WO2022206441A1 - 激光扫描系统及控制方法、激光成像设备和汽车 - Google Patents

激光扫描系统及控制方法、激光成像设备和汽车 Download PDF

Info

Publication number
WO2022206441A1
WO2022206441A1 PCT/CN2022/081800 CN2022081800W WO2022206441A1 WO 2022206441 A1 WO2022206441 A1 WO 2022206441A1 CN 2022081800 W CN2022081800 W CN 2022081800W WO 2022206441 A1 WO2022206441 A1 WO 2022206441A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
scanning system
polarized light
laser scanning
Prior art date
Application number
PCT/CN2022/081800
Other languages
English (en)
French (fr)
Inventor
徐彧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206441A1 publication Critical patent/WO2022206441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the invention relates to the technical field of laser imaging, and in particular, to a laser beam scanning system (Laser Beam Scanning, LBS) with an illumination light path, a laser imaging device with LBS, a head-up display and an automobile.
  • a laser beam scanning system Laser Beam Scanning, LBS
  • LBS Laser Beam Scanning
  • LBS imaging technology is widely used in different laser imaging products, such as Head-up Display (HUD). More and more cars are equipped with head-up displays, and imaging is performed by means of projection, for example: projecting instrument panel information or navigation information on the front windshield of the car.
  • the projection area of the LBS used in the car is usually the eye box position, that is, the human eye and a small area around the human eye.
  • the light path with the lighting function in the LBS can only illuminate the eye box position. To illuminate a larger area, for example, cannot illuminate the entire face.
  • the technical problem to be solved by the embodiments of the present invention is to provide an LBS, in which the illumination light path can not only meet the projection requirements of the LBS, but also can be applied to the illumination of other intelligent systems, that is, the illumination light path in the LBS provided by the present application can not only
  • the position of the eye box can also be illuminated to a larger range than the eye box, such as illuminating a human face.
  • an embodiment of the present invention provides a laser scanning system, including a laser source, a polarization modulator, a beam splitter, a projection light source, and a MEMS Mirror (Micro Electrical Mechanical System Mirror).
  • the laser source is used to output a laser beam
  • the polarization modulator is used to modulate the laser beam into a first polarized light or a second polarized light, and one of the first polarized light and the second polarized light is P-polarized light,
  • the other is S-polarized light
  • the beam splitter is used to transmit the first polarized light or reflect the second polarized light
  • the second polarized light reflected by the beam splitter is the first beam, which is transmitted through the beam splitter
  • the first polarized light is a second beam
  • the MEMS is used to project the light emitted by the projection light source to the projection area; the first beam is reflected by the MEMS, and illuminates the projection area; the first beam is reflected by the MEMS.
  • the laser beam emitted by the laser source can be modulated into the first polarized light or the second polarized light of different polarization states according to the requirements, and the beam splitter is set to transmit the first polarization
  • the laser scanning system can not only have the laser projection function but also the illumination function of illuminating the target area, and the laser source can The projection area and the target area are illuminated, and the projection area and the target area are different, so that the projection function and the illumination function in the laser scanning system provided by the present application can be applied independently.
  • the incident angle of the first light beam to the MEMS is different from the incident angle of the second light beam to the MEMS.
  • the range of the target area and the projection area are different through the configuration of different incident angles.
  • a MEMS adjustment mechanism that is, the position of the MEMS in the optical path is determined, and the other optical elements in the optical path are determined.
  • the optical path is basically determined, and there is no need to adjust the swing angle of the MEMS as needed.
  • the incident angle of the first light beam to the MEMS is the same as the incident angle of the second light beam to the MEMS, and the swing angle of the MEMS is adjustable.
  • the incident angle of the first beam and the incident angle of the second beam are configured to be the same, and the range of the target area and the projection area are different through the adjustable swing angle of the MEMS.
  • the performance of the adjustable swing angle of the MEMS can be understood as: the present application provides a MEMS drive structure, the drive structure drives the MEMS swing angle adjustment to match the first beam or the second beam, the drive structure is electrically connected to the main control unit, and the main control
  • the unit can be a controller in the laser scanning system, or it can be integrated in a control center outside the laser scanning system.
  • the main control unit can determine whether the beam incident on the MEMS is the first beam or the second beam.
  • the main control unit When the beam incident on the MEMS is When the first light beam is used, the main control unit outputs a signal to the driving structure, so that the driving structure drives the MEMS to swing, and determines that the MEMS is positioned at the first position; when the light beam incident on the MEMS is the second light beam, the main control unit outputs a signal to the driving structure. , so that the driving structure drives the MEMS to swing, and determines that the MEMS is positioned at the second position.
  • the first polarized light is P-polarized light
  • the second polarized light is S-polarized light. Since S light is easier to reflect in nature, in the laser scanning system provided by the present application, the second polarized light is configured as S-polarized light, so that the first light beam is S-polarized light, that is, the S-polarized light is used to illuminate the projection area, and the S-polarized light is used to illuminate the projection area. The loss and efficiency of the polarized light are small in the propagation process, so that the efficiency of the first light beam is also high.
  • the laser scanning system further includes a fixed wave plate, and the fixed wave plate is used to turn the second light beam to be polarized in the S direction.
  • the second light beam is turned to be S-polarized light.
  • the fixed wave plate is located on the optical path between the beam splitter and the MEMS, and the second beam transmitted by the beam splitter directly enters the fixed wave plate.
  • a second mirror is arranged on the optical path between the fixed wave plate and the MEMS, and the second mirror is used to reflect the second light beam to the MEMS, through the configuration of the angle or position of the second mirror, The incident angle of the second light beam to the MEMS can be adjusted.
  • the application may not provide a fixed wave plate, but replace the fixed wave plate with a third mirror, and reflect the second beam to the incoming light of the MEMS through the combination of the third mirror and the second mirror.
  • the second light beam is P-polarized light, and the function of illumination can also be realized.
  • the projection light source includes a light source group and a beam combining mirror group
  • the light source group includes a red light source, a green light source and a blue light source
  • the beam combining mirror group includes a first half mirror
  • the second half mirror and the third half mirror, the first half mirror is used to transmit the first light beam and reflect the light of the red light source, and the first half mirror is used to transmit the light of the red light source.
  • the light of the red light source reflected by the half mirror is irradiated to the second half mirror, and the second half mirror is used to transmit and reflect the light of the first light beam and the red light source
  • the light of the green light source is irradiated by the light of the green light source reflected by the second half mirror to the third half mirror, and the third half mirror is used for transmitting
  • the first light beam, the light of the red light source and the light of the green light source reflect the light of the blue light source.
  • the first half mirror is configured to transmit the first light beam and reflect the light of the red light source, so that the first light beam can enter the projection light source
  • the optical path between the first light beam and the projection light source is: Lighting with the same light path to illuminate the projection area. It can be understood that the optical path formed after the first light beam passes through the beam combiner along the first direction is consistent with the optical path formed by the light source group after passing through the beam combiner.
  • the first half mirror, the second half mirror and the third half mirror are arranged in sequence along the first direction.
  • the first semi-transparent mirror and the red light source are located directly opposite
  • the second semi-transparent mirror is located directly opposite the green light source
  • the third semi-transparent mirror is located directly opposite the blue light source.
  • the optical splitter, the first half mirror, the second half mirror and the third half mirror are sequentially arranged in a row along the first direction.
  • Such an arrangement structure is beneficial to the compactness of the optical path and the miniaturized design of the projection device.
  • the laser source, the polarization modulator, the optical splitter and the fixed wave plate are sequentially arranged in a row along a second direction, and the second direction is perpendicular to the second direction. one direction.
  • Such an arrangement structure is beneficial to the compactness of the optical path and the miniaturized design of the projection device.
  • the second light beam is turned into polarized light in the S-direction through the fixed wave plate, it is then reflected by a mirror and then enters the MEMS.
  • the solution provided by this embodiment uses the S-polarized light beam to perform the illumination function, and has better illumination efficiency.
  • the projection area is located within the range of the target area, and the range of the target area is larger than the range of the projection area; or, the projection area and the target area partially overlap; or , the projection area and the target area have no intersection.
  • the polarization modulator is a liquid crystal polarizing wave plate, and the polarization direction of the light is adjusted by voltage-controlling the deflection of the liquid crystal in the polarization modulator.
  • the laser scanning system further includes an illumination lens, the illumination lens is located on the light-emitting side of the MEMS, and the second light beam emitted from the MEMS can expand the illumination after passing through the illumination lens. scope.
  • the laser scanning system further includes a diffuser, the diffuser is located between the illumination lens and the MEMS, the diffuser is adjacent to the illumination lens, and is used to convert the point light source is a surface light source.
  • the laser scanning system further includes a main control unit, the main control unit is used to judge whether the lighting function needs to be turned on, and when the lighting function needs to be turned on, the main control unit is used to judge the need for lighting.
  • the projection area is also the target area. When the projection area needs to be illuminated, the main control unit drives the polarization modulator to modulate the laser beam into the second polarized light. When the target needs to be illuminated When the region is in the range, the main control unit drives the polarization modulator to modulate the laser beam into the first polarized light.
  • the present application provides a laser imaging device, comprising a driving chip and the laser scanning system according to any embodiment of the first aspect, where the driving chip is used to drive the polarization modulator to work.
  • the laser imaging device is a head-up display, and the laser imaging device further includes an image processing system, and the image processing system is used to process the projection image of the laser scanning system.
  • the present application provides an automobile, comprising a front windshield, an instrument panel, and the laser imaging device described in the second aspect, the laser imaging device being located between the instrument panel and the front windshield.
  • the present application provides a control method, which is applied to the laser scanning system according to any possible implementation manner of the first aspect, and the control method includes:
  • the polarization modulator is adjusted so that the polarization modulator modulates the laser beam emitted by the laser source into the first polarized light;
  • the polarization modulator is adjusted so that the polarization modulator modulates the laser beam emitted by the laser source into a second polarized light, one of the first polarized light and the second polarized light One is P-polarized light, and the other is S-polarized light.
  • FIG. 1 is a schematic diagram of a laser scanning system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a laser scanning system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the relationship between the projection range and the illumination range in a laser scanning system provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of the relationship between the projection range and the illumination range in a laser scanning system provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a laser scanning system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a laser imaging device with a laser scanning system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an application scenario of a laser imaging device with a laser scanning system provided in an embodiment of the present application applied to an automobile;
  • FIG. 8 is a schematic diagram of a laser imaging device with a laser scanning system provided in an embodiment of the present application applied to an application scenario of VR glasses;
  • FIG. 9 is a schematic diagram of an application scenario in which a laser imaging device with a laser scanning system provided by an embodiment of the present application is applied to a projection device.
  • HUD Also known as a parallel display system, it refers to a driver-centered, blind-operated, multi-function instrument panel.
  • the role of HUD It is to project important driving information such as speed and navigation on the windshield in front of the driver, so that the driver can see important driving information such as speed and navigation without turning his head or turning his head. .
  • Polarization Beam Splitter referred to as PBS (Polarization Beam Splitter).
  • Liquid crystal polarizing wave plate LC Polarization Retarder.
  • Laser transmitter referred to as LD (Laser Diode).
  • PGU Picture Generation Unit
  • S-polarization, P-polarization When light penetrates the surface of an optical element (such as a beamsplitter) at a non-perpendicular angle, both reflection and transmission properties depend on the phenomenon of polarization.
  • the coordinate system used is defined by the plane containing the input and reflected beams. If the polarization vector of the light is in this plane, it is called P polarization, and if the polarization vector is perpendicular to this plane, it is called S polarization. Either input polarization state can be represented as the vector sum of the S and P components.
  • FIG. 1 is a schematic diagram of an optical path structure of a laser scanning system 100 (LBS) according to an embodiment of the present application.
  • the LBS 100 includes a laser source 10 , a polarization modulator 20 , a beam splitter 30 , a projection light source 40 and a MEMS 50 .
  • the laser source 10 also known as LD, can be an infrared laser diode, which is used to output a laser beam.
  • the laser beam emitted by the laser source 10 has the following characteristics: it is emitted in one direction, and the divergence angle of the beam is small, which is close to an ideal parallel light; it has a single color high brightness and high energy density.
  • the laser light source 10 and the projection light source 40 are arranged along the first direction X1, which can be understood as: as shown in FIG.
  • the direction of the laser beam emitted by the laser source 10 is the second direction X2.
  • the first direction X1 may be perpendicular to the second direction X2.
  • the polarization modulator 20 is used to modulate the laser beam into the first polarized light or the second polarized light.
  • the polarization modulator 20 may be a liquid crystal polarizing wave plate, and the liquid crystal deflection in the polarization modulator 20 is controlled by a voltage. way to adjust the polarization direction of light.
  • the polarization modulator 20 may also be other types of wave plates or other devices or modules capable of adjusting the phase of light.
  • the beam splitter 30 is used for transmitting the first polarized light or reflecting the second polarized light, the polarization directions of the first polarized light and the second polarized light are different, one of them is P-polarized light, and the other is S-polarized light .
  • the beam splitter 30 is used to transmit the P-polarized light (it can be fully transmitted, of course, it may also be partially transmitted), and the S-polarized light can be reflected (it can be reflected at a 90-degree angle. , with higher efficiency).
  • the second polarized light reflected by the beam splitter 30 is a first beam
  • the first polarized light transmitted by the beam splitter 30 is a second beam.
  • the LBS 100 provided by the present application has a projection function and an illumination function, the first light beam is used for the projection function and can illuminate the projection area A1, and the second light beam is used for the illumination function to illuminate the target area A2.
  • the first light beam is S-polarized light
  • the second light beam is P-polarized light
  • the light exit direction of the first beam from the beam splitter 30 is the first direction X1
  • the light exit direction of the second beam from the beam splitter 30 is the second direction X2.
  • the first polarized light is P-polarized light
  • the second polarized light is S-polarized light. Since S light is easier to reflect in nature, in LBS100 provided by this application, the second polarized light is S-polarized light.
  • the configuration is such that the first light beam is S-polarized light, that is, the S-polarized light is used to illuminate the projection area, and the S-polarized light has little loss and low efficiency during the propagation process, so that the efficiency of the first light beam is also high.
  • the first polarized light may be S-polarized light
  • the second polarized light may also be P-polarized light. It can be understood that, in this embodiment, the first light beam adopts P-polarized light. The function of illuminating the projection area A1 can be realized.
  • the MEMS 50 in the LBS 100 provided by the present application is used to project the light emitted by the projection light source 40 to the projection area A1.
  • the light path from the projection light source 40 to the projection area A1 constitutes the projection light path.
  • a first reflector 60 may be arranged between the projection light source 40 and the MEMS 50 for reflecting the light emitted by the projection light source 40 to the MEMS 50.
  • the first mirror 60 can be movable or fixed.
  • the position or the included angle of the first reflecting mirror 60 on the projection light path movably arranged between the projection light source 40 and the MEMS 50 can be adjusted, and the projection light path on the MEMS can be adjusted by adjusting the position or the included angle of the first reflecting mirror 60
  • the incident position and incident angle can also be adjusted to the range of the projection area A1.
  • the first reflecting mirror 60 is fixedly arranged on the projection light path between the projection light source 40 and the MEMS 50, although it does not have adjustment performance and the applicability is not wide, but this structure can match the specific application environment, and the advantage is that the light path is simple, Conducive to cost control and easy to use.
  • the projection light source 40 includes a light source group 41 and a beam combiner lens group 42.
  • the light source group 41 includes a red light source 411, a green light source 412 and a blue light source 413.
  • the light source group 41 is also referred to as RGB light source
  • the red light source 411 is also called the R light source
  • the green light source 412 is also called the G light source
  • the blue light source 413 is also called the B light source.
  • the light paths of the light sources are the same, and they are all S-polarized light. This structure makes the projection light path have high efficiency.
  • the beam combining mirror group 42 includes a first half mirror 421 , a second half mirror 422 and a third half mirror 423 .
  • the first half mirror 421, the second half mirror 422 and the third half mirror 423 are arranged in sequence along the first direction X1.
  • the first semi-transparent mirror 421 and the red light source 411 are located directly opposite
  • the second semi-transparent mirror 422 is located directly opposite to the green light source 412
  • the third semi-transparent mirror 423 is located directly opposite to the blue light source 412
  • the light source 41 is disposed facing each other.
  • the first half mirror 421 is used to transmit the first light beam and reflect the light emitted by the red light source 411 , and the light of the red light source 411 reflected by the first half mirror 421 irradiated to the second half mirror 422, the second half mirror 422 is used to transmit the light of the first light beam and the red light source 411 and reflect the light of the green light source 412, The light of the green light source 412 reflected by the second half mirror 422 is irradiated to the third half mirror 423, and the third half mirror 423 is used to transmit the light of the third half mirror 423.
  • a light beam, the light of the red light source 411 and the light of the green light source 412 and the light of the blue light source 413 are reflected.
  • the light emitted by the three light sources of different colors in the light source group 41 is integrated into a combined beam laser after passing through the beam combining mirror group 42, and the combined beam laser is reflected by the first reflecting mirror 60 and then incident on the MEMS 50. superior. Since the combined laser beam is formed by combining RGB three-color light, the color control of the image in the projection area can be realized by adjusting the brightness of the red light source 411 , the green light source 412 and the blue light source 413 .
  • the first half mirror 421 , the second half mirror 422 and the third half mirror 423 in the beam combining mirror group 42 are arranged adjacent to each other in sequence, and it can be understood that any two No other optical lenses are arranged in between, and the light emission of the light source group 41 is synthesized into a beam of light by arranging and arranging the three reflecting mirrors.
  • other optical mirrors may also be arranged in the beam combining mirror group 42, for example, a mirror with a light-gathering function is arranged between the first half mirror 421 and the second half mirror 422, so as to The light of the red light source 411 reflected by the first half mirror 421 is better focused on the light incident surface of the second half mirror 422 .
  • the first polarized light transmitted by the beam splitter 30 is a second light beam
  • the second light beam is P-polarized light
  • the second light beam is reflected by the MEMS 50 to illuminate the target area A2.
  • the ranges of the target area A2 and the projection area A1 are different.
  • the range of the target area A2 is larger than that of the projection area A1, and the projection area A1 is included in the target area A2.
  • the projection area A1 is a human eye. and the area near the human eye, and the target area A2 is the human face or a range larger than the human face.
  • the target area A2 and the projection area A1 partially overlap, that is, the projection area A1 and the target area A2 partially intersect and do not overlap completely. Some target areas A2 are outside the projection area A1, and some Part of the projected area A1 is outside the target area A2.
  • the projection area A1 and the target area A2 have no intersection. It can be understood that the projection area A1 and the target area A2 are two independent ranges, and there is no overlap between them. The range of these two regions can be the same or different.
  • the above three cases are just examples to illustrate three examples in which the ranges of the projection area A1 and the target area A2 are different, and the present application is not limited to these three examples. It can be seen that the present application can design the lighting light path in the LBS according to various lighting requirements, so as to realize the configuration of the range of different target areas A2.
  • the present application turns the second light beam to be S-polarized light.
  • the type wave plate 70 is used to turn the second light beam to be polarized in the S direction
  • the fixed type wave plate 70 is located on the optical path between the beam splitter 30 and the MEMS 50
  • the second beam transmitted by the beam splitter 30 directly enters the fixed type wave plate 70 .
  • a second mirror 80 is arranged on the optical path between the fixed wave plate 70 and the MEMS 50, and the second mirror 80 is used to reflect the second light beam to the MEMS 50, through the second mirror 80
  • the configuration of the angle or position can adjust the incident angle of the second light beam to the MEMS 50.
  • the configuration of the second mirror 80 may be the same as that of the aforementioned first mirror 60 .
  • the present application may not provide the fixed wave plate 70.
  • the fixed wave plate in the embodiment shown in FIG. 1 is replaced with a third reflector 90, and the third reflector
  • the combination of 90 and the second reflecting mirror 80 reflects the second light beam to the light incident surface of the MEMS 50.
  • the second light beam is P-polarized light, which can also realize the function of illumination.
  • the laser scanning system 100 further includes a main control unit 101 , and the laser light source 10 , the polarization modulator 20 and the projection light source 40 are all electrically connected to the main control unit 101 .
  • the main control unit 101 is used to judge whether the lighting function needs to be turned on. When the lighting function needs to be turned on, the main control unit 101 is used to judge whether the projection area A1 or the target area A2 needs to be illuminated. When projecting the area A1, the main control unit 101 drives the polarization modulator 20 to modulate the laser beam into the second polarized light, and when the target area A2 needs to be illuminated, the main control unit 101 drives the The polarization modulator 20 modulates the laser beam into the first polarized light.
  • the incident angle of the first beam incident on the MEMS 50 is different from the incident angle of the second beam incident on the MEMS 50, and the target area A2 and the projection are realized through the configuration of different incident angles.
  • the range of the area A1 is different.
  • the advantages of this solution are that the optical path structure is simple, the cost is low, and the applicable scenarios are clearly targeted. As long as the scenarios match, the user can use it directly without adjustment. , similar to the operation of a point-and-shoot camera, and does not require professional technicians.
  • the incident angle of the first light beam to the MEMS 50 is the same as the incident angle of the second light beam to the MEMS 50, and the swing angle of the MEMS 50 is adjustable.
  • the incident angle of the first light beam and the incident angle of the second light beam are configured to be the same, and the target area A2 and the projection area A2 are realized by the adjustable swing angle of the MEMS 50.
  • the range is different.
  • the adjustable performance of the swing angle of the MEMS 50 can be understood as that the present application sets a MEMS drive structure, referring to FIG.
  • the swing angle adjustment of the MEMS 50 is driven by the drive structure 102 to match the first beam or the second beam, and the drive structure 102 Electrically connected with the main control unit 101
  • the main control unit 101 can be a controller in the laser scanning system LBS, or can be integrated in a control center outside the laser scanning system LBS, and the main control unit 101 can determine that the light beam incident on the MEMS 50 is The first light beam is still the second light beam, when the light beam incident on the MEMS 50 is the first light beam, the main control unit 101 outputs a signal to the driving structure 102, so that the driving structure 102 drives the MEMS 50 to swing, and determines that the MEMS 50 is positioned at the first position When the light beam incident to MEMS 50 is the second light beam, the main control unit 101 outputs a signal to the drive structure 102, so that the drive structure 102 drives the MEMS 50 to swing, and determines that the MEMS 50 is positioned at the second position.
  • the present application sets the position of the optical splitter 30 as the core position, and the light reflected by the optical splitter 30
  • the outgoing direction of the first light beam is the first direction X1
  • the outgoing direction of the second light beam transmitted by the beam splitter 30 is the second direction X2
  • the first direction X1 is perpendicular to the second direction X2.
  • the laser source 10, the polarization modulator 20 and the fixed wave plate 70 are arranged on both sides of the beam splitter 30 along the second direction X2, and the projection light source 40 is arranged on one side of the beam splitter 30 along the first direction X1.
  • the beam splitter 30 , the first half mirror 421 , the second half mirror 422 and the third half mirror 423 They are sequentially arranged in a row along the first direction X1.
  • the beam splitter 30 and the first half mirror 421 are adjacent optical devices, that is, there are no other optical devices between them. In this way, other optical devices may also be arranged between the beam splitter 30 and the first half mirror 421.
  • a light condensing structure is arranged between the beam splitter 30 and the first half mirror 421, so as to condense the first light beam. Focus on the light incident surface of the first half mirror 421 . As shown in FIG.
  • the first mirror 60 is arranged on the light-emitting side of the third half mirror 423 .
  • the optical path formed by the first light beam passing through the beam combining lens group 42 along the first direction X1 is consistent with the optical path formed by the light source group 41 after passing through the beam combining lens group 42 .
  • the laser source 10, the polarization modulator 20, the beam splitter 30 and the fixed wave plate 70 are arranged in a row along the second direction X2 in sequence.
  • the four optical devices can be adjacent to each other, or other optical devices can be added between any two of the optical devices.
  • the two light beams are focused on the light incident surface of the fixed wave plate 70 .
  • the second mirrors 80 are arranged on the light-emitting side of the fixed wave plate 70 along the first direction X1.
  • the polarization adjuster 20, the beam splitter 30, and the fixed wave plate 70 provided in the present application are fixed in an integral structure to form an optical module, which is connected to the projection assembly (including the projection light source 40 and the MEMS). 50) Installed in one piece to form the core part of the laser imaging setup.
  • the laser scanning system LBS 100 further includes an illumination lens 103, and the illumination lens 103 is located on the light-emitting side of the MEMS 50, from the The second light beam emitted by the MEMS 50 can expand the illumination range after passing through the illumination lens 103.
  • the laser scanning system LBS100 further includes a diffuser 104 located between the illumination lens 103 and the MEMS 50, and the diffuser 104 is adjacent to the illumination lens 103 for converting a point light source into a Area light source.
  • the present application relates to a laser scanning system 100 for imaging by means of projection, the laser scanning system 100 can generate a first light beam and a second light beam, and the first light beam is used for the illumination of the imaging optical path to illuminate the projection area A1; The two light beams are used to form an illumination light path to illuminate the target area A2, and the illumination light path is different from the imaging light path.
  • the laser scanning system 100 provided by the present application is applied to a laser imaging device 1000 .
  • the main control unit 101 may not be provided in the laser scanning system 100 , but the main control unit 101 may be installed in the laser imaging device 1000 .
  • the main control unit 101 Not only for driving the laser scanning system 100 , but also for driving other systems or circuit modules in the laser imaging device 1000 .
  • the illumination lens 103 and the diffuser 104 in the laser scanning system can also be arranged outside the laser scanning system 100 , that is, the illumination lens 103 independent of the laser scanning system 100 is arranged in the laser imaging device 1000 And the diffuser 104, and the position of the illumination lens 103 is set on the light-emitting side of the MEMS 50, so that the second light beam emitted from the MEMS 50 can expand the illumination range after passing through the illumination lens 103.
  • the diffusing sheet 104 is disposed on the light incident side of the illumination lens 103 , so that the second light beam passes through the diffusing sheet 104 before entering the illumination lens 103 , so as to convert the point light source into a surface light source.
  • the optical path after the first beam and the second beam exit the laser scanning system 100 is regarded as the back-end light path.
  • the light path passed through is the rear section lighting light path.
  • other optical devices may be provided on the back-stage projection light path, and other optical devices may also be provided on the back-stage illumination light path.
  • these optical devices may be: Refractive Optical Element (ROE, Refractive Optical Element), Diffractive Optical Element (DOE, Diffractive Optical Element), plane mirror, collimating mirror, reflector, diffuser, etc. As shown in FIG.
  • a transmissive optical device 105, a reflective optical device 106 and a reflective optical device 107 are arranged on the rear projection optical path.
  • the first light beam is emitted from the light-emitting surface of the MEMS 50, it sequentially passes through the transmissive optical device 105 and the reflective optical device. 106 and reflective optics 107, then illuminate the projection area A1.
  • a diffuser 104, an illumination lens 103, a reflection member 108, and a transmission member 109 are arranged on the rear-stage illumination light path.
  • the second light beam is emitted from the light-emitting surface of the MEMS 50, it passes through the diffuser 104, the illumination lens 103, the reflection member 108, and the transmission in sequence. 109, and then illuminate the target area A2.
  • the light exit position of the first beam and the light exit position of the second beam may be different positions. As shown in FIG. 6, the light exit position of the first beam is located on the top surface of the laser imaging device 1000, and the second beam The light exit position of the light beam is located on the side surface of the laser imaging device 1000 , and the top surface and the side surface are different surfaces.
  • the light-emitting position of the first beam and the light-emitting position of the second beam can be set according to the requirements of specific application scenarios.
  • the laser imaging device 1000 may be a HUD, and the HUD may be applied to automobiles or other vehicles. Different application scenarios are available, and the LBS can be used to generate the first beam or the second beam according to different needs.
  • FIG. 7 is a schematic diagram of applying an LBS to a HUD on a car according to an embodiment of the present application.
  • the car includes a front windshield 1001 , an instrument panel 1002 and a laser imaging device 1000 , and the laser imaging device 1000 is located between the instrument panel 1002 and the front windshield 1001 .
  • the LBS When the projection function of the LBS needs to be performed, the LBS generates a first light beam to illuminate the projection area A1. As shown in FIG.
  • the projection area A1 is an area near the human eye, which can be called an eye box area.
  • the LBS When the lighting light path needs to be turned on, for example: when the monitoring system in the car needs to be activated to detect faces, or when the camera function needs to be activated to capture the area, the LBS generates a second light beam and turns on the lighting mode, as shown in Figure 7, in the lighting mode, The second beam illuminates a target area A2, which includes a human face.
  • the laser imaging device 1000 may be AR glasses.
  • the LBS 100 is arranged in the temple of the AR glasses, and of course it can also be arranged in the glasses frame.
  • the AR glasses can have the general projection imaging function and face detection function.
  • the LBS 100 When the projection imaging function of the AR glasses needs to be used, the LBS 100 generates the first light beam to illuminate the human eye area.
  • the face detection function When the face detection function is used, the LBS 100 generates a second beam to illuminate the face.
  • the laser imaging device 1000 may also be a general projection device, and the LBS 100 is provided in the laser imaging device 1000 .
  • the laser imaging device 1000 can also generate the second light beam, illuminating the target area A2, and performing the lighting function. If necessary, the lighting function of the present application can be used if the lighting function needs to be activated to detect the human face.
  • the present application also provides a control method for LBS, and the control method includes the following steps:
  • the LBS determines whether the lighting function needs to be activated. Specifically, the LBS can determine whether to activate the lighting function according to the brightness of the environment. For example, at night or when the ambient light is dark, the lighting function needs to be activated to see the projected image or the target to be identified clearly. .
  • the LBS needs to activate the lighting function, to determine whether the projection area or the target area needs to be illuminated, it can be understood that it is necessary to activate the projection imaging function of the LBS or the simple lighting function. For example, in the application of the vehicle head-up display, this step can be judged Whether the projection function needs to be activated or the face information needs to be recognized;
  • the polarization modulator When the target area needs to be illuminated, the polarization modulator is adjusted so that the polarization modulator modulates the laser beam emitted by the laser source into the first polarized light, that is, the P-polarized light, and the P-polarized light passes through the beam splitter and enters the illumination light path , and finally illuminate the target area.
  • a fixed wave plate In the illumination light path, a fixed wave plate can be set to convert the P-polarized light into S-polarized light, and the S-polarized light is used for illumination, which is more efficient;
  • the polarization modulator When the projection area needs to be illuminated, the polarization modulator is adjusted so that the polarization modulator modulates the laser beam emitted by the laser source into the second polarized light, that is, the S-polarized light, and the S-polarized light is reflected by the beam splitter and enters the projection
  • the light path, the S-polarized light and the projection light source go through the same light path in the projection light path, and then exit to illuminate the projection area.
  • the LBS is applied in a head-up display in an automobile, and the head-up display provided by the present application with the LBS can not only realize the projection function, but also have the lighting function.
  • the projection function of the head-up display means that the head-up display can project the display signal on the instrument panel on the front windshield, so that the driver can drive directly in front of the instrument panel without looking down at the instrument panel. The required information can be seen on the windshield.
  • the head-up display can also project the navigation in the car (or the navigation on the terminal device) to the front windshield, so that the navigation map combined with the specific road scene is presented in front of the driver's eyes, and the experience is better.
  • the lighting function of the head-up display means that in addition to illuminating the above-mentioned projection area, the head-up display can also illuminate a target area different from this projection area.
  • the projection area may be understood as the position of the human eye
  • the target area may be understood as the human face.
  • control method provided by the present application is applied to the control process of the head-up display, and the details are as follows.
  • the LBS determines whether the lighting function needs to be activated according to the ambient brightness.
  • the lighting function does not need to be activated.
  • the LBS projection function can be directly activated to perform normal projection imaging, and project the information on the instrument panel or the navigation signal on the front windshield.
  • the LBS determines whether the projection function or the illumination function (eg, face detection) will be performed. Determine which area needs to be illuminated. If the projection function is executed, the projection area needs to be illuminated, that is, the human eye; if the illumination function is executed, the target area needs to be illuminated, that is, the face needs to be illuminated. The visible illuminated area is larger than the projected area.
  • the projection function or the illumination function eg, face detection
  • the face detection device can be activated to perform face detection.
  • the polarization modulator is adjusted so that the polarization modulator modulates the laser beam emitted by the laser source into S-polarized light, and the S-polarized light is split.
  • the projector is reflected to the projection light path, and finally illuminates the human eye to perform the projection function.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种激光扫描系统及控制方法、激光成像设备和汽车。激光扫描系统包括激光源、偏振调制器、分光器、投影光源和微机电振镜。偏振调制器用于将激光源的光调制为第一偏振光或第二偏振光。分光器用于透射第一偏振光或反射第二偏振光,经分光器反射的第二偏振光为第一光束,经分光器透射的第一偏振光为第二光束。微机电振镜用于将投影光源发出的光投影至投影区域。第一光束经微机电振镜反射后照亮投影区域,第二光束经微机电振镜反射后照亮目标区域,目标区域的范围与投影区域的范围不同。本申请实现了在激光扫描系统中集成投影功能和照明功能,不但能实现正常的投影功能,还能产生与投影区域不同的照明区域。

Description

激光扫描系统及控制方法、激光成像设备和汽车
本申请要求于2021年3月30日提交中国国家知识产权局、申请号202110337945.2、申请名称为“激光扫描系统及控制方法、激光成像设备和汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光成像技术领域,尤其涉及一种具有照明光路的激光扫描系统(Laser Beam Scanning,LBS)、具有LBS的激光成像设备、抬头显示器及汽车。
背景技术
LBS成像技术广泛应用于不同的激光成像产品中,例如抬头显示器(Head-up Display,HUD)。越来越多的汽车设置抬头显示器,通过投影的方式进行成像,例如:在汽车前挡风玻璃上投影仪表盘信息或导航信息等。为了方便人眼观看,通常车内使用的LBS的投影区域为眼盒位置,即人眼及人眼周围小范围的区域,LBS内的具有照明功能的光路也只能照到眼盒位置,无法照到更大的范围,例如,无法照亮整张脸。
随着车用智能化的发展,车内会集成更多的智能系统,车内的很多智能系统需要识别人脸信息,例如:车内监控系统、人脸识别系统等。因此,需要在车内安装照明设备,可以照到人脸,以方便采集人脸信息。额外安装照明设备不但会提升成本,还受空间限制,影响车内外观。
对于LBS的设计,若能够使其中的部分功能可能延伸至其它智能系统的功用,可以实现节约空间,降低成本。
发明内容
本发明实施例所要解决的技术问题在于,提供一种LBS,其中的照明光路不但可以满足LBS的投影需求,还可以应用于其它智能系统的照明,即本申请提供的LBS中的照明光路不但可以照到眼盒位置,还能照到比眼盒更大的范围,例如照亮人脸。
第一方面,本发明实施例提供了一种激光扫描系统,包括激光源、偏振调制器、分光器、投影光源和微机电振鏡(MEMSMirror,Micro Electrical Mechanical System Mirror)。激光源用于输出激光束,偏振调制器用于将所述激光束调制为第一偏振光或第二偏振光,所述第一偏振光和所述第二偏振光中的一个为P偏振光,另一个为S偏振光,分光器用于透射所述第一偏振光或反射所述第二偏振光,经所述分光器反射的所述第二偏振光为第一光束,经所述分光器透射的所述第一偏振光为第二光束,MEMS用于将所述投影光源发出的光投影至投影区域;所述第一光束经所述MEMS反射后,照亮所述投影区域;所述第二光束经所述MEMS反射后,照亮目标区域,所述目标区域的范围与所述投影区域的范围不同。
本申请通过在激光扫描系统中设置偏振调制器和分光器,可以根据需求将激光源发出的 激光束调制为不同偏振状态的第一偏振光或第二偏振光,分光器设置为透射第一偏振光反射第二偏振光的状态,通过将偏振调制器和分光器结合在激光扫描系统的光路中,可以实现激光扫描系统不但具有激光投影功能还具有照亮目标区域的照明功能,激光源即能照亮投影区域,又能照亮目标区域,投影区域和目标区域不同,使得本申请提供的激光扫描系统中的投影功能和照明功能可以独立应用。
一种可能的实现方式中,所述第一光束入射至所述MEMS的入射角度与所述第二光束入射至所述MEMS的入射角度不同。通过不同的入射角度的配置实现目标区域和投影区域的范围不同,本实施方式中,不需要设置MEMS的调节机构,也就是说,MEMS在光路中的位置确定,及光路中其它的光元件的结构和位置亦确定后,光路基本确定,不需要再根据需要去调节MEMS的摆角,这样的方案的好处在于,光路架构简洁,成本低,适用的场景具有明确的针对性,只要场景匹配,用户可以直接使用,不需要调节,类似傻瓜相机的操作,不需要专业的技术人员。
一种可能的实现方式中,所述第一光束入射至所述MEMS的入射角度与所述第二光束入射至所述MEMS的入射角度相同,所述MEMS的摆动角度具有可调性。本实施方式中,在MEMS的入光侧,第一光束的入射角和第二光束的入射角配置为相同的,通过MEMS的摆角可调的性能实现目标区域和投影区域的范围不同。MEMS的摆角可调的性能,可以理解为,本申请设置MEMS驱动结构,通过驱动结构驱动MEMS摆角调节,以匹配第一光束或第二光束,驱动结构与主控单元电连接,主控单元可以为激光扫描系统内的控制器,也可以集成在激光扫描系统之外的控制中心,主控单元可以判断入射至MEMS的光束为第一光束还是第二光束,当入射至MEMS的光束为第一光束时,主控单元输出信号给驱动结构,使得驱动结构驱动MEMS摆动,并确定MEMS定位在第一位置;当入射至MEMS的光束为第二光束时,主控单元输出信号给驱动结构,使得驱动结构驱动MEMS摆动,并确定MEMS定位在第二位置。
一种可能的实现方式中,所述第一偏振光为P偏振光,所述第二偏振光为S偏振光。由于在自然界中S光较容易反射,本申请提供的激光扫描系统中,第二偏振光为S偏振光的配置,使得第一光束为S偏振光,即采用S偏振光照亮投影区域,S偏振光在传播过程中损失小,效率小,这样第一光束的效率也较高。
一种可能的实现方式中,所述激光扫描系统还包括固定式波片,所述固定式波片用于将所述第二光束转向为S方向偏振。本实施方式为了提高第二光束的效率,将第二光束转向为S偏振光。固定式波片位于分光器和MEMS之间的光路上,分光器透射出的第二光束直接进入固定式波片。一种实施方式中,在固定式波片和MEMS之间的光路上配置第二反射镜,第二反射镜用于将第二光束反射至MEMS,通过第二反射镜的角度或位置的配置,可以调节第二光束入射至MEMS的入射角度。
一种实施方式中,本申请可以不设置固定式波片,将固定式波片替换为第三反射镜,通过第三反射镜和第二反射镜的组合将第二光束反射至MEMS的入光面,本实施方式中,第二光束为P偏振光,也可以实现照明的功能。
一种可能的实现方式中,所述投影光源包括光源组和合束镜组,所述光源组包括红色光源、绿色光源和蓝色光源,所述合束镜组包括第一半透半反射镜、第二半透半反射镜和第三 半透半反射镜,所述第一半透半反射镜用于透过所述第一光束且反射所述红色光源的光,被所述第一半透半反射镜反射的所述红色光源的光照射至所述第二半透半反射镜,所述第二半透半反射镜用于透过所述第一光束和所述红色光源的光且反射所述绿色光源的光,被所述第二半透半反射镜反射的所述绿色光源的光照射至所述第三半透半反射镜,所述第三半透半反射镜用于透过所述第一光束、所述红色光源的光和所述绿色光源的光且反射所述蓝色光源的光。本实施方式通过将第一半透半反射镜配置为用于透过所述第一光束且反射所述红色光源的光,使得第一光束可以进入投影光源,第一光束与投影光源的光路为同光路照明,以照亮投影区域。可以理解为:所述第一光束沿所述第一方向穿过所述合束镜后形成的光路与所述光源组经过所述合束镜后形成的光路一致。
一种实施方式中,第一半透半反射镜、第二半透半反射镜和第三半透半反射镜沿第一方向依次排列。在第二方向上,第一半透半反射镜与红色光源正对设置,第二半透半反射镜与绿色光源正对设置,第三半透半反射镜与蓝色光源正对设置。
一种实施方式中,所述分光器、所述第一半透半反射镜、所述第二半透半反射镜和所述第三半透半反射镜沿第一方向依次排列为一排。此种排布架构有利于光路的紧凑,利于投影设备的小型化的设计。
一种可能的实现方式中,所述激光源、所述偏振调制器、所述分光器和所述固定式波片沿第二方向依次排列为一排,所述第二方向垂直于所述第一方向。此种排布架构有利于光路的紧凑,利于投影设备的小型化的设计。
一种可能的实现方式中,所述第二光束经过所述固定式波片转向为S方向的偏振光后,再经过反射镜的反射后入射所述MEMS。本实施方式提供的方案,利用S偏振的光束进行照明功能,具有较好的光照效率。
一种可能的实现方式中,所述投影区域位于所述目标区域的范围内,所述目标区域的范围大于所述投影区域的范围;或者,所述投影区域和所述目标区域部分重叠;或者,所述投影区域和所述目标区域无交集。
一种可能的实现方式中,所述偏振调制器为液晶偏振波片,通过电压控制所述偏振调制器内的液晶偏转的方式调节光的偏振方向。
一种可能的实现方式中,所述激光扫描系统还包括照明透镜,所述照明透镜位于所述MEMS的出光侧,从所述MEMS射出的所述第二光束经过所述照明透镜后能够扩大照射范围。
一种可能的实现方式中,所述激光扫描系统还包括扩散片,所述扩散片位于所述照明透镜和所述MEMS之间,所述扩散片邻近所述照明透镜,用于将点光源转变为面光源。
一种可能的实现方式中,所述激光扫描系统还包括主控单元,所述主控单元用于判断是否需要开启照明功能,当需要开启照明功能时,所述主控单元用于判断需要照明所述投影区域还是所述目标区域,当需要照明所述投影区域时,所述主控单元驱动所述偏振调制器将所述激光束调制为所述第二偏振光,当需要照明所述目标区域时,所述主控单元驱动所述偏振调制器将所述激光束调制为所述第一偏振光。
第二方面,本申请提供一种激光成像设备,包括驱动芯片和第一方面任一种实施方式所述的激光扫描系统,所述驱动芯片用于驱动所述偏振调制器工作。
一种可能的实现方式中,所述激光成像设备为抬头显示器,所述激光成设备还包括图像 处理系统,所述图像处理系统用于处理所述激光扫描系统的投影图像。
第三方面,本申请提供一种汽车,包括前挡风玻璃、仪表盘和第二方面所述的激光成像设备,所述激光成像设备位于所述仪表盘和所述前挡风玻璃之间。
第四方面,本申请提供一种控制方法,应用于如第一方面任意一种可能的实施方式所述的激光扫描系统,所述控制方法包括:
当所述激光扫描系统需要启动照明功能时,判断需要照亮投影区域还是目标区域;
当需要照亮所述目标区域时,调节偏振调制器,使得所述偏振调制器将激光源发出激光束调制为第一偏振光;
当需要照亮所述投影区域时,调节偏振调制器,使得所述偏振调制器将激光源发出激光束调制为第二偏振光,所述第一偏振光和所述第二偏振光中的一个为P偏振光,另一个为S偏振光。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本申请一种实施方式提供的激光扫描系统的示意图;
图2是本申请一种实施方式提供的激光扫描系统的示意图;
图3是本申请一种实施方式提供的激光扫描系统中的投影范围和光照范围的关系示意图;
图4是本申请一种实施方式提供的激光扫描系统中的投影范围和光照范围的关系示意图;
图5是本申请一种实施方式提供的激光扫描系统的示意图;
图6是本申请一种实施方式提供的具有激光扫描系统的激光成像设备的示意图;
图7是本申请一种实施方式提供的具有激光扫描系统的激光成像设备应用在汽车的应用场景中的示意图;
图8是本申请一种实施方式提供的具有激光扫描系统的激光成像设备应用在VR眼镜的应用场景中的示意图;
图9是本申请一种实施方式提供的具有激光扫描系统的激光成像设备应用在投影设备的应用场景中的示意图。
具体实施方式
本申请所涉及的技术术语的解释:
HUD:又被叫做平行显示系统,是指以驾驶员为中心、盲操作、多功能仪表盘。HUD的作用:就是把时速、导航等重要的行车信息,投影到驾驶员前面的挡风玻璃上,让驾驶员尽量做到不低头、不转头就能看到时速、导航等重要的驾驶信息。
偏正分光器:简称PBS(Polarization Beam Splitter)。
液晶偏正波片:LC Polarization Retarder。
激光发射器:简称LD(Laser Diode)。
图像产生单元:简称PGU(Picture Generation Unit)。
S偏振,P偏振:当光线以非垂直角度穿透光学元件(如分光镜)的表面时,反射和透射 特性均依赖于偏振现象。这种情况下,使用的坐标系是用含有输入和反射光束的那个平面定义的。如果光线的偏振矢量在这个平面内,则称为P偏振,如果偏振矢量垂直于该平面,则称为S偏振。任何一种输入偏振状态都可以表示为S和P分量的矢量和。
下面结合本发明实施例中的附图对本发明实施例进行描述。
图1所示为本申请一种实施方式提供的激光扫描系统100(LBS)的光路架构示意图。本实施方式中,LBS100包括激光源10、偏振调制器20、分光器30、投影光源40和MEMS 50。
激光源10又称LD,可以为红外激光二极管,用于输出激光束,激光源10发出的激光束具有如下特点:朝一个方向射出,光束的发散角小,接近于理想平行光;具有单色性;亮度高及能量密度大。本申请一种实施方式中,激光源10和投影光源40沿第一方向X1排列,可以理解为:如图1所示,在第一方X1上,投影光源40位于激光源10的右侧。激光源10所发出的激光束的方向为第二方向X2。第一方向X1可以垂直于第二方向X2。
偏振调制器20用于将激光束调制为第一偏振光或第二偏振光,一种实施方式中,偏振调制器20可以为液晶偏振波片,通过电压控制偏振调制器20内的液晶偏转的方式来调节光的偏振方向。其它实施方式中,偏振调制器20也可以为其它类型的波片或其它能够对光的相位实施调节的器件或模组。
分光器30用于透射所述第一偏振光或反射所述第二偏振光,第一偏振光和第二偏振光的偏振方向不同,它们中的一个为P偏振光,另一个为S偏振光。一种实施方式中,分光器30用于将P偏振光进行透射(可以为全透射,当然也有可能为部分透射),将S偏振光进行反射(可以为90度角的反射,此种反射架构,效率较高)。经所述分光器30反射的所述第二偏振光为第一光束,经所述分光器30透射的所述第一偏振光为第二光束。本申请提供的LBS100具有投影功能和照明功能,第一光束用于投影功能,能够照亮投影区域A1,第二光束用于照明功能,用于照亮目标区域A2。
一种实施方式中,第一光束为S偏振光,第二光束为P偏振光。一种实施方式中,第一光束从分光器30处的出光方向为第一方向X1,第二光束从分光器30处的出光方向为第二方向X2。
一种实施方式中,第一偏振光为P偏振光,第二偏振光为S偏振光,由于在自然界中S光较容易反射,本申请提供的LBS100中,第二偏振光为S偏振光的配置,使得第一光束为S偏振光,即采用S偏振光照亮投影区域,S偏振光在传播过程中损失小,效率小,这样第一光束的效率也较高。其它实施方式中,第一偏振光可以为S偏振光,第二偏振光也可以为P偏振光,可以理解为,本实施方式中,第一光束采用P偏振光,效率虽然较低,但也可以实现照亮投影区域A1的功能。
本申请提供的LBS100中的MEMS 50用于将所述投影光源40发出的光投影至投影区域A1。从投影光源40至投影区域A1的光路构成投影光路。一种实施方式中,在投影光路上,于投影光源40和MEMS 50之间可以设置第一反射镜60,用于将投影光源40发出的光反射至MEMS 50。第一反射镜60可以是活动的,也可以是固定的。活动设置在投影光源40和MEMS 50之间的投影光路上的第一反射镜60的位置或夹角是可以调节的,通过调节第一反射镜60的位置或夹角可以调节投影光路在MEMS上的入射位置及入射角度,也可以调节投 影区域A1的范围。将第一反射镜60固定设置在投影光源40和MEMS 50之间的投影光路上,虽然不具有调节性能,适用性虽不广泛,但是这种架构可以匹配具体的应用环境,好处是光路简单,有利于控制成本,方便使用。
一种实施方式中,所述投影光源40包括光源组41和合束镜组42,所述光源组41包括红色光源411、绿色光源412和蓝色光源413,具体而言,光源组41也称为RGB光源,红色光源411也称为R光源,绿色光源412也称为G光源,蓝色光源413也称为B光源,一种实施方式中,RGB光源均为S偏振光,第一光束与RGB光源的光路相同,且均为S偏振光,这样的架构使得投影光路具有较高的效率。所述合束镜组42包括第一半透半反射镜421、第二半透半反射镜422和第三半透半反射镜423。一种实施方式中,第一半透半反射镜421、第二半透半反射镜422和第三半透半反射镜423沿第一方向X1依次排列。在第二方向X2上,第一半透半反射镜421与红色光源411正对设置,第二半透半反射镜422与绿色光源412正对设置,第三半透半反射镜423与蓝色光源41正对设置。所述第一半透半反射镜421用于透过所述第一光束且反射所述红色光源411发出的光,被所述第一半透半反射镜421反射的所述红色光源411的光照射至所述第二半透半反射镜422,所述第二半透半反射镜422用于透过所述第一光束和所述红色光源411的光且反射所述绿色光源412的光,被所述第二半透半反射镜422反射的所述绿色光源412的光照射至所述第三半透半反射镜423,所述第三半透半反射镜423用于透过所述第一光束、所述红色光源411的光和所述绿色光源412的光且反射所述蓝色光源413的光。本实施方式中,光源组41中的三种不同颜色的光源所发出的光经过合束镜组42后,整合为合束激光,合束激光经过第一反射镜60的反射后入射至MEMS 50上。由于合束激光是由RGB三色光合束而成,可以通过调节红色光源411、绿色光源412和蓝色光源413的亮度来实现对投影区域的图像的颜色控制。
一种实施方式中,合束镜组42中第一半透半反射镜421、第二半透半反射镜422和第三半透半反射镜423依次相邻设置,可以理解为,任意两个之间不设置其它的光学镜片,通过对这三个反射镜的排列布置方式将光源组41的发光合成为一束光。其它实施方式中,合束镜组42内还可以设置其它的光学镜片,例如:第一半透半反射镜421和第二半透半反射镜422之间设置具有聚光功能的镜片,以将第一半透半反射镜421所反射的红色光源411的光更好地聚焦在第二半透半反射镜422的入光面上。
本申请一种实施方式中,经所述分光器30透射的所述第一偏振光为第二光束,第二光束为P偏振光,第二光束经过MEMS 50反射后,用于照亮目标区域A2。目标区域A2和投影区域A1的范围不同,第一种情况下,如图3所示,目标区域A2的范围大于投影区域A1,且投影区域A1包含在目标区域A2内部,例如投影区域A1为人眼及人眼附近的区域,目标区域A2为人脸或大于人脸的范围。第二种情况下,如图4所示,目标区域A2和投影区域A1部分重叠,即投影区域A1和目标区域A2部分交叉,不完全重叠,有部分目标区域A2在投影区域A1的外部,也有部分投影区域A1在目标区域A2的外部。第三种情况下,如图1和图2所示,投影区域A1和目标区域A2无交集,可以理解为,投影区域A1和目标区域A2是相互独立的两个范围,二者之间没有重叠的区域,这两个区域的范围可以相同,也可以不同。以上三种情况只是举例说明投影区域A1和目标区域A2范围不同的三种示例,本申请不限于此三种示例。可见,本申请可以根据各种不同的照明需求设计LBS内的照明光路,实 现不同的目标区域A2的范围的配置。
由于从所述分光器30透射出的第二光束为P偏振光,本申请为了提高第二光束的效率,将第二光束转向为S偏振光,本申请通过设置固定式波片70,此固定式波片70用于将第二光束转向为S方向偏振,固定式波片70位于分光器30和MEMS 50之间的光路上,分光器30透射出的第二光束直接进入固定式波片70。一种实施方式中,在固定式波片70和MEMS 50之间的光路上配置第二反射镜80,第二反射镜80用于将第二光束反射至MEMS 50,通过第二反射镜80的角度或位置的配置,可以调节第二光束入射至MEMS 50的入射角度。第二反射镜80的配置可以与前述第一反射镜60的配置相同。
一种实施方式中,本申请可以不设置固定式波片70,如图2所示,将图1所示的实施方式中的固定式波片替换为第三反射镜90,通过第三反射镜90和第二反射镜80的组合将第二光束反射至MEMS 50的入光面,本实施方式中,第二光束为P偏振光,也可以实现照明的功能。
参阅图1,所述激光扫描系统100还包括主控单元101,激光源10、偏振调制器20和投影光源40均电连接至主控单元101。所述主控单元101用于判断是否需要开启照明功能,当需要开启照明功能时,所述主控单元101用于判断需要照明所述投影区域A1还是所述目标区域A2,当需要照明所述投影区域A1时,所述主控单元101驱动所述偏振调制器20将所述激光束调制为所述第二偏振光,当需要照明所述目标区域A2时,所述主控单元101驱动所述偏振调制器20将所述激光束调制为所述第一偏振光。
一种实施方式中,所述第一光束入射至所述MEMS 50的入射角度与所述第二光束入射至所述MEMS 50的入射角度不同,通过不同的入射角度的配置实现目标区域A2和投影区域A1的范围不同,本实施方式中,不需要设置MEMS 50的调节机构,也就是说,MEMS 50在光路中的位置确定,及光路中其它的光元件的结构和位置亦确定后,光路基本确定,不需要再根据需要去调节MEMS 50的摆角,这样的方案的好处在于,光路架构简洁,成本低,适用的场景具有明确的针对性,只要场景匹配,用户可以直接使用,不需要调节,类似傻瓜相机的操作,不需要专业的技术人员。
一种实施方式中,所述第一光束入射至所述MEMS 50的入射角度与所述第二光束入射至所述MEMS 50的入射角度相同,所述MEMS 50的摆动角度具有可调性。本实施方式中,在MEMS 50的入光侧,第一光束的入射角和第二光束的入射角配置为相同的,通过MEMS 50的摆角可调的性能实现目标区域A2和投影区域A2的范围不同。MEMS 50的摆角可调的性能,可以理解为,本申请设置MEMS驱动结构,参阅图5,通过驱动结构102驱动MEMS 50的摆角调节,以匹配第一光束或第二光束,驱动结构102与主控单元101电连接,主控单元101可以为激光扫描系统LBS内的控制器,也可以集成在激光扫描系统LBS之外的控制中心,主控单元101可以判断入射至MEMS 50的光束为第一光束还是第二光束,当入射至MEMS 50的光束为第一光束时,主控单元101输出信号给驱动结构102,使得驱动结构102驱动MEMS 50摆动,并确定MEMS 50定位在第一位置;当入射至MEMS 50的光束为第二光束时,主控单元101输出信号给驱动结构102,使得驱动结构102驱动MEMS 50摆动,并确定MEMS 50定位在第二位置。
参阅图1,为了整个激光扫描系统LBS的架构具有很好的占空比,节约空间,有利于小 型化的产品设计,本申请将分光器30的位置设置为核心位置,分光器30反射出的第一光束的出射方向为第一方向X1,分光器30透射而出的第二光束的出射方向为第二方向X2,第一方向X1垂直于第二方向X2。将激光源10、偏振调制器20和固定式波片70沿第二方向X2排列在分光器30的两侧,将投影光源40沿第一方向X1排列在分光器30的一侧。
一种实施方式中,如图1所示,所述分光器30、所述第一半透半反射镜421、所述第二半透半反射镜422和所述第三半透半反射镜423沿第一方向X1依次排列为一排,一种实施方式中,分光器30和第一半透半反射镜421为相邻的光学器件,即二者之间没有其它的光学器件,一种实施方式中,分光器30和第一半透半反射镜421之间也可以设置其它的光学器件,例如,分光器30和第一半透半反射镜421之间设置聚光结构,将第一光束聚焦在第一半透半反射镜421的入光面上。如图1所示,沿第一方向X1,第一反射镜60排列在第三半透半反射镜423的出光侧。所述第一光束沿所述第一方向X1穿过所述合束镜组42后形成的光路与所述光源组41经过所述合束镜组42后形成的光路一致。
一种实施方式中,如图1所示,所述激光源10、所述偏振调制器20、所述分光器30和所述固定式波片70沿第二方向X2依次排列为一排,这四个光学器件可以为相邻设置的架构,也可以在其中任意两个光学器件之间增设其它的光学器件,例如,在分光器30和固定式波片70之间设置聚光结构,将第二光束聚焦在固定式波片70的入光面上。一种实施方式中,第二反射镜80沿第一方向X1排列在固定式波片70的出光侧。
一种实施方式中,本申请提供的偏振调节器20、分光器30、固定式波片70固定在一个整体的结构内,构成一个光模块,此光模块与投影组件(包括投影光源40和MEMS 50)安装为一体构成激光成像设置中的核心部分。
一种实施方式中,参阅图1至图5所示的任意一种实施方式,所述激光扫描系统LBS100还包括照明透镜103,所述照明透镜103位于所述MEMS 50的出光侧,从所述MEMS 50射出的所述第二光束经过所述照明透镜103后能够扩大照射范围。所述激光扫描系统LBS100还包括扩散片104,所述扩散片104位于所述照明透镜103和所述MEMS 50之间,所述扩散片104邻近所述照明透镜103,用于将点光源转变为面光源。
本申请涉及一种通过投影的方式进行成像的激光扫描系统100,该激光扫描系统100能够产生第一光束和第二光束,第一光束用于成像光路的照明,以照亮投影区域A1;第二光束用于构成照明光路,照亮目标区域A2,照明光路区别于成像光路。参阅图6,本申请提供的激光扫描系统100应用于激光成像设备1000,激光扫描系统100中可以不设置主控单元101,而是将主控单元101设置激光成像设备1000内,主控单元101不只是用于驱动激光扫描系统100,也可以驱动激光成像设备1000内的其它系统或电路模块。本申请一种实施方式中,也可以将激光扫描系统内的照明透镜103和扩散片104设置在激光扫描系统100的外部,即在激光成像设备1000中设置独立于激光扫描系统100的照明透镜103和扩散片104,并且,照明透镜103的位置设置在MEMS 50的出光侧,使得从所述MEMS 50射出的所述第二光束经过所述照明透镜103后能够扩大照射范围。将扩散片104设置在照明透镜103的入光侧,使得第二光束进入照明透镜103前先经过扩散片104,以将点光源转变为面光源。
在激光成像设备1000内部,第一光束和第二光束射出激光扫描系统100之后的光路视为后段光路,在后段光路上,第一光束所经过的光路为后段投影光路,第二光束经过的光路为 后段照明光路。一种实施方式中,后段投影光路上可以设置其它光学器件,在后段照明光路上也可以设置其它光学器件,例如,这些光学器件可以为:折射光学元件(ROE,Refractive Optical Element)、绕射光学元件(DOE,Diffractive Optical Element)、平面镜、准直镜、反射镜、扩散镜等。如图6所示,在后段投影光路上设置透射光学器件105、反射光学器件106和反射光学器件107,第一光束从MEMS 50的出光面射出后,依次经过透射光学器件105、反射光学器件106和反射光学器件107,然后照亮投影区域A1。在后段照明光路上设置扩散片104、照明透镜103、反射件108、透射件109,第二光束从MEMS 50的出光面射出后,依次经过扩散片104、照明透镜103、反射件108、透射件109,然后照亮目标区域A2。
对于激光成像设备1000而言,第一光束的出光位置和第二光束的出光位置可以为不同的位置,如图6所示,第一光束的出光位置位于激光成像设备1000的顶面,第二光束的出光位置位于激光成像设备1000的侧面,顶面和侧面为不同的表面。可以根据具体的应用场景的需求设置第一光束的出光位置和第二光束的出光位置。
一种实施方式中,激光成像设备1000可以为HUD,HUD可以应用于汽车或其它的交通工具。不同的应用场景可,可以根据不同的需求选择使用LBS产生第一光束或第二光束。参阅图7,图7是本申请一种实施例提供的一种LBS应用在汽车上的HUD中的示意图。汽车包括前挡风玻璃1001、仪表盘1002和激光成像设备1000,激光成像设备1000位于仪表盘1002和前挡风玻璃1001之间的位置。当需要执行LBS的投影功能时,LBS产生第一光束照亮投影区域A1,如图7所示,投影区域A1为人眼附近的区域,可以称为眼盒的区域。当需要开启照明光路时,例如:需要启动车内的监控系统检测人脸时,或者需要启动照相机功能拍摄区域时,LBS产生第二光束,开启照明模式,如图7所示,照明模式下,第二光束照亮目标区域A2,目标区域A2包括人脸。
一种实施方式中,参阅图8,激光成像设备1000可以为AR眼镜。LBS 100设置在AR眼镜的镜腿内位置,当然也可以设置在眼镜框内。在AR眼镜的应用,AR眼镜可以具有一般的投影成像功能和人脸检测功能,当需要使用AR眼镜的投影成像功能时,LBS 100产生第一光束照亮人眼区域,当需要使用AR眼镜的人脸检测功能时,LBS 100产生第二光束照亮人脸。
一种实施方式中,参阅图9,激光成像设备1000也可以为一般的投影设备,LBS 100设置在激光成像设备1000内。激光成像设备1000除了具有产生第一光束,照亮投影区域A1,执行投影功能,还能产生第二光束,照亮目标区域A2,执行照明功能,例如,投影设备使用人脸识别登录,在环境需要的情况下,需要启动照明功能检测人脸,就可以使用本申请的照明功能。
本申请还提供一种LBS的控制方法,控制方法包括如下步骤:
LBS判断是否需要启动照明功能,具体而言,LBS可以根据环境的亮度判断是否启动照明功能,例如,夜晚或环境光较暗的情况下,需要启动照明功能才能看清投影图像或待识别的目标。
当LBS需要启动照明功能时,判断需要照亮投影区域还是目标区域,可以理解为,是需要启动LBS的投影成像功能还是单纯的照明功能,例如,在车载抬头显示器的应用中,这步骤可以判断是需要启动投影功能还是要识别脸部信息;
当需要照亮所述目标区域时,调节偏振调制器,使得所述偏振调制器将激光源发出激光束调制为第一偏振光,即P偏振光,此P偏振光穿过分光器进入照明光路,最终照亮目标区域,在照明光路中,可以设置固定式波片,将P偏振光转为S偏振光,利用S偏振光照明,效率更高;
当需要照亮所述投影区域时,调节偏振调制器,使得所述偏振调制器将激光源发出激光束调制为第二偏振光,即S偏振光,此S偏振光被分光器反射,进入投影光路,S偏振光与投影光源在投影光路内经过相同的光路,然后出射,照亮投影区域。
一种具体的实施方式中,LBS为应用在汽车内的抬头显示器中,本申请提供的具有LBS的抬头显示器不但能实现投影功能,还具有照明功能。具体而言,一种实施方式中,抬头显示器的投影功能指的是抬头显示器能够将仪表盘上的显示信号投影在前接风玻璃上,司机可以驾驶过程中,不用低头看仪表盘,直接在前挡风玻璃上就可以看到需要的信息。或者,抬头显示器也可以将车内的导航(或终端设备上的导航)投影至前挡风玻璃,这样,导航地图结合具体的道路实景,呈现在司机的眼前,体验感更好。抬头显示器的照明功能指的是抬头显示器除了具有照亮上述投影区域外,还能照亮不同于这个投影区域的目标区域。一种实施方式中投影区域可以理解为人眼的位置,目标区域可以理解为人脸。
本申请提供的控制方法,应用在抬头显示器的控制过程,具体如下。
司机在驾驶的过程中,需要启动抬头显示器时,LBS根据环境亮度判断是否需要启动照明功能。
当环境光较亮的情况下,不需要启动照明功能。此时,可以直接启动LBS投影功能,进行正常的投影成像,将仪表盘上的信息或导航信号投影在前挡风玻璃上。
当环境光较弱的情况下,需要启动照明功能。此时,LBS判断将执行投影功能还是照明功能(例如人脸检测)。判断需要照亮哪个区域,若执行投影功能就需要照亮投影区域,即照亮人眼;若执行照明功能就需要照亮目标区域,即需要照亮人脸。可见照明区域是大于投影区域的。
当LBS判断需要照亮人脸时,调节偏振调制器,使得偏振调制器将激光源发出的光调制为P偏振光,P偏振光穿过分光器进入照明光路,最终照亮人脸,此时可以启动人脸检测装置进行人脸检测。
当LBS判断需要将仪表盘上的信息或导航信号投影在前挡风玻璃上时,调节偏振调制器,使得所述偏振调制器将激光源发出激光束调制为S偏振光,S偏振光被分光器反射至投影光路,最终照亮人眼,执行投影功能。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种激光扫描系统,其特征在于,包括:
    激光源,用于输出激光束;
    偏振调制器,用于将所述激光束调制为第一偏振光或第二偏振光,所述第一偏振光和所述第二偏振光中的一个为P偏振光,另一个为S偏振光;
    分光器,用于透射所述第一偏振光或反射所述第二偏振光,经所述分光器反射的所述第二偏振光为第一光束,经所述分光器透射的所述第一偏振光为第二光束;
    投影光源和微机电振鏡,所述微机电振鏡用于将所述投影光源发出的光投影至投影区域;
    所述第一光束经所述微机电振鏡反射后,照亮所述投影区域;所述第二光束经所述微机电振鏡反射后,照亮目标区域,所述目标区域的范围与所述投影区域的范围不同。
  2. 如权利要求1所述的激光扫描系统,其特征在于,所述第一光束入射至所述微机电振鏡的入射角度与所述第二光束入射至所述微机电振鏡的入射角度不同。
  3. 如权利要求1所述的激光扫描系统,其特征在于,所述第一光束入射至所述微机电振鏡的入射角度与所述第二光束入射至所述微机电振鏡的入射角度相同,所述微机电振鏡的摆动角度具有可调性。
  4. 如权利要求1-3任一项所述的激光扫描系统,其特征在于,所述第一偏振光为所述P偏振光,所述第二偏振光为所述S偏振光。
  5. 如权利要求4所述的激光扫描系统,其特征在于,所述激光扫描系统还包括固定式波片,所述固定式波片用于将所述第二光束转向为S方向偏振。
  6. 如权利要求5所述的激光扫描系统,其特征在于,所述投影光源包括光源组和合束镜组,所述光源组包括红色光源、绿色光源和蓝色光源,所述合束镜组包括第一半透半反射镜、第二半透半反射镜和第三半透半反射镜,所述第一半透半反射镜用于透过所述第一光束且反射所述红色光源的光,被所述第一半透半反射镜反射的所述红色光源的光照射至所述第二半透半反射镜,所述第二半透半反射镜用于透过所述第一光束和所述红色光源的光且反射所述绿色光源的光,被所述第二半透半反射镜反射的所述绿色光源的光照射至所述第三半透半反射镜,所述第三半透半反射镜用于透过所述第一光束、所述红色光源的光和所述绿色光源的光且反射所述蓝色光源的光。
  7. 如权利要求6所述的激光扫描系统,其特征在于,所述分光器、所述第一半透半反射镜、所述第二半透半反射镜和所述第三半透半反射镜沿第一方向依次排列为一排。
  8. 如权利要求7所述的激光扫描系统,其特征在于,所述第一光束沿所述第一方向穿过所述合束镜后形成的光路与所述光源组经过所述合束镜后形成的光路一致。
  9. 如权利要求7所述的激光扫描系统,其特征在于,所述激光源、所述偏振调制器、所述分光器和所述固定式波片沿第二方向依次排列为一排,所述第二方向垂直于所述第一方向。
  10. 如权利要求5所述的激光扫描系统,其特征在于,所述第二光束经过所述固定式波片转向为S方向的偏振光后,再经过反射镜的反射后入射所述微机电振鏡。
  11. 如权利要求1-10任一项所述的激光扫描系统,其特征在于,
    所述投影区域位于所述目标区域的范围内,所述目标区域的范围大于所述投影区域的范围;或者,
    所述投影区域和所述目标区域部分重叠;或者,
    所述投影区域和所述目标区域无交集。
  12. 如权利要求1-11任一项所述的激光扫描系统,其特征在于,所述偏振调制器为液晶偏振波片,通过电压控制所述偏振调制器内的液晶偏转的方式调节光的偏振方向。
  13. 如权利要求1-12任一项所述的激光扫描系统,其特征在于,所述激光扫描系统还包括照明透镜,所述照明透镜位于所述微机电振鏡的出光侧,从所述微机电振鏡射出的所述第二光束经过所述照明透镜后能够扩大照射范围。
  14. 如权利要求13所述的激光扫描系统,其特征在于,所述激光扫描系统还包括扩散片,所述扩散片位于所述照明透镜和所述微机电振鏡之间,所述扩散片邻近所述照明透镜,用于将点光源转变为面光源。
  15. 如权利要求1-14任一项所述的激光扫描系统,其特征在于,所述激光扫描系统还包括主控单元,所述主控单元用于判断是否需要开启照明功能,当需要开启照明功能时,所述主控单元用于判断需要照明所述投影区域还是所述目标区域,当需要照明所述投影区域时,所述主控单元驱动所述偏振调制器将所述激光束调制为所述第二偏振光,当需要照明所述目标区域时,所述主控单元驱动所述偏振调制器将所述激光束调制为所述第一偏振光。
  16. 一种激光成像设备,其特征在于,包括驱动芯片和如权利要求1至15任意一项所述的激光扫描系统,所述驱动芯片用于驱动所述偏振调制器工作。
  17. 如权利要求16所述的激光成像设备,其特征在于,所述激光成像设备为抬头显示器,所述激光成设备还包括图像处理系统,所述图像处理系统用于处理所述激光扫描系统的投影图像。
  18. 一种汽车,其特征在于,包括前挡风玻璃、仪表盘和如权利要求16或17所述的激光成像设备,所述激光成像设备位于所述仪表盘和所述前挡风玻璃之间。
  19. 一种控制方法,应用于如权利要求1至15任意一项所述的激光扫描系统,其特征在于,所述控制方法包括:
    当所述激光扫描系统需要启动照明功能时,判断需要照亮投影区域还是目标区域;
    当需要照亮所述目标区域时,调节偏振调制器,使得所述偏振调制器将激光源发出激光束调制为第一偏振光;
    当需要照亮所述投影区域时,调节偏振调制器,使得所述偏振调制器将激光源发出激光束调制为第二偏振光;
    所述第一偏振光和所述第二偏振光中的一个为P偏振光,另一个为S偏振光。
PCT/CN2022/081800 2021-03-30 2022-03-18 激光扫描系统及控制方法、激光成像设备和汽车 WO2022206441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110337945.2 2021-03-30
CN202110337945.2A CN115150594A (zh) 2021-03-30 2021-03-30 激光扫描系统及控制方法、激光成像设备和汽车

Publications (1)

Publication Number Publication Date
WO2022206441A1 true WO2022206441A1 (zh) 2022-10-06

Family

ID=83403885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081800 WO2022206441A1 (zh) 2021-03-30 2022-03-18 激光扫描系统及控制方法、激光成像设备和汽车

Country Status (2)

Country Link
CN (1) CN115150594A (zh)
WO (1) WO2022206441A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955253A (zh) * 2011-08-27 2013-03-06 株式会社电装 平视显示设备
CN108020922A (zh) * 2016-10-31 2018-05-11 株式会社日本显示器 显示装置
CN108020920A (zh) * 2016-10-31 2018-05-11 株式会社日本显示器 显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8087785B2 (en) * 2008-02-25 2012-01-03 Young Optics Inc. Projection display apparatus
CN107577113A (zh) * 2017-09-29 2018-01-12 歌尔股份有限公司 激光投影装置、系统及方法
CN109100866A (zh) * 2018-10-22 2018-12-28 萤欧(上海)汽车科技有限公司 一种基于液晶偏振方向旋转器的车载ar-hud光学系统
CN111007663A (zh) * 2020-03-09 2020-04-14 瑞声通讯科技(常州)有限公司 一种激光扫描显示方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955253A (zh) * 2011-08-27 2013-03-06 株式会社电装 平视显示设备
CN108020922A (zh) * 2016-10-31 2018-05-11 株式会社日本显示器 显示装置
CN108020920A (zh) * 2016-10-31 2018-05-11 株式会社日本显示器 显示装置
US20190171009A1 (en) * 2016-10-31 2019-06-06 Japan Display Inc. Head up display device
US20200036947A1 (en) * 2016-10-31 2020-01-30 Japan Display Inc. Display device

Also Published As

Publication number Publication date
CN115150594A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US5267029A (en) Image projector
US9551868B2 (en) Scanning-type projection device
US9580015B2 (en) Image display device
CN109445111B (zh) 光学设备
US11669001B2 (en) Projection display system
JP2007065408A (ja) 照明装置及び投写型映像表示装置
CN100424544C (zh) 采用在硅板液晶微显示lcos上集成彩色滤波片的光学投影系统
US6987618B2 (en) Polarization converting device, illumination optical system and projector
KR100381050B1 (ko) 액정 프로젝터의 광학계
WO2022206441A1 (zh) 激光扫描系统及控制方法、激光成像设备和汽车
US6853363B2 (en) Projection type image display apparatus
US20170205040A1 (en) Device and method for projecting a light pattern
CN218567814U (zh) 投影光机、显示设备和交通工具
CN215897911U (zh) 一种投影机光学装置和投影机
TWI806574B (zh) 一種圖像生成裝置、投影裝置及車輛
CN211528821U (zh) 一种新型的ar显示光学系统
WO2017188277A1 (ja) 表示装置及び車両用ヘッドアップディスプレイ装置
KR100632518B1 (ko) 투과형 조명 광학계
CN220671739U (zh) 光学投影模组、hud装置及车辆
CN212623372U (zh) 一种双dmd系统和装置
CN218332279U (zh) 光学系统和投影系统
WO2024045883A1 (zh) 一种显示装置、显示方法及车辆
CN113507597A (zh) 一种投影机光学装置和投影机
JP3060648B2 (ja) ディスプレイ装置
CN111273448A (zh) 一种新型的ar显示光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778624

Country of ref document: EP

Kind code of ref document: A1