WO2022205649A1 - 活塞杆的位置检测方法、装置、液压缸及作业机械 - Google Patents

活塞杆的位置检测方法、装置、液压缸及作业机械 Download PDF

Info

Publication number
WO2022205649A1
WO2022205649A1 PCT/CN2021/103600 CN2021103600W WO2022205649A1 WO 2022205649 A1 WO2022205649 A1 WO 2022205649A1 CN 2021103600 W CN2021103600 W CN 2021103600W WO 2022205649 A1 WO2022205649 A1 WO 2022205649A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston rod
target
coding
pixel information
library
Prior art date
Application number
PCT/CN2021/103600
Other languages
English (en)
French (fr)
Inventor
贺电
徐周
卢志学
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Priority to EP21934298.7A priority Critical patent/EP4299921A1/en
Publication of WO2022205649A1 publication Critical patent/WO2022205649A1/zh
Priority to US18/472,527 priority patent/US20240011513A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • F15B15/2846Position sensing, i.e. means for continuous measurement of position, e.g. LVDT using detection of markings, e.g. markings on the piston rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • F15B15/2869Position sensing, i.e. means for continuous measurement of position, e.g. LVDT using electromagnetic radiation, e.g. radar or microwaves
    • F15B15/2876Position sensing, i.e. means for continuous measurement of position, e.g. LVDT using electromagnetic radiation, e.g. radar or microwaves using optical means, e.g. laser

Definitions

  • the invention relates to the field of hydraulic technology, in particular to a method and device for detecting the position of a piston rod, a hydraulic cylinder and a working machine.
  • Hydraulic cylinders are widely used in various types of construction machinery as the executive components of hydraulic systems. With the diversification of customer needs and the improvement of control accuracy requirements, the detection and control accuracy of hydraulic cylinder piston rod displacement also needs to be continuously improved.
  • the position of the piston rod is usually detected by a magnetostrictive displacement sensor, but the detection range of this method is small, and the detection accuracy is limited; or the position of the piston rod is detected by a wire rope built-in displacement sensor, but this This method is more troublesome to install and maintain the sensor. The longer the stroke, the higher the price.
  • the wire rope also has problems such as slippage and zero-point drift, which affects the stability of position detection.
  • the invention provides a piston rod position detection method, device, hydraulic cylinder and working machine, so as to improve the piston rod position detection accuracy and efficiency, and overcome the defects of low detection accuracy and high detection cost in the prior art.
  • the present invention provides a method for detecting the position of a piston rod, comprising: the piston rod is movably mounted on a cylinder, and the method includes:
  • the pixel information is compared with a piston rod pixel library, wherein the piston rod pixel library stores the full stroke pixel information of the piston rod and the correlation between the full stroke pixel information of the piston rod and the displacement of the piston rod. corresponding relationship, and the full-stroke pixel information at least includes the pixel information within the range that the piston rod can move relative to the target position;
  • the piston rod is provided with a plurality of coding units along the movement direction, a plurality of the coding units are sequentially arranged on the piston rod, and a plurality of the coding units are arranged on the piston rod in sequence.
  • the units are arranged differently from each other, and the target image includes at least one of the encoding units on the piston rod;
  • a target coding feature segment is determined from a coding feature library, wherein the coding feature library includes coding feature segments corresponding to all the coding units on the piston rod, and the coding feature Each of the encoded feature segments in the library is mapped to the pixel information of the piston rod pixel library;
  • the corresponding target pixel information in the piston rod pixel library is obtained based on the target encoding feature segment.
  • comparing the pixel information with the piston rod pixel library includes:
  • the pixel information corresponding to the target image is compared with the target pixel information and the pixel information on at least one of two sides of the target pixel information.
  • the encoding unit based on the target image determines the target encoding feature segment from the encoding feature library, including:
  • the target coding feature segment is determined based on the position of the first coding unit on the coding feature library.
  • the target encoding feature segment includes a target interval corresponding to the target encoding feature segment, and supplementary intervals located on both sides of the target interval.
  • two adjacent encoding units are spaced apart along the movement direction of the piston rod, and each encoding unit includes the same start code and the same number feature code.
  • a plurality of feature codes are spaced and distributed along the movement direction of the piston rod. the same number of signatures.
  • the present invention also provides a position detection device for a piston rod, comprising:
  • the acquisition module is used to acquire the target image at the target position
  • an acquisition module for acquiring pixel information corresponding to the target image
  • a positioning module for comparing the pixel information with a piston rod pixel library, wherein the piston rod pixel library stores the full stroke pixel information of the piston rod, the full stroke pixel information of the piston rod and the The corresponding relationship of the displacement of the piston rod, and the full-stroke pixel information at least includes pixel information within the range that the piston rod can move relative to the target position;
  • the detection module is used for determining the position information of the piston rod based on the comparison result.
  • the piston rod is provided with a plurality of coding units along the movement direction, a plurality of the coding units are sequentially arranged on the piston rod, and a plurality of the coding units are arranged on the piston rod in sequence.
  • the units are arranged differently from each other, and the target image includes at least one of the encoding units on the piston rod; the device further includes a second acquisition module, configured to determine from the encoding feature library based on the encoding unit of the target image A target coding feature segment, wherein the coding feature library includes coding feature segments corresponding to all the coding units on the piston rod, and each of the coding feature segments in the coding feature library is mapped to the piston rod.
  • the pixel information of the rod pixel library; and the corresponding target pixel information in the piston rod pixel library is obtained based on the target encoding feature segment.
  • the present invention also provides a hydraulic cylinder, comprising: a cylinder body; a piston rod, wherein the piston rod is movably mounted on the cylinder body; and the position detection device of the piston rod according to any one of the above.
  • the present invention also provides a working machine, which includes the above hydraulic cylinder or any one of the above piston rod position detection devices.
  • the present invention also provides an electronic device, comprising a memory, a processor and a computer program stored in the memory and running on the processor, when the processor executes the program, the above-mentioned piston rod is implemented The steps of the position detection method.
  • the present invention also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the method for detecting the position of a piston rod as described in any of the above.
  • the invention provides a position detection method, device, hydraulic cylinder and working machine for a piston rod.
  • the detection method determines the position information of the piston rod by comparing the pixel information of the target image with the pixel library of the piston rod, and the target image and the piston rod are compared with each other.
  • the precise comparison of the pixel information of the rod pixel library improves the detection accuracy of the piston rod position and realizes the detection of the absolute displacement of the piston rod.
  • FIG. 1 is a schematic flowchart of a method for detecting the position of a piston rod according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an encoding unit of a method for detecting the position of a piston rod provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a coding scheme 1 of a method for detecting the position of a piston rod provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a second coding scheme of a method for detecting the position of a piston rod provided by an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a hydraulic cylinder provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a process of detecting the position of a piston rod of a hydraulic rod according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a position detection device for a piston rod provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • 200 full-stroke pixel information
  • 210 start code
  • 211 feature code
  • 220 start coding unit
  • 221 second coding unit
  • 222 end coding unit
  • 570 hood; 580: data cable; 590: processor;
  • the execution body of the method may be a detection device of a hydraulic cylinder or a controller of a working machine where the hydraulic cylinder is located.
  • This method is used for position detection of a piston rod in a hydraulic cylinder, wherein the piston rod 530 is movably mounted on a cylinder block, and the cylinder block includes a cylinder body 510 and a cylinder head 520 .
  • the method for detecting the position of the piston rod provided by the present invention includes steps 110 to 140 .
  • Step 110 acquiring the target image 620 at the target position 610 .
  • the target position 610 is stationary relative to the cylinder, and the target image 620 acquired at the target position 610 is the image on the piston rod 530 .
  • the target image 620 exposed at the target position 610 is different.
  • Step 120 acquiring pixel information corresponding to the target image 620 .
  • the exposed target images 620 are different, and accordingly, the pixel information in the target images 620 is also different.
  • the pixel information of the target image 620 has a unique correspondence with the displacement information of the piston rod 530, and can be acquired by computer software or a program.
  • the pixel information corresponding to the target image 620 may include the coordinate information and pixel value of the pixel point.
  • the coordinate information of the pixel point between the two images may be obtained based on the comparison of the pixel values of multiple pixel points between the two images. Mapping relations.
  • the mapping relationship of the coordinate information of the pixels between the two images can be determined.
  • Step 130 Compare the pixel information with the piston rod pixel library.
  • the piston rod pixel library stores the full stroke pixel information 200 of the piston rod 530 and the corresponding relationship between the full stroke pixel information 200 of the piston rod 530 and the displacement of the piston rod 530 .
  • the full stroke pixel information 200 of the piston rod 530 includes pixel information of the target image 620 corresponding to the piston rod 530 at different displacements.
  • the piston rod pixel library is pre-established before the position of the piston rod 530 is detected, and after the establishment is completed, it can be stored in memory or in the cloud.
  • a piston rod pixel library is established by using the pixel information of the target image 620 obtained when the piston rod 530 moves and the corresponding position information.
  • the full-stroke pixel information 200 in the piston rod pixel library at least includes pixel information within the range that the piston rod 530 can move relative to the target position 610 .
  • Step 140 Determine the position information of the piston rod 530 based on the comparison result.
  • the pixel information of the target image 620 represents the real-time position of the piston rod 530
  • the piston rod pixel library is a pixel information library of different positions in the full stroke of the piston rod 530 .
  • the pixel information of the target image 620 is compared with the piston rod pixel library, and the pixel information consistent with the pixel information of the target image 620 is found in the piston rod pixel library.
  • the real-time position of the piston rod 530 can be accurately located.
  • the mapping relationship of the coordinate information of the pixel points between the two images can be determined.
  • the positional relationship between the pixel points in the library and the piston rod 530 is determined, so that the real-time position of the piston rod 530 corresponding to the target image 620 can be obtained.
  • the method for detecting the position of the piston rod obtained by the present invention obtains the target image of the piston rod at the target position, and compares the pixel information of the target image with the piston rod pixel library to determine the position information of the piston rod, the target image and the pixel of the piston rod.
  • the accurate comparison of the pixel information in the library improves the detection accuracy of the piston rod position and realizes the detection of the absolute displacement of the piston rod.
  • the piston rod 530 is provided with a plurality of encoding units along the movement direction, the plurality of encoding units are arranged on the piston rod 530 in sequence, and the plurality of encoding units are arranged differently from each other, and the target image 620 includes the at least one coding unit.
  • the encoding unit may be further used to assist in determining pixel information, in particular, a possibly corresponding encoding feature segment may be queried first from the piston rod pixel library.
  • the piston rod 530 moves telescopically in the hydraulic cylinder, and the piston rod 530 is provided with a plurality of coding units along the direction of the telescopic movement, that is, the plurality of coding units are provided in the axial direction of the piston rod 530 .
  • the piston rod 530 rotates in the hydraulic cylinder, and the piston rod 530 is provided with a plurality of encoding units along the rotational movement direction, that is, the plurality of encoding units are arranged in the circumferential direction of the piston rod 530 .
  • the plurality of coding units arranged in the movement direction can be firmly arranged on the piston rod 530 by means of engraving, laser etching or sticking.
  • the shape, type and number of each code in the plurality of code units can be adjusted according to the shape of the piston rod 530 and detection requirements.
  • each code included in the coding unit may be a strip, a triangle, a pentagon or other characteristic shapes.
  • the shape of each code in the plurality of code units may be a long bar, in other words, the code may be a barcode.
  • Each coding unit can include multiple barcodes, and the uniqueness of the corresponding position of the coding unit can be achieved by designing different barcode widths.
  • the multiple coding units in the bar shape can be arranged in the piston rod 530 of the telescopic hydraulic cylinder in the axial direction, or It is circumferentially arranged along the circumference of the piston rod 530 of the rotary hydraulic cylinder.
  • the coding units on the piston rod 530 correspond to the positions of the piston rod 530, each coding unit represents the corresponding position information on the piston rod 530, and each coding unit is unique.
  • the target image 620 acquired at the target position 610 on the piston rod 530 includes at least one encoding unit on the piston rod 530;
  • the camera 550 in the hydraulic cylinder for collecting the target image 620 is fixedly installed on the cylinder head 520 , and the installation location is the target position 610 .
  • the target image 620 acquired at the target position 610 includes at least one encoding unit on the piston rod 530, and the complete encoding unit is read to obtain the corresponding encoding unit.
  • Position information of the piston rod 530 is read to obtain the corresponding encoding unit.
  • the uniquely corresponding position information of the coding unit on the piston rod 530 can be quickly obtained.
  • the method before step 130, further includes: based on the coding unit of the target image 620, determining a target coding feature segment from the coding feature library, and obtaining corresponding target pixel information in the piston rod pixel library based on the target coding feature segment.
  • a plurality of coding units arranged along the movement direction of the piston rod 530 are distributed all over the piston rod 530 , and a full stroke characteristic code is formed on the surface of the piston rod 530 .
  • an encoding feature library representing the correspondence between the multiple encoding units of the full stroke of the surface of the piston rod 530 and the position information of the piston rod 530 needs to be established.
  • the coding feature library includes coding feature segments corresponding to all coding units on the piston rod 530 , and each coding feature segment has a corresponding relationship with the position of the piston rod 530 .
  • the corresponding relationship between the full stroke pixel information 200 of the piston rod 530 and the displacement of the piston rod 530 is stored in the piston rod pixel library.
  • Each encoded feature segment in the encoded feature library also has a corresponding relationship with the pixel information of the piston rod pixel library.
  • Each encoded feature segment in the encoded feature library is mapped to the pixel information of the piston rod pixel library to realize one-to-one correspondence between the encoded feature segment, the pixel information and the piston rod position.
  • the encoding signature library can be determined by:
  • High-frequency imaging is performed on the encoding unit group 200 in the movement direction of the piston rod 530 , and images of the complete plurality of encoding units of the piston rod 530 on the piston rod 530 are captured.
  • the coding units on the image of the coding unit group 200 in the whole travel are identified, each coding unit in the whole travel is identified, and each identified coding unit is split and spliced.
  • Binarization is performed on each coding unit to extract the feature information of the coding unit, and a coding feature library of the position information of each coding unit corresponding to the piston rod 530 and the position information of each coding unit corresponding to the piston rod 530 in the whole stroke is established.
  • Each coding unit in the coding feature library has a unique corresponding position of the piston rod 530, and any position of the piston rod 530 also has corresponding coding unit information.
  • the encoding feature library After the encoding feature library is established, it can be stored in the memory or in the cloud, and can be directly read from the memory or the cloud for use when the position of the piston rod 530 is detected.
  • the encoding feature segment consistent with the encoding unit on the target image 620 is found from the encoding feature library, that is, the target encoding feature segment, and the position of the piston rod 530 is detected. .
  • the target image 620 includes more than one complete coding unit, and the identified coding unit can find the target coding feature segment in the coding feature library, and use The target coding feature segment obtains the corresponding target pixel information in the piston rod pixel library, thereby obtaining the position information of the piston rod 530 .
  • the approximate position of the piston rod 530 can be quickly located.
  • the corresponding target pixel information in the piston rod pixel library obtained according to the target coding feature segment can realize the detection of the precise position of the piston rod 530 .
  • the pixel information of the target pixel corresponding to the encoded feature segment is compared with the pixel information of the target image 620 to determine the position information of the piston rod 530 .
  • the pixel comparison greatly improves the accuracy of the position detection of the piston rod 530 .
  • the detection efficiency in the process of detecting the position of the piston rod 530 is improved, and then the target pixel information of the coding feature segment is compared with the pixel information of the target image 620, The accuracy of the position detection of the piston rod 530 is improved, and the detection of the absolute displacement of the piston rod is realized.
  • the position of the piston rod is detected by scanning the code, and the position of the piston rod is obtained by adding the product of the number of detected complete barcodes and the length of the complete barcode and the position of the reference complete barcode.
  • the position of the piston rod obtained by calculating the compensation value of the bar code is not accurate, and the accuracy of the position detection of the piston rod is limited by the length of the bar code.
  • the position of the piston rod is obtained through accurate comparison between the target image and the target coding feature segment, the detected position is not affected by the coding length, and the accurate comparison between the target image and the target coding feature segment image improves the position of the piston rod. detection accuracy.
  • the invention also performs rapid positioning by identifying the coding unit to obtain the target coding feature segment, which reduces the time for obtaining the approximate position of the piston rod and improves the efficiency of detecting the position of the piston rod.
  • step 130 includes: comparing the pixel information corresponding to the target image 620 with the target pixel information and pixel information on at least one of two sides of the target pixel information.
  • the comparison range between the pixel information corresponding to the target image 620 and the target pixel information is extended, and the comparison interval is supplemented within a certain range on at least one side of the two sides of the target pixel information.
  • the pixel information corresponding to the target image is compared with the target pixel information, and the pixel information corresponding to the target image is compared with the pixel information on the left, right or both sides of the target pixel information.
  • Adding pixel information within a certain range of at least one of the two sides to the target pixel information can ensure that the pixel information corresponding to the target image is comprehensively compared with the target pixel information, and avoid the occurrence of a complete target image that cannot be found in the target pixel information. 620 of pixel information.
  • the addition of pixel information within a certain range on both sides to the target pixel information may be adjusted according to the width of the interval of the acquired target image 620 .
  • determining the target encoding feature segment from the encoding feature library based on the encoding unit of the target image specifically includes: identifying the encoding unit of the target image; based on the encoding unit of the target image, searching for the target image from the encoding feature library based on the encoding unit The first coding unit corresponding to the coding unit of
  • the target coding unit on the target image 620 is identified.
  • the encoding unit on the target image 620 obtained at the target position 610 is identified, and the identification result is the encoding unit representing the position of the piston rod 530 .
  • the leftmost target image 620 shown in FIG. 6 includes two coding units, and the following three target images 620 include one coding unit.
  • Different target images 620 correspond to different coding units, representing the position information of different positions of the piston rod 530 .
  • the first coding unit corresponding to the coding unit of the target image 620 is searched from the coding feature library.
  • the encoding feature library includes each encoding unit and its corresponding position information, and each unique encoding unit on the piston rod 530 can find the corresponding unit in the encoding feature library, that is, the first encoding unit.
  • the target coding feature segment is determined.
  • the position information of the piston rod 530 represented by the first coding unit is approximate position information, and the approximate position information is the position range corresponding to the coding unit of the target image 620 , that is, the target coding feature segment.
  • the target coding feature segment can be quickly determined, and the coding unit recognition speed is fast and the accuracy is high.
  • the target encoding feature segment includes a target interval corresponding to the target encoding feature segment and complementary intervals located on both sides of the target interval.
  • the target interval is to identify the position interval corresponding to the target encoding feature segment, expand the range of the target encoding feature segment, and include the supplementary intervals within a certain range on both sides of the target interval into the scope of the target encoding feature segment.
  • the target interval of the target encoding feature segment corresponding to the encoding unit of the target image 620 of the obtained piston rod 530 has a length of one encoding unit, and it is extended to obtain a total of two encoding unit lengths of the target interval and its complementary interval on both sides. target encoding feature segment.
  • the target coding feature segment includes the target range and the supplementary ranges on both sides, and the length of the target coding feature segment is widened to avoid incomplete recognition of the target coding feature segment or incomplete recognition at the beginning and end of the piston rod 530 .
  • the piston rod 530 is provided with a plurality of coding units along the movement direction, which can have various coding modes.
  • the piston rod 530 movement direction is provided with a plurality of coding units, the adjacent two coding units are spaced and distributed along the movement direction of the piston rod 530, and each coding unit includes the same starting code 210 and the same number of features Code 211.
  • the surface of the piston rod 530 is provided with multiple barcodes with different widths, and the multiple barcodes form multiple coding units, thereby forming multiple coding units within the full stroke range of the piston rod 530 .
  • One type of barcode with a fixed width is used as the starting code 210 of the coding unit, and a plurality of feature codes 211 of other widths are freely arranged to form the feature unit of the coding unit.
  • the width of the start code is smaller than the width of any feature code, which reduces the overall width of the encoding unit, enables more encoding units to be set within the full stroke range of the piston rod 530, and improves the identification position of the encoding unit. precision.
  • the coding unit start code 210 the remaining three barcodes are all feature codes 211, and the three feature codes 211 constitute the coding unit. feature unit.
  • the start code 210 is the same within the full stroke range of the piston rod 530, each feature code 211 is unique within the full stroke range of the piston rod 530, and the start code 210 and each different feature code 211 are guaranteed to be within the full stroke range
  • the coding unit does not appear to be repeated.
  • five barcodes with different widths of 0.2mm, 0.8mm, 1.2mm, 1.6mm, and 2.0mm are etched on the piston rod 530 along the circumference of the full stroke, and four barcodes are one coding unit.
  • a barcode with a width of 0.2mm is used as the starting code 210 of the coding unit, and the remaining three are freely combined by four widths of feature codes 211 of 0.8mm, 1.2mm, 1.6mm and 2.0mm, and the spacing between any barcodes is 3mm.
  • any coding unit is different in the whole stroke of the piston rod 530, thus, a piston rod 530 with unique characteristic information of any coding unit is formed.
  • the target image 620 When identifying the coding unit, the target image 620 includes 2x-1 barcodes to identify the coding unit, and x is the number of barcodes included in one coding unit.
  • Feature extraction is performed on the piston rod 530 provided with coding mode 1, a coding feature library corresponding to the piston rod 530 is established, and the position of the piston rod 530 is detected by using the above-mentioned position detection method.
  • Coding mode 1 requires less coding types and simple coding rules.
  • the piston rod 530 is provided with a plurality of coding units in the movement direction, a plurality of feature codes distributed along the movement direction of the piston rod 530, and each coding unit includes the same starting from any feature code and distributed to the target direction. number of signatures.
  • a plurality of barcodes with different thicknesses are provided on the surface of the piston rod 530 , and four barcodes are used as a coding unit.
  • the first barcode to the fourth barcode is the starting point coding unit 220
  • the second barcode to the fifth barcode is the second coding unit 221, and so on
  • the coding unit composed of four barcodes is unique.
  • the last four barcodes are used as the end-point coding unit 222 .
  • Feature extraction is carried out to the piston rod 530 provided with coding mode 2, the coding feature library corresponding to this piston rod 530 is established, and when the position of the piston rod 530 is detected using the above-mentioned position detection method, it is only necessary to read more than one coding unit.
  • the target image 620 can identify the information of the coding unit, and at the same time, the amount of pixel contrast between the target image 620 and the target coding feature segment can be reduced, and the comparison speed can be improved.
  • the position information of the corresponding target coding unit identified in the coding feature library can represent the currently detected position information of the piston rod 530 .
  • the above two coding methods can be applied to the piston rod 530 of the telescopic hydraulic cylinder and the rotary hydraulic cylinder.
  • the actual detection accuracy requirements can be met, and the piston rod 530 can be improved.
  • the device for detecting the position of the piston rod provided by the present invention will be described below.
  • the device for detecting the position of the piston rod described below and the method for detecting the position of the piston rod described above can be referred to each other correspondingly.
  • the position detection device of the piston rod 530 As shown in FIG. 7 , the position detection device of the piston rod 530 according to the embodiment of the present invention, the piston rod 530 is movably installed on the cylinder body, and the position detection device includes:
  • an acquisition module 720 configured to acquire pixel information corresponding to the target image 620
  • the positioning module 730 is used to compare the pixel information with the piston rod pixel library, wherein the piston rod pixel library stores the full stroke pixel information 200 of the piston rod 530 and the full stroke pixel information 200 of the piston rod 530 and the displacement of the piston rod 530 , and the full-stroke pixel information 200 at least includes the pixel information within the range that the piston rod 530 can move relative to the target position 610;
  • the detection module 740 is configured to determine the position information of the piston rod 530 based on the comparison result.
  • the device for detecting the position of the piston rod obtained by the present invention obtains the target image when the piston rod is at the target position, and compares the pixel information of the target image with the pixel library of the piston rod to determine the position information of the piston rod, the target image and the pixel of the piston rod.
  • the accurate comparison of the pixel information in the library improves the detection accuracy of the piston rod position and realizes the detection of the absolute displacement of the piston rod.
  • the piston rod 530 is provided with a plurality of encoding units along the movement direction, the plurality of encoding units are arranged on the piston rod 530 in sequence, and the plurality of encoding units are arranged differently from each other, and the target image 620 includes the at least one coding unit.
  • the position detection device further includes a second acquisition module for determining a target encoding feature segment from an encoding feature library based on the encoding unit of the target image 620, wherein the encoding feature library includes encoding feature segments corresponding to all encoding units on the piston rod , and each encoded feature segment in the encoded feature library is mapped to the pixel information of the piston rod pixel library; the corresponding target pixel information in the piston rod pixel library is obtained based on the target encoded feature segment.
  • the positioning module 730 is further configured to compare the pixel information corresponding to the target image with the target pixel information and the pixel information on at least one side of the two sides of the target pixel information.
  • the second acquisition module is further configured to identify the coding unit of the target image; based on the coding unit of the target image, look up the first coding unit corresponding to the coding unit of the target image from the coding feature library; based on the first coding The position of the unit on the coding feature library determines the target coding feature segment.
  • the second obtaining module determines that the target encoding feature segment includes a target interval corresponding to the target encoding feature segment, and complementary intervals located on both sides of the target interval.
  • the plurality of encoding units provided along the movement direction of the piston rod 530 may have various encoding modes.
  • the piston rod 530 movement direction is provided with a plurality of coding units, the adjacent two coding units are spaced and distributed along the movement direction of the piston rod 530, and each coding unit includes the same starting code 210 and the same number of features Code 211.
  • the piston rod 530 is provided with a plurality of coding units in the movement direction, a plurality of feature codes distributed along the movement direction of the piston rod 530, and each coding unit includes the same starting from any feature code and distributed to the target direction. number of signatures.
  • the present invention also provides a hydraulic cylinder, which includes: a cylinder body, a piston rod 530 movably installed in the cylinder body, and the above-mentioned position detection device.
  • a plurality of coding units are provided on the piston rod 530 of the telescopic hydraulic cylinder in the above-mentioned coding manner.
  • the telescopic hydraulic cylinder includes a cylinder body, which includes a cylinder body 510 and a cylinder head 520; a piston rod 530, which is movably installed in the cylinder body.
  • the piston rod 530 is provided with a plurality of encoding units along the movement direction, the plurality of encoding units are arranged on the piston rod 530 in sequence, and the feature codes 211 of any two encoding units are different.
  • the coding units on the piston rod 530 correspond to the positions of the piston rod 530, each coding unit represents the corresponding position information on the piston rod 530, and each coding unit is unique.
  • the feature codes 211 of any two coding units are different, and the corresponding coding units can be identified by identifying the feature codes 211 .
  • the shape, type and number of the feature codes 211 in the plurality of encoding units can be adjusted according to the shape of the piston rod 530 and detection requirements.
  • the shape of the feature code included in the coding unit may be a strip, a triangle, a pentagon or other feature shapes.
  • the coding unit on the piston rod 530 corresponds to the position of the piston rod 530
  • the feature code 211 corresponds to each coding unit
  • the coding unit represents the corresponding position information on the piston rod 530
  • each coding unit contains the different feature codes 211, unique.
  • the piston rod 530 is provided with a plurality of encoding units in the moving direction, and two adjacent encoding units are spaced apart along the moving direction of the piston rod 530 , and each encoding unit includes the same start code 210 and the same number of feature codes 211 .
  • the same start code 210 is used to quickly identify the coding unit, the start code 210 is followed by a feature code 211 of the coding unit, and the start code 210 is the starting point of the coding unit.
  • the feature codes 211 with the same number constitute the feature units of each coding unit
  • the piston rod 530 is provided with a plurality of coding units along the movement direction, the feature codes 211 of any two coding units are different, and through the identification of the feature codes 211, the corresponding coding unit.
  • the same number of feature codes 211 makes the coding units on the piston rod 530 more regular, which is beneficial to the identification of the coding units.
  • the shape of the start code 210 and the feature code 211 in the plurality of coding units may be a long bar, in other words, the start code 210 and the feature code 211 are barcodes.
  • the barcode may be formed by etching on the surface of the piston rod 530 , or may be pasted on the surface of the piston rod 530 .
  • Whether any two of the feature codes are different is determined by comparing at least two of the sequence of the barcode, the width of the barcode, the length of the barcode, and the distance between adjacent barcodes.
  • Each coding unit can include multiple barcodes, and by designing different barcode widths, the uniqueness of the corresponding position of the coding unit can be realized.
  • the surface of the piston rod 530 is provided with multiple barcodes with different widths, and the multiple barcodes form multiple coding units, thereby forming multiple coding units within the full stroke range of the piston rod 530 .
  • One type of barcode with a fixed width is used as the starting code 210 of the coding unit, and a plurality of feature codes 211 of other widths are freely arranged to form the feature unit of the coding unit.
  • the width of the start code 210 is smaller than the width of any feature code, which reduces the overall width of the encoding unit, enables more encoding units to be set within the full stroke range of the piston rod 530, and improves the recognition position of the encoding unit accuracy.
  • the first barcode in the coding unit is the starting code 210
  • the remaining 3 barcodes are the feature codes 211
  • the 3 feature codes 211 constitute the coding unit. feature unit.
  • the start code 210 is the same within the full stroke range of the piston rod 530, each feature code 211 is unique within the full stroke range of the piston rod 530, and the start code 210 and each different feature code 211 are guaranteed to be within the full stroke range
  • the coding unit does not appear to be repeated.
  • five barcodes with different widths of 0.2mm, 0.8mm, 1.2mm, 1.6mm, and 2.0mm are etched on the piston rod 530 along the circumference of the full stroke, and four barcodes are one coding unit.
  • a barcode with a width of 0.2mm is used as the starting code 210 of the coding unit, and the remaining three are freely combined by four widths of feature codes 211 of 0.8mm, 1.2mm, 1.6mm and 2.0mm, and the spacing between any barcodes is 3mm.
  • the two feature codes 211 of any coding unit are different, and thus, a piston rod 530 with unique feature information of any coding unit is formed.
  • the cylinder is provided with an opening facing the encoding unit
  • the hydraulic cylinder further includes an image capturing device
  • the image capturing device is installed at the opening
  • the opening is the target position 610
  • at least one encoding unit is captured by the image capturing device.
  • the image acquisition device includes: a light shield 570 , a camera 550 , a light homogenizing plate 560 , and the like.
  • the light-shielding cover 570 is installed on the opening and has an interference fit with the opening.
  • the light-shielding cover 570 is provided with a viewing window facing the encoding unit.
  • the camera 550 is installed in the light shield 570 and is directly opposite to the viewing window, and is used for capturing the target image 620 on the piston rod 530 .
  • the homogenizing plate 560 is installed in the hood 570 and is located on the side of the camera 550 away from the viewing window.
  • the opening is stationary relative to the cylinder, and the image on the piston rod 530 obtained by the image acquisition device at the opening is the target image 620 .
  • the target images 620 exposed at the opening are different, and the acquired target images 620 include at least one coding unit on the piston rod 530 .
  • the hydraulic cylinder further includes a processor 590, and the processor 590 is electrically connected to the image acquisition device, and configured to determine the position of the piston rod 530 according to the target image 620 acquired by the image acquisition device and a pre-stored piston rod pixel library information;
  • the piston rod pixel library stores the full stroke pixel information of the piston rod 530, the corresponding relationship between the full stroke pixel information of the piston rod 530 and the displacement of the piston rod 530, and the full stroke pixel information at least includes that the piston rod 530 can move relative to the target position 610. Pixel information in the range.
  • the processor 590 is configured to first determine the target coding feature segment from the coding feature library according to the coding unit in the target image 620 collected by the image acquisition device, and then obtain the corresponding target pixel information in the piston rod pixel library based on the target coding feature segment, and then The position information of the piston rod is determined according to the pixels of the target image 620 and the pixels of the target pixel information.
  • the image acquisition device and the processor 590 constitute the above-mentioned piston rod 530 position detection device, and execute the corresponding piston rod 530 position detection method.
  • a coding feature library and a piston rod pixel library are established, and an image acquisition device is used to perform full-stroke high-frequency imaging, image stitching, binarization processing, and feature extraction on the piston rod 530 with multiple coding units.
  • Full-stroke coding and coding feature library and piston rod pixel library corresponding to full-stroke pixels and position information.
  • the piston rod 530 moves, the camera 550 shoots the target image 620 on the piston rod 530 at high frequency, and the processor 590 recognizes the target image 620 and the coding unit on the target image 620 .
  • the corresponding coding unit is searched from the established coding feature library, the target coding feature segment is determined based on the position of the coding unit on the coding feature library, and the approximate position of the piston rod 530 is quickly determined.
  • the pixel information of the target image 620 is compared with the target pixel information corresponding to the target encoding feature segment to obtain the precise position of the piston rod 530, so as to realize absolute displacement detection.
  • the image at the target position 610 acquired by the camera 550 in the window range ensures that there is one complete coding unit in the window at any time.
  • the target image 620 when identifying the coding unit, includes 2x-1 barcodes to identify the coding unit, and x is the number of barcodes included in one coding unit.
  • the identification coding unit is obtained from the target image 620 where the piston position is located, and the target coding feature segment corresponding to the position of the piston rod 530 is determined from the coding feature library, The target image 620 is then compared with the target coding feature segment to obtain the precise position of the piston rod 530 , thereby improving the efficiency and accuracy of the position detection of the piston rod 530 .
  • the present invention also provides a working machine, including the position detection device of the hydraulic cylinder or piston rod 530 as described above.
  • the working machine may be a working machine including a hydraulic cylinder, such as a tower crane, a truck crane, an excavator, a pile driver, a concrete machine, a road roller, a mixer truck, a roadheader, a pump truck or a fire truck.
  • a hydraulic cylinder such as a tower crane, a truck crane, an excavator, a pile driver, a concrete machine, a road roller, a mixer truck, a roadheader, a pump truck or a fire truck.
  • FIG. 8 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 810, a communication interface (Communications Interface) 820, a memory (memory) 830 and a communication bus 840,
  • the processor 810 , the communication interface 820 , and the memory 830 communicate with each other through the communication bus 840 .
  • the processor 810 can call the logic instructions in the memory 830 to execute a method for detecting the position of the piston rod, where the piston rod is movably mounted on the cylinder, and the method includes: acquiring a target image at a target position; acquiring pixel information corresponding to the target image; Compare the pixel information with the piston rod pixel library, wherein the piston rod pixel library stores the full stroke pixel information of the piston rod and the corresponding relationship between the full stroke pixel information of the piston rod and the displacement of the piston rod, and the full stroke pixel information at least includes Pixel information within the range that the piston rod can move relative to the target position; based on the comparison result, the position information of the piston rod is determined.
  • the above-mentioned logic instructions in the memory 830 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present invention can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .
  • the present invention also provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer-readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer
  • the computer can execute the method for detecting the position of the piston rod provided by the above methods, the piston rod is movably installed on the cylinder, and the method includes: acquiring a target image at a target position; acquiring pixel information corresponding to the target image; Compare the pixel information with the piston rod pixel library, wherein the piston rod pixel library stores the full stroke pixel information of the piston rod and the corresponding relationship between the full stroke pixel information of the piston rod and the displacement of the piston rod, and the full stroke pixel information at least includes Pixel information within the range that the piston rod can move relative to the target position; based on the comparison result, the position information of the piston rod is determined.
  • the present invention also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the computer program is implemented to perform the above-mentioned methods for performing the position detection of the piston rod,
  • the piston rod is movably mounted on the cylinder, and the method includes: acquiring a target image at a target position; acquiring pixel information corresponding to the target image; comparing the pixel information with a piston rod pixel library, wherein the piston rod pixel library stores the piston rod
  • the full stroke pixel information of the piston rod and the corresponding relationship between the full stroke pixel information of the piston rod and the displacement of the piston rod, and the full stroke pixel information at least includes the pixel information within the range that the piston rod can move relative to the target position; based on the comparison result, determine the piston rod location information.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place , or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic Disks, optical discs, etc., include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods of various embodiments or portions of embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Toxicology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

一种活塞杆(530)的位置检测方法、装置、液压缸及作业机械,该方法包括:在目标位置(610)获取目标图像(620);获取目标图像(620)对应的像素信息;将像素信息与活塞杆像素库进行比对,其中,活塞杆像素库存储活塞杆(530)的全行程像素信息(200)及活塞杆(530)的全行程像素信息(200)与活塞杆(530)的位移的对应关系,且全行程像素信息(200)至少包括活塞杆(530)可相对目标位置(510)移动范围内的像素信息;基于比对结果,确定活塞杆(530)的位置信息。

Description

活塞杆的位置检测方法、装置、液压缸及作业机械
相关申请的交叉引用
本申请要求于2021年03月31日提交的申请号为202110351672.7,发明名称为“活塞杆的位置检测方法、装置、液压缸及作业机械”的中国专利申请的优先权,其通过引用全部并入本文。
技术领域
本发明涉及液压技术领域,尤其涉及一种活塞杆的位置检测方法、装置、液压缸及作业机械。
背景技术
液压缸作为液压系统的执行元件,广泛应用在各类工程机械机构中。随着客户需求的多样化和控制精度要求的提高,液压缸活塞杆位移的检测与控制精度也需要不断提高。
现有技术中,通常是通过磁致伸缩类位移传感器来检测活塞杆位置,但是这种方式检测的量程较小,检测精度受限;或者通过钢丝绳内置式拉线位移传感器检测活塞杆位置,但这种方式传感器安装和维护都比较麻烦,行程越长价格越高,钢丝绳还存在打滑和零点漂移等问题,影响位置检测的稳定性。
发明内容
本发明提供一种活塞杆的位置检测方法、装置、液压缸及作业机械,以提高活塞杆位置检测精度和效率,克服现有技术中检测精度低和检测成本高的缺陷。
本发明提供一种活塞杆的位置检测方法,包括:活塞杆可活动地安装于缸体,所述方法包括:
在目标位置获取目标图像;
获取所述目标图像对应的像素信息;
将所述像素信息与活塞杆像素库进行比对,其中,所述活塞杆像素库 存储所述活塞杆的全行程像素信息及所述活塞杆的全行程像素信息与所述活塞杆的位移的对应关系,且所述全行程像素信息至少包括所述活塞杆可相对所述目标位置移动范围内的像素信息;
基于比对结果,确定所述活塞杆的位置信息。
根据本发明提供的一种活塞杆的位置检测方法,所述活塞杆沿运动方向设有多个编码单元,多个所述编码单元在所述活塞杆上依序设置,且多个所述编码单元彼此相异设置,所述目标图像包括所述活塞杆上至少一个所述编码单元;
在将所述像素信息与活塞杆像素库进行比对之前,还包括:
基于所述目标图像的编码单元,从编码特征库中确定目标编码特征段,其中,所述编码特征库包含所述活塞杆上的所有所述编码单元对应的编码特征段,且所述编码特征库中的每一个所述编码特征段映射到所述活塞杆像素库的像素信息;
基于所述目标编码特征段获得所述活塞杆像素库中对应的目标像素信息。
根据本发明提供的一种活塞杆的位置检测方法,所述将所述像素信息与活塞杆像素库进行比对,包括:
将所述目标图像对应的像素信息与所述目标像素信息及所述目标像素信息两侧中的至少一侧的像素信息进行比对。
根据本发明提供的一种活塞杆的位置检测方法,所述基于所述目标图像的编码单元,从编码特征库中确定目标编码特征段,包括:
识别所述目标图像的编码单元;
基于所述目标图像的编码单元,从所述编码特征库中查找与所述目标图像的编码单元对应的第一编码单元;
基于所述第一编码单元在所述编码特征库上的位置,确定所述目标编码特征段。
根据本发明提供的一种活塞杆的位置检测方法,所述目标编码特征段包括与所述目标编码特征段对应的目标区间,以及位于所述目标区间两侧的补充区间。
根据本发明提供的一种活塞杆的位置检测方法,相邻的两个所述编码 单元沿所述活塞杆的运动方向间隔开分布,每个所述编码单元包括同样的起始码和数目相同的特征码。
根据本发明提供的一种活塞杆的位置检测方法,沿所述活塞杆的运动方向间隔开分布的多个特征码,每个所述编码单元包括从任一特征码开始,向目标方向分布的相同数目的特征码。
本发明还提供一种活塞杆的位置检测装置,包括:
采集模块,用于在目标位置获取目标图像;
获取模块,用于获取所述目标图像对应的像素信息;
定位模块,用于将所述像素信息与活塞杆像素库进行比对,其中,所述活塞杆像素库存储所述活塞杆的全行程像素信息、所述活塞杆的全行程像素信息与所述活塞杆的位移的对应关系,且所述全行程像素信息至少包括所述活塞杆可相对所述目标位置移动范围内的像素信息;
检测模块,用于基于比对结果,确定所述活塞杆的位置信息。
根据本发明提供的一种活塞杆的位置检测装置,所述活塞杆沿运动方向设有多个编码单元,多个所述编码单元在所述活塞杆上依序设置,且多个所述编码单元彼此相异设置,所述目标图像包括所述活塞杆上至少一个所述编码单元;所述装置还包括第二获取模块,用于基于所述目标图像的编码单元,从编码特征库中确定目标编码特征段,其中,所述编码特征库包含所述活塞杆上的所有所述编码单元对应的编码特征段,且所述编码特征库中的每一个所述编码特征段映射到所述活塞杆像素库的像素信息;基于所述目标编码特征段获得所述活塞杆像素库中对应的目标像素信息。
本发明还提供一种液压缸,包括:缸体;活塞杆,所述活塞杆可活动地安装于所述缸体;如上任一种所述的活塞杆的位置检测装置。
本发明还提供一种作业机械,包括如上所述的液压缸或如上任一种所述的活塞杆的位置检测装置。
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述的活塞杆的位置检测方法的步骤。
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述的活塞杆的位置 检测方法的步骤。
本发明提供的一种活塞杆的位置检测方法、装置、液压缸及作业机械,该检测方法通过将目标图像的像素信息和活塞杆像素库进行对比,确定活塞杆的位置信息,目标图像与活塞杆像素库像素信息的精确对比,提高了活塞杆位置检测精度,实现活塞杆绝对位移的检测。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的活塞杆的位置检测方法的流程示意图;
图2是本发明实施例提供的活塞杆的位置检测方法的编码单元示意图;
图3是本发明实施例提供的活塞杆的位置检测方法的编码方案一的示意图;
图4是本发明实施例提供的活塞杆的位置检测方法的编码方案二的示意图;
图5是本发明实施例提供的液压缸的结构示意图;
图6是本发明实施例提供的液压杆的活塞杆的位置检测的过程示意图;
图7是本发明实施例提供的活塞杆的位置检测装置的结构示意图;
图8是本发明实施例提供的电子设备的结构示意图。
附图标记:
200:全行程像素信息;210:起始码;211:特征码;
220:起点编码单元;221:第二编码单元;222:终点编码单元;
510:缸本体;520:缸盖;530:活塞杆;
540:防尘圈;550:相机;560:均光板;
570:遮光罩;580:数据线;590:处理器;
610:目标位置;620:目标图像。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中 的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合图1至图6描述本发明的活塞杆的位置检测的方法,该方法的执行主体可以为液压缸的检测装置或者液压缸所处的作业机械的控制器。
该方法用于液压缸中活塞杆的位置检测,其中,活塞杆530可活动地安装于缸体,缸体包括缸本体510和缸盖520。
本发明提供的活塞杆的位置检测方法,如图1所示,包括:步骤110至步骤140。
步骤110、在目标位置610获取目标图像620。
目标位置610相对于缸体静止,在目标位置610获取的目标图像620是活塞杆530上的图像。
活塞杆530在运动过程中,到达不同位移处时,在目标位置610露出的目标图像620不同。
通过在活塞杆530全行程的范围内设置不同的图像,形成活塞杆530位置信息与目标图像620的对应关系。
步骤120、获取目标图像620对应的像素信息。
活塞杆530移动到不同位移处所露出的目标图像620不同,相应地,目标图像620中的像素信息也不同。
目标图像620的像素信息与活塞杆530的位移信息具有唯一对应性,可通过计算机软件或程序获取。
目标图像620对应的像素信息可以包括像素点的坐标信息以及像素值,在进行对比时,可以基于两图像之间多个像素点的像素值的比较,得到两图像之间像素点的坐标信息的映射关系。
在实际的执行中,若两图像之间关联位置的目标数量的像素点的像素值相等或者在误差范围内,则可以确定出两图像之间像素点的坐标信息的映射关系。
步骤130、将像素信息与活塞杆像素库进行比对。
如图2所示,活塞杆像素库中存储有活塞杆530的全行程像素信息200以及活塞杆530的全行程像素信息200与活塞杆530的位移的对应关系。
活塞杆530的全行程像素信息200中包括活塞杆530处于不同位移时对应的目标图像620的像素信息。
活塞杆像素库是在活塞杆530位置检测前预先建立的,建立完成后,可存储与存储器或云端中。
通过活塞杆530移动时获取的目标图像620的像素信息与对应的位置信息建立活塞杆像素库。
活塞杆像素库中的全行程像素信息200至少包括活塞杆530可相对所述目标位置610移动范围内的像素信息。
步骤140、基于比对结果,确定活塞杆530的位置信息。
目标图像620的像素信息表征了活塞杆530所处的实时位置,活塞杆像素库是活塞杆530全行程内不同位置的像素信息库。
将目标图像620的像素信息与活塞杆像素库进行比对,在活塞杆像素库找到与目标图像620的像素信息一致的像素信息。
将目标图像620的像素信息与活塞杆像素库进行比对,能够准确定位活塞杆530的实时位置。
在实际的执行中,若两图像之间关联位置的目标数量的像素点的像素值相等或者在误差范围内,则可以确定出两图像之间像素点的坐标信息的映射关系,由于活塞杆像素库中像素点与活塞杆530的位置关系确定,这样,即可得到目标图像620对应的活塞杆530的实时位置。
本发明提供的活塞杆的位置检测方法,通过获取活塞杆在目标位置时的目标图像,将目标图像的像素信息和活塞杆像素库进行对比,确定活塞杆的位置信息,目标图像与活塞杆像素库像素信息的精确对比,提高了活塞杆位置检测精度,实现活塞杆绝对位移的检测。
在一些实施例中,活塞杆530沿运动方向设有多个编码单元,多个编码单元在活塞杆530上依序设置,且多个编码单元彼此相异设置,目标图像620包括活塞杆530上至少一个编码单元。在本实施例中,编码单元可以进一步用于辅助确定像素信息,特别是可以从活塞杆像素库中先查询到可能对应的编码特征段。
对于不同类型的液压缸,多个编码单元的排布方式不同:
其一,对于伸缩式的液压缸。
活塞杆530在液压缸内伸缩运动,活塞杆530设有沿伸缩运动方向的多个编码单元,也即,多个编码单元设置于活塞杆530的轴向方向上。
其二,对于旋转式的液压缸。
活塞杆530在液压缸内旋转运动,活塞杆530设有沿旋转运动方向的多个编码单元,也即,多个编码单元设置于活塞杆530的周向方向上。
沿运动方向上设置的多个编码单元可以雕刻、激光刻蚀或粘贴的方式稳固地设置在活塞杆530上。
多个编码单元中各编码的形状、种类和数目可根据活塞杆530的形状和检测要求进行调整。
编码单元所包含的各编码的形状可为长条形、三角形、五角形或其他特征形状。
在一些实施例中,如图2所示,多个编码单元中各编码的形状可以为长条形的,换言之,编码可以为条码。
每个编码单元可以包括多个条码,通过设计不同的条码宽度,实现编码单元对应位置的唯一性,条形的多个编码单元可沿轴向设置于伸缩式液压缸的活塞杆530中,或沿旋转式液压缸的活塞杆530的周向上环设。
活塞杆530上的编码单元与活塞杆530的位置相互对应,各编码单元代表了活塞杆530上对应位置信息,各编码单元具有唯一性。
在活塞杆530上目标位置610处获取的目标图像620包括活塞杆530上至少一个编码单元;
以图5和图6所示的伸缩式液压缸的活塞杆位置检测的为例。
该液压缸中用于采集目标图像620的相机550固定地安装于缸盖520上,安装处即为目标位置610。
活塞杆530在运动时,相机550拍摄到的活塞杆530的不同位置的不同目标图像620,目标图像620是活塞杆530上的设有编码单元组200的区域,能够表征活塞杆530的位置。
在图6所示的液压缸获取目标图像620的实施例中,在目标位置610处获取的目标图像620包括活塞杆530上至少一个编码单元,读取完整的 编码单元,从而获取编码单元对应的活塞杆530的位置信息。
在图6所示的液压缸获取最左侧的目标图像620中,能够读取两个完整的编码单元,在其他三个目标图像620中能够读取一个完整的编码单元。
通过读取目标图像620中相应的编码单元,从而快速获取活塞杆530上编码单元唯一对应的位置信息。
当然,对于旋转式液压缸的活塞杆530上的目标图像620的采集方式类似,在此不再详细说明。
在一些实施例中,步骤130之前,还包括:基于目标图像620的编码单元,从编码特征库中确定目标编码特征段,基于目标编码特征段获得活塞杆像素库中对应的目标像素信息。
沿活塞杆530运动方向设的多个编码单元是遍布活塞杆530的,在活塞杆530表面形成全行程特征编码。
在进行活塞杆530位置检测之前,需建立代表活塞杆530表面全行程的多个编码单元与活塞杆530位置信息的对应关系的编码特征库。
编码特征库包含活塞杆530上的所有编码单元对应的编码特征段,每个编码特征段与活塞杆530的位置具有对应关系。
活塞杆像素库中存储有活塞杆530的全行程像素信息200与活塞杆530的位移的对应关系。
编码特征库中的每一个编码特征段与活塞杆像素库的像素信息同样具有对应关系。
编码特征库中的每一个编码特征段映射到活塞杆像素库的像素信息,实现编码特征段、像素信息以及活塞杆位置的一一对应。
编码特征库可以通过如下方式确定:
对活塞杆530运动方向上的编码单元组200进行高频摄像,拍摄该活塞杆530上完整的活塞杆530的多个编码单元的图像。
对拍摄的全行程中编码单元组200图像上的编码单元进行识别,识别出全行程中每一个编码单元,将识别出的每一个编码单元进行拆分和拼接。
对各编码单元进行二值化处理提取该编码单元的特征信息,建立各编码单元对应活塞杆530位置信息和全行程中每一编码单元对应活塞杆530位置信息的编码特征库。
编码特征库中每一编码单元都有唯一对应的活塞杆530位置,活塞杆530的任一位置也有对应的编码单元信息。
编码特征库建立完成后,可存储存储器或云端中,进行活塞杆530位置检测时,可直接从存储器或云端读取使用。
编码特征库建立完后,基于目标图像620上的编码单元,从编码特征库中查找到与目标图像620上的编码单元一致的编码特征段,即目标编码特征段,对活塞杆530位置进行检测。
在图6所示的液压缸获取目标图像620中,在目标图像620中均包含了一个以上的完整的编码单元,所识别出的编码单元在编码特征库中可找出目标编码特征段,利用目标编码特征段获得活塞杆像素库中对应的目标像素信息,从而获取活塞杆530位置信息。
基于目标图像620中编码单元的识别以及编码单元对应的位置范围内为目标编码特征段的确定,能够快速定位活塞杆530的大致位置。
根据目标编码特征段获得的活塞杆像素库中对应的目标像素信息能够实现活塞杆530精准位置的检测。
在一些实施例中,将编码特征段对应的目标像素信息与目标图像620的像素信息进行像素比对,确定活塞杆530的位置信息,像素化比对大大提升了活塞杆530位置检测的精度。
通过识别目标图像620中编码单元快速定位活塞杆530的大致位置,提高了活塞杆530位置检测过程中的检测效率,再将编码特征段的目标像素信息与目标图像620的像素信息进行比对,提高了活塞杆530位置检测的精度,实现活塞杆绝对位移的检测。
相关技术中记载通过扫码检测活塞杆的位置,通过检测完整条码的个数与完整条码的长度的乘积和基准完整条码的位置相加得到活塞杆的位置。
在相关技术中活塞杆位置的检测通过计算条码补偿值得到的活塞杆位置准确性不高,活塞杆位置检测的精度受条码长度的限制。
本发明中通过目标图像与目标编码特征段进行精确比对获取活塞杆的位置,检测的位置不受编码长度的影响,目标图像与目标编码特征段图像间精确的比对,提高了活塞杆位置检测的准确性。
本发明还通过识别编码单元进行快速定位,获得目标编码特征段,减少了获取活塞杆大致位置的时间,提高了活塞杆位置检测的效率。
在一些实施例中,步骤130包括:将目标图像620对应的像素信息与目标像素信息及目标像素信息两侧中的至少一侧的像素信息进行比对。
将目标图像620对应的像素信息与目标像素信息的比对范围进行扩展,在目标像素信息两侧中的至少一侧一定范围内补充比对区间。
将目标图像对应的像素信息与目标像素信息进行对比,以及将目标图像对应的像素信息与目标像素信息左侧、右侧或两侧的像素信息进行比对。
在目标像素信息外增加两侧中的至少一侧一定范围内的像素信息,可保证目标图像对应的像素信息与目标像素信息全面比对,避免出现在目标像素信息中无法找到完整的目标图像620的像素信息的情况。
目标像素信息外增加两侧一定范围内的像素信息可根据获取目标图像620的区间宽度进行调整。
在一些实施例中,基于目标图像的编码单元,从编码特征库中确定目标编码特征段,具体包括:识别目标图像的编码单元;基于目标图像的编码单元,从编码特征库中查找与目标图像的编码单元对应的第一编码单元;基于第一编码单元在编码特征库上的位置,确定目标编码特征段。
首先,识别目标图像620上的目标编码单元。
在该步骤中,在目标位置610处获取的目标图像620上的编码单元进行识别,识别结果即为代表活塞杆530位置的编码单元。
例如,在图6所示的最左侧的目标图像620中包含两个编码单元,后续三个目标图像620中包含一个编码单元。
不同的目标图像620对应不同的编码单元,代表活塞杆530不同位置的位置信息。
然后,基于目标图像620的编码单元,从编码特征库中查找与目标图像620的编码单元对应的第一编码单元。
编码特征库中包含每个编码单元及其对应的位置信息,活塞杆530上具有唯一性的各编码单元均能在编码特征库中找到对应单元,也即第一编码单元。
基于第一编码单元在编码特征库上的位置,确定目标编码特征段。
第一编码单元所代表活塞杆530的位置信息是大致位置信息,该大致位置信息为目标图像620的编码单元对应的位置范围,即目标编码特征段。
通过在目标图像620中识别目标编码单元,在编码特征库寻找编码单元对应的第一编码单元,能够快速确定目标编码特征段,编码单元识别速度快,准确性高。
在一些实施例中,目标编码特征段包括与目标编码特征段对应的目标区间以及位于目标区间两侧的补充区间。
目标区间是识别出目标编码特征段对应的位置区间,对目标编码特征段的范围进行扩展,将目标区间两侧一定范围内的补充区间也归入目标编码特征段的范围。
例如,获取的活塞杆530的目标图像620的编码单元对应的目标编码特征段的目标区间有1个编码单元长度,将其进行扩展,得到目标区间及其两侧补充区间共2个编码单元长度的目标编码特征段。
目标编码特征段包括目标区间及两侧的补充区间,扩宽目标编码特征段的长度,避免出现在目标编码特征段识别不完整或在活塞杆530开头末尾无法完整识别的情况。
在一些实施例中,活塞杆530沿运动方向设有多个编码单元可以有多种编码方式。
下面描述两种不同的编码方式。
编码方式一,活塞杆530运动方向设有多个编码单元,相邻的两个编码单元沿活塞杆530的运动方向间隔开分布,每个编码单元包括同样的起始码210和数目相同的特征码211。
在一些实施例中,如图3所示,活塞杆530表面设有宽度不同的多条条码,多条码组成多个编码单元,从而构成在活塞杆530全行程范围内的多个编码单元。
以1种固定宽度的条码作为编码单元起始码210,剩余其他宽度多个特征码211通过自由排列构成编码单元的特征单元。
在一些实施例中,起始码的宽度小于任一特征码的宽度,减小了编码单元的整体宽度,能够活塞杆530的全行程范围内设置更多的编码单元,提高编码单元识别位置的精度。
在图3所示的编码方式一的实施例中,以4根条码为一个编码单元,编码单元起始码210,剩余3根条码均为特征码211,由3个特征码211构成编码单元的特征单元。
其中,起始码210在活塞杆530全行程范围内是相同的,各个特征码211在活塞杆530全行程范围内是唯一的,起始码210和各个不同的特征码211保证全行程范围内的编码单元不出现重复。
例如,在实际的执行中,在活塞杆530上全行程沿圆周刻蚀0.2mm、0.8mm、1.2mm、1.6mm、2.0mm五种宽度不同的条码,4根条码为一个编码单元。
以0.2mm宽度的条码作为编码单元起始码210,剩余3根由0.8mm、1.2mm、1.6mm、2.0mm四种宽度的特征码211自由组合,任意条码间的间距为3mm。
在活塞杆530全行程内任意编码单元的组合形式均不相同,由此,构成一根任一编码单元具有唯一特征信息的活塞杆530。
在进行编码单元的识别时,目标图像620中包括2x-1根条码即可识别编码单元,x为一个编码单元中所包含条码的数量。
对设有编码方式一的活塞杆530进行特征提取,建立该活塞杆530对应的编码特征库,使用上述的位置检测方法对活塞杆530的位置进行检测。编码方式一所需编码种类少,编码规则简单。
编码方式二,活塞杆530运动方向设有多个编码单元,沿活塞杆530的运动方向间隔开分布的多个特征码,每个编码单元包括从任一特征码开始,向目标方向分布的相同数目的特征码。
在一些实施例中,如图4所示,活塞杆530表面设有多条粗细不同的条码,以4根条码为一个编码单元。
起始的第一个条码至第四个条码为起点编码单元220、第二个条码至第五个条码为第二编码单元221、依次类推,每4个条码组成的编码单元具有唯一性。
在以编码方式二进行编码的多个编码单元,以最后的4个条码为终点编码单元222。
可以理解的是,在编码方式二中,以X个编码为一个编码单元,则最 后的X个编码即为终点编码单元222。
对设有编码方式二的活塞杆530进行特征提取,建立该活塞杆530对应的编码特征库,使用上述的位置检测方法对活塞杆530的位置进行检测时,仅需读取大于一个编码单元的目标图像620即可识别编码单元的信息,同时也能减少目标图像620和目标编码特征段的像素对比量,提高对比速度。
在一些实施例中,对活塞杆530的位置检测的精度要求不高时,在编码特征库中识别对应的目标编码单元的位置信息即可代表当前检测的活塞杆530的位置信息。
上述两种编码方式均可应用于伸缩式液压缸和旋转式液压缸的活塞杆530,可通过设置活塞杆530上不同的多个编码单元,来满足实际检测精度的需求,提高了活塞杆530的位置检测的效率和精度。
下面对本发明提供的活塞杆的位置检测装置进行描述,下文描述的活塞杆的位置检测装置与上文描述的活塞杆的位置检测装置方法可相互对应参照。
如图7所示,本发明实施例的活塞杆530的位置检测装置,活塞杆530可活动地安装于缸体,该位置检测装置包括:
采集模块710,用于在目标位置610获取目标图像620;
获取模块720,用于获取目标图像620对应的像素信息;
定位模块730,用于将像素信息与活塞杆像素库进行比对,其中,活塞杆像素库存储活塞杆530的全行程像素信息200及活塞杆530的全行程像素信息200与活塞杆530的位移的对应关系,且全行程像素信息200至少包括活塞杆530可相对目标位置610移动范围内的像素信息;
检测模块740,用于基于比对结果,确定活塞杆530的位置信息。
本发明提供的活塞杆的位置检测装置,通过获取活塞杆在目标位置时的目标图像,将目标图像的像素信息和活塞杆像素库进行对比,确定活塞杆的位置信息,目标图像与活塞杆像素库像素信息的精确对比,提高了活塞杆位置检测精度,实现活塞杆绝对位移的检测。
在一些实施例中,活塞杆530沿运动方向设有多个编码单元,多个编码单元在活塞杆530上依序设置,且多个编码单元彼此相异设置,目标图 像620包括活塞杆530上至少一个编码单元。
该位置检测装置还包括第二获取模块,用于基于目标图像620的编码单元,从编码特征库中确定目标编码特征段,其中,编码特征库包含活塞杆上的所有编码单元对应的编码特征段,且编码特征库中的每一个编码特征段映射到活塞杆像素库的像素信息;基于目标编码特征段获得活塞杆像素库中对应的目标像素信息。
在一些实施例中,定位模块730还用于将目标图像对应的像素信息与目标像素信息及目标像素信息两侧中的至少一侧的像素信息进行比对。
在一些实施例中,第二获取模块还用于识别目标图像的编码单元;基于目标图像的编码单元,从编码特征库中查找与目标图像的编码单元对应的第一编码单元;基于第一编码单元在编码特征库上的位置,确定目标编码特征段。
在一些实施例中,第二获取模块确定目标编码特征段包括与目标编码特征段对应的目标区间,以及位于目标区间两侧的补充区间。
在上述的位置检测装置中,沿活塞杆530运动方向设有的多个编码单元可以有多种编码方式。
下面描述两种不同的编码方式。
编码方式一,活塞杆530运动方向设有多个编码单元,相邻的两个编码单元沿活塞杆530的运动方向间隔开分布,每个编码单元包括同样的起始码210和数目相同的特征码211。
编码方式二,活塞杆530运动方向设有多个编码单元,沿活塞杆530的运动方向间隔开分布的多个特征码,每个编码单元包括从任一特征码开始,向目标方向分布的相同数目的特征码。
本发明还提供一种液压缸,该液压缸包括:缸体,可活动地安装于缸体中的活塞杆530,以及上述的位置检测装置。
下面以伸缩式液压缸为例,结合图3、图5和图6描述本发明提供的液压缸的活塞杆530的位置检测过程。
在该伸缩式液压缸的活塞杆530上以上述的编码方式一设有多个编码单元。
如图6所示,该伸缩式液压缸包括缸体,缸体包括缸本体510和缸盖 520;活塞杆530,活塞杆530可活动地安装于缸体中。
活塞杆530沿运动方向设有多个编码单元,多个编码单元在活塞杆530上依序设置,任意两个编码单元的特征码211相异。
活塞杆530上的编码单元与活塞杆530的位置相互对应,各编码单元代表了活塞杆530上对应位置信息,各编码单元具有唯一性。
任意两个编码单元的特征码211相异,通过特征码211的识别,可识别出对应的编码单元。
多个编码单元中特征码211的形状、种类和数目可根据活塞杆530的形状和检测要求进行调整。
编码单元所包含的特征码的形状可为长条形、三角形、五角形或其他特征形状。
活塞杆530上的编码单元与活塞杆530的位置相互对应,特征码211与各编码单元相互对应,编码单元代表了活塞杆530上对应位置信息,各编码单元因包含的相异特征码211,具有唯一性。
活塞杆530运动方向设有多个编码单元,相邻的两个编码单元沿活塞杆530的运动方向间隔开分布,每个编码单元包括同样的起始码210和数目相同的特征码211。
同样的起始码210用于快速识别编码单元,起始码210的后面是编码单元的特征码211,起始码210是编码单元的起点。
数目相同的特征码211构成各编码单元的特征单元,活塞杆530沿运动方向设有多个编码单元,任意两个编码单元的特征码211相异,通过特征码211的识别,可识别出对应的编码单元。
数目相同的特征码211,使得活塞杆530上编码单元更加规整,有利于编码单元的识别。
多个编码单元中起始码210和特征码211的形状可以为长条形的,换言之,起始码210和特征码211为条码。
其中,条码可以是在活塞杆530表面刻蚀形成,也可以是粘贴在活塞杆530表面的。
通过条码的次序、条码宽度、条码长度、相邻条码的间距中至少两种比较确定任意两个所述特征码是否相异。
每个编码单元可以包括多个条码,通过设计不同的条码宽度,实现编码单元对应位置的唯一性。
在一些实施例中,活塞杆530表面设有宽度不同的多条条码,多条码组成多个编码单元,从而构成在活塞杆530全行程范围内的多个编码单元。
以1种固定宽度的条码作为编码单元起始码210,剩余其他宽度多个特征码211通过自由排列构成编码单元的特征单元。
在一些实施例中,起始码210的宽度小于任一特征码的宽度,减小了编码单元的整体宽度,能够活塞杆530的全行程范围内设置更多的编码单元,提高编码单元识别位置的精度。
如图3所示,以4根条码为一个编码单元,编码单元中起始第一个条码为起始码210,剩余3根条码均为特征码211,由3个特征码211构成编码单元的特征单元。
其中,起始码210在活塞杆530全行程范围内是相同的,各个特征码211在活塞杆530全行程范围内是唯一的,起始码210和各个不同的特征码211保证全行程范围内的编码单元不出现重复。
例如,在实际的执行中,在活塞杆530上全行程沿圆周刻蚀0.2mm、0.8mm、1.2mm、1.6mm、2.0mm五种宽度不同的条码,4根条码为一个编码单元。
以0.2mm宽度的条码作为编码单元起始码210,剩余3根由0.8mm、1.2mm、1.6mm、2.0mm四种宽度的特征码211自由组合,任意条码间的间距为3mm。
在活塞杆530全行程内任意编码单元的两个特征码211均不相同,由此,构成一根任一编码单元具有唯一特征信息的活塞杆530。
在一些实施例中,缸体设有朝向编码单元的开口,液压缸还包括图像采集装置,图像采集装置安装于开口处,开口即目标位置610,且至少一个编码单元被图像采集装置采集到。
如图5所示,图像采集装置包括:遮光罩570、相机550及均光板560等。
遮光罩570,遮光罩570安装于开口,且与开口过盈配合,遮光罩570设有朝向编码单元的视窗。
相机550,相机550安装于遮光罩570内,且与视窗正对,用于拍摄活塞杆530上目标图像620。
均光板560,均光板560安装于遮光罩570内,且位于相机550背离视窗的一侧。
开口相对于缸体静止,图像采集装置在开口获取的活塞杆530上的图像,即目标图像620。
活塞杆530在运动过程中,到达不同位移处时,在开口露出的目标图像620不同,获取的目标图像620包括活塞杆530上至少一个编码单元。
在一些实施例中,所述液压缸还包括处理器590,处理器590与图像采集装置电连接,用于根据图像采集装置采集的目标图像620以及预存的活塞杆像素库确定活塞杆530的位置信息;
其中,活塞杆像素库存储活塞杆530的全行程像素信息、活塞杆530的全行程像素信息与活塞杆530的位移的对应关系,且全行程像素信息至少包括活塞杆530可相对目标位置610移动范围内的像素信息。
处理器590用于先根据图像采集装置采集的目标图像620中的编码单元,从编码特征库中确定目标编码特征段,再基于目标编码特征段获得活塞杆像素库中对应的目标像素信息,再根据目标图像620的像素以及目标像素信息的像素确定活塞杆的位置信息。
图像采集装置与处理器590构成上述活塞杆530位置检测装置,执行相应的活塞杆530的位置检测方法。
首先,建立编码特征库和活塞杆像素库,使用图像采集装置对设有多个编码单元的活塞杆530进行全行程高频摄像、图像拼接、二值化处理、特征提取,建立活塞杆530上全行程编码及全行程像素与位置信息对应的编码特征库和活塞杆像素库。
然后,活塞杆530运动,相机550高频拍摄活塞杆530上的目标图像620,处理器590识别目标图像620,识别目标图像620上的编码单元。
根据识别结果,从建立的编码特征库中查找与之对应的编码单元,基于编码单元在编码特征库上的位置,确定目标编码特征段,快速确定活塞杆530的大致位置。
最后,将目标图像620的像素信息与目标编码特征段对应的目标像素 信息进行像素比对,得到活塞杆530的精确位置,实现绝对位移检测。
如图6所示,相机550视窗范围所获取的目标位置610处的图像,保证任意时刻有1个完整的编码单元在视窗内。
例如,在进行编码单元的识别时,目标图像620中包括2x-1根条码即可识别编码单元,x为一个编码单元中所包含条码的数量。
根据本发明实施例活塞杆530的位置检测方法进行检测的液压缸,从活塞位置所处的目标图像620上获取识别编码单元,从编码特征库中确定活塞杆530位置对应的目标编码特征段,再将目标图像620与目标编码特征段进行像素比对,得到活塞杆530的精确位置,提高活塞杆530位置检测的效率和精度。
本发明还提供了一种作业机械,包括如上述的液压缸或活塞杆530的位置检测装置。
作业机械可以为塔式起重机、汽车起重机、挖掘机、打桩机、混凝土机械、压路机、搅拌车、掘进机、泵车或消防车等包含液压缸的作业机械。
图8示例了一种电子设备的实体结构示意图,如图8所示,该电子设备可以包括:处理器(processor)810、通信接口(Communications Interface)820、存储器(memory)830和通信总线840,其中,处理器810,通信接口820,存储器830通过通信总线840完成相互间的通信。处理器810可以调用存储器830中的逻辑指令,以执行活塞杆的位置检测方法,活塞杆可活动地安装于缸体,该方法包括:在目标位置获取目标图像;获取目标图像对应的像素信息;将像素信息与活塞杆像素库进行比对,其中,活塞杆像素库存储活塞杆的全行程像素信息及活塞杆的全行程像素信息与活塞杆的位移的对应关系,且全行程像素信息至少包括活塞杆可相对目标位置移动范围内的像素信息;基于比对结果,确定活塞杆的位置信息。
此外,上述的存储器830中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个 实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的以执行活塞杆的位置检测方法,活塞杆可活动地安装于缸体,该方法包括:在目标位置获取目标图像;获取目标图像对应的像素信息;将像素信息与活塞杆像素库进行比对,其中,活塞杆像素库存储活塞杆的全行程像素信息及活塞杆的全行程像素信息与活塞杆的位移的对应关系,且全行程像素信息至少包括活塞杆可相对目标位置移动范围内的像素信息;基于比对结果,确定活塞杆的位置信息。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的以执行活塞杆的位置检测方法,活塞杆可活动地安装于缸体,该方法包括:在目标位置获取目标图像;获取目标图像对应的像素信息;将像素信息与活塞杆像素库进行比对,其中,活塞杆像素库存储活塞杆的全行程像素信息及活塞杆的全行程像素信息与活塞杆的位移的对应关系,且全行程像素信息至少包括活塞杆可相对目标位置移动范围内的像素信息;基于比对结果,确定活塞杆的位置信息。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在 计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种活塞杆的位置检测方法,其中活塞杆可活动地安装于缸体,所述方法包括:
    在目标位置获取目标图像;
    获取所述目标图像对应的像素信息;
    将所述像素信息与活塞杆像素库进行比对,其中,所述活塞杆像素库存储所述活塞杆的全行程像素信息及所述活塞杆的全行程像素信息与所述活塞杆的位移的对应关系,且所述全行程像素信息至少包括所述活塞杆可相对所述目标位置移动范围内的像素信息;
    基于比对结果,确定所述活塞杆的位置信息。
  2. 根据权利要求1所述的活塞杆的位置检测方法,其中所述活塞杆沿运动方向设有多个编码单元,多个所述编码单元在所述活塞杆上依序设置,且多个所述编码单元彼此相异设置,所述目标图像包括所述活塞杆上至少一个所述编码单元;
    在将所述像素信息与活塞杆像素库进行比对之前,还包括:
    基于所述目标图像的编码单元,从编码特征库中确定目标编码特征段,其中,所述编码特征库包含所述活塞杆上的所有所述编码单元对应的编码特征段,且所述编码特征库中的每一个所述编码特征段映射到所述活塞杆像素库的像素信息;
    基于所述目标编码特征段获得所述活塞杆像素库中对应的目标像素信息。
  3. 根据权利要求2所述的活塞杆的位置检测方法,其中所述将所述像素信息与活塞杆像素库进行比对,包括:
    将所述目标图像对应的像素信息与所述目标像素信息及所述目标像素信息两侧中的至少一侧的像素信息进行比对。
  4. 根据权利要求2所述的活塞杆的位置检测方法,其中所述基于所述目标图像的编码单元,从编码特征库中确定目标编码特征段包括:
    识别所述目标图像的编码单元;
    基于所述目标图像的编码单元,从所述编码特征库中查找与所述目标图像的编码单元对应的第一编码单元;
    基于所述第一编码单元在所述编码特征库上的位置,确定所述目标编码特征段。
  5. 根据权利要求4所述的活塞杆的位置检测方法,其中所述目标编码特征段包括与所述目标编码特征段对应的目标区间,以及位于所述目标区间两侧的补充区间。
  6. 根据权利要求2-5中任一项所述的活塞杆的位置检测方法,其中相邻的两个所述编码单元沿所述活塞杆的运动方向间隔开分布,每个所述编码单元包括同样的起始码和数目相同的特征码。
  7. 根据权利要求2-5中任一项所述的活塞杆的位置检测方法,其中沿所述活塞杆的运动方向间隔开分布的多个特征码,每个所述编码单元包括从任一特征码开始,向目标方向分布的相同数目的特征码。
  8. 一种活塞杆的位置检测装置,包括:
    采集模块,用于在目标位置获取目标图像;
    获取模块,用于获取所述目标图像对应的像素信息;
    定位模块,用于将所述像素信息与活塞杆像素库进行比对,其中,所述活塞杆像素库存储所述活塞杆的全行程像素信息、所述活塞杆的全行程像素信息与所述活塞杆的位移的对应关系,且所述全行程像素信息至少包括所述活塞杆可相对所述目标位置移动范围内的像素信息;
    检测模块,用于基于比对结果,确定所述活塞杆的位置信息。
  9. 根据权利要求8所述的活塞杆的位置检测装置,其中所述活塞杆沿运动方向设有多个编码单元,多个所述编码单元在所述活塞杆上依序设置,且多个所述编码单元彼此相异设置,所述目标图像包括所述活塞杆上至少一个所述编码单元;
    所述装置还包括第二获取模块,用于基于所述目标图像的编码单元,从编码特征库中确定目标编码特征段,其中,所述编码特征库包含所述活塞杆上的所有所述编码单元对应的编码特征段,且所述编码特征库中的每一个所述编码特征段映射到所述活塞杆像素库的像素信息;基于所述目标编码特征段获得所述活塞杆像素库中对应的目标像素信息。
  10. 一种液压缸,包括:
    缸体;
    活塞杆,所述活塞杆可活动地安装于所述缸体;
    如权利要求8或9所述的活塞杆的位置检测装置。
  11. 一种作业机械,其中包括如权利要求10所述的液压缸或者如权利要求8或9所述的活塞杆的位置检测装置。
  12. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中所述处理器执行所述程序时实现如权利要求1至7任一项所述的活塞杆的位置检测方法的步骤。
PCT/CN2021/103600 2021-03-31 2021-06-30 活塞杆的位置检测方法、装置、液压缸及作业机械 WO2022205649A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21934298.7A EP4299921A1 (en) 2021-03-31 2021-06-30 Position detection method and device for piston rod, hydraulic cylinder, and working machine
US18/472,527 US20240011513A1 (en) 2021-03-31 2023-09-22 Method and device for detecting position of piston rod, hydraulic cylinder and working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110351672.7 2021-03-31
CN202110351672.7A CN115143164B (zh) 2021-03-31 2021-03-31 活塞杆的位置检测方法、装置、液压缸及作业机械

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/472,527 Continuation US20240011513A1 (en) 2021-03-31 2023-09-22 Method and device for detecting position of piston rod, hydraulic cylinder and working machine

Publications (1)

Publication Number Publication Date
WO2022205649A1 true WO2022205649A1 (zh) 2022-10-06

Family

ID=83404263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103600 WO2022205649A1 (zh) 2021-03-31 2021-06-30 活塞杆的位置检测方法、装置、液压缸及作业机械

Country Status (4)

Country Link
US (1) US20240011513A1 (zh)
EP (1) EP4299921A1 (zh)
CN (1) CN115143164B (zh)
WO (1) WO2022205649A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116221231A (zh) * 2023-05-09 2023-06-06 湖南奥通智能研究院有限公司 一种高精度油缸位移检测方法及液压油缸
CN117079182A (zh) * 2023-07-31 2023-11-17 上海启呈信息科技有限公司 一种基于大数据分析的管网管理方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115858832B (zh) * 2023-03-01 2023-05-02 天津市邱姆预应力钢绞线有限公司 一种用于钢绞线生产数据存储方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327791B1 (en) * 1999-06-09 2001-12-11 The Government Of The United States As Represented By The Secretary Of Commerce Chain code position detector
CN105473873A (zh) * 2013-08-07 2016-04-06 光电意大利有限公司 缸活塞单元和持续地检测该单元的缸和活塞之间的相互位置的方法
CN108775862A (zh) * 2017-03-20 2018-11-09 朱利安尼有限公司 用于测量机械构件位置的系统及用于测量机械构件位置的方法
CN111322953A (zh) * 2020-03-16 2020-06-23 中铁大桥科学研究院有限公司 一种活塞杆位移监测与定位的传感装置
CN112128176A (zh) * 2020-08-27 2020-12-25 中联重科股份有限公司 基于位移检测的工程机械动力调整方法及液压动力系统
CN112560774A (zh) * 2020-12-25 2021-03-26 广州文远知行科技有限公司 一种障碍物位置检测方法、装置、设备和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20220387U1 (de) * 2002-01-31 2003-07-03 Rexroth Mecman Gmbh Messeinrichtung zur optischen Wegerfassung einer Kolbenstange bei einem Druckmittelzylinder
CN110067785A (zh) * 2019-04-24 2019-07-30 广东工业大学 一种液压缸位置控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327791B1 (en) * 1999-06-09 2001-12-11 The Government Of The United States As Represented By The Secretary Of Commerce Chain code position detector
CN105473873A (zh) * 2013-08-07 2016-04-06 光电意大利有限公司 缸活塞单元和持续地检测该单元的缸和活塞之间的相互位置的方法
CN108775862A (zh) * 2017-03-20 2018-11-09 朱利安尼有限公司 用于测量机械构件位置的系统及用于测量机械构件位置的方法
CN111322953A (zh) * 2020-03-16 2020-06-23 中铁大桥科学研究院有限公司 一种活塞杆位移监测与定位的传感装置
CN112128176A (zh) * 2020-08-27 2020-12-25 中联重科股份有限公司 基于位移检测的工程机械动力调整方法及液压动力系统
CN112560774A (zh) * 2020-12-25 2021-03-26 广州文远知行科技有限公司 一种障碍物位置检测方法、装置、设备和存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116221231A (zh) * 2023-05-09 2023-06-06 湖南奥通智能研究院有限公司 一种高精度油缸位移检测方法及液压油缸
CN116221231B (zh) * 2023-05-09 2023-08-15 湖南奥通智能研究院有限公司 一种高精度油缸位移检测方法及液压油缸
CN117079182A (zh) * 2023-07-31 2023-11-17 上海启呈信息科技有限公司 一种基于大数据分析的管网管理方法及系统
CN117079182B (zh) * 2023-07-31 2024-02-23 上海启呈信息科技有限公司 一种基于大数据分析的管网管理方法及系统

Also Published As

Publication number Publication date
CN115143164A (zh) 2022-10-04
CN115143164B (zh) 2023-07-25
US20240011513A1 (en) 2024-01-11
EP4299921A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2022205649A1 (zh) 活塞杆的位置检测方法、装置、液压缸及作业机械
CN109544623B (zh) 车辆损伤区域的测量方法和装置
KR20050002612A (ko) 깊이 계측 방법과 깊이 계측 장치
CN108038139B (zh) 地图构建方法、装置和机器人定位方法、装置、计算机设备和存储介质
CN112598922B (zh) 车位检测方法、装置、设备及存储介质
EP3561464B1 (en) Unobtrusive and automated detection of frequencies of spatially located distinct parts of a machine
JPH11351862A (ja) 前方車両検出方法及び装置
WO2021215672A1 (en) Method and device for calibrating pitch of camera on vehicle and method and device for continual learning of vanishing point estimation model to be used for calibrating the pitch
US20240020923A1 (en) Positioning method based on semantic information, device and computer-readable storage medium
WO2022205648A1 (zh) 液压缸和作业机械
CN114820789A (zh) 一种不规则目标智能识别及定位方法与系统
CN104200456A (zh) 一种用于线结构光三维测量的解码方法
CN113012181B (zh) 一种基于Hough变换的新型类圆形检测方法
US20220262033A1 (en) Method for Determining the Position of a first Image Region in a Correspondence Image, SOC and Control Device, and System for Carrying out the Method, and Computer Program
CN110688936A (zh) 一种环境图像的特征表示方法、机器和存储介质
JP7448035B2 (ja) 情報処理装置、3次元位置推定方法、及びプログラム
WO2019113860A1 (zh) 基于色块标签的虚拟墙构建方法及装置、地图构建方法、可移动电子设备
JP2010067248A5 (zh)
EP3333828B1 (en) Step detection device and step detection method
CN104132628A (zh) 用相位计算实现线结构光三维测量的方法
JP5160366B2 (ja) 電子部品のパターンマッチング方法
CN111121637A (zh) 一种基于像素编码的光栅位移检测方法
JP5280337B2 (ja) 文字認識方法及び文字認識装置
CN112053401B (zh) 一种芯片拼接方法、装置、设备及存储介质
JP2637764B2 (ja) 指紋中心検出方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021934298

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021934298

Country of ref document: EP

Effective date: 20230927

NENP Non-entry into the national phase

Ref country code: DE