WO2022206522A1 - 一种非周期定位参考信号prs的触发方法和装置 - Google Patents

一种非周期定位参考信号prs的触发方法和装置 Download PDF

Info

Publication number
WO2022206522A1
WO2022206522A1 PCT/CN2022/082577 CN2022082577W WO2022206522A1 WO 2022206522 A1 WO2022206522 A1 WO 2022206522A1 CN 2022082577 W CN2022082577 W CN 2022082577W WO 2022206522 A1 WO2022206522 A1 WO 2022206522A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperiodic
prs
information
trigger states
configuration information
Prior art date
Application number
PCT/CN2022/082577
Other languages
English (en)
French (fr)
Inventor
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206522A1 publication Critical patent/WO2022206522A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and apparatus for triggering an aperiodic positioning reference signal PRS.
  • DL-TDOA downlink-time of arrival
  • DL-AOD downlink-angle of departure
  • UL-TDOA uplink-time of arrival
  • -TDOA uplink angle of arrival
  • UL-AOA uplink angle of arrival
  • multi-RTT multi-round trip time
  • DL-TDOA positioning reference signals
  • DL-AoA positioning reference signals
  • PRS positioning reference signals
  • periodic PRS means that after the terminal device receives the PRS configuration information, the terminal device will think that the network device will send the PRS at the time indicated by the configuration information in the period indicated by the configuration information, and the terminal device can respond at the moment of response. Periodic reception and measurement.
  • Embodiments of the present application provide a method and device for triggering an aperiodic positioning reference signal PRS, which are used to trigger the measurement of the aperiodic PRS and reduce the positioning delay.
  • a method for triggering an aperiodic positioning reference signal PRS may be executed by a terminal device, or a chip with similar functions of the terminal device.
  • the terminal device may receive configuration information and one or more trigger states of one or more aperiodic PRSs from the positioning server. Wherein, each of the configuration information of the one or more aperiodic PRSs may be associated with one or more trigger states.
  • Terminal devices can receive control information from network devices.
  • the control information here may include first indication information, where the first indication information may be used to indicate one or more trigger states.
  • the terminal device may receive one or more aperiodic PRSs based on the configuration information of one or more aperiodic PRSs associated with the trigger state indicated by the first indication information.
  • the positioning server can exchange information with the network device to obtain the configuration information of the PRS, the positioning server can indicate the configuration information of the aperiodic PRS that can be measured to the terminal device, and the network device can trigger the terminal through the control information.
  • the device performs aperiodic PRS measurement, which can reduce the complexity of the system.
  • the positioning delay can be reduced.
  • the terminal device may receive the first configuration information from the network device.
  • the first configuration information may include one or more of the following: the number of bits occupied by the first indication information, the starting bit position of the first indication information, or the aperiodic PRS corresponding to one or more trigger states. Receive time configuration information.
  • the network device can indicate the relevant information of the first indication information to the terminal device through the first configuration information, so that the terminal device can parse and obtain the first indication information from the control information and trigger the measurement of aperiodic PRS.
  • the configuration information of the receiving time may be the time difference between the receiving time of the aperiodic PRS corresponding to one or more trigger states and the receiving time of the control information.
  • the terminal device can determine the receiving time of the aperiodic PRS based on the receiving time of the control information and the above-mentioned time difference, so that the aperiodic PRS can be measured.
  • the terminal device may receive measurement gap configuration information corresponding to one or more trigger states from the network device.
  • the measurement gap configuration information here can be used by the terminal device to receive aperiodic PRS.
  • the network side can configure an aperiodic PRS measurement interval for the terminal device, and the terminal device can measure the aperiodic PRS at the measurement interval.
  • the terminal device may determine the reception time of the one or more aperiodic PRSs based on the reception time of the aperiodic PRS corresponding to one of the one or more trigger states. Alternatively, the terminal device may determine the reception time of one or more aperiodic PRSs based on the measurement gap configuration information. Alternatively, the terminal device may determine the reception time of the one or more aperiodic PRSs based on the reception time of the aperiodic PRS and the measurement gap configuration information corresponding to one of the one or more trigger states.
  • the terminal device can determine the receiving time of the aperiodic PRS based on the configuration information of the receiving time of the aperiodic PRS and/or the measurement interval configuration information, so that the aperiodic PRS can be measured at the receiving time.
  • the first configuration information may further include at least one of the following: measurement quantities of one or more aperiodic PRSs, the number of reported measurement quantities, and the number of reported measurement quantities of one or more aperiodic PRSs.
  • Configuration information of the channel used for the measurement result may be used to indicate the measurement quantity of aperiodic PRS of a transmission access point, and the channel configuration information may include channel type or resource configuration information.
  • the terminal device may measure the aperiodic PRS according to the foregoing information in the first configuration information, and may report the measurement result of the aperiodic PRS based on the foregoing information.
  • the terminal device may perform aperiodic PRS measurement based on the received one or more aperiodic PRSs.
  • the terminal device may send the measurement results of one or more aperiodic PRSs to the positioning server.
  • the terminal device can report the measurement result of the aperiodic PRS to the positioning server, and the positioning server can process and obtain the location information of the terminal device according to the measurement result.
  • the terminal device may perform aperiodic PRS measurement based on the received one or more aperiodic PRSs.
  • the terminal device may send the measurement results of one or more aperiodic PRSs to the network device.
  • the terminal device can report the measurement result of the aperiodic PRS to the network device, and the network device reports the measurement result to the positioning server, so that the measurement report of the aperiodic PRS is more flexible, and the load of the network can be fully considered.
  • a method for triggering an aperiodic positioning reference signal PRS may be performed by a network device, or a chip with similar network device functions.
  • the network device may receive one or more trigger states from the location server. Wherein, each of the one or more trigger states may be associated with configuration information of one or more aperiodic PRSs.
  • the network device can send control information to the terminal device.
  • the control information here may include first indication information, where the first indication information may be used to indicate one or more trigger states.
  • the positioning server can indicate the trigger state to the network device, and the network device triggers the terminal device to perform aperiodic PRS measurement through the trigger state, which can reduce the complexity of the system and also reduce the positioning delay.
  • the network device may send a first acknowledgment response to the positioning server.
  • the first acknowledgment response may be used to inform the location server that one or more trigger states were received.
  • the network device may notify the positioning server that the trigger status has been received through the first acknowledgment response.
  • the network device may send the first configuration information to the terminal device.
  • the first configuration information may include one or more of the following: the number of bits occupied by the first indication information, the starting bit position of the first indication information, or the aperiodic PRS corresponding to one or more trigger states. Receive time configuration information.
  • the network device can indicate the relevant information of the first indication information to the terminal device through the first configuration information, so that the terminal device can parse and obtain the first indication information from the control information and trigger the measurement of aperiodic PRS.
  • the configuration information of the receiving time may be the time difference between the receiving time of the aperiodic PRS corresponding to one or more trigger states and the receiving time of the control information.
  • the terminal device can determine the receiving time of the aperiodic PRS based on the receiving time of the control information and the above-mentioned time difference, so that the aperiodic PRS can be measured.
  • the network device may receive aperiodic PRS reception times corresponding to one or more trigger states from the positioning server.
  • the network device can obtain the receiving time of the aperiodic PRS through the positioning server, so that it can send control information to the terminal device according to the receiving time, and trigger the terminal device to measure the aperiodic PRS.
  • the network device receives a message from the neighboring cell network device, and the message may be used to determine the sending time of the aperiodic PRS corresponding to one or more trigger states.
  • the sending time of the aperiodic PRS may be the receiving time of the terminal device receiving the aperiodic PRS.
  • the network device can determine the sending time of the aperiodic PRS through information interaction with the neighboring network devices, so that it can send control information to the terminal device according to the sending time, and trigger the terminal device to measure the aperiodic PRS.
  • the network device may receive the first information from the positioning server.
  • the first information may include one or more of the following: the number of aperiodic PRS trigger states of the terminal device, the indication information of the receiving time of the aperiodic PRS corresponding to one or more trigger states, or one or more Frequency information of the aperiodic PRS corresponding to the trigger state.
  • the number of trigger states of the aperiodic PRS of the terminal device may be used to determine the number of bits occupied by the first indication information, and the indication information of the reception time of the aperiodic PRS corresponding to one or more trigger states may be used to determine the transmission time.
  • the time of the first indication information and the frequency point information of the aperiodic PRS may be used to determine the time to send the first indication information.
  • the network device can determine the number of bits occupied by the first indication information and/or the sending time of the first indication information according to the above-mentioned first information from the positioning server, thereby triggering the terminal device to perform aperiodic PRS measurement.
  • the first information may further include one or more of the following: the requested measurement amount of aperiodic PRS, or the delay information of the requested measurement amount of aperiodic PRS.
  • the delay information may be used to indicate the measurement result of the aperiodic PRS within the first time period after the requesting network device sends the first indication information.
  • the network device can determine the measurement result of the aperiodic PRS desired by the location server according to the above information from the location server.
  • the network device may send a second acknowledgment response to the positioning server based on the trigger status information.
  • the second acknowledgment response may be used to inform the positioning server that the first information is received.
  • the network device may notify the positioning server that the first information has been received through the second acknowledgment response.
  • the first indication information may further include one or more of the following: measurement gap configuration information corresponding to one or more trigger states, requested measurement amount of aperiodic PRS, reported non-periodic PRS The number of measurement quantities of periodic PRS, or the configuration information of the channel used for reporting the measurement result of aperiodic PRS.
  • the measurement gap configuration information can be used for the terminal equipment to receive aperiodic PRS, a measurement quantity can be used to indicate the measurement quantity of aperiodic PRS of a transmission access point, and the channel configuration information can include channel type or resource configuration information.
  • the terminal device may measure the aperiodic PRS according to the foregoing information in the first configuration information, and may report the measurement result of the aperiodic PRS based on the foregoing information.
  • a method for triggering an aperiodic positioning reference signal PRS is provided.
  • the method can be executed by a positioning server, or a chip with similar functions of a positioning server.
  • the positioning server may send the configuration information of one or more aperiodic PRSs and one or more first trigger states to the terminal device.
  • each of the configuration information of the one or more aperiodic PRSs may be associated with one or more first trigger states.
  • the location server may send one or more second trigger states to the network device.
  • the one or more second trigger states may be part or all of the one or more first trigger states.
  • Each of the above one or more second trigger states may be used by the network device to trigger the terminal device to perform aperiodic PRS measurement.
  • the location server can exchange information with the network device to obtain the configuration information of the PRS, the location server can indicate the configuration information of the aperiodic PRS that can be measured to the terminal device, and the location server can indicate the trigger to the network device.
  • Which trigger states can reduce the complexity of the system.
  • the positioning delay can be reduced.
  • the positioning server may receive the first acknowledgment response from the network device.
  • the first acknowledgment response may be used to inform the positioning server that one or more second trigger states are received. Based on the above solution, the positioning server can determine whether the network device has received the trigger status through the first acknowledgment response.
  • the positioning server may send the first information to the network device.
  • the first information may include one or more of the following: the number of aperiodic PRS trigger states of the terminal device, the indication information of the receiving time of the aperiodic PRS corresponding to one or more second trigger states, or one or more Frequency point information of aperiodic PRSs corresponding to multiple second trigger states.
  • the number of trigger states of the aperiodic PRS of the terminal device may be used to determine the number of bits occupied by the first indication information.
  • the first indication information here may be used to indicate one or more second trigger states to the terminal device.
  • the indication information of the reception time of the aperiodic PRS corresponding to the one or more second trigger states can be used to determine the time to send the first indication information, and the frequency point information of the aperiodic PRS corresponding to the one or more second trigger states can be used. for determining the time to send the first indication information.
  • the positioning server can use the above first information to enable the network device to determine the number of bits occupied by the first indication information and/or the sending time of the first indication information, thereby triggering the terminal device to perform aperiodic PRS measurement.
  • the first information may further include one or more of the following: the requested measurement amount of aperiodic PRS, or the delay information of the requested measurement amount of aperiodic PRS.
  • the delay information may be used to indicate the measurement result of the aperiodic PRS within the first time period after the requesting network device sends the first indication information.
  • the positioning server may indicate the desired aperiodic PRS measurement result to the network device through the above-mentioned first information.
  • the positioning server may receive a second acknowledgment response from the network device.
  • the second acknowledgment response may be used to inform the positioning server that the first information is received.
  • the positioning server may determine whether the network device has received the above-mentioned first information through the second acknowledgment response.
  • the positioning server may receive measurement results of one or more aperiodic PRSs associated with the one or more second trigger states.
  • the measurement results of the one or more aperiodic PRSs may be from a network device or from a terminal device.
  • the location server can process and obtain the location information of the terminal device according to the measurement result of the aperiodic PRS.
  • a communication apparatus may include various modules/units for executing the first aspect or any possible implementation manner of the first aspect, or may further include a communication device for executing the second aspect or the second aspect.
  • Each module/unit in any possible implementation manner of the aspect may also include various modules/units for executing the third aspect or any possible implementation manner of the third aspect.
  • the processing unit and the transceiver unit may include various modules/units for executing the first aspect or any possible implementation manner of the first aspect, or may further include a communication device for executing the second aspect or the second aspect.
  • Each module/unit in any possible implementation manner of the aspect may also include various modules/units for executing the third aspect or any possible implementation manner of the third aspect.
  • the processing unit and the transceiver unit may include various modules/units for executing the third aspect or any possible implementation manner of the third aspect.
  • the transceiver unit is configured to receive one or more aperiodic PRSs from the positioning server. configuration information and one or more trigger states; each of the configuration information of the one or more aperiodic PRSs is associated with one or more trigger states; the transceiver unit is also used for control information from the network device ;
  • the control information includes first indication information, and the first indication information is used to indicate one or more trigger states; Configuration information of one or more aperiodic PRSs, receiving one or more aperiodic PRSs; the processing unit, configured to measure the one or more aperiodic PRSs.
  • the transceiver unit is further configured to: receive first configuration information from the network device; wherein the first configuration information includes one or more of the following: the first indication information The number of occupied bits, the starting bit position of the first indication information, or the configuration information of the receiving time of the aperiodic PRS corresponding to the one or more trigger states.
  • the configuration information of the receiving time is a time difference between the receiving time of the aperiodic PRS corresponding to the one or more trigger states and the receiving time of the control information.
  • the transceiver unit is further configured to: receive measurement gap configuration information corresponding to the one or more trigger states from the network device; the measurement gap configuration information is used by the apparatus to receive aperiodic PRS.
  • the processing unit is further configured to: determine the reception time of the one or more aperiodic PRSs based on the reception time of the aperiodic PRS corresponding to one of the one or more trigger states; or , determining the reception time of the one or more aperiodic PRSs based on the reception time of the aperiodic PRS corresponding to one of the one or more trigger states; or, based on one of the one or more trigger states
  • the reception time of the one or more aperiodic PRSs is determined according to the reception time of the corresponding aperiodic PRS and the measurement gap configuration information.
  • the first configuration information further includes at least one of the following: measurement quantities of the one or more aperiodic PRSs, and the number of reported measurement quantities; wherein one measurement quantity is used to indicate a The measurement amount of the aperiodic PRS of the transmission access point, or the configuration information of the channel used for reporting the measurement results of the one or more aperiodic PRSs; the configuration information of the channel includes channel type or resource configuration information.
  • the transceiver unit is further configured to: send the measurement results of the one or more aperiodic PRSs to a positioning server.
  • the transceiver unit is further configured to: send the measurement results of the one or more aperiodic PRSs to the network device.
  • the apparatus includes, when each module/unit is used to execute the second aspect or any possible implementation manner of the second aspect, the transceiver unit, configured to receive one or more trigger states from the positioning server; Each of the one or more trigger states is associated with configuration information of one or more aperiodic PRSs; the processing unit is configured to generate control information based on the one or more trigger states; the control information includes the first indication information, where the first indication information is used to indicate the one or more trigger states; the transceiver unit is further used for sending the control information to the terminal device.
  • the transceiver unit is further configured to: send first configuration information to the terminal device; wherein, the first configuration information includes one or more of the following: The number of occupied bits, the starting bit position of the first indication information, or the configuration information of the receiving time of the aperiodic PRS corresponding to the one or more trigger states.
  • the configuration information of the receiving time is a time difference between the receiving time of the aperiodic PRS corresponding to the one or more trigger states and the receiving time of the control information.
  • the transceiver unit is further configured to: receive the aperiodic PRS reception time corresponding to the one or more trigger states from the positioning server.
  • the transceiver unit is further configured to: receive a message from a neighboring cell network device, where the message can be used to determine the sending time of the aperiodic PRS corresponding to the one or more trigger states.
  • the transceiver unit is further configured to: receive first information from the positioning server; the first information includes one or more of the following: a trigger state of an aperiodic PRS of the terminal device The number, the indication information of the receiving time of the aperiodic PRS corresponding to the one or more trigger states, or the frequency point information of the aperiodic PRS corresponding to the one or more trigger states; wherein the non-periodic PRS of the terminal device
  • the number of trigger states of the periodic PRS is used to determine the number of bits occupied by the first indication information
  • the indication information of the receiving time of the aperiodic PRS corresponding to the one or more trigger states is used to determine to send the first indication information.
  • the time of the indication information and the frequency point information of the aperiodic PRS are used to determine the time to send the first indication information.
  • the first information further includes one or more of the following: the requested measurement of the aperiodic PRS, or the delay information of the requested measurement of the aperiodic PRS; A measurement result of the aperiodic PRS within a first time period after instructing the device to send the first indication information.
  • the first indication information further includes one or more of the following: measurement gap configuration information corresponding to the one or more trigger states; the measurement gap configuration information is used for the terminal device Receive aperiodic PRS, the requested measurement amount of the aperiodic PRS, and the number of reported aperiodic PRS measurement amounts; wherein one measurement amount is used to indicate the measurement amount of aperiodic PRS of a transmission access point, or Configuration information of the channel used for reporting the measurement result of the aperiodic PRS; the configuration information of the channel includes channel type or resource configuration information.
  • the transceiver unit is configured to send one or more aperiodic PRS data to the terminal device.
  • configuration information and one or more first trigger states each of the configuration information of the one or more aperiodic PRSs is associated with one or more first trigger states;
  • the processing unit is configured to, based on the one or more first trigger states or more first trigger states generate one or more second trigger states; the one or more second trigger states are part or all of the one or more first trigger states; the transceiver unit, further for sending the one or more second trigger states to the network device; each of the one or more second trigger states is used for the network device to trigger the terminal device to perform aperiodic PRS measurement.
  • the transceiver unit is further configured to: send first information to the network device; the first information includes one or more of the following: a trigger state of the aperiodic PRS of the terminal device number, the indication information of the receiving time of the aperiodic PRS corresponding to the one or more second trigger states, or the frequency point information of the aperiodic PRS corresponding to the one or more second trigger states; wherein, the terminal The number of trigger states of the aperiodic PRS of the device is used to determine the number of bits occupied by the first indication information; the first indication information is used to indicate the one or more second trigger states to the terminal device; the The indication information of the receiving time of the aperiodic PRS corresponding to the one or more second trigger states is used to determine the time to send the first indication information and the frequency of the aperiodic PRS corresponding to the one or more second trigger states.
  • the point information is used to determine the time to send the first indication information.
  • the first information further includes one or more of the following: the requested measurement of the aperiodic PRS, or the delay information of the requested measurement of the aperiodic PRS; The measurement result of the aperiodic PRS within a first time period after instructing the network device to send the first indication information.
  • the transceiver unit is further configured to: receive measurement results of one or more aperiodic PRSs associated with the one or more second trigger states from the terminal device.
  • a communication device in a fifth aspect, includes a processor and a transceiver.
  • the transceiver performs the transceiving steps of the method in the first aspect or any possible implementation manner of the first aspect, or performs the transceiving steps of the method in the second aspect or any possible implementation manner of the second aspect, or performs the third aspect or the first aspect.
  • the sending and receiving steps of the method in any possible implementation manner of the three aspects.
  • the processor uses the hardware resources in the controller to execute processing steps other than the sending and receiving steps of the method in the first aspect or any possible implementation manner of the first aspect, or execute the second aspect or any one of the second aspect. processing steps other than the transceiving step of the method in one possible implementation manner, or performing processing steps other than the transceiving step of the method in the third aspect or any possible implementation manner of the third aspect.
  • the communication device further includes a memory.
  • the memory can be located inside the device, or it can be located outside the device and connected to the device.
  • the memory may be integrated with the processor.
  • a chip in a sixth aspect, includes a logic circuit and a communication interface.
  • a communication interface for inputting configuration information and one or more trigger states of one or more aperiodic PRSs; each of the configuration information of the one or more aperiodic PRSs is associated with one or more trigger states. state association; and, further used for inputting control information; the control information includes first indication information, and the first indication information is used to indicate one or more trigger states.
  • the logic circuit is configured to measure one or more aperiodic PRSs based on the configuration information of one or more aperiodic PRSs associated with the trigger state indicated by the first indication information.
  • a communication interface for inputting one or more trigger states; each of the one or more trigger states is associated with configuration information of one or more aperiodic PRSs.
  • the logic circuit is configured to generate control information based on the one or more trigger states; the control information includes first indication information, and the first indication information is used to indicate the one or more trigger states.
  • the communication interface is also used for outputting the control information.
  • a communication interface for output.
  • the communication interface is further configured to output the one or more second trigger states; each of the one or more second trigger states is used for the network device to trigger the terminal device to perform aperiodic PRS measurement.
  • the present application provides a computer-readable storage medium, in which instructions are stored, which, when executed on a computer, cause the computer to execute the methods of the above aspects.
  • the present application provides a computer program product storing instructions, which, when executed on a computer, causes the computer to perform the methods of the above aspects.
  • the present application provides a communication system, including at least one of the above-mentioned network devices and at least one of the above-mentioned positioning servers.
  • 1A is a schematic flowchart of a triggering process of aperiodic CSI
  • 1B is a schematic diagram of a triggering process of aperiodic SRS
  • FIG. 2 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is one of the exemplary flowcharts of a method for triggering an aperiodic PRS provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of receiving periodic PRS and aperiodic PRS provided by an embodiment of the present application
  • 5A is a schematic diagram of the sending time of the control information provided by the embodiment of the present application.
  • 5B is a schematic diagram of delay information provided by an embodiment of the present application.
  • FIG. 6A is one of the schematic diagrams of the receiving time of the aperiodic PRS provided by the embodiment of the present application.
  • FIG. 6B is one of the schematic diagrams of the receiving time of the aperiodic PRS provided by the embodiment of the present application.
  • FIG. 6C is one of the schematic diagrams of the receiving time of the aperiodic PRS provided by the embodiment of the present application.
  • FIG. 7 is one of the exemplary flowcharts of a method for triggering an aperiodic PRS according to an embodiment of the present application
  • FIG. 8 is one of the exemplary flowcharts of a method for triggering an aperiodic PRS provided by an embodiment of the present application
  • FIG. 9 is one of schematic diagrams of a communication device provided by an embodiment of the present application.
  • FIG. 10 is one of schematic diagrams of a communication apparatus provided by an embodiment of the present application.
  • the location management function can mainly complete the following operations:
  • the serving network device and the neighboring cell network device may send the PRS, and the terminal device measures and reports the PRS.
  • the LMF can process and obtain the location information of the terminal device based on the measurement report of the terminal device.
  • Aperiodic PRS is proposed due to the corresponding demand for reducing the time delay of the positioning technology based on PRS measurement.
  • aperiodic channel state information channel state information, CSI
  • the network device may send downlink control information (DCI) to the terminal device.
  • DCI is the information carried on the physical layer downlink control channel (physical downlink control cgannel, PDCCH).
  • the DCI may contain a CSI request (request) field.
  • the CSI request may indicate several aperiodic CSI trigger states (Trigger states), and each trigger state is associated with one or more CSI report configurations (CSI Report Config).
  • the trigger state 0 (000000 shown in FIG. 1B ) is not associated with the CSI reporting configuration, and the trigger state 0 is used to indicate that there is no trigger.
  • Each CSI reporting configuration is associated with one or more CSI resource configurations (CSI Resource Setting), each CSI resource configuration includes an activated CSI-RS/CSI-IM resource set, and each CSI-RS/CSI-IM resource set includes One or more CSI-RS/CSI-IM resources.
  • the CSI resource configuration here can be periodic, semi-persistent and aperiodic.
  • the CSI resource configuration when one CSI reporting configuration is associated with one CSI resource configuration, includes CSI-RS resources or CSI-RS resource sets, and the CSI-RS resources or CSI-RS resource sets are used for channel measurement.
  • the first CSI resource configuration includes CSI-RS resources or CSI-RS resource sets, and the CSI-RS resources or CSI-RS resource sets are used for channel measurement.
  • the second CSI resource configuration includes CSI-IM resources or CSI-IM resource sets, and the CSI-IM resources or CSI-IM resource sets are used for interference measurement.
  • the interference used by CSI-IM for measurement is sum interference, and the number of interference streams is not distinguished.
  • the first CSI resource configuration includes CSI-RS resources or CSI-RS resource sets, and the CSI-RS resources or CSI-RS resource sets are used for channel measurement.
  • the second CSI resource configuration includes CSI-IM resources or CSI-IM resource sets, which are used for interference measurement.
  • the third CSI resource configuration includes CSI-RS resources or CSI-RS resource sets, and the CSI-RS resources or CSI-RS resource sets are used for interference measurement.
  • the interference used by CSI-IM for measurement is sum interference, and the number of interfering streams is not distinguished, while the interference used by the third CSI-RS for measurement is stream interference, and the number of interfering streams can be measured.
  • the terminal device When the terminal device receives DCI format 0_1 and 0_2, and the DCI format contains the CSI Request field (1-6 bits), the terminal device reads the CSI Request field and interprets the CSI Request field as a trigger state, for example, the CSI Request field is 000001 When , the terminal device queries the CSI reporting configuration corresponding to the trigger state of 000001, and considers that one or more CSI reporting configurations corresponding to the trigger state are triggered.
  • the CSI-RS resource or the CSI-RS resource set corresponding to the aperiodic CSI resource configuration is triggered synchronously, and the difference between the trigger receiving slot and the slot where the DCI is located may be Radio Resource Control (RRC) signaling is pre-configured.
  • RRC Radio Resource Control
  • FIG. 1B it is a triggering process of an aperiodic uplink reference signal (sounding reference signal, SRS).
  • the terminal device receives the RRC Reconfiguration message sent by the base station in advance, and configures several aperiodic SRS resource sets.
  • the SRS resource set is aperiodic
  • the resource set is associated with one or more non-zero trigger states (Trigger state)
  • Trigger state each corresponding trigger state is also associated with one or more aperiodic SRS resource sets.
  • the trigger state 0 (00 shown in FIG. 1B ) is used to indicate no trigger.
  • the terminal device When the terminal device receives DCI format 0_1, 0_2, 1_1 and 1_2, and the DCI format is configured with the SRS Request (SRS Request) field (1-2 bits), the terminal device reads the SRS Request field and interprets the SRS Request field as Trigger state, for example, when the field is 01, the terminal device queries the SRS resource set corresponding to the trigger state of 01, and considers that one or more aperiodic SRS resource sets corresponding to the trigger state are triggered to send, and the trigger sending time slot and the time slot where the DCI is located The difference can be preconfigured for RRC.
  • SRS Request SRS Request
  • the former is the long term evolution positioning protocol (LPP) protocol from the terminal device to the core network
  • the latter is the RRC protocol from the terminal device to the network device. protocol. Therefore, the current RRC protocol cannot realize the configuration and activation of aperiodic PRS.
  • LPP long term evolution positioning protocol
  • the interval from the DCI time slot to the PRS receiving time slot is not suitable to be configured by the LPP protocol stack, but should be controlled by the network device, so that the network device can select an appropriate time slot to send DCI.
  • the core network positioning server should undertake the overall coordination and provide the role of PRS configuration, while the service network equipment fully participates in the configuration and triggering of the configuration reference signal, which contradicts the existing positioning architecture.
  • which transmission reception point (TRP) participates in positioning is selected by the positioning server, and which frequency points on the TRP participate in positioning is also selected by the positioning server. If these decision-making information is implemented by network equipment, and Configuring the configuration to the terminal device through the CSI framework will cause a mismatch with the selection of the positioning server, thereby affecting the positioning service.
  • the embodiment of the present application provides an aperiodic PRS triggering method.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example: long term evolution (LTE) system, worldwide interoperability for microwave access (WiMAX) communication system, future fifth generation (5th Generation, 5G) systems, such as new generation radio access technology (NR), and future communication systems, such as 6G systems.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • NR new generation radio access technology
  • 6G systems such as 6G systems.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 2 shows a schematic diagram of a communication system applicable to the communication method of the embodiment of the present application.
  • the communication system 200 includes a terminal device 201 and a network device 202 , an access and mobility management function network element AMF203 and a location management function network element LMF204 .
  • the terminal equipment also known as user equipment (UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc., is a device that provides voice and/or data to users. Connectivity devices.
  • the terminal device may include a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device may be: a mobile phone (mobile phone), a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device, a virtual reality (VR) device, an augmented Augmented reality (AR) equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid Wireless terminal equipment in (smart grid), wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device described in FIG. 2 is shown as UE, which is only an example and does not limit the terminal device.
  • a network device also referred to as an access network device (access network, AN) provides wireless access services to the terminal device.
  • the access network device is a device in the communication system that accesses the terminal device to a wireless network.
  • the access network device is a node in a radio access network, which may also be referred to as a base station, or may also be referred to as a radio access network (radio access network, RAN) node (or device).
  • RAN radio access network
  • access network equipment are: gNB, transmission reception point (TRP), transmission point (TP), evolved Node B (evolved Node B, eNB), radio network controller ( radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • TRP transmission reception point
  • TP transmission point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • base band unit base band unit, BBU
  • wireless fidelity wireless fidelity, Wifi
  • the access and mobility management function network element AMF can be used to manage the access control and mobility of the terminal equipment. In practical applications, it includes a network framework in long term evolution (LTE).
  • LTE long term evolution
  • MME China Mobility Management Entity
  • the selection of management function network elements the management of mobility state transition, etc.
  • the access and mobility management function network element may be an AMF (access and mobility management function) network element, such as shown in Figure 2, in future communications, such as in 6G, the access and mobility management function
  • the functional network element may still be an AMF network element, or have other names, which are not limited in this application.
  • the AMF may provide Namf services.
  • the location server may be used to determine the location of the UE, obtain downlink location measurements or location estimates from the UE, and the like.
  • the location server may include a location management function network element LMF.
  • LMF location management function network element
  • the location management function network element LMF
  • Figure 2 the location management function network element
  • the location management function network element may still be an LMF network element, or have other names, which are not limited in this application.
  • an exemplary flowchart of an aperiodic PRS triggering method may include the following steps.
  • Step 301 The positioning server sends the configuration information of one or more aperiodic PRSs and one or more first trigger states to the terminal device.
  • each of the configuration information of the one or more aperiodic PRSs is associated with one or more first trigger states.
  • a first trigger state may also be associated with configuration information of one or more aperiodic PRSs.
  • the configuration information of the one or more aperiodic PRSs and the one or more first trigger states may be carried in the auxiliary information, and sent by the positioning server to the terminal device in the form of unicast, broadcast or multicast.
  • the configuration information of the aperiodic PRS will be introduced.
  • the configuration information of the aperiodic PRS may include the frequency domain resources of the aperiodic PRS, such as the identification of the network device sending the aperiodic PRS, the initial resource block (resource block, RB), the number of RBs, the number of comb teeth, and the offset of the comb teeth, It may also include time domain resources, such as the start symbol and the number of symbols in a time slot, and may also include code domain resources, such as sequence scrambling, shutdown configuration, and the like.
  • the difference between the configuration information of the aperiodic PRS and the configuration information of the periodic PRS is that the aperiodic PRS does not need to configure the period of the PRS and the time slot offset within the period.
  • the configuration information of the aperiodic PRS may include the following forms 1 to 5, which will be introduced separately below.
  • Form 1 Define an independent aperiodic PRS resource set nr-DL-PRS-AP-ResourceSetList-r17, based on the defined new IE structure NR-DL-PRS-AP-ResourceSet-r17, added to the existing resource set list of TRP Inside.
  • the trigger state is configured in the aperiodic PRS resource set.
  • the following describes the signaling of the configuration information of the aperiodic PRS, which may include the following information elements:
  • NR-DL-PRS-Info-r16:: SEQUENCE ⁇ //PRS configuration information
  • nr-DL-PRS-AP-ResourceSetList-r17 SEQUENCE(SIZE(1..nrMaxAP-SetPerTrp-r17)F NR-DL-PRS-AP-ResourceSet-r17//Aperiodic PRS resource set list
  • NR-DL-PRS-AP-ResourceSet-r17:: SEQUENCE ⁇ aperiodic PRS resource set
  • nr-DL-PRS-AP-ResourceSetList-r17SEQUENCE(SIZE(1..nrMaxAP-SetPerTrp-r17)OF NR-DL-PRS-AP-ResourceSet-r17 can be defined as an aperiodic PRS resource set list. Among them, The configuration of one or more aperiodic PRS resource sets may be included.
  • NR-DL-PRS-AP-ResourceSet-r17:: SEQUENCE, which can be defined as an aperiodic PRS resource set. It contains the configuration of one or more aperiodic PRS resource sets.
  • the configuration of an aperiodic PRS resource set includes the configuration of some parameters. Configuration of parameters such as PRS resource set identifier, PRS repetition coefficient, PRS repetition interval, number of symbols occupied by PRS, PRS muting configuration option 1, PRS muting configuration option 2, PRS resource power, and aperiodic PRS resource list.
  • the above INTEGER may indicate that the data type of the parameter is an integer.
  • a trigger state can be associated with one or more aperiodic PRS resource sets.
  • Form 2 Multiplexing periodic PRS resource set nr-DL-PRS-ResourceSetList-r16, extending IE structure NR-DL-PRS-ResourceSet-r16 to introduce trigger state.
  • the trigger state is configured in the aperiodic PRS resource set.
  • the following describes the signaling of the configuration information of the aperiodic PRS, which may include the following information elements:
  • NR-DL-PRS-Info-r16:: SEQUENCE ⁇ //PRS configuration information
  • nr-DL-PRS-ResourceSetList-r16 SEQUENCE(SIZE(1..nrMaxSetsPerTrp-r16))OF NR-DL-PRS-ResourceSet-r16,//PRS resource set list
  • NR-DL-PRS-ResourceSet-r16:: SEQUENCE ⁇ //PRS resource set
  • nr-DL-PRS-ResourceSetID-r16 NR-DL-PRS-ResourceSetID-r16,//PRS resource set identifier
  • dl-PRS-ResourceList-r16 SEQUENCE(SIZE(1..nrMaxResourcesPerSet-r16))OF NR-DL-PRS-Resource-r16,//PRS resource list
  • the terminal device can automatically ignore the content of dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16, and regard the PRS resource set as an aperiodic resource set .
  • the PRS resource set can be received periodically according to the period corresponding to dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16, or the terminal equipment can be instructed to perform aperiodic reception through control information. Referring to FIG.
  • the terminal device has received the configuration information of the PRS in time slot 0, and the configuration information of the PRS indicates periodic reception and aperiodic reception of the PRS resource set.
  • the terminal device may receive the PRS resource according to the period indicated by the configuration information of the PRS.
  • the terminal device receives the indication information from the network device in a certain time slot, and the terminal device can receive the aperiodic PRS according to the indication information.
  • the PRS resources received in the above-mentioned periodic reception and aperiodic reception of the PRS are both determined according to the configuration information of the PRS received in the time slot 0 .
  • Form 3 Define an independent aperiodic PRS frequency point nr-DL-AP-PRS-AssistanceDataList-r17, and introduce a trigger state based on the extended IE structure NR-DL-PRS-AssistanceDataPerFreq-r16. At this time, the trigger state is configured in the PRS frequency point. All PRS resource sets of all TRPs on this frequency point are regarded as aperiodic PRS.
  • ap-PRS-TriggeringState-r17 the terminal device automatically ignores the content of dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16, and regards the PRS resource set as an aperiodic resource set.
  • NR-DL-PRS-AssistanceData-r16:: SEQUENCE ⁇ //PRS assistance information
  • nr-DL-PRS-AssistanceDataList-r16 SEQUENCE(SIZE(1..nrMaxFreqLayers-r16))OF NR-DL-PRS-AssistanceDataPerFreq-r16,//PRS auxiliary information frequency point list
  • nr-SSB-Config-r16 SEQUENCE(SIZE(1..nrMaxTRPs-r16))OF NR-SSB-Config-r16OPTIONAL,--Need ON//SSB configuration information list
  • nr-DL-AP-PRS-AssistanceDataList-r17 SEQUENCE(SIZE(1..nrMaxFreqLayers-r16))OF NR-DL-PRS-AssistanceDataPerFreq-r16,//Aperiodic PRS auxiliary information frequency point list
  • NR-DL-PRS-AssistanceDataPerFreq-r16:: SEQUENCE ⁇ //PRS frequency information
  • nr-DL-PRS-AssistanceDataPerFreq-r16 SEQUENCE(SIZE(1..nrMaxTRPsPerFreq-r16))OF NR-DL-PRS-AssistanceDataPerTRP-r16,//TRP list
  • ap-PRS-TriggerState-r17 INTEGER(1..nrMaxTriggerStates-1-r17),//Aperiodic PRS trigger state
  • the parameter "nr-DL-AP-PRS-AssistanceDataList-r17 SEQUENCE(SIZE(1..nrMaxFreqLayers-r16)) OF NR-DL-PRS-AssistanceDataPerFreq-r16" can be defined as a non-periodic PRS assistance information frequency point list.
  • the list may include the configuration of one or more frequency points of aperiodic PRS.
  • the configuration of the frequency points of an aperiodic PRS includes the configuration of some parameters. Configuration of parameters such as PRS frequency point information and TRP list.
  • Form 4 The configuration information of the periodic PRS frequency points is reused, and the IE structure NR-DL-PRS-AssistanceDataPerFreq-r16 is expanded to introduce a trigger state. At this time, the trigger state is configured in the PRS frequency point. All PRS resource sets of all TRPs on this frequency point are regarded as aperiodic PRS.
  • NR-DL-PRS-AssistanceData-r16:: SEQUENCE ⁇ //PRS assistance information
  • nr-DL-PRS-AssistanceDataList-r16 SEQUENCE(SIZE(1..nrMaxFreqLayers-r16))OF NR-DL-PRS-AssistanceDataPerFreq-r16,//PRS auxiliary information frequency point list
  • nr-SSB-Config-r16 SEQUENCE(SIZE(1..nrMaxTRPs-r16))OF NR-SSB-Config-r16OPTIONAL,--Need ON//SSB configuration information list
  • NR-DL-PRS-AssistanceDataPerFreq-r16:: SEQUENCE ⁇ //PRS frequency information
  • nr-DL-PRS-AssistanceDataPerFreq-r16 SEQUENCE(SIZE(1..nrMaxTRPsPerFreq-r16))OF NR-DL-PRS-AssistanceDataPerTRP-r16,//TRP list
  • the terminal device can automatically ignore the content of dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16, and regard the PRS resource set as an aperiodic resource set.
  • the terminal equipment can be instructed by the control information to perform Aperiodic reception, as shown in Figure 4.
  • Form 5 The above forms 1 to 4 use one PRS resource set as the granularity to configure the configuration information of the aperiodic PRS.
  • the location server may configure the configuration information of the aperiodic PRS with the PRS resource as the granularity.
  • an IE structure may be newly defined, the PRS resource may be configured as an aperiodic PRS resource in a certain PRS resource, and the trigger status and sequence number of the aperiodic PRS resource may be indicated. It is similar to the above-mentioned form 1-form 4 and will not be repeated here.
  • the positioning server can indicate the configuration information and trigger status of the aperiodic PRS to the terminal device, which can be used for the terminal device to receive and measure the aperiodic PRS.
  • the location server may also send a location information request message (request location information) to the terminal device to request the terminal device to report the measurement result based on the aperiodic PRS.
  • a location information request message request location information
  • the network device can trigger the terminal device to perform aperiodic PRS measurement through control information.
  • Step 302 The positioning server sends one or more second trigger states to the network device.
  • the one or more second trigger states here may be part or all of the above one or more first trigger states, and one or more second trigger states are triggered by the positioning server and are to be measured by the terminal device.
  • Aperiodic PRS For example, the positioning server sends trigger status 1, trigger status 2 and trigger status 3 to the terminal device.
  • the positioning server may determine that the terminal device is expected to perform measurement of the aperiodic PRS associated with trigger state 1, then the positioning server may send trigger state 1 to the network device, and the network device instructs the terminal device to measure.
  • the positioning server may send the above-mentioned one or more second trigger states to the network device through a positioning activation (positioning activation) message.
  • steps 301 and 302 do not limit the execution order, and step 301 can be executed first and then step 302, or step 302 can be executed first and then step 301, or steps 301 and 302 can be executed simultaneously.
  • the positioning server may send the first information to the network device.
  • the first information may be used by the network device to determine control information (down link control information, DCI) to be sent to the terminal device.
  • the DCI may include first indication information, and the first indication information may be used to indicate the above-mentioned one or more second trigger states.
  • the first information may include one or more of the following:
  • the number of trigger states of the aperiodic PRS of the terminal device may be less than or equal to the total number of trigger states determined by the positioning server for the terminal device. For example, if the number of one or more first trigger states sent by the positioning server to the terminal device is six, the number of trigger states of the terminal device in the first information sent by the positioning server to the network device may be less than or equal to six.
  • the number of trigger states of the terminal device can be used to determine the number of bits occupied by the first indication information, such as log2(K+1), where K is the number of trigger states, and +1 is reserved for a default no trigger status. For example, when the number of trigger states of the terminal device in the above-mentioned first information is 7, the network device may determine that the number of bits occupied by the first indication information is 3, which can sufficiently indicate a default non-triggered state and the above 7 trigger state.
  • the indication information of the receiving time of the aperiodic PRS corresponding to the one or more trigger states may be the indication information of the receiving time of the aperiodic PRS corresponding to the first trigger state, or the non-periodic PRS corresponding to the second trigger state. Indication information of the reception time of the periodic PRS.
  • the indication information of the receiving time of the aperiodic PRS corresponding to the one or more trigger states may be the potential receiving time of the aperiodic PRS, and may not be the specific receiving time of the aperiodic PRS.
  • the positioning server may send time slots that may be occupied by aperiodic PRS to the network device, or may send symbols that may be occupied by aperiodic PRS to the network device.
  • the indication information of the reception time of the one or more aperiodic PRSs may be used by the network device to determine the time set or time range for sending the above-mentioned control information.
  • the indication information of the receiving time of the aperiodic PRS corresponding to one or more trigger states indicates a time slot with an even index.
  • the receiving time of the aperiodic PRS may be time slot 2, time slot 6, etc., and the index is an even-numbered time slot.
  • the network device can determine that the DCI needs to be sent in the downlink time slot such as time slot 1, time slot 2, time slot 5, and time slot 6.
  • the network device needs to configure a reasonable trigger state corresponding to the reception of the aperiodic PRS.
  • the time difference between the time and the reception time of the control information is the time difference between the time and the reception time of the control information.
  • the network device configures the time difference between the receiving time of the aperiodic PRS corresponding to the trigger state and the receiving time of the control information to be one time slot, then the network device can send DCI in time slot 1 or time slot 5, triggering the terminal device correspondingly in the time slot 2 or time slot 6 to measure aperiodic PRS; or the time difference between the receiving time of the aperiodic PRS corresponding to the network device configuration trigger state and the receiving time of the control information is 0 time slots, then the network device can be in time slot 2 or time.
  • Slot 6 sends DCI, triggering the terminal device to measure aperiodic PRS in time slot 2 or time slot 6 accordingly; but the network device cannot configure the time difference between the receiving time of the aperiodic PRS corresponding to the trigger state and the receiving time of the control information is 2 Because at this time, if the terminal needs to receive PRS in time slot 6, the serving base station needs to send DCI in time slot 4, but time slot 4 is an uplink time slot and cannot be used for DCI transmission.
  • Frequency point information of aperiodic PRS corresponding to one or more trigger states 1.
  • the frequency information of the aperiodic PRS corresponding to one or more trigger states may be the frequency information of the aperiodic PRS corresponding to the first trigger state, or the frequency information of the aperiodic PRS corresponding to the second trigger state. point information.
  • the frequency point information of the aperiodic PRS corresponding to the one or more trigger states may be the potential frequency point of the aperiodic PRS, and may not be the specific frequency point of the aperiodic PRS.
  • the frequency point information indicated by the positioning server to the network device may indicate that the frequency point of the aperiodic PRS and the frequency point of the terminal device currently transmitting data are the same frequency or different frequencies.
  • the frequency point information may be used by the network device to determine the time set or time range for sending the above-mentioned control information.
  • the above frequency point information indicates that the frequency point of the aperiodic PRS and the frequency point of the terminal equipment's current data transmission are different frequencies, so the terminal equipment may need to perform radio frequency switching after receiving DCI. to receive and measure aperiodic PRS.
  • the switching time of the radio frequency switching also affects the receiving time of the terminal equipment for receiving the aperiodic PRS. Therefore, the network device can send DCI to the terminal device in advance to trigger the terminal device to measure aperiodic PRS, and can also give the terminal device some time to perform radio frequency switching, thereby improving the possibility of the terminal device accurately receiving aperiodic PRS.
  • the measurement quantity here may include RSRP, RSRQ or SINR, DTOA, etc., or may also be the quantized value of the above-mentioned RSRP, RSRQ or SINR.
  • the delay information here may be used to indicate the measurement result of the aperiodic PRS within the first time period after the positioning server requests the network device to send the first indication information.
  • the time delay information of the measurement amount of the aperiodic PRS requested in the first information sent by the positioning server to the network device is the duration t 1 .
  • the network device may send the DCI to the terminal device at time t 0 , and then the terminal device may report the measurement result of the aperiodic PRS measured in the time period t 0 -t 1 .
  • the network device may send an acknowledgement response (acknowledge character, ACK) to the positioning server to inform the positioning server that the above-mentioned first information has been received.
  • acknowledgement response acknowledge character, ACK
  • the positioning server can send the first information to the network device, and the network device can determine the control information sent to the terminal device through the first information to trigger the terminal device to perform aperiodic PRS measurement.
  • the positioning server may trigger an on-demand PRS (on-demand PRS) process.
  • the positioning server may request to activate a transmission reception point (transmission reception point, TRP) to send aperiodic PRS.
  • TRP transmission reception point
  • the TRP confirms that the on-demand PRS request is successful, and can provide the location server with the actual sending time for sending the aperiodic PRS.
  • the aperiodic PRS sending time here may be regarded as the receiving time for the terminal device to receive the aperiodic PRS.
  • the positioning server may send the sending time of the aperiodic PRS actually sent by the TRP to the network device, or the positioning server may determine the corresponding trigger state of one or more trigger states in the first information according to the sending time of the aperiodic PRS actually sent by the TRP. Indication information of the reception time of the aperiodic PRS.
  • Step 303 The network device sends control information to the terminal device.
  • the control information here may be downlink control information (down link control information, DCI).
  • the DCI may include first indication information, and the first indication information may be used to indicate the above-mentioned one or more second trigger states.
  • the DCI can be used to trigger the terminal equipment to perform aperiodic PRS measurement.
  • the corresponding relationship between the value of the above-mentioned first indication information and the trigger state may be indicated by the positioning server, or may be determined by the network device and indicated to the terminal device, or may be stipulated by the communication protocol. Make specific restrictions.
  • the network device may send first configuration information to the terminal device, where the first configuration information may be used to indicate the configuration information of the foregoing control information.
  • the network device may determine the first configuration information according to the foregoing first information from the positioning server.
  • the first configuration information may include one or more of the following:
  • the number of bits occupied by the first indication information can be used by the terminal device to determine the number of bits occupied by the first indication information in the control information, so that the terminal device can determine the value of the first indication information according to the number of bits, thereby The trigger state indicated by the first indication information is determined.
  • the starting bit position of the first indication information can be used by the terminal device to determine which bit in the control information to start parsing the first indication information.
  • the configuration information of the receiving time may be the time difference between the receiving time of the aperiodic PRS corresponding to the one or more second trigger states and the receiving time of the control information including the trigger state indication information.
  • the configuration information may indicate a time difference between the receiving time of the aperiodic PRS corresponding to each second trigger state and the receiving time of the control information.
  • the configuration information of the receiving time of the aperiodic PRS corresponding to the one or more second trigger states may be determined by the positioning server through the on-demand PRS process and sent to the network device.
  • the configuration information of the receiving time may also be determined by the network device through information interaction with the neighbor network device.
  • the network device may send a request message to the neighbor network device, where the request message is used to request the sending time of the aperiodic PRS of the neighbor network device, or the request message may be used to request the configuration of the aperiodic PRS of the neighbor network device information.
  • the neighboring cell network device may send the sending time of the aperiodic PRS or the configuration information of the aperiodic PRS to the network device according to the request message.
  • the network device may determine the configuration information of the receiving time of the aperiodic PRS corresponding to the one or more second trigger states according to the sending time of the aperiodic PRS or the configuration information of the aperiodic PRS.
  • the measurement gap configuration information here is used by the terminal equipment to receive aperiodic PRS.
  • the terminal device may not perform data transmission, but only perform aperiodic PRS measurement.
  • the measurement gap configuration information may be triggered when the terminal device receives the first indication information.
  • the CORESET configuration information here can be used by the terminal device to blindly check the control information according to the CORESET.
  • the search space configuration for monitoring DCI can be a UE-specific search space, and the corresponding DCI format is downlink (down link, DL)/up link (up link) , UL) scheduling DCI.
  • the search space can also be a common-level search space, and the corresponding DCI format is group common (group common) DCI, and the group common DCI does not perform data scheduling.
  • the above search space can be used for blind detection of control information by terminal devices.
  • the measurement quantity here may be the measurement quantity requested by the positioning server, and reference may be made to the relevant description shown in 4 in the above-mentioned first information.
  • one measurement quantity is used to indicate the measurement quantity of aperiodic PRS of a transmission access point. It should be understood that the minimum value of the number of reported measurement quantities may be the same as the number of measurement base stations required for the positioning service.
  • the configuration information of the channel includes channel type or resource configuration information.
  • the channel type may include physical uplink control channel (physical uplink control channel, PUCCH), physical uplink shared channel (physical uplink shared channel, PUSCH) or media access and control (media access control, MAC) control elements (control elements, CE).
  • the resource configuration information may include time domain resources and frequency domain resources.
  • the terminal device can report the measurement result of the aperiodic PRS to the network device through the channel indicated by the channel type and the time-frequency resource configured by using the resource configuration information.
  • Step 304 The terminal device performs aperiodic PRS measurement.
  • the terminal device may measure one or more aperiodic PRSs based on the configuration information of one or more aperiodic PRSs associated with one or more second trigger states indicated by the first indication information in the above-mentioned DCI. For example, the terminal device can measure the reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), or signal-to-interference plus noise ratio (SINR) of the PRS. Alternatively, the terminal device may also measure the RTOA of the PRS, etc., which is not specifically limited in this application.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR signal-to-interference plus noise ratio
  • the terminal device may determine the reception time of the aperiodic PRS, and receive the aperiodic PRS at the reception time.
  • the terminal device may determine the receiving time of the aperiodic PRS according to the configuration information of the one or more aperiodic PRSs associated with the one or more second trigger states.
  • the terminal device may determine the receiving time of the aperiodic PRS according to the first configuration information. The following describes the case where the terminal device determines the receiving time of the aperiodic PRS according to the first configuration information, which may include the following cases 1-3.
  • the first configuration information includes one or more configuration information of the receiving time of the aperiodic PRS corresponding to the second trigger state.
  • the terminal device may determine the receiving time of the aperiodic PRS according to the configuration information of the receiving time of the aperiodic PRS corresponding to each second trigger state.
  • the configuration information may be the time difference between the reception time of the DCI and the reception time of the aperiodic PRS.
  • the terminal device has received the DCI in the time slot t 0 , and the time slot difference indicated by the configuration information of the receiving time of the aperiodic PRS indicated in the first configuration information is 3. Then, the terminal device can determine that the receiving time of the aperiodic PRS is t 1 , which is 3 time slots away from t 0 .
  • the first configuration information includes measurement interval configuration information of one or more aperiodic PRSs corresponding to aperiodic trigger states.
  • the terminal device may determine the aperiodic PRS reception time according to the measurement interval configuration information of the aperiodic PRS corresponding to each second trigger state.
  • the terminal device receives the DCI in the time slot t 0 , and one measurement interval configuration information indicated in the first configuration information is shown as a black rectangle in FIG. 6B . Therefore, the terminal device can determine that the first measurement interval after the time slot t0 is the reception time of the aperiodic PRS.
  • the first configuration information includes one or more configuration information of the receiving time of the aperiodic PRS corresponding to the second trigger state and configuration information of the measurement interval of the aperiodic PRS corresponding to the one or more aperiodic trigger states.
  • the terminal device may determine one or more aperiodic PRSs based on the configuration information of the reception time of the aperiodic PRS and the measurement gap configuration information corresponding to one of the one or more second trigger states.
  • the terminal device may determine the receiving time of the aperiodic PRS according to the configuration information of the receiving time and the priority of the configuration information of the measurement interval.
  • the priority may be indicated by a network device, or may also be specified by a communication protocol, which is not specifically limited in this application.
  • the terminal device may determine which of the receiving time indicated by the configuration information of the receiving time and the time indicated by the configuration information of the measurement interval is the closest to the receiving time of the DCI.
  • the terminal device may determine the time closest to the reception time of the DCI as the reception time of the aperiodic PRS. For example, referring to FIG. 6C , the terminal device has received DCI at time slot t 0 , and the configuration information of the above-mentioned receiving time indicates that the time difference between the receiving time of the aperiodic PRS and the receiving time of the DCI is 5 time slots, that is, the non-periodic PRS receiving time is 5 time slots.
  • the reception time of the periodic PRS is t 1 .
  • the terminal device can determine the receiving time of the aperiodic PRS according to the measurement interval configuration information. , that is, the time slot t 2 may be the reception time of the aperiodic PRS.
  • the terminal device may also determine the receiving time indicated by the configuration information of the receiving time and the time indicated by the configuration information of the measurement interval, which time is the farthest from the receiving time of the DCI.
  • the terminal device may determine the time farthest from the receiving time of the DCI as the receiving time of the aperiodic PRS, which is similar to the above method and will not be repeated here.
  • the terminal device may determine the receiving time of the aperiodic PRS according to the methods in the above cases 1 to 3, so as to receive the aperiodic PRS, and measure the aperiodic PRS.
  • Step 305 The terminal device sends the measurement result of the aperiodic PRS to the network device.
  • the terminal device may report the measurement result of the aperiodic PRS to the network device through uplink control information (up link control information, UCI).
  • uplink control information up link control information, UCI.
  • the PRS measurement report may be reported to the network device through the PUCCH.
  • the PRS measurement report may be multiplexed with a hybrid automatic repeat request (HARQ)-acknowledge character (ACK), or may only include the PRS measurement report.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgenowledge character
  • the multiplexing may refer to connecting the bit sequence of the PRS measurement report and the bit sequence of the HARQ-ACK together to form a bit stream.
  • the measurement report of the PRS can be reported through the PUSCH scheduled by the DCI.
  • the measurement report of the PRS can be multiplexed with a potential uplink shared channel (UL-SCH), channel state information (CSI), HARQ-ACK, or can only contain the PRS. Measurement report.
  • UL-SCH uplink shared channel
  • CSI channel state information
  • HARQ-ACK HARQ-ACK
  • the PRS measurement report can be reported through MAC CE or RRC message.
  • Step 306 The network device sends the measurement result of the aperiodic PRS to the positioning server.
  • the network device may report the measurement result of the aperiodic PRS to the positioning server through a measurement information response (measurement information response) message.
  • the measurement result of the aperiodic PRS may be reported to the positioning server by the terminal device.
  • the following step 307 may be performed.
  • Step 307 The terminal device sends the measurement result of the aperiodic PRS to the positioning server.
  • the terminal device may report the measurement result of the aperiodic PRS to the positioning server by providing a location information (provide location information) message.
  • the method of reporting to the positioning server by the terminal device can reduce the positioning delay.
  • the positioning server may indicate a timing duration to the terminal device, and the terminal device needs to feed back the aperiodic PRS to the positioning server within the timing duration.
  • Measured results of PRS Since the timing duration can be controlled by the positioning server, the positioning duration can be reduced.
  • this method may bring about the problem of positioning failure, for example, the terminal device may not be able to complete the measurement of the aperiodic PRS within the timing period.
  • the positioning server may not send the above-mentioned timing duration to the terminal device, and the network device selects a suitable time according to the load of the network and wants the positioning server to report the aperiodic PRS.
  • a method for reporting the measurement result of aperiodic PRS by the network device to the positioning server may not send the above-mentioned timing duration to the terminal device, and the network device selects a suitable time according to the load of the network and wants the positioning server to report the aperiodic PRS.
  • FIG. 7 it is an exemplary flowchart of an aperiodic PRS triggering method in an embodiment of the present application, which may include the following steps. It should be understood that in this embodiment of the present application, all the steps shown in FIG. 7 may be performed, or those skilled in the art may select and execute some steps from the steps shown in FIG. 7 to form a complete embodiment.
  • Step 701 The positioning server sends a provide assistance information (provide assistance data) message to the terminal device.
  • the message may carry one or more trigger states and configuration information of one or more aperiodic PRSs.
  • configuration information of the above one or more trigger states and one or more aperiodic PRSs reference may be made to the relevant descriptions in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • Step 702 The location server sends a location information request (request location information) message to the terminal device.
  • the location information request is used to request the terminal device to report the measurement result based on the aperiodic PRS. After receiving the location information request message, the terminal device does not need to perform actual measurement.
  • Step 703 The positioning server sends a measurement request (measurement request) message to the network device.
  • the measurement request message may carry the first information.
  • first information For the above-mentioned first information, reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • Step 704 The network device sends an RRC reconfiguration (reconfiguration) message to the terminal device.
  • the network device may perform the following step 705.
  • Step 705 The network device sends an ACK to the positioning server.
  • step 704 may be performed first and then step 705 , or step 705 may be performed first and then step 704 , or step 704 and step 705 may be performed simultaneously.
  • Step 706 The positioning server requests the neighbor network device to send the aperiodic PRS through the on-demand PRS process, and determines the sending time of the aperiodic PRS.
  • Step 707 The positioning server sends a positioning activation (positioning activation) message to the network device.
  • the positioning trigger message may include the sending time and one or more trigger states of the aperiodic PRS determined by the above-mentioned on-demand PRS process.
  • the sending time and one or more trigger states of the aperiodic PRS can be referred to as shown in FIG. 3 .
  • the relevant descriptions in the method embodiments shown in the above will not be repeated here.
  • the positioning trigger message may be used to instruct the network device to trigger the terminal device to perform aperiodic PRS measurement.
  • the network device may perform the following step 708.
  • Step 708 The network device sends an ACK to the positioning server.
  • the ACK is used to inform the positioning server that the positioning activation message has been received.
  • Step 709 The network device sends DCI to the terminal device.
  • the network device may perform step 708 first and then step 709, or may perform step 709 first and then perform step 708, or may perform step 708 and step 709 at the same time, which is not specifically limited in this application.
  • Step 710 The terminal device measures aperiodic PRS.
  • the terminal device may measure the aperiodic PRS based on the configuration information of the aperiodic PRS associated with one or more trigger states included in the DCI in step 709 .
  • Step 711 The terminal device sends a provide location information (provide location information) message to the location server.
  • the measurement result of the aperiodic PRS may be included in the location information providing message.
  • Step 712 The location server obtains the location information of the terminal device by processing.
  • the location server may process the location information of the terminal device based on the measurement result of the aperiodic PRS reported by the terminal device. For example, the location server can process and obtain the location information of the terminal device based on the DL-TDOA location technology. It should be noted that the location server may also use other location technologies to determine the location information of the terminal device, which is not specifically limited in this application.
  • an exemplary flowchart of an aperiodic PRS triggering method may include the following steps. It should be understood that in this embodiment of the present application, all the steps shown in FIG. 8 may be performed, or those skilled in the art may select and execute some steps from the steps shown in FIG. 8 to form a complete embodiment.
  • Step 801 The positioning server sends a provide assistance information (provide assistance data) message to the terminal device.
  • the message may carry one or more trigger states and configuration information of one or more aperiodic PRSs.
  • configuration information of the above one or more trigger states and one or more aperiodic PRSs reference may be made to the relevant descriptions in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • Step 802 The positioning server sends a measurement request (measurement request) message to the network device.
  • the measurement request message may carry the first information.
  • first information For the above-mentioned first information, reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • Step 803 The network device sends an RRC reconfiguration (reconfiguration) message to the terminal device.
  • Step 804 The positioning server requests the neighbor network device to send the aperiodic PRS through the on-demand PRS process, and determines the sending time of the aperiodic PRS.
  • Step 805 The positioning server sends a positioning activation (positioning activation) message to the network device.
  • the positioning activation message may carry one or more trigger states.
  • One or more trigger states here can be used to indicate aperiodic PRS that the terminal device needs to measure.
  • the above positioning activation message may also carry the sending time of the aperiodic PRS, and reference may be made to the relevant description in the method embodiment shown in FIG. 3 , which will not be repeated here.
  • the network device may perform the following step 806 .
  • Step 806 The network device sends an ACK to the positioning server.
  • the ACK here can be used to inform the positioning server that the positioning activation message has been received.
  • Step 807 The network device sends the DCI to the terminal device.
  • the DCI here can be used to trigger the terminal device to perform aperiodic PRS measurement, and reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • the network device may first perform step 806 and then perform step 807, or may perform step 807 first and then perform step 806, or may perform step 806 and step 807 at the same time.
  • Step 808 The terminal device measures aperiodic PRS.
  • the terminal device may measure the aperiodic PRS based on the configuration information of the aperiodic PRS associated with one or more trigger states included in the above-mentioned DCI.
  • Step 809 The terminal device sends the UCI to the network device.
  • the UCI may include the measurement result of the aperiodic PRS.
  • Step 810 The network device sends a measurement response (measurement response) message to the positioning server.
  • the measurement request response message may include the measurement result of the aperiodic PRS reported by the terminal device.
  • Step 811 is the same as step 712 described above.
  • an apparatus 900 is provided.
  • the apparatus 900 can perform each step performed by the network device side, the positioning server side, or the terminal device side in the above method, which is not described in detail here in order to avoid repetition.
  • the apparatus 900 includes: a transceiving unit 910 , a processing unit 920 , and optionally, a storage unit 930 ; Wherein, the processing unit 920 may be integrated with the storage unit 930 .
  • the transceiver unit 910 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 920 may also be referred to as a processor, a processing board, a processing module, a processing device, or the like.
  • the device for implementing the receiving function in the transceiver unit 910 may be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 910 may be regarded as a transmitting unit, that is, the transceiver unit 910 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the transceiver unit 910 is configured to perform the sending and receiving operations on the network device side, the positioning server side, and/or the terminal device side in the above method embodiments
  • the processing unit 920 is configured to perform the network device side, positioning, and/or positioning operations in the above method embodiments. Operations other than transceiving operations on the server side and/or the terminal device side.
  • the transceiver unit 910 is configured to perform the transceiver operations on the network device side, the positioning server side, and the terminal device side in steps 301 to 303 and steps 305 to 307 in FIG.
  • the transceiving unit 910 is further configured to perform other transceiving steps on the network device side, the positioning server side, and/or the terminal device side in this embodiment of the present application.
  • the processing unit 920 is configured to perform the processing operations on the terminal device side in step 304 in FIG. 3 , and/or the processing unit 920 is further configured to perform the processing operations on the network device side, the positioning server side, and/or the terminal device side in the embodiments of the present application. other processing steps.
  • the storage unit 930 for storing computer programs
  • the transceiver unit 910 is configured to receive the configuration information of one or more aperiodic PRSs and one or more first triggers from the positioning server. state.
  • the transceiver unit 910 is also used for control information from a network device; the control information includes first indication information.
  • the transceiver unit 910 is further configured to receive one or more aperiodic PRSs based on the configuration information of one or more aperiodic PRSs associated with the second trigger state indicated by the first indication information; the processing unit 920, for measuring the one or more aperiodic PRSs.
  • the configuration information, the first trigger state, the second trigger state and the first indication information of the aperiodic PRS reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • the transceiver unit 910 is further configured to: receive first configuration information from the network device.
  • first configuration information reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • the transceiver unit 910 is further configured to: receive measurement gap configuration information corresponding to the one or more second trigger states from the network device.
  • measurement gap configuration information For the measurement gap configuration information, reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • the processing unit 920 is further configured to: determine the reception of the one or more aperiodic PRSs based on the reception time of the one or more aperiodic PRSs corresponding to one of the one or more second trigger states time; or, based on the reception time of the aperiodic PRS corresponding to one of the one or more second trigger states, determine the reception time of the one or more aperiodic PRSs; or, based on the one or more aperiodic PRSs
  • the reception time of the aperiodic PRS corresponding to one of the second trigger states and the measurement gap configuration information determine the reception time of the one or more aperiodic PRSs.
  • the transceiver unit 910 is further configured to: send the measurement results of the one or more second aperiodic PRSs to a positioning server.
  • the transceiver unit 910 is further configured to: send the measurement results of the one or more second aperiodic PRSs to the network device.
  • the device may include a transceiver unit 910 and a processing unit 920 .
  • the transceiver unit 910 may be an input/output circuit and/or a communication interface; the processing unit 920 may be an integrated processor, microprocessor or integrated circuit.
  • the transceiver unit 910 can input data and output data, and the processing unit 920 can determine output data according to the input data.
  • the transceiving unit 910 may input configuration information of one or more aperiodic PRSs, one or more first trigger states, and control information.
  • the processing unit 920 may measure the one or more aperiodic PRSs based on the configuration information of the one or more aperiodic PRSs associated with the second trigger state indicated by the first indication information.
  • the transceiver unit 910 may output the measurement result of the aperiodic PRS.
  • the transceiver unit 910 is configured to receive one or more trigger states from a positioning server.
  • the processing unit 920 is configured to generate control information based on the one or more trigger states; the control information includes first indication information.
  • the transceiver unit 910 is further configured to send the control information to the terminal device.
  • control information, the first indication information, and one or more trigger states reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • the transceiver unit 910 is further configured to: send first configuration information to the terminal device; wherein, for the first configuration information, reference may be made to the relevant description in the method embodiment shown in FIG. 3 , It will not be repeated here.
  • the transceiver unit 910 is further configured to: receive the aperiodic PRS reception time corresponding to the one or more trigger states from the positioning server.
  • receive the aperiodic PRS reception time reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • the transceiver unit 910 is further configured to: receive a message from a neighboring cell network device, where the message can be used to determine the sending time of the aperiodic PRS corresponding to the one or more trigger states.
  • the sending time of the aperiodic PRS reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • the transceiver unit 910 is further configured to: receive first information from the positioning server; for the first information, reference may be made to the relevant description in the method embodiment shown in FIG. Repeat.
  • the device may include a transceiver unit 910 and a processing unit 920 .
  • the transceiver unit 910 may be an input/output circuit and/or a communication interface; the processing unit 920 may be an integrated processor, microprocessor or integrated circuit.
  • the transceiver unit 910 can input data and output data, and the processing unit 920 can determine output data according to the input data.
  • the transceiver unit 910 may input one or more trigger states.
  • the processing unit 920 may determine output data, such as control information, according to the input data.
  • the transceiver unit 910 can output control information.
  • the transceiver unit 910 is configured to send the configuration information of one or more aperiodic PRSs and one or more first triggers to the terminal device. state; the processing unit 920 is configured to generate one or more second trigger states based on the one or more first trigger states; the transceiver unit 910 is further configured to send the one or more second trigger states to the network device The second trigger state.
  • the configuration information, the first trigger state and the second trigger state of the aperiodic PRS reference may be made to the relevant description in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • the transceiver unit 910 is further configured to: send first information to the network device; for the first information, reference may be made to the relevant description in the method embodiment shown in FIG. 3 , which is not repeated here. Repeat.
  • the transceiver unit 910 is further configured to: receive measurement results of one or more aperiodic PRSs associated with the one or more second trigger states from the terminal device.
  • the device may include a transceiver unit 910 and a processing unit 920 .
  • the transceiver unit 910 may be an input/output circuit and/or a communication interface; the processing unit 920 may be an integrated processor, microprocessor or integrated circuit.
  • the transceiver unit 910 can input data and output data, and the processing unit 920 can determine output data according to the input data.
  • the transceiver unit 910 may output configuration information of one or more aperiodic PRSs and one or more first trigger states.
  • the processing unit 920 may determine one or more second trigger states according to the configuration information of one or more aperiodic PRSs and one or more first trigger states.
  • the transceiver unit 910 may output data, such as one or more second trigger states.
  • an apparatus 1000 provided by an embodiment of the present application is used to implement the functions of the terminal device side, the network device side, and/or the positioning server side in the foregoing method.
  • the device When the device is used to implement the terminal device side function in the above method, the device may be a terminal device, or a chip with functions similar to the terminal device, or a device that can be matched and used with the terminal device.
  • the device When the device is used to implement the function of the network device in the above method, the device may be a network device, or a chip with similar functions of the network device, or a device that can be matched and used with the network device.
  • the device When the device is used to implement the function of the positioning server in the above method, the device may be a positioning server, or a chip with similar functions of the positioning server, or a device that can be matched and used with the positioning server.
  • the above-mentioned positioning server may be LMF.
  • the apparatus 1000 includes at least one processor 1020, configured to implement the functions on the terminal device side, the network device side, and/or the positioning server side in the methods provided in the embodiments of the present application.
  • the apparatus 1000 may also include a communication interface 1010 .
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 1010 is used by the apparatus in the apparatus 1000 to communicate with other devices.
  • the processor 1020 may perform the function of the processing unit 920 shown in FIG. 9
  • the communication interface 1010 may perform the function of the transceiver unit 910 shown in FIG. 9 .
  • the apparatus 1000 may also include at least one memory 1030 for storing program instructions and/or data.
  • Memory 1030 is coupled to processor 1020 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1020 may cooperate with memory 1030.
  • Processor 1020 may execute program instructions stored in memory 1030 . At least one of the at least one memory may be included in the processor.
  • the specific connection medium between the communication interface 1010 , the processor 1020 , and the memory 1030 is not limited in this embodiment of the present application.
  • the memory 1030, the processor 1020, and the communication interface 1010 are connected through a bus 1040 in FIG. 10.
  • the bus is represented by a thick line in FIG. 10, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • a computer-readable storage medium on which an instruction is stored, and when the instruction is executed, executes the terminal device side, the network device side and/or the positioning server side in the above method embodiment. method.
  • a computer program product containing instructions that, when executed by an electronic device (eg, a computer, a processor, or a device on which a processor is installed, etc.), cause the electronic device to The methods on the terminal device side, the network device side, and/or the positioning server side in the foregoing method embodiments are executed.
  • an electronic device eg, a computer, a processor, or a device on which a processor is installed, etc.
  • a communication system may include the above-mentioned at least one network device and the above-mentioned at least one positioning server.
  • processors mentioned in the embodiments of the present invention may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application-specific integrated circuits ( Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present invention may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种非周期定位参考信号PRS的触发方法和装置,用来触发非周期PRS的测量,减小定位的时延。该方法中,终端设备可以接收来自定位服务器的一个或多个非周期PRS的配置信息和一个或多个触发状态。其中,一个或多个非周期PRS的配置信息中的每一个可以与一个或多个触发状态关联。终端设备可以接收来自网络设备的控制信息。这里的控制信息可以包含第一指示信息,该第一指示信息可以用于指示一个或多个触发状态。终端设备可以基于第一指示信息所指示的触发状态所关联的一个或多个非周期PRS的配置信息,接收一个或多个非周期PRS。

Description

一种非周期定位参考信号PRS的触发方法和装置
相关申请的交叉引用
本申请要求在2021年03月31日提交中国专利局、申请号为202110348282.4、申请名称为“一种非周期定位参考信号PRS的触发方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种非周期定位参考信号PRS的触发方法和装置。
背景技术
在3GPP标准中,支持下行到达时间差(down link-time of arrival,DL-TDOA)、下行离开角(down link-angle of departure,DL-AOD)、上行到达时间差(up link-time of arrival,UL-TDOA)、上行到达角(up link-angle of arrival,UL-AOA)、多用户往返时延(multi-round trip time,multi-RTT)等多种定位技术。
对于DL-TDOA、DL-AoA、multi-RTT定位技术,目前仅支持基于定位参考信号(positioning reference signal,PRS)的测量,同时也只支持基于周期性PRS的测量。所谓周期性PRS,指的是终端设备在收到PRS配置信息之后,终端设备会认为网络设备会在配置信息所指示的时刻以配置信息所指示的周期发送PRS,终端设备可以在响应的时刻做周期性的接收和测量。
在Rel-17标准中,由于对基于PRS的定位技术的时延降低有相应的需求,例如希望定位端到端的时延能够低于100ms,甚至达到几十ms量级。而如果PRS的周期太大,会使得整个定位的时延增加,如果周期调小,又会增加定位的资源开销。因此,目前需要通信系统支持基于非周期PRS的定位技术。但是,目前的通信系统并没有触发终端设备进行非周期PRS测量的技术方案。
发明内容
本申请实施例提供一种非周期定位参考信号PRS的触发方法和装置,用来触发非周期PRS的测量,减小定位的时延。
第一方面,提供了一种非周期定位参考信号PRS的触发方法。该方法可以由终端设备执行,或者类似终端设备功能的芯片执行。该方法中,终端设备可以接收来自定位服务器的一个或多个非周期PRS的配置信息和一个或多个触发状态。其中,一个或多个非周期PRS的配置信息中的每一个可以与一个或多个触发状态关联。终端设备可以接收来自网络设备的控制信息。这里的控制信息可以包含第一指示信息,该第一指示信息可以用于指示一个或多个触发状态。终端设备可以基于第一指示信息所指示的触发状态所关联的一个或多个非周期PRS的配置信息,接收一个或多个非周期PRS。
基于上述方案,由于定位服务器可以与网络设备进行信息交互,从而获取PRS的配置 信息,因此可以由定位服务器向终端设备指示可以测量的非周期PRS的配置信息,并由网络设备通过控制信息触发终端设备进行非周期PRS的测量,可以减少系统的复杂度。此外,通过使能非周期PRS,可以降低定位时延。
在一种可能的实现方式中,终端设备可以接收来自网络设备的第一配置信息。其中,第一配置信息中可以包含以下中的一个或多个:第一指示信息所占用的比特数、第一指示信息的起始比特位置、或一个或多个触发状态对应的非周期PRS的接收时间的配置信息。
基于上述方案,网络设备可以通过第一配置信息向终端设备指示第一指示信息的相关信息,从而使得终端设备可以从控制信息中解析得到第一指示信息,触发非周期PRS的测量。
在一种可能的实现方式中,接收时间的配置信息可以为一个或多个触发状态对应的非周期PRS的接收时间与控制信息的接收时间之间的时间差。
基于上述方案,终端设备可以基于控制信息的接收时间以及上述时间差,确定非周期PRS的接收时间,从而可以对非周期PRS进行测量。
在一种可能的实现方式中,终端设备可以接收来自网络设备的一个或多个触发状态对应的测量间隙配置信息。这里的测量间隙配置信息可以用于终端设备接收非周期PRS。
基于上述方案,网络侧可以为终端设备配置非周期PRS的测量间隔,终端设备可以在该测量间隔对非周期PRS进行测量。
在一种可能的实现方式中,终端设备可以基于一个或多个触发状态中的一个对应的非周期PRS的接收时间,确定一个或多个非周期PRS的接收时间。或者,终端设备可以基于测量间隙配置信息,确定一个或多个非周期PRS的接收时间。或者,终端设备可以基于一个或多个触发状态中的一个对应的非周期PRS的接收时间和测量间隙配置信息,确定一个或多个非周期PRS的接收时间。
基于上述方案,终端设备可以基于非周期PRS的接收时间的配置信息和/或测量间隔配置信息,确定非周期PRS的接收时间,从而可以在接收时间对非周期PRS进行测量。
在一种可能的实现方式中,第一配置信息还可以包括以下中的至少一个:一个或多个非周期PRS的测量量、上报的测量量的个数、上报一个或多个非周期PRS的测量结果所使用的信道的配置信息。其中,一个测量量可以用于指示一个传输接入点的非周期PRS的测量量,信道的配置信息可以包含信道类型或资源配置信息。
基于上述方案,终端设备可以根据第一配置信息中的上述信息,对非周期PRS进行测量,并且可以基于上述信息上报非周期PRS的测量结果。
在一种可能的实现方式中,终端设备可以基于接收到的一个或多个非周期PRS,进行非周期PRS测量。终端设备可以将一个或多个非周期PRS的测量结果,发送给定位服务器。
基于上述方案,终端设备可以将非周期PRS的测量结果上报给定位服务器,由定位服务器可以根据测量结果处理得到终端设备的位置信息。
在一种可能的实现方式中,终端设备可以基于接收到的一个或多个非周期PRS,进行非周期PRS测量。终端设备可以将一个或多个非周期PRS的测量结果,发送给网络设备。
基于上述方案,终端设备可以将非周期PRS的测量结果上报给网络设备,由网络设备将该测量结果上报给定位服务器,使得非周期PRS的测量上报较为灵活,可以充分考虑网络的负载。
第二方面,提供了一种非周期定位参考信号PRS的触发方法。该方法可以由网络设备执行,或者类似网络设备功能的芯片执行。网络设备可以接收来自定位服务器的一个或多个触发状态。其中,一个或多个触发状态中的每一个可以与一个或多个非周期PRS的配置信息关联。网络设备可以向终端设备发送控制信息。这里的控制信息可以包含第一指示信息,该第一指示信息可以用于指示一个或多个触发状态。
基于上述方案,定位服务器可以向网络设备指示触发状态,网络设备通过该触发状态触发终端设备进行非周期PRS的测量,可以减少系统的复杂度,也可以降低定位时延。
在一种可能的实现方式中,网络设备可以向定位服务器发送第一确认应答响应。第一确认应答响应可以用于向定位服务器告知接收到一个或多个触发状态。基于上述方案,网络设备可以通过第一确认应答响应向定位服务器通知已接收到触发状态。
在一种可能的实现方式中,网络设备可以向终端设备发送第一配置信息。其中,第一配置信息中可以包含以下中的一个或多个:第一指示信息所占用的比特数、第一指示信息的起始比特位置、或一个或多个触发状态对应的非周期PRS的接收时间的配置信息。
基于上述方案,网络设备可以通过第一配置信息向终端设备指示第一指示信息的相关信息,从而使得终端设备可以从控制信息中解析得到第一指示信息,触发非周期PRS的测量。
在一种可能的实现方式中,接收时间的配置信息可以为一个或多个触发状态对应的非周期PRS的接收时间与控制信息的接收时间之间的时间差。
基于上述方案,终端设备可以基于控制信息的接收时间以及上述时间差,确定非周期PRS的接收时间,从而可以对非周期PRS进行测量。
在一种可能的实现方式中,网络设备可以接收来自定位服务器的一个或多个触发状态对应的非周期PRS接收时间。
基于上述方案,网络设备可以通过定位服务器获取到非周期PRS的接收时间,从而可以根据该接收时间向终端设备发送控制信息,触发终端设备进行非周期PRS的测量。
在一种可能的实现方式中,网络设备接收来自邻区网络设备的消息该消息可以用于确定一个或多个触发状态对应的非周期PRS的发送时间。可选的,非周期PRS的发送时间可以是终端设备接收非周期PRS的接收时间。
基于上述方案,网络设备可以通过与邻区网络设备的信息交互,确定非周期PRS的发送时间,从而可以根据该发送时间向终端设备发送控制信息,触发终端设备进行非周期PRS的测量。
在一种可能的实现方式中,网络设备可以接收来自定位服务器的第一信息。其中,第一信息可以包括以下中的一个或多个:终端设备的非周期PRS的触发状态个数、一个或多个触发状态对应的非周期PRS的接收时间的指示信息、或一个或多个触发状态对应的非周期PRS的频点信息。其中,终端设备的非周期PRS的触发状态个数可以用于确定指示第一指示信息所占用的比特数、一个或多个触发状态对应的非周期PRS的接收时间的指示信息可以用于确定发送第一指示信息的时间、非周期PRS的频点信息可以用于确定发送第一指示信息的时间。
基于上述方案,网络设备可以根据来自定位服务器的上述第一信息,确定第一指示信息所占用的比特数和/或第一指示信息的发送时间,从而可以触发终端设备进行非周期PRS 的测量。
在一种可能的实现方式中,第一信息还可以包括以下中的一个或多个:请求的非周期PRS的测量量、或请求的非周期PRS的测量量的时延信息。其中,时延信息可以用于指示请求网络设备发送第一指示信息之后的第一时长内的非周期PRS的测量结果。
基于上述方案,网络设备可以根据来自定位服务器的上述信息,确定定位服务器希望的非周期PRS的测量结果。
在一种可能的实现方式中,网络设备可以基于触发状态信息,向定位服务器发送第二确认应答响应。其中,第二确认应答响应可以用于向定位服务器告知接收到第一信息。基于上述方案,网络设备可以通过第二确认应答响应通知定位服务器已接收到第一信息。
在一种可能的实现方式中,第一指示信息中还可以包括以下中的一个或多个:一个或多个触发状态对应的测量间隙配置信息、请求的非周期PRS的测量量、上报的非周期PRS的测量量的个数、或者上报非周期PRS的测量结果所使用的信道的配置信息。其中,测量间隙配置信息可以用于终端设备接收非周期PRS、一个测量量可以用于指示一个传输接入点的非周期PRS的测量量,信道的配置信息可以包含信道类型或资源配置信息。
基于上述方案,终端设备可以根据第一配置信息中的上述信息,对非周期PRS进行测量,并且可以基于上述信息上报非周期PRS的测量结果。
第三方面,提供了一种非周期定位参考信号PRS的触发方法。该方法可以由定位服务器执行,或者类似定位服务器功能的芯片执行。该方法中,定位服务器可以向终端设备发送一个或多个非周期PRS的配置信息和一个或多个第一触发状态。其中,一个或多个非周期PRS的配置信息中的每一个可以与一个或多个第一触发状态关联。定位服务器可以向网络设备发送一个或多个第二触发状态。其中,一个或多个第二触发状态可以是一个或多个第一触发状态中的部分或全部。上述一个或多个第二触发状态中的每一个可以用于网络设备触发终端设备进行非周期PRS的测量。
基于上述方案,由于定位服务器可以与网络设备进行信息交互,从而获取PRS的配置信息,因此可以由定位服务器向终端设备指示可以测量的非周期PRS的配置信息,并由定位服务器向网络设备指示触发哪些触发状态,可以减少系统的复杂度。此外,通过使能非周期PRS,可以降低定位时延。
在一种可能的实现方式中,定位服务器可以接收来自网络设备的第一确认应答响应。其中,第一确认应答响应可以用于向定位服务器告知接收到一个或多个第二触发状态。基于上述方案,定位服务器可以通过第一确认应答响应确定网络设备是否接收到触发状态。
在一种可能的实现方式中,定位服务器可以向网络设备发送第一信息。其中,第一信息可以包括以下中的一个或多个:终端设备的非周期PRS的触发状态个数、一个或多个第二触发状态对应的非周期PRS的接收时间的指示信息、或一个或多个第二触发状态对应的非周期PRS的频点信息。其中,终端设备的非周期PRS的触发状态个数可以用于确定第一指示信息所占用的比特数。这里的第一指示信息可以用于向终端设备指示的一个或多个第二触发状态。一个或多个第二触发状态对应的非周期PRS的接收时间的指示信息可以用于确定发送第一指示信息的时间、一个或多个第二触发状态对应的非周期PRS的频点信息可以用于确定发送第一指示信息的时间。
基于上述方案,定位服务器可以通过上述第一信息,使得网络设备确定第一指示信息 所占用的比特数和/或第一指示信息的发送时间,从而可以触发终端设备进行非周期PRS的测量。
在一种可能的实现方式中,第一信息还可以包括以下中的一个或多个:请求的非周期PRS的测量量、或请求的非周期PRS的测量量的时延信息。其中,时延信息可以用于指示请求网络设备发送第一指示信息之后的第一时长内的非周期PRS的测量结果。
基于上述方案,定位服务器可以通过上述第一信息,向网络设备指示希望的非周期PRS的测量结果。
在一种可能的实现方式中,定位服务器可以接收来自网络设备的第二确认应答响应。其中,第二确认应答响应可以用于向定位服务器告知接收到第一信息。基于上述方案,定位服务器可以通过第二确认应答响应,确定网络设备是否接收到上述第一信息。
在一种可能的实现方式中,定位服务器可以接收一个或多个第二触发状态所关联的一个或多个非周期PRS的测量结果。可选的,该一个或多个非周期PRS的测量结果可以是来自网络设备的,也可以是来自终端设备的。
基于上述方案,定位服务器可以根据非周期PRS的测量结果,处理得到终端设备的位置信息。
第四方面,提供一种通信装置,该装置可以包括用于执行第一方面或第一方面任一种可能实现方式中的各个模块/单元,或者还可以包括用于执行第二方面或第二方面任一种可能实现方式中的各个模块/单元,或者还可以包括用于执行第三方面或第三方面任一种可能实现方式中的各个模块/单元。比如,处理单元和收发单元。
示例性的,该装置包括用于执行第一方面或第一方面任一种可能实现方式中的各个模块/单元时,所述收发单元,用于接收来自定位服务器的一个或多个非周期PRS的配置信息和一个或多个触发状态;所述一个或多个非周期PRS的配置信息中的每一个与一个或多个触发状态关联;所述收发单元,还用于来自网络设备的控制信息;所述控制信息包含第一指示信息,所述第一指示信息用于指示一个或多个触发状态;所述收发单元,还用于基于所述第一指示信息所指示的触发状态所关联的一个或多个非周期PRS的配置信息,接收一个或多个非周期PRS;所述处理单元,用于测量所述一个或多个非周期PRS。
在一种设计中,所述收发单元还用于:接收来自所述网络设备的第一配置信息;其中,所述第一配置信息中包含以下中的一个或多个:所述第一指示信息所占用的比特数、所述第一指示信息的起始比特位置、或所述一个或多个触发状态对应的非周期PRS的接收时间的配置信息。
在一种设计中,所述接收时间的配置信息为所述一个或多个触发状态对应的非周期PRS的接收时间与所述控制信息的接收时间之间的时间差。
在一种设计中,所述收发单元还用于:接收来自所述网络设备的所述一个或多个触发状态对应的测量间隙配置信息;所述测量间隙配置信息用于所述装置接收非周期PRS。
在一种设计中,所述处理单元还用于:基于所述一个或多个触发状态中的一个对应的非周期PRS的接收时间,确定所述一个或多个非周期PRS的接收时间;或者,基于所述一个或多个触发状态中的一个对应的非周期PRS的接收时间,确定所述一个或多个非周期PRS的接收时间;或者,基于所述一个或多个触发状态中的一个对应的非周期PRS的接收时间和所述测量间隙配置信息,确定所述一个或多个非周期PRS的接收时间。
在一种设计中,所述第一配置信息还包括以下中的至少一个:所述一个或多个非周期PRS的测量量、上报的测量量的个数;其中,一个测量量用于指示一个传输接入点的非周期PRS的测量量、或者上报所述一个或多个非周期PRS的测量结果所使用的信道的配置信息;所述信道的配置信息包含信道类型或资源配置信息。
在一种设计中,所述收发单元还用于:将所述一个或多个非周期PRS的测量结果,发送给定位服务器。
在一种设计中,所述收发单元还用于:将所述一个或多个非周期PRS的测量结果,发送给所述网络设备。
示例性的,该装置包括用于执行第二方面或第二方面任一种可能实现方式中的各个模块/单元时,所述收发单元,用于接收来自定位服务器的一个或多个触发状态;所述一个或多个触发状态中的每一个与一个或多个非周期PRS的配置信息关联;所述处理单元,用于基于所述一个或多个触发状态生成控制信息;所述控制信息包含第一指示信息,所述第一指示信息用于指示所述一个或多个触发状态;所述收发单元,还用于向终端设备发送所述控制信息。
在一种设计中,所述收发单元还用于:向所述终端设备发送第一配置信息;其中,所述第一配置信息中包含以下中的一个或多个:所述第一指示信息所占用的比特数、所述第一指示信息的起始比特位置、或所述一个或多个触发状态对应的非周期PRS的接收时间的配置信息。
在一种设计中,所述接收时间的配置信息为所述一个或多个触发状态对应的非周期PRS的接收时间与所述控制信息的接收时间之间的时间差。
在一种设计中,所述收发单元还用于:接收来自所述定位服务器的所述一个或多个触发状态对应的非周期PRS接收时间。
在一种设计中,所述收发单元还用于:接收来自邻区网络设备的消息,该消息可以用于确定所述一个或多个触发状态对应的非周期PRS的发送时间。
在一种设计中,所述收发单元还用于:接收来自所述定位服务器的第一信息;所述第一信息包括以下中的一个或多个:所述终端设备的非周期PRS的触发状态个数、所述一个或多个触发状态对应的非周期PRS的接收时间的指示信息、或所述一个或多个触发状态对应的非周期PRS的频点信息;其中,所述终端设备的非周期PRS的触发状态个数用于确定指示所述第一指示信息所占用的比特数、所述一个或多个触发状态对应的非周期PRS的接收时间的指示信息用于确定发送所述第一指示信息的时间、所述非周期PRS的频点信息用于确定发送所述第一指示信息的时间。
在一种设计中,所述第一信息还包括以下中的一个或多个:请求的非周期PRS的测量量、或请求的非周期PRS的测量量的时延信息;所述时延信息用于指示请求所述装置发送所述第一指示信息之后的第一时长内的非周期PRS的测量结果。
在一种设计中,所述第一指示信息中还包括以下中的一个或多个:所述一个或多个触发状态对应的测量间隙配置信息;所述测量间隙配置信息用于所述终端设备接收非周期PRS、请求的所述非周期PRS的测量量、上报的非周期PRS的测量量的个数;其中,一个测量量用于指示一个传输接入点的非周期PRS的测量量、或者上报非周期PRS的测量结果所使用的信道的配置信息;所述信道的配置信息包含信道类型或资源配置信息。
示例性的,该装置包括用于执行第三方面或第三方面任一种可能实现方式中的各个模块/单元时,所述收发单元,用于向终端设备发送一个或多个非周期PRS的配置信息和一个或多个第一触发状态;所述一个或多个非周期PRS的配置信息中的每一个与一个或多个第一触发状态关联;所述处理单元,用于基于所述一个或多个第一触发状态生成一个或多个第二触发状态;所述一个或多个第二触发状态是所述一个或多个第一触发状态中的部分或全部;所述收发单元,还用于向网络设备发送所述一个或多个第二触发状态;所述一个或多个第二触发状态中的每一个用于所述网络设备触发终端设备进行非周期PRS的测量。
在一种设计中,所述收发单元还用于:向所述网络设备发送第一信息;所述第一信息包括以下中的一个或多个:所述终端设备的非周期PRS的触发状态个数、所述一个或多个第二触发状态对应的非周期PRS的接收时间的指示信息、或所述一个或多个第二触发状态对应的非周期PRS的频点信息;其中,所述终端设备的非周期PRS的触发状态个数用于确定第一指示信息所占用的比特数;所述第一指示信息用于向所述终端设备指示的所述一个或多个第二触发状态;所述一个或多个第二触发状态对应的非周期PRS的接收时间的指示信息用于确定发送所述第一指示信息的时间、所述一个或多个第二触发状态对应的非周期PRS的频点信息用于确定发送所述第一指示信息的时间。
在一种设计中,所述第一信息还包括以下中的一个或多个:请求的非周期PRS的测量量、或请求的非周期PRS的测量量的时延信息;所述时延信息用于指示请求所述网络设备发送所述第一指示信息之后的第一时长内的非周期PRS的测量结果。
在一种设计中,所述收发单元还用于:接收来自所述终端设备的所述一个或多个第二触发状态所关联的一个或多个非周期PRS的测量结果。
第五方面,提供了一种通信装置,通信装置包括处理器和收发机。收发机执行第一方面或第一方面任一种可能实现方式中方法的收发步骤,或者执行第二方面或第二方面任一种可能实现方式中方法的收发步骤,或者执行第三方面或第三方面任一种可能实现方式中方法的收发步骤。控制器运行时,处理器利用控制器中的硬件资源执行第一方面或第一方面任一种可能实现方式中方法的除收发步骤以外的处理步骤,或者执行第二方面或第二方面任一种可能实现方式中方法的除收发步骤以外的处理步骤,或者执行第三方面或第三方面任一种可能实现方式中方法的除收发步骤以外的处理步骤。
在一种可能的实现方式中,通信装置还包括存储器。该存储器可以位于装置内部,或者也可以位于装置外部,与所述装置相连。
在一种可能的实现方式中,存储器可以与处理器集成在一起。
第六方面,提供了一种芯片,该芯片包括逻辑电路和通信接口。
示例性的,通信接口,用于输入一个或多个非周期PRS的配置信息和一个或多个触发状态;所述一个或多个非周期PRS的配置信息中的每一个与一个或多个触发状态关联;以及,还用于输入控制信息;所述控制信息包含第一指示信息,所述第一指示信息用于指示一个或多个触发状态。逻辑电路,用于基于所述第一指示信息所指示的触发状态所关联的一个或多个非周期PRS的配置信息,测量一个或多个非周期PRS。
示例性的,通信接口,用于输入一个或多个触发状态;所述一个或多个触发状态中的每一个与一个或多个非周期PRS的配置信息关联。逻辑电路,用于基于所述一个或多个触发状态生成控制信息;所述控制信息包含第一指示信息,所述第一指示信息用于指示所述 一个或多个触发状态。通信接口,还用于输出所述控制信息。
示例性的,通信接口,用于输出。一个或多个非周期PRS的配置信息和一个或多个第一触发状态;所述一个或多个非周期PRS的配置信息中的每一个与一个或多个第一触发状态关联。逻辑电路,用于基于所述一个或多个第一触发状态生成一个或多个第二触发状态;所述一个或多个第二触发状态是所述一个或多个第一触发状态中的部分或全部。通信接口还用于输出所述一个或多个第二触发状态;所述一个或多个第二触发状态中的每一个用于所述网络设备触发终端设备进行非周期PRS的测量。
第七方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第八方面,本申请提供了一种存储指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第九方面,本申请提供一种通信系统,包括至少一个上述的网络设备和至少一个上述的定位服务器。
另外,第四方面至第九方面的有益效果可以参见如第一方面至第三方面所示的有益效果。
附图说明
图1A为一种非周期CSI的触发流程示意图;
图1B为一种非周期SRS的触发流程示意图;
图2为本申请实施例提供的一种通信系统示意图;
图3为本申请实施例提供的一种非周期PRS的触发方法的示例性流程图之一;
图4为本申请实施例提供的周期PRS和非周期PRS的接收示意图;
图5A为本申请实施例提供的控制信息的发送时间示意图;
图5B为本申请实施例提供的时延信息的示意图;
图6A为本申请实施例提供的非周期PRS的接收时间示意图之一;
图6B为本申请实施例提供的非周期PRS的接收时间示意图之一;
图6C为本申请实施例提供的非周期PRS的接收时间示意图之一;
图7为本申请实施例提供的一种非周期PRS的触发方法的示例性流程图之一;
图8为本申请实施例提供的一种非周期PRS的触发方法的示例性流程图之一;
图9为本申请实施例提供的一种通信装置的示意图之一;
图10为本申请实施例提供的一种通信装置的示意图之一。
具体实施方式
以下,结合附图对本申请实施例提供的技术方案进行解释和说明。
目前,基于PRS的定位技术,位置管理功能网元(location management function,LMF)主要可以完成以下操作:
1、与服务网络设备和邻区网络设备进行信息交互,获取小区信息。例如,可以获取PRS的配置信息、小区定时和小区位置信息等。
2、与终端设备完成定位能力信息传递、辅助信息传递和测量信息传递等。
3、与服务网络设备完成测量信息传递等。
基于LMF的上述操作,服务网络设备和邻区网络设备可以发送PRS,由终端设备对PRS进行测量上报。LMF可以基于终端设备的测量上报,处理得到终端设备的位置信息。
但是,当前协议支持基于周期PRS的测量。由于对基于PRS测量的定位技术的时延降低有相应的需求,例如希望定位端到端时延能够低于100ms,甚至达到几十ms量级,提出了非周期PRS。但是,目前不存在触发非周期PRS的技术方案。
以下,对非周期信道状态信息(channel state information,CSI)的触发流程进行说明。
参阅图1A,为非周期CSI的触发流程。其中,网络设备可以向终端设备发送下行控制信息(down link control information,DCI)。DCI是承载于物理层下行控制信道,(physical downlink control cgannel,PDCCH)上的信息。该DCI中可以包含CSI request(请求)字段。该CSI request可以指示若干非周期CSI触发状态(Trigger state),每个触发状态关联一个或多个CSI上报配置(CSI Report Config)。其中,触发状态0(图1B所示的000000)并未关联CSI上报配置,触发状态0用于指示无触发。每个CSI上报配置关联一个或多个CSI资源配置(CSI Resource Setting),每个CSI资源配置包含一个激活的CSI-RS/CSI-IM资源集,每个CSI-RS/CSI-IM资源集包含一个或多个CSI-RS/CSI-IM资源。这里的CSI资源配置可以为周期、半持续和非周期。
其中,当一个CSI上报配置关联一个CSI资源配置时,该CSI资源配置包含CSI-RS资源或CSI-RS资源集,该CSI-RS资源或CSI-RS资源集用于信道测量。
当一个CSI上报配置关联两个CSI资源配置时,第一个CSI资源配置包含CSI-RS资源或CSI-RS资源集,该CSI-RS资源或CSI-RS资源集用于信道测量。第二个CSI资源配置包含CSI-IM资源或者CSI-IM资源集,该CSI-IM资源或者CSI-IM资源集用于干扰测量。其中,CSI-IM用于测量的干扰为和干扰,不区分干扰流数。
当一个CSI上报配置关联三个CSI资源配置时,第一个CSI资源配置包含CSI-RS资源或CSI-RS资源集,该CSI-RS资源或CSI-RS资源集用于信道测量。第二个CSI资源配置包含CSI-IM资源或CSI-IM资源集,该CSI-IM资源或CSI-IM资源集用于干扰测量。第三个CSI资源配置包含CSI-RS资源或CSI-RS资源集,该CSI-RS资源或CSI-RS资源集于干扰测量。其中,CSI-IM用于测量的干扰为和干扰,不区分干扰流数,而第三个CSI-RS用于测量的干扰为流干扰,可以测量出干扰的流数。
当终端设备收到DCI format 0_1和0_2,且该DCI格式包含CSI Request字段(1-6比特)时,终端设备读取CSI Request字段,将CSI Request字段理解为触发状态,例如CSI Request字段为000001时,终端设备查询000001触发状态对应的CSI上报配置,认为该触发状态对应的一个或多个CSI上报配置被触发。进而若该CSI上报配置关联的CSI资源配置为非周期,该非周期CSI资源配置对应的CSI-RS资源或CSI-RS资源集被同步触发,触发接收时隙与DCI所在的时隙差可以为无线资源控制(radio resource control,RRC)信令预先配置。
参阅图1B,为非周期上行参考信号(sounding reference signal,SRS)的触发流程。终端设备预先收到基站发送的RRC重配置(RRC Reconfiguration)消息,配置若干非周期SRS资源集,当SRS资源集为非周期时,该资源集会关联一个或多个非零触发状态(Trigger state),相应的每个触发状态也会关联一个或多个非周期SRS资源集。其中,除触发状态0(图1B所示的00)用于指示无触发。
当终端设备收到DCI format 0_1、0_2、1_1和1_2时,且该DCI格式配置SRS Request(SRS请求)字段(1-2比特)时,终端设备读取SRS Request字段,将SRS Request字段理解为触发状态,例如字段为01时,终端设备查询01触发状态对应的SRS资源集,认为该触发状态对应的一个或多个非周期SRS资源集被触发发送,触发发送时隙与DCI所在的时隙差可以为RRC预先配置。
由于PRS和CSI/SRS的配置本身是由不同的协议完成的,前者为终端设备到核心网的长期演进定位协议(long term evolution positioning protocol,LPP)协议,后者为终端设备到网络设备的RRC协议。因此,目前的RRC协议无法实现非周期PRS的配置以及激活。
首先,将RRC协议中的配置方法直接迁移到LPP协议中是有问题的。例如DCI时隙到PRS接收时隙的间隔不适宜由LPP协议栈配置,而应该交由网络设备控制,这样网络设备可以选择合适的时隙发送DCI。
其次,目前LPP协议中的配置方法之间迁移到RRC中也是有问题的。一方面,对于PRS,应该由核心网定位服务器承担总体协调,以及提供PRS配置的作用,而由服务网络设备全权参与配置参考信号的配置、触发是与现有的定位架构矛盾的。另一方面,哪些传输接入点(transmission reception point,TRP)参与定位是定位服务器选择的,TRP上哪些频点的PRS参与定位也是定位服务器选择的,如果这些决策信息交由网络设备实现,并将配置通过CSI的框架配置给终端设备,会导致与定位服务器的选择出现失配,从而影响定位业务。
本申请实施例提供了一种非周期PRS的触发方法。本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图2示出的通信系统为例详细说明适用于本申请实施例的通信系统。图2示出了适用于本申请实施例的通信方法的通信系统的示意图。如图2所示,该通信系统200包括终端设备201和网络设备202、接入与移动性管理功能网元AMF203和位置管理功能网元LMF204。
下面对本申请实施例的通信系统的各个网元或设备的功能进行详细描述:
所述终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,所述终端设备可以包括具有无线连接功能的手持式设备、车载设备等。目前,所述终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR) 设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备,或智慧家庭(smart home)中的无线终端设备等。其中,图2中所述终端设备以UE示出,仅作为示例,并不对终端设备进行限定。
网络设备,又可以称为接入网设备(access network,AN),向所述终端设备提供无线接入服务。所述接入网设备是所述通信系统中将所述终端设备接入到无线网络的设备。所述接入网设备为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些接入网设备的举例为:gNB、传输接收点(transmission reception point,TRP)、传输接点(transmission point,TP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。
所述接入与移动性管理功能网元AMF,可用于对所述终端设备的接入控制和移动性进行管理,在实际应用中,其包括了长期演进(long term evolution,LTE)中网络框架中移动管理实体(mobility management entity,MME)里的移动性管理功能,并加入了接入管理功能,具体可以负责所述终端设备的注册、移动性管理、跟踪区更新流程、可达性检测、会话管理功能网元的选择、移动状态转换管理等。例如,在5G中,所述接入与移动管理功能网元可以是AMF(access and mobility management function)网元,例如图2所示,在未来通信,如6G中,所述接入与移动管理功能网元仍可以是AMF网元,或有其它的名称,本申请不做限定。当所述接入与移动管理功能网元是AMF网元时,所述AMF可以提供Namf服务。
所述定位服务器,可以用于确定UE的位置、从UE获得下行链路位置测量或位置估计等。定位服务器可以包括位置管理功能网元LMF,例如,在5G中,所述位置管理功能网元(location management function,LMF)如图2所示,在未来通信系统中,如6G中,所述位置管理功能网元仍可以是LMF网元,或有其它的名称,本申请不做限定。
参阅图3,为本申请实施例提供的一种非周期PRS的触发方法的示例性流程图,可以包括以下步骤。
步骤301:定位服务器向终端设备发送一个或多个非周期PRS的配置信息和一个或多个第一触发状态。
其中,一个或多个非周期PRS的配置信息中的每一个与一个或多个第一触发状态关联。一个第一触发状态也可以关联一个或多个非周期PRS的配置信息。可选的,上述一个或多个非周期PRS的配置信息和一个或多个第一触发状态可以携带在辅助信息中,由定位服务器以单播、广播或者组播的形式发送给终端设备。以下,对非周期PRS的配置信息进行介绍。
非周期PRS的配置信息可以包括非周期PRS的频域资源,如发送该非周期PRS的网络设备标识、起始资源块(resource block,RB)、RB个数、梳齿数以及梳齿偏移,还可以 包括时域资源,如时隙内的起始符号和符号个数等,还可以包括码域资源,如序列扰码、关断配置等。非周期PRS的配置信息与周期PRS的配置信息的不同之处在于非周期PRS不需要配置PRS的周期以及在周期内的时隙偏移。可选的,非周期PRS的配置信息可以包括以下形式1-形式5,以下分别进行介绍。
形式1:定义独立的非周期PRS资源集nr-DL-PRS-AP-ResourceSetList-r17,基于定义的新IE结构NR-DL-PRS-AP-ResourceSet-r17,加入到TRP的现有资源集列表内。此时触发状态配置在非周期PRS资源集内。以下,介绍非周期PRS的配置信息的信令,该信令中可以包含以下信息元素:
NR-DL-PRS-Info-r16::=SEQUENCE{//PRS配置信息
nr-DL-PRS-ResourceSetList-r16SEQUENCE(SIZE(1..nrMaxSetsPerTrp-r16))OF NR-DL-PRS-ResourceSet-r16,//周期性PRS资源集列表
...,
[[
nr-DL-PRS-AP-ResourceSetList-r17 SEQUENCE(SIZE(1..nrMaxAP-SetPerTrp-r17)F NR-DL-PRS-AP-ResourceSet-r17//非周期PRS资源集列表
]]
}
NR-DL-PRS-AP-ResourceSet-r17::=SEQUENCE{非周期PRS资源集
nr-DL-PRS-ResourceSetID-r16 NR-DL-PRS-ResourceSetID-r16,
//PRS资源集标识
dl-PRS-ResourceRepetitionFactor-r16 ENUMERATED{n2,n4,n6,n8,n16,n32,...}
OPTIONAL,--Need OP//PRS重复系数
dl-PRS-ResourceTimeGap-r16 ENUMERATED{s1,s2,s4,s8,s16,s32,...}
OPTIONAL,--Cond Rep//PRS重复间隔
dl-PRS-NumSymbols-r16 ENUMERATED{n2,n4,n6,n12,...},//PRS所占用的符号个数
dl-PRS-MutingOption1-r16 DL-PRS-MutingOption1-r16OPTIONAL,--Need OP//PRS静默配置选项1
dl-PRS-MutingOption2-r16 DL-PRS-MutingOption2-r16OPTIONAL,--Need OP//PRS静默配置选项2
dl-PRS-ResourcePower-r16 INTEGER(-60..50),//PRS资源功率
dl-PRS-ResourceList-r16 SEQUENCE(SIZE(1..nrMaxResourcesPerSet-r16))OF
NR-DL-PRS-Resource-r16,//非周期PRS资源列表
ap-PRS-TriggerState-r17 INTEGER(1..nrMaxTriggerStates-1-r17),
//PRS的触发状态
...
}
上述参数中含有“-r16”的参数的定义及内容可以参见第三代合作伙伴计划(3 rd generation partnership project,3GPP)release 16标准(例如,3GPP TS 37.355)中的相关定义,此处不再赘述。
上述参数中含有“-17”的参数是本申请实施例提供的新的参数,以下进行具体介绍。
1、nr-DL-PRS-AP-ResourceSetList-r17SEQUENCE(SIZE(1..nrMaxAP-SetPerTrp-r17)OF NR-DL-PRS-AP-ResourceSet-r17,可以定义为非周期PRS资源集列表。其中,可以包含一个或多个非周期PRS资源集的配置。
2、NR-DL-PRS-AP-ResourceSet-r17::=SEQUENCE,可以定义为非周期PRS资源集。其包含了一个或多个非周期PRS资源集的配置。其中,一个非周期PRS资源集的配置包含一些参数的配置。如PRS资源集标识、PRS重复系数、PRS重复间隔、PRS所占的符号个数、PRS静默配置选项1、PRS静默配置选项2、PRS资源功率和非周期PRS资源列表等参数的配置。
3、ap-PRS-TriggerState-r17INTEGER(1..nrMaxTriggerStates-1-r17),可以定义为PRS的触发状态。其中,上述INTEGER可以表示该参数的数据类型为整型。一个触发状态可以关联一个或多个非周期PRS资源集。
形式2:复用周期PRS资源集nr-DL-PRS-ResourceSetList-r16,拓展IE结构NR-DL-PRS-ResourceSet-r16引入触发状态。此时触发状态配置在非周期PRS资源集内。以下,介绍非周期PRS的配置信息的信令,该信令中可以包含以下信息元素:
NR-DL-PRS-Info-r16::=SEQUENCE{//PRS配置信息
nr-DL-PRS-ResourceSetList-r16 SEQUENCE(SIZE(1..nrMaxSetsPerTrp-r16))OF NR-DL-PRS-ResourceSet-r16,//PRS资源集列表
...
}
NR-DL-PRS-ResourceSet-r16::=SEQUENCE{//PRS资源集
nr-DL-PRS-ResourceSetID-r16 NR-DL-PRS-ResourceSetID-r16,//PRS资源集标识
dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16
NR-DL-PRS-Periodicity-and-ResourceSetSlotOffset-r16,//周期PRS资源的周期和时隙偏移
dl-PRS-ResourceRepetitionFactor-r16 ENUMERATED{n2,n4,n6,n8,n16,n32,...}OPTIONAL,--Need OP//PRS重复系数
dl-PRS-ResourceTimeGap-r16 ENUMERATED{s1,s2,s4,s8,s16,s32,...}OPTIONAL,--Cond Rep//PRS重复间隔
dl-PRS-NumSymbols-r16 ENUMERATED{n2,n4,n6,n12,...},//PRS资源所占的符号个数
dl-PRS-MutingOption1-r16 DL-PRS-MutingOption1-r16OPTIONAL,--Need OP//PRS静默配置选项1
dl-PRS-MutingOption2-r16 DL-PRS-MutingOption2-r16OPTIONAL,--Need OP//PRS静默配置选项2
dl-PRS-ResourcePower-r16 INTEGER(-60..50),//PRS资源功率
dl-PRS-ResourceList-r16 SEQUENCE(SIZE(1..nrMaxResourcesPerSet-r16))OF NR-DL-PRS-Resource-r16,//PRS资源列表
...
[[
ap-PRS-TriggerState-r17 INTEGER(1..nrMaxTriggerStates-1-r17),//PRS的触发状态
]]
}
可选的,在上述形式2中当配置了ap-PRS-TriggeringState-r17,终端设备可以自动忽略dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16的内容,而将该PRS资源集当成是非周期资源集。或者,当配置了ap-PRS-TriggeringState-r17,该PRS资源集可以按照dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16对应的周期接收,也可以通过控制信息指示终端设备进行非周期接收。参阅图4,终端设备在时隙0接收到了PRS的配置信息,该PRS的配置信息指示PRS资源集的周期接收和非周期接收。终端设备可以根据该PRS的配置信息指示的周期,接收PRS资源。终端设备在某一时隙接收到了来自网络设备的指示信息,终端设备可以根据该指示信息进行接收非周期PRS。其中,上述PRS的周期接收和非周期接收时所接收的PRS资源均是根据时隙0接收到的PRS的配置信息确定的。
上述参数中含有“-r16”的参数的定义及内容可以参见第三代合作伙伴计划(3 rd generation partnership project,3GPP)release 16标准(例如,3GPP TS 37.355)中的相关定义,此处不再赘述。
另外,参数“ap-PRS-TriggerState-r17 INTEGER(1..nrMaxTriggerStates-1-r17)”可以参见上述形式1的相关描述,此处不再赘述。
形式3:定义独立的非周期PRS频点nr-DL-AP-PRS-AssistanceDataList-r17,基于拓展IE结构NR-DL-PRS-AssistanceDataPerFreq-r16引入触发状态。此时触发状态配置在PRS频点内。该频点上所有的TRP的所有PRS资源集均视为非周期PRS。当配置了ap-PRS-TriggeringState-r17,终端设备自动忽略dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16的内容,而将该PRS资源集当成是非周期资源集。以下,介绍非周期PRS的配置信息的信令,该信令中可以包含以下信息元素:
NR-DL-PRS-AssistanceData-r16::=SEQUENCE{//PRS辅助信息
nr-DL-PRS-ReferenceInfo-r16 DL-PRS-ID-Info-r16,//参考TRP、资源标识
nr-DL-PRS-AssistanceDataList-r16 SEQUENCE(SIZE(1..nrMaxFreqLayers-r16))OF NR-DL-PRS-AssistanceDataPerFreq-r16,//PRS辅助信息频点列表
nr-SSB-Config-r16 SEQUENCE(SIZE(1..nrMaxTRPs-r16))OF NR-SSB-Config-r16OPTIONAL,--Need ON//SSB配置信息列表
...
[[
nr-DL-AP-PRS-AssistanceDataList-r17 SEQUENCE(SIZE(1..nrMaxFreqLayers-r16))OF NR-DL-PRS-AssistanceDataPerFreq-r16,//非周期PRS辅助信息频点列表
]]
}
NR-DL-PRS-AssistanceDataPerFreq-r16::=SEQUENCE{//PRS频点信息
nr-DL-PRS-PositioningFrequencyLayer-r16 NR-DL-PRS-PositioningFrequencyLayer-r16,
nr-DL-PRS-AssistanceDataPerFreq-r16 SEQUENCE(SIZE(1..nrMaxTRPsPerFreq-r16))OF NR-DL-PRS-AssistanceDataPerTRP-r16,//TRP列表
...
[[
ap-PRS-TriggerState-r17 INTEGER(1..nrMaxTriggerStates-1-r17),//非周期PRS触发状态
]]
}
上述参数中含有“-r16”的参数的定义及内容可以参见第三代合作伙伴计划(3 rd generation partnership project,3GPP)release 16标准(例如,3GPP TS 37.355)中的相关定义,此处不再赘述。
参数“nr-DL-AP-PRS-AssistanceDataList-r17 SEQUENCE(SIZE(1..nrMaxFreqLayers-r16))OF NR-DL-PRS-AssistanceDataPerFreq-r16”可以定义为非周期PRS辅助信息频点列表。该列表中可以包含一个或多个非周期PRS的频点的配置。一个非周期PRS的频点的配置包含一些参数的配置。如PRS频点信息和TRP列表等参数的配置。
另外,参数“ap-PRS-TriggerState-r17INTEGER(1..nrMaxTriggerStates-1-r17)”可以参见上述形式1的相关描述,此处不再赘述。
形式4:复用周期PRS频点的配置信息,拓展IE结构NR-DL-PRS-AssistanceDataPerFreq-r16引入触发状态。此时触发状态配置在PRS频点内。该频点上所有的TRP的所有PRS资源集均视为非周期PRS。
NR-DL-PRS-AssistanceData-r16::=SEQUENCE{//PRS辅助信息
nr-DL-PRS-ReferenceInfo-r16 DL-PRS-ID-Info-r16,//参考TRP、资源标识
nr-DL-PRS-AssistanceDataList-r16 SEQUENCE(SIZE(1..nrMaxFreqLayers-r16))OF NR-DL-PRS-AssistanceDataPerFreq-r16,//PRS辅助信息频点列表
nr-SSB-Config-r16 SEQUENCE(SIZE(1..nrMaxTRPs-r16))OF NR-SSB-Config-r16OPTIONAL,--Need ON//SSB配置信息列表
...
}
NR-DL-PRS-AssistanceDataPerFreq-r16::=SEQUENCE{//PRS频点信息
nr-DL-PRS-PositioningFrequencyLayer-r16 NR-DL-PRS-PositioningFrequencyLayer-r16,
nr-DL-PRS-AssistanceDataPerFreq-r16 SEQUENCE(SIZE(1..nrMaxTRPsPerFreq-r16))OF NR-DL-PRS-AssistanceDataPerTRP-r16,//TRP列表
...
[[
ap-PRS-TriggerState-r17 INTEGER(1..nrMaxTriggerStates-1-r17),//触发状态
]]
}
可选的,上述形式4中也有类似形式2的两种理解可能。一方面,当配置了ap-PRS-TriggeringState-r17,终端设备可以自动忽略dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16的内容,而将该PRS资源集当成是非周期资源集。另一方面,当配置了ap-PRS-TriggeringState-r17,该PRS资源集一方面按照dl-PRS-Periodicity-and-ResourceSetSlotOffset-r16对应的周期接收,另一方面也可以通过控制信息指示终端设备进行非周期的接收,如图4所示。
上述参数中含有“-r16”的参数的定义及内容可以参见第三代合作伙伴计划(3 rd generation partnership project,3GPP)release 16标准(例如,3GPP TS 37.355)中的相关定义,此处不再赘述。另外,参数“ap-PRS-TriggerState-r17INTEGER(1..nrMaxTriggerStates-1-r17)”可以参见上述形式1的相关描述,此处不再赘述。
形式5:上述形式1-形式4是以一个PRS资源集为粒度来配置非周期PRS的配置信息。在形式5中,定位服务器可以以PRS资源为粒度来配置非周期PRS的配置信息。比如,可以新定义一个IE结构,在某一个PRS资源内配置该PRS资源为非周期PRS的资源,且指示该非周期PRS资源的触发状态以及序号。与上述形式1-形式4类似,不再赘述。
基于上述形式1-形式5,定位服务器可以向终端设备指示非周期PRS的配置信息以及触发状态,可以用于终端设备进行非周期PRS的接收与测量。
可选的,定位服务器还可以向终端设备发送位置信息请求消息(request location information),用来请求终端设备上报基于非周期PRS的测量结果。终端设备接收到该位置信息请求消息后,无需执行实际的测量,可以由网络设备通过控制信息触发终端设备进行非周期PRS的测量。
步骤302:定位服务器向网络设备发送一个或多个第二触发状态。
这里的一个或多个第二触发状态可以是上述一个或多个第一触发状态中的部分或全部,一个或多个第二触发状态是定位服务器触发的,待终端设备测量的一个或多个非周期PRS。比如,定位服务器向终端设备发送了触发状态1、触发状态2和触发状态3。定位服务器可以确定希望终端设备执行触发状态1所关联的非周期PRS的测量,那么定位服务器可以向网络设备发送触发状态1,由网络设备向终端设备指示测量。可选的,定位服务器可以通过定位激活(positioning activation)消息将上述一个或多个第二触发状态发送给网络设备。
需要说明的是,上述步骤301和步骤302并不限定执行顺序,可以先执行步骤301再执行步骤302,或者也可以先执行步骤302再执行步骤301,或者也可以同时执行步骤301和步骤302。
在一种可能的实现方式中,定位服务器可以向网络设备发送第一信息。该第一信息可以用于网络设备确定向终端设备发送的控制信息(down link control information,DCI)。该DCI中可以包含第一指示信息,第一指示信息可以用于指示上述一个或多个第二触发状态。其中,第一信息可以包括以下中的一个或多个:
1、终端设备的非周期PRS的触发状态个数。
这里的终端设备的非周期PRS的触发状态个数可以小于或等于定位服务器为终端设备确定的触发状态个数的总数量。比如,定位服务器向终端设备发送的一个或多个第一触发状态的数量为6个,那么定位服务器向网络设备发送第一信息中终端设备的触发状态的个数可以小于或等于6。其中,该终端设备的触发状态的个数可以用于确定第一指示信息所占用的比特数,例如log2(K+1),其中K为触发状态个数,+1是预留一个默认无触发的状态。比如,上述第一信息中终端设备的触发状态的个数为7时,网络设备可以确定第一指示信息所占的比特数为3,可以充分的指示一个默认的无触发的状态和上述7个触发状态。
2、一个或多个触发状态对应的非周期PRS的接收时间的指示信息。
这里的一个或多个触发状态对应的非周期PRS的接收时间的指示信息可以是上述第一触发状态对应的非周期PRS的接收时间的指示信息,或者也可以是上述第二触发状态对应的非周期PRS的接收时间的指示信息。
其中,该一个或多个触发状态对应的非周期PRS的接收时间的指示信息,可以是潜在的非周期PRS接收时间,而可以不用是具体的非周期PRS的接收时间。比如,定位服务器可以向网络设备发送非周期PRS可能会占用的时隙、或者可以向网络设备发送非周期PRS可能会占用的符号等。该一个或多个非周期PRS的接收时间的指示信息可以用于网络设备确定发送上述控制信息的时间集合或者时间范围等。
举例来说,定位服务器向网络设备发送第一信息中,一个或多个触发状态对应的非周期PRS的接收时间的指示信息指示索引为偶数的时隙。参阅图5A,非周期PRS的接收时间则可能为时隙2、时隙6等,索引为偶数的时隙。而根据网络设备为终端设备预先分配的下行时隙和上行时隙,网络设备可以确定需要在时隙1、时隙2、时隙5和时隙6等,下行时隙中发送DCI。因此,如果想要保证终端设备可以在接收到DCI后,能够接收到非周期PRS,且保证网络设备在下行时隙中发送DCI,那么网络设备需要配置合理的触发状态对应的非周期PRS的接收时间与控制信息的接收时间的时间差。例如网络设备配置触发状态对应的非周期PRS的接收时间与控制信息的接收时间的时间差为一个时隙,那么网络设备可以在时隙1或者时隙5发送DCI,触发终端设备相应地在时隙2或者时隙6进行非周期PRS的测量;或网络设备配置触发状态对应的非周期PRS的接收时间与控制信息的接收时间的时间差为0个时隙,那么网络设备可以在时隙2或者时隙6发送DCI,触发终端设备相应地在时隙2或者时隙6进行非周期PRS的测量;但是网络设备不能配置触发状态对应的非周期PRS的接收时间与控制信息的接收时间的时间差为2个时隙,因为此时若需要让终端在时隙6接收PRS,服务基站需要在时隙4发送DCI,但是时隙4是上行时隙,无法用于DCI发送。
3、一个或多个触发状态对应的非周期PRS的频点信息。
这里的一个或多个触发状态对应的非周期PRS的频点信息可以是上述第一触发状态对应的非周期PRS的频点信息,或者也可以是上述第二触发状态对应的非周期PRS的频点信息。
其中,该一个或多个触发状态对应的非周期PRS的频点信息可以是非周期PRS的潜在频点,而可以不用是具体的非周期PRS的频点。比如,定位服务器向网络设备指示的频点信息可以指示非周期PRS的频点与终端设备当前传输数据的频点为同频,或者为异频等。该频点信息可以用于网络设备确定发送上述控制信息的时间集合或者时间范围等。
举例来说,定位服务器向网络设备发送第一信息中,上述频点信息指示非周期PRS的频点与终端设备当前传输数据的频点为异频,那么终端设备接收DCI之后可能需要进行射频切换以接收并测量非周期PRS。而该射频切换的切换时间也会影响终端设备接收非周期PRS的接收时间。因此,网络设备可以提前向终端设备发送DCI,触发终端设备进行非周期PRS的测量,也可以给终端设备一些时间进行射频切换,从而可以提高终端设备准确接收非周期PRS的可能性。
4、请求的非周期PRS的测量量。
这里的测量量可以包括RSRP、RSRQ或者SINR、DTOA等,或者也可以是上述RSRP、 RSRQ或者SINR的量化值。
5、请求的非周期PRS的测量量的时延信息。
这里的时延信息可以用于指示定位服务器请求网络设备发送第一指示信息之后的第一时长内的非周期PRS的测量结果。
参阅图5B,定位服务器向网络设备发送的第一信息中请求的非周期PRS的测量量的时延信息为时长t 1。网络设备可以在时间t 0向终端设备发送DCI,则终端设备可以上报t 0-t 1时长内测量的非周期PRS的测量结果。
可选的,网络设备可以向定位服务器发送确认应答响应(acknowledge character,ACK),用以告知定位服务器已接收到上述第一信息。
基于上述方案,定位服务器可以向网络设备发送上述第一信息,网络设备可以通过上述第一信息确定向终端设备发送的控制信息,以触发终端设备进行非周期PRS的测量。
在一种可能的实现方式中,在定位服务器需要获取终端设备进行非周期PRS测量时,定位服务器可以触发按需PRS(on-demand PRS)流程。其中,定位服务器可以请求激活传输接入点(transmission reception point,TRP)发送非周期PRS。TRP确认按需PRS请求成功,并可以向定位服务器提供实际发送非周期PRS的发送时间。这里的非周期PRS发送时间可以认为是终端设备接收非周期PRS的接收时间。定位服务器可以将上述TRP实际发送非周期PRS的发送时间发送给网络设备,或者定位服务器可以根据上述TRP实际发送非周期PRS的发送时间,确定上述第一信息中的一个或多个触发状态对应的非周期PRS的接收时间的指示信息。
步骤303:网络设备向终端设备发送控制信息。
这里的控制信息可以是下行控制信息(down link control information,DCI)。该DCI中可以包含第一指示信息,第一指示信息可以用于指示上述一个或多个第二触发状态。该DCI可以用于触发终端设备执行非周期PRS的测量。其中,终端设备可以通过第一指示信息的取值,确定触发的非周期PRS的触发状态。例如,假设上述第一指示信息的取值为X,则可以表明该第一指示信息指示的触发状态为触发状态X或X-1,终端设备则可以基于触发状态X或者X-1所关联的非周期PRS的配置信息进行非周期PRS的测量。需要说明的是,如果第一指示信息的取值为X,且该第一指示信息指示的触发状态为X-1时,在X=0时表明不触发非周期PRS的测量。
应理解,上述第一指示信息的取值与触发状态的对应关系可以是定位服务器指示的,或者可以是网络设备自行确定并指示给终端设备的,或者也可以是通信协议规定的,本申请不做具体限定。
在一种可能的实现方式中,网络设备可以向终端设备发送第一配置信息,该第一配置信息可以用于指示上述控制信息的配置信息。其中,网络设备可以根据前述来自定位服务器的第一信息,确定第一配置信息。该第一配置信息可以包括以下中的一个或多个:
1、第一指示信息所占的比特数。
其中,该第一指示信息所占的比特数可以用于终端设备确定控制信息中第一指示信息所占的比特数,可以使得终端设备能够根据该比特数确定第一指示信息的取值,从而确定该第一指示信息所指示的触发状态。
2、第一指示信息的起始比特位置。
该第一指示信息的起始比特位置可以用于终端设备确定从控制信息中哪一个比特开 始解析第一指示信息。
3、一个或多个第二触发状态对应的非周期PRS的接收时间的配置信息。
其中,该接收时间的配置信息可以是一个或多个第二触发状态对应的非周期PRS的接收时间与包含触发状态指示信息的控制信息的接收时间的时间差。可选的,该配置信息可以指示每一个第二触发状态对应的非周期PRS的接收时间与控制信息的接收时间的时间差。在根据上述配置信息确定一个第二触发状态对应的非周期PRS包含多个接收时间时,可以以第一个时间作为非周期PRS的接收时间。比如,根据上述配置信息确定一个第二触发状态所对应的非周期PRS包含了多个接收时隙,则可以以第一个时隙作为非周期PRS的接收时隙。
可选的,这里的一个或多个第二触发状态所对应的非周期PRS的接收时间的配置信息可以是定位服务器通过on-demand PRS流程确定并发送给网络设备的。或者,该接收时间的配置信息也可以是网络设备通过与邻区网络设备进行信息交互确定的。比如,网络设备可以向邻区网络设备发送请求消息,该请求消息用于请求邻区网络设备的非周期PRS的发送时间,或者该请求消息可以用于请求邻区网络设备的非周期PRS的配置信息。邻区网络设备可以根据该请求消息向网络设备发送非周期PRS的发送时间,或者非周期PRS的配置信息。网络设备则可以根据上述非周期PRS的发送时间或者非周期PRS的配置信息,确定上述一个或多个第二触发状态对应的非周期PRS的接收时间的配置信息。
4、一个或多个第二触发状态对应的测量间隙(measurement gap)配置信息。
这里的测量间隙配置信息用于终端设备接收非周期PRS。可选的,在该测量间隙内,终端设备可以不进行数据的传输,而只进行非周期PRS的测量。该测量间隙配置信息可以在终端设备接收到第一指示信息时被触发。
5、用于监听DCI的CORESET配置信息。
这里的CORESET配置信息可以用于终端设备根据该CORESET盲检控制信息。
6、用于监听DCI的搜索空间(search space)配置,该search space可以是终端设备设级别(UE-specific)的search space,对应的DCI格式为下行(down link,DL)/上行(up link,UL)调度DCI。或者,该search space也可以是公共级别(common)的search space,对应DCI格式为组公共(group common)DCI,该group common DCI不做数据调度。上述search space可以用于终端设备盲检控制信息。
7、一个或多个非周期PRS的测量量。
其中,这里的测量量可以是定位服务器请求的测量量,可以参见上述第一信息中4所示的相关描述。
8、上报的测量量的个数。
其中,一个测量量用于指示一个传输接入点的非周期PRS的测量量。应理解,上报的测量量的个数的最小值可以与定位服务所需的测量基站的数量相同。
9、上报所一个或多个非周期PRS的测量结果所使用的信道的配置信息。
其中,信道的配置信息包含信道类型或资源配置信息。其中,信道类型可以包括物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)或媒体接入与控制(media access control,MAC)控制元素(control elements,CE)。资源配置信息可以包括时域资源和频域资源。其中,终端设备可以通过信道类型所指示的信道,以及采用资源配置信息所配置的时频资源,将非周期PRS的测量结 果上报给网络设备。
步骤304:终端设备进行非周期PRS测量。
其中,终端设备可以基于上述DCI中第一指示信息指示的一个或多个第二触发状态所关联的一个或多个非周期PRS的配置信息,对一个或多个非周期PRS进行测量。比如,终端设备可以测量PRS的参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)或信号噪声干扰比(signal to interference plus noise ratio,SINR)。或者,终端设备也可以测量PRS的RTOA等,本申请不做具体限定。
在一种可能的实现方式中,终端设备可以确定非周期PRS的接收时间,并在该接收时间接收非周期PRS。其中,终端设备可以根据上述一个或多个第二触发状态所关联的一个或多个非周期PRS的配置信息确定非周期PRS的接收时间。可选的,如果上述一个或多个非周期PRS的配置信息中并未指示非周期PRS的接收时间,那么终端设备可以根据上述第一配置信息,确定非周期PRS的接收时间。以下,对终端设备根据第一配置信息确定非周期PRS的接收时间的情况进行说明,可以包括以下情况1-情况3。
情况1、第一配置信息包含一个或多个第二触发状态对应的非周期PRS的接收时间的配置信息。
其中,终端设备可以根据每一个第二触发状态对应的非周期PRS的接收时间的配置信息,确定非周期PRS的接收时间。该配置信息可以是DCI的接收时间与非周期PRS的接收时间之间的时间差。
参阅图6A,终端设备在时隙t 0接收到了DCI,且第一配置信息中指示的非周期PRS的接收时间的配置信息指示的时隙差为3。那么终端设备可以确定非周期PRS的接收时间为时隙与t 0相差3个时隙的t 1
情况2、第一配置信息包含一个或多个非周期触发状态对应的非周期PRS的测量间隔配置信息。
其中,终端设备可以根据每一个第二触发状态对应的非周期PRS的测量间隔配置信息,确定非周期PRS接收时间。
参阅图6B,终端设备在时隙t 0接收到了DCI,且第一配置信息中指示的一个测量间隔配置信息如图6B中的黑色矩形所示。因此,终端设备可以确定在时隙t 0之后的第一个测量间隔为非周期PRS的接收时间。
情况3、第一配置信息包含一个或多个第二触发状态对应的非周期PRS的接收时间的配置信息和一个或多个非周期触发状态对应的非周期PRS的测量间隔配置信息。
终端设备可以基于一个或多个第二触发状态中的一个对应的非周期PRS的接收时间的配置信息和测量间隙配置信息,确定一个或多个非周期PRS。可选的,终端设备可以根据接收时间的配置信息和测量间隔配置信息的优先级,确定非周期PRS的接收时间。其中,优先级可以是网络设备指示的,或者也可以是通信协议规定的,本申请不做具体限定。
或者,终端设备可以确定上述接收时间的配置信息所指示的接收时间,以及上述测量间隔配置信息所指示的时间,哪一个时间与DCI的接收时间最接近。终端设备可以确定最接近DCI的接收时间的时间作为非周期PRS的接收时间。举例来说,参阅图6C,终端设 备在时隙t 0接收到了DCI,且上述接收时间的配置信息指示非周期PRS的接收时间与DCI的接收时间的时间差为5个时隙,也就是说非周期PRS的接收时间为t 1。而上述测量间隔配置信息指示的测量间隔中第一个时隙为t 2,与DCI的接收时间的时间差为3个时隙,因此终端设备可以确定根据测量间隔配置信息确定非周期PRS的接收时间,也就是说时隙t 2可以是非周期PRS的接收时间。
可选的,终端设备也可以确定上述接收时间的配置信息所指示的接收时间,以及上述测量间隔配置信息所指示的时间,哪一个时间与DCI的接收时间相距最远。终端设备可以确定与DCI的接收时间的相距最远的时间作为非周期PRS的接收时间,与上述方法类似,不再赘述。
需要说明的是,终端设备可以根据上述情况1-情况3中的方法确定非周期PRS的接收时间,从而接收非周期PRS,并对非周期PRS进行测量。
步骤305:终端设备向网络设备发送非周期PRS的测量结果。
其中,终端设备可以通过上行控制信息(up link control information,UCI)将非周期PRS的测量结果上报给网络设备。
可选的,当DCI为下行数据调度DCI时,PRS的测量报告可以通过PUCCH上报给网络设备。可选的,PRS的测量报告可以与混合自动重传(hybrid automatic repeat request,HARQ)-确认应答响应(acknowledge character,ACK)复接,或者也可以只包含PRS的测量报告。其中,复接可以是指将PRS的测量报告的比特序列与HARQ-ACK的比特序列接在一起,使其成为一个比特流。
当DCI为上行数据调度DCI时,PRS的测量报告可以通过DCI调度的PUSCH上报。可选的,PRS的测量报告可以与潜在的上行共享传输信道(up link shared channel,UL-SCH)、信道状态信息(channel state information,CSI)、HARQ-ACK复接,或者也可以只包含PRS测量量报告。
当DCI为group common DCI时,PRS的测量报告可以通过MAC CE或者RRC消息上报。
步骤306:网络设备向定位服务器发送非周期PRS的测量结果。
网络设备可以通过测量信息响应(measurement information response)消息,将上述非周期PRS的测量结果上报给定位服务器。
可选的,上述非周期PRS的测量结果可以是由终端设备上报给定位服务器的。比如,执行上述步骤304之后,可以执行下述步骤307。
步骤307:终端设备向定位服务器发送非周期PRS的测量结果。
其中,终端设备可以通过提供位置信息(provide location information)消息,将非周期PRS的测量结果上报给定位服务器。
需要说明的是,上述非周期PRS的测量结果中,由终端设备上报给定位服务器的方法可以减少定位时延。比如,定位服务器在向终端设备发送一个或多个触发状态和一个或多个非周期PRS的配置信息时,可以向终端设备指示一个定时时长,终端设备需要在该定时时长内向定位服务器反馈非周期PRS的测量结果。由于该定时时长可以是定位服务器控制的,因此可以减少定位时长。但是,这种方法可能会带来定位失败的问题,比如终端设备可能无法在定时时长内完成非周期PRS的测量。上述由网络设备向定位服务器上报非周期PRS的测量结果的方法中,定位服务器可以不向终端设备发送上述定时时长,由网络设备 根据网络的负载,选择合适的时间想定位服务器上报非周期PRS的测量结果,这样的方法可以提高定位服务成功的可能性,但是同时也增大了定位时延。
以下,结合具体实施例对本申请实施例提供的技术方案进行说明。
实施例1:
参阅图7,为本申请实施例中一种非周期PRS的触发方法的示例性流程图,可以包括以下步骤。应理解,本申请实施例中可以执行如图7所示的全部步骤,或者本领域技术人员可以从图7所示的步骤中选择部分步骤执行以构成一个完整的实施例。
步骤701:定位服务器向终端设备发送提供辅助信息(provide assistance data)消息。
其中,该消息中可以携带一个或多个触发状态和一个或多个非周期PRS的配置信息。上述一个或多个触发状态和一个或多个非周期PRS的配置信息可以参见如图3所示的方法实施例中的相关说明,此处不再赘述。
步骤702:定位服务器向终端设备发送位置信息请求(request location information)消息。
其中,该位置信息请求用以请求终端设备上报基于非周期PRS的测量结果。终端设备收到该位置信息请求消息后,无需执行实际测量。
步骤703:定位服务器向网络设备发送测量请求(measurement request)消息。
该测量请求消息中可以携带第一信息。其中,上述第一信息可以参见如图3所示的方法实施例中的相关说明,此处不再赘述。
步骤704:网络设备向终端设备发送RRC重配置(reconfiguration)消息。
这里的RRC重配置消息可以参见上述如图3所示的方法实施例中的第一配置信息的相关描述,此处不再赘述。
可选的,网络设备可以执行下述步骤705。
步骤705:网络设备向定位服务器发送ACK。
这里的ACK可以用于告知定位服务器已经接收到上述第一信息。应理解,在图7所示的实施例中,可以先执行步骤704再执行步骤705,或者可以先执行步骤705再执行步骤704,或者可以同时执行步骤704和步骤705。
步骤706:定位服务器通过on-demand PRS流程,请求邻区网络设备发送非周期PRS,并确定非周期PRS的发送时间。
其中,on-demand流程可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
步骤707:定位服务器向网络设备发送定位激活(positioning activation)消息。
其中,该定位触发消息可以包括上述on-demand PRS流程确定的非周期PRS的发送时间和一个或多个触发状态,上述非周期PRS的发送时间和一个或多个触发状态可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。该定位触发消息可以用于指示网络设备触发终端设备进行非周期PRS的测量。
可选的,网络设备可以执行下述步骤708。
步骤708:网络设备向定位服务器发送ACK。
其中,该ACK用于告知定位服务器已经接收到上述定位激活消息。
步骤709:网络设备向终端设备发送DCI。
这里的DCI可以参见如图3所示的方法实施例中的相关说明,此处不再赘述。
其中,网络设备可以先执行步骤708再执行步骤709,或者可以先执行步骤709再执行步骤708,或者可以同时执行步骤708和步骤709,本申请不做具体限定。
步骤710:终端设备进行非周期PRS的测量。
其中,终端设备可以基于步骤709中DCI包含的一个或多个触发状态所关联的非周期PRS的配置信息进行非周期PRS的测量。
步骤711:终端设备向定位服务器发送提供定位信息(provide location information)消息。
其中,该提供定位信息消息中可以包含非周期PRS的测量结果。
步骤712:定位服务器处理得到终端设备的位置信息。
其中,定位服务器可以基于上述终端设备上报的非周期PRS的测量结果,处理得到终端设备的位置信息。比如,定位服务器可以基于DL-TDOA定位技术处理得到终端设备的位置信息。需要说明的是,定位服务器也可以采用其他的定位技术确定终端设备的位置信息,本申请不做具体限定。
实施例2、
参阅图8,为本申请实施例提供给的一种非周期PRS的触发方法的示例性流程图,可以包括以下步骤。应理解,本申请实施例中可以执行如图8所示的全部步骤,或者本领域技术人员可以从图8所示的步骤中选择部分步骤执行以构成一个完整的实施例。
步骤801:定位服务器向终端设备发送提供辅助信息(provide assistance data)消息。
其中,该消息中可以携带一个或多个触发状态和一个或多个非周期PRS的配置信息。上述一个或多个触发状态和一个或多个非周期PRS的配置信息可以参见如图3所示的方法实施例中的相关说明,此处不再赘述。
步骤802:定位服务器向网络设备发送测量请求(measurement request)消息。
该测量请求消息中可以携带第一信息。其中,上述第一信息可以参见如图3所示的方法实施例中的相关说明,此处不再赘述。
步骤803:网络设备向终端设备发送RRC重配置(reconfiguration)消息。
这里的RRC重配置消息可以参见上述如图3所示的方法实施例中的第一配置信息的相关描述,此处不再赘述。
步骤804:定位服务器通过on-demand PRS流程,请求邻区网络设备发送非周期PRS,并确定非周期PRS的发送时间。
其中,on-demand流程可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
步骤805:定位服务器向网络设备发送定位激活(positioning activation)消息。
其中,该定位激活消息中可以携带一个或多个触发状态。这里的一个或多个触发状态可以用于指示终端设备需要测量的非周期PRS。上述定位激活消息中也可以携带有非周期PRS的发送时间,可以参见如图3所示的方法实施例中的相关说明,此处不再赘述。
可选的,网络设备可以执行下述步骤806。
步骤806:网络设备向定位服务器发送ACK。
这里的ACK可以用于通知定位服务器已经接收到上述定位激活消息。
步骤807:网络设备向终端设备发送DCI。
这里的DCI可以用于触发终端设备进行非周期PRS的测量,可以参见如图3所示的方法实施例中的相关说明,此处不再赘述。
其中,网络设备可以先执行步骤806再执行步骤807,或者可以先执行步骤807再执行步骤806,或者可以同时执行步骤806和步骤807。
步骤808:终端设备进行非周期PRS的测量。
其中,终端设备可以基于上述DCI中包含的一个或多个触发状态所关联的非周期PRS的配置信息,进行非周期PRS的测量。
步骤809:终端设备向网络设备发送UCI。
其中,该UCI中可以包含非周期PRS的测量结果。
步骤810:网络设备向定位服务器发送测量响应(measurement response)消息。
其中,该测量请求响应消息中可以包含终端设备上报的非周期PRS的测量结果。
步骤811与上述步骤712相同。
基于与上述方法的同一技术构思,如图9所示,提供了一种装置900。装置900能够执行上述方法中由网络设备侧、定位服务器侧或终端设备侧执行的各个步骤,为了避免重复,此处不再详述。
装置900包括:收发单元910、处理单元920,可选的,还包括存储单元930;处理单元920可以分别与存储单元930和收发单元910相连,所述存储单元930也可以与收发单元910相连。其中,处理单元920可以与存储单元930集成。收发单元910也可以称为收发器、收发机、收发装置等。处理单元920也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元910用于执行上述方法实施例中网络设备侧、定位服务器侧和/或终端设备侧的发送操作和接收操作,处理单元920用于执行上述方法实施例中网络设备侧、定位服务器侧和/或终端设备侧上除了收发操作之外的其他操作。例如,在一种实现方式中,收发单元910用于执行图3中的步骤301-步骤303中和步骤305-步骤307中网络设备侧、定位服务器侧和终端设备侧的收发操作,和/或收发单元910还用于执行本申请实施例中网络设备侧、定位服务器侧和/或终端设备侧的其他收发步骤。处理单元920,用于执行图3中的步骤304中终端设备侧的处理操作,和/或处理单元920还用于执行本申请实施例中网络设备侧、定位服务器侧和/或终端设备侧的其他处理步骤。
所述存储单元930,用于存储计算机程序;
示例的,所述装置900执行上述方法中终端设备执行的各个步骤时,所述收发单元910,用于接收来自定位服务器的一个或多个非周期PRS的配置信息和一个或多个第一触发状态。所述收发单元910,还用于来自网络设备的控制信息;所述控制信息包含第一指示信息。所述收发单元910,还用于基于所述第一指示信息所指示的第二触发状态所关联的一个或多个非周期PRS的配置信息,接收一个或多个非周期PRS;所述处理单元920,用于测量 所述一个或多个非周期PRS。其中,所述非周期PRS的配置信息、第一触发状态、第二触发状态和第一指示信息可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述收发单元910还用于:接收来自所述网络设备的第一配置信息。所述第一配置信息可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述收发单元910还用于:接收来自所述网络设备的所述一个或多个第二触发状态对应的测量间隙配置信息。所述测量间隙配置信息可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述处理单元920还用于:基于所述一个或多个第二触发状态中的一个对应的非周期PRS的接收时间,确定所述一个或多个非周期PRS的接收时间;或者,基于所述一个或多个第二触发状态中的一个对应的非周期PRS的接收时间,确定所述一个或多个非周期PRS的接收时间;或者,基于所述一个或多个第二触发状态中的一个对应的非周期PRS的接收时间和所述测量间隙配置信息,确定所述一个或多个非周期PRS的接收时间。
在一种设计中,所述收发单元910还用于:将所述一个或多个第二非周期PRS的测量结果,发送给定位服务器。
在一种设计中,所述收发单元910还用于:将所述一个或多个第二非周期PRS的测量结果,发送给所述网络设备。
当该装置为芯片类的装置或者电路时,该装置可以包括收发单元910和处理单元920。其中,所述收发单元910可以是输入输出电路和/或通信接口;处理单元920为集成的处理器或者微处理器或者集成电路。所述收发单元910可以输入数据和输出数据,处理单元920可以根据输入数据确定输出数据。例如,收发单元910可以输入一个或多个非周期PRS的配置信息和一个或多个第一触发状态,以及控制信息。所述处理单元920可以基于所述第一指示信息所指示的第二触发状态所关联的一个或多个非周期PRS的配置信息,测量所述一个或多个非周期PRS。可选的,收发单元910可以输出非周期PRS的测量结果。
示例性的,所述装置900用于执行由网络设备行的各个步骤时,所述收发单元910,用于接收来自定位服务器的一个或多个触发状态。所述处理单元920,用于基于所述一个或多个触发状态生成控制信息;所述控制信息包含第一指示信息。所述收发单元910,还用于向终端设备发送所述控制信息。其中,所述控制信息、第一指示信息和一个或多个触发状态可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述收发单元910还用于:向所述终端设备发送第一配置信息;其中,所述第一配置信息可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述收发单元910还用于:接收来自所述定位服务器的所述一个或多个触发状态对应的非周期PRS接收时间。所述非周期PRS接收时间可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述收发单元910还用于:接收来自邻区网络设备的消息,该消息可以用于确定所述一个或多个触发状态对应的非周期PRS的发送时间。所述非周期PRS的发送时间可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述收发单元910还用于:接收来自所述定位服务器的第一信息;所述第一信息可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
当该装置为芯片类的装置或者电路时,该装置可以包括收发单元910和处理单元920。其中,所述收发单元910可以是输入输出电路和/或通信接口;处理单元920为集成的处理器或者微处理器或者集成电路。所述收发单元910可以输入数据和输出数据,处理单元920可以根据输入数据确定输出数据。例如,收发单元910可以输入一个或多个触发状态。可选的,所述处理单元920可以根据输入的数据,确定输出数据,如控制信息。所述收发单元910可以输出控制信息。
示例性的,所述装置900用于执行由定位服务器执行的各个步骤时,所述收发单元910,用于向终端设备发送一个或多个非周期PRS的配置信息和一个或多个第一触发状态;所述处理单元920,用于基于所述一个或多个第一触发状态生成一个或多个第二触发状态;所述收发单元910,还用于向网络设备发送所述一个或多个第二触发状态。所述非周期PRS的配置信息、第一触发状态和第二触发状态可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。
在一种设计中,所述收发单元910还用于:向所述网络设备发送第一信息;所述第一信息可以参见如图3所示的方法实施例中的相关描述,此处不再赘述。所述收发单元910还用于:接收来自所述终端设备的所述一个或多个第二触发状态所关联的一个或多个非周期PRS的测量结果。
当该装置为芯片类的装置或者电路时,该装置可以包括收发单元910和处理单元920。其中,所述收发单元910可以是输入输出电路和/或通信接口;处理单元920为集成的处理器或者微处理器或者集成电路。所述收发单元910可以输入数据和输出数据,处理单元920可以根据输入数据确定输出数据。例如,收发单元910可以输出一个或多个非周期PRS的配置信息和一个或多个第一触发状态。所述处理单元920可以根据一个或多个非周期PRS的配置信息和一个或多个第一触发状态,确定一个或多个第二触发状态。收发单元910可以输出数据,如一个或多个第二触发状态。
如图10所示为本申请实施例提供的装置1000,用于实现上述方法中终端设备侧、网络设备侧和/或定位服务器侧的功能。该装置用于实现上述方法中终端设备侧功能时,该装置可以是终端设备,也可以是类似终端设备功能的芯片,或者是能够和终端设备匹配使用的装置。该装置用于实现上述方法中网络设备的功能时,该装置可以是网络设备,也可以是类似网络设备功能的芯片,或者是能够和网络设备匹配使用的装置。该装置用于实现上述方法中定位服务器的功能时,该装置可以是定位服务器,也可以是类似定位服务器功能的芯片,或者是能够和定位服务器匹配使用的装置。其中,上述定位服务器可以是LMF。
装置1000包括至少一个处理器1020,用于实现本申请实施例提供的方法中终端设备侧、网络设备侧和/或定位服务器侧的功能。装置1000还可以包括通信接口1010。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1010用于装置1000中的装置可以和其它设备进行通信。所述处理器1020可以完成如图9所示的处理单元920的功能,所述通信接口1010可以完成如图9所示的收发单元910的功能。
装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器 1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及通信接口1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧、网络设备侧和/或定位服务器侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被电子装置(例如,计算机,处理器,或者安装有处理器的装置等)执行时,使得所述电子装置执行上述方法实施例中终端设备侧、网络设备侧和/或定位服务器侧的方法。
作为本实施例的另一种形式,提供一种通信系统,该系统可以包括上述至少一个网络设备和上述至少一个定位服务器。
应理解,本发明实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (42)

  1. 一种非周期定位参考信号PRS的触发方法,其特征在于,包括:
    终端设备接收来自定位服务器的一个或多个非周期PRS的配置信息和一个或多个第一触发状态;所述一个或多个非周期PRS的配置信息中的每一个与一个或多个第一触发状态关联;
    所述终端设备接收来自网络设备的控制信息;所述控制信息包含第一指示信息,所述第一指示信息用于指示一个或多个第二触发状态;所述一个或多个第二触发状态是所述一个或多个第一触发状态中的部分或全部;
    所述终端设备基于所述第一指示信息所指示的第二触发状态所关联的一个或多个非周期PRS的配置信息,接收一个或多个非周期PRS。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述终端设备接收来自所述网络设备的第一配置信息;其中,所述第一配置信息中包含以下中的一个或多个:
    所述第一指示信息所占用的比特数、所述第一指示信息的起始比特位置、或所述一个或多个第二触发状态对应的非周期PRS的接收时间的配置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述接收时间的配置信息为所述一个或多个第二触发状态对应的非周期PRS的接收时间与所述控制信息的接收时间之间的时间差。
  4. 根据权利要求2或3所述的方法,其特征在于,还包括:
    所述终端设备接收来自所述网络设备的所述一个或多个第二触发状态对应的测量间隙配置信息;所述测量间隙配置信息用于所述终端设备接收非周期PRS。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    所述终端设备基于所述测量间隙配置信息,确定所述一个或多个非周期PRS的接收时间;或者
    所述终端设备基于所述一个或多个第二触发状态中的一个对应的非周期PRS的接收时间和所述测量间隙配置信息,确定所述一个或多个非周期PRS的接收时间。
  6. 根据权利要求2-4任一所述的方法,其特征在于,所述第一配置信息还包括以下中的至少一个:
    所述一个或多个非周期PRS的测量量、上报的测量量的个数;其中,一个测量量用于指示一个传输接入点的非周期PRS的测量量、或者上报所述一个或多个非周期PRS的测量结果所使用的信道的配置信息;所述信道的配置信息包含信道类型或资源配置信息。
  7. 根据权利要求1-5任一所述的方法,其特征在于,还包括:
    所述终端设备基于接收到的所述一个或多个非周期PRS,进行非周期PRS测量;
    所述终端设备将所述一个或多个非周期PRS的测量结果,发送给定位服务器。
  8. 根据权利要求1-6任一所述的方法,其特征在于,还包括:
    所述终端设备基于接收到的所述一个或多个非周期PRS,进行非周期PRS测量;
    所述终端设备将所述一个或多个非周期PRS的测量结果,发送给所述网络设备。
  9. 一种非周期定位参考信号PRS的触发方法,其特征在于,包括:
    网络设备接收来自定位服务器的一个或多个触发状态;所述一个或多个触发状态中的每一个与一个或多个非周期PRS的配置信息关联;
    所述网络设备向终端设备发送控制信息;所述控制信息包含第一指示信息,所述第一指示信息用于指示所述一个或多个触发状态。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送第一配置信息;其中,所述第一配置信息中包含以下中的一个或多个:
    所述第一指示信息所占用的比特数、所述第一指示信息的起始比特位置、或所述一个或多个触发状态对应的非周期PRS的接收时间的配置信息。
  11. 根据权利要求10所述的方法,其特征在于,所述接收时间的配置信息为所述一个或多个触发状态对应的非周期PRS的接收时间与所述控制信息的接收时间之间的时间差。
  12. 根据权利要求9或10所述的方法,其特征在于,还包括:
    所述网络设备接收来自所述定位服务器的所述一个或多个触发状态对应的非周期PRS接收时间。
  13. 根据权利要求9或10所述的方法,其特征在于,还包括:
    所述网络设备接收来自邻区网络设备的消息;所述消息用于确定所述一个或多个触发状态对应的非周期PRS的发送时间。
  14. 根据权利要求11所述的方法,其特征在于,还包括:
    所述网络设备接收来自所述定位服务器的第一信息;所述第一信息包括以下中的一个或多个:
    所述终端设备的非周期PRS的触发状态个数、所述一个或多个触发状态对应的非周期PRS的接收时间的指示信息、或所述一个或多个触发状态对应的非周期PRS的频点信息;其中,所述终端设备的非周期PRS的触发状态个数用于确定指示所述第一指示信息所占用的比特数、所述一个或多个触发状态对应的非周期PRS的接收时间的指示信息用于确定发送所述第一指示信息的时间、所述非周期PRS的频点信息用于确定发送所述第一指示信息的时间。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息还包括以下中的一个或多个:
    请求的非周期PRS的测量量、或请求的非周期PRS的测量量的时延信息;所述时延信息用于指示请求所述网络设备发送所述第一指示信息之后的第一时长内的非周期PRS的测量结果。
  16. 根据权利要求11-15任一所述的方法,其特征在于,所述第一指示信息中还包括以下中的一个或多个:
    所述一个或多个触发状态对应的测量间隙配置信息;所述测量间隙配置信息用于所述终端设备接收非周期PRS、请求的所述非周期PRS的测量量、上报的非周期PRS的测量量的个数;其中,一个测量量用于指示一个传输接入点的非周期PRS的测量量、或者上报非周期PRS的测量结果所使用的信道的配置信息;所述信道的配置信息包含信道类型或资源配置信息。
  17. 一种非周期定位参考信号PRS的触发方法,其特征在于,包括:
    定位服务器向终端设备发送一个或多个非周期PRS的配置信息和一个或多个第一触发状态;所述一个或多个非周期PRS的配置信息中的每一个与一个或多个第一触发状态关联;
    所述定位服务器向网络设备发送一个或多个第二触发状态;所述一个或多个第二触发状态是所述一个或多个第一触发状态中的部分或全部;所述一个或多个第二触发状态中的每一个用于所述网络设备触发终端设备进行非周期PRS的测量。
  18. 根据权利要求17所述的方法,其特征在于,还包括:
    所述定位服务器向所述网络设备发送第一信息;所述第一信息包括以下中的一个或多个:
    所述终端设备的非周期PRS的触发状态个数、所述一个或多个第二触发状态对应的非周期PRS的接收时间的指示信息、或所述一个或多个第二触发状态对应的非周期PRS的频点信息;其中,所述终端设备的非周期PRS的触发状态个数用于确定第一指示信息所占用的比特数;所述第一指示信息用于向所述终端设备指示的所述一个或多个第二触发状态;所述一个或多个第二触发状态对应的非周期PRS的接收时间的指示信息用于确定发送所述第一指示信息的时间、所述一个或多个第二触发状态对应的非周期PRS的频点信息用于确定发送所述第一指示信息的时间。
  19. 根据权利要求18所述的方法,其特征在于,所述第一信息还包括以下中的一个或多个:
    请求的非周期PRS的测量量、或请求的非周期PRS的测量量的时延信息;所述时延信息用于指示请求所述网络设备发送所述第一指示信息之后的第一时长内的非周期PRS的测量结果。
  20. 根据权利要求17-19任一所述的方法,其特征在于,还包括:
    所述定位服务器接收来自所述终端设备的所述一个或多个第二触发状态所关联的一个或多个非周期PRS的测量结果。
  21. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于接收来自定位服务器的一个或多个非周期PRS的配置信息和一个或多个第一触发状态;所述一个或多个非周期PRS的配置信息中的每一个与一个或多个第一触发状态关联;
    所述收发单元,还用于来自网络设备的控制信息;所述控制信息包含第一指示信息,所述第一指示信息用于指示一个或多个第二触发状态;所述一个或多个第二触发状态是所述一个或多个第一触发状态中的部分或全部;
    所述收发单元,还用于基于所述第一指示信息所指示的第二触发状态所关联的一个或多个非周期PRS的配置信息,接收一个或多个非周期PRS;
    所述处理单元,用于测量所述一个或多个非周期PRS。
  22. 根据权利要求21所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述网络设备的第一配置信息;其中,所述第一配置信息中包含以下中的一个或多个:
    所述第一指示信息所占用的比特数、所述第一指示信息的起始比特位置、或所述一个 或多个第二触发状态对应的非周期PRS的接收时间的配置信息。
  23. 根据权利要求22所述的装置,其特征在于,所述接收时间的配置信息为所述一个或多个第二触发状态对应的非周期PRS的接收时间与所述控制信息的接收时间之间的时间差。
  24. 根据权利要求22或23所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述网络设备的所述一个或多个第二触发状态对应的测量间隙配置信息;所述测量间隙配置信息用于所述装置接收非周期PRS。
  25. 根据权利要求24所述的装置,其特征在于,所述处理单元还用于:
    基于所述一个或多个第二触发状态中的一个对应的非周期PRS的接收时间,确定所述一个或多个非周期PRS的接收时间;或者
    基于所述一个或多个第二触发状态中的一个对应的非周期PRS的接收时间和所述测量间隙配置信息,确定所述一个或多个非周期PRS的接收时间。
  26. 根据权利要求22-25任一所述的装置,其特征在于,所述第一配置信息还包括以下中的至少一个:
    所述一个或多个非周期PRS的测量量、上报的测量量的个数;其中,一个测量量用于指示一个传输接入点的非周期PRS的测量量、或者上报所述一个或多个非周期PRS的测量结果所使用的信道的配置信息;所述信道的配置信息包含信道类型或资源配置信息。
  27. 根据权利要求21-25任一所述的装置,其特征在于,所述收发单元还用于:
    将所述一个或多个第二非周期PRS的测量结果,发送给定位服务器。
  28. 根据权利要求21-26任一所述的装置,其特征在于,所述收发单元还用于:
    将所述一个或多个第二非周期PRS的测量结果,发送给所述网络设备。
  29. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于接收来自定位服务器的一个或多个触发状态;所述一个或多个触发状态中的每一个与一个或多个非周期PRS的配置信息关联;
    所述处理单元,用于基于所述一个或多个触发状态生成控制信息;所述控制信息包含第一指示信息,所述第一指示信息用于指示所述一个或多个触发状态;
    所述收发单元,还用于向终端设备发送所述控制信息。
  30. 根据权利要求29所述的装置,其特征在于,所述收发单元还用于:
    向所述终端设备发送第一配置信息;其中,所述第一配置信息中包含以下中的一个或多个:
    所述第一指示信息所占用的比特数、所述第一指示信息的起始比特位置、或所述一个或多个触发状态对应的非周期PRS的接收时间的配置信息。
  31. 根据权利要求30所述的装置,其特征在于,所述接收时间的配置信息为所述一个或多个触发状态对应的非周期PRS的接收时间与所述控制信息的接收时间之间的时间差。
  32. 根据权利要求30或31所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述定位服务器的所述一个或多个触发状态对应的非周期PRS接收时间。
  33. 根据权利要求30或31所述的装置,其特征在于,所述收发单元还用于:
    接收来自邻区网络设备的消息所述消息用于确定所述一个或多个触发状态对应的非周期PRS的发送时间。
  34. 根据权利要求31所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述定位服务器的第一信息;所述第一信息包括以下中的一个或多个:
    所述终端设备的非周期PRS的触发状态个数、所述一个或多个触发状态对应的非周期PRS的接收时间的指示信息、或所述一个或多个触发状态对应的非周期PRS的频点信息;其中,所述终端设备的非周期PRS的触发状态个数用于确定指示所述第一指示信息所占用的比特数、所述一个或多个触发状态对应的非周期PRS的接收时间的指示信息用于确定发送所述第一指示信息的时间、所述非周期PRS的频点信息用于确定发送所述第一指示信息的时间。
  35. 根据权利要求34所述的装置,其特征在于,所述第一信息还包括以下中的一个或多个:
    请求的非周期PRS的测量量、或请求的非周期PRS的测量量的时延信息;所述时延信息用于指示请求所述装置发送所述第一指示信息之后的第一时长内的非周期PRS的测量结果。
  36. 根据权利要求31-35任一所述的装置,其特征在于,所述第一指示信息中还包括以下中的一个或多个:
    所述一个或多个触发状态对应的测量间隙配置信息;所述测量间隙配置信息用于所述终端设备接收非周期PRS、请求的所述非周期PRS的测量量、上报的非周期PRS的测量量的个数;其中,一个测量量用于指示一个传输接入点的非周期PRS的测量量、或者上报非周期PRS的测量结果所使用的信道的配置信息;所述信道的配置信息包含信道类型或资源配置信息。
  37. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于向终端设备发送一个或多个非周期PRS的配置信息和一个或多个第一触发状态;所述一个或多个非周期PRS的配置信息中的每一个与一个或多个第一触发状态关联;
    所述处理单元,用于基于所述一个或多个第一触发状态生成一个或多个第二触发状态;所述一个或多个第二触发状态是所述一个或多个第一触发状态中的部分或全部;
    所述收发单元,还用于向网络设备发送所述一个或多个第二触发状态;所述一个或多个第二触发状态中的每一个用于所述网络设备触发终端设备进行非周期PRS的测量。
  38. 根据权利要求37所述的装置,其特征在于,所述收发单元还用于:
    向所述网络设备发送第一信息;所述第一信息包括以下中的一个或多个:
    所述终端设备的非周期PRS的触发状态个数、所述一个或多个第二触发状态对应的非周期PRS的接收时间的指示信息、或所述一个或多个第二触发状态对应的非周期PRS的频点信息;其中,所述终端设备的非周期PRS的触发状态个数用于确定第一指示信息所占用的比特数;所述第一指示信息用于向所述终端设备指示的所述一个或多个第二触发状态;所述一个或多个第二触发状态对应的非周期PRS的接收时间的指示信息用于确定发送所述第一指示信息的时间、所述一个或多个第二触发状态对应的非周期PRS的频点信息用于确定发送所述第一指示信息的时间。
  39. 根据权利要求38所述的装置,其特征在于,所述第一信息还包括以下中的一个或多个:
    请求的非周期PRS的测量量、或请求的非周期PRS的测量量的时延信息;所述时延信息用于指示请求所述网络设备发送所述第一指示信息之后的第一时长内的非周期PRS的测量结果。
  40. 根据权利要求37-39任一所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述终端设备的所述一个或多个第二触发状态所关联的一个或多个非周期PRS的测量结果。
  41. 一种通信装置,其特征在于,所述装置包括处理器和存储器,
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行存储器中的计算机程序或指令,使所述装置执行如权利要求1-8中任一项所述的方法或者使所述装置执行如权利要求9-16任一项所述的方法或者使所述装置执行如权利要求17-20任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被电子装置调用时,使所述电子装置执行如权利要求1-8中任一项所述的方法或者使所述电子装置执行如权利要求9-16任一项所述的方法或者使所述电子装置执行如权利要求17-20任一项所述的方法。
PCT/CN2022/082577 2021-03-31 2022-03-23 一种非周期定位参考信号prs的触发方法和装置 WO2022206522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110348282.4 2021-03-31
CN202110348282.4A CN115150850A (zh) 2021-03-31 2021-03-31 一种非周期定位参考信号prs的触发方法和装置

Publications (1)

Publication Number Publication Date
WO2022206522A1 true WO2022206522A1 (zh) 2022-10-06

Family

ID=83404110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082577 WO2022206522A1 (zh) 2021-03-31 2022-03-23 一种非周期定位参考信号prs的触发方法和装置

Country Status (2)

Country Link
CN (1) CN115150850A (zh)
WO (1) WO2022206522A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719148A (zh) * 2018-07-11 2020-01-21 维沃移动通信有限公司 定位参考信号配置、接收方法和设备
CN111526534A (zh) * 2019-02-02 2020-08-11 华为技术有限公司 通信方法和装置
CN112449370A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 定位的方法和通信装置
CN112532360A (zh) * 2019-08-30 2021-03-19 华为技术有限公司 发送定位参考信号的方法和相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719148A (zh) * 2018-07-11 2020-01-21 维沃移动通信有限公司 定位参考信号配置、接收方法和设备
CN111526534A (zh) * 2019-02-02 2020-08-11 华为技术有限公司 通信方法和装置
CN112449370A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 定位的方法和通信装置
CN112532360A (zh) * 2019-08-30 2021-03-19 华为技术有限公司 发送定位参考信号的方法和相关装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion of NR positioning enhancements", 3GPP DRAFT; R1-2003642, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. e-meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), XP051885417 *
XIAOMI: "Discussion on PRS enhancements", 3GPP DRAFT; R2-2009574, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG2, no. e-Meeting; 20201102 - 20201113, 22 October 2020 (2020-10-22), XP051941312 *

Also Published As

Publication number Publication date
CN115150850A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US11476972B2 (en) Uplink control information transmission method and device
TWI778401B (zh) 新無線電側鏈頻道狀態資訊獲取裝置及方法
US11678212B2 (en) Methods executed by user equipment and user equipment
US11438898B2 (en) Beam indication method, apparatus and system
WO2021023156A1 (zh) 无线资源配置方法、装置及存储介质
US11310675B2 (en) Uplink signal transmission method and apparatus, uplink signal reception method and apparatus and system
JP2022000989A (ja) サービス伝送方法及び装置
JP2019537857A (ja) Harqタイミング構成の同期制御のためのシステムおよび方法
JP7287494B2 (ja) 信号送受信方法、装置及びシステム
US20220361129A1 (en) Time synchronization method, access network device, communication apparatus, computer storage medium, and communication system
WO2015024228A1 (zh) 信号测量方法和装置
JP7333827B2 (ja) 直流成分の周波数領域の位置を決定するための方法および装置、記憶媒体、端末、ならびに基地局
US20210297195A1 (en) Method and Device for Facilitating HARQ Transmission
WO2017129100A1 (zh) 一种识别同步信息的方法和装置
JP2024502369A (ja) Ue能力情報処理方法、装置、機器、及び記憶媒体
JP2022519123A (ja) 通信システム
TWI787837B (zh) 下行定位參考信號收發方法、終端、基地台、設備及裝置
WO2021031048A1 (zh) 一种通信方法及装置
WO2019062746A1 (zh) 通信方法、装置和系统
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
JP2023113823A (ja) ワイヤレス通信における時間マッピングのための方法、装置およびシステム
JP7327509B2 (ja) 参照信号の送信方法、装置及び通信システム
WO2019096278A1 (zh) 信号测量的方法和设备
KR20210047324A (ko) 정보 전송 방법, 장치 및 저장 매체
WO2019029405A1 (zh) 通信方法与设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778705

Country of ref document: EP

Kind code of ref document: A1