WO2022206139A1 - 到达角度确定方法及相关装置 - Google Patents

到达角度确定方法及相关装置 Download PDF

Info

Publication number
WO2022206139A1
WO2022206139A1 PCT/CN2022/073178 CN2022073178W WO2022206139A1 WO 2022206139 A1 WO2022206139 A1 WO 2022206139A1 CN 2022073178 W CN2022073178 W CN 2022073178W WO 2022206139 A1 WO2022206139 A1 WO 2022206139A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrival
angle
phase difference
value data
data set
Prior art date
Application number
PCT/CN2022/073178
Other languages
English (en)
French (fr)
Inventor
王泽卫
王瑜琨
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022206139A1 publication Critical patent/WO2022206139A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems

Definitions

  • the present application belongs to the technical field of angle of arrival measurement, and in particular relates to a method for determining an angle of arrival and a related device.
  • Ultra Wide Band (UWB) technology as a carrier-free communication technology, uses nanosecond-level energy pulse sequences, and directly expands the pulses into a frequency range through orthogonal frequency division modulation, so the spectrum occupied by it. It has a large range, low power spectral density, high transmission rate, large space capacity, strong anti-interference ability, and insensitivity to channel fading (such as multipath, non-line-of-sight channels, etc.).
  • short-range wireless communication modules with three UWB antennas are used on mobile phones and other devices to measure the phase-difference-of-arrival (PDoA) of signals in the horizontal and vertical directions, and then the device can further
  • the relative angle of arrival (Angle-of-Arrival, AOA) in the horizontal and vertical directions that is, the horizontal azimuth angle and the vertical elevation angle, is calculated from the phase difference of arrival and the spatial position relationship between the short-range wireless communication module and the tag device.
  • the short-distance wireless communication module in the actual vertical direction of the arrival angle does not change, the vertical direction
  • the measured value of the arrival phase difference of the signal will change due to the change of the angle of arrival in the horizontal direction.
  • the change will be caused by the change of the angle of arrival in the vertical direction, and the measurement error caused by the change will be introduced into the AOA calculation process, resulting in a corresponding error in the AOA measurement result.
  • the present application provides a method for determining an angle of arrival and a related device, in order to improve the accuracy of azimuth angle and pitch angle measurement performed by an electronic device through a short-range wireless communication module.
  • the present application provides a method for determining an angle of arrival, the method comprising:
  • the first signal arrival phase difference measurement value data group includes the first signal arrival phase difference measurement value in the horizontal direction and the first signal arrival phase difference measurement value in the vertical direction;
  • the first mapping relationship set includes the correspondence between the arrival angle calibration value data set and the signal arrival phase difference reference value data set, and the arrival angle calibration value data set includes the preset angle of arrival reference value in the horizontal direction and all the arrival angle reference value in the vertical direction, and the signal arrival phase difference reference value data group includes the signal arrival phase difference reference value in the horizontal direction and the signal arrival phase difference reference value in the vertical direction;
  • a first angle of arrival target value data set is determined according to the first angle of arrival calibration value data set, and the first angle of arrival target value data set includes the first measured value of the horizontal direction as a final measurement result and all The first angle of arrival measurement in the vertical direction.
  • the electronic device first obtains the first signal arrival phase difference PDoA measurement value data set detected by the wireless communication module, and secondly, according to the first PDoA measurement value data set and the preset first mapping Set of relationships, determine the first angle of arrival AOA calibration value data set associated with the first PDoA measurement value data set, and finally, determine the first arrival angle target value data set according to the first arrival angle calibration value data set, the first angle of arrival target value
  • the value data set includes the first angle of arrival measurement value in the horizontal direction and the first angle of arrival measurement value in the vertical direction as the final measurement result, since the first PDoA measurement value data set includes the first PDoA measurement value in the horizontal direction and the first PDoA measurement value in the vertical direction.
  • the first PDoA measurement value, the first mapping relationship set includes the correspondence between the AOA calibration value data set and the PDoA reference value data set, and the AOA calibration value data set includes the preset AOA reference value in the horizontal direction and AOA reference value in the vertical direction
  • the PDoA reference value data set contains the PDoA reference value in the horizontal direction and the PDoA reference value in the vertical direction. It can be seen that each AOA calibration value data set has a unique PDoA reference value data set corresponding to it, that is, the AOA reference value in the horizontal direction Under the constraint of the AOA reference value in the horizontal direction and the AOA reference value in the vertical direction, the PDoA reference value in the horizontal direction and the PDoA reference value in the vertical direction are fixed.
  • the above-mentioned corresponding relationship is queried to determine the calibration AOA, so that the PDoA measurement error is no longer introduced into the AOA determination process, thereby improving the AOA calculation accuracy.
  • the present application provides a device for determining an angle of arrival, the device comprising:
  • an acquisition unit configured to acquire a first signal arrival phase difference measurement value data group, where the first signal arrival phase difference measurement value data group includes the first signal arrival phase difference measurement value in the horizontal direction and the first signal arrival phase difference in the vertical direction difference measurement;
  • a determining unit configured to determine, according to the first signal arrival phase difference measurement value data set and a preset first mapping relationship set, a first angle of arrival calibration value associated with the first signal arrival phase difference measurement value data set A data set, the first mapping relationship set includes a correspondence between a data set of the angle of arrival calibration value and a data set of the signal arrival phase difference reference value, and the data set of the angle of arrival calibration value includes the preset arrival in the horizontal direction an angle reference value and an angle of arrival reference value in the vertical direction, the signal arrival phase difference reference value data set includes the signal arrival phase difference reference value in the horizontal direction and the signal arrival phase difference reference value in the vertical direction;
  • the determining unit is further configured to determine a first angle of arrival target value data set according to the first angle of arrival calibration value data set, where the first target angle of arrival value data set includes the horizontal direction as the final measurement result. a first angle of arrival measurement and the first angle of arrival measurement in the vertical direction.
  • the present application provides an electronic device and one or more processors
  • the one or more memories and the program are configured to, by the one or more processors, control the electronic device to execute instructions as in any of the methods in the first aspect of the embodiments of the present application.
  • the present application provides an electronic device, comprising:
  • An antenna assembly including a first antenna, a second antenna and a third antenna, the first antenna and the second antenna are used for measuring the angle of arrival in the horizontal direction, and the first antenna and the third antenna are used for measuring The angle of arrival in the vertical direction;
  • a short-range wireless communication module electrically connected to the antenna assembly, for: determining the first horizontal direction according to the phase difference of the target short-range wireless communication signal received by the first antenna and the second antenna The measured value of the arrival phase difference of the signal, and according to the phase difference of the target short-distance wireless communication signal received by the first antenna and the third antenna, the measured value of the arrival phase difference of the first signal in the vertical direction is determined;
  • a signal arrival phase difference measurement value data group and a preset first mapping relationship set determine a first arrival angle calibration value data group associated with the first signal arrival phase difference measurement value data group, and the first mapping relationship
  • the set includes the correspondence between the arrival angle calibration value data set and the signal arrival phase difference reference value data set, and the arrival angle calibration value data set includes the preset angle of arrival reference value in the horizontal direction and the angle of arrival in the vertical direction.
  • the signal arrival phase difference reference value data set includes the horizontal signal arrival phase difference reference value and the vertical direction signal arrival phase difference reference value, the first signal arrival phase difference measurement value
  • the data set includes the first signal arrival phase difference measurement value in the horizontal direction and the first signal arrival phase difference measurement value in the vertical direction; and determining the first arrival angle target value according to the first arrival angle calibration value data set
  • the first angle of arrival target value data set includes the first measured value of the angle of arrival in the horizontal direction and the first measured value of the angle of arrival in the vertical direction as final measurement results.
  • the present application provides a chip, comprising: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes any method described in the first aspect of the embodiments of the present application some or all of the steps.
  • the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the first embodiment of the present application.
  • the present application provides a computer program, wherein the computer program is operable to cause a computer to perform some or all of the steps described in any of the methods in the first aspect of the embodiments of the present application.
  • the computer program may be a software installation package.
  • 1a is a schematic diagram of an electronic device provided with a three-antenna UWB communication module provided by an embodiment of the present application;
  • FIG. 1b is a schematic diagram of measuring azimuth angle through a horizontal antenna pair of a three-antenna UWB communication module provided by an embodiment of the present application;
  • 1c is a schematic diagram of a three-antenna UWB communication module with constant azimuth angle and change in elevation angle provided by an embodiment of the present application;
  • Fig. 1d is a schematic diagram of a three-antenna UWB communication module azimuth angle change and elevation angle change provided by an embodiment of the present application;
  • FIG. 1e is a schematic diagram of another electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for determining an angle of arrival provided by an embodiment of the present application
  • FIG. 3 is a block diagram of functional units of a device for determining an angle of arrival provided by an embodiment of the present application
  • FIG. 4 is a block diagram of functional units of another device for determining an angle of arrival provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of another electronic device provided by an embodiment of the present application.
  • FIG. 1a is a schematic diagram of an electronic device provided with a three-antenna UWB communication module provided by an embodiment of the present application.
  • the electronic device includes a short-range wireless communication module, the short-range wireless communication module includes a first antenna (illustrated as ANT1) and a second antenna (illustrated as ANT2) for measuring the angle of arrival in the horizontal direction, and includes a The first antenna and the third antenna (illustrated as ANT3) for measuring the angle of arrival in the vertical direction, wherein the first antenna, the second antenna and the third antenna are placed in an L-shape, and the first antenna and the The second antenna forms an antenna pair for measuring AOA in the horizontal direction, that is, the azimuth angle, and the first antenna and the third antenna form an antenna pair for measuring the AOA in the vertical direction, that is, the elevation angle.
  • ANT1 first antenna
  • ANT2 second antenna
  • ANT3 for measuring the angle of arrival in the vertical direction
  • the first antenna, the second antenna and the third antenna are placed in
  • FIG. 1b is a schematic diagram of measuring an azimuth angle through a pair of horizontal antennas of a three-antenna UWB communication module provided by an embodiment of the present application.
  • ⁇ 1 represents the azimuth angle between the first antenna and the tag device (for example: UWB device, etc.)
  • ⁇ 2 represents the azimuth angle between the second antenna and the tag device
  • represents the azimuth angle between the electronic device and the tag device as a result of the azimuth angle calculation
  • d represents the distance between the first antenna and the second antenna
  • d1 represents the distance between the first antenna and the tag device
  • D represents the distance between the midpoint between the first antenna and the second antenna and the tag device
  • Dsin ⁇ represents the vertical distance of the tag device relative to the direction of the first antenna and the second antenna
  • Dcos ⁇ represents the horizontal mapping distance of D in the direction of the first antenna and the second antenna
  • (Dcos ⁇ -2 ⁇ d) represents the second antenna and the tag The distance of the device
  • the horizontal mapping distance, electronic The frequency f range of the electromagnetic wave signal used by the device is 6.24GHz to 8.34GHz, the wavelength range of the electromagnetic wave signal used by the electronic device is 36.4mm to 48mm, the maximum allowable distance between the first antenna and the second antenna is d max , the electronic device The propagation velocity of the electromagnetic wave signal used is c.
  • the distance d1 d ⁇ cos ⁇ that the electromagnetic wave signal travels from the tag device to the first antenna than the signal from the second antenna of the tag device.
  • FIG. 1c is a schematic diagram of a three-antenna UWB communication module with constant azimuth angle and change in elevation angle provided by an embodiment of the present application.
  • V represents the pitch angle
  • TRX_C represents the position of ANT1 in Figure 1a, that is, the antenna that is located in the middle position and can transmit and receive signals at the same time
  • RX_H represents the position of ANT3, that is, the antenna located in the horizontal direction and used to receive signals
  • TX represents the tag
  • the PDoA values for all directions are equal.
  • FIG. 1d is a schematic diagram of a three-antenna UWB communication module provided by an embodiment of the present application with the azimuth angle changing and the elevation angle being constant; in the figure, H represents the azimuth angle, and TRX_C represents the position of ANT1 in FIG.
  • RX_V indicates the position of ANT2, that is, the antenna located in the vertical direction and used to receive signals
  • TX indicates the position of the tag device, when measuring the elevation angle vertically
  • the PDoA values in the vertical direction measured by the vertical antenna pair RX_V and TRX_C are all equal.
  • FIG. 1e is a schematic diagram of another electronic device provided by an embodiment of the present application.
  • the electronic device includes an application processor 120, a memory 130, a communication module 140, and one or more programs 131.
  • the application processor 120 is communicatively connected to the memory 130 and the communication module 140 through an internal communication bus.
  • the one or more programs 131 are stored in the above-mentioned memory 130 and configured to be executed by the above-mentioned application processor 120 , and the one or more programs 131 include a program for executing any one of the embodiments of the present application. step instruction.
  • the communication module 140 may include a UWB wireless communication module.
  • the application processor 120 may be, for example, a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), a field Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various exemplary logical blocks, units and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit may be a communication module 140 , a transceiver, a transceiver circuit, etc., and the storage unit may be the memory 130 .
  • the memory 130 may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • FIG. 2 is a schematic flowchart of a method for determining an angle of arrival provided by an embodiment of the present application, which is applied to an electronic device, where the electronic device includes a short-range wireless communication module, and the short-range wireless communication module includes a The first and second antennas for measuring the angle of arrival in the horizontal direction, and the first and third antennas for measuring the angle of arrival in the vertical direction; as shown in the figure, the method for determining the angle of arrival includes the following operations.
  • Step 201 Obtain a first signal arrival phase difference measurement value data group, where the first signal arrival phase difference measurement value data group includes a first signal arrival phase difference measurement value in the horizontal direction and a first signal arrival phase difference measurement value in the vertical direction. value.
  • the short-distance wireless communication module includes an ultra-wideband UWB communication module
  • the first antenna, the second antenna and the third antenna are placed in an L-shape
  • the first antenna and the second antenna form a measurement of the horizontal direction AOA, that is, the azimuth angle.
  • the first antenna and the third antenna form an antenna pair in the vertical direction AOA, that is, the elevation angle.
  • Step 202 Determine, according to the first signal arrival phase difference measurement value data group and a preset first mapping relationship set, a first arrival angle calibration value data group associated with the first signal arrival phase difference measurement value data group , the first mapping relationship set includes the corresponding relationship between the arrival angle calibration value data set and the signal arrival phase difference reference value data set, and the arrival angle calibration value data set includes the preset angle of arrival reference in the horizontal direction value and the reference value of the angle of arrival in the vertical direction, the signal arrival phase difference reference value data set includes the signal arrival phase difference reference value in the horizontal direction and the signal arrival phase difference reference value in the vertical direction.
  • the specific representation form of the first mapping relationship set can be the matrix as shown in Table 1 and Table 2, the row header of Table 1 is the AOA reference value in the horizontal direction (indicated as H_Angle in the table), and the column header is the AOA in the vertical direction.
  • the reference value (illustrated as V_Angle in the table), and the numerical step size of the reference value of the angle of arrival in the horizontal direction and the reference value of the angle of arrival in the vertical direction is 10°, and each element in the matrix is recorded in the corresponding horizontal direction.
  • the PDoA reference value in the horizontal direction under the constraint of the reference value of the angle of arrival of the The AOA reference value in the vertical direction, and the numerical step size of the reference value of the angle of arrival in the horizontal direction and the reference value of the angle of arrival in the vertical direction is 10°, and the angle of arrival in the corresponding horizontal direction is recorded in each element in the matrix
  • the reference value and the PDoA reference value in the vertical direction under the constraint of the reference value of the angle of arrival in the vertical direction illustrated as VP_-H_Angle_-V_Angle).
  • any one of the following filtering methods can be used for further processing to eliminate abnormal values caused by fluctuations.
  • Method 1 After each 10 first AOA target values are obtained, it is determined that the value of the fluctuation range of the 10 AOA target values significantly exceeds the average value of 10, and it can be identified as an abnormal value.
  • Method 2 Judging the gap between the current value and the previous values and the latter values, if the fluctuation is obviously large, it is considered an abnormal value.
  • Step 203 Determine a first angle of arrival target value data set according to the first angle of arrival calibration value data set, where the first angle of arrival target value data set includes the first angle of arrival measurement in the horizontal direction as the final measurement result value and the first angle of arrival measurement in the vertical direction.
  • the method further includes: displaying the first measured value of the angle of arrival in the horizontal direction and the measured value of the first angle of arrival in the vertical direction. The first angle of arrival measurement.
  • the electronic device can determine the first data set of the target angle of arrival value according to the first data set of the calibration value of the angle of arrival, so as to achieve the purpose of further improving the accuracy of the result.
  • the signal arrival phase difference reference value data group corresponding to the first arrival angle calibration value data group in the first mapping relationship set is the first signal arrival phase difference reference value data group, and all The first signal arrival phase difference reference value data group is the signal arrival phase difference reference value data group with the closest numerical distance to the first signal arrival phase difference measurement value data group in the first mapping relationship set;
  • Determining the first angle of arrival target value data set according to the first angle of arrival calibration value data set includes: determining a first angle of arrival precise angle range according to the first angle of arrival calibration value data set; A signal arrival phase difference measurement value data set and the first arrival angle fine-check angle range determine a first arrival angle target value data set.
  • the first angle-of-arrival fine-check angle range may be determined by the first numerical step size of the angle-of-arrival reference value in the first mapping relationship set and the first data set of the calibration value of the angle of arrival.
  • the first numerical step can be 10°
  • V_AOA 30°
  • the angle of arrival angle of H_AOA can be fine-checked from -35° to -25°
  • the angle of arrival of the V_AOA can range from 25° to 35°.
  • the electronic device can use the RMS minimum value to find the signal with the closest numerical distance to the phase difference reference value data group.
  • EVM_coarse mn represents the root mean square of the horizontal and vertical directions
  • H_PDoA_S represents the PDoA reference value
  • the matrix of EVM_coarse can be obtained, and the minimum value is found in the EVM_coarse matrix.
  • the position of the minimum value is the signal whose numerical distance is the closest to the arrival phase difference reference value data group.
  • the electronic device supports to first determine the precise inspection angle range, and then further determine the first arrival angle target value data set according to the precise inspection angle range.
  • the determining the first target angle of arrival data set according to the first signal arrival phase difference measurement value data set and the first angle of arrival precise angle range includes: determining a preset first A reference mapping relationship set corresponding to the angle range of the angle of arrival precise inspection in the two mapping relationship sets, the second mapping relationship set includes the corresponding relationship between the arrival angle target value data group and the signal arrival phase difference reference value data group,
  • the angle of arrival target value data group includes the preset angle of arrival reference value in the horizontal direction and the angle of arrival reference value in the vertical direction
  • the signal arrival phase difference reference value data group includes the signal arrival in the horizontal direction.
  • the phase difference reference value and the arrival phase difference reference value of the signal in the vertical direction, and the first numerical step size of the angle of arrival reference value in the first mapping relationship set is greater than the first numerical step of the angle of arrival reference value in the second mapping relationship set.
  • a step size of two numerical values; according to the first signal arrival phase difference measurement value data set and the reference mapping relationship set, the arrival angle target value data set is determined.
  • the first numerical step size may be 10°
  • the second numerical step size may be 1°, or the like.
  • the specific representation form of the second mapping relationship set may be the matrix as shown in Table 3 and Table 4, the row header of Table 3 is the AOA reference value in the horizontal direction, the column header is the AOA reference value in the vertical direction, and all The numerical step size of the reference value of the angle of arrival in the horizontal direction and the reference value of the angle of arrival in the vertical direction is 1°, and each element in the matrix records the reference value of the angle of arrival in the corresponding horizontal direction and the reference value of the angle of arrival in the vertical direction.
  • the PDoA reference value in the horizontal direction under the value constraint (shown as HP_-H_Angle_-V_Angle), the row header of Table 4 is the AOA reference value in the horizontal direction, the column header is the AOA reference value in the vertical direction, and the horizontal direction
  • the numerical step size of the reference value of the angle of arrival in the vertical direction and the reference value of the angle of arrival in the vertical direction is 1°, and each element in the matrix records the reference value of the angle of arrival in the corresponding horizontal direction and the vertical direction.
  • the PDoA reference value in the vertical direction (shown as VP_-H_Angle_-V_Angle).
  • the reference mapping relationship set when the reference mapping relationship set is an AOA-PDoA matrix, it may be a matrix whose row width and column height are both the first numerical step size.
  • the determining the target angle of arrival value data set according to the first signal arrival phase difference measurement value set and the reference mapping relationship set includes: traversing each element in the reference mapping relationship set and the first signal Reach the root mean square of the phase difference measurement value data set, and obtain a root mean square set; determine the AOA target value data set corresponding to the PDoA reference value data set corresponding to the root mean square value with the smallest value in the root mean square set.
  • the closest point is found by means of the minimum value of the root mean square.
  • the calculation formula of the root mean square is as follows:
  • EVM_coarse mn represents the root mean square of the horizontal and vertical directions
  • H_PDoA_S represents the PDoA reference value
  • the root mean square matrix corresponding to the precise inspection area can be obtained, and the minimum value can be found in the root mean square matrix.
  • the electronic device can determine the first angle of arrival target value data set by querying the set of mapping relationships with a higher degree of refinement and a smaller AOA value step size.
  • the signals in the horizontal direction other than the signals in the horizontal direction in the first mapping relationship set reaching the phase difference reference value reach the phase difference reference value Corresponding to the measured value of the arrival phase difference of the signal in the horizontal direction determined by the numerical approximation method, dividing the signal arrival phase difference reference value in the vertical direction in the first mapping relationship set from the second mapping relationship set
  • the signal arrival phase difference reference value in the vertical direction other than the reference value corresponds to the signal arrival phase difference measurement value in the vertical direction determined by the numerical approximation method.
  • the numerical approximation method includes interpolation or fitting.
  • the second set of mapping relationships may be obtained by interpolating or fitting the first set of mapping relationships.
  • the second set of mapping relationships can be obtained through detection.
  • the electronic device can obtain the second set of mapping relationships by using an interpolation or fitting method on the basis of the first set of mapping relationships.
  • the electronic device can process the first mapping relationship set by numerical approximation method to obtain a second mapping relationship set with a higher degree of refinement, and query the second mapping relationship set to realize the determination of the first angle of arrival target value data set.
  • the determining the first target angle of arrival data set according to the first signal arrival phase difference measurement value data set and the first angle of arrival fine-check angle range includes: at the arrival angle Determine at least one second angle of arrival calibration value data set that is different from the first angle of arrival calibration value data set within the angular range; according to the first angle of arrival calibration value data set and the at least one second angle of arrival
  • the calibration value data set determines the functional relationship between the arrival angle value and the signal arrival phase difference value within the angle of arrival precise inspection angle range; according to the first signal arrival phase difference measurement value data set and the functional relationship, the arrival is determined.
  • Angle target value data set is: at the arrival angle Determine at least one second angle of arrival calibration value data set that is different from the first angle of arrival calibration value data set within the angular range; according to the first angle of arrival calibration value data set and the at least one second angle of arrival
  • the calibration value data set determines the functional relationship between the arrival angle value and the signal arrival phase difference value within the angle of arrival precise inspection angle range; according to the first signal arrival phase
  • the angle range of the angle of arrival precise inspection is at least greater than the first numerical step to satisfy the condition of including multiple data sets of the calibration value of the angle of arrival.
  • the at least one second angle of arrival calibration value data set is preferably two, and the numerical value is distributed on both sides of the first angle of arrival calibration value data set.
  • the functional relationship includes the functional relationship between the AOA value in the horizontal direction and the PDoA value, and the functional relationship between the AOA value in the vertical direction and the PDoA value.
  • the first signal reaches the horizontal direction in the phase difference measurement value data group.
  • the first signal arrival phase difference measurement value is imported into the functional relationship in the horizontal direction to obtain the first AOA target value in the horizontal direction, and the first signal arrival phase difference measurement value in the vertical direction in the first signal arrival phase difference measurement value data group is imported into the horizontal direction.
  • the function of the direction yields the first AOA target value in the vertical direction.
  • the electronic device determines the first angle of arrival calibration value data set and the range of the precise angle of arrival angle, it can further filter the second set of calibration value of the angle of arrival within the range of the precise angle of arrival angle, and according to the The first angle of arrival calibration value data set and the second angle of arrival calibration value data set determine the functional relationship between the AOA value and the PDoA value within the angle of arrival precision inspection angle range, and finally import the first signal arrival phase difference measurement value data set. Function relationship, dynamic calculation to obtain the target value data set of the angle of arrival.
  • the determining at least one second angle of arrival calibration value data set that is different from the first angle of arrival calibration value data set within the angle of arrival precise angle range includes: determining the first angle of arrival calibration value data set. A plurality of arrival angle calibration value data sets within the range of the angle of arrival precise inspection angle in a mapping relationship set; screening out the plurality of arrival angle calibration value data sets that are different from the first arrival angle calibration value data set of at least one second angle of arrival calibration value data set.
  • the plurality of arrival angle calibration value data sets at least include the first arrival angle calibration value data set and a single first arrival angle calibration value data set adjacent to the first arrival angle calibration value data set.
  • the electronic device screens the data set for determining the functional relationship from the first mapping relationship set to ensure accuracy.
  • the signal arrival phase difference reference value data group corresponding to the first arrival angle calibration value data group in the first mapping relationship set is the first signal arrival phase difference reference value data group
  • the The first signal arrival phase difference reference value data group is the at least two signal arrival phase difference reference values that are ranked the highest in numerical distance from the first signal arrival phase difference measurement value data group in the first mapping relationship set data set;
  • the determining the first angle of arrival target value data set according to the first angle of arrival calibration value data set includes: determining the difference between the arrival angle value and the signal arrival phase difference value according to the at least two signal arrival phase difference reference value data sets. The functional relationship between them is determined according to the first signal arrival phase difference measurement value data set and the functional relationship to determine the arrival angle target value data set.
  • the functional relationship may be specifically determined by linear interpolation or polynomial interpolation.
  • the at least two may be 2, 3 or the like.
  • the electronic device may use the root mean square minimum value to find at least two signals with the highest numerical distances to arrive at the phase difference reference value data group.
  • the electronic device can directly filter out at least two signal arrival phase difference reference value data sets, and determine the functional relationship between the AOA value and the PDoA value according to the at least two signal arrival phase difference reference value data sets.
  • the reference value of the arrival phase difference of the signal in the horizontal direction corresponds to the measured value of the arrival phase difference of the signal in the horizontal direction actually detected by the short-range wireless communication module, and the signal in the vertical direction
  • the arrival phase difference reference value corresponds to the arrival phase difference measurement value of the signal in the vertical direction actually detected by the short-range wireless communication module.
  • the measured value of the arrival phase difference of the signals in the first mapping relationship set is obtained through experimental detection.
  • the reference value may be equal to the measured value, or the reference value may be obtained by compensating and descrambling the measured value to obtain the reference value.
  • the latter can calibrate the error caused by the wiring of the circuit board to overcome differences in wiring and structure. The difference comes from the detection result error.
  • the specific implementation manner of the compensation processing may be as follows: the PDoA in the horizontal direction at the angle of arrival (H_0, V_0), namely H_PDoA and the PDoA in the vertical direction, namely V_PDoA
  • the compensation value is H_offset
  • the PDoA compensation value in the vertical direction is V_offset
  • the PDoA measurement value obtained by the actual measurement is compensated with the PDoA compensation value in the corresponding direction to obtain the PDoA reference value.
  • PDoA-360° of >+180° puts it in the (-180°, +180°) range.
  • HPU_H_Angle_V_Angle represents an element in the AOA-PDoA matrix in the horizontal direction after the unwinding process.
  • VPU_H_Angle_V_Angle represents an element in the AOA-PDoA matrix in the vertical direction after the unwinding process.
  • the PDoA reference value in the first mapping relationship set can be obtained based on the PDoA measurement value, which improves the accuracy.
  • the electronic device first obtains the first signal arrival phase difference PDoA measurement value data set detected by the wireless communication module, and secondly, according to the first PDoA measurement value data set and the preset first mapping A set of relationships to determine the first angle of arrival AOA calibration value data set associated with the first PDoA measurement value data set, since the first PDoA measurement value data set includes the first PDoA measurement value in the horizontal direction and the first PDoA measurement value in the vertical direction , the first mapping relationship set includes the correspondence between the AOA calibration value data set and the PDoA reference value data set, and the AOA calibration value data set includes the preset AOA reference value in the horizontal direction and the AOA reference value in the vertical direction, and the PDoA reference value
  • the data group contains the PDoA reference value in the horizontal direction and the PDoA reference value in the vertical direction.
  • each AOA calibration value data group has a unique PDoA reference value data group corresponding to it, that is, the AOA reference value in the horizontal direction and the PDoA reference value in the vertical direction.
  • the PDoA reference value in the horizontal direction and the PDoA reference value in the vertical direction are fixed.
  • the calibration AOA is determined, so that the PDoA measurement error is no longer introduced into the AOA determination process, thereby improving the AOA calculation accuracy.
  • An embodiment of the present application provides a device for determining an angle of arrival, where the device for determining an angle of arrival may be an electronic device. Specifically, the device for determining the angle of arrival is configured to perform the steps performed by the electronic device in the above method for determining the distance relationship.
  • the apparatus for determining the angle of arrival provided by the embodiment of the present application may include modules corresponding to the corresponding steps.
  • the device for determining the angle of arrival may be divided into functional modules according to the above method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 3 shows a possible schematic structural diagram of the device for determining the angle of arrival involved in the above embodiment.
  • the device 3 for determining the angle of arrival is applied to electronic equipment; the device includes:
  • the acquiring unit 30 is configured to acquire a first signal arrival phase difference measurement value data group, where the first signal arrival phase difference measurement value data group includes a first signal arrival phase difference measurement value in a horizontal direction and a first signal arrival phase difference measurement value in a vertical direction Phase difference measurement;
  • the determining unit 31 is configured to determine, according to the first signal arrival phase difference measurement value data set and a preset first mapping relationship set, a first angle of arrival calibration associated with the first signal arrival phase difference measurement value data set value data set, the first mapping relationship set includes the corresponding relationship between the arrival angle calibration value data set and the signal arrival phase difference reference value data set, and the arrival angle calibration value data set includes the preset value of the horizontal direction.
  • the reference value of the angle of arrival and the reference value of the angle of arrival in the vertical direction, the signal arrival phase difference reference value data group includes the signal arrival phase difference reference value in the horizontal direction and the signal arrival phase difference reference value in the vertical direction.
  • the determining unit 31 is further configured to determine a first angle of arrival target value data set according to the first angle of arrival calibration value data set, where the first target angle of arrival value data set includes the horizontal direction as the final measurement result. and the first angle of arrival measurement in the vertical direction.
  • the signal arrival phase difference reference value data group corresponding to the first arrival angle calibration value data group in the first mapping relationship set is the first signal arrival phase difference reference value data group
  • the The first signal arrival phase difference reference value data group is the signal arrival phase difference reference value data group with the closest numerical distance to the first signal arrival phase difference measurement value data group in the first mapping relationship set
  • the determining unit 31 is specifically configured to: determine the first angle of arrival precise inspection angle according to the first angle of arrival calibration value data set and determining a first angle of arrival target value data set according to the first signal arrival phase difference measurement value data set and the first angle of arrival fine-check angle range.
  • the determining unit 31 It is specifically used to: determine a reference mapping relationship set corresponding to the angle of arrival angle range in a preset second mapping relationship set, where the second mapping relationship set includes a target angle of arrival value data set and a signal arrival phase difference reference
  • the corresponding relationship between the value data groups, the arrival angle target value data group includes the preset angle of arrival reference value in the horizontal direction and the angle of arrival reference value in the vertical direction, and the signal arrival phase difference reference value data
  • the group includes the signal arrival phase difference reference value in the horizontal direction and the signal arrival phase difference reference value in the vertical direction, and the first numerical step of the arrival angle reference value in the first mapping relationship set is larger than the second mapping a second numerical step size of the angle of arrival reference value in the relationship set; and determining the angle of arrival target value data set according to the first signal arrival phase difference measurement value data set and the reference mapping relationship set.
  • the signals in the horizontal direction other than the signals in the horizontal direction in the first mapping relationship set reaching the phase difference reference value reach the phase difference reference value Corresponding to the measured value of the arrival phase difference of the signal in the horizontal direction determined by the numerical approximation method, dividing the signal arrival phase difference reference value in the vertical direction in the first mapping relationship set from the second mapping relationship set
  • the signal arrival phase difference reference value in the vertical direction other than the reference value corresponds to the signal arrival phase difference measurement value in the vertical direction determined by the numerical approximation method.
  • the determining unit 31 it is specifically used for: determining at least one second angle of arrival calibration value data set that is different from the first angle of arrival calibration value data set within the angle of arrival precise inspection angle range; and according to the first angle of arrival calibration value data group and the at least one second angle of arrival calibration value data group to determine the functional relationship between the angle of arrival value within the angle of arrival fine-check angle range and the signal arrival phase difference value; and according to the first signal arrival phase difference
  • the measured value data set and the functional relationship determine the angle of arrival target value data set.
  • the determining unit 31 specifically uses In: determining a plurality of arrival angle calibration value data sets in the first mapping relationship set that are within the angle of arrival precise angle range; At least one second angle of arrival calibration value data set with a different angle of arrival calibration value data set.
  • the signal arrival phase difference reference value data group corresponding to the first arrival angle calibration value data group in the first mapping relationship set is the first signal arrival phase difference reference value data group
  • the The first signal arrival phase difference reference value data group is the at least two signal arrival phase difference reference values that are ranked the highest in numerical distance from the first signal arrival phase difference measurement value data group in the first mapping relationship set data set
  • the determining unit 31 is specifically configured to: arrive at the phase difference reference value data according to the at least two signals group determining the functional relationship between the angle of arrival value and the signal arrival phase difference value; and determining the arrival angle target value data group according to the first signal arrival phase difference measurement value data group and the functional relationship.
  • the reference value of the arrival phase difference of the signal in the horizontal direction corresponds to the measured value of the arrival phase difference of the signal in the horizontal direction actually detected by the short-range wireless communication module, and the signal in the vertical direction
  • the arrival phase difference reference value corresponds to the arrival phase difference measurement value of the signal in the vertical direction actually detected by the short-range wireless communication module.
  • the device 4 for determining the angle of arrival includes: a processing module 40 and a communication module 41 .
  • the processing module 40 is used to control and manage the actions of the device control apparatus, eg, the steps performed by the acquisition unit 30, the determination unit 31, and/or other processes used to perform the techniques described herein.
  • the communication module 41 is used to support the interaction between the device control apparatus and other devices.
  • the device for determining the angle of arrival may further include a storage module 42 for storing program codes and data of the device for determining the angle of arrival.
  • the processing module 40 may be a processor or a controller, such as a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), ASIC, FPGA or other programmable Logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication module 41 may be a transceiver, an RF circuit, a communication interface, or the like.
  • the storage module 42 may be a memory.
  • Both the above-mentioned angle-of-arrival determining device 3 and the angle-of-arrival determining device 4 can perform the steps performed by the electronic device in the above-mentioned method for determining the distance relationship shown in FIG. 2 .
  • an embodiment of the present application further provides an electronic device 50, including:
  • the antenna assembly 510 includes a first antenna 511, a second antenna 512 and a third antenna 513.
  • the first antenna 511 and the second antenna 512 are used to measure the angle of arrival in the horizontal direction.
  • the third antenna 513 is used to measure the angle of arrival in the vertical direction;
  • a short-range wireless communication module 520 electrically connected to the antenna assembly 510, and configured to: determine the level according to the phase difference of the target short-range wireless communication signal received by the first antenna 511 and the second antenna 512
  • the measured value of the arrival phase difference of the first signal in the vertical direction, and the arrival phase of the first signal in the vertical direction is determined according to the phase difference of the target short-range wireless communication signal received by the first antenna 511 and the third antenna 513 difference measurement value; according to the first signal arrival phase difference measurement value data group and the preset first mapping relationship set, determine a first arrival angle calibration value data group associated with the first signal arrival phase difference measurement value data group
  • the first mapping relationship set includes a corresponding relationship between the arrival angle calibration value data set and the signal arrival phase difference reference value data set
  • the arrival angle calibration value data set includes the preset angle of arrival reference value in the horizontal direction and the reference value of the angle of arrival in the vertical direction
  • the signal arrival phase difference reference value data set includes the signal arrival phase difference reference value in the horizontal direction and the signal arrival phase
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains a set of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • Embodiments of the present application further provide a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program causes the computer to execute part or all of the steps of any method described in the above method embodiments , the above computer includes electronic equipment.
  • Embodiments of the present application further provide a computer program product, where the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute any one of the method embodiments described above. some or all of the steps of the method.
  • the computer program product may be a software installation package, and the computer includes an electronic device.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed method, apparatus and system may be implemented in other manners.
  • the device embodiments described above are only illustrative; for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation; for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included individually, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated units implemented in the form of software functional units can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, and includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute some steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or CD, etc. that can store program codes medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种到达角度确定方法及相关装置,方法包括:获取第一信号到达相位差测量值数据组(201);根据第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组(202);根据第一到达角度标定值数据组确定第一到达角度目标值数据组(203),第一到达角度目标值数据组包括作为最终测量结果的水平方向的第一到达角度测量值和垂直方向的第一到达角度测量值。有利于提高电子设备通过短距离无线通信模块进行方位角和俯仰角测量的准确度。

Description

到达角度确定方法及相关装置 技术领域
本申请属于到达角度测量技术领域,具体涉及一种到达角度确定方法及相关装置。
背景技术
超宽带(Ultra Wide Band,UWB)技术作为一种无载波通信技术,使用纳秒级能量脉冲序列,并通过正交频分调制或直接将脉冲扩展到一个频率范围内,因此其所占的频谱范围很大,功率谱密度很低,具有传输速率高、空间容量大、抗干扰能力强、对信道衰落(如多径、非视距等信道)不敏感等特点。
目前在手机等设备上开始使用具有三个UWB天线的短距离无线通信模块进行水平方向和垂直方向的信号到达相位差(Phase-Difference-of-Arrival,PDoA)的测定,进而设备可以进一步根据信号到达相位差和短距离无线通信模块与标签设备的空间位置关系计算出相对的水平方向和垂直方向的到达角度(Angle-of-Arrival,AOA),即水平的方位角和垂直的俯仰角。
目前设备的短距离无线通信模块由于天线极化、标签设备的天线发射信号为非理想球面波等因素的影响,短距离无线通信模块在实际垂直方向的到达角度未发生变化的情况下,垂直方向的信号到达相位差测量值会因水平方向的到达角度的变化而引发变化,类似的,短距离无线通信模块在实际水平方向的到达角度未发生变化的情况下,水平方向信号到达相位差测量值会因垂直方向到达角度的变化而引发变化,该变化导致的测量误差会被引入AOA的计算过程而导致AOA测量结果也对应产生误差。
发明内容
本申请提供一种到达角度确定方法及相关装置,以期提高电子设备通过短距离无线通信模块进行方位角和俯仰角测量的准确度。
第一方面,本申请提供一种到达角度确定方法,所述方法包括:
获取第一信号到达相位差测量值数据组,所述第一信号到达相位差测量值数据组包括水平方向的第一信号到达相位差测量值和垂直方向的第一信号到达相位差测量值;
根据所述第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与所述第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组,所述第一映射关系集合包括到达角度标定值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度标定值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值;
根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,所述第一到达角度目标值数据组包括作为最终测量结果的所述水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值。
可以看出,本申请实施例中,电子设备首先获取通过无线通信模块检测到的第一信号到达相位差PDoA测量值数据组,其次,根据第一PDoA测量值数据组和预设的第一映射关系集合,确定与第一PDoA测量值数据组关联的第一到达角度AOA标定值数据组,最后,根据第一到达角度标定值数据组确定第一到达角度目标值数据组,第一到达角度目标值数据组包括作为最终测量结果的水平方向的第一到达角度测量值和垂直方向的第一到达角度 测量值,由于第一PDoA测量值数据组包括水平方向的第一PDoA测量值和垂直方向的第一PDoA测量值,第一映射关系集合包括AOA标定值数据组和PDoA基准值数据组之间的对应关系,AOA标定值数据组包含预先设置的水平方向的AOA参照值和垂直方向的AOA参照值,PDoA基准值数据组包含水平方向的PDoA基准值和垂直方向的PDoA基准值,可见,每个AOA标定值数据组均有唯一的PDoA基准值数据组与其对应,即在水平方向的AOA参照值和垂直方向的AOA参照值约束下,水平方向的PDoA基准值和垂直方向的PDoA基准值是固定不变的,电子设备不再将实际检测的PDoA测量值代入计算公式计算AOA,而是直接查询上述对应关系来确定标定AOA,如此使得PDoA测量误差不再被引入AOA的确定过程,从而提高AOA计算准确度。
第二方面,本申请提供一种到达角度确定装置,所述装置包括:
获取单元,用于获取第一信号到达相位差测量值数据组,所述第一信号到达相位差测量值数据组包括水平方向的第一信号到达相位差测量值和垂直方向的第一信号到达相位差测量值;
确定单元,用于根据所述第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与所述第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组,所述第一映射关系集合包括到达角度标定值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度标定值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值;
所述确定单元,还用于根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,所述第一到达角度目标值数据组包括作为最终测量结果的所述水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值。
第三方面,本申请提供一种电子设备,一个或多个处理器;
一个或多个存储器,用于存储程序,
所述一个或多个存储器和所述程序被配置为,由所述一个或多个处理器控制所述电子设备执行如本申请实施例第一方面任一方法中的步骤的指令。
第四方面,本申请提供一种电子设备,包括:
天线组件,包括第一天线、第二天线和第三天线,所述第一天线和所述第二天线用于测量水平方向的到达角度,所述第一天线和所述第三天线用于测量垂直方向的到达角度;
短距离无线通信模块,与所述天线组件电连接,用于:根据所述第一天线和所述第二天线接收到的目标短距离无线通信信号的相位差,确定所述水平方向的第一信号到达相位差测量值,并根据所述第一天线和所述第三天线接收到的目标短距离无线通信信号的相位差,确定所述垂直方向的第一信号到达相位差测量值;根据第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与所述第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组,所述第一映射关系集合包括到达角度标定值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度标定值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值,所述第一信号到达相位差测量值数据组包括所述水平方向的第一信号到达相位差测量值和所述垂直方向的第一信号到达相位差测量值;以及根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,所述第一到达角度目标值数据组包括作为最终测量结果的所述水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值。
第五方面,本申请提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机 程序,使得安装有所述芯片的设备执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。
第六方面,本申请提供一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。
第七方面,本申请提供一种计算机程序,其中,所述计算机程序可操作来使计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。该计算机程序可以为一个软件安装包。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是本申请实施例提供的一种设置有三天线UWB通信模块的电子设备的示意图;
图1b是本申请实施例提供的一种通过三天线UWB通信模块的水平天线对测量方位角的示意图;
图1c是本申请实施例提供的一种三天线UWB通信模块方位角不变、俯仰角变化的示意图;
图1d是本申请实施例提供的一种三天线UWB通信模块方位角变化、俯仰角不变的示意图;
图1e是本申请实施例提供的另一种电子设备的示意图;
图2是本申请实施例提供的一种到达角度确定方法的流程示意图;
图3是本申请实施例提供的一种到达角度确定装置的功能单元组成框图;
图4是本申请实施例提供的另一种到达角度确定装置的功能单元组成框图;
图5是本申请实施例提供的另一种电子设备的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1a,图1a是本申请实施例提供的一种设置有三天线UWB通信模块的电子设备的示意图。该电子设备包括短距离无线通信模块,所述短距离无线通信模块包括用于测 量水平方向的到达角度的第一天线(图示为ANT1)和第二天线(图示为ANT2),以及包括用于测量垂直方向的到达角度的第一天线和第三天线(图示为ANT3),其中,所述第一天线、所述第二天线以及所述第三天线呈L型放置,第一天线和第二天线组成测量水平方向AOA即方位角的天线对,第一天线和第三天线组成垂直方向AOA即俯仰角的天线对。
请参阅图1b,图1b是本申请实施例提供的一种通过三天线UWB通信模块的水平天线对测量方位角的示意图。图中,θ1表示第一天线与标签设备(例如:UWB设备等)的方位角,θ2表示第二天线与标签设备的方位角,θ表示作为方位角计算结果的电子设备与标签设备的方位角,d表示第一天线与第二天线之间的距离,d1表示第一天线与标签设备之间的距离,D表示第一天线与第二天线之间的中点与标签设备之间的距离,Dsinθ表示标签设备相对于第一天线和第二天线所在方向的垂直距离,Dcosθ表示D在第一天线和第二天线所在方向的水平映射距离,(Dcosθ-2÷d)表示第二天线与标签设备的距离在第一天线和第二天线所在方向的水平映射距离,(Dcosθ+2÷d)表示第一天线与标签设备的距离在第一天线和第二天线所在方向的水平映射距离,电子设备所使用电磁波信号的频率f范围为6.24GHz至8.34GHz,电子设备所使用电磁波信号的波长范围为36.4mm至48mm,第一天线与第二天线之间允许的最大距离为d max,电子设备所使用电磁波信号的传播速度为c。
电磁波信号从标签设备到第一天线比信号从标签设备第二天线多出的时间t1=d×cosθ÷c。
电磁波信号从标签设备到第一天线比信号从标签设备第二天线多出的距离d1=d×cosθ。
通过电磁波信号从标签设备到第一天线比信号从标签设备第二天线多出的相位差Δφ、电磁波信号的波长λ可以计算出距离差d1=Δφ×λ÷360°,则信号从标签设备到第一天线比信号从标签设备第二天线多出的相位差Δφ=360°×d×cosθ÷λ。
请参阅图1c,图1c是本申请实施例提供的一种三天线UWB通信模块方位角不变、俯仰角变化的示意图。图中V表示俯仰角,TRX_C表示图1a中ANT1的位置,即位于中间位置并可以同时做收发信号的天线,RX_H表示ANT3的位置,即位于水平方向内并用于接收信号的天线,TX表示标签设备的位置,水平测量方位角时,现有方法认为V=30°/0°/-30°(本申请符号“/”表示或者)等不同数值时,水平天线对RX_H和TRX_C测量得到的水平方向的PDoA数值均是相等的。
请参阅图1d,图1d是本申请实施例提供的一种三天线UWB通信模块方位角变化、俯仰角不变的示意图;图中H表示方位角,TRX_C表示图1a中ANT1的位置,即位于中间位置并可以同时做收发信号的天线,RX_V表示ANT2的位置,即位于垂直方向内并用于接收信号的天线,TX表示标签设备的位置,垂直测量俯仰角时,现有方法认为H=30°/0°/-30°(本申请符号“/”表示或者)等不同数值时,垂直天线对RX_V和TRX_C测量得到的垂直方向的PDoA数值均是相等的。
针对图1c所示的理想状态的分析结果,实际产品中,由于天线的极化、标签设备的发射天线发出的信号非理想的球面波等多种因素,导致实际V=30°/0°/-30°不同时,水平方向的PDoA测量值是不同的,从而根据图1b所示意的计算方法计算出的水平方向的AOA数值也是不同的,而几何关系中的水平方向的AOA是相同的,这就导致引入了水平方向的PDoA测量误差。图1d所示的理想状态的分析结果情况类似,此处不再赘述。
请参阅图1e,图1e是本申请实施例提供的另一种电子设备的示意图。所述电子设备包括应用处理器120、存储器130、通信模块140、以及一个或多个程序131,所述应用处理器120通过内部通信总线与所述存储器130、所述通信模块140均通信连接。
具体实现中,所述一个或多个程序131被存储在上述存储器130中,且被配置由上述应用处理器120执行,所述一个或多个程序131包括用于执行本申请实施例中任一步骤的 指令。
其中,所述通信模块140可以包括UWB无线通信模块。
其中,应用处理器120例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,单元和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元可以是通信模块140、收发器、收发电路等,存储单元可以是存储器130。
所述存储器130可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
请参阅图2,图2是本申请实施例提供的一种到达角度确定方法的流程示意图,应用于电子设备,所述电子设备包括短距离无线通信模块,所述短距离无线通信模块包括用于测量水平方向的到达角度的第一天线和第二天线,以及包括用于测量垂直方向的到达角度的所述第一天线和第三天线;如图所示,本到达角度确定方法包括以下操作。
步骤201,获取第一信号到达相位差测量值数据组,所述第一信号到达相位差测量值数据组包括水平方向的第一信号到达相位差测量值和垂直方向的第一信号到达相位差测量值。
其中,所述短距离无线通信模块包括超带宽UWB通信模块,所述第一天线、第二天线以及第三天线呈L型放置,第一天线和第二天线组成测量水平方向AOA即方位角的天线对,第一天线和第三天线组成垂直方向AOA即俯仰角的天线对。
步骤202,根据所述第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与所述第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组,所述第一映射关系集合包括到达角度标定值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度标定值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值。
其中,第一映射关系集合的具体表现形式可以是如表1和表2的矩阵,表1的行表头为水平方向的AOA参照值(表格中示意为H_Angle),列表头为垂直方向的AOA参照值(表格中示意为V_Angle),且所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值的数值步长为10°,矩阵中每个元素中记录有在对应水平方向的到达角度参照值和垂直方向的到达角度参照值约束下的水平方向的PDoA基准值(图示为HP_-H_Angle_-V_Angle),表2的行表头为水平方向的AOA参照值,列表头为垂直方向的AOA参照值,且所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值的数值步长为10°,矩阵中每个元素中 记录有在对应水平方向的到达角度参照值和垂直方向的到达角度参照值约束下的垂直方向的PDoA基准值(图示为VP_-H_Angle_-V_Angle)。
表1
Figure PCTCN2022073178-appb-000001
表2
Figure PCTCN2022073178-appb-000002
此外,电子设备得到水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值后,可以采用如下任意一种滤波方式进一步处理,以消除由于波动造成的异常值。
方式一:每得到10个第一AOA目标值后,判断10个AOA目标值中明显超过10个平均值的波动幅度的数值,即可识别为异常值。
方式二:判断当前值和前几个数值以及后几个数值的差距,如果明显波动很大即认为是异常值。
步骤203,根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,所述第一到达角度目标值数据组包括作为最终测量结果的所述水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值。
此外,所述根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组之后,所述方法还包括:显示所述水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值。
可见,本实例中,电子设备能够根据第一到达角度标定值数据组确定第一到达角度目标值数据组,以实现在进一步提高结果精度的目的。
在本可能的示例中,所述第一映射关系集合中与所述第一到达角度标定值数据组对应的信号到达相位差基准值数据组为第一信号到达相位差基准值数据组,且所述第一信号到达相位差基准值数据组为所述第一映射关系集合中与所述第一信号到达相位差测量值数据组的数值距离最近的信号到达相位差基准值数据组;
所述根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,包括:根据所述第一到达角度标定值数据组确定第一到达角度精查角度范围;根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据 组。
其中,所述第一到达角度精查角度范围可以通过第一映射关系集合中到达角度参照值的第一数值步长和第一到达角度标定值数据组确定。例如第一数值步长可以是10°,第一到达角度标定值数据组为H_AOA=-30°,V_AOA=30°,则H_AOA的到达角度精查角度范围可以是-35°到-25°,V_AOA的到达角度精查角度范围可以是25°到35°。
具体实现中,电子设备可以采用均方根最小值的方式寻找数值距离最近的信号到达相位差基准值数据组。
例如,针对如表1的数值步长为10°的AOA-PDoA矩阵,寻找同时距离水平方向第一PDoA测量值即H_PDoA_R和垂直方向第一PDoA测量值即V_PDoA_R的数值距离最近的AOA格点位置。利用均方根最小值的方式寻找距离最近点,采用如下公式:
Figure PCTCN2022073178-appb-000003
其中,EVM_coarse mn表示水平方向和垂直方向的均方根,H_PDoA_S表示PDoA基准值,
m=-90,-80,-70,…,70,80,90,n=-90,-80,-70,…,70,80,90。
通过以上方法可以得到EVM_coarse的矩阵,并在EVM_coarse矩阵中寻找最小值,最小值的位置即为数值距离最近的信号到达相位差基准值数据组。
可见,本示例中,电子设备支持先确定精查角度范围,再根据精查角度范围进一步确定第一到达角度目标值数据组。
在一个可能的示例中,所述根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组,包括:确定预设的第二映射关系集合中与所述到达角度精查角度范围对应的参考映射关系集合,所述第二映射关系集合包括到达角度目标值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度目标值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值,所述第一映射关系集合中到达角度参照值的第一数值步长大于所述第二映射关系集合中到达角度参照值的第二数值步长;根据所述第一信号到达相位差测量值数据组和所述参考映射关系集合确定到达角度目标值数据组。
其中,所述第一数值步长可以为10°,所述第二数值步长可以为1°等。
其中,所述第二映射关系集合的具体表现形式可以是如表3和表4的矩阵,表3的行表头为水平方向的AOA参照值,列表头为垂直方向的AOA参照值,且所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值的数值步长为1°,矩阵中每个元素中记录有在对应水平方向的到达角度参照值和垂直方向的到达角度参照值约束下的水平方向的PDoA基准值(图示为HP_-H_Angle_-V_Angle),表4的行表头为水平方向的AOA参照值,列表头为垂直方向的AOA参照值,且所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值的数值步长为1°,矩阵中每个元素中记录有在对应水平方向的到达角度参照值和垂直方向的到达角度参照值约束下的垂直方向的PDoA基准值(图示为VP_-H_Angle_-V_Angle)。
表3
Figure PCTCN2022073178-appb-000004
Figure PCTCN2022073178-appb-000005
表4
Figure PCTCN2022073178-appb-000006
具体实现中,所述参考映射关系集合为AOA-PDoA矩阵时,可以是行宽和列高均为第一数值步长的矩阵。所述根据所述第一信号到达相位差测量值数据组和所述参考映射关系集合确定到达角度目标值数据组,包括:遍历所述参考映射关系集合中的每个元素与所述第一信号到达相位差测量值数据组的均方根,得到均方根集合;确定所述均方根集合中数值最小的均方根对应的PDoA基准值数据组所对应的AOA目标值数据组。
举例来说,假设参考映射关系集合为表3、表4矩阵中的10°*10°的精查区域,利用均方根最小值的方式寻找距离最近点,均方根计算公式如下所示:
Figure PCTCN2022073178-appb-000007
其中,EVM_coarse mn表示水平方向和垂直方向的均方根,H_PDoA_S表示PDoA基准值,i=m-5,m-4,m-3,…,m+3,m+4,m+5,j=n-5,n-4,n-3,…,n+3,n+4,n+5,m=-90,-80,-70,…,70,80,90,n=-90,-80,-70,…,70,80,90。
通过以上方法可以得到精查区域对应的均方根矩阵,并在均方根矩阵中寻找最小值,最小值的位置即为数值距离最近的信号到达相位差基准值数据组。
可见,本示例中,电子设备能够通过查询精细化程度更高、AOA数值步长更小的映射关系集合以确定第一到达角度目标值数据组。
在本可能的示例中,所述第二映射关系集合中除所述第一映射关系集合中的所述水平方向的信号到达相位差基准值之外的所述水平方向的信号到达相位差基准值与通过数值逼近方法确定出的所述水平方向的信号到达相位差测量值对应,所述第二映射关系集合中除所述第一映射关系集合中的所述垂直方向的信号到达相位差基准值之外的所述垂直方向的信号到达相位差基准值与通过数值逼近方法确定出的所述垂直方向的信号到达相位差测量值对应。
其中,所述数值逼近方法包括插值或者拟合。所述第二映射关系集合可以通过对第一映射关系集合进行插值或者拟合得到。
此外,所述第二映射关系集合可以通过检测得到。
具体实现中,电子设备能够在第一映射关系集合的基础上采用插值或者拟合方法得到第二映射关系集合。
可见,本示例中,电子设备能够通过数值逼近方法处理第一映射关系集合得到精细化 程度更高的第二映射关系集合,查询第二映射关系集合实现第一到达角度目标值数据组的确定。
在一个可能的示例中,所述根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组,包括:在所述到达角度精查角度范围内确定与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组;根据所述第一到达角度标定值数据组和所述至少一个第二到达角度标定值数据组确定所述到达角度精查角度范围内的到达角度数值与信号到达相位差数值之间的函数关系;根据所述第一信号到达相位差测量值数据组和所述函数关系确定到达角度目标值数据组。
其中,到达角度精查角度范围至少大于第一数值步长以满足包含多个到达角度标定值数据组的条件。
其中,所述至少一个第二到达角度标定值数据组优选两个,且数值大小关系分布在第一到达角度标定值数据组的两侧。
具体实现中,函数关系包括水平方向的AOA数值与PDoA数值之间的函数关系,以及垂直方向的AOA数值与PDoA数值之间的函数关系,将第一信号到达相位差测量值数据组中水平方向的第一信号到达相位差测量值导入水平方向的函数关系得到水平方向的第一AOA目标值,将第一信号到达相位差测量值数据组中垂直方向的第一信号到达相位差测量值导入水平方向的函数关系得到垂直方向的第一AOA目标值。
可见,本示例中,电子设备在确定出第一到达角度标定值数据组和到达角度精查角度范围之后,能够在到达角度精查角度范围内进一步筛选第二到达角度标定值数据组,并根据第一到达角度标定值数据组和第二到达角度标定值数据组确定到达角度精查角度范围内的AOA数值与PDoA数值之间的函数关系,最后将第一信号到达相位差测量值数据组导入函数关系,动态计算得到到达角度目标值数据组。
在本可能的示例中,所述在所述到达角度精查角度范围内确定与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组,包括:确定所述第一映射关系集合中处于所述到达角度精查角度范围内的多个到达角度标定值数据组;从所述多个到达角度标定值数据组中筛选与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组。
其中,所述多个到达角度标定值数据组至少包括所述第一到达角度标定值数据组和与所述第一到达角度标定值数据组相邻的单个第一到达角度标定值数据组。
可见,本示例中,电子设备从第一映射关系集合中筛选用于确定函数关系的数据组,确保准确度。
在一个可能的示例中,所述第一映射关系集合中与所述第一到达角度标定值数据组对应的信号到达相位差基准值数据组为第一信号到达相位差基准值数据组,且所述第一信号到达相位差基准值数据组为所述第一映射关系集合中与所述第一信号到达相位差测量值数据组的数值距离排序最靠前的至少两个信号到达相位差基准值数据组;
所述根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,包括:根据所述至少两个信号到达相位差基准值数据组确定到达角度数值与信号到达相位差数值之间的函数关系;根据所述第一信号到达相位差测量值数据组和所述函数关系确定到达角度目标值数据组。
其中,所述函数关系具体可以通过线性插值或者多项式插值确定。
其中,所述至少两个可以是2个、3个等。
具体实现中,电子设备可以采用均方根最小值的方式寻找数值距离排序最靠前的至少两个信号到达相位差基准值数据组。
可见,本示例中,电子设备能够直接筛选出至少两个信号到达相位差基准值数据组,并根据该至少两个信号到达相位差基准值数据组确定AOA数值与PDoA数值之间的函数关系。
在一个可能的示例中,所述水平方向的信号到达相位差基准值与通过所述短距离无线通信模块实际检测到的所述水平方向的信号到达相位差测量值对应,所述垂直方向的信号到达相位差基准值与通过所述短距离无线通信模块实际检测到的所述垂直方向的信号到达相位差测量值对应。
其中,所述第一映射关系集合中的信号到达相位差测量值通过实验检测得到。
其中,所述基准值可以等于测量值,或者,基准值可以通过补偿和解扰卷处理测量值得到基准值,后者可以将电路板板的走线引起的误差进行校准,克服走线差异、结构差异到来的检测结果误差。
具体实现中,所述补偿处理的具体实现方式可以是:将到达角度(H_0,V_0)位置的水平方向PDoA即H_PDoA和垂直方向的PDoA即V_PDoA作为各自方向的PDoA的补偿值,水平方向的PDoA补偿值为H_offset,垂直方向的PDoA补偿值为V_offset,将实际测量得到的PDoA测量值采用对应方向的PDoA补偿值进行补偿,从而得到PDoA基准值。
例如,针对表3和表4进行补偿处理后,得到表5和表6所示的矩阵。
表5中,提取到达角度AOA=(H_0,V_0)位置的H_PDoA为H_offset,如表所示:H_offset=HP_00_00,则H_PDoA矩阵中的所有元素分别减去H_offset和V_offset得到补偿后的水平方向的AOA-PDoA矩阵。
表6中,提取到达角度AOA=(H_0,V_0)位置的V_PDoA为V_offset,如表所示:V_offset=VP_00_00,则V_PDoA矩阵中的所有元素分别减去V_offset得到补偿后的垂直方向的AOA-PDoA矩阵。
表5
Figure PCTCN2022073178-appb-000008
表6
Figure PCTCN2022073178-appb-000009
具体实现中,由于PdoA是以(-180°,+180°)为周期的,因此经过补偿处理后的AOA-PDoA矩阵元素有可能超过(-180°,+180°)的范围,此时需要做解卷绕处理,即:
<-180°的PDoA+360°使其处于(-180°,+180°)范围;
>+180°的PDoA-360°使其处于(-180°,+180°)范围。
例如,针对表5和表6进行补偿处理后,得到表7和表8所示的矩阵。表7中,HPU_H_Angle_V_Angle表示解卷绕处理处理后的水平方向的AOA-PDoA矩阵中的元素。表8中,VPU_H_Angle_V_Angle表示解卷绕处理处理后的垂直方向的AOA-PDoA矩阵中的元素。
表7
Figure PCTCN2022073178-appb-000010
表8
Figure PCTCN2022073178-appb-000011
Figure PCTCN2022073178-appb-000012
可见,本示例中,第一映射关系集合中的PDoA基准值可以基于PDoA测量值得到,提高准确度。
可以看出,本申请实施例中,电子设备首先获取通过无线通信模块检测到的第一信号到达相位差PDoA测量值数据组,其次,根据第一PDoA测量值数据组和预设的第一映射关系集合,确定与第一PDoA测量值数据组关联的第一到达角度AOA标定值数据组,由于第一PDoA测量值数据组包括水平方向的第一PDoA测量值和垂直方向的第一PDoA测量值,第一映射关系集合包括AOA标定值数据组和PDoA基准值数据组之间的对应关系,AOA标定值数据组包含预先设置的水平方向的AOA参照值和垂直方向的AOA参照值,PDoA基准值数据组包含水平方向的PDoA基准值和垂直方向的PDoA基准值,可见,每个AOA标定值数据组均有唯一的PDoA基准值数据组与其对应,即在水平方向的AOA参照值和垂直方向的AOA参照值约束下,水平方向的PDoA基准值和垂直方向的PDoA基准值是固定不变的,电子设备不再将实际检测的PDoA测量值代入计算公式计算AOA,而是直接查询上述对应关系来确定标定AOA,如此使得PDoA测量误差不再被引入AOA的确定过程,从而提高AOA计算准确度。
本申请实施例提供一种到达角度确定装置,该到达角度确定装置可以为电子设备。具体的,到达角度确定装置用于执行以上距离关系确定方法中电子设备所执行的步骤。本申请实施例提供的到达角度确定装置可以包括相应步骤所对应的模块。
本申请实施例可以根据上述方法示例对到达角度确定装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图3示出上述实施例中所涉及的到达角度确定装置的一种可能的结构示意图。如图3所示,到达角度确定装置3应用于电子设备;所述装置包括:
获取单元30,用于获取第一信号到达相位差测量值数据组,所述第一信号到达相位差测量值数据组包括水平方向的第一信号到达相位差测量值和垂直方向的第一信号到达相位差测量值;
确定单元31,用于根据所述第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与所述第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组,所述第一映射关系集合包括到达角度标定值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度标定值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值。
所述确定单元31,还用于根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,所述第一到达角度目标值数据组包括作为最终测量结果的所述水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值。
在一个可能的示例中,所述第一映射关系集合中与所述第一到达角度标定值数据组对应的信号到达相位差基准值数据组为第一信号到达相位差基准值数据组,且所述第一信号到达相位差基准值数据组为所述第一映射关系集合中与所述第一信号到达相位差测量值数据组的数值距离最近的信号到达相位差基准值数据组;在所述根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组方面,所述确定单元31具体用于:根据所述第一到达角度标定值数据组确定第一到达角度精查角度范围;以及根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组。
在一个可能的示例中,在所述根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组方面,所述确定单元31具体用于:确定预设的第二映射关系集合中与所述到达角度精查角度范围对应的参考映射关系集合,所述第二映射关系集合包括到达角度目标值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度目标值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值,所述第一映射关系集合中到达角度参照值的第一数值步长大于所述第二映射关系集合中到达角度参照值的第二数值步长;以及根据所述第一信号到达相位差测量值数据组和所述参考映射关系集合确定到达角度目标值数据组。
在一个可能的示例中,所述第二映射关系集合中除所述第一映射关系集合中的所述水平方向的信号到达相位差基准值之外的所述水平方向的信号到达相位差基准值与通过数值逼近方法确定出的所述水平方向的信号到达相位差测量值对应,所述第二映射关系集合中除所述第一映射关系集合中的所述垂直方向的信号到达相位差基准值之外的所述垂直方向的信号到达相位差基准值与通过数值逼近方法确定出的所述垂直方向的信号到达相位差测量值对应。
在一个可能的示例中,在所述根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组方面,所述确定单元31具体用于:在所述到达角度精查角度范围内确定与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组;以及根据所述第一到达角度标定值数据组和所述至少一个第二到达角度标定值数据组确定所述到达角度精查角度范围内的到达角度数值与信号到达相位差数值之间的函数关系;以及根据所述第一信号到达相位差测量值数据组和所述函数关系确定到达角度目标值数据组。
在一个可能的示例中,在所述到达角度精查角度范围内确定与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组方面,所述确定单元31具体用于:确定所述第一映射关系集合中处于所述到达角度精查角度范围内的多个到达角度标定值数据组;以及从所述多个到达角度标定值数据组中筛选与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组。
在一个可能的示例中,所述第一映射关系集合中与所述第一到达角度标定值数据组对应的信号到达相位差基准值数据组为第一信号到达相位差基准值数据组,且所述第一信号到达相位差基准值数据组为所述第一映射关系集合中与所述第一信号到达相位差测量值数据组的数值距离排序最靠前的至少两个信号到达相位差基准值数据组;在所述根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组方面,所述确定单元31具体用于:根据所述至少两个信号到达相位差基准值数据组确定到达角度数值与信号到达相位差数值之间的函数关系;以及根据所述第一信号到达相位差测量值数据组和所述函数关系确定到达角度目标值数据组。
在一个可能的示例中,所述水平方向的信号到达相位差基准值与通过所述短距离无线通信模块实际检测到的所述水平方向的信号到达相位差测量值对应,所述垂直方向的信号到达相位差基准值与通过所述短距离无线通信模块实际检测到的所述垂直方向的信号到达相位差测量值对应。
在采用集成的单元的情况下,本申请实施例提供的另一种到达角度确定装置的结构示意图如图4所示。在图4中,到达角度确定装置4包括:处理模块40和通信模块41。处理模块40用于对设备控制装置的动作进行控制管理,例如,获取单元30、确定单元31所执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块41用于支持设备控制装置与其他设备之间的交互。如图4所示,到达角度确定装置还可以包括存储模块42,存储模块42用于存储到达角度确定装置的程序代码和数据。
其中,处理模块40可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块41可以是收发器、RF电路或通信接口等。存储模块42可以是存储器。
其中,上述方法实施例涉及的各场景的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。上述到达角度确定装置3和到达角度确定装置4均可执行上述图2所示的距离关系确定方法中电子设备所执行的步骤。
如图5所示,本申请实施例还提供一种电子设备50,包括:
天线组件510,包括第一天线511、第二天线512和第三天线513,所述第一天线511和所述第二天线512用于测量水平方向的到达角度,所述第一天线511和所述第三天线513用于测量垂直方向的到达角度;
短距离无线通信模块520,与所述天线组件510电连接,用于:根据所述第一天线511和所述第二天线512接收到的目标短距离无线通信信号的相位差,确定所述水平方向的第一信号到达相位差测量值,并根据所述第一天线511和所述第三天线513接收到的目标短距离无线通信信号的相位差,确定所述垂直方向的第一信号到达相位差测量值;根据第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与所述第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组,所述第一映射关系集合包括到达角度标定值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度标定值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值,所述第一信号到达相位差测量值数据组包括所述水平方向的第一信号到达相位差测量值和所述垂直方向的第一信号到达相位差测量值。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合 的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤,上述计算机包括电子设备。
本申请实施例还提供一种计算机程序产品,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。该计算机程序产品可以为一个软件安装包,上述计算机包括电子设备。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,可轻易想到变化或替换,均可作各种更动与修改,包含上述不同功能、实施步骤的组合,包含软件和硬件的实施方式,均在本发明的保护范围。

Claims (20)

  1. 一种到达角度确定方法,其特征在于,包括:
    获取第一信号到达相位差测量值数据组,所述第一信号到达相位差测量值数据组包括水平方向的第一信号到达相位差测量值和垂直方向的第一信号到达相位差测量值;
    根据所述第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与所述第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组,所述第一映射关系集合包括到达角度标定值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度标定值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值;
    根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,所述第一到达角度目标值数据组包括作为最终测量结果的所述水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一映射关系集合中与所述第一到达角度标定值数据组对应的信号到达相位差基准值数据组为第一信号到达相位差基准值数据组,且所述第一信号到达相位差基准值数据组为所述第一映射关系集合中与所述第一信号到达相位差测量值数据组的数值距离最近的信号到达相位差基准值数据组;
    所述根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,包括:
    根据所述第一到达角度标定值数据组确定第一到达角度精查角度范围;
    根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组,包括:
    确定预设的第二映射关系集合中与所述到达角度精查角度范围对应的参考映射关系集合,所述第二映射关系集合包括到达角度目标值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度目标值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值,所述第一映射关系集合中到达角度参照值的第一数值步长大于所述第二映射关系集合中到达角度参照值的第二数值步长;
    根据所述第一信号到达相位差测量值数据组和所述参考映射关系集合确定到达角度目标值数据组。
  4. 根据权利要求3所述的方法,其特征在于,所述第二映射关系集合中除所述第一映射关系集合中的所述水平方向的信号到达相位差基准值之外的所述水平方向的信号到达相位差基准值与通过数值逼近方法确定出的所述水平方向的信号到达相位差测量值对应,所述第二映射关系集合中除所述第一映射关系集合中的所述垂直方向的信号到达相位差基准值之外的所述垂直方向的信号到达相位差基准值与通过数值逼近方法确定出的所述垂直方向的信号到达相位差测量值对应。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组,包括:
    在所述到达角度精查角度范围内确定与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组;
    根据所述第一到达角度标定值数据组和所述至少一个第二到达角度标定值数据组确定 所述到达角度精查角度范围内的到达角度数值与信号到达相位差数值之间的函数关系;
    根据所述第一信号到达相位差测量值数据组和所述函数关系确定到达角度目标值数据组。
  6. 根据权利要求5所述的方法,其特征在于,所述在所述到达角度精查角度范围内确定与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组,包括:
    确定所述第一映射关系集合中处于所述到达角度精查角度范围内的多个到达角度标定值数据组;
    从所述多个到达角度标定值数据组中筛选与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组。
  7. 根据权利要求1所述的方法,其特征在于,所述第一映射关系集合中与所述第一到达角度标定值数据组对应的信号到达相位差基准值数据组为第一信号到达相位差基准值数据组,且所述第一信号到达相位差基准值数据组为所述第一映射关系集合中与所述第一信号到达相位差测量值数据组的数值距离排序最靠前的至少两个信号到达相位差基准值数据组;
    所述根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,包括:
    根据所述至少两个信号到达相位差基准值数据组确定到达角度数值与信号到达相位差数值之间的函数关系;
    根据所述第一信号到达相位差测量值数据组和所述函数关系确定到达角度目标值数据组。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述水平方向的信号到达相位差基准值与通过所述短距离无线通信模块实际检测到的所述水平方向的信号到达相位差测量值对应,所述垂直方向的信号到达相位差基准值与通过所述短距离无线通信模块实际检测到的所述垂直方向的信号到达相位差测量值对应。
  9. 根据权利要求8所述的方法,其特征在于,所述第一映射关系集合中的信号到达相位差测量值通过实验检测得到。
  10. 一种到达角度确定装置,其特征在于,包括:
    获取单元,用于获取第一信号到达相位差测量值数据组,所述第一信号到达相位差测量值数据组包括水平方向的第一信号到达相位差测量值和垂直方向的第一信号到达相位差测量值;
    确定单元,用于根据所述第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与所述第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组,所述第一映射关系集合包括到达角度标定值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度标定值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值;
    所述确定单元,还用于根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,所述第一到达角度目标值数据组包括作为最终测量结果的所述水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值。
  11. 根据权利要求10所述的装置,其特征在于,所述第一映射关系集合中与所述第一到达角度标定值数据组对应的信号到达相位差基准值数据组为第一信号到达相位差基准值数据组,且所述第一信号到达相位差基准值数据组为所述第一映射关系集合中与所述第一信号到达相位差测量值数据组的数值距离最近的信号到达相位差基准值数据组;在所述根 据所述第一到达角度标定值数据组确定第一到达角度目标值数据组方面,所述确定单元具体用于:根据所述第一到达角度标定值数据组确定第一到达角度精查角度范围;以及根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组。
  12. 根据权利要求11所述的装置,其特征在于,在所述根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组方面,所述确定单元具体用于:确定预设的第二映射关系集合中与所述到达角度精查角度范围对应的参考映射关系集合,所述第二映射关系集合包括到达角度目标值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度目标值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值,所述第一映射关系集合中到达角度参照值的第一数值步长大于所述第二映射关系集合中到达角度参照值的第二数值步长;以及根据所述第一信号到达相位差测量值数据组和所述参考映射关系集合确定到达角度目标值数据组。
  13. 根据权利要求12所述的装置,其特征在于,所述第二映射关系集合中除所述第一映射关系集合中的所述水平方向的信号到达相位差基准值之外的所述水平方向的信号到达相位差基准值与通过数值逼近方法确定出的所述水平方向的信号到达相位差测量值对应,所述第二映射关系集合中除所述第一映射关系集合中的所述垂直方向的信号到达相位差基准值之外的所述垂直方向的信号到达相位差基准值与通过数值逼近方法确定出的所述垂直方向的信号到达相位差测量值对应。
  14. 根据权利要求11所述的装置,其特征在于,在所述根据所述第一信号到达相位差测量值数据组和所述第一到达角度精查角度范围确定第一到达角度目标值数据组方面,所述确定单元具体用于:在所述到达角度精查角度范围内确定与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组;以及根据所述第一到达角度标定值数据组和所述至少一个第二到达角度标定值数据组确定所述到达角度精查角度范围内的到达角度数值与信号到达相位差数值之间的函数关系;以及根据所述第一信号到达相位差测量值数据组和所述函数关系确定到达角度目标值数据组。
  15. 根据权利要求14所述的装置,其特征在于,在所述在所述到达角度精查角度范围内确定与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组方面,所述确定单元具体用于:确定所述第一映射关系集合中处于所述到达角度精查角度范围内的多个到达角度标定值数据组;以及从所述多个到达角度标定值数据组中筛选与所述第一到达角度标定值数据组不同的至少一个第二到达角度标定值数据组。
  16. 根据权利要求10所述的装置,其特征在于,所述第一映射关系集合中与所述第一到达角度标定值数据组对应的信号到达相位差基准值数据组为第一信号到达相位差基准值数据组,且所述第一信号到达相位差基准值数据组为所述第一映射关系集合中与所述第一信号到达相位差测量值数据组的数值距离排序最靠前的至少两个信号到达相位差基准值数据组;在所述根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组方面,所述确定单元具体用于:根据所述至少两个信号到达相位差基准值数据组确定到达角度数值与信号到达相位差数值之间的函数关系;以及根据所述第一信号到达相位差测量值数据组和所述函数关系确定到达角度目标值数据组。
  17. 根据权利要求10-16任一项所述的装置,其特征在于,所述水平方向的信号到达相位差基准值与通过所述短距离无线通信模块实际检测到的所述水平方向的信号到达相位差测量值对应,所述垂直方向的信号到达相位差基准值与通过所述短距离无线通信模块实 际检测到的所述垂直方向的信号到达相位差测量值对应。
  18. 一种电子设备,其特征在于,所述电子设备包括:
    一个或多个处理器;
    一个或多个存储器,用于存储程序,
    所述一个或多个存储器和所述程序被配置为,由所述一个或多个处理器控制所述设备执行如权利要求1-9任一项所述的方法中的步骤。
  19. 一种电子设备,其特征在于,包括:
    天线组件,包括第一天线、第二天线和第三天线,所述第一天线和所述第二天线用于测量水平方向的到达角度,所述第一天线和所述第三天线用于测量垂直方向的到达角度;
    短距离无线通信模块,与所述天线组件电连接,用于:根据所述第一天线和所述第二天线接收到的目标短距离无线通信信号的相位差,确定所述水平方向的第一信号到达相位差测量值,并根据所述第一天线和所述第三天线接收到的目标短距离无线通信信号的相位差,确定所述垂直方向的第一信号到达相位差测量值;根据第一信号到达相位差测量值数据组和预设的第一映射关系集合,确定与所述第一信号到达相位差测量值数据组关联的第一到达角度标定值数据组,所述第一映射关系集合包括到达角度标定值数据组和信号到达相位差基准值数据组之间的对应关系,所述到达角度标定值数据组包含预先设置的所述水平方向的到达角度参照值和所述垂直方向的到达角度参照值,所述信号到达相位差基准值数据组包含所述水平方向的信号到达相位差基准值和所述垂直方向的信号到达相位差基准值,所述第一信号到达相位差测量值数据组包括所述水平方向的第一信号到达相位差测量值和所述垂直方向的第一信号到达相位差测量值;以及根据所述第一到达角度标定值数据组确定第一到达角度目标值数据组,所述第一到达角度目标值数据组包括作为最终测量结果的所述水平方向的第一到达角度测量值和所述垂直方向的第一到达角度测量值。
  20. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-9任一项所述的方法。
PCT/CN2022/073178 2021-03-31 2022-01-21 到达角度确定方法及相关装置 WO2022206139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110354617.3 2021-03-31
CN202110354617.3A CN113093096B (zh) 2021-03-31 2021-03-31 到达角度确定方法及相关装置

Publications (1)

Publication Number Publication Date
WO2022206139A1 true WO2022206139A1 (zh) 2022-10-06

Family

ID=76672402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073178 WO2022206139A1 (zh) 2021-03-31 2022-01-21 到达角度确定方法及相关装置

Country Status (2)

Country Link
CN (1) CN113093096B (zh)
WO (1) WO2022206139A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196782A1 (en) * 2020-12-22 2022-06-23 Samsung Electronics Co., Ltd. Three-dimensional angle of arrival capability in electronic devices
US20230134329A1 (en) * 2021-11-04 2023-05-04 Nxp B.V. Method for angle of arrival estimation in an impulse-radio ultra-wideband communications system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093096B (zh) * 2021-03-31 2023-10-13 Oppo广东移动通信有限公司 到达角度确定方法及相关装置
CN115728726A (zh) * 2021-08-25 2023-03-03 加特兰微电子科技(上海)有限公司 雷达角度校准系统、雷达芯片及设备
CN114487999A (zh) * 2021-12-24 2022-05-13 北京万集科技股份有限公司 一种obu定位方法、装置、系统以及rsu
CN114563758A (zh) * 2022-02-22 2022-05-31 Oppo广东移动通信有限公司 到达角确定方法及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160212738A1 (en) * 2013-08-27 2016-07-21 Telefonaktiebolaget L M Ericsson (Publ) Positioning of Wireless Devices
CN107450057A (zh) * 2016-05-31 2017-12-08 松下知识产权经营株式会社 移动体中装载的雷达装置及其方位角校正方法
CN109814064A (zh) * 2019-02-28 2019-05-28 中国电子科技集团公司第三十六研究所 一种基于三阵元l型直角阵干涉仪测向方法和装置
CN110031793A (zh) * 2019-04-09 2019-07-19 中国电子科技集团公司第三十六研究所 一种干涉仪测向方法、装置和系统
CN112468962A (zh) * 2020-11-27 2021-03-09 Oppo广东移动通信有限公司 角度测量方法,终端及计算机存储介质
CN113093096A (zh) * 2021-03-31 2021-07-09 Oppo广东移动通信有限公司 到达角度确定方法及相关装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102159269B1 (ko) * 2018-11-20 2020-09-23 국방과학연구소 원형 배열 안테나를 이용한 신호 방향 탐지 방법 및 장치
CN112578354B (zh) * 2020-02-28 2024-02-23 加特兰微电子科技(上海)有限公司 确定目标物方位角的方法、计算机设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160212738A1 (en) * 2013-08-27 2016-07-21 Telefonaktiebolaget L M Ericsson (Publ) Positioning of Wireless Devices
CN107450057A (zh) * 2016-05-31 2017-12-08 松下知识产权经营株式会社 移动体中装载的雷达装置及其方位角校正方法
CN109814064A (zh) * 2019-02-28 2019-05-28 中国电子科技集团公司第三十六研究所 一种基于三阵元l型直角阵干涉仪测向方法和装置
CN110031793A (zh) * 2019-04-09 2019-07-19 中国电子科技集团公司第三十六研究所 一种干涉仪测向方法、装置和系统
CN112468962A (zh) * 2020-11-27 2021-03-09 Oppo广东移动通信有限公司 角度测量方法,终端及计算机存储介质
CN113093096A (zh) * 2021-03-31 2021-07-09 Oppo广东移动通信有限公司 到达角度确定方法及相关装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN, PENGZHAO; HAN, TAO; DENG, XINPU: "Y-shape array 3-D instantaneous ranging passive localization method and its precision analysis", HANGTIAN DIANZI DUIKANG - AEROSPACE ELECTRONIC WARFARE, HANGTIAN DIANZI DUIKANG, CN, vol. 25, no. 5, 31 October 2009 (2009-10-31), CN , pages 39 - 41, XP009540132, ISSN: 1673-2421 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196782A1 (en) * 2020-12-22 2022-06-23 Samsung Electronics Co., Ltd. Three-dimensional angle of arrival capability in electronic devices
US11892550B2 (en) * 2020-12-22 2024-02-06 Samsung Electronics Co., Ltd. Three-dimensional angle of arrival capability in electronic devices
US20230134329A1 (en) * 2021-11-04 2023-05-04 Nxp B.V. Method for angle of arrival estimation in an impulse-radio ultra-wideband communications system
US11822000B2 (en) * 2021-11-04 2023-11-21 Nxp B.V. Method for angle of arrival estimation in an impulse-radio ultra-wideband communications system

Also Published As

Publication number Publication date
CN113093096A (zh) 2021-07-09
CN113093096B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
WO2022206139A1 (zh) 到达角度确定方法及相关装置
US20240061076A1 (en) Radar apparatus and radar signal processing method
CN108776330B (zh) 一种fmcw雷达多接收通道的高精度校准方法和装置
WO2022148461A1 (zh) 无线局域网感知方法及装置
CN106486769B (zh) 用于线性相控阵天线的空间插值方法和设备
US20190235048A1 (en) Apparatus and method for compensating for return loss of antenna of radar, and radar apparatus using same
CN109959892B (zh) 一种均匀圆阵双通道干涉仪测向方法、装置和系统
US10044112B2 (en) Variable antenna and apparatus for detecting radio signal
CN110865364B (zh) 雷达的目标解算方法及终端设备
CN112782645B (zh) 一种四臂螺旋天线数据拟合测角方法
CN109814063A (zh) 一种干涉仪测向方法和装置
WO2022237920A2 (zh) 雷达角度校准系统、雷达芯片及设备
Jiao et al. An indoor mmwave joint radar and communication system with active channel perception
EP3327463A1 (en) Electromagnetic wave imaging system and antenna array signal correction method
CN114577171A (zh) 一种三维角度测量方法、装置、设备及计算机存储介质
KR101796472B1 (ko) 레이더 장치 및 그것을 이용한 도래각 추정 방법
CN110018440B (zh) 基于定向天线的l型直角阵列测向方法、装置和系统
TW201734404A (zh) 角度估測方法及雷達系統
CN116106847B (zh) 毫米波雷达二维联合超分辨测角方法、装置及存储介质
CN117347958A (zh) 毫米波雷达的测试方法和测试系统
CN110515066B (zh) 一种车载毫米波雷达及其目标高度测量方法
CN116148784B (zh) 一种单站闪电定位系统相位自动校准系统及方法
JP2021148733A (ja) レーダ装置
JP2018200218A (ja) 到来電波を測定する測定装置及びその測定方法
CN114720937A (zh) 到达角度的确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778328

Country of ref document: EP

Kind code of ref document: A1