WO2022206561A1 - 衍射波导及电子设备 - Google Patents

衍射波导及电子设备 Download PDF

Info

Publication number
WO2022206561A1
WO2022206561A1 PCT/CN2022/082825 CN2022082825W WO2022206561A1 WO 2022206561 A1 WO2022206561 A1 WO 2022206561A1 CN 2022082825 W CN2022082825 W CN 2022082825W WO 2022206561 A1 WO2022206561 A1 WO 2022206561A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
gratings
sub
light
exit
Prior art date
Application number
PCT/CN2022/082825
Other languages
English (en)
French (fr)
Inventor
孔德卿
陈毅权
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022206561A1 publication Critical patent/WO2022206561A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application belongs to the technical field of electronic equipment, and in particular relates to a diffractive waveguide and electronic equipment.
  • AR Augmented Reality
  • an electronic device can usually select a variety of waveguides such as geometric optical waveguides and diffractive optical waveguides to realize image projection.
  • electronic devices equipped with diffractive optical waveguides have the advantages of lighter weight and higher transparency.
  • the micro projector projects a virtual image to the incident grating
  • the incident grating couples the virtual image to the exit grating
  • the exit grating projects the virtual image into the user's eyes.
  • part of the light is continuously coupled out during the propagation of the light beam in the exit grating, and finally, the intensity of the light beam passing through the exit grating decreases continuously in the direction away from the incident grating, and finally the light intensity of the exit grating decreases gradually, resulting in the exit of the light beam.
  • the light extraction efficiency of the grating is higher on the side adjacent to the incident grating, and lower on the other side away from the incident grating, which eventually leads to uneven light extraction, resulting in the problem of uneven brightness of the virtual image presented.
  • the purpose of the embodiments of the present application is to provide a diffractive waveguide and an electronic device, which can solve the problem of uneven brightness of a virtual image presented due to uneven light output from an exit grating in the related art.
  • the present application discloses a diffractive waveguide, comprising a waveguide substrate, an incident grating, an exit grating, and an orthogonal grating array, wherein:
  • the incident grating, the exit grating and the orthogonal grating array are all disposed on the waveguide base, and the exit grating is located between the incident grating and the orthogonal grating array, and is projected from the incident grating
  • the outgoing light includes a first part of light and a second part of light, the first part of the light enters the exit grating and exits the waveguide substrate from the exit grating, and the second part of the light passes through the exit grating and is projected to the
  • the orthogonal grating array reflects the second part of the light to the exit grating, so that the second part of the light exits the waveguide substrate from the exit grating.
  • the present application discloses an electronic device, comprising a micro projector and a diffractive waveguide, wherein the diffractive waveguide is the diffractive waveguide described in the first aspect, and the micro projector is disposed opposite to the incident grating.
  • the diffractive waveguide disclosed in the embodiment of the present application improves the related technology, so that the first part of the light emitted from the incident grating can be emitted from the exit grating when projected to the exit grating, and at the same time, the second part of the light emitted by the incident grating can be emitted from the incident grating.
  • the exit grating When projected to the exit grating, it passes through the exit grating and then projects to the orthogonal grating array. Then, under the action of the orthogonal grating array, it can be reflected to the exit grating, and finally emitted from the exit grating.
  • the exit grating is located between the incident grating and the orthogonal grating array, the second part of the light is re-injected into the side of the exit grating that is away from the incident grating, thereby being able to play the role of supplementary light.
  • This structure is equivalent to that the same light can enter from opposite sides of the exit grating, so the problem of uneven light output of the exit grating can be alleviated, and finally the brightness uniformity of the virtual image can be improved.
  • FIG. 1 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a first diffractive waveguide disclosed in an embodiment of the present application
  • Fig. 3 is the reflection schematic diagram of light passing through the first orthogonal sub-grating
  • Fig. 4 is the reflection schematic diagram of light passing through the second orthogonal sub-grating
  • FIG. 5 is a schematic diagram of the first reflection of light passing through the orthogonal grating array
  • FIG. 6 is a schematic diagram of the second reflection of light passing through the orthogonal grating array
  • FIG. 8 is a schematic diagram of the fourth reflection of light passing through the orthogonal grating array
  • FIG. 10 is a schematic diagram of the second light reflection of the first diffractive waveguide
  • FIG. 11 is a schematic structural diagram of a second diffractive waveguide disclosed in an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a third diffractive waveguide disclosed in an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a fourth diffractive waveguide disclosed in an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a fifth diffractive waveguide disclosed in an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a sixth diffractive waveguide disclosed in an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of a seventh diffractive waveguide disclosed in an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of an eighth diffractive waveguide disclosed in an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a ninth diffractive waveguide disclosed in an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • an embodiment of the present application discloses a diffractive waveguide.
  • the disclosed diffractive waveguide includes a waveguide substrate 100 , an incident grating 200 , an exit grating 300 and an orthogonal grating array 400 .
  • the waveguide base 100 is a light guide device of a diffractive waveguide, which can guide light.
  • the waveguide base 100 is also the basic device of the diffractive waveguide, and the waveguide base 100 provides the installation basis for components such as the incident grating 200 , the exit grating 300 , and the orthogonal grating array 400 .
  • the incident grating 200 , the exit grating 300 and the orthogonal grating array 400 are all provided on the waveguide substrate 100 .
  • the incident grating 200, the exit grating 300 and the orthogonal grating array 400 can be arranged inside the waveguide base 100, so that the waveguide base 100 can be protected.
  • the incident grating 200 is a diffractive coupling device of a diffractive waveguide, and the incident grating 200 is used to diffractively couple and project the light to the waveguide substrate 100 .
  • the light can be transmitted in the waveguide base 100 in the form of total reflection.
  • the exit grating 300 is a diffractive out-coupling device of a diffractive waveguide, and the exit grating 300 is used to receive the light in the waveguide base 100 for diffractive coupling and project it out of the waveguide base 100 to form a virtual image.
  • the orthogonal grating array 400 is a functional device for adjusting the direction of light, and the orthogonal grating array 400 can reflect the incident light to the exit grating 300 .
  • the incident grating 200 is located on the first side of the exit grating 300
  • the orthogonal grating array 400 is located on the second side of the exit grating 300
  • the first side and the second side are opposite sides of the exit grating 300 .
  • the exit grating 300 is located between the entrance grating 200 and the orthogonal grating array 400 .
  • the light is projected to the incident grating 200 , the incident grating 200 projects the light to the waveguide base 100 , and the light is transmitted through the waveguide base 100 to reach the exit grating 300 , wherein the light projected from the incident grating 200 It includes a first part of light and a second part of light.
  • the first part of light enters the exit grating 300 , it can exit the waveguide substrate 100 from the exit grating 300 .
  • the second part of the light enters the exit grating 300 and passes through the exit grating 300 and then is projected to the orthogonal grating array 400 , and the orthogonal grating array 400 reflects the second part of the light to the exit grating 300 , so that the exit grating 300 can
  • the second part of the light is projected out of the waveguide base 100 .
  • the first part of the light and the second part of the light are emitted from the exit grating 300 to the human eye, and the end user can see the virtual image.
  • the diffractive waveguide disclosed in the embodiments of the present application improves the related technology, so that the first part of the light rays emitted from the incident grating 200 can be emitted from the exit grating 300 when projected to the exit grating 300, and at the same time make The second part of the light emitted from the incident grating 200 can pass through the exit grating 300 when projected onto the exit grating 300 , and then be projected onto the orthogonal grating array 400 . Then, under the action of the orthogonal grating array 400 , it can be reflected to the exit grating 300 , and finally emitted from the exit grating 300 .
  • the exit grating 300 is located between the incident grating 200 and the orthogonal grating array 400, the second part of the light is re-injected into the side of the exit grating 300 facing away from the incident grating 200, which can then play the role of supplementary light.
  • This structure is equivalent to that the same light can enter from opposite sides of the exit grating 300 , so the problem of uneven light output from the exit grating 300 can be alleviated, and finally the brightness uniformity of the virtual image can be improved.
  • the orthogonal grating array 400 may include a plurality of sub-gratings.
  • the two adjacent sub-gratings may be a first orthogonal sub-grating (shown in FIG. 3 ) 410 and a second orthogonal sub-grating (shown in FIG.
  • first orthogonal sub-grating 410 is the same as the first orthogonal sub-grating 410
  • second orthogonal sub-gratings 420 are perpendicular to each other, the light passing through the first orthogonal sub-gratings 410 and the second orthogonal sub-gratings 420 will be reflected, and both the first orthogonal sub-gratings 410 and the second orthogonal sub-gratings 420 play a role in illuminating the light. reflection. It can be seen from FIG. 5 to FIG.
  • the second part of light can enter the orthogonal grating array 400 from the exit grating 300 , and can be reflected back to the side where the exit grating 300 is located by the orthogonal grating array 400 .
  • the first orthogonal sub-grating 410 and the second orthogonal sub-grating 420 are perpendicular (ie, orthogonal), after the second part of the light enters the first orthogonal sub-grating 410 and the second orthogonal sub-grating 420, it will Different turning directions are generated, that is, reflected in different directions.
  • the light entering the first orthogonal sub-grating 410 (included in the second part of the light) can be expanded in one direction; as shown in FIG. 4 , the light entering the second orthogonal sub-grating 420 can be expanded in one direction.
  • Light rays (contained in the second portion of rays) can be expanded in the other direction.
  • the period of the first orthogonal sub-grating 410 is the first period
  • the period of the second orthogonal sub-grating 420 is the second period
  • the period of the incident grating 200 is the third period
  • the relationship between them is shown in the following formula (1):
  • ⁇ 1 is the first period
  • ⁇ 2 is the second period
  • ⁇ 0 is the third period
  • each grating (the entrance grating 200, the exit grating 300, the first orthogonal sub-grating 410 and the second orthogonal sub-grating 420, and the first turning grating 500 and the second turning grating 600 described later) are all It consists of multiple grating strips, and there is a distance between two adjacent grating strips, which can be called the grating strip spacing.
  • the period mentioned above refers to the sum of the distance between two adjacent grating strips and the width of one of the grating strips. It can be known from this that the first period is the sum of the width of one grating strip of the first orthogonal sub-grating 410 and the spacing between the other adjacent grating strip.
  • the second period is the sum of the width of one grating strip of the second orthogonal sub-grating 420 and the spacing between the other grating strip adjacent to it.
  • the third period is the sum of the width of one grating strip of the incident grating 200 and the distance between the other adjacent grating strip.
  • the grating strip width of each grating can be the same or different.
  • each grating The spacing between the grating strips can be the same or different.
  • the inventor unexpectedly found that when the first period, the second period and the third period satisfy the above formula (1), it can better ensure that the light is transmitted after the incident grating 200 exits and finally exits through the exit grating 300. into the eyes of people.
  • the first period of the first orthogonal sub-grating 410 and the second period of the second orthogonal sub-grating 420 are equal, and the first orthogonal sub-grating 410 and the second orthogonal sub-grating 420 perform a The beam expansion effect is the same.
  • the combination of the first orthogonal sub-grating 410 and the second orthogonal sub-grating 420 can reflect the light back to the exit grating 300 .
  • the light passes through the exit grating 300 and reaches the first orthogonal sub-grating 300 .
  • the intersection sub-grating 410 and the second orthogonal sub-grating 420 the light is reflected and beam-expanded through the first orthogonal sub-grating 410 and the second orthogonal sub-grating 420, and the beam-expanded light is reflected back to the exit grating 300, and then projected out.
  • Waveguide base 100 Waveguide base 100 .
  • the plurality of sub-gratings may be distributed in a column (as shown in FIG. 9 to FIG. 17 ), and this distribution manner is beneficial to reduce the space occupied by the orthogonal grating array 400 .
  • the plurality of sub-gratings may also be distributed in multiple columns, two adjacent sub-gratings in the same column are perpendicular, and two adjacent sub-gratings in two adjacent columns are parallel.
  • This distribution method enables the second part of the light to pass through the sub-gratings in one column and be reflected, and then be reflected by the sub-gratings in the next column toward the side where the exit grating 300 is located, so as to prevent this part of the light from being unusable, and ultimately improve the performance of the light. utilization of light.
  • a plurality of sub-gratings are distributed in a column, the size of the orthogonal grating array 400 in the arrangement direction of the plurality of sub-gratings is the first size, and the size of the exit grating 300 in the aforementioned arrangement direction is The second size, the first size is larger than the second size, in this case, the orthogonal grating array 400 can form a longer arrangement structure, so that the second part of the light emitted from the exit grating 300 can be intercepted in a larger range , and finally reflect the intercepted light.
  • this structure is beneficial to improve the utilization rate of light.
  • more of the second part of the light is reflected to the exit grating 300, which is beneficial to further enhance the supplementary light, and thus can better alleviate the uneven phenomenon.
  • the multiple sub-gratings may be distributed in a column, and the lengths of the multiple sub-gratings may not be all equal.
  • the length direction of the sub-gratings may be the same as the arrangement of the multiple sub-gratings. direction is perpendicular. In this case, after the light projected on the sub-grating with a smaller length is reflected, those unreflected light can continue to be reflected by the sub-grating with a longer length, which is beneficial to improve the utilization rate of light.
  • one end of the plurality of sub-gratings adjacent to the exit grating 300 can be arranged in a collinear manner.
  • This structure is beneficial to enable the second part of the light to be projected to the positive direction after passing through the exit grating 300 .
  • the cross grating array 400 makes the light uniformity of the light reflected from the plurality of sub-gratings to the exit grating 300 higher. At the same time, it is possible to reduce the interference of the light when it returns to the exit grating 300 .
  • one end of the plurality of sub-gratings adjacent to the exit grating 300 may not be completely collinear. This arrangement requires less installation of the plurality of sub-gratings in a row, thus facilitating the work. personnel assembly, which is beneficial to improve the assembly efficiency of the diffractive waveguide.
  • the diffractive waveguide disclosed in the embodiment of the present application may further include a first turning grating 500 , and the first turning grating 500 has the function of two-dimensional pupil dilation.
  • both the first refraction grating 500 and the incident grating 200 can be disposed on the same side of the exit grating 300
  • the incident grating 200 can be disposed opposite to the first end of the first refraction grating 500
  • the width of the first end is the same as that of the incident grating 200 .
  • the widths of the projected light planes are the same
  • the first turning grating 500 has a second end, and the width of the first turning grating 500 increases in the direction from the first end to the second end.
  • the first turning grating 500 can expand the light beam and reflect it to the exit grating 300.
  • the unreflected light near the first end will enter the first turning grating 500 again for reflection along the direction from the first end to the second end. and beam expansion, thereby improving the utilization rate of the light projected by the incident grating 200, and by adjusting the width of the first turning grating 500 to improve the uniformity of light output from the exit grating 300, of course, it is also beneficial for the exit grating 300 to meet the preset requirements.
  • the width is finally projected out of the diffractive waveguide.
  • the incident grating 200 may be located between the two first turning gratings 500 .
  • One end is opposite to the incident grating 200 .
  • the incident grating 200 projects light rays from both the first direction and the second direction to the two first turning gratings 500 respectively, wherein the first direction and the second direction are opposite, and the light rays may include the first light rays and
  • the first light passes through one of the two first turning gratings 500 from the first direction for beam expansion, it is reflected to the exit grating 300, and part of the first light is projected out of the waveguide substrate 100 by the exit grating 300, The rest is reflected at the orthogonal grating array 400 through the exit grating 300 , and finally reflected to the exit grating 300 to be projected out of the waveguide substrate 100 .
  • the second light ray passes through the other of the two first turning gratings 500 from the second direction for beam expansion and reflection to the exit grating 300 , and a part of the second light ray is projected out of the waveguide substrate 100 by the exit grating 300 .
  • Another part of the light is reflected from the exit grating 300 to the orthogonal grating array 400 , and then reflected to the exit grating 300 , and then projected out of the waveguide substrate 100 .
  • the two first turning gratings 500 can receive the light on both sides of the incident grating 200 and reflect them to the exit grating 300 . Since more light rays emitted from the incident grating 200 can be picked up, the utilization rate of the light rays can be improved.
  • the area between the two first turning gratings 500 is the first area
  • the incident grating 200 is located in the first area
  • the area opposite to the first area on the exit grating 300 is the second area
  • the orthogonal grating array 400 The light can be reflected back to the second area by reflecting the light, so that the existence of dark bands in the second area can be avoided, and the uniformity of the light can be further improved.
  • the diffractive waveguide disclosed in the embodiment of the present application may further include a second turning grating 600 .
  • the second inflection grating 600 may be disposed between the incident grating 200 and the exit grating 300 , and the second inflection grating 600 has the function of two-dimensional pupil dilation.
  • pupil dilation is essentially beam expansion of light.
  • the second turning grating 600 may be a transmission type grating. The light projected by the incident grating 200 is beam-expanded through the second turning grating 600.
  • the light projected by the incident grating 200 can be beam-expanded, and part of the light can be directly emitted to the exit grating after passing through. 300, so it can reduce the waste caused by reflected light, which can undoubtedly improve the utilization of light.
  • the exit grating 300 may include a plurality of third sub-gratings arranged in a row and a plurality of fourth sub-gratings arranged in a row. Specifically, the plurality of third sub-gratings and the plurality of fourth sub-gratings intersect and are perpendicular to each other, the incident grating 200 projects the light to the exit grating 300, and the plurality of third sub-gratings and the plurality of fourth sub-gratings transmit the light rays.
  • the plurality of third sub-gratings and the plurality of fourth sub-gratings respectively diffract and project another part of the light out of the waveguide base 100 from two different directions, so that the exit grating 300 can transmit the first side and the second side.
  • the light beams are projected out of the waveguide substrate 100 from two different directions, thereby improving the uniformity of light output from the output grating 300 .
  • the exit grating 300 itself has a two-dimensional pupil dilation effect, thereby improving the visual effect of the virtual image displayed by the diffractive waveguide.
  • the exit grating 300 may include a tapered region 310 and a square region 320 , the first end of the tapered region 310 faces the incident grating 200 , and the second end of the tapered region 310 butts with the square region 320 .
  • the width of the expanding region 310 increases.
  • the light of the incident grating 200 will be gradually expanded after entering the exit grating 300. Therefore, the light beam of the exit grating 300 facing the incident grating 200 has not been expanded into a wider beam. Therefore, the exit grating has not been expanded into a wider beam. 300 does not need to be set too wide in the gradually expanding region 310 , and this structure is beneficial to reduce the space occupied by the waveguide base 100 .
  • the embodiment of the present invention discloses an electronic device.
  • the disclosed electronic device includes a micro projector 800 and a diffractive waveguide, and the diffractive waveguide involved is the diffractive waveguide described in the above embodiments.
  • the micro projector 800 is arranged opposite to the incident grating 200 .
  • the micro projector 800 projects the light forming the virtual image to the incident grating 200 of the diffractive waveguide, and the incident grating 200 then projects the light to the exit grating 300.
  • the light projected from the incident grating 200 includes the first A part of the light and the second part of the light, the first part of the light enters the exit grating 300 and exits the waveguide substrate 100 from the exit grating 300, the second part of the light passes through the exit grating 300 and is projected to the orthogonal grating array 400, and the orthogonal grating array 400
  • the second part of the light is reflected to the exit grating 300, the exit grating 300 projects the second part of the light out of the waveguide substrate 100, and finally, the first part of the light and the second part of the light are emitted from the exit grating 300 and then directed to the human eye, so that the user can see the virtual image.
  • the diffractive waveguide disclosed in the embodiment of the present application can improve the light output uniformity of the exit grating 300, the brightness of the virtual image can be made more uniform, which is beneficial to improve the projection quality of the virtual image of the electronic device, and finally helps to improve the user experience. .
  • the electronic devices may be smart glasses, smart bracelets, or smart helmets.
  • the application embodiments do not limit the specific types of electronic devices.
  • the electronic device further includes a mirror frame 700 , and the diffractive waveguide is disposed on the mirror frame 700 .
  • the micro projector 800 may be installed inside the frame 700 .
  • the micro projector 800 can also be installed on the temple 900 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种衍射波导,包括波导基体(100)、入射光栅(200)、出射光栅(300)和正交光栅阵列(400),入射光栅(200)、出射光栅(300)和正交光栅阵列(400)均设于波导基体(100),且出射光栅(300)位于入射光栅(200)与正交光栅阵列(400)之间,自入射光栅(200)投射出的光线包括第一部分光线和第二部分光线,第一部分光线射入出射光栅(300)并从出射光栅(300)射出波导基体(100),第二部分光线穿过出射光栅(300)且投射至正交光栅阵列(400),正交光栅阵列(400)将第二部分光线反射至出射光栅(300),以使第二部分光线从出射光栅(300)射出波导基体(100),从而缓解出射光栅(300)的出光不均的问题,提高虚拟图像的亮度均匀性。

Description

衍射波导及电子设备
交叉引用
本发明要求在2021年03月30日提交中国专利局、申请号为202110341484.6、发明名称为“衍射波导及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于电子设备技术领域,具体涉及一种衍射波导及电子设备。
背景技术
随着技术的发展及用户需求的提升,越来越多的电子设备涌入人们的生活之中,进而方便了人们的生活。其中,一些电子设备(例如增强现实(Augmented Reality,AR)眼镜)能够将虚拟图像与现实世界图像同时投射入用户的眼睛中,进而使得用户能够看到叠加在现实景物中的虚拟图像。
相关技术中,电子设备通常可以选择几何光波导、衍射光波导等多种波导实现图像的投射。其中,配置有衍射光波导的电子设备具有质量较轻、透明度较高等优点。但是,在具体的工作过程中,微投影机将虚拟图像投射到入射光栅处,入射光栅将虚拟图像耦合到出射光栅,最终由出射光栅投射至用户的眼睛中。但是,光束在出射光栅中传播的过程中不断将部分光耦合出,最终在远离入射光栅的方向上,穿过出射光栅的光束的强度不断降低,最终使得出射光栅的光强度逐渐降低,导致出射光栅的出光效率在邻近入射光栅的一侧较高,在远离入射光栅的另一侧较低,最终导致出光不均,使得所呈现的虚拟图像存在亮度不均的问题。
发明内容
本申请实施例的目的是提供一种衍射波导及电子设备,能够解决相关技术中由于出射光栅出光不均导致所呈现的虚拟图像存在亮度不均的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请公开一种衍射波导,包括波导基体、入射光栅、出射光栅和正交光栅阵列,其中:
所述入射光栅、所述出射光栅和所述正交光栅阵列均设于所述波导基体,且所述出射光栅位于所述入射光栅与所述正交光栅阵列之间,自所述入射光栅投射出的光线包括第一部分光线和第二部分光线,所述第一部分光线射入所述出射光栅并从所述出射光栅射出所述波导基体,所述第二部分光线经过所述出射光栅且投射至所述正交光栅阵列,所述正交光栅阵列将所述第二部分光线反射至所述出射光栅,以使所述第二部分光线从所述出射光栅射出所述波导基体。
第二方面,本申请公开一种电子设备,包括微投影机和衍射波导,所述衍射波导为第一方面所述的衍射波导,所述微投影机与所述入射光栅相对设置。
本申请采用的技术方案能够达到以下有益效果:
本申请实施例公开的衍射波导通过对相关技术进行改进,使得入射光栅射出的光线中的第一部分光线能够在投射到出射光栅时从出射光栅射出,同时使得入射光栅射出的第二部分光线能够在投射到出射光栅时穿过出射光栅,进而投射到正交光栅阵列。接着在正交光栅阵列的作用下,能够被反射至出射光栅,并最终从出射光栅射出。由于出射光栅位于入射光栅与正交光栅阵列之间,第二部分光线重新被射入出射光栅的背向入射光栅的一侧,进而能够起到补光的作用。此种结构相当于同一份光线能够从出射光栅相背的两侧射入,因此能够缓解出射光栅的出光不均的问题,最终能够提高虚拟图像的亮度均匀性。
附图说明
图1为本申请实施例公开的电子设备的结构示意图;
图2为本申请实施例公开的第一种衍射波导的结构示意图;
图3为光线经过第一正交子光栅的反射示意图;
图4为光线经过第二正交子光栅的反射示意图;
图5为光线经过正交光栅阵列的第一种反射示意图;
图6为光线经过正交光栅阵列的第二种反射示意图;
图7为光线经过正交光栅阵列的第三种反射示意图;
图8为光线经过正交光栅阵列的第四种反射示意图;
图9为第一种衍射波导的第一种光线反射示意图;
图10为第一种衍射波导的第二种光线反射示意图;
图11为本申请实施例公开的第二种衍射波导的结构示意图;
图12为本申请实施例公开的第三种衍射波导的结构示意图;
图13为本申请实施例公开的第四种衍射波导的结构示意图;
图14为本申请实施例公开的第五种衍射波导的结构示意图;
图15为本申请实施例公开的第六种衍射波导的结构示意图;
图16为本申请实施例公开的第七种衍射波导的结构示意图;
图17为本申请实施例公开的第八种衍射波导的结构示意图;
图18为本申请实施例公开的第九种衍射波导的结构示意图。
附图标记说明:
100-波导基体;
200-入射光栅;
300-出射光栅、310-渐扩区、320-方形区;
400-正交光栅阵列、410-第一正交子光栅、420-第二正交子光栅;
500-第一转折光栅;
600-第二转折光栅;
700-镜框;
800-微投影机;
900-镜腿。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的电子设备进行详细地说明。
请参考图1至图18,本申请实施例公开一种衍射波导,所公开的衍射波导包括波导基体100、入射光栅200、出射光栅300和正交光栅阵列400。
波导基体100为衍射波导的导光器件,能够对光线实施传导。当然,波导基体100也是衍射波导的基础器件,波导基体100为入射光栅200、出射光栅300、正交光栅阵列400等部件提供安装基础。在本申请实施例中,入射光栅200、出射光栅300和正交光栅阵列400均设于波导基体100。具体的,入射光栅200、出射光栅300和正交光栅阵列400可以设于波导基体100的 内部,进而能够得到波导基体100的防护。
入射光栅200为衍射波导的衍射耦合器件,入射光栅200用于将光线衍射耦合并投射至波导基体100。其中,光线可以以全反射的形式在波导基体100中传递。
出射光栅300为衍射波导的衍射耦出器件,出射光栅300用于接收波导基体100中的光线进行衍射耦出并投射出波导基体100之外形成虚拟图像。
正交光栅阵列400为调整光线方向的功能器件,正交光栅阵列400能够将射入的光线反射至出射光栅300。在本申请实施例中,入射光栅200位于出射光栅300的第一侧,正交光栅阵列400设于出射光栅300的第二侧,第一侧和第二侧为出射光栅300相背的两侧,也就是说,出射光栅300位于入射光栅200和正交光栅阵列400之间。
在衍射波导的工作过程中,光线投射至入射光栅200处,入射光栅200将光线投射至波导基体100,光线经过波导基体100的传导而到达出射光栅300,其中,自入射光栅200投射出的光线包括第一部分光线和第二部分光线,第一部分光线在射入出射光栅300时,能够从出射光栅300射出波导基体100。
同时,第二部分光线射入出射光栅300中,并经过出射光栅300后投射至正交光栅阵列400,正交光栅阵列400将第二部分光线反射至出射光栅300,从而使得出射光栅300可以将第二部分光线投射出波导基体100之外。第一部分光线和第二部分光线从出射光栅300射向人眼,最终用户能够看到虚拟图像。
通过上文所述可知,本申请实施例公开的衍射波导通过对相关技术进行改进,使得入射光栅200射出的光线中的第一部分光线能够在投射到出射光栅300时从出射光栅300射出,同时使得入射光栅200射出的第二部分光线能够在投射到出射光栅300时穿过出射光栅300,进而投射到正交光栅阵列400。接着在正交光栅阵列400的作用下,能够被反射至出射光栅300,并最终从出射光栅300射出。由于出射光栅300位于入射光栅200与正交光栅阵 列400之间,第二部分光线重新被射入出射光栅300的背向入射光栅200的一侧,进而能够起到补光的作用。此种结构相当于同一份光线能够从出射光栅300相背的两侧射入,因此能够缓解出射光栅300的出光不均的问题,最终能够提高虚拟图像的亮度均匀性。
如图2所示,正交光栅阵列400可以包括多个子光栅。具体地,相邻的两个子光栅可以分别为第一正交子光栅(如图3所示)410和第二正交子光栅(如图4所示)420,第一正交子光栅410与第二正交子光栅420相互垂直,光线经过第一正交子光栅410和第二正交子光栅420会被反射,第一正交子光栅410和第二正交子光栅420均发挥对光线的反射作用。通过图5至图8可知,光线从不同的角度射入后依次经过第一正交子光栅410和第二正交子光栅420的反射,光线会反射回正交光栅阵列400的光线射入侧,也就是说,在本申请实施例中,第二部分光线能够从出射光栅300射入正交光栅阵列400,并能够被正交光栅阵列400再向出射光栅300所在的一侧反射回。
由于第一正交子光栅410与第二正交子光栅420相垂直(即正交),因此第二部分光线射入到第一正交子光栅410和第二正交子光栅420后,会产生不同的转折方向,即向不同的方向被反射。如图3所示,射入第一正交子光栅410的光线(包含于第二部分光线)能够在一个方向上进行扩束;如图4所示,射入第二正交子光栅420的光线(包含于第二部分光线)能够在另一个方向上进行扩束。
在本申请实施例中,第一正交子光栅410的周期为第一周期,第二正交子光栅420的周期为第二周期,入射光栅200的周期为第三周期,它们之间的关系为以下的公式(1)所示:
Figure PCTCN2022082825-appb-000001
其中,Λ1为第一周期,Λ2为第二周期,Λ0为第三周期。
在本申请中,各光栅(入射光栅200、出射光栅300、第一正交子光栅 410和第二正交子光栅420以及后文所述的第一转折光栅500和第二转折光栅600)均由多个光栅条组成,相邻的两个光栅条之间均有间距,这个间距可以称之为光栅条间距。上文所述的周期指的是相邻的两个光栅条之间的间距与其中的一个光栅条的宽度之和。由此可知,第一周期为第一正交子光栅410的其中一个光栅条的宽度和与其邻近的另一个光栅条之间的间距之和。第二周期为第二正交子光栅420的其中一个光栅条的宽度与与其邻近的另一个光栅条之间的间距之和。第三周期为入射光栅200的其中一个光栅条的宽度与与其邻近的另一个光栅条之间的间距之和,当然,各光栅的光栅条宽度可以相同,也可以不相同,同样地,各光栅的光栅条之间的间距可以相同,也可以不相同。
发明人经过检测,意外发现,第一周期、第二周期和第三周期满足上文公式(1)的情况下,能够较好地保证光线在入射光栅200射出并最终通过出射光栅300射出后传递到人眼中。
由公式(1)可知,第一正交子光栅410的第一周期和第二正交子光栅420的第二周期相等,第一正交子光栅410和第二正交子光栅420对光线进行扩束效果相同。
如图5至图8所述,将第一正交子光栅410和第二正交子光栅420组合搭配可以将光线再反射回到出射光栅300,具体地,光线经过出射光栅300到达第一正交子光栅410与第二正交子光栅420处,光线经过第一正交子光栅410与第二正交子光栅420反射和扩束,扩束的光线反射回出射光栅300处,再投射出波导基体100。
在本申请实施例中,多个子光栅可以呈一列分布(如图9至图17所示),此种分布方式有利于减小正交光栅阵列400的占用空间。如图18所示,多个子光栅也可以呈多列分布,同一列中相邻的两个子光栅相垂直,相邻的两列中的相邻的两个子光栅平行。此种分布方式,能够使得第二部分光线穿过其中一列的子光栅被反射后,能够被下一列的子光栅向着出射光栅300所在的 一侧反射,从而避免这部分光线无法利用,最终能够提高光线的利用率。
如图17所示,一种可选的方案中,多个子光栅成列分布,正交光栅阵列400在多个子光栅的排列方向的尺寸为第一尺寸,出射光栅300在前述排列方向的尺寸为第二尺寸,第一尺寸大于第二尺寸,在此种情况下,正交光栅阵列400能够形成更长的排列结构,从而能够在更大的范围内拦截从出射光栅300射出的第二部分光线,最终对拦截到的光线进行反射。很显然,此种结构有利于提升光线的利用率,当然,更多的第二部分光线被反射到出射光栅300,有利于进一步增强补光,进而能更好地缓解不均匀现象。
如图15所示,在又一种可选的方案中,多个子光栅可以呈一列分布,多个子光栅的长度可以不全相等,需要说明的是,子光栅的长度方向可以与多个子光栅的排列方向相垂直。在此种情况下,投射至长度较小的子光栅上的光线在被反射后,那些未被反射的光线能够被长度较大的子光栅继续反射,这有利于提高光线的利用率。
请再次参考图15,在进一步的技术方案中,多个子光栅邻近出射光栅300的一端可以共线设置,此种结构,有利于使得第二部分光线在经过出射光栅300射出后,能够投射到正交光栅阵列400,使得多个子光栅反射至出射光栅300处的光线均匀度会更高。同时能够减少光线在向出射光栅300折回时受到的干扰。
在另一种可选的方式中,如图16所示,多个子光栅邻近出射光栅300的一端可以不全共线,此种排列方式对成列的多个子光栅的安装要求较低,从而方便工作人员装配,进而有利于提高衍射波导的装配效率。
如图11所示,本申请实施例公开的衍射波导还可以包括第一转折光栅500,第一转折光栅500具有二维扩瞳的作用。具体地,第一转折光栅500和入射光栅200均可以设于出射光栅300的同一侧,入射光栅200可以与第一转折光栅500的第一端相对设置,第一端的宽度尺寸与入射光栅200的投射光线面的宽度尺寸一致,第一转折光栅500具有第二端,在第一端至第二 端的方向上,第一转折光栅500的宽度递增。第一转折光栅500可以对光线进行扩束,并反射至出射光栅300处,在靠近第一端处未反射的光线会沿第一端至第二端的方向,再次进入第一转折光栅500进行反射和扩束,从而提高入射光栅200投射光线的利用率,而且,通过调整第一转折光栅500宽度变化,从而提高出射光栅300的出光均匀性,当然,也有利于出射光栅300以满足预设要求的宽度最终被投射出衍射波导。
在进一步的技术方案中,如图12所示,第一转折光栅500可以为两个,具体地,入射光栅200可以位于两个第一转折光栅500之间,两个第一转折光栅500的第一端均与入射光栅200相对设置。
在具体的工作过程中,入射光栅200从第一方向和第二方向均投射光线分别至两个第一转折光栅500处,其中,第一方向和第二方向相反,光线可以包括第一光线和第二光线,第一光线从第一方向经过两个第一转折光栅500中的一者进行扩束后,反射至出射光栅300处,第一光线的部分被出射光栅300投射出波导基体100,其余的经过出射光栅300至正交光栅阵列400处反射,最终被反射至出射光栅300投射出波导基体100。同时,第二光线从第二方向经过两个第一转折光栅500中的另一者进行扩束和反射至出射光栅300处,第二光线的一部分被出射光栅300投射出波导基体100,第二光线的另一部分经过出射光栅300至正交光栅阵列400处反射,进而反射至出射光栅300处,再投射出波导基体100。
通过上段所述的工作过程可知,此种情况下,两个第一转折光栅500能够将入射光栅200两侧的光线均接收,并反射至出射光栅300。由于能够拾取更多的入射光栅200射出的光线,因此能够提高光线的利用率。与此同时,两个第一转折光栅500之间的区域为第一区域,入射光栅200位于第一区域内,出射光栅300上与第一区域相对的区域为第二区域,正交光栅阵列400能够通过对光线的反射将光线反射回第二区域,从而能够避免第二区域存在暗带,进而能够进一步提高光线的均匀性。
如图13所示,本申请实施例公开的衍射波导还可以包括第二转折光栅600。第二转折光栅600可以设于入射光栅200与出射光栅300之间,第二转折光栅600具有二维扩瞳的作用,本文中,扩瞳实质是对光线的扩束。其中,第二转折光栅600可以为透射型光栅。入射光栅200投射的光线经过第二转折光栅600被扩束,由于第二转折光栅600的透射性能,使得入射光栅200投射的光线在扩束的同时,能够功能部分光线穿过后直接射向出射光栅300,因此能够减少光线被反射造成的浪费,这无疑能够提高光线的利用率。
如图14所示,出射光栅300可以包括成排设置的多个第三子光栅和成排设置的多个第四子光栅。具体地,多个第三子光栅与多个第四子光栅交叉、且垂直,入射光栅200将光线投射至出射光栅300处,多个第三子光栅和多个第四子光栅会将光线进行扩束,同时分别将光线的一部分从两个不同的方向投射出波导基体100,光线的另一部分经过出射光栅300至正交光栅阵列400处,正交光栅阵列400将光线的另一部分反射至出射光栅300处,多个第三子光栅和多个第四子光栅分别将光线的另一部分从两个不同的方向衍射投射出波导基体100,从而使得出射光栅300可以将第一侧和第二侧的光线从两个不同的方向投射出波导基体100,进而提高出射光栅300的出光均匀性。与此同时,出射光栅300自身具有二维扩瞳效果,进而提高衍射波导显示虚拟图像的视觉效果。
在进一步的技术方案中,出射光栅300可以包括渐扩区310和方形区320,渐扩区310的第一端朝向入射光栅200,渐扩区310的第二端与方形区320对接。在渐扩区310的第一端向渐扩区310的第二端延伸的方向上,渐扩区310的宽度递增。在具体的工作过程中,入射光栅200的光线射入出射光栅300后会逐渐被扩束,因此在出射光栅300朝向入射光栅200的一侧还未被扩束成较宽的光束,因此出射光栅300在渐扩区310无需设置太宽的尺寸,此种结构有利于减小对波导基体100的空间的占用。
基于本发明实施例公开的衍射波导,本发明实施例公开一种电子设备, 所公开的电子设备包括微投影机800和衍射波导,所涉及的衍射波导为上文实施例所述的衍射波导。微投影机800与入射光栅200相对设置。
在具体的工作过程中,微投影机800将形成虚拟图像的光线投射至衍射波导的入射光栅200处,入射光栅200接着将光线投射至出射光栅300处,自入射光栅200投射出的光线包括第一部分光线和第二部分光线,第一部分光线射入出射光栅300并从出射光栅300射出波导基体100,第二部分光线经过出射光栅300且投射至正交光栅阵列400,正交光栅阵列400将第二部分光线反射至出射光栅300,出射光栅300将第二部分光线投射出波导基体100,最终,第一部分光线和第二部分光线从出射光栅300射出后射向人眼,使得用户能够看到虚拟图像。
由于本申请实施例公开的衍射波导,能够提高出射光栅300的出光均匀度,因此能够使得虚拟图像的亮度更加均匀,有利于提升电子设备的虚拟图像的投射质量,最终有利于提高用户的使用体验。
在本申请实施例中,配置上文实施例所述的衍射波导的电子设备的种类有多种,例如,电子设备可以是智能眼镜,也可以为智能手环,也可以为智能头盔等,本申请实施例不限制电子设备的具体种类。
请再次参考图1,一种可选的方案中,在电子设备为智能眼镜的情况下,电子设备还包括镜框700,衍射波导设置在镜框700上。微投影机800可以安装在镜框700的内侧。当然,微投影机800也可以安装在镜腿900上。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (11)

  1. 一种衍射波导,包括波导基体、入射光栅、出射光栅和正交光栅阵列,其中:
    所述入射光栅、所述出射光栅和所述正交光栅阵列均设于所述波导基体,且所述出射光栅位于所述入射光栅与所述正交光栅阵列之间,自所述入射光栅投射出的光线包括第一部分光线和第二部分光线,所述第一部分光线射入所述出射光栅并从所述出射光栅射出所述波导基体,所述第二部分光线经过所述出射光栅且投射至所述正交光栅阵列,所述正交光栅阵列将所述第二部分光线反射至所述出射光栅,以使所述第二部分光线从所述出射光栅射出所述波导基体。
  2. 根据权利要求1所述的衍射波导,其中,所述正交光栅阵列包括多个子光栅,相邻的两个所述子光栅分别为第一正交子光栅和第二正交子光栅,所述第一正交子光栅与所述第二正交子光栅相互垂直,所述第一正交子光栅的周期为第一周期,所述第二正交子光栅的周期为第二周期,所述入射光栅的周期为第三周期,其中:
    Figure PCTCN2022082825-appb-100001
    其中,Λ 1为第一周期,Λ 2为第二周期,Λ 0为第三周期。
  3. 根据权利要求2所述的衍射波导,其中,所述多个子光栅呈一列分布,或者,所述多个子光栅呈多列分布,同一列中相邻的两个所述子光栅相垂直,相邻的两列中的相邻的两个所述子光栅平行。
  4. 根据权利要求3所述的衍射波导,其中,所述多个子光栅呈一列分布,所述多个子光栅的长度不全相等,所述子光栅的长度方向与所述多个子光栅的排列方向相垂直。
  5. 根据权利要求4所述的衍射波导,其中,所述多个子光栅邻近所述出 射光栅的一端共线设置。
  6. 根据权利要求4所述的衍射波导,其中,所述多个子光栅邻近所述出射光栅的一端不全共线。
  7. 根据权利要求1所述的衍射波导,其中,所述衍射波导还包括第一转折光栅,所述第一转折光栅和所述入射光栅设于所述出射光栅的同一侧,所述入射光栅与所述第一转折光栅的第一端相对设置,所述第一转折光栅具有第二端,在所述第一端至所述第二端的方向上,所述第一转折光栅的宽度递增。
  8. 根据权利要求7所述的衍射波导,其中,所述第一转折光栅为两个,所述入射光栅位于两个所述第一转折光栅之间,两个所述第一转折光栅的第一端均与所述入射光栅相对设置。
  9. 根据权利要求1所述的衍射波导,其中,所述衍射波导还包括第二转折光栅,所述第二转折光栅设于所述入射光栅与所述出射光栅之间,所述第二转折光栅为透射型光栅。
  10. 根据权利要求1所述的衍射波导,其中,所述出射光栅包括成排设置的多个第三子光栅和成排设置的多个第四子光栅,所述多个第三子光栅与所述多个第四子光栅交叉、且垂直。
  11. 一种电子设备,包括微投影机和衍射波导,所述衍射波导为权利要求1至10中任一项所述的衍射波导,所述微投影机与所述入射光栅相对设置。
PCT/CN2022/082825 2021-03-30 2022-03-24 衍射波导及电子设备 WO2022206561A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110341484.6A CN112987180B (zh) 2021-03-30 2021-03-30 衍射波导及电子设备
CN202110341484.6 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022206561A1 true WO2022206561A1 (zh) 2022-10-06

Family

ID=76338407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082825 WO2022206561A1 (zh) 2021-03-30 2022-03-24 衍射波导及电子设备

Country Status (2)

Country Link
CN (1) CN112987180B (zh)
WO (1) WO2022206561A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987180B (zh) * 2021-03-30 2022-08-23 维沃移动通信有限公司 衍射波导及电子设备
CN113433622A (zh) * 2021-06-24 2021-09-24 北京枭龙科技有限公司 一种高光效光栅波导元件
CN115097565B (zh) * 2022-08-24 2022-11-25 杭州光粒科技有限公司 一种光波导器件及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180324402A1 (en) * 2017-05-08 2018-11-08 Microsoft Technology Licensing, Llc Resonating optical waveguide using multiple diffractive optical elements
US10534176B1 (en) * 2017-10-09 2020-01-14 Facebook Technologies, Llc Waveguide display with gratings for improved diffraction efficiency
CN111123524A (zh) * 2020-01-17 2020-05-08 北京枭龙科技有限公司 能扩瞳且出光均匀的衍射波导
CN111123523A (zh) * 2020-01-17 2020-05-08 北京枭龙科技有限公司 无显示暗带的衍射波导
CN111630437A (zh) * 2018-02-06 2020-09-04 迪斯帕列斯有限公司 具有光栅镜的衍射显示元件
CN112987180A (zh) * 2021-03-30 2021-06-18 维沃移动通信有限公司 衍射波导及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2529003B (en) * 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
US10241346B2 (en) * 2016-05-07 2019-03-26 Microsoft Technology Licensing, Llc Degrees of freedom for diffraction elements in wave expander
CN111240015B (zh) * 2020-01-17 2020-12-18 北京理工大学 双侧对射出光均匀的衍射波导
CN112180589B (zh) * 2020-09-18 2021-08-27 深圳市光舟半导体技术有限公司 光学扩瞳装置及其显示设备和输出光及显示图像的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180324402A1 (en) * 2017-05-08 2018-11-08 Microsoft Technology Licensing, Llc Resonating optical waveguide using multiple diffractive optical elements
US10534176B1 (en) * 2017-10-09 2020-01-14 Facebook Technologies, Llc Waveguide display with gratings for improved diffraction efficiency
CN111630437A (zh) * 2018-02-06 2020-09-04 迪斯帕列斯有限公司 具有光栅镜的衍射显示元件
CN111123524A (zh) * 2020-01-17 2020-05-08 北京枭龙科技有限公司 能扩瞳且出光均匀的衍射波导
CN111123523A (zh) * 2020-01-17 2020-05-08 北京枭龙科技有限公司 无显示暗带的衍射波导
CN112987180A (zh) * 2021-03-30 2021-06-18 维沃移动通信有限公司 衍射波导及电子设备

Also Published As

Publication number Publication date
CN112987180B (zh) 2022-08-23
CN112987180A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2022206561A1 (zh) 衍射波导及电子设备
US20230221564A1 (en) Outcoupling grating for augmented reality system
TWI769210B (zh) 用於近眼顯示器之光學系統
JP7233718B2 (ja) ディスプレイ要素、パーソナルディスプレイ装置、パーソナルディスプレイ上に画像を生成する方法、及び使用
JP2022028761A (ja) 光ガイド光学アセンブリ
US11994680B2 (en) Methods and systems for high efficiency eyepiece in augmented reality devices
FI20175509A1 (en) Diffraction element with double periodic grids
JP2021512357A (ja) 格子ミラーを有する回折ディスプレイ要素
WO2023134670A1 (zh) 用于衍射显示的光学波导装置及显示设备
CN215219321U (zh) 近眼显示设备
RU2719568C1 (ru) Устройство дополненной реальности и способ его функционирования
WO2021169407A1 (zh) 一种光波导镜片及增强现实显示装置
US20230101961A1 (en) Apparatus for displaying augmented reality image, and system comprising apparatus
CN212515221U (zh) 呈现增强现实图像的装置和实现增强现实显示的系统
CN218240461U (zh) 一种波导片及近眼显示设备
CN212540774U (zh) 一种光波导器件和ar显示设备
KR102227050B1 (ko) Ftir 기반 회절 광학 구조체 및 그를 갖는 웨이브 가이드 장치와 증강현실 디스플레이
CN115373062A (zh) 衍射光波导装置及其方法
CN115079334A (zh) 衍射光波导装置及其方法
JP2020112614A (ja) 射出瞳拡張素子、導波部材
CN114839713B (zh) 一种基于头盔显示的二维扩瞳全息波导结构
WO2022006730A1 (zh) 光波导器件、显示系统和增强现实显示设备
CN116299815B (zh) 抑制高级光的二维菱形光栅、光波导及近眼显示设备
WO2024087733A1 (zh) 一种导光器件及可穿戴设备
CN115494578A (zh) 一种光波导器件和ar设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE