≈60°,θ2≈290°时,到达角度θ1与到达角度θ2的相关值对应图2中的区域403,其相关性值为1。这表明,当到达角度为60°和290°时,电子设备的天线间的相位差相同。这样,当信号真实的到达角度为60°时,电子设备可能会根据相位差估计出的到达角度为290°。或者,当信号真实的到达角度为290°时,电子设备可能会根据相位差估计出的到达角度为60°。
如图2所示,当θ1∈[130°,145°],θ2∈[230°,280°]时,到达角度θ1与到达角度θ2的相关值对应图2中的区域402,其相关性值为1。这表明,到达角度为130°-145°与到达角度为230°-280°时,电子设备的天线间的相位差相同。这样,当信号真实的到达角度为130°-145时,电子设备可能会根据相位差估计出的到达角度230°-280°。或者,当信号真实的到达角度为230°-280°时,电子设备可能会根据相位差估计出的到达角度为130°-145°。
如图2所示,当θ1∈[230°,280°],θ2∈[130°,145°]时,到达角度θ1与到达角度θ2的相关值对应图2中的区域401,其相关性值为1。这表明,到达角度为130°-145°与到达角度为230°-280°时,电子设备的天线间的相位差相同。这样,当信号真实的到达角度为130°-145时,电子设备可能会根据相位差估计出的到达角度230°-280°。或者,当信号真实的到达角度为230°-280°时,电子设备可能会根据相位差估计出的到达角度为130°-145°。
为了提高电子设备估计得到信号的到达角度的准确率,本申请实施例提供了一种信号到达角度估计方法,该方法可以包括:电子设备可以接收无线电信号,电子设备中存储有天线间相位差和增益比与信号到达角度的映射关系表;电子设备可以计算出在接收该无线信号时天线间的相位差和增益比;电子设备将计算得到的相位差和增益比与映射关系表中的相位差和增益比进行相似度计算,电子设备将映射关系表中相似度最高的相位差和增益比对应的到达角度作为该无线信息的到达角度。
本申请实施例中的电子设备可以具有两个天线、或者三个天线、或者四个天线,或者更多的天线,此处不作限度。本申请实施例将以电子设备具有三个天线为例进行阐述。如图3所示,图3示例性地示出了3天线的电子设备的示意图。图3中的电子设备100可以具有天线1、天线2和天线3共3个天线。可以理解的是,本申请实施例对天线在电子设备中的放置位置、以及天线的具体形状、种类等等均不作限定。
电子设备的不同天线接收相同方向同一信号的能量可以简化地认为等于传输路径损耗(path loss)与天线在该方向的增益(gain)。对于同一电子设备,其不同天线接收信号时的传输路径损耗可以视为相同。因此,电子设备的不同天线接收相同来波方向的信号的能量差异仅与不同天线在该方向的增益相关。天线方向图可以用来表示天线接收不用到达角度的信号的能量。
图4示例性地示出了图3中电子设备100中三个天线的天线方向图。其中,图4中的(a)图为天线1的天线方向图(pattern),(b)图为天线2的天线方向图(pattern),(c)图为天线3的天线方向图(pattern)。
天线1和天线2在相同来波方向的增益比可以视为天线1和天线2在该来波方向的能量比。同样地,天线1和天线3在相同来波方向的增益比也可以视为天线1与天线3在该来波方向的能量比。如图4所示,天线1与天线2在不同来波方向(例如,信号到达角度为0°、30°、…、330°)的能量比均不同。天线1与天线3在不同来波方向(例如,信号到达角度为0°、30°、…、330°)的能量比均不同。即天线1与天线2在不同来波方向的增益比也不相同。天线1与天线3在不同来波方向的增益比也不相同。因此电子设备可以利用不同天线的增益比来估计信号的到达角度。这样,可以提升AOA估算准确率。
在电子设备估计信号的到达角度之前,电子设备中可以存储有天线间的相位差、增益比与信号到达角度的映射关系表。如图5所示,信号发射器300可以在手机200的不同方向发射信号。手机200可以记录下接收不同来波方向的信号时,天线间的相位差和增益比。具体过程可以参考图6,图6示例性地示出的手机200建立天线间的相位差和增益比,与信号的到达角度的映射关系表的具体流程。
如图6所示,手机200建立天线间的相位差和增益比,与信号到达角度的映射关系表可以包括如下步骤:
S601、信号发射器300放置在手机200的不同方向,持续发射无线电信号。
S602、手机200通过天线1、天线2、天线3接收信号发射器300发送的无线电信号。
如图5所示,信号发射器300可以放置在手机200的不同方向,持续发射无线电信号。手机200可以通过天线1、天线2、天线3接收信号发射器300发送的无线电信号。
这里,手机200接收无线电信号的场景可以是自由空间场景,也可以是手握场景。
S603、手机200计算并存储,接收不同方向的无线电信号时,天线1与天线2的相位差PD1、天线1与天线2的增益比GR1,天线1与天线3的相位差PD2、天线1与天线3的增益比GR2以及对应的无线电信号的到达角度θ。
当信号发射器300置于手机200的0°方向时,手机200接收该信号发射器300发射的无线电信号。手机200可以计算接收该0°方向的无线电信号时,天线1与天线2的相位差PD1(0°),天线1与天线2的增益比GR1(0°);天线1与天线3的相位差PD2(0°)、天线1与天线3的增益比GR2(0°)。当信号发射置于手机200的1°方向时,手机200接收该信号发射器300发射的无线电信号。手机200可以计算出接收该1°方向的无线电信号时,天线1与天线2的相位差PD1(1°),天线1与天线2的增益比GR1(1°);天线1与天线3的相位差PD2(1°)、天线1与天线3的增益比GR2(1°)。依次地,信号发射器300在手机200的不同方向发射无线电信号。
这里,信号发射器300可以在与手机200相同的平面发射无线电信号。信号发射器300在手机200的不同方向发射无线电信号时,信号发射器300仍然与手机200处于相同的平面。这时,无线电信号的到达角度可以是平面夹角。可以理解的是,信号发射器300可以与手机200在不同的平面。这时,无线电信号的到达角度可以是空间夹角,即该空间夹角可以包括无线电信号与手机200中天线构成的方位角(azimuth),俯仰角(pitch)以及翻滚角(Roll)。
S604、手机200是否完成接收所有方向的无线电信号,并存储所有来波方向对应的天线1与天线2的相位差PD1、天线1与天线2的增益比GR1,天线1与天线3的相位差PD2、天线1与天线3的增益比GR2。
若手机200完成接收所有方向的无线电信号,并存储所有来波方向对应的相位差PD1、PD2,增益比GR1、GR2。则手机200可以执行步骤S605。反之,则信号发射器300执行步骤S601。
本申请实施例以信号发射器300与手机200在一个平面为例进行阐述。信号发射器300可以以手机200为中心,在距离手机200预设距离的圆周上间隔预设角度α持续发射无线电信号。该预设角度α可以是1°,也可以是2°,也可以5°,此处对预设角度α不作限定。
S605、手机200建立并存储天线间相位差、增益比与无线电信号的到达角度的映射关系表。
当手机200存储所有来波方向对应的天线1与天线2的相位差PD1、天线1与天线2的 增益比GR1,天线1与天线3的相位差PD2、天线1与天线3的增益比GR2后,手机200可以建立天线间的相位差、增益比与无线电信号的到达角度的映射关系表。
该映射关系表可以记录信号发射器300与手机200在一个平面,无线电信号的到达角度间隔预设角度α时,分别对应的天线1与天线2的相位差PD1、天线1与天线2的增益比GR1,天线1与天线3的相位差PD2、天线1与天线3的增益比GR2。该映射关系表也可以记录信号发射器300与手机200不在同一平面,无线电信号的到达角度间隔预设角度β时,分别对应的天线1与天线2的相位差PD1、天线1与天线2的增益比GR1,天线1与天线3的相位差PD2、天线1与天线3的增益比GR2。
在一种可能的实现方式中,手机200可以建立自由空间场景下和手握场景下的天线间的相位差、增益比与无线电信号的到达角度的映射关系表。
示例性的,手机200在自由空间场景下建立的天线间的相位差、增益比与无线电信号的到达角度的映射关系表可以如下表3所示。
表3
Figure PCTCN2022083231-appb-000003
如表3所示,该表3中记录了在自由空间场景下,无线电信号从0°-359°共360个角度时,天线1与天线2的相位差PD1、天线1与天线2的增益比GR1,天线1与天线3的相位差PD2、天线1与天线3的增益比GR2。当手机200接收的无线电信号的到达角度为0°时,天线1与天线2的相位差PD1为E(0°),增益比GR1为G(0°);天线1与天线3的相位差PD2为F(0°),增益比GR2为H(0°)。当手机200接收的无线电信号的到达角度为1°时,天线1与天线2的相位差PD1为E(1°),增益比GR1为G(1°);天线1与天线3的相位差PD2为F(1°),增益比GR2为H(1°)。当手机200接收的无线电信号的到达角度为2°时,天线1与天线2的相位差PD1为E(2°),增益比GR1为G(2°);天线1与天线3的相位差PD2为F(2°),增益比GR2为H(2°)。当手机200接收的无线电信号的到达角度为359°时,天线1与天线2的相位差PD1为E(359°),增益比GR1为G(359°);天线1与天线3的相位差PD2为F(359°),增益比GR2为H(359°)。
示例性的,手机200在手握场景下建立的天线间的相位差、增益比与无线电信号的到达角度的映射关系表可以如下表4所示。
表4
Figure PCTCN2022083231-appb-000004
Figure PCTCN2022083231-appb-000005
如表4所示,该表4中记录了在手握场景下,无线电信号从0°-359°共360个角度时,天线1与天线2的相位差PD1、天线1与天线2的增益比GR1,天线1与天线3的相位差PD2、天线1与天线3的增益比GR2。当手机200接收的无线电信号的到达角度为0°时,天线1与天线2的相位差PD1为J(0°),增益比GR1为L(0°);天线1与天线3的相位差PD2为K(0°),增益比GR2为M(0°)。当手机200接收的无线电信号的到达角度为1°时,天线1与天线2的相位差PD1为J(1°),增益比GR1为L(1°);天线1与天线3的相位差PD2为K(1°),增益比GR2为M(1°)。当手机200接收的无线电信号的到达角度为2°时,天线1与天线2的相位差PD1为J(2°),增益比GR1为L(2°);天线1与天线3的相位差PD2为K(2°),增益比GR2为M(2°)。当手机200接收的无线电信号的到达角度为359°时,天线1与天线2的相位差PD1为J(359°),增益比GR1为L(359°);天线1与天线3的相位差PD2为K(359°),增益比GR2为M(359°)。
可以理解的是,手机200中存储的映射关系表可以不限于表3中示出的映射关系表以及表4中示出的映射关系表。例如,手机200中还可以存储有无线电信号的到达角度的俯仰角不同时,该到达角度与手机200的天线间的相位差以及增益比的映射关系表。本申请实施例对此不作限定。
可选地,手机200中可以将自由空间场景的映射关系表和手握场景的映射关系表存储在一个表格中。例如,上述表3和表4可以存储在通一个表格中。此处不作限定。
可选地,手机200可以将手机200建立的自由空间场景的映射关系表和手握场景的映射关系表存储在云服务器或服务器中,此处不作限定。
可以理解的是,手机200可以有天线1和天线2共两个天线。手机200中可以存储有天线1与天线2的相位差、增益比,与无线电信号的到达角度之间的映射关系表。该映射关系表中可以存储有无线电信号不同的到达角度,对应的天线1与天线2的相位差以及增益比。或者,手机200可以存储有天线1与天线2的增益比与无线电信号的到达角度之间的映射关系表。该映射关系表中可以存储有无线电信号不同的到达角度,对应的天线1与天线2的增益比。
可以理解的是,手机200可以具有天线1、天线2、天线3以及天线4共4个天线。手机200中可以存储有天线1与天线2之间的相位差、增益比,天线1与天线3之间的相位差、增益比,以及天线1与天线4之间的相位差、增益比,与无线电信号之间的映射关系表。该映射关系表中可以存储有无线电信号不同的到达角度,分别对应的天线1与天线2之间的相位差、增益比,天线1与天线3之间的相位差、增益比,以及天线1与天线4之间的相位差、增益比。
或者,手机200中可以存储有天线1与天线2之间的增益比,天线1与天线3之间的增益比,以及天线1与天线4之间的增益比,与无线电信号之间的映射关系表。该映射关系表中可以存储有无线电信号不同的到达角度,分别对应的天线1与天线2之间的增益比,天线 1与天线3之间的增益比,以及天线1与天线4之间的增益比。
可以理解的是,手机200中可以具有多N个天线,N大于4。手机200中可以存储有N个天线中任一天线与其他天线间的相位差与增益比,与无线电信号的到达角度之间的映射关系表。该映射关系表中可以存储有无线电信号不同的到达角度,对应的N个天线中任一天线与其他天线间的相位差与增益比。
或者,手机200中可以存储有N个天线中任一天线与其他天线间的增益比,与无线电信号的到达角度之间的映射关系表。该映射关系表中可以存储有无线电信号不同的到达角度,对应的N个天线中任一天线与其他天线间的增益比。
可以理解的是,手机200在建立天线间的相位差、增益比与无线电信号的到达角度之间的映射关系表时,手机200可以处于固定位置,可以通过改变信号发射器300的位置来改变该信号发射器300发射的无线电信号到达手机200中天线的角度。信号发射器300也可以处于固定位置,可以通过改变手机200的位置来改变手机200中天线接收无线电信号的到达角度。本申请实施例对此不作限定。
在本申请实施例中,天线1可以称为第一天线,天线2可以称为第二天线、天线3可以称为第三天线。
本申请实施例提供一种信号到达角度估计方法,该方法可以包括:电子设备具有定位功能,当用户使用电子设备进行定位时,电子设备可以通过天线接收无线电信号S1,该电子设备中存储有天线间的相位差、增益比,与无线电信号的到达角度之间的映射关系表;电子设备可以计算接收该无线电信号S1时,天线间的相位差与增益比,该电子设备可以计算接收无线电信号S1时天线间的相位差与增益比,与映射关系表中的相位差、增益比的相似度;电子设备可以将映射关系表中与接收该无线电信号S1时,天线间的相位差与增益比相似度最高的相位差、增益比对应的到达角度作为该无线电信号S1的到达角度。这样,电子设备可以更为准确地估算出电子设备所接收无线电信号的到达角度。
本申请实施例中的电子设备可以具有两个天线、或三个天线、以及四个或四个以上的天线。本申请实施例对电子设备中的天线数量不作限定。下面实施例以电子设备有三个天线为例进行阐述。
图7示例性的示出了本申请实施例提供的一种信号到达角度估计方法的流程示意图。如图7所示,本申请实施例提供的一种信号到达角度估计方法可以包括如下步骤:
S700、电子设备通过第一天线、第二天线、第三天线接收无线电信号S1,电子设备中存储有接收不同方位的无线电信号时,第一天线与第二天线的相位差、增益比,以及第一天线与第三天线的相位差、增益比与无线电信号的到达角度的映射关系表T1。
电子设备中可以有第一天线和第二天线以及第三天线。当用户通过电子设备定位时,电子设备可以通过第一天线、第二天线、第三天线接收无线电信号S1。该无线电信号S1可以是基站发射的信号,也可以是路由器发射的信号,也可以是其他电子设备发射的信号,此处不作限定。
在接收该无线电信号S1之前,电子设备中可以存储有接收不同方位的无线电信号时,第一天线与第二天线的相位差、增益比,以及第一天线与第三天线的相位差、增益比与无线电信号的到达角度的映射关系表T1。该映射关系表T1可以是按照上述步骤S601-步骤S605建立的。映射关系表T1可以是上述表3中示出的自由空间场景中的映射关系表,也可以是上述表4中示出的手握场景中的映射关系表。映射关系表T1也可以是表3中示出的自由空间场景中的映射关系表和表4中示出的手握场景的映射关系表。本申请实施例对此不作限定。
S701、电子设备计算在接收无线电信号S1时,第一天线与第二天线的第一相位差、第一天线与第二天线的第一增益比,以及第一天线与第三天线的第二相位差、第一天线与第三天线的第三增益比。
当接收无线电信号S1时,电子设备可以计算出第一天线与第二天线的第一相位差、第一天线与第二天线的第一增益比,以及第一天线与第三天线的第二相位差、第一天线与第三天线的第三增益比。
电子设备的第一天线在接收该无线电信号S1时,电子设备可以确定出第一天线接收的该无线电信号S1的相位
Figure PCTCN2022083231-appb-000006
电子设备的第二天线在接收该无线电信号S1时,电子设备可以确定出第二天线接收的该无线电信号S1的相位
Figure PCTCN2022083231-appb-000007
电子设备的第三天线在接收该无线电信号S1时,电子设备可以确定出第三天线接收的该无线电信号S1的相位
Figure PCTCN2022083231-appb-000008
电子设备可以根据第一天线接收的该无线电信号S1的相位
Figure PCTCN2022083231-appb-000009
和第二天线接收的该无线电信号S2的相位
Figure PCTCN2022083231-appb-000010
确定出在接收无线电信号S1时,第一天线与第二天线的相位差PD1为
Figure PCTCN2022083231-appb-000011
电子设备可以根据第一天线接收的该无线电信号S1的相位
Figure PCTCN2022083231-appb-000012
和第三天线接收的该无线电信号S2的相位
Figure PCTCN2022083231-appb-000013
确定出在接收无线电信号S1时,第一天线与第三天线的相位差PD2为
Figure PCTCN2022083231-appb-000014
电子设备的第一天线在接收无线电信号S1时,电子设备可以确定出第一天线的接收能量(Received Signal Strength1,RSS1)。电子设备的第二天线在接收无线电信号S1时,电子设备可以确定出第二天线的接收能量RSS2。电子设备的第三天线在接收无线电信号S1时,电子设备可以确定出第三天线的接收能量RSS3。电子设备可以根据第一天线的接收能量RSS1、以及第二天线的接收能量RSS2,可以确定出第一天线与第二天线的增益比GR1为(RSS1/RSS2)。电子设备可以根据第一天线的接收能量RSS1、以及第三天线的接收能量RSS3,可以确定出第一天线与第三天线的增益比GR2为(RSS1/RSS3)。
S702、电子设备计算第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与映射关系表T1中所有到达角度对应的相位差、增益比的相似度。
电子设备可以计算第一相位差、第一增益比、第二相位差以及第二增益比与映射关系表T1中所有到达角度对应的相位差、增益比的相似度。
在一种可能的实现方式中,电子设备可以通过计算第一相位差、第一增益比、第二相位差以及第二增益比与映射关系表T1中所有到达角度对应的相位差、增益比差值之和来确定相似度。差值之和越大,相似度越低;反之,差值之和越高,相似度越高。
例如,若映射关系表T1为表3中示出的映射关系表。第一相位差、第一增益比、第二相位差以及第二增益比与映射关系表T1中所有到达角度对应的相位差、增益比差值之和的计算公式可以如下:
Error0(i°)=|PD1-E(i°)|+|PD2-F(i°)|+|GR1-G(i°)|+|GR2-H(i°)|   公式1
其中,i°为无线电信号的到达角度,i=0,1,2,…,359。
可以理解的是,Error0(i°)越小,即第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与到达角度i°对应的相位差、增益比的相似度越高。电子设备可以按照上述公式1计算出Error0(0°)、Error0(1°)、Error0(2°)、…、Error0(359°)。
可选地,若映射关系表T1为表4中示出的映射关系表。第一相位差、第一增益比、第二相位差以及第二增益比与映射关系表T1中所有到达角度对应的相位差、增益比差值之和的计算公式可以如下:
Error1(i°)=|PD1-J(i°)|+|PD2-K(i°)|+|GR1-L(i°)|+|GR2-M(i°)|   公式2
其中,i°为无线电信号的到达角度,i=0,1,2,…,359。
可以理解的是,Error1(i°)越小,即第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与到达角度i°对应的相位差、增益比的相似度越高。电子设备可以按照上述公式2计算出Error1(0°)、Error1(1°)、Error1(2°)、…、Error1(359°)。
在本申请实施例中,Error1(i°)可以称为第三差值之和,|PD1-J(i°)|+|PD2-K(i°)|可以称为第二差值之和,|GR1-L(i°)|+|GR2-M(i°)|可以称为第一差值之和。
S703、电子设备将相似度最大的相位差与增益比对应的到达角度作为无线电信号S1的到达角度。
在一种可能的实现方式中,若映射关系表T1为表3中示出的自由空间场景下的映射关系表。电子设备通过公式1计算出第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与映射关系表T1中天线间的相位差、增益比的差值之和。其差值之和分别为Error0(0°)、Error0(1°)、Error0(2°)、…、Error0(359°)。电子设备可以比较Error0(0°)、Error0(1°)、Error0(2°)、…、Error0(359°)的大小。电子设备取最小的差值之和对应的角度作为无线电信号S1的到达角度。例如,若Error0(0°)最小,那么电子设备确定该无线电信号S1的到达角度为0°。若Error0(1°)最小,那么电子设备确定该无线电信号S1的到达角度为1°。若Error0(359°)最小,那么电子设备确定该无线电信号S1的到达角度为359°。
在一种可能的实现方式中,若映射关系表T1为表4中示出的手握场景下的映射关系表。电子设备通过公式2计算出第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与映射关系表T1中天线间的相位差、增益比的差值之和。其差值之和分别为Error1(0°)、Error1(1°)、Error1(2°)、…、Error1(359°)。电子设备取最小的差值之和对应的角度作为无线电信号S1的到达角度。例如,若Error1(0°)最小,那么电子设备确定该无线电信号S1的到达角度为0°。若Error1(1°)最小,那么电子设备确定该无线电信号S1的到达角度为1°。若Error1(359°)最小,那么电子设备确定该无线电信号S1的到达角度为359°。
在一种可能的实现方式中,若映射关系表T1为表3中示出的自由空间场景下的映射关系表,和表4中示出的手握场景下的映射关系表。电子设备可以通过公式1和公式2分别计算出第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与映射关系表T1中天线间的相位差、增益比的差值之和。其差值之和分别为Error0(0°)、Error0(1°)、Error0(2°)、…、Error0(359°)、Error1(0°)、Error1(1°)、Error1(2°)、…、Error1(359°)。电子设备取最小的差值之和对应的角度作为无线电信号S1的到达角度。
这里步骤S702和S703为可选步骤,当电子设备执行S701之后可以不执行步骤S702和步骤S703。即当电子设备执行S701后,电子设备可以按照预设顺序计算出第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与映射关系表T1中到达角度对应的相位差、增益比的相似度。若电子设备确定出第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与映射关系表T1中到达角度AOA1对应的相位差、增益比的相似度大于预设阈值1的时候,电子设备将AOA1作为无线电信号S1的到达角度。例如,电子设备计算出到达角度为1°时的相似度,若相似度大于预设阈值1,则电子设备将1° 作为无线电信号S1的到达角度。电子设备可以不用再继续计算映射关系表T1其他到达角度的相似度。这样,电子设备不用计算出第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与映射关系表T1中每个到达角度对应的相位差、增益比的相似度,可以减少计算量,减少电子设备的功耗。
可选地,该映射关系表T1可以存储在电子设备中,也可以存储在云服务器或服务器中。当该映射关系表T1存储在云服务器或服务器中时,电子设备可以将第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2发送给云服务器或服务器,该云服务器或服务器可以计算出第一相位差PD1、第一增益比GR1、第二相位差PD2以及第二增益比GR2与映射关系表T1中到达角度对应的相位差、增益比的相似度。
在本申请实施例中,该预设阈值1可以称为相似度阈值,该相似度阈值可以由电子设备系统配置。
通过本申请实施例提供的一种信号到达角度估计方法,当用户使用电子设备进行定位时,电子设备可以通过天线接收无线电信号S1,该电子设备中存储有天线间的相位差、增益比,与无线电信号的到达角度之间的映射关系表;电子设备可以计算接收该无线电信号S1时,天线间的相位差与增益比,该电子设备可以计算接收无线电信号S1时天线间的相位差与增益比,与映射关系表中的相位差、增益比的相似度;电子设备可以将映射关系表中与接收该无线电信号S1时,天线间的相位差与增益比相似度最高的相位差、增益比对应的到达角度作为该无线电信号S1的到达角度。由于,当天线接收的信号到达角度不同时,天线间的增益比不同。这样,电子设备可以更为准确地估算出电子设备所接收无线电信号的到达角度。
如图8所示,图8示出了通过本申请实施例提供的一种信号到达角度估计方法得到的到达角度θ1与到达角度θ2的相关性图。到达角度θ1与到达角度θ2的相关值可以为α(θ1) Hα(θ2)。其中,α(θ1)为到达角度θ1的特征,该特征可以是该到达角度θ1对应的相位差和增益比。α(θ1) H是α(θ1)的埃尔米特矩阵(Hermitian matrix)。α(θ2)为到达角度θ2的特征,该特征可以是该到达角度θ2对应的相位差和增益比。与图2相比,图8中到达角度θ1与到达角度θ2不相等,但相关值为1的情况大大减少。由此可以看出,通过本申请实施例提供的一种信号到达角度估计方法得到的到达角度更为准确。
可以理解的是,本申请实施例提供的电子设备中可以包括第一天线与第二天线。电子设备可以是通过第一天线与第二天线接收无线电信号S1。
在一种可能的实现方式中,电子设备通过第一天线与第二天线接收无线电信号S1,电子设备中存储有不同方位的无线电信号时,第一天线与第二天线的相位差与增益比的映射关系表T2;电子设备计算在接收无线电信号S1时,第一天线与第二天线的第一相位差、第一增益比;电子设备可以计算第一相位差、第一增益比与映射关系表T2中所有到达角度对应的第一天线与第二天线的相位差、增益比的相似度;电子设备将映射关系表T2中相似度最大的相位差与增益比对应的到达角度作为无线电信号S1的到达角度。此处可以参考步骤S700-步骤S703中的描述,这里不再赘述。映射关系表T2的建立过程可以参考上述步骤S601-步骤S605中的描述,此处不再赘述。
可以理解的是,本申请实施例提供的电子设备中包括第一天线、第二天线、第三天线以及第四天线。电子设备可以通过第一天线、第二天线、第三天线、第四天线接收无线电信号 S1。
在一种可能的实现方式中,电子设备通过第一天线、第二天线、第三天线以及第四天线接收无线电信号S1,电子设备中存储有不同方位的无线电信号时,第一天线与第二天线的相位差与增益比,第一天线与第三天线的相位差、增益比,第一天线与第四天线的相位差、增益比的映射关系表T3;电子设备计算在接收无线电信号S1时,第一天线与第二天线的第一相位差、第一增益比,第一天线与第三天线的第二相位差、第二增益比,第一天线与第四天线的第三相位差、第三增益比;电子设备可以计算第一相位差、第一增益比,第二相位差、第二增益比,第三相位差、第三增益比与映射关系表T3中所有到达角度对应的第一天线与第二天线的相位差、增益比,第一天线与第三天线的相位差、增益比,以及第一天线与第四天线的相位差、增益比的相似度;电子设备将映射关系表T3中相似度最大的相位差与增益比对应的到达角度作为无线电信号S1的到达角度。此处可以参考步骤S700-步骤S703中的描述,这里不再赘述。映射关系表T3的建立过程可以参考上述步骤S601-步骤S605中的描述,此处不再赘述。
可以理解的是,这里电子设备可以有更多的天线。当天线的数量大于4时,电子设备对信号到达角度估计的过程可以参考步骤S700-步骤S703中的描述,此处不再赘述。
在本申请实施例中,映射关系表T1、映射关系表T2、映射关系表T3都可以称为第一映射表。
由图4示出的不同天线的方向图可以知,当天线接收信号的到达角度不相同,天线间的增益比也不相同。因此,本申请实施例提供一种信号到达角度估计方法,该方法可以包括:电子设备可以通过天线接收无线电信号S1,电子设备中存储有信号的不同到达角度与天线间的增益比之间的映射关系表;电子设备在接收无线电信号S1时,可以计算出天线间的增益比,电子设备将该计算出的增益比与映射关系表中的增益比进行相似度计算;电子设备将映射关系表中相似度最大的增益比对应的到达角度作为该无线电信号的到达角度。
图9示例性的示出了本申请实施例提供的一种信号到达角度估计方法的流程示意图。如图9所示,本申请实施例提供的一种信号到达角度估计方法可以包括如下步骤:
S800、电子设备通过第一天线、第二天线、第三天线接收无线电信号S1,电子设备中存储有接收不同方向的无线电信号时,第一天线与第二天线的增益比、以及第一天线与第三天线的增益比与无线电信号的到达角度的映射关系表T4。
电子设备中存储有接收不同方向的无线电信号时,第一天线与第二天线的增益比、以及第一天线与第三天线的增益比与无线电信号的到达角度的映射关系表T4。该映射关系表T4可以是电子设备在自由空间场景中建立的映射关系表,也可以是电子设备在手握场景中建立的映射关系表,还可以是电子设备分别在自由空间场景和手握场景中建立的映射关系表。电子设备建立映射关系表的过程可以参考上述步骤S601-步骤S605,此处不再赘述。
该映射关系表T4可以是如下表5示出的自由空间场景中建立的映射关系表,也可以是如下表6示出的手握场景中建立的映射关系表。
表5
Figure PCTCN2022083231-appb-000015
如表5所示,该表5中记录了在自由空间场景下,无线电信号从0°-359°共360个角度时,天线1与天线2的增益比GR1,天线1与天线3的增益比GR2。当手机200接收的无线电信号的到达角度为0°时,天线1与天线2的增益比GR1为N(0°);天线1与天线3的增益比GR2为P(0°)。当手机200接收的无线电信号的到达角度为1°时,天线1与天线2的增益比GR1为N(1°);天线1与天线3的增益比GR2为P(1°)。当手机200接收的无线电信号的到达角度为2°时,天线1与天线2的增益比GR1为N(2°);天线1与天线3的增益比GR2为P(2°)。当手机200接收的无线电信号的到达角度为359°时,天线1与天线2的增益比GR1为N(359°);天线1与天线3的增益比GR2为P(359°)。
表6
Figure PCTCN2022083231-appb-000016
如表6所示,该表6中记录了在手握场景下,无线电信号从0°-359°共360个角度时,天线1与天线2的增益比GR1,天线1与天线3的增益比GR2。当手机200接收的无线电信号的到达角度为0°时,天线1与天线2的增益比GR1为Q(0°);天线1与天线3的增益比GR2为R(0°)。当手机200接收的无线电信号的到达角度为1°时,天线1与天线2的增益比GR1为Q(1°);天线1与天线3的增益比GR2为R(1°)。当手机200接收的无线电信号的到达角度为2°时,天线1与天线2的增益比GR1为Q(2°);天线1与天线3的增益比GR2为R(2°)。当手机200接收的无线电信号的到达角度为359°时,天线1与天线2的增益比GR1为Q(359°);天线1与天线3的增益比GR2为R(359°)。
可以理解的是,手机200中存储的映射关系表T4可以不限于表5中示出的映射关系表以及表6中示出的映射关系表。例如,手机200中还可以存储有无线电信号的到达角度的俯仰角不同时,该到达角度与手机200的天线间的增益比的映射关系表。本申请实施例对此不作限定。
步骤S800可以参考步骤S700中的描述,此处不再赘述。
S801、电子设备计算在接收无线电信号S1时,第一天线与第二天线的第一增益比,以及第一天线与第三天线的第二增益比。
电子设备的第一天线在接收无线电信号S1时,电子设备可以确定出第一天线的接收能量RSS1。电子设备的第二天线在接收无线电信号S1时,电子设备可以确定出第二天线的接收能量RSS2。电子设备的第三天线在接收无线电信号S1时,电子设备可以确定出第三天线的接收能量RSS3。电子设备可以根据第一天线的接收能量RSS1、以及第二天线的接收能量RSS2,可以确定出第一天线与第二天线的增益比GR1为(RSS1/RSS2)。电子设备可以根据第一天线的接收能量RSS1、以及第三天线的接收能量RSS3,可以确定出第一天线与第三天线的增益比GR2为(RSS1/RSS3)。
S802、电子设备计算第一增益比、以及第二增益比与映射关系表T4中所有到达角度对应的增益比的相似度。
电子设备可以计算第一相位差、第一增益比、第二相位差以及第二增益比与映射关系表T4中所有到达角度对应的相位差、增益比的相似度。
在一种可能的实现方式中,电子设备可以通过计算第一增益比以及第二增益比与映射关系表T4中所有到达角度对应的增益比差值之和来确定相似度。差值之和越大,相似度越低;反之,差值之和越高,相似度越高。
例如,若映射关系表T4为表5中示出的映射关系表。第一增益比、以及第二增益比与映射关系表T4中所有到达角度对应的增益比差值之和的计算公式可以如下:
Error2(i°)=|GR1-N(i°)|+|GR2-P(i°)|   公式3
其中,i°为无线电信号的到达角度,i=0,1,2,…,359。
可以理解的是,Error2(i°)越小,即第一增益比GR1、以及第二增益比GR2与到达角度i°对应的增益比的相似度越高。电子设备可以按照上述公式3计算出Error2(0°)、Error2(1°)、Error2(2°)、…、Error2(359°)。
可选地,若映射关系表T4为表6中示出的映射关系表。第一增益比、以及第二增益比与映射关系表T4中所有到达角度对应的增益比差值之和的计算公式可以如下:
Error3(i°)=|GR1-Q(i°)|+|GR2-R(i°)|   公式4
其中,i°为无线电信号的到达角度,i=0,1,2,…,359。
可以理解的是,Error3(i°)越小,即第一增益比GR1、以及第二增益比GR2与到达角度i°对应的增益比的相似度越高。电子设备可以按照上述公式4计算出Error3(0°)、Error3(1°)、Error3(2°)、…、Error3(359°)。
S803、电子设备将相似度值最大的增益比对应的到达角度作为无线电信号S1的到达角度。
在一种可能的实现方式中,若映射关系表T4为表5中示出的自由空间场景下的映射关系表。电子设备通过公式3计算出第一增益比GR1、以及第二增益比GR2与映射关系表T1中天线间的增益比的差值之和。其差值之和分别为Error2(0°)、Error2(1°)、Error2(2°)、…、Error2(359°)。电子设备可以比较Error2(0°)、Error2(1°)、Error2(2°)、…、Error2(359°)的大小。电子设备取最小的差值之和对应的角度作为无线电信号S1的到达角度。例如,若Error2(0°)最小,那么电子设备确定该无线电信号S1的到达角度为0°。若Error2(1°)最小,那么电子设备确定该无线电信号S1的到达角度为1°。若Error2(359°)最小,那么电子设备确定该无线电信号S1的到达角度为359°。
在一种可能的实现方式中,若映射关系表T4为表6中示出的手握场景下的映射关系表。电子设备通过公式4计算出第一增益比GR1、以及第二增益比GR2与映射关系表T4中天线间的增益比的差值之和。其差值之和分别为Error3(0°)、Error3(1°)、Error3(2°)、…、Error3(359°)。电子设备可以比较Error3(0°)、Error3(1°)、Error3(2°)、…、Error3(359°)的大小。电子设备取最小的差值之和对应的角度作为无线电信号S1的到达角度。例如,若Error3(0°)最小,那么电子设备确定该无线电信号S1的到达角度为0°。若Error3(1°)最小,那么电子设备确定该无线电信号S1的到达角度为1°。若Error3(359°)最小,那么电子设备确定该无线电信号S1的到达角度为359°。
在一种可能的实现方式中,若映射关系表T4为表5中示出的自由空间场景下的映射关系表,和表6示出的手握场景下的映射关系表。电子设备可以通过公式3和公式4分别计算出第一增益比GR1、以及第二增益比GR2与映射关系表T4中天线间的增益比的差值之和。其差值之和分别为Error2(0°)、Error2(1°)、Error2(2°)、…、Error2(359°)、Error3(0°)、Error3(1°)、Error3(2°)、…、Error3(359°)。电子设备取最小的差值之和对应的角度作为无线电信号S1的到达角度。
这里步骤S802和S803为可选步骤,当电子设备执行S801之后可以不执行步骤S802和步骤S803。即当电子设备执行S801后,电子设备可以按照预设顺序计算出第一增益比GR1、以及第二增益比GR2与映射关系表T4中到达角度对应的相位差、增益比的相似度。若电子设备确定出第一增益比GR1以及第二增益比GR2与映射关系表T4中到达角度AOA2对应的增益比的相似度大于预设阈值2的时候,电子设备将AOA2作为无线电信号S1的到达角度。例如,电子设备计算出到达角度为1°时的相似度,若相似度大于预设阈值2,则电子设备将1°作为无线电信号S1的到达角度。电子设备可以不用再继续计算映射关系表T1其他到达角度的相似度。这样,电子设备不用计算出第一增益比GR1、以及第二增益比GR2与映射关系表T4中每个到达角度对应的相位差、增益比的相似度,可以减少计算量,减少电子设备的功耗。
可选地,该映射关系表T4可以存储在电子设备中,也可以存储在云服务器或服务器中。当该映射关系表T4存储在云服务器或服务器中时,电子设备可以将第一增益比GR1、以及第二增益比GR2发送给云服务器或服务器,该云服务器或服务器可以计算出第一增益比GR1、第二相位差PD2以及第二增益比GR2与映射关系表T4中到达角度对应的增益比的相似度。
在本申请实施例中,预设阈值2可以称为相似度阈值。该相似度阈值可以由电子设备系统配置。
通过本申请实施例提供的一种信号到达角度估计方法,当用户使用电子设备进行定位时,电子设备可以通过天线接收无线电信号S1,该电子设备中存储有天线间的增益比,与无线电信号的到达角度之间的映射关系表;电子设备可以计算接收该无线电信号S1时,天线间的增益比,该电子设备可以计算接收无线电信号S1时天线间的增益比,与映射关系表中的增益比的相似度;电子设备可以将映射关系表中与接收该无线电信号S1时,天线间的增益比相似度最高的增益比对应的到达角度作为该无线电信号S1的到达角度。由于,当天线接收的信号到达角度不同时,天线间的增益比不同。这样,电子设备可以更为准确地估算出电子设备所接收无线电信号的到达角度。
可以理解的是,本申请实施例提供的电子设备中可以包括第一天线与第二天线。电子设备可以是通过第一天线与第二天线接收无线电信号S1。
在一种可能的实现方式中,电子设备通过第一天线与第二天线接收无线电信号S1,电子设备中存储有不同方位的无线电信号时,第一天线与第二天线的增益比的映射关系表T5;电子设备计算在接收无线电信号S1时,第一天线与第二天线的第一增益比;电子设备可以计算第一增益比与映射关系表T5中所有到达角度对应的第一天线与第二天线的增益比的相似度;电子设备将映射关系表T5中相似度最大的增益比对应的到达角度作为无线电信号S1的到达角度。此处可以参考步骤S800-步骤S803中的描述,这里不再赘述。映射关系表T5的建立过程可以参考上述步骤S601-步骤S605中的描述,此处不再赘述。
可以理解的是,本申请实施例提供的电子设备中包括第一天线、第二天线、第三天线以及第四天线。电子设备可以通过第一天线、第二天线、第三天线、第四天线接收无线电信号S1。
在一种可能的实现方式中,电子设备通过第一天线、第二天线、第三天线以及第四天线接收无线电信号S1,电子设备中存储有不同方位的无线电信号时,第一天线与第二天线的增益比,第一天线与第三天线的增益比,第一天线与第四天线的增益比的映射关系表T6;电子设备计算在接收无线电信号S1时,第一天线与第二天线的第一增益比,第一天线与第三天线的第二增益比,第一天线与第四天线的第三增益比;电子设备可以计算第一增益比,第二增益比,第三增益比与映射关系表T6中所有到达角度对应的第一天线与第二天线的增益比,第一天线与第三天线的增益比,以及第一天线与第四天线的增益比的相似度;电子设备将映射关系表T6中相似度最大的增益比对应的到达角度作为无线电信号S1的到达角度。此处可以参考步骤S800-步骤S803中的描述,这里不再赘述。映射关系表T6的建立过程可以参考上述步骤S601-步骤S605中的描述,此处不再赘述。
可选地,当电子设备天线数量等于或大于4时,电子设备也可以选择其中的两个天线或三个天线进行无线信号的到达角度估计。
可以理解的是,这里电子设备可以有更多的天线。当天线的数量大于4时,电子设备对信号到达角度估计的过程可以参考步骤S800-步骤S803中的描述,此处不再赘述。
如图10所示,电子设备100中可以包括天线单元10、射频前端单元20、信号处理与控制单元30。图10示例性的示出了本申请实施例提供的一种信号到达角度估计方法的流程示意图。如图10所示,本申请实施例提供的一种信号到达角度估计方法可以包括如下步骤:
S901、电子设备100通过天线单元10接收无线电信号。
这里,天线单元10中可以包括2个天线、或者3个天线、或者4个天线、或者4个以上的天线。此处对天线单元10中的天线个数不作限定。
S902、电子设备100的天线单元10将接收的无线电信号发送给射频前端单元20。
射频前端单元中可以包括多个射频前端模块。可以理解的是,一个天线可以对应一个射频前端模块。每个天线可以将接收到的无线电信号发送给对应的射频前端模块。以天线单元10中具有两个天线(天线1和天线2)为例,射频前端单元20中可以包括天线1对应的射频前端模块1、以及天线2对应的射频前端模块2。天线1可以将接收的无线电信号发送给射频前端模块1。天线2可以将接收的无线电信号发送给射频前端模块2。
S903、电子设备100的射频前端单元20将无线电信号转换为基带信号。
例如,射频前端模块1以将天线1接收的无线电信号转换为基带信号1。射频前端模块2可以将天线2接收的无线电信号转换为基带信号2。
S904、电子设备100的射频前端单元20向信号处理与控制单元30发送基带信号。
例如,射频前端单元20中射频前端模块1与射频前端模块2可以分别向信号处理与控制单元30发送基带信号1与基带信号2。
S905、电子设备100的信号处理与控制单元30计算接收到的基带信号间的相位差、增益比。
例如,信号处理与控制单元30可以计算出基带信号1与基带信号2的相位差以及增益比。这里,步骤S905可以参考步骤701中电子设备计算相位差以及增益比的描述,此处不再 赘述。
S906、电子设备100的信号处理与控制单元30将计算得到的相位差、增益比与映射关系表T7中的相位差、增益比的相似度,映射关系表T7中保存了所有到达角度对应的相位差和增益比。
这里,映射关系表T7可以参考上述步骤中映射关系表T4的描述,此处不再赘述。这里,信号处理与控制单元30将计算得到的相位差、增益比与映射关系表T7中的相位差、增益比的相似度可以参考步骤S702中的描述,此处不再赘述。
S907、电子设备100的信号处理与控制单元30将映射关系表T7中相似度最大的相位差、增益比对应的到达角度作为无线电信号的到达角度。
步骤907可以参考步骤S703中的描述,此处不再赘述。
可以理解的是,上述步骤S905可以计算天线间的增益比,映射关系表T7中可以保存了所有到达角度对应的增益比。此处也可以参考步骤802以及步骤S803中的描述。
本申请实施例提供了一种信号到达角度估计方法,该方法可以包括:电子设备可以接收无线电信号,电子设备中存储有天线间相位差和增益比与信号到达角度的映射关系表;电子设备可以计算出在接收该无线信号时天线间的相位差和增益比;电子设备将计算得到的相位差和增益比与映射关系表中的相位差和增益比进行相似度计算,电子设备将映射关系表中相似度最高的相位差和增益比对应的到达角度作为该无线信息的到达角度。这样,可以提高电子设备估计得到信号的到达角度的准确率。
下面首先介绍本申请实施例提供的示例性电子设备100。
图11是本申请实施例提供的电子设备100的结构示意图。
下面以电子设备100为例对实施例进行具体说明。应该理解的是,电子设备100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号 处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
可以理解的是,电子设备100还可以包括更多的天线,例如天线3、天线4、…、以及天线N。天线3、天线4、…、以及天线N用于接收无线电信号。
电子设备中的天线1和天线2可以是外置天线,也可以是内置天线,此处不作限定。其中外置天线的种类可以包括:单极天线、螺旋天线以及PCB(Printed circuit board,印刷电路板)螺旋天线。内置天线可以包括:微带贴片天线、缝隙天线、IFA天线(Inverted-F Antenna,倒F天线)、PIFA天线(planar Inverted-F Antenna,平面倒F天线)、FPC(flexible printed circuit,柔性印刷电路)天线等等。
影响天线性能的临界参数有很多,通常在天线设计过程中可以进行调整,如谐振频率、阻抗、增益、孔径或辐射方向图、极化、效率和带宽等。另外,发射天线还有最大额定功率,而接收天线则有噪声抑制参数。
在一些实施例中,天线1和天线2中还可以包括射频前端模块。天线1对应的射频前端模块用于将天线1接收的无线电信号(例如,电磁波)转换为基带信号。天线2对应的射频前端模块用于将天线2接收的无线电信号转换为基带信号。
可选地,天线1和天线1对应的射频前端模块可以耦合在一个天线芯片中。天线2和天线2对应的射频前端模块可以耦合在一个天线芯片中。移动通信模块150可以提供应用在电 子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例 中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。
摄像头193用于捕获静态图像或视频。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
内部存储器121可以包括一个或多个随机存取存储器(random access memory,RAM)和一个或多个非易失性存储器(non-volatile memory,NVM)。
随机存取存储器可以包括静态随机存储器(static random-access memory,SRAM)、动态随机存储器(dynamic random access memory,DRAM)、同步动态随机存储器(synchronous dynamic random access memory,SDRAM)、双倍资料率同步动态随机存取存储器(double data rate synchronous dynamic random access memory,DDR SDRAM,例如第五代DDR SDRAM一般称为DDR5SDRAM)等。
非易失性存储器可以包括磁盘存储器件、快闪存储器(flash memory)。
快闪存储器按照运作原理划分可以包括NOR FLASH、NAND FLASH、3D NAND FLASH等,按照存储单元电位阶数划分可以包括单阶存储单元(single-level cell,SLC)、多阶存储单元(multi-level cell,MLC)、三阶储存单元(triple-level cell,TLC)、四阶储存单元(quad-level cell,QLC)等,按照存储规范划分可以包括通用闪存存储(英文:universal flash storage,UFS)、嵌入式多媒体存储卡(embedded multi media Card,eMMC)等。
随机存取存储器可以由处理器110直接进行读写,可以用于存储操作系统或其他正在运行中的程序的可执行程序(例如机器指令),还可以用于存储用户及应用程序的数据等。
非易失性存储器也可以存储可执行程序和存储用户及应用程序的数据等,可以提前加载到随机存取存储器中,用于处理器110直接进行读写。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。
气压传感器180C用于测量气压。
磁传感器180D包括霍尔传感器。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小
距离传感器180F,用于测量距离。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。
环境光传感器180L用于感知环境光亮度。
指纹传感器180H用于采集指纹。
温度传感器180J用于检测温度。
触摸传感器180K,也称“触控面板”。
按键190包括开机键,音量键等。
马达191可以产生振动提示。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
图12是本申请实施例的电子设备100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将系统分为四层,从上至下分别为应用程序层,应用程序框架层,运行时(Runtime)和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图12所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序(也可以称为应用)。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图12所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话界面形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
运行时(Runtime)包括核心库和虚拟机。Runtime负责系统的调度和管理。
核心库包含两部分:一部分是编程语言(例如,jave语言)需要调用的功能函数,另一部分是系统的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的编程文件(例如,jave文件)执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),二维图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了二维(2-Dimensional,2D)和三维(3-Dimensional,3D)图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现3D图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动,虚拟卡驱动。
下面结合捕获拍照场景,示例性说明电子设备100软件以及硬件的工作流程。
当触摸传感器180K接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的控件为相机应用图标的控件为例,相机应用调用应用框架层的接口,启动相机应用,进而通过调用内核层启动摄像头驱动,通过摄像头193捕获静态图像或视频。
综上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在… 后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (19)

  1. 一种信号到达角度估计方法,应用于电子设备,其特征在于,所述电子设备包括第一天线和第二天线,所述方法包括:
    所述电子设备通过所述第一天线和所述第二天线接收第一无线电信号,所述电子设备中存储有第一映射关系表,所述第一映射关系表中包括无线电信号的不同到达角度、以及所述无线电信号的不同到达角度对应的所述第一天线和所述第二天线的增益比;
    在接收所述第一无线电信号时,所述电子设备计算出所述第一天线和所述第二天线的第一增益比;
    所述电子设备根据所述第一增益比和所述第一映射表确定所述第一无线电信号的到达角度。
  2. 根据权利要求1所述的方法,其特征在于,所述电子设备根据所述第一增益比和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备计算所述第一增益比与所述第一映射表中所述无线电信号的不同到达角度对应的所述第一天线和所述第二天线的增益比的相似度;
    所述电子设备将所述第一映射表中与所述第一增益比相似度最大的增益比对应的无线电信号的到达角度作为所述第一无线电信号的到达角度。
  3. 根据权利要求1所述的方法,其特征在于,所述电子设备根据所述第一增益比和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备计算所述第一增益比与所述第一映射表中所述无线电信号的第一到达角度对应的所述第一天线和所述第二天线的增益比的第一相似度;
    若所述第一相似度大于相似度阈值,所述电子设备将所述第一到达角度作为所述第一无线电信号的到达角度。
  4. 根据权利要求2所述的方法,其特征在于,所述第一映射关系表中还包括所述无线电信号的不同到达角度对应的所述第一天线和所述第二天线的相位差。
  5. 根据权利要求4所述的方法,其特征在于,所述在接收所述第一无线电信号时,所述电子设备计算出所述第一天线和所述第二天线的第一增益比,包括:
    在接收第一无线电信号时,所述电子设备计算出所述第一天线和所述第二天线的第一增益比和第一相位差;
    所述电子设备根据所述第一增益比和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备根据所述第一增益比、所述第一相位差和所述第一映射表确定所述第一无线电信号的到达角度。
  6. 根据权利要求5所述的方法,其特征在于,所述电子设备根据所述第一增益比、所述第一相位差和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备计算所述第一增益比和所述第一相位差与所述第一映射表中所述无线电信号的不同到达角度对应的所述第一天线和所述第二天线的增益比和相位差的相似度;
    所述电子设备将所述第一映射表中与所述第一增益比和所述第一相位差相似度最大的增益比和相位差对应的无线电信号的到达角度作为所述第一无线电信号的到达角度。
  7. 根据权利要求5所述的方法,其特征在于,所述电子设备根据所述第一增益比、所述第一相位差和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备计算所述第一增益比、所述第一相位差与所述第一映射表中所述无线电信号的第二到达角度对应的所述第一天线和所述第二天线的增益比和相位差的第二相似度;
    若所述第二相似度大于相似度阈值,所述电子设备将所述第二到达角度作为所述第一无线电信号的到达角度。
  8. 根据权利要求7所述的方法,其特征在于,所述电子设备计算所述第一增益比、所述第一相位差与所述第一映射表中所述无线电信号的第二到达角度对应的所述第一天线和所述第二天线的增益比和相位差的第二相似度,包括:
    所述电子设备计算出所述第一增益比与所述第一映射表中所述无线电信号的第二到达角度对应的所述第一天线和所述第二天线的增益比的第一差值之和;
    所述电子设备计算出所述第一相位差与所述第一映射表中所述无线电信号的第二到达角度对应的所述第一天线和所述第二天线的相位差的第二差值之和;
    所述电子设备将所述第一差值之和与所述第二差值之和相加,得到第三差值之和;所述第三差值之和越小,所述第一增益比和所述第一相位差与所述第二到达角度对应的增益比和相位差的相似度越大。
  9. 根据权利要求2所述的方法,其特征在于,所述电子设备还包括第三天线,所述第一映射关系表中还包括所述无线电信号的不同到达角度对应的所述第一天线和所述第三天线的增益比。
  10. 根据权利要求9所述的方法,其特征在于,所述电子设备通过所述第一天线和所述第二天线接收第一无线电信号,包括:
    所述电子设备通过所述第一天线、所述第二天线、以及所述第三天线接收第一无线电信号;
    所述在接收所述第一无线电信号时,所述电子设备计算出所述第一天线和所述第二天线的第一增益比,包括:
    在接收所述第一无线电信号时,所述电子设备计算出所述第一天线和所述第二天线的第一增益比,所述第一天线和所述第二天线的第二增益比;
    所述电子设备根据所述第一增益比和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备根据所述第一增益比、所述第二增益比和所述第一映射表确定所述第一无线电信号的到达角度。
  11. 根据权利要求10所述的方法,其特征在于,所述电子设备根据所述第一增益比、所述第二增益比和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备计算所述第一增益比和所述第二增益比,与所述第一映射表中所述无线电 信号的不同到达角度对应的所述第一天线和所述第二天线的增益比、以及所述第一天线和所述第三天线的增益比的相似度;
    所述电子设备将所述第一映射表中与所述第一增益比和所述第二增益比相似度最大的所述第一天线和所述第二天线的增益比、所述第一天线和所述第二天线的增益比对应的无线电信号的到达角度作为所述第一电信号的到达角度。
  12. 根据权利要求10所述的方法,其特征在于,所述电子设备根据所述第一增益比、所述第二增益比和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备计算所述第一增益比、所述第二增益比与所述第一映射表中所述无线电信号的第三到达角度对应的所述第一天线和所述第二天线的增益比,所述第一天线和所述第三天线的增益比的第三相似度;
    若所述第三相似度大于相似度阈值,所述电子设备将所述第三到达角度作为所述第一无线电信号的到达角度。
  13. 根据权利要求10所述的方法,其特征在于,所述第一映射表中还包括所述无线电信号的不同到达角度对应的所述第一天线和所述第二天线的相位差,以及所述无线电信号的不同到达角度对应的所述第一天线和所述第三天线的相位差。
  14. 根据权利要求13所述的方法,其特征在于,所述在接收所述第一无线电信号时,所述电子设备计算出所述第一天线和所述第二天线的第一增益比,所述第一天线和所述第二天线的第二增益比,包括:
    在接收所述第一无线电信号时,所述电子设备计算出所述第一天线和所述第二天线的第一增益比,所述第一天线和所述第二天线的第二增益比,所述第一天线和所述第二天线的第一相位差,所述第一天线和所述第三天线的第二相位差;
    所述电子设备根据所述第一增益比和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备根据所述第一增益比、所述第一相位差、所述第二增益比、所述第二相位差和所述第一映射表确定所述第一无线电信号的到达角度。
  15. 根据权利要求14所述的方法,其特征在于,所述电子设备根据所述第一增益比、所述第一相位差、所述第二增益比、所述第二相位差和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备计算所述第一增益比、所述第二增益比、所述第一相位差以及所述第二相位差,与所述第一映射表中所述无线电信号的不同到达角度对应的所述第一天线和所述第二天线的增益比、所述第一天线和所述第三天线的增益比、所述第一天线和所述第二天线的相位差以及所述第一天线和所述第三天线的相位差的相似度;
    所述电子设备将所述第一映射表中与所述第一增益比、所述第二增益比、所述第一相位差以及所述第二相位差相似度最大的所述第一天线和所述第二天线的增益比、所述第一天线和所述第二天线的增益比、所述第一天线和所述第二天线的相位差、以及所述第一天线和所述第三天线对应的无线电信号的到达角度作为所述第一电信号的到达角度。
  16. 根据权利要求14所述的方法,其特征在于,所述电子设备根据所述第一增益比、所述第一相位差、所述第二增益比、所述第二相位差和所述第一映射表确定所述第一无线电信号的到达角度,包括:
    所述电子设备计算所述第一增益比、所述第一相位差、所述第二增益比、所述第二相位差与所述第一映射表中所述无线电信号的第四到达角度对应的所述第一天线和所述第二天线的增益比、相位差,所述第一天线和所述第三天线的增益比、相位差的第四相似度;
    若所述第四相似度大于相似度阈值,所述电子设备将所述第四到达角度作为所述第一无线电信号的到达角度。
  17. 一种电子设备,其特征在于,包括:两个或大于两个天线、显示屏、一个或多个处理器和一个或多个存储器;所述一个或多个处理器与所述两个或大于两个天线、所述一个或多个存储器以及所述显示屏耦合,所述一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述电子设备执行上述权利要求1-16中的任一项所述的信号到达角度估计方法。
  18. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1-16中任一项所述的信号到达角度估计方法。
  19. 一种计算机程序产品,其特征在于,当所述计算机程序产品在电子设备上运行时,使得所述电子设备执行如权利要求1-16中任一项所述的信号到达角度估计的方法。
PCT/CN2022/083231 2021-03-31 2022-03-26 一种信号到达角度估计方法及电子设备 WO2022206643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110348956.0A CN115144811A (zh) 2021-03-31 2021-03-31 一种信号到达角度估计方法及电子设备
CN202110348956.0 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022206643A1 true WO2022206643A1 (zh) 2022-10-06

Family

ID=83404681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083231 WO2022206643A1 (zh) 2021-03-31 2022-03-26 一种信号到达角度估计方法及电子设备

Country Status (2)

Country Link
CN (1) CN115144811A (zh)
WO (1) WO2022206643A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1291062A (zh) * 1999-10-05 2001-04-11 朗迅科技公司 在cdma/tdma系统中使用单个基站搜索定位
CN101137226A (zh) * 2007-09-30 2008-03-05 重庆邮电大学 单天线终端测向方法
CN101754362A (zh) * 2008-12-09 2010-06-23 鼎桥通信技术有限公司 一种双极化智能天线系统中的doa估计方法
US10771143B1 (en) * 2019-12-27 2020-09-08 Industrial Technology Research Institute Switching method for multiple antenna arrays and electronic device applying the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1291062A (zh) * 1999-10-05 2001-04-11 朗迅科技公司 在cdma/tdma系统中使用单个基站搜索定位
CN101137226A (zh) * 2007-09-30 2008-03-05 重庆邮电大学 单天线终端测向方法
CN101754362A (zh) * 2008-12-09 2010-06-23 鼎桥通信技术有限公司 一种双极化智能天线系统中的doa估计方法
US10771143B1 (en) * 2019-12-27 2020-09-08 Industrial Technology Research Institute Switching method for multiple antenna arrays and electronic device applying the same

Also Published As

Publication number Publication date
CN115144811A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2021098442A1 (zh) 定位交互方法及装置
CN112637758B (zh) 一种设备定位方法及其相关设备
CN113794796B (zh) 一种投屏方法及电子设备
CN115333941B (zh) 获取应用运行情况的方法及相关设备
WO2022143258A1 (zh) 一种语音交互处理方法及相关装置
CN113921002A (zh) 一种设备控制方法及相关装置
WO2023083017A1 (zh) 信号到达角度估计方法及相关设备
WO2023179751A1 (zh) 一种物体寻找方法、系统以及电子设备
WO2023005900A1 (zh) 一种投屏方法、电子设备及系统
WO2021254294A1 (zh) 一种切换音频输出通道的方法、装置和电子设备
WO2022062902A1 (zh) 一种文件传输方法和电子设备
WO2022206643A1 (zh) 一种信号到达角度估计方法及电子设备
WO2022143310A1 (zh) 一种双路投屏的方法及电子设备
CN114489471B (zh) 一种输入输出处理方法和电子设备
WO2022152174A9 (zh) 一种投屏的方法和电子设备
WO2022033355A1 (zh) 一种邮件处理方法及电子设备
CN112151017B (zh) 语音处理方法、装置、系统、设备及存储介质
CN115388845A (zh) 方位角确定方法及相关产品
CN113671534A (zh) 一种定位补偿方法、车载单元、介质及系统
WO2022166550A1 (zh) 数据传输方法及电子设备
WO2023024873A1 (zh) 一种显示方法、电子设备及系统
WO2023006035A1 (zh) 一种投屏方法、系统及电子设备
WO2022218175A1 (zh) 分布式设备回声时延估计方法及电子设备
WO2024088225A1 (zh) 一种蓝牙测距方法、电子设备及系统
WO2022206709A1 (zh) 应用程序的组件加载方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778825

Country of ref document: EP

Kind code of ref document: A1