WO2022205800A1 - 风电场的一次调频控制方法及控制设备 - Google Patents

风电场的一次调频控制方法及控制设备 Download PDF

Info

Publication number
WO2022205800A1
WO2022205800A1 PCT/CN2021/119547 CN2021119547W WO2022205800A1 WO 2022205800 A1 WO2022205800 A1 WO 2022205800A1 CN 2021119547 W CN2021119547 W CN 2021119547W WO 2022205800 A1 WO2022205800 A1 WO 2022205800A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency modulation
primary frequency
modulation control
type
thread
Prior art date
Application number
PCT/CN2021/119547
Other languages
English (en)
French (fr)
Inventor
左美灵
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2022205800A1 publication Critical patent/WO2022205800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Definitions

  • the present disclosure generally relates to the technical field of wind power, and more particularly, to a primary frequency modulation control method and control device of a wind farm.
  • FIG. 1 shows a schematic diagram of a wind farm station control system according to an exemplary embodiment of the present disclosure.
  • the wind farm station control system is provided with a primary frequency modulation control device, a set of hard pressure plates and a set of indicator lights,
  • the measurement and control equipment used to collect the frequency information of the grid connection point, the action information of the hard platen and send the control signal to the indicator light.
  • the user can set the primary frequency regulation related functions of the wind farm through this group of hard platen, and the user can use the state of the indicator light to be able to set the related functions of the wind farm. Know the primary frequency modulation status of the wind farm.
  • Exemplary embodiments of the present disclosure are to provide a primary frequency modulation control method and control device for a wind farm, which can effectively use a hard platen and an indicator light when the wind farm includes multiple types of generating units.
  • a primary frequency modulation control method for a wind farm wherein the wind farm includes multiple types of units, and the primary frequency modulation control method includes: determining the units corresponding to each of the multiple types of units respectively. Whether the primary FM control thread needs to be started; start the primary FM control thread that needs to be started, wherein the started primary FM control thread occupies a corresponding set of hard pressing plates and indicator lights, wherein the hard pressing plates are used to receive user feedback
  • the setting instruction of frequency modulation related functions, the indicator light is used to indicate the primary frequency modulation related state
  • the primary frequency modulation control thread is used to control the equipment including the unit to perform primary frequency modulation for a grid-connected point, wherein the corresponding The primary frequency modulation control threads are different, and the primary frequency modulation control threads corresponding to different types of units occupy different groups of hard pressure plates and indicators.
  • a primary frequency modulation control device for a wind farm, the primary frequency modulation control device comprising: a processor; and a memory storing a computer program, wherein when the computer program is executed by the processor When executed, the processor is prompted to execute the above-mentioned primary frequency modulation control method of the wind farm.
  • a computer-readable storage medium storing a computer program
  • the processor when the computer program is executed by a processor, the processor is caused to execute the above-mentioned primary frequency modulation control method for a wind farm .
  • the primary frequency modulation control method and control device for a wind farm can effectively use the hard platen and indicator lights when the wind farm includes multiple types of generating units, and can be well compatible with the existing program structure Compatible, it is convenient to realize program generalization and unification; the implementation complexity is low, which reduces personnel and capital investment; it is convenient for program version management and reduces management costs.
  • FIG. 1 shows a schematic diagram of a wind farm site control system according to an exemplary embodiment of the present disclosure
  • FIG. 2 shows a flowchart of a primary frequency modulation control method of a wind farm according to an exemplary embodiment of the present disclosure
  • FIG. 3 shows an example of data interaction of an FM control application according to an exemplary embodiment of the present disclosure
  • FIG. 4 shows an example of a method for starting a FM control thread according to an exemplary embodiment of the present disclosure
  • FIG. 5 shows a structural block diagram of a primary frequency modulation control device of a wind farm according to an exemplary embodiment of the present disclosure.
  • FIG. 2 shows a flowchart of a primary frequency modulation control method of a wind farm according to an exemplary embodiment of the present disclosure.
  • the wind farm includes multiple types of plants (ie, wind turbines).
  • step S10 it is determined whether each primary frequency modulation control thread corresponding to each type of unit in the multi-type units needs to be started.
  • the primary frequency modulation control thread is used to control the equipment including the unit to perform primary frequency modulation for a grid-connected point; the primary frequency modulation control threads corresponding to different types of units are different.
  • at least one FM control thread for this type of generator set is separately configured, for example, the at least one FM control thread can be controlled by a primary FM control application program corresponding to this type of generator set.
  • each primary frequency modulation control thread corresponding to each type of unit corresponds to each grid connection point of the wind farm.
  • a wind farm has N grid-connected points, and each type of unit may correspond to N primary frequency modulation control threads, each of the N primary frequency modulation control threads is used to control this type of unit to perform primary frequency modulation control for one grid-connected point, Different primary frequency modulation control threads among the N primary frequency modulation control threads are used to perform primary frequency modulation control for different grid-connected points, so that when there are multiple grid-connected points in the wind farm, there is no need to split a single thread, and the multi-thread parallelization is performed. Independent execution, high execution efficiency and clear overall logic.
  • the equipment including the unit may include other equipment capable of supporting primary frequency modulation for the grid connection point in addition to the unit, which is not limited in the present disclosure.
  • the wind turbines produced by the same manufacturer may be of the same type; or, the wind turbines of the same model may be of the same type. It should be understood that the wind power generating units of the wind farm may also be divided into various types by other appropriate division manners, which is not limited in the present disclosure.
  • the primary frequency modulation support information may include: the number of valid units that the primary frequency modulation control thread can control, the number of corresponding valid AGC devices (active frequency control devices), and whether the targeted grid connection point is valid.
  • the primary frequency modulation support information may be acquired through a configuration file.
  • the AGC device corresponding to the primary FM control thread is the AGC device that has a cooperative control relationship with the FM control thread.
  • the preset conditions may include: the number of valid units that can be controlled by the primary frequency modulation control thread is greater than 0, the number of corresponding valid AGC devices is greater than 0, and the targeted grid connection point is valid.
  • step S20 the primary frequency modulation control thread that needs to be activated is started, wherein the activated primary frequency modulation control thread occupies a corresponding set of hard pressing plates and indicator lights.
  • the primary frequency modulation control threads corresponding to different types of units occupy different groups of hard pressing plates and indicator lights.
  • a set of hard pressing plates and indicator lights may include at least one hard pressing plate and at least one indicator light.
  • the hard platen is used to receive the user's setting instructions for the primary frequency modulation related functions.
  • the user can enable or disable the primary frequency modulation related functions targeted by the primary frequency modulation control thread corresponding to the hard pressure plate by operating the hard platen. closure.
  • the primary frequency modulation related function may include, but is not limited to, at least one of the following items: a primary frequency modulation function, an inertia function, and an error reporting function.
  • the on state and off state of the indicator light are used to indicate the primary frequency modulation related state, in other words, the user can timely know the primary frequency modulation related state targeted by the primary frequency modulation control thread corresponding to the indicator light through the indicator light.
  • the primary frequency modulation related state may include, but is not limited to, at least one of the following items: whether primary frequency modulation is normal.
  • the primary frequency modulation control thread is used to control the equipment including the unit to perform primary frequency modulation for a grid connection point. Specifically, in response to the user's setting instruction for the primary frequency modulation related functions received through the occupied hard platen, based on the frequency information of the grid-connected point, perform primary frequency modulation control on the equipment that it can control, including the unit; and based on The current primary frequency modulation state, controls the state of the occupied indicator light.
  • the primary frequency modulation control application is implemented by multi-threading, considering that some electric fields have two or more grid-connected points, and the grid assessment is based on the grid-connected points.
  • the problem is that when two grid-connected points are encountered, it is more troublesome to split in a single thread, and the control efficiency is low.
  • the present disclosure takes into account the situation that the wind farm may include multiple types of units, for example, in order to avoid the following problem: when the wind farm includes multiple types of units, for example, the first type of units and the second type of units, two types of units Produced by different manufacturers, the two types of units are all controlled and operated by the wind farm station control system, but the wind farm station control system only has two sets of hard pressure plates and indicator lights for the primary frequency modulation function. When a grid connection point is connected to the grid, conflicts will occur when using these two sets of hard plates and indicators.
  • the default initialization of an FM control application will determine some necessary information such as: the number of valid units, valid AGC equipment, and valid grid-connected points, if all requirements are met, information prompts will be given, as long as there is a set of data that meets the requirements of valid units, valid AGC
  • the three conditions of the grid connection point will start a FM control application process. This process opens two threads by default and two grid connection points by default. When a grid connection point does not meet the requirements, the main switch will be turned off and the function will not be activated. , but when the set value of a certain site does not meet the requirements, some corresponding indicators indicating the fault will be lit.
  • the operation of closing the switch and lighting the fault indicator is after the two grid-connected point threads are started, Judgment is valid in their respective threads.
  • the second thread does not put into the total outlet, so the second thread will turn off the indicator light.
  • the real effect of this is that two threads of a control program (primary frequency modulation control application program of the first type of unit) occupy both sets of indicator lights.
  • the second control application primary FM control application for the second type of unit
  • wants to use the second set of indicators there will be a fight between the two programs.
  • the present disclosure proposes that for the primary frequency modulation function of the wind farm, multiple groups of hard pressure plates and indicator lights can be set to ensure that the primary frequency modulation control threads corresponding to different types of units occupy different groups of hard pressure plates and indicator lights, that is, different types of The unit uses different sets of hard pressing plates and indicator lights for the primary frequency modulation function.
  • the total number of groups of hard plates and indicator lights may be determined based on the total number of grid connection points of the wind farm and the total number of different types of units in the wind farm, wherein the total number of groups of hard plates and indicator lights is related to the number of wind farms.
  • the total number of grid-connected points is positively correlated; the total number of hard platen and indicator lights is positively correlated with the total number of different types of units in the wind farm.
  • steps S10 and S20 may be performed by a primary FM control application.
  • each type of generator set may correspond to its own primary frequency modulation control application program.
  • each type of generator set may be configured with a one-to-one corresponding primary frequency modulation control application program, and the primary frequency modulation control application program can be used to communicate with Communication layer communication, determine which of the primary FM control threads configured for it need to be started and started, that is, determine whether each primary FM control thread corresponding to this type of unit needs to be started, and start the primary FM control thread that needs to be started.
  • the steps can be performed by the primary frequency modulation control application program corresponding to this type of unit.
  • FIG. 3 shows an example of data interaction of an FM control application according to an exemplary embodiment of the present disclosure.
  • the wind farm includes two types of units: the first type of units and the second type of units.
  • the primary frequency modulation control equipment in the field control equipment of the wind farm includes two layers: the control layer and the communication layer.
  • Control application the control layer communicates with the first type of units, the second type of units, the AGC equipment (or energy management platform EMP) corresponding to the first type of units, and the AGC equipment (or energy) corresponding to the second type of units through the control communication layer.
  • Management platform EMP Management platform
  • measurement and control equipment and other equipment to communicate to complete the tasks of data reading and command writing.
  • control layer obtains the raw data parsed and processed by the communication layer, and issues the calculated engineering quantity control commands to the communication layer, thereby completing the processing of a scheduling cycle.
  • the control layer obtains the raw data parsed and processed by the communication layer, and issues the calculated engineering quantity control commands to the communication layer, thereby completing the processing of a scheduling cycle.
  • the method may be performed by a primary frequency modulation control device in a wind farm site control system.
  • steps S10 and S20 may be performed.
  • the indicator light, or the corresponding primary frequency modulation control application program can execute the specific judgment strategy and then configure the primary frequency modulation control thread, so that the primary frequency modulation control thread can determine the hard platen and indicator light occupied by the primary frequency modulation control thread according to the configuration information.
  • the started primary frequency modulation control thread also executes a specific primary frequency modulation control strategy cyclically. A specific example of the judgment strategy will be described in the following embodiments.
  • the primary frequency regulation control thread occupies the same type of generator set.
  • the primary frequency modulation control thread occupies a group of hard pressing plates and indicator lights corresponding to the priority of the grid-connected point passed through. Specifically, each group of hard pressing plates and indicator lights has its order.
  • each group of hard pressing plates and indicator lights can be sorted according to the actual setting positions of each group of hard pressing plates and indicator lights.
  • the actual setting positions are sorted for each group. The higher the priority, the higher the sorting of the corresponding group of hard plates and indicators.
  • the wind farm includes a first-type unit and a second-type unit, the wind farm is connected to the power grid through a grid connection point, and the field control equipment of the wind farm is provided with a first group of hard pressure plates, indicator lights, and a first group of hard plates.
  • a first group of hard pressure plates, indicator lights, and a first group of hard plates Take two groups of hard pressure plates and indicator lights as an example, when the activated primary frequency modulation control thread is used to control the first type of unit to perform primary frequency modulation for the grid-connected point, the primary frequency modulation control thread occupies the first group of hard pressure plates and indicator lights; When the primary frequency modulation control thread is used to control the second type of unit to perform primary frequency modulation for the grid-connected point, the primary frequency modulation control thread occupies the second group of hard pressure plates and indicator lights. The priority is higher than that of the second group.
  • the wind farm includes two types of units, the wind farm is connected to the power grid through the first grid connection point and the second grid connection point, and the field control equipment of the wind farm is provided with a first group of hard pressure plates, indicator lights, and a Take two groups of hard pressure plates and indicator lights as an example, when the activated primary frequency regulation control thread is used to control a type of unit to perform primary frequency regulation for the first grid connection point, and only the first type of unit is connected to the grid through the first grid connection point, The primary frequency modulation control thread occupies the first group of hard pressure plates and indicator lights; when the activated primary frequency modulation control thread is used to control another type of generator set to perform primary frequency modulation for the second grid connection point, and only the other type of generator set passes through the second parallel connection point.
  • the primary frequency modulation control thread occupies the second group of hard pressure plates and indicator lights, wherein the priority of the first network connection point is higher than that of the second network connection point with regard to occupying the hard pressure plate and the indicator lights.
  • the primary frequency modulation control application program corresponding to each type of generating unit may communicate with the measurement and control equipment through a full-duplex communication protocol, wherein the measurement and control equipment is used to collect frequency information of each grid connection point of the wind farm.
  • the measurement and control device can also be used to collect motion information of the hard platen, receive instructions for controlling the indicator lights, and control the lighting and extinguishing of the indicator lights.
  • the primary frequency modulation control application corresponding to each type of unit can realize the data reading and writing with the measurement and control equipment through the register method, instead of using the coefficient processing method when reading and writing data, thus improving the data reading and writing efficiency.
  • the data type of the data to be written is a digital quantity rather than an analog quantity
  • the byte with the value of 0 in the data to be written is directly filled with 00
  • the byte with the value of 1 is filled with FF00
  • the data to be written is written into the structure of the command message to be sent; when the data type of the data to be read is digital rather than analog, the data can be fetched bit by bit as follows:
  • the coefficient bits in are regarded as the number of bits required for the shift. After shifting the incoming data value by the said number of bits, perform an AND operation with 0x01 to obtain the data amount of the data value.
  • FIG. 4 shows an example of a method of starting a FM control thread according to an exemplary embodiment of the present disclosure.
  • the method can be executed by a primary frequency modulation control application program of a class of units, and the primary frequency modulation control application program manages two primary frequency modulation control threads (hereinafter, also referred to as thread 1 and thread 2), and each thread corresponds to a grid connection point respectively. .
  • step S101 all data are acquired for the two standby primary frequency modulation control threads. Specifically, two threads respectively read all raw data from the communication layer, and subsequent control model data are generated by the raw data model. Since the two primary frequency modulation control threads have not yet determined which one needs to be started, they are referred to as standby threads here.
  • step S102 frequency initialization is performed.
  • a typical curve disturbance test simulation frequency data set can be obtained according to the designed low-frequency and over-frequency typical curve data files, which can be used as data backup for the actual execution of the test.
  • step S103 the prototype machine and the unit corresponding to the prototype machine are determined.
  • the sample machines are uncontrollable units for scheduling, and different units are executed according to the power trend of the sample machines. Therefore, it is necessary to judge which models are the models, and which units are executed according to the power trend of which model machines.
  • step S104 all handles are acquired.
  • the handle refers to the link between the control model of the primary FM control application and the raw data model.
  • step S105 the grid connection point setting information is checked.
  • the transformer serial numbers of the two grid-connected points can be obtained respectively, and it can be judged whether the two transformer serial numbers are the same or invalid.
  • the transformer serial numbers are respectively set to the two primary frequency modulation In the serial number variable of the grid connection point of the control thread.
  • step S106 obtain valid crew information and valid AGC equipment information.
  • Valid means that the control model data required in the control must be able to obtain the corresponding raw data model data. That is, the unit specifies the necessary variables in the primary FM control, and if the corresponding handles can be found from these variable names, it means it is valid; the AGC equipment specifies the necessary variables in the primary FM control, and the corresponding handles can be found from these variable names, it means that efficient.
  • the total power rating of the unit associated with each thread is calculated.
  • Each unit is marked under which transformer serial number it is mounted on. According to the transformer serial number, the relationship between the line program number and the transformer serial number can be obtained, that is, the unit can correspond to the line program number, and the maximum power of all units under each thread can be summed up , which is the thread rated power.
  • step S108 the thread start condition is judged.
  • step S201 when it is determined that the number of valid units in the structure of thread 1 is not 0, the number of valid AGC devices is not 0, and the network connection point is correct, it is determined that thread 1 is valid, and in step S202, the startup condition of thread 1 is determined.
  • G_th1 is set to 1; in step S203, when it is determined that the number of valid units in the structure of thread 2 is not 0, the number of valid AGC devices is not 0, and the network connection point is correct, it is determined that thread 2 is valid;
  • the start condition G_th2 is set to 1; in step S205, when it is determined that both thread 1 and thread 2 are invalid, G_th1 is silently set to 1.
  • a thread is created.
  • the thread can be created from the thread start judgment flag and the thread number after the thread is started.
  • step S301 when G_th1 is 1, thread 1 is created; in step S302, when G_th2 is 1, thread 2 is created.
  • FIG. 5 shows a structural block diagram of a primary frequency modulation control device of a wind farm according to an exemplary embodiment of the present disclosure.
  • the wind farm includes multiple types of generating units.
  • the primary frequency modulation control device includes: a thread determination unit 10 and a thread start unit 20 .
  • the thread determination unit 10 is configured to determine whether the primary frequency modulation control thread corresponding to each of the multiple types of units needs to be started.
  • the thread starting unit 20 is used for starting the one-time frequency modulation control thread that needs to be started.
  • the activated primary FM control thread occupies a corresponding set of hard pressing boards and indicator lights, wherein the hard pressing boards are used to receive user setting instructions for primary FM related functions, and the indicator lights are used to indicate primary FM related states
  • the primary frequency modulation control thread is used to control the equipment including the unit to perform primary frequency modulation for a grid-connected point, wherein the primary frequency modulation control threads corresponding to different types of units are different, and the primary frequency modulation control threads corresponding to different types of units occupy different Set of hard platen and indicator lights.
  • the wind turbines produced by the same manufacturer may be of the same type; or, the wind turbines of the same model may be of the same type.
  • each primary frequency modulation control thread corresponding to each type of generating unit may be in one-to-one correspondence with each grid connection point of the wind farm.
  • the primary frequency regulation control thread occupies the same type of generator set.
  • a set of hard pressure plates and indicator lights corresponding to the priority when a type of unit corresponding to the activated primary FM control thread is connected to the power grid through the grid connection point targeted by the primary FM control thread, the occupied order of the primary FM control thread is the same as that of the first FM control thread.
  • the wind farm includes a first-type unit and a second-type unit, the wind farm is connected to the power grid through a grid connection point, and the field control equipment of the wind farm is provided with a first group of hard pressure plates and indicator lights, And the second group of hard pressing plates and indicator lights, when the activated primary frequency modulation control thread is used to control the first type of unit to perform a frequency modulation for the grid connection point, the primary frequency modulation control thread occupies the first group of hard pressing plates and indicator lights; When the primary frequency modulation control thread is used to control the second type of unit to perform primary frequency modulation for the grid-connected point, the primary frequency modulation control thread occupies the second group of hard pressure plates and indicator lights. The priority is higher than that of the second group.
  • the wind farm includes two types of units, the wind farm is connected to the power grid through the first grid connection point and the second grid connection point, and the field control equipment of the wind farm is provided with a first group of hard pressure plates and indicator lights, As well as the second group of hard pressing plates and indicator lights, when the activated primary frequency modulation control thread is used to control a type of unit to perform primary frequency modulation for the first grid connection point, and only the first type of unit is connected to the power grid through the first grid connection point, The primary frequency modulation control thread occupies the first group of hard pressure plates and indicator lights; when the activated primary frequency modulation control thread is used to control another type of generator set to perform primary frequency modulation for the second grid connection point, and only the other type of generator set passes through the second parallel connection point. When the network point is connected to the power grid, the primary frequency modulation control thread occupies the second group of hard pressure plates and indicator lights. Regarding the occupation of the hard pressure plates and indicator lights, the priority of the first grid connection point is higher than that of the second grid connection point
  • the thread determination unit 10 may determine whether the primary frequency modulation support information of the grid-connected point targeted by each primary frequency modulation control thread satisfies a preset condition; when the preset condition is satisfied, determine that the primary frequency modulation control thread needs to be started.
  • the primary frequency modulation support information may include: the number of valid units that can be controlled by the primary frequency modulation control thread, the number of corresponding valid AGC devices, and whether the targeted grid connection point is valid.
  • the preset conditions may include: the number of valid units that can be controlled by the primary frequency modulation control thread is greater than 0, the number of corresponding valid AGC devices is greater than 0, and the targeted grid connection point is valid.
  • the primary frequency modulation control device may further include: a communication unit (not shown) configured to communicate with the measurement and control device through a full-duplex communication protocol, wherein the measurement and control device uses It is used to collect the frequency information of each grid connection point of the wind farm.
  • a communication unit (not shown) configured to communicate with the measurement and control device through a full-duplex communication protocol, wherein the measurement and control device uses It is used to collect the frequency information of each grid connection point of the wind farm.
  • the communication unit can realize data reading and writing with the measurement and control equipment through registers.
  • each unit in the primary frequency modulation control device may be implemented as hardware components and/or software components.
  • Those skilled in the art can implement each unit by using, for example, a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC) according to the defined processing performed by each unit.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • Exemplary embodiments of the present disclosure provide a computer-readable storage medium storing a computer program, which, when executed by a processor, causes the processor to perform a one-time operation of the wind farm as described in the above-described exemplary embodiments FM control method.
  • the computer-readable storage medium is any data storage device that can store data read by a computer system. Examples of computer-readable storage media include read-only memory, random-access memory, optical disks, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission over the Internet via wired or wireless transmission paths).
  • a primary frequency modulation control device for a wind farm includes: a processor (not shown) and a memory (not shown), wherein the memory stores a computer program, and when the computer program is executed by the processor At the time, the processor is caused to execute the primary frequency modulation control method of the wind farm as described in the above-mentioned exemplary embodiment.

Abstract

本公开提供了一种风电场的一次调频控制方法及控制设备,所述风电场中包括多类机组,所述方法包括:确定分别与所述多类机组中的每类机组对应的一次调频控制线程是否需要启动;启动需要启动的一次调频控制线程,其中,所启动的一次调频控制线程占用相应的一组硬压板和指示灯,所述一次调频控制线程用于控制包括机组在内的设备针对一个并网点进行一次调频,不同类机组所对应的一次调频控制线程不同,不同类机组所对应的一次调频控制线程占用不同组的硬压板和指示灯。

Description

风电场的一次调频控制方法及控制设备 技术领域
本公开总体说来涉及风电技术领域,更具体地讲,涉及一种风电场的一次调频控制方法及控制设备。
背景技术
图1示出根据本公开的示例性实施例的风电场场站控制系统的示意图,参照图1,风电场场站控制系统中设置有一次调频控制设备、一组硬压板和一组指示灯、用于采集并网点频率信息、硬压板的动作信息及向指示灯发送控制信号的测控设备,用户通过该组硬压板能够对风电场的一次调频相关功能进行设置,且用户通过指示灯的状态能够获知风电场的一次调频状态。
发明内容
本公开的示例性实施例在于提供一种风电场的一次调频控制方法及控制设备,其能够在风电场包括多类机组的情况下有效使用硬压板和指示灯。
根据本公开的一方面,提供一种风电场的一次调频控制方法,所述风电场中包括多类机组,所述一次调频控制方法包括:确定分别与所述多类机组中的每类机组对应的一次调频控制线程是否需要启动;启动需要启动的一次调频控制线程,其中,所启动的一次调频控制线程占用相应的一组硬压板和指示灯,其中,所述硬压板用于接收用户对一次调频相关功能的设置指令,所述指示灯用于指示一次调频相关状态,所述一次调频控制线程用于控制包括机组在内的设备针对一个并网点进行一次调频,其中,不同类机组所对应的一次调频控制线程不同,不同类机组所对应的一次调频控制线程占用不同组的硬压板和指示灯。
根据本公开的另一方面,提供一种风电场的一次调频控制设备,所述一次调频控制设备包括:处理器;和存储器,存储有计算机程序,其中,当所述计算机程序被所述处理器执行时,促使所述处理器执行如上所述的风电场的一次调频控制方法。
根据本公开的另一方面,提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被处理器执行时,促使所述处理器执行如上所述的风电场的一次调频控制方法。
根据本公开示例性实施例的风电场的一次调频控制方法及控制设备,其能够在风电场包括多类机组的情况下有效使用硬压板和指示灯,并且,可以与现有程序架构很好地兼容,方便实现程序通用和统一;实施复杂度较低,减少了人员和资金投入;方便程序版本管理,减少了管理费用。
将在接下来的描述中部分阐述本公开总体构思另外的方面和/或优点,还有一部分通过描述将是清楚的,或者可以经过本公开总体构思的实施而得知。
附图说明
通过下面结合示例性地示出实施例的附图进行的描述,本公开示例性实施例的上述和其它目的和特点将会变得更加清楚,其中:
图1示出根据本公开的示例性实施例的风电场场站控制系统的示意图;
图2示出根据本公开示例性实施例的风电场的一次调频控制方法的流程图;
图3示出根据本公开示例性实施例的一次调频控制应用程序的数据交互的示例;
图4示出根据本公开示例性实施例的启动一次调频控制线程的方法的示例;
图5示出根据本公开示例性实施例的风电场的一次调频控制设备的结构框图。
具体实施方式
现将详细参照本公开的实施例,所述实施例的示例在附图中示出,其中,相同的标号始终指的是相同的部件。以下将通过参照附图来说明所述实施例,以便解释本公开。
图2示出根据本公开示例性实施例的风电场的一次调频控制方法的流程图。这里,所述风电场中包括多类机组(即,风力发电机组)。
参照图2,在步骤S10,确定分别与所述多类机组中的每类机组对应的各个一次调频控制线程是否需要启动。
这里,所述一次调频控制线程用于控制包括机组在内的设备针对一个并网点进行一次调频;不同类机组所对应的一次调频控制线程不同。换言之,分别针对每类机组,为其单独配置针对该类机组的至少一个调频控制线程,例如,所述至少一个调频控制线程可由与该类机组对应的一次调频控制应用程序所控制。作为示例,每类机组所对应的各个一次调频控制线程与风电场的各个并网点一一对应。例如,风电场具有N个并网点,每类机组可各自对应N个一次调频控制线程,所述N个一次调频控制线程中的每个用于控制该类机组针对一个并网点进行一次调频控制,所述N个一次调频控制线程中的不同一次调频控制线程用于针对不同并网点进行一次调频控制,从而,当风电场有多个并网点时,无需针对单线程进行拆分,通过多线程并行独立执行,执行效率高且整体逻辑清晰明了。
作为示例,所述包括机组在内的设备除包括机组之外,还可包括其他能够支持针对并网点进行一次调频的设备,本公开对此不作限制。
作为示例,同一厂家生产的风力发电机组可为同一类机组;或者,同一机型的风力发电机组可为同一类机组。应该理解,也可通过其他适当的划分方式,来将风电场的风力发电机组划分为各类,本公开对此不作限制。
作为示例,可确定每个一次调频控制线程所针对的并网点的一次调频支持信息是否满足预设条件;当满足预设条件时,确定该一次调频控制线程需要启动;当不满足预设条件时,确定该一次调频控制线程不需要启动。
作为示例,所述一次调频支持信息可包括:该一次调频控制线程所能够控制的有效机组的数量、所对应的有效AGC设备(有功频率控制设备)的数量、所针对的并网点是否有效。作为示例,可通过配置文件来获取所述一次调频支持信息。一次调频控制线程所对应的AGC设备即与该调频控制线程具有协同控制关系的AGC设备。
相应地,作为示例,所述预设条件可包括:该一次调频控制线程所能够控制的有效机组的数量大于0、所对应的有效AGC设备的数量大于0、所针对的并网点有效。
此外,作为示例,当与任意一类机组对应的各个一次调频控制线程都不需要启动时,启动预先指定的与该类机组对应的一次调频控制线程中的一个默认线程。
在步骤S20,启动需要启动的一次调频控制线程,其中,所启动的一次 调频控制线程占用相应的一组硬压板和指示灯。其中,不同类机组所对应的一次调频控制线程占用不同组的硬压板和指示灯。
应该理解,一组硬压板和指示灯可包括至少一个硬压板和至少一个指示灯。所述硬压板用于接收用户对一次调频相关功能的设置指令,换言之,用户通过对硬压板进行操作,能够对与该硬压板对应的一次调频控制线程所针对的一次调频的相关功能进行开启或关闭。作为示例,所述一次调频相关功能可包括但不限于以下项之中的至少一项:一次调频功能、惯量功能、报错功能。
所述指示灯的点亮状态和熄灭状态用于指示一次调频相关状态,换言之,用户通过该指示灯,能够及时获知与该指示灯对应的一次调频控制线程所针对的一次调频的相关状态。作为示例,所述一次调频相关状态可包括但不限于以下项之中的至少一项:一次调频是否正常。
所述一次调频控制线程用于控制包括机组在内的设备针对一个并网点进行一次调频。具体地,响应于通过所占用的硬压板接收到的用户对一次调频相关功能的设置指令,基于并网点的频率信息,对其所能够控制的包括机组在内的设备进行一次调频控制;并基于当前的一次调频状态,控制所占用的指示灯的状态。
一次调频控制应用程序采用多线程的方式来实现,是考虑到有些电场是两个或更多个并网点,电网考核是按照并网点分别考核,当采用单线程时,遇到单并网点则没有问题,当遇到两个并网点时,在单线程中拆分比较麻烦,且控制效率低,采用多线程(例如,两线程)分别独立并行执行,既让程序逻辑清晰明了,执行效率又高,因此采用此方法。但是,本公开考虑到风电场内可能包括多类机组的情况,例如,为了避免出现下述问题:当风电场包括多类机组时,例如,第一类机组和第二类机组,两类机组由不同厂家生产,两类机组都由风电场场站控制系统统一控制运行,但风电场场站控制系统针对一次调频功能仅设置有两组硬压板和指示灯,无论这两类机组是否经过同一个并网点接入电网,在使用这两组硬压板和指示灯时都会发生冲突。一次调频控制应用程序默认初始化会判断一些必要信息如:有效机组数量、有效AGC设备、有效并网点,都满足要求会给出信息提示,只要有一组数据同时满足具备有效机组、有效AGC设备、有效并网点这三个条件,就会启动一次调频控制应用程序进程,此进程默认开启两个线程,默认两个并网点,当某 个并网点不满足要求时,将总开关关闭,功能不会投入,但是当某个现场的设定值不满足要求时,就会点亮相应的某些指示故障的指示灯,这个关闭开关和点亮故障指示灯的操作是在两个并网点线程启动后,在各自的线程中判断生效的,比如,第二个线程没有投入总出口,这样第二个线程就会把指示灯灭掉。这样真实的效果就是一个控制程序(第一类机组的一次调频控制应用程序)的两个线程把两组指示灯都占用了。当第二个控制应用程序(第二类机组的一次调频控制应用程序)想要用第二组指示灯时,就会出现两个程序打架的现象。
因此,本公开提出:可针对风电场的一次调频功能,设置多组硬压板和指示灯,以保证不同类机组所对应的一次调频控制线程占用不同组的硬压板和指示灯,即,不同类机组针对一次调频功能使用不同组的硬压板和指示灯。作为示例,硬压板和指示灯的总组数可基于风电场的并网点的总数量和风电场内不同类机组的总类数确定,其中,硬压板和指示灯的总组数与风电场的并网点的总数量呈正相关;硬压板和指示灯的总组数与风电场内不同类机组的总类数呈正相关。
作为示例,步骤S10和步骤S20可由一次调频控制应用程序来执行。作为示例,每类机组可分别对应各自的一次调频控制应用程序,具体地,可分别针对每类机组,为其配置与其一一对应的一次调频控制应用程序,该一次调频控制应用程序可用于与通信层通信,判断为其配置的一次调频控制线程中的哪些需要被启动并启动,即,确定与该类机组对应的各个一次调频控制线程是否需要启动,并启动需要启动的一次调频控制线程的步骤可由与该类机组对应的一次调频控制应用程序来执行。
图3示出根据本公开示例性实施例的一次调频控制应用程序的数据交互的示例。这里,风电场包括第一类机组和第二类机组共两类机组。如图3所示,风电场的场控设备中的一次调频控制设备包括两层:控制层和通信层,控制层设置有第一类机组的一次调频控制应用程序和第二类机组的一次调频控制应用程序,控制层通过控制通信层与第一类机组、第二类机组、与第一类机组对应的AGC设备(或能量管理平台EMP)、与第二类机组对应的AGC设备(或能量管理平台EMP)、测控设备等设备进行通信,完成数据读取和命令写入的任务。控制层与通信层之间存在如下形式的内部数据交互:控制层获取通信层解析处理的生数据,并将计算好的工程量控制命令下发给通信 层,从而完成一个调度周期的处理。作为示例,第一类机组的一次调频控制应用程序和第二类机组的一次调频控制应用程序之间没有数据交互。
作为示例,所述方法可由风电场场站控制系统中的一次调频控制设备来执行,作为示例,可在一次调频控制设备初始化时,执行步骤S10和步骤S20。
应该理解,所启动的一次调频控制线程具体占用哪一组硬压板和指示灯可由一次调频控制线程确定,例如,所启动的一次调频控制线程会执行具体的判断策略来确定所占用的硬压板和指示灯,或可由对应的一次调频控制应用程序执行具体的判断策略确定后再对一次调频控制线程进行配置,以使一次调频控制线程根据配置信息确定其所占用的硬压板和指示灯,此外,所启动的一次调频控制线程也会循环执行具体的一次调频控制策略。将在下面的实施例中描述判断策略的具体示例。
作为示例,可当所启动的一次调频控制线程所对应的一类机组与其他类机组共同通过该一次调频控制线程所针对的并网点接入电网时,该一次调频控制线程占用排序与该类机组的优先级相应的一组硬压板和指示灯;当所启动的一次调频控制线程所对应的一类机组单独(即,不与其他类机组共同)通过该一次调频控制线程所针对的并网点接入电网时,该一次调频控制线程占用排序与所通过的并网点的优先级相应的一组硬压板和指示灯。具体说来,各组硬压板和指示灯有其排序,例如,可按各组硬压板和指示灯的实际设置位置对各组硬压板和指示灯进行排序,例如,可按从上到下的实际设置位置对各组进行排序,优先级越高,与其相应的一组硬压板和指示灯的排序越靠前。
以所述风电场包括第一类机组和第二类机组,所述风电场通过一个并网点接入电网,所述风电场的场控设备上设置有第一组硬压板和指示灯、以及第二组硬压板和指示灯为例,可当所启动的一次调频控制线程用于控制第一类机组针对并网点进行一次调频时,该一次调频控制线程占用第一组硬压板和指示灯;当所启动的一次调频控制线程用于控制第二类机组针对并网点进行一次调频时,该一次调频控制线程占用第二组硬压板和指示灯,其中,关于占用硬压板和指示灯,第一类机组的优先级高于第二机组的优先级。
以所述风电场包括两类机组,所述风电场通过第一并网点和第二并网点接入电网,所述风电场的场控设备上设置有第一组硬压板和指示灯、以及第二组硬压板和指示灯为例,可当所启动的一次调频控制线程用于控制一类机 组针对第一并网点进行一次调频,且仅所述一类机组通过第一并网点接入电网时,该一次调频控制线程占用第一组硬压板和指示灯;当所启动的一次调频控制线程用于控制另一类机组针对第二并网点进行一次调频,且仅所述另一类机组通过第二并网点接入电网时,该一次调频控制线程占用第二组硬压板和指示灯,其中,关于占用硬压板和指示灯,第一并网点的优先级高于第二并网点的优先级。
作为示例,与每类机组对应的一次调频控制应用程序可通过全双工通信协议与测控设备进行通信,其中,所述测控设备用于采集风电场的各个并网点的频率信息。此外,所述测控设备还可用于采集硬压板的动作信息,接收用于控制指示灯的指令并控制指示灯的点亮和熄灭。根据本公开的示例性实施例,能够避免当风电场包括多类机组时,与所述多类机组对应的多个一次调频控制应用程序通过通信层与测控设备通信时的数据读取效率。
作为示例,可与每类机组对应的一次调频控制应用程序通过寄存器方式实现与测控设备之间的数据读写,而非在读写数据时使用系数处理方式,从而提高了数据读写效率。具体说来,当待写数据的数据类型是数字量而非模拟量时,直接将待写数据中值为0的字节填充为00,值为1的字节填充为FF00,并将处理完的待写数据写入待发送的命令报文结构体中;当待读数据的数据类型是数字量而非模拟量时,可按照下述方式来按位取数据:把传进来的结构体属性中的系数位当作移位所需的位数,将传进来的数据值移位所述位数后,再和0x01作“与”操作,就得到该数据值的数据量数据。
图4示出根据本公开示例性实施例的启动一次调频控制线程的方法的示例。所述方法可由一类机组的一次调频控制应用程序执行,所述一次调频控制应用程序管理两个一次调频控制线程(以下,也称为线程1和线程2),每个线程分别对应一个并网点。
参照图4,在步骤S101,针对两个备用的一次调频控制线程获取所有数据。具体地,分别为两个线程从通信层读取所有的生数据,后续的控制模型数据都由生数据模型生成。由于两个一次调频控制线程暂未确定哪个需要启动,这里称为备用线程。
在步骤S102,进行频率初始化。作为示例,可按照设计好的低频和过频典型曲线数据文件,获取典型曲线扰动测试模拟频率数据集,为测试实际执行情况做数据备用。
在步骤S103,判断样板机及与样板机相对应的机组。这里,样板机为调度规定不可控机组,且不同机组要跟着样板机功率趋势执行,因此这里要判断哪些是样板机,以及,哪些机组根据哪台样板机的功率趋势执行。
在步骤S104,获取所有句柄。句柄则是指一次调频控制应用程序的控制模型与生数据模型相关联的纽带。
在步骤S105,检查并网点设置信息。作为示例,可根据设计好的并网点1和2的配置名称,分别获取两个并网点的变压器序号,并判断两个变压器序号是否一样或无效,当正确时变压器序号分别设置给两个一次调频控制线程的并网点序号变量中。
在步骤S106,获取有效机组信息和有效AGC设备信息。有效则表示控制中需要的控制模型数据,一定能获取到对应的生数据模型数据。即机组规定了一次调频控制中必须的变量,从这些变量名能找到对应的句柄,则表示有效;AGC设备规定了一次调频控制中必须的变量,从这些变量名能找到对应的句柄,则表示有效。
在步骤S107,计算与每个线程相关联的机组总的额定功率。每个机组都标记了挂载在哪个变压器序号下,根据变压器序号,线程序号与变压器序号的关系可以得到,即,机组可以跟线程序号相对应起来,每个线程下的所有机组的最大功率总和,即为线程额定功率。
在步骤S108,判断线程启动条件。
具体地,在步骤S201,当确定根据线程1结构体中有效机组数量不为0,有效AGC设备数量不为0,并网点正确时,确定线程1有效,在步骤S202,将线程1的启动条件G_th1置位1;在步骤S203,当确定根据线程2结构体中有效机组数量不为0,有效AGC设备数量不为0,并网点正确时,确定线程2有效;在步骤S204,将线程2的启动条件G_th2置位1;在步骤S205,当确定线程1和线程2均无效时,默然将G_th1置位1。
在步骤S109,创建线程。作为示例,可由线程启动判断标志和线程启动后的线程号,创建线程。
具体地,在步骤S301,当G_th1为1时,创建线程1;在步骤S302,当G_th2为1时,创建线程2。
图5示出根据本公开示例性实施例的风电场的一次调频控制设备的结构框图。所述风电场中包括多类机组。
如图5所示,根据本公开示例性实施例的一次调频控制设备包括:线程确定单元10和线程启动单元20。
具体说来,线程确定单元10用于确定分别与所述多类机组中的每类机组对应的一次调频控制线程是否需要启动。
线程启动单元20用于启动需要启动的一次调频控制线程。
其中,所启动的一次调频控制线程占用相应的一组硬压板和指示灯,其中,所述硬压板用于接收用户对一次调频相关功能的设置指令,所述指示灯用于指示一次调频相关状态,所述一次调频控制线程用于控制包括机组在内的设备针对一个并网点进行一次调频,其中,不同类机组所对应的一次调频控制线程不同,不同类机组所对应的一次调频控制线程占用不同组的硬压板和指示灯。
作为示例,同一厂家生产的风力发电机组可为同一类机组;或者,同一机型的风力发电机组可为同一类机组。
作为示例,每类机组所对应的各个一次调频控制线程可与风电场的各个并网点一一对应。
作为示例,可当所启动的一次调频控制线程所对应的一类机组与其他类机组共同通过该一次调频控制线程所针对的并网点接入电网时,该一次调频控制线程占用排序与该类机组的优先级相应的一组硬压板和指示灯;当所启动的一次调频控制线程所对应的一类机组单独通过该一次调频控制线程所针对的并网点接入电网时,该一次调频控制线程占用排序与所通过的并网点的优先级相应的一组硬压板和指示灯。
作为示例,所述风电场包括第一类机组和第二类机组,所述风电场通过一个并网点接入电网,所述风电场的场控设备上设置有第一组硬压板和指示灯、以及第二组硬压板和指示灯,可当所启动的一次调频控制线程用于控制第一类机组针对并网点进行一次调频时,该一次调频控制线程占用第一组硬压板和指示灯;当所启动的一次调频控制线程用于控制第二类机组针对并网点进行一次调频时,该一次调频控制线程占用第二组硬压板和指示灯,其中,关于占用硬压板和指示灯,第一类机组的优先级高于第二机组的优先级。
作为示例,所述风电场包括两类机组,所述风电场通过第一并网点和第二并网点接入电网,所述风电场的场控设备上设置有第一组硬压板和指示灯、以及第二组硬压板和指示灯,可当所启动的一次调频控制线程用于控制一类 机组针对第一并网点进行一次调频,且仅所述一类机组通过第一并网点接入电网时,该一次调频控制线程占用第一组硬压板和指示灯;当所启动的一次调频控制线程用于控制另一类机组针对第二并网点进行一次调频,且仅所述另一类机组通过第二并网点接入电网时,该一次调频控制线程占用第二组硬压板和指示灯,关于占用硬压板和指示灯,第一并网点的优先级高于第二并网点的优先级。
作为示例,线程确定单元10可确定每个一次调频控制线程所针对的并网点的一次调频支持信息是否满足预设条件;当满足预设条件时,确定该一次调频控制线程需要启动。
作为示例,所述一次调频支持信息可包括:该一次调频控制线程所能够控制的有效机组的数量、所对应的有效AGC设备的数量、所针对的并网点是否有效。
作为示例,所述预设条件可包括:该一次调频控制线程所能够控制的有效机组的数量大于0、所对应的有效AGC设备的数量大于0、所针对的并网点有效。
作为示例,根据本公开示例性实施例的一次调频控制设备还可包括:通信单元(未示出),通信单元用于通过全双工通信协议与测控设备进行通信,其中,所述测控设备用于采集风电场的各个并网点的频率信息。
作为示例,通信单元可通过寄存器方式实现与测控设备之间的数据读写。
应该理解,根据本公开示例性实施例的一次调频控制设备所执行的具体处理已经参照图1-4进行了详细描述,这里将不再赘述相关细节。
应该理解,根据本公开示例性实施例的一次调频控制设备中的各个单元可被实现硬件组件和/或软件组件。本领域技术人员根据限定的各个单元所执行的处理,可以例如使用现场可编程门阵列(FPGA)或专用集成电路(ASIC)来实现各个单元。
本公开的示例性实施例提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被处理器执行时促使所述处理器执行如上述示例性实施例所述的风电场的一次调频控制方法。该计算机可读存储介质是可存储由计算机系统读出的数据的任意数据存储装置。计算机可读存储介质的示例包括:只读存储器、随机存取存储器、只读光盘、磁带、软盘、光数据存储装置和载波(诸如经有线或无线传输路径通过互联网的数据传输)。
根据本公开的示例性实施例的风电场的一次调频控制设备包括:处理器(未示出)和存储器(未示出),其中,存储器存储有计算机程序,当所述计算机程序被处理器执行时,促使所述处理器执行如上述示例性实施例所述的风电场的一次调频控制方法。
虽然已表示和描述了本公开的一些示例性实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本公开的原理和精神的情况下,可以对这些实施例进行修改。

Claims (11)

  1. 一种风电场的一次调频控制方法,其特征在于,所述风电场中包括多类机组,所述一次调频控制方法包括:
    确定分别与所述多类机组中的每类机组对应的一次调频控制线程是否需要启动;
    启动需要启动的一次调频控制线程,
    其中,所启动的一次调频控制线程占用相应的一组硬压板和指示灯,
    其中,所述硬压板用于接收用户对一次调频相关功能的设置指令,所述指示灯用于指示一次调频相关状态,所述一次调频控制线程用于控制包括机组在内的设备针对一个并网点进行一次调频,
    其中,不同类机组所对应的一次调频控制线程不同,不同类机组所对应的一次调频控制线程占用不同组的硬压板和指示灯。
  2. 根据权利要求1所述的一次调频控制方法,其特征在于,同一厂家生产的风力发电机组为同一类机组;或者,同一机型的风力发电机组为同一类机组。
  3. 根据权利要求1所述的一次调频控制方法,其特征在于,每类机组所对应的各个一次调频控制线程与风电场的各个并网点一一对应。
  4. 根据权利要求3所述的一次调频控制方法,其特征在于,
    当所启动的一次调频控制线程所对应的一类机组与其他类机组共同通过该一次调频控制线程所针对的并网点接入电网时,该一次调频控制线程占用排序与该类机组的优先级相应的一组硬压板和指示灯;
    当所启动的一次调频控制线程所对应的一类机组单独通过该一次调频控制线程所针对的并网点接入电网时,该一次调频控制线程占用排序与所通过的并网点的优先级相应的一组硬压板和指示灯。
  5. 根据权利要求4所述的一次调频控制方法,其特征在于,所述风电场包括第一类机组和第二类机组,所述风电场通过一个并网点接入电网,所述风电场的场控设备上设置有第一组硬压板和指示灯、以及第二组硬压板和指示灯,
    当所启动的一次调频控制线程用于控制第一类机组针对并网点进行一次调频时,该一次调频控制线程占用第一组硬压板和指示灯;
    当所启动的一次调频控制线程用于控制第二类机组针对并网点进行一次调频时,该一次调频控制线程占用第二组硬压板和指示灯,
    其中,关于占用硬压板和指示灯,第一类机组的优先级高于第二机组的优先级。
  6. 根据权利要求4所述的一次调频控制方法,其特征在于,所述风电场包括两类机组,所述风电场通过第一并网点和第二并网点接入电网,所述风电场的场控设备上设置有第一组硬压板和指示灯、以及第二组硬压板和指示灯,
    当所启动的一次调频控制线程用于控制一类机组针对第一并网点进行一次调频,且仅所述一类机组通过第一并网点接入电网时,该一次调频控制线程占用第一组硬压板和指示灯;
    当所启动的一次调频控制线程用于控制另一类机组针对第二并网点进行一次调频,且仅所述另一类机组通过第二并网点接入电网时,该一次调频控制线程占用第二组硬压板和指示灯,
    关于占用硬压板和指示灯,第一并网点的优先级高于第二并网点的优先级。
  7. 根据权利要求3所述的一次调频控制方法,其特征在于,确定与每类机组对应的各个一次调频控制线程是否需要启动的步骤包括:
    确定每个一次调频控制线程所针对的并网点的一次调频支持信息是否满足预设条件;
    当满足预设条件时,确定该一次调频控制线程需要启动,
    其中,所述一次调频支持信息包括:该一次调频控制线程所能够控制的有效机组的数量、所对应的有效AGC设备的数量、所针对的并网点是否有效,
    所述预设条件包括:该一次调频控制线程所能够控制的有效机组的数量大于0、所对应的有效AGC设备的数量大于0、所针对的并网点有效。
  8. 根据权利要求1所述的一次调频控制方法,其特征在于,确定与每类机组对应的各个一次调频控制线程是否需要启动,并启动需要启动的一次调频控制线程的步骤由与该类机组对应的一次调频控制应用程序来执行,
    其中,与每类机组对应的一次调频控制应用程序通过全双工通信协议与测控设备进行通信,
    其中,所述测控设备用于采集风电场的各个并网点的频率信息。
  9. 根据权利要求8所述的一次调频控制方法,其特征在于,与每类机组对应的一次调频控制应用程序通过寄存器方式实现与测控设备之间的数据读写。
  10. 一种风电场的一次调频控制设备,其特征在于,所述一次调频控制设备包括:
    处理器;和
    存储器,存储有计算机程序,
    其中,当所述计算机程序被所述处理器执行时,促使所述处理器执行如权利要求1至9中任意一项权利要求所述的风电场的一次调频控制方法。
  11. 一种存储有计算机程序的计算机可读存储介质,其特征在于,当所述计算机程序被处理器执行时,促使所述处理器执行如权利要求1至9中任意一项权利要求所述的风电场的一次调频控制方法。
PCT/CN2021/119547 2021-03-31 2021-09-22 风电场的一次调频控制方法及控制设备 WO2022205800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110349663.4 2021-03-31
CN202110349663.4A CN113328459A (zh) 2021-03-31 2021-03-31 风电场的一次调频控制方法及设备

Publications (1)

Publication Number Publication Date
WO2022205800A1 true WO2022205800A1 (zh) 2022-10-06

Family

ID=77414530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119547 WO2022205800A1 (zh) 2021-03-31 2021-09-22 风电场的一次调频控制方法及控制设备

Country Status (2)

Country Link
CN (1) CN113328459A (zh)
WO (1) WO2022205800A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833184A (zh) * 2023-02-22 2023-03-21 浙江大学 基于能量管理系统功率精确控制的风电场一次调频方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328459A (zh) * 2021-03-31 2021-08-31 新疆金风科技股份有限公司 风电场的一次调频控制方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184171A (zh) * 2014-08-13 2014-12-03 上海电机学院 一种风电场层有功功率控制系统和方法
CN106532739A (zh) * 2016-09-30 2017-03-22 哈尔滨工业大学 风电机组分频段参与电力系统一次调频方法
CN107749644A (zh) * 2017-11-29 2018-03-02 国电联合动力技术有限公司 一种风电场参与一次调频的智能控制方法及其控制系统
CN108199417A (zh) * 2017-12-27 2018-06-22 国电南瑞科技股份有限公司 一种风机实时调频能力差异化的风电场参与系统协调方法
US20190338752A1 (en) * 2018-01-31 2019-11-07 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Primary frequency modulation method and device for wind turbine
CN113328459A (zh) * 2021-03-31 2021-08-31 新疆金风科技股份有限公司 风电场的一次调频控制方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184171A (zh) * 2014-08-13 2014-12-03 上海电机学院 一种风电场层有功功率控制系统和方法
CN106532739A (zh) * 2016-09-30 2017-03-22 哈尔滨工业大学 风电机组分频段参与电力系统一次调频方法
CN107749644A (zh) * 2017-11-29 2018-03-02 国电联合动力技术有限公司 一种风电场参与一次调频的智能控制方法及其控制系统
CN108199417A (zh) * 2017-12-27 2018-06-22 国电南瑞科技股份有限公司 一种风机实时调频能力差异化的风电场参与系统协调方法
US20190338752A1 (en) * 2018-01-31 2019-11-07 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Primary frequency modulation method and device for wind turbine
CN113328459A (zh) * 2021-03-31 2021-08-31 新疆金风科技股份有限公司 风电场的一次调频控制方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833184A (zh) * 2023-02-22 2023-03-21 浙江大学 基于能量管理系统功率精确控制的风电场一次调频方法
CN115833184B (zh) * 2023-02-22 2023-05-09 浙江大学 基于能量管理系统功率精确控制的风电场一次调频方法

Also Published As

Publication number Publication date
CN113328459A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2022205800A1 (zh) 风电场的一次调频控制方法及控制设备
US10802512B2 (en) HVAC device controller with integrated refrigeration controller interface
CA2883358C (en) Automated demand response gateway
US10317101B2 (en) HVAC device controller with network integration capabilities
CN103092746A (zh) 线程异常的定位方法及系统
CN101608599A (zh) 用于控制风力发电机组的方法
CN109213132A (zh) 一种uds诊断接口软件生成的方法、装置及设备
CN105204420A (zh) 抽水蓄能机组运行流程及故障查找培训系统及方法
CN109992318A (zh) 一种ncsi参数配置方法、系统、装置及可读存储介质
JP5956739B2 (ja) 配電網再建の強化されたプラントレベルの支援
US20190310836A1 (en) Systems and methods for automated controller provisioning
JP2020527925A (ja) 多機並列電力電子変圧器に用いられる電力配分方法及び電子装置
WO2021027843A1 (zh) 主设备选择方法、设备管理方法、电子设备以及存储介质
CN113028603A (zh) 一种应用于中央空调系统的设备监测系统
CN102497026A (zh) 一种用于对微网进行智能控制的方法及系统
CN105179156B (zh) 抽水蓄能机组控制程序离线测试系统及方法
JP2021514171A (ja) 電気負荷を制御するデバイス、システムおよび方法
CN111476487A (zh) 一种基于区块链的自适应能源管理方法和装置以及设备
US10564616B2 (en) Building management system with automatic point mapping validation
US20220140611A1 (en) Microgrid control design system
CN109389522A (zh) 一种柔性负荷的能量区块化方法及系统
CN106411608B (zh) 一种机车制动控制软件的维护系统及其数据处理方法
US11105527B2 (en) Building equipment controller with user-configureable inputs and outputs
CN113446151A (zh) 一种风力发电机组远程升级控制系统及其控制方法
TW201638862A (zh) 基於自動需量反應協定的用戶能源控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934437

Country of ref document: EP

Kind code of ref document: A1