WO2022205610A1 - 水面机器人 - Google Patents

水面机器人 Download PDF

Info

Publication number
WO2022205610A1
WO2022205610A1 PCT/CN2021/097915 CN2021097915W WO2022205610A1 WO 2022205610 A1 WO2022205610 A1 WO 2022205610A1 CN 2021097915 W CN2021097915 W CN 2021097915W WO 2022205610 A1 WO2022205610 A1 WO 2022205610A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
housing
driving
drive
assembly
Prior art date
Application number
PCT/CN2021/097915
Other languages
English (en)
French (fr)
Inventor
李强
王凯甬
舒明瑞
王经纬
李明阳
郑修宇
张晓华
古锦韬
Original Assignee
清华大学深圳国际研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳国际研究生院 filed Critical 清华大学深圳国际研究生院
Publication of WO2022205610A1 publication Critical patent/WO2022205610A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/24Buoys container type, i.e. having provision for the storage of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H19/00Marine propulsion not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B2022/006Buoys specially adapted for measuring or watch purposes

Definitions

  • the invention relates to the technical field of water working robots, in particular to a water surface robot.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, the present invention proposes a water surface robot, which has high stability on the water surface and low damage to aquatic organisms.
  • the water surface robot in the embodiment of the present invention, it includes:
  • the shell is spherical, and the interior of the shell has a mounting cavity
  • a support assembly is located inside the installation cavity, the support assembly includes a support member and a roller, the rollers are not less than two, the rollers are installed on the outer end of the support member, and at least two of the rollers are located at the outer end of the support member. on the same diameter of the casing, and both the rollers are in contact with the inner wall of the casing and can roll relative to the inner wall of the casing;
  • a drive assembly located inside the installation cavity, the drive assembly is connected with the support, the drive assembly includes a drive element and a drive wheel, the drive element is connected with the drive wheel and is used for driving the drive wheel When rotated, the driving wheel contacts the inner wall of the casing and drives the casing to rotate, so that the casing moves relative to the water surface.
  • the center of gravity of the driving component and the supporting component is changed relative to the casing, so that the casing is rolled, so that the whole robot can move relative to the water surface, and the surface of the casing is relatively flat, which avoids The risk of intertwining with vegetation in the water will not cause harm to aquatic organisms; and since the rollers at the ends of the support are always in contact with the inner wall of the housing, and the drive assembly and the support assembly are interconnected, the components inside the housing can always be Keep the balance, prevent the shell from rolling over under the impact of wind and waves due to the difference in shape, and improve the stability of the shell on the water surface.
  • the support assembly divides the installation cavity into a first cavity and a second cavity, and the driving assembly is located in the first cavity.
  • a counterweight body is further included, and the counterweight body is located in the first cavity.
  • the roller is spherical
  • the end of the support member has a ball groove
  • part of the roller is embedded in the ball groove and can roll in the ball groove.
  • the outer surface of the housing is textured.
  • each of the driving wheels is connected with one of the driving elements.
  • the driving assembly further includes a base, the driving wheel is rotatably connected to an end of the base, and the counterweight is mounted on the base.
  • the driving assembly further includes a steering member, the steering member is mounted on the base, the steering member is connected with the driving wheel and is used to drive the driving wheel to turn.
  • a monitoring element is further included, the monitoring element is located inside the mounting cavity and mounted on the support.
  • the housing includes a plurality of housings, and the housings are detachably connected and combined to form the housing.
  • FIG. 1 is a schematic structural diagram of an embodiment of a water surface robot of the present invention
  • FIG. 2 is a schematic structural diagram of another embodiment of the support member in FIG. 1;
  • FIG. 3 is a schematic structural diagram of another embodiment of the roller in FIG. 1;
  • FIG. 4 is a schematic view of the structure of FIG. 1 after the casing is hidden.
  • Reference numerals housing 100 , installation cavity 110 , first cavity 111 , second cavity 112 ; support assembly 200 , support member 210 , rod member 211 , ball groove 212 , roller 220 ; drive assembly 300 , drive element 310 , the drive wheel 320, the base 330, the shaft 331; the counterweight 400; the monitoring element 500.
  • the azimuth description such as the azimuth or position relationship indicated by up, down, front, rear, left, right, etc.
  • the azimuth description is based on the azimuth or position relationship shown in the drawings, only In order to facilitate the description of the present invention and simplify the description, it is not indicated or implied that the indicated device or element must have a particular orientation, be constructed and operated in a particular orientation, and therefore should not be construed as limiting the present invention.
  • an embodiment of the present invention provides a surface robot, which can be applied to surface operations.
  • the surface robot includes a casing 100 (part of the casing is hidden in FIG. 1 ), a support assembly 200 and a drive assembly 300 .
  • the casing 100 is spherical, and the interior of the casing 100 has an installation cavity 110 . Both the drive assembly 300 and the drive assembly 300 are installed in the installation cavity 110 , and the housing 100 protects the components located inside.
  • the support assembly 200 includes a support member 210 and a roller 220. There are no less than two rollers 220. The rollers 220 are mounted on the outer end of the support member 210.
  • At least two rollers 220 are located on the same diameter of the housing 100, and both It is in contact with the inner wall of the housing 100 and can roll relative to the inner wall of the housing 100 , so that the two rollers 220 at the end of the support 210 can always keep in contact with the inner wall of the housing 100 and prevent the support assembly 200 from shaking inside the housing 100 , which affects the smoothness of the rolling of the casing 100 .
  • the drive assembly 300 is connected to the support assembly 200.
  • the drive assembly 300 includes a driving element 310 and a driving wheel 320, the driving element 310 is connected with the driving wheel 320 and used to drive the driving wheel 320 to rotate, the driving wheel 320 is in contact with the inner wall of the housing 100, and there is a space between the driving wheel 320 and the inner wall of the housing 100.
  • the friction force when the driving wheel 320 rotates, will drive the casing 100 to roll, so that the casing 100 moves relative to the water surface.
  • the center of gravity of the driving assembly 300 and the supporting assembly 200 is changed relative to the casing 100 through the rotation of the driving wheel 320, so that the casing 100 rolls, and the outer surface of the casing 100 is flat, which avoids The risk of intertwining with vegetation in the water will not cause harm to aquatic organisms; and, since the roller 220 at the end of the support member 210 is always in contact with the inner wall of the housing 100, the combined structure of the support assembly 200 and the drive assembly 300 can It moves with the rolling of the casing 100 to generate a change in the center of gravity, so that the casing 100 is always kept in balance, avoids the casing 100 from rolling over under the impact of wind and waves due to the difference in shape, and improves the stability of the casing 100 during traveling.
  • the driving element 310 can be selected as a motor, a motor, or the like.
  • a non-slip coating can be provided on the surface of the driving wheel 320 and the inner wall of the housing 100 , such as epoxy anti-skid coating, polyurethane anti-skid coating, etc. on the surface of the driving wheel 320 ;
  • a silica gel layer, a rubber layer, etc. are pasted on the surface to increase the frictional force between the driving wheel 320 and the inner wall of the casing 100 and prevent the driving wheel 320 from slipping relative to the casing 100 .
  • the casing 100 floats on the water surface when traveling, in order to increase the viscous resistance between the casing 100 and the water surface, and to ensure that the casing 100 can move relative to the water surface under the driving of the driving wheel 320, the casing 100 can move on the surface of the casing 100.
  • the protrusions, or the surface of the casing 100 may be provided with a spiral pattern, so that the casing 100 can drain backwards when moving, thereby improving the traveling efficiency of the surface robot.
  • the support assembly 200 divides the installation cavity 110 into the first cavity 111 and the second cavity 112 , and the drive assembly 300 is located in the first cavity 111 , the support assembly 200 and the drive assembly 300 are combined inside the casing 100 to form an inner gravity assembly, the position of the center of gravity after the combination of the two is the position of the center of gravity of the inner gravity assembly, and the position of the center of gravity can follow the rotation of the driving wheel 320 relative to the casing 100 changes, thereby realizing the movement of the casing 100; in the casing 100, the internal gravity component is located in the first cavity 111, and the overall gravity of the components in the first cavity 111 is greater than the gravity of the components in the second cavity 112, even if When the casing 100 is impacted by wind and waves, the center of gravity of the inner gravity component is always located in the first cavity 111 , and the first cavity 111 is always located below the casing 100 , so that
  • the surface robot further includes a counterweight 400.
  • the counterweight 400 is located in the first cavity 111.
  • the counterweight 400 can be installed between the support assembly 200 and the drive assembly 300.
  • the support assembly 200, The counterweight 400 and the drive assembly 300 are combined to form an inner gravity assembly. Since the drive assembly 300 and the counterweight 400 are located on the same side of the support member 210, the inner gravity assembly can always be located in the first cavity 111, so that the overall center of gravity of the robot is located in the shell
  • the lower part of the body 100 facilitates the robot to maintain its balance and reduces the risk of the casing 100 tipping over.
  • the support member 210 is formed by splicing a plurality of rod members 211 into a frame shape, the plurality of rod members 211 are connected to each other at the center, and the rollers 220 are rotatably connected to both ends of the rod member 211 .
  • the support member 210 can also be set in other shapes. As shown in FIG. 1 , the support member 210 is in the shape of a plate, and the roller 220 is rotatably connected to the edge of the support member 210.
  • the plate-shaped support member 210 has a flat surface and can be other components.
  • the installation of 200 provides an installation basis to facilitate the mutual assembly between the support assembly 200 and other components.
  • a plurality of rollers 220 are provided at intervals along the outer contour of the support member 210 , and each roller 220 is in contact with the inner wall of the housing 100 .
  • each roller 220 is in contact with the inner wall of the housing 100 .
  • the interval between adjacent rollers 220 is the same , which is convenient for the support member 210 to maintain balance.
  • the four rollers 220 are evenly arranged on the outer circumference of the support member 210 .
  • the roller 220 can be spherical, the edge of the support 210 is provided with a ball groove 212 , and part of the roller 220 is embedded in the ball groove 212 and can roll in the ball groove 212 and relative to the inner wall of the housing 100 , so that the support 210
  • the housing 100 can move relative to each other in different directions, so that when the housing 100 rolls in different directions, the rollers 220 can both roll relative to the inner wall of the housing 100 to avoid the rollers 220 interfering with the movement of the housing 100 .
  • the drive assembly 300 further includes a base 330, the base 330 is located in the first cavity 111, the drive wheel 320 is rotatably connected to the end of the base 330, the counterweight 400 can be installed on the base 330, the base
  • the 330 is used for loading the driving wheel 320 , the driving element 310 , the supporting assembly 200 and the counterweight 400 , and the counterweight 400 can be placed at the center of the base 330 .
  • Four driving wheels 320 are provided, and the four driving wheels 320 are distributed in a rectangular shape and are respectively rotatably connected to four corners of the base 330.
  • a rotating shaft 331 can be set at the corners of the base 330. The driving wheels 320 and the rotating shaft 331 Turn the connection.
  • the four driving wheels 320 are located on the same plane to keep the base 330 balanced. Since the overall center of gravity of the robot is located at the lower part, after the robot is placed in the water, the water surface is roughly on the plane where the four driving wheels 320 are located, so that the robot can be stable on the water surface. It can also avoid excessive viscous resistance caused by the robot diving too deep into the water, which affects the traveling efficiency of the robot.
  • the surface robot further includes a battery, which is installed on the base 330 or accommodated in the interior of the counterweight 400.
  • the battery is electrically connected to the driving element 310 and is used to supply power to the driving element 310; the battery can be selected from a photovoltaic cell, which can absorb The solar energy is converted into electricity to power the drive assembly 300 without the need for battery charging or replacement.
  • Each driving wheel 320 is connected with a driving element 310, each driving element 310 can drive the driving wheel 320 independently, and a plurality of driving elements 310 can simultaneously drive the driving wheel 320 to rotate in the same direction and at the same speed, so that the housing 100 moves in this direction, or different driving elements 310 drive the driving wheels 320 to rotate at different speeds, and realize steering through differential speed, so that the housing 100 can move in all directions, enhancing the maneuverability and flexibility of the surface robot.
  • the surface robot also includes a signal transceiver and a control module.
  • the signal transceiver is installed on the support 210.
  • the signal transceiver is used to receive the control signal on the shore and transmit the signal to the control module.
  • the control module can pass the PLC system.
  • the drive assembly 300 is connected to actuate the drive element 310 to drive the drive wheel 320 to rotate or steer.
  • the steering of the driving wheel 320 can also be achieved by setting a steering member, for example, a steering member is provided in the driving assembly 300 , the steering member is mounted on the base 330 , and the steering member is connected with the driving wheel 320 and drives the driving wheel 320 to turn.
  • the steering member can be selected as a rack and pinion steering gear or a worm crank finger steering gear, so as to realize the steering of the driving wheel 320, so that the housing 100 can move in any direction, such as selecting a rack and pinion structure, one end of the rack is connected At the eccentric position of the driving wheel 320, the rack is moved by the rotation of the gear and pushes the steering member to turn.
  • the support member 210 is also equipped with a monitoring element 500.
  • the monitoring element 500 includes a sensor, a lens, etc., the sensor can perform ranging, alarm, etc., the lens can take pictures of the water surface environment, and the information monitored by the monitoring element 500 can be sent and received through signals. return to shore.
  • the monitoring element 500, the control module, and the signal transceiver can all be accommodated in the installation cavity 110, and will not be affected by the external environment to age or fail, and the components outside the housing 100 of the robot are The casing 100 is covered, so the robot can work in harsh environments with high reliability.
  • the monitoring element 500 may be installed in the second cavity 112 .
  • the casing 100 can be made of a transparent material, which is convenient for the monitoring element 500 to monitor the external environment.
  • the casing 100 also includes a plurality of casings, which can be detachably connected and combined to form the casing 100. By disassembling the casings, the components inside the casing 100 can be repaired and replaced; in order to improve the sealing performance of the casing 100, the Gaskets can be provided at the joints adjacent to the housing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Toys (AREA)
  • Manipulator (AREA)

Abstract

一种水面机器人,包括壳体(100)、支撑组件(200)与驱动组件(300),壳体(100)呈球形,支撑组件(200)包括支撑件(210)与滚轮(220),滚轮(220)安装于支撑件(210)的外端,滚轮(220)均与壳体(100)的内壁接触并能够相对壳体(100)的内壁滚动,驱动元件(310)与驱动轮(320)连接并用于驱动驱动轮(320)转动,驱动轮(320)与壳体(100)的内壁接触,并带动壳体(100)转动,以使壳体(100)相对水面移动。通过驱动轮(320)的转动使驱动组件(300)与支撑组件(200)的重心相对壳体(100)发生改变,使壳体(100)产生滚动,支撑件(210)端部的滚轮(220)始终与壳体(100)的内壁接触,使壳体(100)在前行的同时保持平衡,提高了壳体(100)行进过程中的平稳度。

Description

水面机器人 技术领域
本发明涉及水上作业机器人技术领域,尤其涉及一种水面机器人。
背景技术
传统的水面机器人或者水面无人船,可搭载检测仪器对水面情况进行监测,由于艏部和艉部外形差异较为明显,在恶劣的海况中不稳定,容易侧翻,影响检测仪器的监测,水中的杂草容易缠绕于螺旋桨上,影响水面机器人或者水面无人船的推进,且螺旋桨转动会对水中的水生生物造成伤害。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种水面机器人,在水面的平稳度较高,对水生生物的伤害较低。
根据本发明实施例中的水面机器人,包括:
壳体,呈球形,所述壳体的内部具有安装腔;
支撑组件,位于所述安装腔的内部,所述支撑组件包括支撑件与滚轮,所述滚轮不少于两个,所述滚轮安装于所述支撑件的外端,至少两个所述滚轮位于所述壳体的同一直径上,且两个所述滚轮均与所述壳体的内壁接触并能够相对所述壳体的内壁滚动;
驱动组件,位于所述安装腔的内部,所述驱动组件与所述支撑件连接,所述驱动组件包括驱动元件与驱动轮,所述驱动元件与所述驱动轮连接并用于驱动所述驱动轮转动,所述驱动轮与所述壳体的内壁接触,并带动所述壳体转动,以使所述壳体相对水面移动。
根据本发明实施例中的水面机器人,至少具有如下有益效果:
本发明实施例中的水面机器人,通过驱动轮的转动使驱动组件与支撑组件的重心相对壳体发生改变,使壳体产生滚动,使机器人整体可相对水面移动,壳体表面较为平整,避免了与水中的植被相互缠绕的风险,不会对水生生物造成伤害;并且,由于支撑件端部的滚轮始终与壳体的内壁接触,且驱动组件与支撑组件相互连接,因此壳体内的部件能够始终保持平衡,避免壳体由于外形差异在风浪的冲击下侧翻,提高了壳体在水面的平稳度。
根据本发明的一些实施例,所述支撑组件将所述安装腔分隔为第一腔体与第二腔体,所述驱动组件位于所述第一腔体内。
根据本发明的一些实施例,还包括配重体,所述配重体位于所述第一腔体内。
根据本发明的一些实施例,所述滚轮呈球状,所述支撑件的端部具有球槽,部分所述滚轮嵌设于所述球槽内,并能够在所述球槽内滚动。
根据本发明的一些实施例,所述壳体的外表面具有纹路。
根据本发明的一些实施例,所述驱动轮设置有4个,4个所述驱动轮分布呈矩形,每一所述驱动轮均连接有一个所述驱动元件。
根据本发明的一些实施例,所述驱动组件还包括基座,所述驱动轮转动连接于所述基座的端部,所述配重体安装于所述基座上。
根据本发明的一些实施例,所述驱动组件还包括转向件,所述转向件安装于所述基座上,所述转向件与所述驱动轮连接并用于带动所述驱动轮转向。
根据本发明的一些实施例,还包括监测元件,所述监测元件位于所述安装腔的内部,并安装于所述支撑件上。
根据本发明的一些实施例,所述壳体包括多个外壳,多个所述外壳可拆卸连接并组合形成所述壳体。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明水面机器人一个实施例的结构示意图;
图2为图1中支撑件另一实施例的结构示意图;
图3为图1中滚轮另一实施例的结构示意图;
图4为图1中隐藏壳体后的结构示意图。
附图标记:壳体100,安装腔110,第一腔体111,第二腔体112;支撑组件200,支撑件210,杆件211,球槽212,滚轮220;驱动组件300,驱动元件310,驱动轮320,基座330,转轴331;配重体400;监测元件500。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
参照图1,本发明的一个实施例中提供了一种水面机器人,可应用于水面作业。水面机器人包括壳体100(为便于看到内部结构,图1隐藏了部分壳体)、支撑组件200与驱动组件300,壳体100呈球形,壳体100的内部具有安装腔110,支撑组件200与驱动组件300均安装于安装腔110内,壳体100对位于其内部的部件进行保护。支撑组件200包括支撑件210与滚轮220,滚轮220不少于两个,滚轮220安装于支撑件210的外端,至少两个滚轮220位于壳体100的同一直径上,并且两个滚轮220均与壳体100的内壁接触并能够相对壳体100的内壁滚动,从而使支撑件210端部的两个滚轮220能够始终保持与壳体100内壁的接触,避免支撑组件200在壳体100内部晃动,影响壳体100滚动的平稳度。驱动组件300与支撑组件200连接,由于支撑件210端部的滚轮220能够始终与壳体100的内壁接触,因此驱动组件300与支撑组件200相互连接后组合成的结构能够始终保持平衡;驱动组件300包括驱动元件310和驱动轮320,驱动元件310与驱动轮320连接并用于驱动驱动轮320进行转动,驱动轮320与壳体100的内壁接触,驱动轮320与壳体100的内壁之间具有摩擦力,驱动轮 320转动时将带动壳体100滚动,以使壳体100相对于水面进行移动。
从而,本发明实施例中的水面机器人,通过驱动轮320的转动使驱动组件300与支撑组件200的重心相对壳体100发生改变,使壳体100产生滚动,壳体100外表面平整,避免了与水中的植被相互缠绕的风险,不会对水生生物造成伤害;并且,由于支撑件210端部的滚轮220始终与壳体100的内壁接触,支撑组件200与驱动组件300的组合后的结构能够跟随壳体100的滚动而移动,以产生重心变化,从而使壳体100始终保持平衡,避免壳体100由于外形差异在风浪的冲击下侧翻,提高了壳体100行进过程中的平稳度。
需要说明的是,驱动元件310可选择为电机、马达等。驱动轮320的表面以及壳体100的内壁上可设置防滑涂层,如在驱动轮320的表面涂覆环氧防滑涂料、聚氨酯防滑涂料等;或者贴附耐摩擦垫,如在驱动轮320的表面粘贴硅胶层、橡胶层等,以增大驱动轮320与壳体100内壁之间的摩擦力,避免驱动轮320相对壳体100打滑。
因壳体100在行进时漂浮于水面上,为了增大壳体100与水面之间的粘滞阻力,保证壳体100能够在驱动轮320的驱动下相对水面移动,可以在壳体100的表面设置纹路,增大壳体100外表面的粗糙度,以避免由于壳体100的外表过于光滑而相对水面打滑,影响壳体100的行进效率;如在壳体100外表面的球状、柱状等形状的凸状物,或者壳体100的表面可设置螺旋状的花纹,以便于壳体100移动时向后排水,从而提高水面机器人的行进效率。
由于支撑件210端部的滚轮220始终与壳体100的内壁接触,因此支撑组件200将安装腔110分隔成第一腔体111与第二腔体112,驱动组件300位于第一腔体111内,支撑组件200与驱动组件300在壳体100的内部组合形成内重力组件,二者组合后的重心位置即为内重力组件的重心位置,且该重心位置能够跟随驱动轮320的转动相对壳体100发生变化,进而实现壳体100的移动;壳体100内,内重力组件位于第一腔体111内,第一腔体111内部件的整体重力大于第二腔体112内部件的重力,即使壳体100受到风浪冲击,内重力组件的重心始终位于第一腔体111内,第一腔体111始终位于壳体100的下方,使壳体100保持平衡。为便于支撑组件200与驱动组件300的重心在壳体100的直径上相互匹配,支撑组件200与驱动组件300内的部件可呈对称式分布。
为了均衡机器人整体的重力,便于机器人行进,水面机器人还包括配重体400,配重体400位于第一腔体111内,配重体400可安装于支撑组件200与驱动组件300之间,支撑组件200、配重体400与驱动组件300组合形成内重力组件,由于驱动组件300、配重体400位于支撑件210的同一侧,因此内重力组件能够始终位于第一腔体111内,使机器人整体的重心位于壳体100的下部,便于机器人保持平衡,并且降低壳体100侧翻的风险。
参照图2,在本发明的一个实施例中,支撑件210由多个杆件211相互拼接呈框架状,多个杆件211于中心处相互连接,滚轮220转动连接于杆件211的两端。支撑件210也可设置为其他形状,如图1所示,支撑件210呈板状,滚轮220转动连接于支撑件210的边缘处,板状的支撑件210具有平整的表面,能够为其他部件的安装提供安装基础,便于支撑组件200与其他部件之间的相互组装。
另外,滚轮220沿支撑件210的外轮廓间隔设置有多个,每一滚轮220均与壳体100的内壁接触,多个滚轮220组合对壳体100的内部构件进行支撑,以使壳体100沿不同方向滚动时,均有相应的滚轮220与壳体100的内壁之间产生相互作用力,使支撑件210始终保持与壳体100内壁之间的接触;相邻滚轮220之间的间隔相同,便于支撑件210保持平衡,如图1所示,4个滚轮220均匀排布于支撑件210的外周。
参照图3,滚轮220可呈球状,支撑件210的边缘设置有球槽212,部分滚轮220嵌入至球槽212内并能够在球槽212内以及相对壳体100的内壁滚动,使支撑件210与壳体100能够沿不同方向相对移动,从而壳体100在沿不同方向滚动时,滚轮220均可相对于壳体100的内壁滚动,避免滚轮220对壳体100运动造成干涉。
参照图4,驱动组件300还包括基座330,基座330位于第一腔体111内,驱动轮320转动连接于基座330的端部,配重体400可安装于基座330上,基座330用于装载驱动轮320、驱动元件310、支撑组件200以及配重体400,配重体400可放置于基座330的中心处。驱动轮320设置有4个,4个驱动轮320呈矩形分布,且分别转动连接于基座330的四个边角处,基座330的边角处可设置转轴331,驱动轮320与转轴331转动连接。4个驱动轮320位于同一平面上,以使基座330保持平衡,由于机器人整体的重心位于下部,机器人放置于水中后,水面大致位于4个驱动轮320所在平面,使机器人既能够在水面平稳移动,又可避免由于机器人潜入水内过深造成粘滞阻力过大,影响机器人的行进效率。
水面机器人还包括电池,电池安装于基座330上,或者容置于配重体400的内部,电池与驱动元件310电性连接并用于向驱动元件310供电;电池可选用光伏电池,光伏电池能够吸收太阳能并转化为电能,为驱动组件300供电,无需进行电池充电或者更换。每一驱动轮320均与一个驱动元件310连接,每一驱动元件310可单独对驱动轮320进行驱动,多个驱动元件310可同时驱动驱动轮320沿同一方向以相同的速度转动,使壳体100沿该方向移动,或者不同的驱动元件310驱动驱动轮320以不同的速度转动,通过差速实现转向,从而使壳体100能够全方位移动,增强水面机器人的机动性能以及灵活性。
需要说明的是,水面机器人还包括信号收发器与控制模块,信号收发器安装于支撑件210 上,信号收发器用于接收岸上的控制信号,并将信号传输至控制模块,控制模块可通过PLC系统连接驱动组件300,使驱动元件310动作,驱动驱动轮320转动或者转向。
驱动轮320的转向还可通过设置转向件实现,如,在驱动组件300内设置转向件,转向件安装于基座330上,转向件与驱动轮320连接并带动驱动轮320转向。转向件可以选择为齿轮齿条式转向器或者蜗杆曲柄指销式转向器,以实现驱动轮320的转向,使壳体100能够沿任意方向移动,如选择齿轮齿条结构,齿条的一端连接于驱动轮320的偏心位置,通过齿轮转动使齿条移动并推动转向件转向。
另外,支撑件210上还搭载有监测元件500,监测元件500包括传感器、镜头等,传感器可进行测距、报警等,镜头可对水面环境进行拍摄,监测元件500所监测的信息可通过信号收发器返回至岸上。
需要说明的是,监测元件500、控制模块、信号收发器能结构均容置于安装腔110内,不会受到外部环境的影响而老化或发生故障,并且机器人处壳体100外的部件均被壳体100包覆,因此机器人可以在恶劣的环境中工作,可靠性高。另外,为避免监测元件500与驱动组件300的安装及工作相互干涉,可将监测元件500安装于第二腔体112内。
壳体100可选择为透明材质,便于监测元件500对外部环境进行监测。另外,壳体100还包括多个外壳,多个外壳可拆卸连接并组合形成壳体100,通过拆卸外壳可对壳体100内部的部件进行维修、更换;为提高壳体100的密封性,相邻外壳的连接处可设置密封垫。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 水面机器人,其特征在于,包括:
    壳体,呈球形,所述壳体的内部具有安装腔;
    支撑组件,位于所述安装腔的内部,所述支撑组件包括支撑件与滚轮,所述滚轮不少于两个,所述滚轮安装于所述支撑件的外端,至少两个所述滚轮位于所述壳体的同一直径上,且两个所述滚轮均与所述壳体的内壁接触并能够相对所述壳体的内壁滚动;
    驱动组件,位于所述安装腔的内部,所述驱动组件与所述支撑件连接,所述驱动组件包括驱动元件与驱动轮,所述驱动元件与所述驱动轮连接并用于驱动所述驱动轮转动,所述驱动轮与所述壳体的内壁接触,并带动所述壳体转动,以使所述壳体相对水面移动。
  2. 根据权利要求1所述的水面机器人,其特征在于,所述支撑组件将所述安装腔分隔为第一腔体与第二腔体,所述驱动组件位于所述第一腔体内。
  3. 根据权利要求2所述的水面机器人,其特征在于,还包括配重体,所述配重体位于所述第一腔体内。
  4. 根据权利要求1所述的水面机器人,其特征在于,所述滚轮呈球状,所述支撑件的端部具有球槽,部分所述滚轮嵌设于所述球槽内,并能够在所述球槽内滚动。
  5. 根据权利要求1所述的水面机器人,其特征在于,所述壳体的外表面具有纹路。
  6. 根据权利要求1至5中任一项所述的水面机器人,其特征在于,所述驱动轮设置有4个,4个所述驱动轮分布呈矩形,每一所述驱动轮均连接有一个所述驱动元件。
  7. 根据权利要求2所述的水面机器人,其特征在于,所述驱动组件还包括基座,所述驱动轮转动连接于所述基座的端部,所述配重体安装于所述基座上。
  8. 根据权利要求7所述的水面机器人,其特征在于,所述驱动组件还包括转向件,所述转向件安装于所述基座上,所述转向件与所述驱动轮连接并用于带动所述驱动轮转向。
  9. 根据权利要求1所述的水面机器人,其特征在于,还包括监测元件,所述监测元件位于所述安装腔的内部,并安装于所述支撑件上。
  10. 根据权利要求1所述的水面机器人,其特征在于,所述壳体包括多个外壳,多个所述外壳可拆卸连接并组合形成所述壳体。
PCT/CN2021/097915 2021-03-31 2021-06-02 水面机器人 WO2022205610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110346451.0A CN113120163A (zh) 2021-03-31 2021-03-31 水面机器人
CN202110346451.0 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022205610A1 true WO2022205610A1 (zh) 2022-10-06

Family

ID=76774327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097915 WO2022205610A1 (zh) 2021-03-31 2021-06-02 水面机器人

Country Status (2)

Country Link
CN (1) CN113120163A (zh)
WO (1) WO2022205610A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116215759A (zh) * 2023-02-22 2023-06-06 国家海洋局南海调查技术中心(国家海洋局南海浮标中心) 一种用于海洋监测调查的海洋浮标及管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1695905A (zh) * 2005-06-17 2005-11-16 北京航空航天大学 全方位运动球形机器人
CN201305049Y (zh) * 2008-12-13 2009-09-09 孔凡让 球形机器人装置
DE102010053443A1 (de) * 2010-12-06 2012-06-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Roboter
CN204184488U (zh) * 2014-10-22 2015-03-04 西安工程大学 载人球形机器人
CN206719346U (zh) * 2017-03-21 2017-12-08 坎德拉(深圳)科技创新有限公司 行走驱动组件及球形机器人
CN207465215U (zh) * 2017-11-23 2018-06-08 南京工程学院 一种易拆装移动的自平衡球型机器人

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101229832B (zh) * 2008-02-28 2010-06-02 南京航空航天大学 全向运动球形机器人
CN101486361B (zh) * 2008-06-25 2010-06-02 何凡 载人遥控球形电动车
CN103358839B (zh) * 2013-08-05 2015-09-02 战强 一种水陆两栖球形探察机器人
KR101507565B1 (ko) * 2014-02-10 2015-04-07 안동대학교 산학협력단 구형 이동로봇
JP2017196691A (ja) * 2016-04-27 2017-11-02 パナソニックIpマネジメント株式会社 ロボット
CN107651143B (zh) * 2017-09-13 2020-02-14 北京邮电大学 一种水下帆动力智能球形机器人
CN109129420A (zh) * 2018-08-29 2019-01-04 西南石油大学 一种新型全向运动球形机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1695905A (zh) * 2005-06-17 2005-11-16 北京航空航天大学 全方位运动球形机器人
CN201305049Y (zh) * 2008-12-13 2009-09-09 孔凡让 球形机器人装置
DE102010053443A1 (de) * 2010-12-06 2012-06-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Roboter
CN204184488U (zh) * 2014-10-22 2015-03-04 西安工程大学 载人球形机器人
CN206719346U (zh) * 2017-03-21 2017-12-08 坎德拉(深圳)科技创新有限公司 行走驱动组件及球形机器人
CN207465215U (zh) * 2017-11-23 2018-06-08 南京工程学院 一种易拆装移动的自平衡球型机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116215759A (zh) * 2023-02-22 2023-06-06 国家海洋局南海调查技术中心(国家海洋局南海浮标中心) 一种用于海洋监测调查的海洋浮标及管理系统
CN116215759B (zh) * 2023-02-22 2023-10-03 国家海洋局南海调查技术中心(国家海洋局南海浮标中心) 一种用于海洋监测调查的海洋浮标及管理系统

Also Published As

Publication number Publication date
CN113120163A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
JP6484387B2 (ja) 駆動部内蔵式のロールオーバ浮動式マルチハビタット潜水装置
CN113415402B (zh) 一种仿生鱼尾水下推进器
CN107512380B (zh) 一种全方位推进器、船舶及浮式平台
CN112124583B (zh) 一种带马格努斯减摇装置的h字型四旋翼两栖无人机
WO2022205610A1 (zh) 水面机器人
CN113320665B (zh) 一种长鳍波动推进仿生水下机器人
CN112093018A (zh) 仿生蝠鲼机器人
CN110539867B (zh) 一种仿真水质检测机器海豚
CN102059927B (zh) 一种基于轮桨-足板混合驱动的水陆两栖机器人
CN110203359A (zh) 仿豹鲂鮄鱼水下机器人
KR20230165856A (ko) 다중 모드 전환 가능한 운송 수단
CN109534095A (zh) 一种滚轮导缆机构
CN212605739U (zh) 一种蝠鲼机器人
CN110937088B (zh) 一种适用于冰孔布放的双驱动auv磁耦合矢量推进装置
CN108557041A (zh) 一种双模态六自由度水下机器人及其操控方法
CN111409721A (zh) 一种球形机器人
CN114132466B (zh) 一种双驱动仿生机器鱼系统及多模态冗余控制方法
CN212099123U (zh) 全自动球形机器人
CN212195684U (zh) 球形机器人
CN111976930A (zh) 基于环形机械结构的水下航行器
CN209383182U (zh) 一种滚轮导缆机构
CN111409722A (zh) 一种全自动球形机器人
CN113911299A (zh) 一种蝠鲼机器人
CN206466144U (zh) 一种基于内置驱动原理的滚进浮游混合式多栖潜水器
CN113148078B (zh) 一种泥下运行机器鱼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934259

Country of ref document: EP

Kind code of ref document: A1