WO2022205528A1 - 用于显示模组的调光层及显示模组 - Google Patents

用于显示模组的调光层及显示模组 Download PDF

Info

Publication number
WO2022205528A1
WO2022205528A1 PCT/CN2021/088325 CN2021088325W WO2022205528A1 WO 2022205528 A1 WO2022205528 A1 WO 2022205528A1 CN 2021088325 W CN2021088325 W CN 2021088325W WO 2022205528 A1 WO2022205528 A1 WO 2022205528A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
dimming
nano
display module
Prior art date
Application number
PCT/CN2021/088325
Other languages
English (en)
French (fr)
Inventor
程薇
刘梅
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US17/294,403 priority Critical patent/US20240077764A1/en
Publication of WO2022205528A1 publication Critical patent/WO2022205528A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present application relates to the field of display, and in particular, to a dimming layer for a display module and a display module.
  • Embodiments of the present application provide a dimming layer and a display module for a display module, so as to solve the problem of switching the display to a narrow viewing angle mode when people do not want people around to watch the content on their own display.
  • An embodiment of the present application provides a light-adjusting layer for a display module.
  • Nano-pillars arranged in an array are formed on one surface of the light-adjusting layer, so that the light-adjusting layer can transmit incident light on the surface of the optical layer, and absorbs incident light that is not perpendicular to the surface of the dimming layer.
  • the dimming layer includes a first dimming region and a second dimming region, and the size of the nanocolumns in the first dimming region is different from that of the second dimming region. Dimensions of the nanopillars.
  • the largest cross-sectional dimension of the nanopillars is 80-180 nm, and the height of the nanopillars is 80 nm.
  • the dimming layer includes a first dimming region and a second dimming region, and the density of the nanocolumns in the first dimming region is different from that in the second dimming region. Density of nanopillars.
  • the distance between adjacent nano-pillars is 160-380 nm.
  • the dimming layer includes a substrate on which the nano-pillars are formed.
  • the material of the nano-pillars is silver or titanium dioxide.
  • the cross-sectional shape of the nanopillars includes a circle, a rectangle, a triangle or a trapezoid.
  • the nano-pillars arranged in an array include a plurality of nano-pillar arrays arranged in a lattice, and the geometry of the nano-pillar array arrangement includes at least one of the following: square, hexagon, octagonal shape or pentagon.
  • the embodiment of the present application also provides a display module, including:
  • a display panel located on the light-emitting side of the backlight module
  • a dimming layer located on the light-emitting side of the display panel
  • the surface of one side of the light-adjusting layer is formed with nano-pillars arranged in an array, so that the light-adjusting layer can transmit incident light perpendicular to the surface of the light-adjusting layer and absorb non-perpendicular to the light-adjusting layer. incident light on the surface of the layer.
  • the dimming layer includes a first dimming region and a second dimming region, and the size of the nanocolumns in the first dimming region is different from that of the second dimming region. Dimensions of the nanopillars.
  • the largest cross-sectional dimension of the nanopillars is 80-180 nm, and the height of the nanopillars is 80 nm.
  • the dimming layer includes a first dimming region and a second dimming region, and the density of the nanocolumns in the first dimming region is different from that in the second dimming region. Density of nanopillars.
  • the distance between adjacent nano-pillars is 160-380 nm.
  • the dimming layer includes a substrate on which the nano-pillars are formed.
  • the material of the nano-pillars is silver or titanium dioxide.
  • the cross-sectional shape of the nanopillars includes a circle, a rectangle, a triangle or a trapezoid.
  • the nano-pillars arranged in an array include a plurality of nano-pillar arrays arranged in a lattice, and the geometry of the nano-pillar array arrangement includes at least one of the following: square, hexagon, octagonal shape or pentagon.
  • the display module further includes: a liquid crystal layer, located in the backlight module or between the backlight module and the display panel; An electrode and a second electrode, and a liquid crystal molecular layer located between the first electrode and the second electrode, the liquid crystal molecular layer can be activated under the action of the electric field formed by the first electrode and the second electrode Switch between scattering and transparent states.
  • the material of the liquid crystal molecular layer is polymer dispersed liquid crystal or polymer network liquid crystal.
  • the surface of one side of the light-adjusting layer is formed with nano-columns arranged in an array, so that the light-adjusting layer can transmit incident light perpendicular to the surface of the light-adjusting layer and absorb incident light that is not perpendicular to the surface of the light-adjusting layer.
  • the light layer modulates the propagation direction of light, and utilizes the liquid crystal layer located in the backlight module or between the backlight module and the display panel to realize real-time regulation of wide and narrow viewing angles.
  • FIG. 1 is a schematic structural diagram of a dimming layer for a display module provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a display module according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optical path when the liquid crystal molecular layer is in a scattering state according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an optical path when the liquid crystal molecular layer is in a transparent state according to an embodiment of the present invention.
  • the present application provides a dimming layer and a display module for a display module.
  • a dimming layer for a display module.
  • the present application is further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
  • Embodiments of the present application provide a display panel and a manufacturing method thereof. Each of them will be described in detail below. It should be noted that the description order of the following embodiments is not intended to limit the preferred order of the embodiments.
  • an embodiment of the present invention provides a light-adjusting layer 10 for a display module.
  • One surface of the light-adjusting layer 10 is formed with nano-pillars 12 arranged in an array, so that the light-adjusting layer 10 is 10 can transmit incident light perpendicular to the surface of the light-adjusting layer 10 and absorb incident light that is not perpendicular to the surface of the light-adjusting layer 10 .
  • the phase and amplitude of the light can be adjusted.
  • the incident direction of the light matches the structure of the nanopillars 12
  • its structural characteristics can be used to change the reflection phase of the light.
  • the reflection phase of the incident light is changed, so as to achieve the effect of being adjustable at any wavelength and angle within the visible spectrum range.
  • the material of the nano-pillars 12 is not limited, and the material of the nano-pillars 12 should be a material with high reflectivity, such as Ag (silver), Cu (copper) or polycarbonate resin composition.
  • the control of light can be realized.
  • the direction of propagation (reflection/refraction) of a specific direction of light is transmitted or absorbed.
  • the nano-pillars 12 arranged in an array can enable the light-adjusting layer 10 to transmit incident light perpendicular to the surface of the light-adjusting layer 10 and absorb incident light that is not perpendicular to the light-adjusting layer 10 . incident light on the surface.
  • the propagation direction of light is modulated by the dimming layer 10 to realize the adjustment of wide and narrow viewing angles
  • the cross-sectional shape of the nanocolumns 12 includes patterns such as circle, rectangle, triangle or trapezoid, and the arrangement parameters of the pattern, such as length, width, height, spacing, position angle, etc., are related to the angle of the incident light. Not limited.
  • the nano-pillars 12 arranged in an array may include a plurality of nano-pillar arrays with lattice arrangement, and the geometrical shape of the nano-pillar array arrangement includes at least one of the following: square, hexagon, octagon or pentagon.
  • the interval between the nano-pillars 12 of the nano-pillar array can be selected to control the direction of light propagation (reflection/refraction) and selectively transmit or absorb light in a specific direction.
  • the size of the nano-pillars 12 of the nano-pillar array can be selected to control the direction of light propagation (reflection/refraction) and selectively transmit or absorb light in a specific direction.
  • an embodiment of the present invention provides a light-adjusting layer 10 for a display module.
  • the light-adjusting layer 10 includes a substrate 14 on which the nano-pillars 12 are formed. superior.
  • the substrate 14 can be formed into a separate film, or can be a residual film in the embossing process. Since the plastic material has a certain refractive index, the plastic material with the corresponding refractive index can be selected according to actual needs, so as to avoid affecting the propagation direction of the light. .
  • the nanopillars 12 may be produced using electron beam etching, or other suitable nanoscale writing techniques and/or devices. In another embodiment, the nanopillars 12 may be formed on the appropriate substrate 14 by printing, embossing, embossing, embossing, molding, or other forming methods to form the dimming layer 10 .
  • an embodiment of the present invention provides a light-adjusting layer 10 for a display module, the light-adjusting layer 10 includes a first light-adjusting area and a second light-adjusting area, and the first light-adjusting area is The size of the nano-columns 12 of the light zone is different from the size of the nano-columns 12 of the second dimming zone.
  • the size parameters of the nano-columns 12 may include a maximum cross-sectional dimension (L) and a height (H).
  • the maximum size of the nano-columns 12 may be determined according to the incident light direction.
  • the size of the nano-pillars 12 in the light-adjusting layer 10 can be divided into sections to control the propagation direction of light in precise sections.
  • the maximum cross-sectional dimension (L) of the nano-pillars 12 is 80-180 nm, and the height (H) of the nano-pillars 12 is 80 nm.
  • an embodiment of the present invention provides a light-adjusting layer 10 for a display module, the light-adjusting layer 10 includes a first light-adjusting area and a second light-adjusting area, and the first light-adjusting area is The density of the nano-columns 12 in the optical zone is different from the density of the nano-columns 12 in the second dimming zone.
  • the distance (D) between adjacent nano-pillars 12 is 160-380 nm.
  • an embodiment of the present invention provides a dimming layer 10 for a display module, and the material of the nano-pillars 12 is silver or titanium dioxide. Titanium dioxide is a high-refractive-index dielectric material in the visible range and can phase modulate incident light in the range of 0-360°.
  • an embodiment of the present invention provides a display module.
  • the display module 1 includes: a backlight module 20 , and a display module located on the light-emitting side of the backlight module 20 .
  • the backlight module 20 is disposed under the display panel 40 to provide a light source in the direction of the display panel 40; Adjustment of wide and narrow viewing angles of the display module.
  • the backlight module 20 includes a light guide plate and a light source.
  • the light source may be an edge-type light source or a direct-type light source
  • the light guide plate may also be an edge-type light guide plate or a direct-type light guide plate.
  • the backlight module 20 may further include a prism sheet, a diffuser sheet, a reflective sheet, and a frame glue, and the prism sheet, the diffuser sheet, the light guide plate, and the reflective sheet are sequentially stacked along the light-emitting direction away from the display panel 40 . , the sealant is set around the light guide plate.
  • the prism sheet is used to improve the luminous efficiency of the entire backlight system;
  • the diffuser sheet can be used to improve the optical quality, and can also be used to improve the adsorption phenomenon between the diaphragm and other parts of the display panel 40;
  • the light guide plate is used to guide the light emitted by the light source. , and then provide a uniform backlight to the display panel 40;
  • the reflective sheet is used to control the reflection and refraction of light, so that the light path is controllable, so that the brightness of the display panel 40 can be more uniform, and the setting of the above film layer can make the display panel 40 more uniform. A better display effect can be achieved with low power consumption.
  • an embodiment of the present invention provides a display module.
  • the display module 1 further includes: a display module located in the backlight module 20 or located in the backlight module 20 .
  • the liquid crystal layer 30 between the display panel 40 and the display panel 40 wherein the liquid crystal layer 30 includes a first electrode 31 and a second electrode 32 arranged opposite to each other, and a first electrode 31 and a second electrode 32 located between the first electrode 31 and the second electrode 32
  • the liquid crystal molecular layer 33 is in a transparent state, and the light from the light exit side of the backlight module 20 passes through the liquid crystal layer
  • the liquid crystal molecular layer 33 is in a scattering state, so
  • the light path changes and is scattered into light in various directions.
  • the first electrode 31 and the second electrode 32 are both transparent electrodes.
  • the materials of the first electrode 31 and the second electrode 32 are nano-silver, graphene, ITO (indium oxide) tin), nanomaterial composite films or two-dimensional material films.
  • the liquid crystal layer 30 is located between the backlight module 20 and the display panel 40 .
  • the liquid crystal layer 30 may also be located in the backlight module 20 .
  • FIG. 2 when an electric field is formed between the first electrode 31 and the second electrode 32, the liquid crystal molecular layer 33 is in a transparent state, and the light from the light-emitting side of the backlight module 20 passes through the When the liquid crystal layer 30 is described, no scattering or refraction occurs. At this time, the light is emitted according to the original path.
  • the light emitted from the display panel 40 is mainly light perpendicular to its surface, and a small amount of light that is not perpendicular to its surface is emitted.
  • the propagation direction of light is modulated by the light-adjusting layer 10 , the light perpendicular to the surface of the light-adjusting layer 10 is directly transmitted through, and a small amount of light that is not perpendicular to the surface of the light-adjusting layer 10 is adjusted by the light-adjusting layer 10
  • the layer 10 absorbs the light, and finally only the light perpendicular to the surface of the dimming layer 10 is emitted from the display module 1, which is displayed in the field of view of the observer.
  • the liquid crystal molecular layer 33 is in a scattering state, and the light on the light-emitting side of the backlight module 20
  • the light path changes, and the light is scattered in various directions.
  • the light emitted from the display panel 40 is also scattered light through the display panel 40, and finally passes through the dimming layer 10. Since the dimming layer 10 can only absorb a small amount of light that is incident not perpendicular to its surface, the rest of the light that is not perpendicular to its surface passes directly through, and is displayed in the observer's field of vision, not only in frontal viewing angles.
  • the picture can also be observed in other directions, so as to realize wide viewing angle display.
  • the display module 1 can realize free switching between wide and narrow viewing angles, which makes up for the defect that the existing display cannot switch between the wide viewing angle mode and the narrow viewing angle mode.
  • the liquid crystal molecular layer 33 that can be converted between the transparent state and the scattering state is arranged, and the light adjustment layer 10 is arranged to adjust the transmission line of the light, so as to realize the Modulation of wide and narrow viewing angles; when the liquid crystal molecular layer 33 is in a transparent state, the light perpendicular to the surface of the dimming layer 10 is directly transmitted, and a small amount of light that is not perpendicular to the surface of the dimming layer 10 is passed through by the The light-adjusting layer 10 absorbs and realizes the narrow viewing angle display of the display module 1; when the liquid crystal molecular layer 33 is in a scattering state, a large number of light rays that are not perpendicular to the surface of the liquid crystal layer 33 directly exit through the side of the light-adjusting layer 10, The wide viewing angle display of the display module 1 is realized, so that the display module 1 can be freely switched between the wide viewing angle mode and the narrow viewing angle mode, which makes up for the existing display
  • the embodiment of the present invention provides a display module, the liquid crystal layer 30 includes a driving circuit, and the driving circuit is electrically connected to the first electrode 31 and the second electrode 32, so The driving circuit is used to control the liquid crystal molecular layer 33 to switch between the transparent state and the scattering state.
  • the first electrode 31 and the second electrode 32 are driven by the driving circuit, so that the liquid crystal molecular layer 33 is converted into the scattering state , when the light from the light-emitting side of the backlight module 20 passes through the liquid crystal layer 30, the light path changes and is scattered into light in all directions;
  • the driving circuit A driving voltage is provided to the first electrode 31 and the second electrode 32, so that the liquid crystal molecular layer 33 is converted into the transparent state, and the light from the light-emitting side of the backlight module 20 passes through the liquid crystal layer. At 30, no scattering or refraction occurs, and the light exits according to its original path.
  • the driving circuit may be formed on a flexible circuit board.
  • the liquid crystal molecular layer 33 is in a transparent state by applying a voltage to the first electrode 31 and the second electrode 32, so that the first electrode 31 and the second electrode 32 are in a transparent state.
  • the control method of controlling the liquid crystal molecular layer 33 to be in the scattering state without an electric field is only an example, and other control methods can also be used.
  • the first electrode 31 and the second electrode 32 are under the action of a voltage difference.
  • the liquid crystal molecular layer 33 is in a transparent state, and the first electrode 31 and the second electrode 32 make the liquid crystal molecular layer 33 in a scattering state under the action of another voltage difference, as long as the first electrode passes through the The electric field between 31 and the second electrode 32 can control the liquid crystal molecular layer 33 to switch between the transparent state and the scattering state.
  • the embodiment of the present invention provides a display module, and the material of the liquid crystal molecular layer 33 is polymer dispersed liquid crystal or polymer network liquid crystal.
  • the material of the liquid crystal molecular layer 33 is polymer dispersed liquid crystal or polymer network liquid crystal.
  • Polymer Dispersed Liquid Crystal (PDLC, Polymer Dispersed Liquid Crystal) / Polymer Network Liquid Crystal (PNLC, Polymer Network Liquid Crystal) are all polymer/liquid crystal composite films, among which, PDLC is a mixture of low molecular liquid crystal and prepolymer, and polymerized under certain conditions to form micron-sized liquid crystal particles 35 uniformly dispersed in the polymer network , and then use the dielectric anisotropy of liquid crystal molecules to obtain materials with electro-optical response characteristics.
  • PDLC has a structure in which the liquid crystal is dispersed by the polymer, that is, the liquid crystal is phase-separated in the polymer; PNLC has the liquid crystal dispersed in the polymer network.
  • the liquid crystals in the polymer network have a continuous phase.
  • a photocurable resin can be used as the polymer layer (polymer layer).
  • PNLC irradiates a solution in which a liquid crystal is mixed with a photopolymerizable polymer precursor (monomer) with ultraviolet rays, polymerizes the monomer to form a polymer, and disperses the liquid crystal in the network of the polymer.
  • PNLC in the off state, that is, when the electric field is zero, since the liquid crystal exists in the form of a multi-domain state in the network, the director distribution of each liquid crystal domain is random.
  • the discontinuous change in the refractive index causes scattering, which is a scattering state; when a voltage is applied to the PNLC, the electric field causes the directors in all liquid crystal domains to be arranged in a single domain state along the direction of the electric field, which is a refraction for incident light.
  • PNLC transmits light under the application of sufficient voltage. If the electric field is sufficiently large, the vertical transmittance will reach the maximum, which is a transparent state.
  • the polymer liquid crystal includes liquid crystal particles 35 uniformly distributed therein.
  • the optical axes of the liquid crystal particles 35 in the PDLC are randomly oriented, and the PDLC is in a scattering state; the first electrode 31 and the second electrode
  • the liquid crystal in the PDLC is oriented perpendicular to the display panel 40 along the direction of the electric field, and the effective refractive index of the liquid crystal particles 35 is basically matched with the refractive index of the polymer.
  • the PDLC is in a transparent state.
  • the electric field between the first electrode 31 and the second electrode 32 can control the light guide layer 311 to switch between the transparent state and the scattering state.
  • the optical axis of the liquid crystal particles 35 is aligned perpendicular to the surface of the PDLC, that is, consistent with the direction of the electric field, and the effective refractive index of the liquid crystal particles 35 is basically matched with the refractive index of the polymer.
  • the obvious interface constitutes a substantially uniform medium, so the incident light will not be scattered.
  • the liquid crystal molecular layer 33 is in a transparent state, and the light from the light exit side of the backlight module 20 passes through the liquid crystal layer 30. No scattering or refraction occurs. At this time, the light is emitted according to the original path.
  • the light emitted from the display panel 40 is mainly light perpendicular to its surface, and a small amount of light that is not perpendicular to its surface is emitted, and then passes through the dimming
  • the layer 10 modulates the propagation direction of the light, the light perpendicular to the surface of the dimming layer 10 is directly transmitted, and a small amount of light that is not perpendicular to the surface of the dimming layer 10 is absorbed by the dimming layer 10, and finally Only the light perpendicular to the surface of the dimming layer 10 is emitted from the display module 1, and is displayed in the field of view of the observer. Only the front viewing angle direction can see the picture, while other viewing angles cannot view the picture, so as to achieve narrow Viewing angle display.
  • the optical axis of the liquid crystal particles 35 is randomly oriented, showing a disordered state, and the effective refractive index of the liquid crystal particles 35 does not match the refractive index of the polymer, which causes the incident light to be strongly irradiated.
  • the liquid crystal molecular layer 33 is in a scattering state, and the light path of the light from the light-emitting side of the backlight module 20 changes when passing through the liquid crystal layer 30, and the light is scattered into light in all directions, passing through the display panel. 40.
  • the light emitted from the display panel 40 is also scattered light, and finally passes through the dimming layer 10.
  • the dimming layer 10 can only absorb a small amount of light incident not perpendicular to its surface, the rest is not perpendicular to its surface.
  • the light on the surface directly passes through and is displayed in the observer's field of vision.
  • the picture can be observed not only in the frontal viewing angle, but also in other directions, so as to realize a wide viewing angle display.
  • the display module is realized by utilizing the characteristics of polymer dispersed liquid crystal or polymer network liquid crystal that can be converted between a transparent state and a scattering state, combined with the function of the light adjustment layer 10 to modulate the light propagation direction. 1
  • the free switching of wide and narrow viewing angles makes up for the defect that existing monitors cannot switch between wide viewing angle mode and narrow viewing angle mode.
  • An embodiment of the present invention provides a driving method for a display module, which is used for driving the aforementioned display module, wherein the driving circuit is electrically connected to the first electrode 31 and the second electrode 32, so The driving circuit is used to control the liquid crystal molecular layer 33 to switch between the transparent state and the scattering state.
  • the display module 1 has a wide viewing angle mode and a narrow viewing angle mode.
  • the liquid crystal molecular layer 33 In the wide viewing angle mode, the liquid crystal molecular layer 33 is converted into the scattering state, and light is incident on the dimming layer 10 , and the dimming layer 10 Absorb a small amount of light that is not perpendicular to its surface, and the remaining large amount of light that is not perpendicular to its surface directly passes through, thereby realizing wide viewing angle display; in the narrow viewing angle mode, the liquid crystal molecule layer 33 is converted into the transparent state, Light perpendicular to the surface of the dimming layer 10 is directly transmitted through, while a small amount of light that is not perpendicular to the surface of the dimming layer 10 is absorbed by the dimming layer 10 , thereby realizing display with a narrow viewing angle.
  • the driving method of the display device includes the following steps: in a wide viewing angle mode, the liquid crystal molecular layer 33 is driven by the driving circuit to be converted into the scattering state, so that a large number of non-perpendicular light rays directly pass through the dimming state
  • the side of the layer 10 emits light to realize the wide viewing angle display of the display module 1; in the narrow viewing angle mode, a driving voltage is provided to drive the liquid crystal molecule layer 33 to convert to the transparent state through the driving circuit, so that the vertical
  • the light on the surface of the light-adjusting layer 10 is directly transmitted through, while a small amount of light not perpendicular to the surface of the light-adjusting layer 10 is absorbed by the light-adjusting layer 10 , so that the display module 1 can display with a narrow viewing angle.
  • the driving method can realize the free switching of the display module 1 between the wide viewing angle mode and the narrow viewing angle mode, so as to provide selective privacy content protection for the display screen, so that the surrounding viewers can watch what the controller wants them to watch. content and realize intelligent control.
  • the present invention provides a dimming layer for a display module and a display module, wherein nano-pillars arranged in an array are formed on one surface of the dimming layer, so that the dimming layer can transmit light perpendicular to the dimming layer.
  • the display module includes: a backlight module, a display panel on the light-emitting side of the backlight module, and a dimming layer on the light-emitting side of the display panel, and a liquid crystal layer located in the backlight module or between the backlight module and the display panel, using the feature that the liquid crystal layer can be converted between a transparent state and a scattering state, combined with the dimming layer has the function of modulating the direction of light propagation, Real-time control of wide and narrow viewing angles by the display module: when the liquid crystal molecular layer is in a transparent state, the light perpendicular to the surface of the dimming layer directly passes through, while a small amount of light that is not perpendicular to the surface of the dimming layer is absorbed by the dimming layer.
  • the display module can be freely switched between a wide viewing angle mode and a narrow viewing angle mode, thereby meeting people's needs for a privacy and confidentiality display function.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种用于显示模组的调光层(10)及显示模组,调光层(10)一侧表面形成有阵列排布的纳米柱(12),以使调光层(10)能透过垂直于调光层(10)表面的入射光,并吸收非垂直于调光层(10)表面的入射光。通过调光层(10)对光的传播方向进行调制,实现宽窄视角的调节。

Description

用于显示模组的调光层及显示模组 技术领域
本申请涉及显示领域,尤其涉及一种用于显示模组的调光层及显示模组。
背景技术
显示技术高速发展,显示设备的使用在日常生活中无处不在,随着消费者隐私意识增强,以往认为广视角是Mobile phone和PC等显示设备的优势,但在特殊场合中,比如地铁、高铁、飞机等,人们希望隐私得到保护,单一的广视角已不能满足人们的需求,有必要提供一种可以在宽视角模式与窄视角模式下进行切换的显示器,当人们不希望周围人观看到自己显示器上的内容时,将显示器切换到窄视角模式,当人们不介意周围人观看到自己显示器上的内容时,将显示器切换到宽视角模式。
因此,亟需一种用于显示模组的调光层及显示模组以解决上述技术问题。
技术问题
本申请实施例提供一种用于显示模组的调光层及显示模组,以解决当人们不希望周围人观看到自己显示器上的内容时,将显示器切换到窄视角模式,当人们不介意周围人观看到自己显示器上的内容时,将显示器切换到宽视角模式的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供了一种用于显示模组的调光层,所述调光层一侧表面形成有阵列排布的纳米柱,以使所述调光层能透过垂直于所述调光层表面的入射光,并吸收非垂直于所述调光层表面的入射光。
在一实施例中,所述调光层包括第一调光区和第二调光区,所述第一调光区的所述纳米柱的尺寸不同于所述第二调光区的所述纳米柱的尺寸。
在一实施例中,所述纳米柱的最大横截面尺寸为80-180nm,所述纳米柱的高度为80nm。
在一实施例中,所述调光层包括第一调光区和第二调光区,所述第一调光区的所述纳米柱的密度不同于所述第二调光区的所述纳米柱的密度。
在一实施例中,相邻所述纳米柱之间的间距为160-380nm。
在一实施例中,所述调光层包括一衬底,所述纳米柱形成在所述衬底上。
在一实施例中,所述纳米柱的材料为银或二氧化钛。
在一实施例中,所述纳米柱的截面形状包括圆形、矩形、三角形或梯形。
在一实施例中,呈阵列排布的所述纳米柱包括多个具有点阵设置的纳米柱阵列,所述纳米柱阵列排布的几何形状包括以下至少一个:正方形、六边形、八边形或五边形。
本申请实施例还提供了一种显示模组,包括:
背光模组;
显示面板,位于所述背光模组的出光侧;
调光层,位于所述显示面板的出光侧;
其中,所述调光层一侧表面形成有阵列排布的纳米柱,以使所述调光层能透过垂直于所述调光层表面的入射光,并吸收非垂直于所述调光层表面的入射光。
在一实施例中,所述调光层包括第一调光区和第二调光区,所述第一调光区的所述纳米柱的尺寸不同于所述第二调光区的所述纳米柱的尺寸。
在一实施例中,所述纳米柱的最大横截面尺寸为80-180nm,所述纳米柱的高度为80nm。
在一实施例中,所述调光层包括第一调光区和第二调光区,所述第一调光区的所述纳米柱的密度不同于所述第二调光区的所述纳米柱的密度。
在一实施例中,相邻所述纳米柱之间的间距为160-380nm。
在一实施例中,所述调光层包括一衬底,所述纳米柱形成在所述衬底上。
在一实施例中,所述纳米柱的材料为银或二氧化钛。
在一实施例中,所述纳米柱的截面形状包括圆形、矩形、三角形或梯形。
在一实施例中,呈阵列排布的所述纳米柱包括多个具有点阵设置的纳米柱阵列,所述纳米柱阵列排布的几何形状包括以下至少一个:正方形、六边形、八边形或五边形。
在一实施例中,所述显示模组还包括:液晶层,位于所述背光模组内或位于所述背光模组与所述显示面板之间;其中,所述液晶层包括相对设置的第一电极和第二电极,以及位于所述第一电极和所述第二电极之间的液晶分子层,所述液晶分子层在所述第一电极和所述第二电极形成的电场作用下能在散射态和透明态之间切换。
在一实施例中,所述液晶分子层的材料为聚合物分散液晶或聚合物网络液晶。
有益效果
该调光层一侧表面形成有阵列排布的纳米柱,以使调光层能透过垂直于调光层表面的入射光,并吸收非垂直于调光层表面的入射光,通过该调光层对光的传播方向进行调制,并利用位于背光模组内或位于背光模组与显示面板之间的液晶层,实现对宽窄视角的实时调控。
附图说明
图1是本发明实施例提供的一种用于显示模组的调光层的结构示意图;
图2为本发明实施例提供的一种显示模组的结构示意图;
图3为本发明实施例提供的当所述液晶分子层呈散射态时的光路原理图;
图4为本发明实施例提供的当所述液晶分子层呈透明态时的光路原理图。
本发明的实施方式
本申请提供一种用于显示模组的调光层及显示模组,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请实施例提供一种显示面板及其制备方法。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
如图1所示,本发明实施例提供一种用于显示模组的调光层10,所述调光层10一侧表面形成有阵列排布的纳米柱12,以使所述调光层10能透过垂直于所述调光层10表面的入射光,并吸收非垂直于所述调光层10表面的入射光。具体地,由于纳米柱12结构本身设置的特性,可进行光线的相位,振幅调整,当光线入射方向与纳米柱12结构匹配时,可以利用其结构特性,改变光线的反射相位。通过改变所述纳米柱12的设计方式,改变入射光线的反射相位,进而达到在可见光谱范围内任意波长角度可调的效果。
其中,对于所述纳米柱12的材料不进行限定,所述纳米柱12的材料应选取具有较高反射率的材料,例如Ag(银)、Cu(铜)或聚碳酸酯树脂组合物等。
本实施例中,通过对所述调光层10一侧表面形成的所述纳米柱12进行特殊设计(如调整所述纳米柱12的形状、大小、方向或者位置排布),可以实现控制光的传播(反射/折射)方向,对特定方向的光线进行透过或吸收。本实施例中,呈阵列排布的所述纳米柱12可以使所述调光层10能透过垂直于所述调光层10表面的入射光,并吸收非垂直于所述调光层10表面的入射光。通过所述调光层10对光的传播方向进行调制,实现宽窄视角的调节
其中,所述纳米柱12的截面形状包括圆形、矩形、三角形或梯形等图案,图案的排布参数,长、宽、高、间距、位置角度等与入射光线的角度相关,本发明对此不作限定。
进一步地,呈阵列排布的所述纳米柱12可以包括多个具有点阵设置的纳米柱阵列,所述纳米柱阵列排布的几何形状包括以下至少一个:正方形、六边形、八边形或五边形。
在一个实施例中,所述纳米柱阵列的纳米柱12之间的间隔可以选择,以实现控制光的传播(反射/折射)方向,对特定方向的光线进行选择性地透过或吸收。
在另一个实施例中,所述纳米柱阵列的纳米柱12的尺寸可以选择,以实现控制光的传播(反射/折射)方向,对特定方向的光线进行选择性地透过或吸收。
一种具体的实施方式中,本发明实施例提供一种用于显示模组的调光层10,所述调光层10包括一衬底14,所述纳米柱12形成在所述衬底14上。其中,所述衬底14可为单独成膜,也可是压印工艺脱膜残留膜,由于胶材具有一定的折射率,可依据实际需要选择相应折射率的胶材,避免影响光线的传播方向。
在一个实施例中,所述纳米柱12可以使用电子束蚀刻、或其他适当的纳米级写入技术和/或装置产生。在另一个实施例中,可以通过印刷、印制、浮雕、压花、模制或其他成型方式将所述纳米柱12成型到适当的所述衬底14上,以形成所述调光层10。
一种具体的实施方式中,本发明实施例提供一种用于显示模组的调光层10,所述调光层10包括第一调光区和第二调光区,所述第一调光区的所述纳米柱12的尺寸不同于所述第二调光区的所述纳米柱12的尺寸。具体地,如图1所示,所述纳米柱12的尺寸参数可以包括最大横截面尺寸(L)和高度(H),本实施例中,可依据入光方向决定所述纳米柱12的最大横截面尺寸及高度,通过对所述调光层10中所述纳米柱12的尺寸进行分区设计,可以实现精准分区控制光线的传播方向。
可选地,所述纳米柱12的最大横截面尺寸(L)为80-180nm,所述纳米柱12的高度(H)为80nm。
一种具体的实施方式中,本发明实施例提供一种用于显示模组的调光层10,所述调光层10包括第一调光区和第二调光区,所述第一调光区的所述纳米柱12的密度不同于所述第二调光区的所述纳米柱12的密度,通过对所述调光层10中所述纳米柱12的密度进行分区设计,可以达到精准分区控制光线传播方向的效果,显著提高了光线利用率。
可选地,相邻所述纳米柱12之间的间距(D)为160-380nm。
一种具体的实施方式中,本发明实施例提供一种用于显示模组的调光层10,所述纳米柱12的材料为银或二氧化钛。二氧化钛在可见光范围内是一种高折射率的介电材料,可在0-360°的范围内对入射光线进行相位调制。
一种具体的实施方式中,本发明实施例提供一种显示模组,如图2所示,所述显示模组1包括:背光模组20、位于所述背光模组20的出光侧的显示面板40,以及位于所述显示面板40出光侧的调光层10,其中,所述调光层10为上述实施例中的调光层10。所述背光模组20设于所述显示面板40下方,用于向所述显示面板40方向提供光源;通过所述调光层10对所述显示面板40出光侧的光线传播方向进行调制,实现对所述显示模组宽窄视角的调节。
本发明实施例提供的显示模组,所述背光模组20包括导光板和光源。可选地,所述光源可为侧入式光源或直射式光源,相应的,所述导光板也可以为侧入式导光板或直射式导光板。进一步地,所述背光模组20还可以包括棱镜片、扩散片、反射片,以及框胶,并且棱镜片、扩散片、导光板、反射片沿远离所述显示面板40的出光方向依次层叠设置,框胶围绕导光板设置。其中,棱镜片用于改善整个背光系统发光效率;扩散片可用于来提升光学品味,还可用来改善膜片与显示面板40其他部分的吸附现象;导光板用于将所述光源发出的光导出,然后向所述显示面板40提供均匀背光;反射片用于控制光线的反射、折射,使光线路径可控,可使显示面板40的亮度更均一,设置以上膜层可以使显示面板40在更低功耗下达到更好的显示效果。
一种具体的实施方式中,本发明实施例提供一种显示模组,如图2所示,所述显示模组1还包括:位于所述背光模组20内或位于所述背光模组20与所述显示面板40之间的液晶层30,其中,所述液晶层30包括相对设置的第一电极31和第二电极32,以及位于所述第一电极31和所述第二电极32之间的液晶分子层33,所述液晶分子层33在所述第一电极31和所述第二电极32形成的电场作用下能在散射态和透明态之间切换。具体地,在所述第一电极31和所述第二电极32形成的电场作用下,所述液晶分子层33呈透明态,所述背光模组20出光侧的光线在穿过所述液晶层30时不发生散射或折射,此时光线按照原来的路径射出;当所述第一电极31和所述第二电极32之间无电场的情况下,所述液晶分子层33呈散射态,所述背光模组20出光侧的光线在穿过所述液晶层30时光线路径发生变化,散射为各个方向的光。
其中,所述第一电极31和所述第二电极32均为透明电极,可选地,所述第一电极31和所述第二电极32的材料为纳米银、石墨烯、ITO(氧化铟锡)、纳米材料复合薄膜或二维材料薄膜。
图2中示例性地,所述液晶层30位于所述背光模组20与所述显示面板40之间,在其他实施方式中,所述液晶层30还可以位于所述背光模组20内。如图2所示,当所述第一电极31和所述第二电极32之间形成电场时,所述液晶分子层33呈透明态,所述背光模组20出光侧的光线在穿过所述液晶层30时不发生散射或折射,此时光线按照原来的路径射出,从所述显示面板40出射的光主要为垂直于其表面的光,有少量非垂直于其表面的光线射出,再通过所述调光层10对光的传播方向进行调制,垂直于所述调光层10表面的光直接透过,而少量非垂直于所述调光层10表面的光线则被所述调光层10吸收,最终只有垂直于所述调光层10表面的光从所述显示模组1中射出,表现在观察者的视野中,只有正视角方向可以看到画面,而其他视角无法观看到画面,从而实现窄视角显示;当所述第一电极31和所述第二电极32之间无电场的情况下,所述液晶分子层33呈散射态,所述背光模组20出光侧的光线在穿过所述液晶层30时光线路径发生变化,散射为各个方向的光,通过所述显示面板40,从所述显示面板40出射的光也是散射光,最后通过所述调光层10,由于所述调光层10只能吸收少量非垂直于其表面入射的光,剩余的非垂直于其表面的光线则直接通过,表现在观察者的视野中,不仅在正视角下可以观察到画面,其他方向也可以观察到画面,从而实现宽视角显示。本实施例中,所述显示模组1可实现宽窄视角自由切换,弥补了现有显示器不能在宽视角模式与窄视角模式下进行切换的缺陷。
本发明实施例提供的所述显示模组1通过设置可在透明态和散射态之间转换的所述液晶分子层33,以及设置所述调光层10用于调整光线的传播线路,实现了宽窄视角的调制;当所述液晶分子层33为透明态时,垂直于所述调光层10表面的光直接透过,而少量非垂直于所述调光层10表面的光线则被所述调光层10吸收,实现所述显示模组1的窄视角显示;当所述液晶分子层33为散射态时,大量非垂直于其表面的光线直接通过所述调光层10一侧出光,实现所述显示模组1的宽视角显示,从而可实现所述显示模组1在宽视角模式和窄视角模式之间自由切换,弥补了现有显示器不能在宽视角模式与窄视角模式下进行切换的缺陷。
一种具体的实施方式中,本发明实施例提供一种显示模组,所述液晶层30包括驱动电路,所述驱动电路与所述第一电极31和所述第二电极32电连接,所述驱动电路用于控制所述液晶分子层33在所述透明态和所述散射态之间切换。具体地,当所述显示模组1用于宽视角显示时,通过所述驱动电路驱动所述第一电极31和所述第二电极32,使所述液晶分子层33转换成所述散射态,所述背光模组20出光侧的光线在穿过所述液晶层30时光线路径发生变化,散射为各个方向的光;所述显示模组1用于窄视角显示时,通过所述驱动电路向所述第一电极31和所述第二电极32提供一驱动电压,使所述液晶分子层33转换成所述透明态,所述背光模组20出光侧的光线在穿过所述液晶层30时不发生散射或折射,此时光线按照原来的路径射出。
其中,所述驱动电路可以形成于柔性电路板上。
能够理解地,上述通过在所述第一电极31和所述第二电极32上施加电压来使所述液晶分子层33处于透明态,使所述第一电极31和所述第二电极32之间无电场来控制所述液晶分子层33处于散射态的控制方式仅为举例,也可以通过其他控制方式,例如,所述第一电极31和所述第二电极32在一种电压差作用下使所述液晶分子层33处于透明态,所述第一电极31和所述第二电极32在另一种电压差作用下使所述液晶分子层33处于散射态,只要通过所述第一电极31和所述第二电极32之间的电场作用控制所述液晶分子层33在透明态和散射态之间转换即可。
一种具体的实施方式中,本发明实施例提供一种显示模组,所述液晶分子层33的材料为聚合物分散液晶或聚合物网络液晶。利用聚合物分散液晶或聚合物网络液晶可在透明态和散射态之间转换的特点,结合所述调光层10具有调制光传播方向的作用,实现所述显示模组1对于宽窄视角的实时调控。
聚合物分散液晶(PDLC,Polymer Dispersed Liquid Crystal)/聚合物网络液晶(PNLC,Polymer Network Liquid Crystal)均属于聚合物/液晶复合膜,其中,PDLC是将低分子液晶与预聚物相混合,在一定条件下经聚合反应,形成微米级的液晶微粒35均匀地分散在高分子网络中,再利用液晶分子的介电各向异性获得具有电光响应特性的材料,PDLC具有通过高分子使液晶分散、即液晶在高分子内相分离的构造;PNLC具有在高分子网络中分散有液晶的构造,高分子网络中的液晶具有连续相。作为高分子层(聚合物层)可以使用光硬化树脂。例如,PNLC对在光聚合型的高分子前体(单体)中混合了液晶的溶液照射紫外线,使单体聚合而形成聚合物,使液晶分散到该聚合物的网络中。
对于PNLC而言,在关态,即零电场时,由于液晶在网络中是以一种多畴态形式存在,各个液晶畴的指向矢分布是随机的,入射光在畴与畴的界面处由于折射率的不连续变化而引起散射,表现为散射态;当给PNLC加上电压以后,电场使所有液晶畴中的指向矢沿电场方向排列成一个单畴态,对入射光来说就是一个折射率均匀的介质,PNLC在施加足够电压下光透过的情况,如果电场充分大时,垂直透过率将达到最大,为透明态。
如图3和图4所示,以所述液晶分子层33的材料为聚合物分散液晶为例,在本实施例中,所述聚合物液晶包括均匀分布在其中的液晶微粒35,具体地,当所述第一电极31和所述第二电极32之间没有形成电场时,PDLC中液晶微粒35的光轴取向随机,此时PDLC呈散射态;所述第一电极31和所述第二电极32之间形成电场时,PDLC中的液晶随着电场方向垂直于显示面板40取向,液晶微粒35的有效折射率与聚合物的折射率基本匹配,此时PDLC呈透明态,通过所述第一电极31和所述第二电极32之间的电场,可以控制所述导光层311在透明态和散射态之间转换。
如图3所示,在施加了外电压后,所述液晶微粒35的光轴垂直于PDLC表面排列,即与电场方向一致,液晶微粒35的有效折射率与聚合物的折射率基本匹配,无明显介面,构成了一基本均匀的介质,所以入射光不会发生散射,此时所述液晶分子层33呈透明态,所述背光模组20出光侧的光线在穿过所述液晶层30时不发生散射或折射,此时光线按照原来的路径射出,从所述显示面板40出射的光主要为垂直于其表面的光,有少量非垂直于其表面的光线射出,再通过所述调光层10对光的传播方向进行调制,垂直于所述调光层10表面的光直接透过,而少量非垂直于所述调光层10表面的光线则被所述调光层10吸收,最终只有垂直于所述调光层10表面的光从所述显示模组1中射出,表现在观察者的视野中,只有正视角方向可以看到画面,而其他视角无法观看到画面,从而实现窄视角显示。
在无外加电压的情形下,如图4所示,所述液晶微粒35的光轴取向随机,呈现无序状态,液晶微粒35的有效折射率不与聚合物的折射率匹配导致入射光线被强烈散射,此时所述液晶分子层33呈散射态,所述背光模组20出光侧的光线在穿过所述液晶层30时光线路径发生变化,散射为各个方向的光,通过所述显示面板40,从所述显示面板40出射的光也是散射光,最后通过所述调光层10,由于所述调光层10只能吸收少量非垂直于其表面入射的光,剩余的非垂直于其表面的光线则直接通过,表现在观察者的视野中,不仅在正视角下可以观察到画面,其他方向也可以观察到画面,从而实现宽视角显示。本实施例中,利用聚合物分散液晶或聚合物网络液晶可在透明态和散射态之间转换的特点,结合所述调光层10具有调制光传播方向的作用,实现了所述显示模组1对于宽窄视角的自由切换,弥补了现有显示器不能在宽视角模式与窄视角模式下进行切换的缺陷。
本发明实施例提供一种显示模组的驱动方法,用于驱动如前所述的显示模组,其中,所述驱动电路与所述第一电极31和所述第二电极32电连接,所述驱动电路用于控制所述液晶分子层33在所述透明态和所述散射态之间切换。所述显示模组1具有宽视角模式和窄视角模式,在宽视角模式下,所述液晶分子层33转换成所述散射态,光线入射至所述调光层10,所述调光层10吸收少量非垂直于其表面入射的光,剩余的大量非垂直于其表面的光线则直接通过,从而实现宽视角显示;在窄视角模式下,所述液晶分子层33转换成所述透明态,垂直于所述调光层10表面的光直接透过,而少量非垂直于所述调光层10表面的光线则被所述调光层10吸收,从而实现窄视角显示。
该显示装置的驱动方法包括以下步骤:在宽视角模式下,通过所述驱动电路驱动所述液晶分子层33转换成所述散射态,使大量非垂直于其表面的光线直接通过所述调光层10一侧出光,实现所述显示模组1的宽视角显示;在窄视角模式下,提供一驱动电压,通过所述驱动电路驱动所述液晶分子层33转换成所述透明态,使垂直于所述调光层10表面的光直接透过,而少量非垂直于所述调光层10表面的光线则被所述调光层10吸收,实现所述显示模组1的窄视角显示。
该驱动方法能够实现所述显示模组1在宽视角模式和窄视角模式之间自由切换,从而能够针对显示画面提供选择性隐私内容保护,使周边的观看者观看到控制者想让其观看的内容,实现智能控制。
综上,本发明提供一种用于显示模组的调光层及显示模组,该调光层一侧表面形成有阵列排布的纳米柱,以使调光层能透过垂直于调光层表面的入射光,并吸收非垂直于调光层表面的入射光,该显示模组包括:背光模组、位于背光模组的出光侧的显示面板、位于显示面板出光侧的调光层,以及位于背光模组内或位于背光模组与显示面板之间的液晶层,利用该液晶层可在透明态和散射态之间转换的特点,结合该调光层具有调制光传播方向的作用,实现显示模组对于宽窄视角的实时调控:当液晶分子层为透明态时,垂直于调光层表面的光直接透过,而少量非垂直于调光层表面的光线则被调光层吸收,实现显示模组的窄视角显示;当液晶分子层为散射态时,大量非垂直于其表面的光线直接通过调光层一侧出光,实现显示模组的宽视角显示,同时通过设置驱动电路,能够实现显示模组在宽视角模式和窄视角模式之间自由切换,进而满足了人们对隐私保密显示功能的需求。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种用于显示模组的调光层,其中,所述调光层一侧表面形成有阵列排布的纳米柱,以使所述调光层能透过垂直于所述调光层表面的入射光,并吸收非垂直于所述调光层表面的入射光。
  2. 如权利要求1所述的调光层,其中,所述调光层包括第一调光区和第二调光区,所述第一调光区的所述纳米柱的尺寸不同于所述第二调光区的所述纳米柱的尺寸。
  3. 如权利要求2所述的调光层,其中,所述纳米柱的最大横截面尺寸为80-180nm,所述纳米柱的高度为80nm。
  4. 如权利要求1所述的调光层,其中,所述调光层包括第一调光区和第二调光区,所述第一调光区的所述纳米柱的密度不同于所述第二调光区的所述纳米柱的密度。
  5. 如权利要求4所述的调光层,其中,相邻所述纳米柱之间的间距为160-380nm。
  6. 如权利要求1所述的调光层,其中,所述调光层包括一衬底,所述纳米柱形成在所述衬底上。
  7. 如权利要求1所述的调光层,其中,所述纳米柱的材料为银或二氧化钛。
  8. 如权利要求1所述的调光层,其中,所述纳米柱的截面形状包括圆形、矩形、三角形或梯形。
  9. 如权利要求1所述的调光层,其中,呈阵列排布的所述纳米柱包括多个具有点阵设置的纳米柱阵列,所述纳米柱阵列排布的几何形状包括以下至少一个:正方形、六边形、八边形或五边形。
  10. 一种显示模组,其中,包括:
    背光模组;
    显示面板,位于所述背光模组的出光侧;
    调光层,位于所述显示面板的出光侧;
    其中,所述调光层一侧表面形成有阵列排布的纳米柱,以使所述调光层能透过垂直于所述调光层表面的入射光,并吸收非垂直于所述调光层表面的入射光。
  11. 如权利要求10所述的显示模组,其中,所述调光层包括第一调光区和第二调光区,所述第一调光区的所述纳米柱的尺寸不同于所述第二调光区的所述纳米柱的尺寸。
  12. 如权利要求11所述的显示模组,其中,所述纳米柱的最大横截面尺寸为80-180nm,所述纳米柱的高度为80nm。
  13. 如权利要求10所述的显示模组,其中,所述调光层包括第一调光区和第二调光区,所述第一调光区的所述纳米柱的密度不同于所述第二调光区的所述纳米柱的密度。
  14. 如权利要求13所述的显示模组,其中,相邻所述纳米柱之间的间距为160-380nm。
  15. 如权利要求10所述的显示模组,其中,所述调光层包括一衬底,所述纳米柱形成在所述衬底上。
  16. 如权利要求10所述的显示模组,其中,所述纳米柱的材料为银或二氧化钛。
  17. 如权利要求10所述的显示模组,其中,所述纳米柱的截面形状包括圆形、矩形、三角形或梯形。
  18. 如权利要求10所述的显示模组,其中,呈阵列排布的所述纳米柱包括多个具有点阵设置的纳米柱阵列,所述纳米柱阵列排布的几何形状包括以下至少一个:正方形、六边形、八边形或五边形。
  19. 如权利要求10所述的显示模组,其中,所述显示模组还包括:
    液晶层,位于所述背光模组内或位于所述背光模组与所述显示面板之间;
    其中,所述液晶层包括相对设置的第一电极和第二电极,以及位于所述第一电极和所述第二电极之间的液晶分子层,所述液晶分子层在所述第一电极和所述第二电极形成的电场作用下能在散射态和透明态之间切换。
  20. 如权利要求19所述的显示模组,其中,所述液晶分子层的材料为聚合物分散液晶或聚合物网络液晶。
PCT/CN2021/088325 2021-03-31 2021-04-20 用于显示模组的调光层及显示模组 WO2022205528A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/294,403 US20240077764A1 (en) 2021-03-31 2021-04-20 Dimming layer for display module and display module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110352223.4 2021-03-31
CN202110352223.4A CN113156694A (zh) 2021-03-31 2021-03-31 一种用于显示模组的调光层及显示模组

Publications (1)

Publication Number Publication Date
WO2022205528A1 true WO2022205528A1 (zh) 2022-10-06

Family

ID=76886109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088325 WO2022205528A1 (zh) 2021-03-31 2021-04-20 用于显示模组的调光层及显示模组

Country Status (3)

Country Link
US (1) US20240077764A1 (zh)
CN (1) CN113156694A (zh)
WO (1) WO2022205528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230044317A1 (en) * 2021-08-09 2023-02-09 Dongwoo Fine-Chem Co., Ltd. Circuit board for light-emitting diode assembly, backlight unit including the same and image display device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115061314A (zh) * 2022-06-28 2022-09-16 武汉华星光电技术有限公司 背光模组及其制作方法、和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095524A1 (en) * 1998-07-28 2004-05-20 Nippon Telegraph And Telephone Corporation Optical device and display apparatus
CN105549236A (zh) * 2016-02-19 2016-05-04 京东方科技集团股份有限公司 可切换防窥装置及其制备方法、显示装置
CN106773180A (zh) * 2017-01-16 2017-05-31 京东方科技集团股份有限公司 视角切换结构和显示装置
CN108873400A (zh) * 2018-06-21 2018-11-23 昆山龙腾光电有限公司 显示装置及宽窄视角显示方法
CN111427203A (zh) * 2020-04-08 2020-07-17 深圳市华星光电半导体显示技术有限公司 显示装置及其制作方法
CN111458936A (zh) * 2020-04-26 2020-07-28 南方科技大学 一种发光模组和显示面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102464983B (zh) * 2010-11-12 2014-07-02 京东方科技集团股份有限公司 显示器、聚合物分散液晶膜及其制造方法和驱动方法
JP2013050694A (ja) * 2011-07-29 2013-03-14 Sony Corp 照明装置および表示装置
CN104656338B (zh) * 2015-03-20 2017-09-29 京东方科技集团股份有限公司 光栅、显示装置及光栅的制作方法
CN110673381B (zh) * 2019-09-12 2021-08-24 武汉华星光电技术有限公司 双层液晶显示面板及其制备方法
CN111338150B (zh) * 2020-04-13 2021-03-16 Tcl华星光电技术有限公司 一种显示面板及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095524A1 (en) * 1998-07-28 2004-05-20 Nippon Telegraph And Telephone Corporation Optical device and display apparatus
CN105549236A (zh) * 2016-02-19 2016-05-04 京东方科技集团股份有限公司 可切换防窥装置及其制备方法、显示装置
CN106773180A (zh) * 2017-01-16 2017-05-31 京东方科技集团股份有限公司 视角切换结构和显示装置
CN108873400A (zh) * 2018-06-21 2018-11-23 昆山龙腾光电有限公司 显示装置及宽窄视角显示方法
CN111427203A (zh) * 2020-04-08 2020-07-17 深圳市华星光电半导体显示技术有限公司 显示装置及其制作方法
CN111458936A (zh) * 2020-04-26 2020-07-28 南方科技大学 一种发光模组和显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230044317A1 (en) * 2021-08-09 2023-02-09 Dongwoo Fine-Chem Co., Ltd. Circuit board for light-emitting diode assembly, backlight unit including the same and image display device including the same
US11835816B2 (en) * 2021-08-09 2023-12-05 Dongwoo Fine-Chem Co., Ltd. Circuit board for light-emitting diode assembly, backlight unit including the same and image display device including the same

Also Published As

Publication number Publication date
US20240077764A1 (en) 2024-03-07
CN113156694A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP4752911B2 (ja) 照明装置、表示装置、およびエッジライト方式のバックライトに用いる光変調素子の製造方法
US8259384B2 (en) Illumination device and display device
US9507197B2 (en) Lighting device and display device
TWI545377B (zh) Lighting device and display device
JP5516319B2 (ja) 照明装置および表示装置
US9581749B2 (en) Lighting unit, display, and three-dimensional display
KR20150016220A (ko) 조명 장치 및 표시 장치
US20100171903A1 (en) Illuminating device and display device
WO2011125392A1 (ja) 表示装置および照明装置
JP2010092682A (ja) 照明装置、表示装置および光変調素子の製造方法
WO2012053411A1 (ja) 照明装置および表示装置
WO2012081498A1 (ja) 照明装置および表示装置
JP6035866B2 (ja) 照明装置および表示装置
WO2022205528A1 (zh) 用于显示模组的调光层及显示模组
JP2012027150A (ja) 高分子分散型液晶表示素子の製造方法及びその素子
CN115097669B (zh) 一种显示装置及其工作方法
WO2022067517A1 (zh) 透明显示面板、电子装置以及透明显示面板的制作方法
JPH0511235A (ja) 液晶パネルおよびその製造方法と液晶投写型テレビ
JP2020079967A (ja) 電子機器
JP2007187850A (ja) 液晶表示装置の製造方法
JPH0588152A (ja) 液晶パネルおよびその製造方法と液晶投写型テレビ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934182

Country of ref document: EP

Kind code of ref document: A1