WO2022206246A1 - 一种服务器电源黑盒数据解析系统 - Google Patents

一种服务器电源黑盒数据解析系统 Download PDF

Info

Publication number
WO2022206246A1
WO2022206246A1 PCT/CN2022/078219 CN2022078219W WO2022206246A1 WO 2022206246 A1 WO2022206246 A1 WO 2022206246A1 CN 2022078219 W CN2022078219 W CN 2022078219W WO 2022206246 A1 WO2022206246 A1 WO 2022206246A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
server power
black box
data
box data
Prior art date
Application number
PCT/CN2022/078219
Other languages
English (en)
French (fr)
Inventor
吴名伟
Original Assignee
山东英信计算机技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东英信计算机技术有限公司 filed Critical 山东英信计算机技术有限公司
Publication of WO2022206246A1 publication Critical patent/WO2022206246A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/079Root cause analysis, i.e. error or fault diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • G06F11/0754Error or fault detection not based on redundancy by exceeding limits
    • G06F11/0757Error or fault detection not based on redundancy by exceeding limits by exceeding a time limit, i.e. time-out, e.g. watchdogs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0766Error or fault reporting or storing
    • G06F11/0787Storage of error reports, e.g. persistent data storage, storage using memory protection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0016Inter-integrated circuit (I2C)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the field of servers, and in particular, to a server power black box data analysis system.
  • the server system needs to do RCA (Root Cause Analysis, root cause analysis) when the server system is suddenly powered off or the system is down, but when the server power supply is powered off or the power cord is unplugged, all the data stored in the internal storage will be cleared. Failure analysis is very inconvenient.
  • Intel proposed the black box function in its common power supply specification CRPS (Common Redundant Power Supply), the server power supply uses the power supply maintenance time to store data in EEPROM (Electrically-Erasable) after the system is powered off. Programmable Read-Only Memory, electrically erasable programmable read-only memory) for analysis.
  • the black box function of the server power supply is to store the parameter information and status of the server power supply in hexadecimal format, and it is difficult to directly interpret the numerical data manually.
  • the black box analysis function can generally be added to the firmware of the BMC (Baseboard Management Controller) or sent back to the original power supply factory for analysis.
  • the BMC firmware in the server system does not add the black box analysis function or the server needs to return to work immediately, then the faulty server power supply needs to be replaced. Under the above conditions, the BMC cannot support the analysis of the black box data of the server power supply. Therefore, it is necessary to return the server power supply to the original factory for analysis. This process takes a long time, which is not conducive to the feedback of the RCA of the server system and the customer service or the early detection of the offline problem of the large-scale system.
  • the purpose of this application is to provide a server power supply black box data analysis system, which can directly analyze the server power supply black box data on-site, without the need for analysis by BMC and IPMI tool, and without power-on and additional fixture boards.
  • the RCA time is greatly reduced, the problem of large-scale system offline is detected early, and the server power supply does not need to be returned to the original factory after being analyzed by the device provided in this application, and can be returned to work, saving service and operation and maintenance costs.
  • a server power supply black box data analysis system comprising: a software dog and a prompt device, the software dog includes:
  • the input interface connected to the server power supply is used to obtain the black box data of the server power supply
  • a controller configured to parse the black box data of the server power supply according to a preset linear format to obtain prompt data, and the format of the prompt data is a decimal format;
  • an output interface connected with the prompting device, used for transmitting the prompting data to the prompting device, so that the prompting device can prompt the prompting data
  • a power module for supplying power to the controller.
  • the dongle also includes:
  • a signal phase shift circuit for adjusting the voltage level of the components mounted on the I2C bus of the server power supply to a preset value
  • the power module is also used for supplying power to the signal phase shift circuit.
  • the input interface matches the firmware burning interface of the server power supply.
  • the controller is packaged using surface mount technology.
  • the input interface is connected to a primary side I2C interface of the server power supply.
  • the prompting device is specifically used for:
  • the prompt data is prompted through graphical interface software.
  • the prompting device is also used to verify the dongle
  • the process of prompting the prompt data includes:
  • the prompt data is prompted.
  • the server power black box data is one or more items of input current, input voltage, output voltage, input power, output power, fan speed, and temperature.
  • the server power black box data is one or more of the input current, the input voltage, the input power, the output power, the fan speed, and the temperature
  • the The controller described above is specifically used to:
  • X is the prompt data corresponding to the server power black box data
  • Y is the twos complement mantissa corresponding to the server power black box data
  • N is the twos complement index corresponding to the server power black box data.
  • the controller is specifically used for:
  • X is the prompt data corresponding to the server power supply black box data
  • Y is the integer number corresponding to the server power supply black box data
  • the present application provides a server power supply black box data analysis system, comprising: a dongle and a prompting device, the dongle includes: an input interface connected to the server power supply, used for acquiring the server power supply black box data; a controller, used for pre-configured Set the linear format to analyze the black box data of the server power supply to obtain prompt data, and the format of the prompt data is in decimal format; the output interface connected with the prompt device is used to transmit the prompt data to the prompt device, so that the prompt device can prompt the prompt data; the power module, Used to power the controller.
  • the decimal data that is easy for users to interpret, and then prompt the decimal data through the prompt device, so that the user can directly obtain the parameter information and status of the server power supply according to the decimal data, greatly reducing the RCA time, and early detection of large-scale system offline problems. It is small and easy to carry.
  • the server power supply does not need to be returned to the original factory after the system analysis provided in this application, and it can be returned to work, saving service and operation and maintenance costs.
  • FIG. 1 is a schematic structural diagram of a server power supply black box data analysis system provided by the application
  • FIG. 3 is a schematic diagram of a prompting interface of a prompting device provided by the application.
  • FIG. 4 is a schematic structural diagram of another server power supply black box data analysis system provided by the application.
  • FIG. 5 is a schematic structural diagram of a signal phase shift circuit provided by the application.
  • FIG. 6 is a schematic structural diagram of another signal phase shift circuit provided by the present application.
  • the core of this application is to provide a server power supply black box data analysis system, which can directly analyze the server power supply black box data on-site, without the need for analysis by BMC and IPMI tool, and without power-on and additional fixture boards.
  • the RCA time is greatly reduced, the problem of large-scale system offline is detected early, and the server power supply does not need to be returned to the original factory after being analyzed by the device provided in this application, and can be returned to work, saving service and operation and maintenance costs.
  • BMC server power black box data
  • system fault query such as: overvoltage/undervoltage, overcurrent, whether the temperature exceeds the operating range, or whether the fan speed is normal
  • converts fault monitoring into detection parameters that exceed the threshold Class simple operation.
  • the data is collected in real time during the operation of the server power supply, and the data is stored in the EEPROM in the event of a failure, thereby creating an event data recorder, similar to a "black box" on an airplane, and the recorder will collect a large number of The latest data (for example, the latest data within 20ms).
  • the latest data for example, the latest data within 20ms.
  • the server system fails, the instantaneous information of the server system will be permanently recorded, so that the system operation during the period of 10ms to 20ms before the failure can be checked later, which provides a data basis for troubleshooting the cause of the system failure and power failure analysis.
  • time periods can be reorganized to determine system-power interdependencies.
  • complex server power black box data records multiple failures to facilitate the establishment of interdependencies between systems, where one failure may lead to more subsequent failures. In order to find the root cause of the failure, therefore, the recorder needs to record as complete data as possible.
  • binary or decimal values may be readily represented, stored and transmitted, for example, may be represented as punched cards with or without holes, high or low voltage on wires, or clockwise or counterclockwise.
  • the magnetic field of the hour hand The electronic circuits that store and perform calculations on binary signals are so simple and reliable that manufacturers can integrate millions or even billions of these circuits on a single chip.
  • 8-bit blocks byte, byte
  • a byte consists of 8 bits, expressed in binary, its value range is 0000 0000 ⁇ 1111 1111, expressed in decimal, its value range is 0 ⁇ 255.
  • Hexadecimal can save more bytes than binary in the same EEPROM capacity. Taking hexadecimal can store more data than binary or decimal. And in the C language, hexadecimal is mainly used. The numeric constants starting with 0x or 0X are considered to be hexadecimal values. For example, given a number represented in hexadecimal: 0x173A4C, it is reversed when converted to binary. Come on, if a binary number is given, it can be converted to hexadecimal by dividing it into groups of 4 bits, with the caveat that if the total number of digits is not a multiple of 4, the leftmost group can be less than 4 bits, and the front is filled with 0. Therefore, in the prior art, the server power supply black box uses hexadecimal format to store the parameter information and status of the server power supply to save more bytes, but it is difficult to interpret the hexadecimal directly manually. Enter numeric data.
  • FIG. 1 is a schematic structural diagram of a server power supply black box data analysis system provided by the application.
  • the server power supply black box data analysis system includes a dongle 1 and a prompt device 2.
  • the dongle 1 includes:
  • the input interface 11 connected with the server power supply is used to obtain the black box data of the server power supply
  • the PCB (Printed Circuit Board, printed circuit board) of the dongle 1 is designed to include I2C (Inter-Integrated Circuit, integrated circuit bus) signal holes, which are derived from wires and connected to the input interface 11, the input interface 11 and the server.
  • the power connection is used to obtain the server power black box data, where the server power black box data is the original hexadecimal data, including but not limited to input current, input voltage, output voltage, input power, output power, fan speed and temperature.
  • the controller 12 is configured to parse the black box data of the server power supply according to a preset linear format to obtain prompt data, and the format of the prompt data is a decimal format;
  • the controller 12 needs to support the I2C communication protocol, the USB (Universal Serial Bus) communication protocol, the firmware coding principle, and the PMBus 1.2 specification, that is, the transmitted content and format must comply with the PMBus 1.2 specification, It should also meet the 3.3V voltage application level and the operating clock pulse in the range of 100KHz to 400KH.
  • the firmware inside the controller 12 should also conform to the PMBus1.2 specification.
  • the hardware of the controller 12 retrieves the server power supply black box data from the server power supply, and then parses the server power supply black box data through the controller 12 firmware.
  • server power black box data are stored in different registers according to the PMBus1.2 specification, for example, the input current is stored in the first register, the output voltage is stored in the second register, and so on.
  • parsing first determine whether there is server power supply black box data in each register, take out the server power supply black box data in the register where the data exists, and perform parsing to obtain prompt data in decimal format. The parsing process is as follows:
  • the output interface 13 connected with the prompting device 2 is used to transmit the prompting data to the prompting device 2, so that the prompting device 2 can prompt the prompting data;
  • the output interface 13 adopts Mini-USB A type, and is connected to the prompt device 2 through a transmission line.
  • the transmission line can be a standard Mini-USB A type USB 2.0 wire, and the USB 2.0 signal, D+, D-, and ID are imported into the controller.
  • the power supply VCC (+5V) is connected to the 5V to 3.3V power supply circuit, the GND is pulled into each component and the reference signal, and the prompt data is transmitted to the prompting device 2, so that the prompting device 2 can prompt.
  • the prompting device 2 may select a mobile terminal with graphical interface software, so as to prompt the prompting data through the graphical interface software on the mobile terminal.
  • other mobile terminals including a tablet computer can also be selected, which will not be repeated in this application.
  • GUI Graphic User Interface, graphical user interface
  • GUI is a graphical operation interface, which can be programmed by special software, such as LabVIEW software, and applied to an executable file of a notebook computer.
  • Its human-machine interface function can select the server power supply address, working clock, etc., when the execution connection , that is, execute the PMBus command on the server power supply, load the server power supply black box data in the problem log, and also load the decimal prompt data parsed by the dongle 1 for interpretation.
  • the schematic diagram of the prompt interface is shown in Figure 3.
  • the prompting device 2 is also used to verify the dongle 1;
  • the process of prompting the prompt data includes:
  • the prompt data will be prompted.
  • the verification function of the graphical interface software can be used to verify the dongle.
  • the decimal data will be prompted, and at the same time, with the verification function of the dongle 1, the data obtained from the server power supply will be verified, and the analysis will be carried out after the verification is successful.
  • the verification process is as follows: the dongle 1 will first exchange data with the MCU of the server power supply, and transmit the verification password. After the analysis is completed, the dongle 1 transmits the identification password to the computer for identification and communication with the graphical operation interface. After the computer confirms that the software dog 1 is a legal component, it will transmit the decimal data decoded by the software dog to the graphical operation interface for display.
  • the special software programming components need to have: components used to execute I2C instructions, considering that I2C will have the behavior of address selection and reading EEPROM, components used to read EEPROM, in order to realize the function of the software dog verification, so A software dog is also required to read the verification element.
  • the power module 14 is used to supply power to the controller 12 .
  • the power module 14 is a 5V to 3.3V converter, which mainly supplies the controller 12 and supplies power for signal transmission.
  • the present embodiment can adopt the converter packaged by the surface mount technology.
  • the power module is a linear LDO (Low Dropout Regulator, low dropout linear regulator).
  • the working principle of the LDO is to adjust the output of the P-MOS through the op amp, and a reference voltage is generated inside the LDO as the inverse of the op amp. Forward voltage, the output voltage of the LDO is divided as the forward input voltage of the op amp.
  • the output of the operational amplifier controls the working state of the P-MOS tube, and the P-MOS is in the linear resistance region, which can be regarded as a voltage-controlled variable resistor.
  • the input voltage VIN becomes the output voltage after passing through the P-MOS tube.
  • the function of the P-MOS tube is to pass the input voltage through the linear resistance area of the P-MOS to dynamically attenuate the voltage, so a large amount of heat is collected in the P-MOS.
  • the processing power is usually less than 1.5W.
  • switching power supplies which are composed of pulse width modulation (PWM) control ICs, MOSFETs, magnetic components, and capacitors.
  • the switching power supply is more complicated, and the MOS tube will be switched frequently. If the switching current is not processed, noise and electromagnetic interference may be generated and affect other equipment. Moreover, if the switching power supply is specially designed, the power factor of the power supply is high, and the processing power of the switching power supply is usually up to hundreds.
  • the decimal data that is easy for users to interpret, and then prompt the decimal data through the prompt device, so that the user can directly obtain the parameter information and status of the server power supply according to the decimal data, greatly reducing the RCA time, and early detection of large-scale system offline problems. It is small and easy to carry.
  • the server power supply does not need to be returned to the original factory after the system analysis provided in this application, and it can be returned to work, saving service and operation and maintenance costs.
  • FIG. 4 is a schematic structural diagram of another server power supply black box data analysis system provided by the application.
  • the server power supply black box data analysis system is based on the above-mentioned embodiment:
  • the software dog 1 further includes:
  • the signal phase shift circuit 15 is used to adjust the voltage level of the components mounted on the I2C bus of the server power supply to a preset value
  • the power module 14 is also used to supply power to the signal phase shift circuit 15 .
  • the signal phase shift circuit 15 can realize the functions of isolation and level unification when the internal I2C of the server power supply has different levels, so as to prevent the problem of high and low level judgment caused by different levels, and finally cause data interpretation errors or mistakes.
  • the voltage level of I2C has three specifications: 5V, 3.3V, and 1.8V.
  • the voltage level specification of the voltage logic using the standard power supply voltage of 5V input voltage level High input voltage: 3.5V or more; Low input voltage: 0.9V or less; between 0.9V and 3.5V, the logic cannot be judged.
  • the voltage level specification of the voltage logic using the standard power supply voltage of 3.3V input voltage level High input voltage: above 2.4V; Low input voltage: below 0.8V; logic cannot be judged between 0.8V and 2.4V.
  • FIG. 5 is a schematic structural diagram of a signal phase shift circuit 15 provided by the present application.
  • Two switches T1 and T2 are used to isolate and switch two signals of SDA and SCL.
  • the input interface 11 matches the firmware burning interface of the server power supply.
  • the input interface 11 of the dongle 1 needs to be able to match the firmware burning interface of the server power supply, so as to be correct and complete with the firmware burning interface of the server power supply It is closely connected to realize the function of dongle 1 without affecting the quality of signal transmission.
  • the controller 12 is packaged using surface mount technology.
  • the use of surface adhesive technology to package the controller 12 can reduce the space for placing the components, and can reduce the size of the dongle 1 to the size of a USB flash drive, which is convenient for portability and use.
  • the input interface 11 is connected to the primary side I2C interface of the server power supply.
  • the current server power supplies are all digital power supplies.
  • the digital power supply is based on the design of analog control switching power supply, using microprocessor MCU instead of analog control to carry out programmable power management, with software algorithm to control the power supply system, to achieve analog control switching power supply can not be achieved. Achieved power control, management, monitoring and communication functions, and has a high degree of flexibility. The best conversion efficiency can be guaranteed for various input voltages and various load conditions.
  • the full digital power supply takes MCU (Microcontroller Unit, microcontroller) or DSP (Digital Signal Processor, digital signal processor) as the core, and adds feedback control and feedback compensation adjustment based on the half-digital power supply. Ensure system reliability, perform fault management, set various protections, and finally implement control and management on power products. At the same time, MCU internal modules and programmability can also simplify the number of external passive components.
  • the current server power supply will use its internal MCU to complete the converter switch control, fan control, LED control, monitoring, protection, communication and other functions in the power supply, which are divided into primary side MCU and secondary side MCU. . Because a test MCU will have an additional EEPROM for data storage and VPD (important product information) when power off. When the server power supply is powered off, the data will be stored in the EEPROM, so the I2C interface is the best place to read the data of the server power supply black box. Therefore, in this embodiment, the input interface 11 of the dongle 1 and the one side I2C interface connection.
  • the current server power supply will use its internal MCU as a DSP chip.
  • the overall performance of the DSP chip is good, and it can achieve multi-function real-time control.
  • the special hardware and command design is suitable for advanced control algorithms, and it is easy to add auxiliary functions.
  • the internal design of the chip is suitable for For digital signal processing, single instruction cycle, multiple internal busbars, special address decoding mode, zero-burden loop operation, programmable flash memory, hardware calculation of integer multiplication, various I/O Peripheral functions, other special built-in functions, etc. If a general MCU is used, 80% of the MCU time will be used for basic sine wave pulse width modulation, frequency control, and program control, etc.
  • a DSP includes the mathematical operations of the AC voltage regulator loop control, which only takes up 20% of the MCU time is used, and the remaining MCU time can be used to implement other control laws, such as power factor control, pre-stage DC power regulation control, random pulse width modulation, current ripple compensation, startup, error diagnosis , parameter estimation, online parameter automatic adjustment and other functions.
  • the output interface 13 of the dongle 1 is connected to the prompting device 2, and the schematic diagram of the graphical interface software execution file in the prompting device 2 is shown in FIG. , at this time, the reading progress can be determined by the progress bar in the lower left of Figure 3, and the data displayed on it includes both the software dog 1 displayed in the BlackBox column and the interpretation result of the server power supply black box data continuously captured by the graphical interface , and also include the raw data in the Issue log field. At this point, it can be interpreted why the server power is turned off.
  • the format of the prompt data is in decimal format, and the output is marked according to the PMB1.2 specification, which can be directly interpreted manually.
  • the server power supply does not need to be powered on and additional jig boards, and the black box data can be directly read through this set of tools.
  • the server power supply can also be analyzed when the power is cut off to avoid secondary damage, and it does not need to be interpreted by BMC and IPMI tools.
  • the black box data allows the server to return to work after replacing the faulty power supply.
  • the server power supply does not need to be returned to the original factory after analysis, and it can return to work, which can save service and operation and maintenance costs.
  • This system is simple and lightweight, only need a USB-sized dongle 1 to connect to a laptop with a USB cable, and open the GUI software to perform black-box data analysis with one click.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Power Sources (AREA)

Abstract

本申请公开了一种服务器电源黑盒数据解析系统,包括:软件狗和提示装置,软件狗包括:与服务器电源连接的输入接口,用于获取服务器电源黑盒数据;控制器,用于按照预设线性格式解析服务器电源黑盒数据得到提示数据,提示数据的格式为十进制格式;与提示装置连接的输出接口,用于向提示装置传输提示数据,以便提示装置对提示数据进行提示;电源模块,用于为控制器供电。本申请可直接对服务器电源黑盒数据进行现场分析,不需通过BMC及IPMI tool进行解析,也不需通电及额外治具板卡,可以大幅缩减RCA时间,及早发现大规模系统离线的问题,同时服务器电源经本申请所提供的装置分析后不需退回原厂,即可回线工作,节省服务及运维成本。

Description

一种服务器电源黑盒数据解析系统
本申请要求在2021年3月30日提交中国专利局、申请号为202110342476.3、发明名称为“一种服务器电源黑盒数据解析系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器领域,特别涉及一种服务器电源黑盒数据解析系统。
背景技术
服务器系统在突然断电或系统宕机时需要做RCA(Root Cause Analysis,根本原因分析),但是服务器电源在断电或电源线被拔除时,内部存储的所有数据都会被清除,因此服务器电源的故障分析非常不便。基于此Intel在其主导的共同电源规格CRPS(Common Redundant Power Supply,共用冗余电源)提出了黑盒功能,服务器电源在系统断电后利用电源供应器维持时间将数据存储在EEPROM(Electrically-Erasable Programmable Read-Only Memory,带电可擦可编程只读存储器)中,以便进行分析。
服务器电源黑盒功能是使用十六进制格式储存服务器电源的参数信息和状态,而人工难以直接解读出数值数据。为解决该问题,一般可以在BMC(Baseboard Management Controller,基板管理控制器)固件中加入黑盒解析功能或者是送回电源原厂作分析。但是如果服务器系统中的BMC固件未加入黑盒解析功能或者服务器需要立即回线工作,那么就需要将故障的服务器电源换置,在上述工况下,BMC无法支持对服务器电源黑盒数据的解析,因此就需要将服务器电源退回原厂进行分析,此流程耗时较长,不利于服务器系统的RCA及客户服务的反馈或者及早发现大规模系统离线的问题。
因此,如何提供一种解决上述技术问题的方案是本领域技术人员目前需要解决的问题。
发明内容
本申请的目的是提供一种服务器电源黑盒数据解析系统,可直接对服务器电源黑盒数据进行现场分析,不需通过BMC及IPMI tool进行解析,也不需通电及额外治具板卡,可以大幅缩减RCA时间,及早发现大规模系统离线的问题,同时服务器电源经本申请所提供的装置分析后不需退回原厂,即可回线工作,节省服务及运维成本。
为解决上述技术问题,本申请提供了一种服务器电源黑盒数据解析系统,包括:软件狗和提示装置,所述软件狗包括:
与服务器电源连接的输入接口,用于获取服务器电源黑盒数据;
控制器,用于按照预设线性格式解析所述服务器电源黑盒数据得到提示数据,所述提示数据的格式为十进制格式;
与所述提示装置连接的输出接口,用于向所述提示装置传输所述提示数据,以便所述提示装置对所述提示数据进行提示;
电源模块,用于为所述控制器供电。
可选的,该软件狗还包括:
信号相移电路,用于将所述服务器电源的I2C总线上挂载的元件的电压准位调整至预设值;
所述电源模块,还用于为所述信号相移电路供电。
可选的,所述输入接口与服务器电源的固件烧录接口匹配。
可选的,所述控制器采用表面粘着技术封装。
可选的,所述输入接口与所述服务器电源的一次侧I2C接口连接。
可选的,所述提示装置,具体用于:
通过图形化界面软件对所述提示数据进行提示。
可选的,所述提示装置,还用于对所述软件狗进行校验;
相应的,所述对所述提示数据进行提示的过程包括:
当所述校验成功,对所述提示数据进行提示。
可选的,服务器电源黑盒数据为输入电流、输入电压、输出电压、输入功率、输出功率、风扇转速和温度中的一项或多项。
可选的,当所述服务器电源黑盒数据为所述输入电流、所述输入电压、所述输入功率、所述输出功率、所述风扇转速和所述温度中的一项或多项,所述控制器具体用于:
按照第一关系式解析所述服务器电源黑盒数据得到提示数据,所述第一关系式为X=Y×2 N
其中,X为所述服务器电源黑盒数据对应的提示数据,Y为所述服务器电源黑盒数据对应的二进制补码尾数,N为所述服务器电源黑盒数据对应的二进制补码指数。
可选的,当所述服务器电源黑盒数据为所述输出电压,所述控制器具体用于:
按照第二关系式解析所述服务器电源黑盒数据得到提示数据,所述第一关系式为X=Y×2 -9
其中,X为所述服务器电源黑盒数据对应的提示数据,Y为所述服务器电源黑盒数据对应的整码数。
本申请提供了一种服务器电源黑盒数据解析系统,包括:软件狗和提示装置,软件狗包括:与服务器电源连接的输入接口,用于获取服务器电源黑盒数据;控制器,用于按照预设线性格式解析服务器电源黑盒数据得到提示数据,提示数据的格式为十进制格式;与提示装置连接的输出接口,用于向提示装置传输提示数据,以便提示装置对提示数据进行提示;电源模块,用于为控制器供电。
在实际应用中,采用本申请的方案,不需要在服务器系统中的BMC固件加入黑盒解析功能,让服务器置换故障电源后即可回线工作。不需通电及额外治具板卡,断电也可以分析,避免电源二次伤害。也不需要将服务器电源寄回电源原厂进行分析,通过软件狗即可直接对服务器电源黑盒数据进行现场解析,操作简单,不需过多设定,一键即可做电源黑盒数据分析。得到便于用户判读的十进制数据,再通过提示装置对十进制数据进行提示,以便用户根据十进制数据直接得到服务器电源的参数信息和状态,大幅缩减RCA时间,及早发现大规模系统离线的问题,软件狗体积较小,便于携带,此外,服务器电源经本申请所提供的系统分析后不需退回原厂,即可回线工作,节省服务及运维成本。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例中所需要使用的附图做简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请所提供的一种服务器电源黑盒数据解析系统的结构示意图;
图2为本申请所提供的一种计算范例示意图;
图3为本申请所提供的一种提示装置的提示界面的示意图;
图4为本申请所提供的另一种服务器电源黑盒数据解析系统的结构示意图;
图5为本申请所提供的一种信号相移电路的结构示意图;
图6为本申请所提供的另一种信号相移电路的结构示意图。
具体实施方式
本申请的核心是提供一种服务器电源黑盒数据解析系统,可直接对服务器电源黑盒数据进行现场分析,不需通过BMC及IPMI tool进行解析,也不需通电及额外治具板卡,可以大幅缩减RCA时间,及早发现大规模系统离线的问题,同时服务器电源经本申请所提供的装置分析后不需退回原厂,即可回线工作,节省服务及运维成本。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为便于理解本申请的方案,下面对服务器电源黑盒数据进行说明,从电源管理的角度看,服务器系统运行过程中需要监测电压、电流、温度或风扇速度等参数,BMC的主要功能是控制、监测大量的电源和风扇,包括:系统故障查询,例如:过压/欠压、过流、温度是否超出工作范围,或者是风扇速度是否正常,将故障监测转化成检测参数是否超出阀值这类简单操作。因此在服务器电源运行过程中实时采集数据,并在发生故障时将数据存储到 EEPROM中,由此创建事件数据记录仪,类似于飞机上的“黑盒子”,记录仪将按预设周期收集大量的最新数据(比如,20ms内的最新数据)。当服务器系统发生故障时,服务器系统的瞬间信息将被永久记录下来,以便后续能够检查故障发生前10ms至20ms期间的系统操作,为排查系统故障的原因和电源失效分析提供数据基础。通过核查这些数据,可以重新组织时间段,确定系统与电源的相互依赖关系。在理想情况下,复杂的服务器电源黑盒数据记录多种故障,便于建立系统之间的相互依赖性,发生一个故障后,可能会引发更多的后续故障。为了找到故障的根本原因,因此,需要记录仪记录尽可能完备的数据。
可以理解的是,虽然二进制数值或十进制数值可以很容易地被表示、存储和传输,例如,可以表示为穿孔卡片上有洞或无洞、导线上的高电压或低电压,或者顺时针或逆时针的磁场。对于二值信号进行存储和执行计算的电子电路非常简单可靠,制造商能够在一个单独的芯片上集成数百万甚至数十亿个这样的电路。目前,大多数计算机使用8位的块(字节,byte),作为最小的可寻址的内存单位。一个字节由8位组成,用二进制表示,它的值域是0000 0000~1111 1111,用十进制表示,它的值域是0~255。可以看出,用二进制表示法太冗长,而十进制表示法与位模式的互相转换很麻烦,而十六进制用数字0~9及字符A~F来表示0~15这16个值,十六进制和二进制之间的转换较简单直接,因此,一个字节常用十六进制表示,它的值域是00~FF。
在同一EEPROM容量下,相较于二级制,十六进制可以节省更多字节。采取十六进制可以较二进制或十进制储存更多数据量。而且在C语言中主要使用十六进制,以0x或0X开头的数字常量被认为是十六进制的值,比如给定一个十六进制表示的数字:0x173A4C,转为二进制则为反过来,如果给定一个二进制数字,可以通过把它分为每4位一组来转换为十六进制,需要注意的是,如果总位数不是4的倍数,最左边的一组可以少于4位,前面用0补齐,因此,现有技术中服务器电源黑盒是使用十六进制格式储存服务器电源的参数信息和状态,以节省更多字节,但是人工难以直接解读出十六进数值的数据。
下面对本申请所提供的一种服务器电源黑盒数据解析系统进行详细说明。
请参照图1,图1为本申请所提供的一种服务器电源黑盒数据解析系统的结构示意图,该服务器电源黑盒数据解析系统包括软件狗1和提示装置2,软件狗1包括:
与服务器电源连接的输入接口11,用于获取服务器电源黑盒数据;
具体的,软件狗1的PCB(Printed Circuit Board,印制线路板)设计上包括I2C(Inter-Integrated Circuit,集成电路总线)信号孔位,以线材导出接至输入接口11,输入接口11与服务器电源连接,用于获取服务器电源黑盒数据,这里的服务器电源黑盒数据即原始的十六进制数据,包括但不限于输入电流、输入电压、输出电压、输入功率、输出功率、风扇转速和温度。
控制器12,用于按照预设线性格式解析服务器电源黑盒数据得到提示数据,提示数据的格式为十进制格式;
具体的,控制器12需支持I2C通信协议、需支持USB(Universal Serial Bus,通用串行总线)通信协议、固件编码原则、需符合PMBus 1.2规范,即传递的内容与格式需符合PMBus 1.2规范、还应满足3.3V电压应用等级以及工作时脉在100KHz至400KH范围内。具体的,控制器12内部的固件也要符合PMBus1.2规范,控制器12的硬件从服务器电源取回的服务器电源黑盒数据,然后通过控制器12固件对服务器电源黑盒数据进行解析,其中,不同类型的服务器电源黑盒数据按照PMBus1.2规范存入不同的寄存器内,如输入电流存储在第一寄存器内,输出电压存储在第二寄存器内,以此类推。在进行解析时,首先判断各个寄存器中是否存在服务器电源黑盒数据,将存在数据的寄存器中的服务器电源黑盒数据取出,进行解析,得到十进制格式的提示数据,解析过程如下:
对于输入电流、输入电压、输入功率、输出功率、风扇转速和温度等数据,按照第一关系式X=Y×2 N进行解析,其中,X=Y×2 N为PMBus1.2针对Linear-11所有传感器检测数值提供的解析关系式,Linear-11数据格式使用(N)5位二进制补码指数和(Y)11位二级制补码尾数,X为提示数据,计算范例参照图2所示。
对于输出电压,按照第二关系式X=Y×2 -9进行解析,可以理解的是,电压数值表示时使用PMBus寄存器的VOUT_MODE寄存器的位置固定高Linear-11,9位指示,因此固定N=-9h。
与提示装置2连接的输出接口13,用于向提示装置2传输提示数据,以便提示装置2对提示数据进行提示;
具体的,输出接口13采用Mini-USB A type,通过传输线与提示装置2连接,传输线采用标准Mini-USB A type的USB 2.0线材即可,将USB 2.0信号,D+,D-,ID导入控制器12处理,电源VCC(+5V)接入5V转3.3V电源电路,GND拉进各部件及参考信号,并向提示装置2传输提示数据,以便提示装置2进行提示。作为一种可选的实施例,为便于携带,提示装置2可以选择带有图形化界面软件的移动终端,以便通过移动终端上的图形化界面软件对提示数据进行提示。当然除了可以选用笔记本,还可以选择包括平板电脑在内的其他移动终端,本申请在此不再赘述。
具体的,可以采用带有GUI(Graphical User Interface,图形用户界面)的笔记本电脑。GUI为一种图形化操作界面,可以通过专用软件,如LabVIEW软件来编程,应用于笔记本电脑的一个执行档,其人机界面功能,可选择服务器电源位址、工作时脉等,当执行连接时,也即对服务器电源执行PMBus指令,将问题日志中的服务器电源黑盒数据载入,也将软件狗1解析后的十进制提示数据载入作为判读,提示界面的示意图参照图3所示。
作为一种可选的实施例,提示装置2,还用于对软件狗1进行校验;
相应的,对提示数据进行提示的过程包括:
当校验成功,对提示数据进行提示。
具体的,考虑到解析内容及参数具有涉密信息,为提高数据交互的安全性,可利用图形化介面软件的校验功能对软件狗进行校验,校验成功后,对软件狗1分析后的十进制数据进行提示,同时搭配软件狗1的校验功能,对从服务器电源获取到的数据进行校验,校验成功后再进行分析。
具体的,校验过程如下:软件狗1会先与服务器电源的MCU进行数据交互,并传递校验密码,MCU确认软件狗1为合法元件,将EEPROM存储的数据传递至软件狗1进行解析,解析完成后,软件狗1传递辨识密码至计算机上与图形化操作界面做辨识沟通,计算机确认软件狗1为合法元件后,会将软件狗解译后的十进制数据传递至图形化操作界面展示。
其中,专用软件编程元件需有:用于执行I2C指令的元件,考虑到I2C会有位址选定及读取EEPROM的行为,用于读取EEPROM的元件,为了实 现软件狗校验功能,因此还需有软件狗读取校验元件。将各部重要元件连结及编组,完成图形化操作界面,以执行读取并提示服务器电源黑盒数据的功能,编程完毕后需将其转成为可执行档,便可在计算机上执行。
电源模块14,用于为控制器12供电。
具体的,此电源模块14为一个5V转3.3V的转换器,其主要供给控制器12,及信号传输所需进行供电。为了节省整体空间及制作成本,本实施例可以采用表面黏着技术封装的转换器。
具体的,电源模块具体为一种线性LDO(Low Dropout Regulator,低压差线性稳压器),LDO工作原理就是通过运放调节P-MOS的输出,LDO内部产生一个基准电压,作为运放的反向电压,将LDO的输出电压通过分压作为运放的正向输入电压。运放的输出控制P-MOS管的工作状态,P-MOS处于线性电阻区,可看成一个压控可变电阻。输入电压VIN,经过这个P-MOS管后变为输出电压,这里P-MOS管的作用为将输入电压通过P-MOS的线性电阻区,将电压动态衰减,因此大量的热汇集于P-MOS,处理功率通常小于1.5W以下。这有别于开关电源,开关电源是由脉冲宽度调变(PWM)控制IC、MOSFET、磁性元件、电容构成。随着电力电子技术的发展和创新,目前开关电源主要以小型、轻量和高效率的特点被广泛应用。开关电源利用的切换MOS管多半是在全开模式(饱和区)及全闭模式(截止区)之间切换,这两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。不过开关电源比较复杂,MOS管会频繁切换,若切换电流未加以处理,可能会产生噪声及电磁干扰影响其他设备,而且若开关电源经有特别设计,其电源功率因数高,开关电源处理功率通常达数百。
可见,本实施例中,不需要在服务器系统中的BMC固件加入黑盒解析功能,让服务器置换故障电源后即可回线工作。不需通电及额外治具板卡,断电也可以分析,避免电源二次伤害。也不需要将服务器电源寄回电源原厂进行分析,通过软件狗即可直接对服务器电源黑盒数据进行现场解析,操作简单,不需过多设定,一键即可做电源黑盒数据分析。得到便于用户判读的十进制数据,再通过提示装置对十进制数据进行提示,以便用户根据十进制数据直接得到服务器电源的参数信息和状态,大幅缩减RCA时间,及早发现大 规模系统离线的问题,软件狗体积较小,便于携带,此外,服务器电源经本申请所提供的系统分析后不需退回原厂,即可回线工作,节省服务及运维成本。
请参照图4,图4为本申请所提供的另一种服务器电源黑盒数据解析系统的结构示意图,该服务器电源黑盒数据解析系统在上述实施例的基础上:
作为一种可选的实施例,该软件狗1还包括:
信号相移电路15,用于将服务器电源的I2C总线上挂载的元件的电压准位调整至预设值;
电源模块14,还用于为信号相移电路15供电。
具体的,信号相移电路15针对服务器电源内部I2C有不同提高准位时,可以实现隔离及位准统一功能,以防不同位准造成高低电平判断问题,最后造成数据判读误差或失误问题。
具体的,一般在服务器内部,I2C的电压准位有5V、3.3V、1.8V三种规格。在使用上I2C Bus上所有元件的电压准位需一致,不然会造成信号高位准或低位准误判断。使用标准供电电压5V的电压逻辑的电压准位规范:输入电压准位High输入电压:3.5V以上;Low输入电压:0.9V以下;介于0.9V与3.5V间逻辑无法判断。使用标准供电电压3.3V的电压逻辑的电压准位规范:输入电压准位High输入电压:2.4V以上;Low输入电压:0.8V以下;介于0.8V与2.4V间逻辑无法判断。
参照图5所示,图5为本申请所提供的一种信号相移电路15的结构示意图,通过两个开关管T1和T2做隔离切换SDA&SCL两路信号。
具体的,参照图6所示,3.3V信号向5V传输时,当3.3V信号端为高电平时,T1的Vgs电压为0,T1截止,此时5V信号端在上拉电阻R2的作用下,电平上拉到5V。当3.3V信号端为低电平时,T1的Vgs电压为3.3V,T1导通,此时5V信号端受3.3V信号端作用,电平为0。当3.3V信号端为低电平时,3.3V信号端在T1内部寄生二极体的作用下电压下降,当下降到一定程度,T1的Vgs电压会使T1导通,此时3.3V信号端受5V信号端作用,电平为0。
作为一种可选的实施例,输入接口11与服务器电源的固件烧录接口匹配。
具体的,考虑到服务器电源固件烧录接口都有其具体的型号,因此软件狗1的输入接口11需要能与服务器电源的固件烧录接口匹配,以便和服务器电源的固件烧录接口正确、完整紧密对接,以实现软件狗1的功能,同时不会影响信号传递品质。
作为一种可选的实施例,控制器12采用表面粘着技术封装。
具体的,使用表面黏着技术封装控制器12,可以缩小零件摆放的空间,可以让软件狗1的尺寸缩小至一个U盘大小,方便携带使用。
作为一种可选的实施例,输入接口11与服务器电源的一次侧I2C接口连接。
现行服务器电源皆为数字化电源。数字化电源是在类比控制切换式电源为设计的基础上,使用微处理器MCU取代类比控制,进行可程式化的电源管理,搭配软体演算法进行控制电源供应系统,来实现类比控制切换式电源无法做到的电源控制、管理、监控与通信功能,并具有高度的灵活性。可保证各种输入电压和各种负载条件都能得到最好的转换效率。全数位电源以MCU(Microcontroller Unit,微控制器)或DSP(Digital Signal Processor,数位信号处理器)为核心,基于半数位电源基础加入回授控制、回授补偿的调整,通过远端诊断也能确保系统可靠性、执行故障管理、各种保护的设定,最终在电源产品上实现控制与管理,同时MCU内部模组与可程式化亦能简化外部被动元件数量。
具体的,现行的服务器电源会由其内部MCU来完成电源供应器中转换器开关控制,风扇控制,LED控制,监控,保护,通讯等功能,就分工会分为一次侧MCU及二次侧MCU。因为一次测MCU都会有额外增加一个EEPROM作为断电时数据储存及VPD(产品重要资讯)。在服务器电源断电时会将数据存入EEPROM,因此一次测I2C接口为读取服务器电源黑盒数据的最佳位置,因此,本实施例中将软件狗1的输入接口11与服务器电源的一次侧I2C接口连接。
现行服务器电源会由其内部MCU为DSP晶片,DSP晶片的整体效能佳,可达成多功能的即时控制,特殊的硬体及指令设计适用于高等控制演算法,易于增加附属功能,晶片内部设计适用于数位信号处理,单一指令周期、多条内部汇流排、特殊的位址解码模式、零负担的回圈运算、可程式化的快闪 记忆体、整数乘法的硬体计算、多样的I/O周边功能、其他特殊内建功能等。若采用一般的MCU,则80%的MCU时间将用于基本的正弦波脉宽调变、频率控制、与程序控制等,但如采用DSP,则包含交流稳压回路控制的数学运算,仅占用了20%的MCU时间,剩下的MCU时间可用于实现另外的控制法则,例如功率因数控制、前级直流电源稳压控制、随机式脉宽调变、电流涟波补偿、开机启动、错误诊断、参数估计、线上参数自动调整等种种功能。
本实施例中将软件狗1的输出接口13连接提示装置2,提示装置2中图形化界面软件执行档的示意图参照图3所示,通过点击图3右上Connect,开始读取服务器电源黑盒数据,此时可以通过图3中左下的进度条确定读取进度,其上显示的数据既包括在BlackBox栏位显示的软件狗1及图形化界面持续撷取的服务器电源黑盒数据的解译结果,同时也包括在Issue log栏位的原始数据。此时即可判读服务器电源因何原因关闭,提示数据的格式为十进制格式,且根据PMB1.2规范标示输出,人工可以直接解读。
综上所述,采用本申请的方案,不需将服务器电源寄回电源原厂分析黑盒数据,现场可以直接解译,大幅缩减RCA时间,及早发现大规模系统离线的问题。服务器电源不需通电及额外治具板卡,通过本套工具即可直接读取到黑盒数据,服务器电源断电也可以进行分析,避免二次伤害,且不需通过BMC及IPMI工具解译黑盒数据,让服务器置换故障电源即可回线工作,此外服务器电源经分析后不需退回原厂,即可回线工作,可以节省服务及运维成本。本套系统简单轻便,仅需U盘大小的软件狗1搭配USB线连接至笔记本电脑,打开GUI软件即可一键做黑盒数据分析。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的状况下,由语句“包括一个……”限定的要素, 并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其他实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种服务器电源黑盒数据解析系统,其特征在于,包括:软件狗和提示装置,所述软件狗包括:
    与服务器电源连接的输入接口,用于获取服务器电源黑盒数据;
    控制器,用于按照预设线性格式解析所述服务器电源黑盒数据得到提示数据,所述提示数据的格式为十进制格式;
    与所述提示装置连接的输出接口,用于向所述提示装置传输所述提示数据,以便所述提示装置对所述提示数据进行提示;
    电源模块,用于为所述控制器供电。
  2. 根据权利要求1所述的服务器电源黑盒数据解析系统,其特征在于,该软件狗还包括:
    信号相移电路,用于将所述服务器电源的I2C总线上挂载的元件的电压准位调整至预设值;
    所述电源模块,还用于为所述信号相移电路供电。
  3. 根据权利要求1所述的服务器电源黑盒数据解析系统,其特征在于,所述输入接口与服务器电源的固件烧录接口匹配。
  4. 根据权利要求1所述的服务器电源黑盒数据解析系统,其特征在于,所述控制器采用表面粘着技术封装。
  5. 根据权利要求1所述的服务器电源黑盒数据解析系统,其特征在于,所述输入接口与所述服务器电源的一次侧I2C接口连接。
  6. 根据权利要求1所述的服务器电源黑盒数据解析系统,其特征在于,所述提示装置,具体用于:
    通过图形化界面软件对所述提示数据进行提示。
  7. 根据权利要求1所述的服务器电源黑盒数据解析系统,其特征在于,所述提示装置,还用于对所述软件狗进行校验;
    相应的,所述对所述提示数据进行提示的过程包括:
    当所述校验成功,对所述提示数据进行提示。
  8. 根据权利要求1-7任意一项所述的服务器电源黑盒数据解析系统,其特征在于,服务器电源黑盒数据为输入电流、输入电压、输出电压、输入功率、输出功率、风扇转速和温度中的一项或多项。
  9. 根据权利要求8所述的服务器电源黑盒数据解析系统,其特征在于,当所述服务器电源黑盒数据为所述输入电流、所述输入电压、所述输入功率、所述输出功率、所述风扇转速和所述温度中的一项或多项,所述控制器具体用于:
    按照第一关系式解析所述服务器电源黑盒数据得到提示数据,所述第一关系式为X=Y×2 N
    其中,X为所述服务器电源黑盒数据对应的提示数据,Y为所述服务器电源黑盒数据对应的二进制补码尾数,N为所述服务器电源黑盒数据对应的二进制补码指数。
  10. 根据权利要求8所述的服务器电源黑盒数据解析系统,其特征在于,当所述服务器电源黑盒数据为所述输出电压,所述控制器具体用于:
    按照第二关系式解析所述服务器电源黑盒数据得到提示数据,所述第一关系式为X=Y×2 -9
    其中,X为所述服务器电源黑盒数据对应的提示数据,Y为所述服务器电源黑盒数据对应的整码数。
PCT/CN2022/078219 2021-03-30 2022-02-28 一种服务器电源黑盒数据解析系统 WO2022206246A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110342476.3 2021-03-30
CN202110342476.3A CN113157474B (zh) 2021-03-30 2021-03-30 一种服务器电源黑盒数据解析系统

Publications (1)

Publication Number Publication Date
WO2022206246A1 true WO2022206246A1 (zh) 2022-10-06

Family

ID=76885435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078219 WO2022206246A1 (zh) 2021-03-30 2022-02-28 一种服务器电源黑盒数据解析系统

Country Status (2)

Country Link
CN (1) CN113157474B (zh)
WO (1) WO2022206246A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115827310A (zh) * 2023-02-21 2023-03-21 成都天成电科科技有限公司 一种信息校验的方法、装置、存储介质及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113157474B (zh) * 2021-03-30 2023-08-15 山东英信计算机技术有限公司 一种服务器电源黑盒数据解析系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043877A1 (en) * 2000-07-06 2002-04-18 Mullins Barrie Jeremiah Power supply unit controller
CN109240846A (zh) * 2018-09-19 2019-01-18 郑州云海信息技术有限公司 一种电源故障诊断方法、装置及服务器
CN109976959A (zh) * 2019-03-27 2019-07-05 苏州浪潮智能科技有限公司 一种用于服务器故障检测的便携式设备及方法
CN112068686A (zh) * 2020-08-23 2020-12-11 苏州浪潮智能科技有限公司 一种服务器电源黑盒数据的记录装置及方法
CN113157474A (zh) * 2021-03-30 2021-07-23 山东英信计算机技术有限公司 一种服务器电源黑盒数据解析系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9723351B2 (en) * 2010-08-17 2017-08-01 Qualcomm Incorporated Web server TV dongle for electronic device
CN102447575B (zh) * 2011-10-08 2015-09-16 烽火通信科技股份有限公司 一种解析并管理十六进制数据日志文件的方法
KR102578191B1 (ko) * 2018-04-09 2023-09-14 에스케이하이닉스 주식회사 리커버리 성능이 최적화된 데이터 저장 장치 및 동작 방법, 이를 포함하는 스토리지 시스템
CN109597475A (zh) * 2018-12-03 2019-04-09 郑州云海信息技术有限公司 一种服务器电源信息处理方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043877A1 (en) * 2000-07-06 2002-04-18 Mullins Barrie Jeremiah Power supply unit controller
CN109240846A (zh) * 2018-09-19 2019-01-18 郑州云海信息技术有限公司 一种电源故障诊断方法、装置及服务器
CN109976959A (zh) * 2019-03-27 2019-07-05 苏州浪潮智能科技有限公司 一种用于服务器故障检测的便携式设备及方法
CN112068686A (zh) * 2020-08-23 2020-12-11 苏州浪潮智能科技有限公司 一种服务器电源黑盒数据的记录装置及方法
CN113157474A (zh) * 2021-03-30 2021-07-23 山东英信计算机技术有限公司 一种服务器电源黑盒数据解析系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115827310A (zh) * 2023-02-21 2023-03-21 成都天成电科科技有限公司 一种信息校验的方法、装置、存储介质及电子设备
CN115827310B (zh) * 2023-02-21 2023-05-23 成都天成电科科技有限公司 一种信息校验的方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN113157474B (zh) 2023-08-15
CN113157474A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022206246A1 (zh) 一种服务器电源黑盒数据解析系统
US8645720B2 (en) Power adaptor detection system
CN101685333B (zh) 电子设备及其电源连接模组
WO2021051445A1 (zh) 一种ncsi网卡供电系统
US20120246366A1 (en) Serial port remote control circuit
US20120137159A1 (en) Monitoring system and method of power sequence signal
WO2020057215A1 (zh) 一种实现网卡热插拔的系统
CN100504831C (zh) 一种i2c总线被从器件锁定后的恢复方法及装置
CN102880235B (zh) 基于龙芯2f cpu的单板计算机及其复位管理和使用方法
CN218824636U (zh) 一种用于服务器硬盘背板的电源检测装置
CN103135728B (zh) 电源开机控制方法及其系统
WO2023184830A1 (zh) 一种备份电池单元的控制电路、方法、装置及存储系统
US20150032284A1 (en) Detection module, device and system for detecting fan's connection and disconnection states
CN105005727A (zh) 基于动态口令和usbkey的控制系统及其控制方法
CN104679123A (zh) 主机板及其数据烧录方法
CN104345854A (zh) 电源供应系统
CN100595715C (zh) 信号处理电路
CN105404467A (zh) 便携式电子装置及其中用户数据的存取方法
CN216527147U (zh) 一种应用于嵌入式产品的远程调试装置
CN220492848U (zh) 一种电源输出转换装置
CN116841373B (zh) 嵌入式计算模块转接电路、载板系统和服务器
CN217932650U (zh) 上电控制模块及机箱
US10216253B2 (en) Universal serial bus hub and control method thereof
CN210324097U (zh) 一种五合一驱动板电源一体化装置
CN116520957B (zh) 一种主板、主板供电控制方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778431

Country of ref document: EP

Kind code of ref document: A1