WO2022205338A1 - User equipment, base station, and wireless communication method for mbs - Google Patents

User equipment, base station, and wireless communication method for mbs Download PDF

Info

Publication number
WO2022205338A1
WO2022205338A1 PCT/CN2021/085022 CN2021085022W WO2022205338A1 WO 2022205338 A1 WO2022205338 A1 WO 2022205338A1 CN 2021085022 W CN2021085022 W CN 2021085022W WO 2022205338 A1 WO2022205338 A1 WO 2022205338A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcch
base station
scheduling
wireless communication
communication method
Prior art date
Application number
PCT/CN2021/085022
Other languages
French (fr)
Inventor
Ahmed MOHAMMED MIKAEIL
Jia SHENG
Original Assignee
Tcl Communication(Ningbo)Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl Communication(Ningbo)Co., Ltd. filed Critical Tcl Communication(Ningbo)Co., Ltd.
Priority to CN202180096790.6A priority Critical patent/CN117121515A/en
Priority to PCT/CN2021/085022 priority patent/WO2022205338A1/en
Publication of WO2022205338A1 publication Critical patent/WO2022205338A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of wireless communication systems, and more particularly, to a user equipment (UE) , a base station, and wireless communication methods for multicast/broadcast service (MBS) , which can provide a flexible control plane (CP) scheduling mechanism for efficient MBS delivery and reception.
  • UE user equipment
  • MBS multicast/broadcast service
  • CP flexible control plane
  • Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These wireless communication systems may be capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as long term evolution (LTE) systems and fifth generation (5G) systems which may be referred to as new radio (NR) systems.
  • 4G systems such as long term evolution (LTE) systems
  • 5G systems which may be referred to as new radio (NR) systems.
  • 4G systems such as long term evolution (LTE) systems
  • 5G systems which may be referred to as new radio (NR) systems.
  • LTE long term evolution
  • 5G systems which may be referred to as new radio (NR) systems.
  • LTE long term evolution
  • 5G systems which may be referred to as new radio (NR) systems.
  • NR new radio
  • CDMA code division multiple access
  • TDMA time division multiple access
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipments (UEs) .
  • a wireless communication network may include a base station that can support communication for a UE.
  • the UE may communicate with the base station via downlink (DL) and uplink (UL) .
  • the DL refers to a communication link from the base station to the UE
  • the UL refers to a communication link from the UE to the base station.
  • broadcast and multicast services may be transported via a transport service called multimedia broadcast/multicast service (MBMS) .
  • MBMS multimedia broadcast/multicast service
  • a broadcast multicast service center (BM-SC) server is responsible to disseminate a media content to a group of subscribers.
  • BM-SC broadcast multicast service center
  • BM-SC broadcast multicast service center
  • MBMS is a point-to-multipoint (PTM) interface specification designed to provide efficient delivery of broadcast and multicast services within 3GPP cellular networks. Examples of MBMS interface specifications include those described in universal mobile telecommunication system (UMTS) and long term evolution (LTE) communication specifications.
  • UMTS universal mobile telecommunication system
  • LTE long term evolution
  • the specifications define transmission over single-frequency network configurations. Intended applications include mobile TV, news, radio broadcasting, file delivery, emergency alerts, and others.
  • MBMS multimedia broadcast/multicast service single frequency network
  • wireless communication devices such as cellular phones, tablets, laptops, and other devices with wireless transceivers that communicate with the base station within the communication system.
  • the base station provides wireless service to the wireless communication devices, sometimes referred to as mobile devices or UEs, within cells.
  • a user can access at least some multimedia services through a UE using either a point-to-point (PTP) connection or a PTM transmission.
  • PTP services can be provided using unicast techniques and PTM transmissions can be provided using MBMS communication, transmitted over an MBSFN or single cell point to multipoint (SC-PTM) communication.
  • PTP point-to-point
  • SC-PTM single cell point to multipoint
  • MBMS is provided using eMBMS. Accordingly, an MBMS service can be provided using either unicast service, MBSFN, or SC-PTM in an LTE system.
  • LTE long term evolution
  • RAN radio access network
  • MBS multicast/broadcast services
  • NR new radio
  • MBS control plane CP
  • LTE SC-PTM design for NR MBS (i.e. due to the similarity i.e., both LTE SC-PTM and NR MBS considers single cell only operation) .
  • NR MBS control plane should consider flexibility of scheduling to support dynamicity to support dynamic distribution of UEs within the area, dynamic control of the service area and the flexibility of configuration of MBS control channels to support different services with high degree of resource efficiency; or otherwise, more signalling overheads may happen e.g., if delay tolerant services and delay sensitive services are configured together in one control channel, whereby the control channel needs to be frequently scheduled in order to fulfil a latency requirement from the delay sensitive service.
  • a user equipment UE
  • a base station a base station
  • wireless communication methods which can solve issues in the prior art, provide a flexible MBS scheduling, a separate control plane scheduling for different MBS service, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
  • An object of the present disclosure is to propose a user equipment (UE) , a base station, and a wireless communication method for multicast/broadcast service (MBS) , which can solve issues in the prior art, provide a flexible MBS scheduling, provide a separate control plane scheduling for different MBS services, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
  • UE user equipment
  • base station base station
  • MBS multicast/broadcast service
  • a wireless communication method for multicast/broadcast service (MBS) performed by a user equipment (UE) comprises reporting, to a base station, a service interest of the UE and a beam quality measurement report of the UE, receiving, from the base station, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE, and monitoring the MCCH and beam sweeping configuration related to the service interest of the UE.
  • MBS multicast/broadcast service
  • UE user equipment
  • a wireless communication method for multicast/broadcast service (MBS) performed by a base station comprises receiving, from one or more user equipments (UEs) , a service interest of the one or more UEs and a beam quality measurement report of the one or more UEs, determining a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs based on the service interest of the one or more UEs and the beam quality measurement report of the one or more UEs, and configuring, to the one or more UEs, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs.
  • UEs user equipments
  • MCCH multicast control channel
  • MCCH multicast control channel
  • a user equipment comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to report, to a base station, a service interest of the UE and a beam quality measurement report of the UE.
  • the transceiver is configured to receive, from the base station, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE.
  • the processor is configured to monitor the MCCH and beam sweeping configuration related to the service interest of the UE.
  • MCCH multicast control channel
  • a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the transceiver is configured to receive, from one or more user equipments (UEs) , a service interest of the one or more UEs and a beam quality measurement report of the one or more UEs.
  • the processor is configured to determine a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs based on the service interest of the one or more UEs and the beam quality measurement report of the one or more UEs.
  • the processor is configured to configure, to the one or more UEs, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE.
  • MCCH multicast control channel
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above method.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
  • a computer program causes a computer to execute the above method.
  • FIG. 1 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB) of communication in a communication network system according to an embodiment of the present disclosure.
  • UEs user equipments
  • gNB base station
  • FIG. 2 is a flowchart illustrating a wireless communication method for MBS performed by a UE according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating a wireless communication method for MBS performed by a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating an example of a wireless communication method for MBS performed by a base station and one or more UEs according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating an example of a wireless communication method for MBS performed by one or more UEs according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating an example of a wireless communication method for MBS performed by a base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating an example of an MCCH configuration and an SSB or beam association configuration based on a UE report according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating an example of a single MCCH configuration according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating an example of a multiple MCCH configuration according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating an example of an MBS control channel configuration based on a service interest and a beam report of a UE according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an example of a configuration of MCCH according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram illustrating an example of an association between PDCCH occasions in an MCCH search space and an SSB according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram illustrating an example of an association between PDCCH occasions in an MCCH search space and an SSB according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • Multicast/broadcast services are expected to cover diversity of 5G applications and services ranging from public safety, mission critical, V2X, transparent IPv4/IPv6 multicast delivery, IPTV, software delivery over wireless to group communications and IoT applications.
  • These applications and services have a variety of requirements in term of delay (e.g., mission critical and V2X) and reliability (i.e., lossless transamination such as software delivery) .
  • delay e.g., mission critical and V2X
  • reliability i.e., lossless transamination such as software delivery
  • some embodiments of the present disclosure provide a new method that utilizes multi beam operations and flexible control plane (CP) configuration to provide efficient scheduling for better delivery and reception of 5G MBS to handle diverse requirements of different 5G NR MBS services.
  • CP flexible control plane
  • FIG. 1 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB) 20 for communication in a communication network system 30 according to an embodiment of the present disclosure are provided.
  • the communication network system 30 includes the one or more UEs 10 and the base station 20.
  • the one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • the processor 11 is configured to report, to the base station 20, a service interest of the UE 10 and a beam quality measurement report of the UE 10.
  • the transceiver 13 is configured to receive, from the base station 20, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE 10.
  • the processor 11 is configured to monitor the MCCH and beam sweeping configuration related to the service interest of the UE 10. This can solve issues in the prior art, provide a flexible MBS scheduling, provide a separate control plane scheduling for different MBS services, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
  • the transceiver 23 is configured to receive, from the one or more UEs 10, a service interest of the one or more UEs 10 and a beam quality measurement report of the one or more UEs 10.
  • the processor 21 is configured to determine a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs 10 based on the service interest of the one or more UEs 10 and the beam quality measurement report of the UE 10.
  • the processor 21 is configured to configure, to the one or more UEs 10, the multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs 10. This can solve issues in the prior art, provide a flexible MBS scheduling, provide a separate control plane scheduling for different MBS services, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
  • FIG. 2 illustrates a wireless communication method 200 for multicast/broadcast service (MBS) performed by a user equipment (UE) according to an embodiment of the present disclosure.
  • the method 200 includes: a block 202, reporting, to a base station, a service interest of the UE and a beam quality measurement report of the UE, a block 204, receiving, from the base station, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE, and a block 206, monitoring the MCCH and beam sweeping configuration related to the service interest of the UE.
  • MBS multicast control channel
  • FIG. 3 illustrates a wireless communication method 300 for multicast/broadcast service (MBS) performed by a base station according to an embodiment of the present disclosure.
  • the method 300 includes: a block 302, receiving, from one or more user equipments (UEs) , a service interest of the one or more UEs and a beam quality measurement report of the one or more UEs, a block 304, determining a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs based on the service interest of the one or more UEs and the beam quality measurement report of the one or more UEs, and a block 306, configuring, to the one or more UEs, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs.
  • MCCH multicast control channel
  • the beam quality measurement report of the UE comprises at least one of the followings: a UE best beam report; uplink channel state information reference signals (CSI-RSs) ; or a measurement quality of uplink sounding reference signals (SRSs) .
  • CSI-RSs uplink channel state information reference signals
  • SRSs measurement quality of uplink sounding reference signals
  • the beam quality measurement report of the UE is periodic, semi-persistent, or aperiodic, and/or the uplink CSI-RSs is used for the UE in a radio resource control (RRC) connected mode and comprises a reference signal receive power (RSRP) measurement of a beam, a reference signal receive quality (RSRQ) measurement of the beam, or a channel quality indicator (CQI) measurement of the beam, and/or the measurement quality of the uplink SRSs is used for the UE in an RRC idle/inactive mode.
  • RRC radio resource control
  • the base station configures, to the UE, the MCCH and beam sweeping configuration through an RRC signalling or a downlink control information (DCI) periodically, semi-persistently, or dynamically according to the UE report.
  • the base station determines the MCCH and beam sweeping configuration by configuring the MCCH and beam sweeping configuration based on a single MCCH or multiple MCCHs.
  • the base station is configured to configure the single MCCH per cell or per area under the base station to provide a point-to-multipoint (PTM) control plane (CP) scheduling configuration for group-common (gc) -PDCCHs or gc-physical downlink shared channels (PDSCHs) which schedule multicast traffic channels (MTCHs) carrying MBS services.
  • PTM point-to-multipoint
  • CP control plane
  • gc group-common
  • PDSCHs gc-physical downlink shared channels
  • MTCHs multicast traffic channels
  • the base station is configured to configure multiple MCCHs per cell or per area under the base station to provide a PTM CP scheduling configuration for gc-PDCCHs or gc-PDSCHs which schedule multicast traffic channels (MTCHs) carrying MBS services.
  • the base station determines the MCCH and beam sweeping configuration by configuring an MCCH within an MBS defined system information block (SIB) , configuring a radio network terminal identifier (RNTI) for MCCH scheduling, and/or configuring an RNTI for MCCH notification change scheduling.
  • SIB system information block
  • RNTI radio network terminal identifier
  • the base station is configured to configure a fixed RNTI for MCCH scheduling if there is a single MCCH per cell or per area under the base station (e.g., the area under the gNB distribution unit or gNB-DU) to provide a PTM CP scheduling configuration for MBS services.
  • the base station is configured to configure multiple fixed MCCH RNTIs for scheduling of multiple MCCH scheduling, each MCCH RNTI is corresponding to an MCCH if multiple MCCHs are configured per cell or per area under the base station (e.g., the area under the gNB distribution unit or gNB-DU) to provide a PTM CP scheduling configuration for MBS services.
  • the base station is configured to flexibly configure a number of MCCH RNTIs according to a number of flexibly configured MCCHs per cell or per area under the base station to provide a PTM CP scheduling configuration for MBS services.
  • the base station determines the MCCH and beam sweeping configuration by configuring an association between an MCCH search space, PDCCH occasions, and a synchronization signal block (SSB) for scheduling of an MCCH within an MBS SIB.
  • SSB synchronization signal block
  • the base station determines the MCCH and beam sweeping configuration by configuring an association between an MCCH scheduling and/or an MCCH change notification, PDCCH occasions, and an SSB for sweeping the MCCH scheduling and/or the MCCH change notification into SSB directions.
  • the base station is configured to configure a new RNTI for MCCH change notification for MBS with no additional information (e.g., bits bitmap) for MCCH and area association as in LTE.
  • the base station is configured to configure a new RNTI for MCCH change notification with some additional information (e.g., x bits bitmap, where x ⁇ 2, 4, 8, 16, 32, etc. ) for MCCH association with the best quality beam of the UE and/or the service interest of the UE.
  • FIG. 4 illustrates an example of a wireless communication method for MBS performed by a base station and one or more UEs according to an embodiment of the present disclosure.
  • FIG. 5 illustrates an example of a wireless communication method for MBS performed by one or more UEs according to an embodiment of the present disclosure.
  • FIG. 6 illustrates an example of a wireless communication method for MBS performed by a base station according to an embodiment of the present disclosure.
  • some embodiments of the present disclosure provide a new method/mechanism that utilizes multi beam operations and flexible control plane (CP) configuration to provide efficient scheduling to handle diverse requirements of different 5G NR MBS services.
  • CP flexible control plane
  • one or more UEs report its/their service interest and its/their beam quality measurement report to a network/gNB.
  • the base station After gathering the beam quality measurement and the service interests’ related information from one or more UEs, the base station e.g., gNB determines an appropriate MBS control plane (CP) configuration (i.e., a service interest related MCCH scheduling configuration and beam related configuration for each UE) required to schedule an MBS user plane service traffic for each UE. After that, the base station e.g., gNB provides interest service related MCCH scheduling and configurations and the best beam sweeping configuration to the one or more UEs. Upon the reception of the scheduling configuration from the gNB, each UE monitors only the MCCH configuration associated with the service that the UE is interested to receive.
  • CP MBS control plane
  • the beam quality measurement report of the UE includes at least one of the followings: a UE best beam report; uplink channel state information reference signals (CSI-RSs) , such as a reference signal receive power (RSRP) measurement of a beam, a reference signal receive quality (RSRQ) measurement of the beam, or a channel quality indicator (CQI) measurement of the beam (i.e., for radio resource control (RRC) connected UEs) ; or a measurement quality of uplink sounding reference signals (SRSs) (i.e., for RRC idle/inactive UEs) .
  • CSI-RSs uplink channel state information reference signals
  • RSRP reference signal receive power
  • RSRQ reference signal receive quality
  • CQI channel quality indicator
  • the beam quality measurement report of the UE is periodic.
  • the beam quality measurement report of the UE is semi-persistent.
  • the beam quality measurement report of the UE is aperiodic.
  • the UE receives, form the base station, the MCCH and beam sweeping configuration through an RRC signalling or a downlink control information (DCI) periodically, semi-persistently, or dynamically.
  • the MCCH and beam sweeping configuration is provided by a base station (such as gNB) to UEs.
  • the MCCH and beam sweeping configuration can be sent on an RRC signalling or a downlink control information (DCI) periodically (e.g., every 5 ms, 10 ms, or 20 ms, etc. ) or semi-persistently or dynamically based on reports of UEs.
  • DCI downlink control information
  • the base station determines the MCCH and beam sweeping configuration, by mapping, by the base station, quality of service (QoS) flows of different MBS services of the service interest of the multiple UEs into a same MBS or multicast radio bearers (MRB) if the multiple UEs within a beam are interested to receive a same set of services.
  • the base station determines the MCCH and beam sweeping configuration, by configuring for each MRB a separate MCCH to guarantee that each UE can be configured to monitor the MCCH that carries a scheduling of MRB associated with QoS flows of service/services that the UE is interested to receive.
  • the base station determines the MCCH and beam sweeping configuration, by configuring, by the base station, based on the beam measurement quality report by the one or more UEs, multiple beams and configuring a single MCCH and/or a MCCH notification change with different scheduling configurations comprising diverse modification periods and repetition periods to support a scheduling of MRBs configured for each beam.
  • the base station determines the MCCH and beam sweeping configuration, by configuring, by the base station, for each of a configured MCCH and/or an MCCH change notification scheduling configuration, a specific RNTI with additional bitmap and associating a scheduling with a monitoring occasion.
  • the base station determines the MCCH and beam sweeping configuration, by configuring each of a configured MCCH and/or an MCCH change notification scheduling configuration monitoring occasion, a set of PDCCH repetitions associated with each monitoring occasion and associating each PDCCH repetition to an SSB. In some embodiments, the base station determines the MCCH and beam sweeping configuration, by configuring, by the base station, a beam sweeping for an MCCH and/or an MCCH change notification scheduling configuration to directions of associated SSBs by sweeping a configured PDCCH to associated SSB beam directions.
  • the base station determines the MCCH and beam sweeping configuration by configuring the one or more UEs to acquire only one PDCCH to receive a configured MCCH or an MCCH change notification associated with the service interest of the one or more UEs. In some embodiments, the base station determines the MCCH and beam sweeping configuration, by configuring by the base station, based on the beam measurement quality report by the one or more UEs, multiple beams and configuring multiple MCCHs each with different scheduling configurations comprising modification periods and repetition periods to support a scheduling of MRBs configured for each beam.
  • FIG. 7 illustrates an example of an MCCH configuration and an SSB or beam association configuration based on a UE report according to an embodiment of the present disclosure.
  • the appropriate control plane scheduling as illustrated in FIG. 4 includes at least one of the following: configuring the appropriate control plane scheduling based on either single/one MCCH (i.e., with diverse modification periods and repetition periods) or multiple MCCHs (each with different modification periods and repetition periods, etc.
  • MCCH scheduling configuring an appropriate scheduling pattern for the configured MCCH within an MBS defined system information block (SIB) , a radio network terminal identifier (RNTI) configuration for MCCH scheduling, and/or an RNTI for MCCH notification change scheduling; configuring an association between an MCCH search space (i.e., in a system information block (SIB) ) , physical downlink control channel (PDCCH) occasions, and a synchronization signal block (SSB) for a scheduling of MCCH within an MBS SIB; or configuring an association between an MCCH scheduling and/or an MCCH change notification, PDCCH occasions, and an SSB for sweeping the MCCH scheduling and/or the MCCH change notification into specific SSB directions.
  • SIB system information block
  • RNTI radio network terminal identifier
  • SSB synchronization signal block
  • the service interest related MCCH and beam sweeping configuration which is provided by a gNB to UEs can be sent on an RRC signalling or a downlink DCI periodically (e.g., every 5 ms, 10 ms, or 20 ms, etc. ) or semi-persistently or dynamically based on reports of UEs.
  • the appropriate control plane (CP) scheduling configuration as illustrated in FIG. 7 includes at least one of the followings:
  • CP control plane
  • SSB synchronization signal block
  • MBS can adopt SC-PTM two-step based scheduling approach, i.e., by providing, on an SIB carried by BCCH, a scheduling configuration about a location of multicast control channel (MCCH) which is used to provide a scheduling of the MBS channel control plane for MBS services.
  • MCCH multicast control channel
  • the major benefit of the above two-step configuration provides a separate MCCH scheduling independent from SIB scheduling, in terms of e.g., a repetition period, a duration, and a modification period which is more flexible for providing different scheduling configuration for different MBS services.
  • FIG. 8 illustrates an example of a single MCCH configuration according to an embodiment of the present disclosure.
  • FIG. 9 illustrates an example of a multiple MCCH configuration according to an embodiment of the present disclosure.
  • FIG. 8 and FIG. 9 illustrate that, in some embodiments, to handle diverse requirement of different MBS services in NR MBS delivery mode 2, the following options can be configured by a network such as a base station (such as gNB) based on service interest-related information collected interest from UE reports or provided by a core network.
  • a network such as a base station (such as gNB) based on service interest-related information collected interest from UE reports or provided by a core network.
  • gNB base station
  • the network may configure a single MCCH per cell (or per the area under gNB-DU) to provide a PTM control plane (CP) scheduling configuration for gc-PDCCH (s) /gc-PDSCH (s) which schedule/carry MTCHs carrying MBS services as illustrated in FIG. 8.
  • CP PTM control plane
  • the network may configure multiple MCCHs per cell (or per the area under gNB-DU) to provide a PTM control plane (CP) scheduling configuration for gc-PDCCH (s) /gc-PDSCH (s) which schedule/carry MTCHs carrying MBS services as illustrated in FIG. 9.
  • CP PTM control plane
  • a base station such as a gNB
  • the base station requires some knowledge about how these services are mapped into radio bearers since the radio bearers are the only channel available between the UE and the base station (such as gNB) from the perspective of data plane scheduling.
  • 5G NR QoS model for unicast transmission defined in TS 23.501 5GC and NG-RAN ensure a downlink (DL) QoS by mapping DL packets to appropriate QoS flows and then to the radio bearers in two stage.
  • the 5GC associates DL packets of different services with QoS flows and QoS flow identifier (QFI) .
  • the NG-RAN maps DL QoS flows of different services into different data radio bearers (DRBs) .
  • DRBs data radio bearers
  • SDAP service data adaptation protocol
  • the base station may utilize the knowledge reported by UEs or acquired form 5G core (e.g., multicast) regarding the service interest of UEs to map the MBS DL OoS flows to appropriate MBS radio bearers (MRBs) using a SDAP function.
  • the mapping can be in a way that the base station (such as gNB) maps the OoS flows of different MBS services into the same MRB if multiple UEs within the beam are interested to receive these same set of services.
  • the base station (such as gNB) may configure for each MRB a separate MCCH (i.e., the number of MCCH per beam/cell is associated with the number of the configured MRB per beam/cell) . This can guarantee that each UE can be configured to monitor the MCCH that carries the scheduling of MRB associated with the QoS flows of service/services that the UE is interested to receive.
  • FIG. 10 illustrates an example of an MBS control channel configuration based on a service interest and a beam report of a UE according to an embodiment of the present disclosure.
  • three MCCHs are configured for three services (such as service 1, service 2, and service 3) assuming that their QoS flows are mapped to three MRBs.
  • single MCCH is configure for a single MRB and for a service (such as for service 1) .
  • only two MCCHs are configured due to mapping QoS flows associated with two services (such as service 1 and service 2) into a single MRB because all UEs in the third beam are interested to receive these services (such as service 1 and service 2) .
  • FIG. 11 illustrates an example of a configuration of MCCH according to an embodiment of the present disclosure.
  • FIG. 11 illustrates that, in some embodiments, for NR efficient scheduling of MCCH within SIBs, the LTE approach can be reused.
  • a base station such as gNB
  • MBS specific system information block e.g., MBS SIB or M-SIB
  • the configuration of the transmission window may compromise configuration of an MCCH repetition period (i.e., multiple NR slots) , an MCCH modification period, an MCCH radio frame offset with reference the system frame number (SFN) boundary, a first slot in a radio frame where MCCH can be scheduled, and a duration during which MCCH can be scheduled (e.g. expressed in the number of slots) as illustrated in FIG. 11.
  • an MCCH repetition period i.e., multiple NR slots
  • an MCCH modification period i.e., an MCCH modification period
  • an MCCH radio frame offset with reference the system frame number (SFN) boundary a first slot in a radio frame where MCCH can be scheduled
  • SFN system frame number
  • a SC-PTM uses a SC-RNTI with a fixed value to schedule a transmission of SC-MCCH message. Due to the fact, the NR MBS is also scheduled within a cell, a similar configuration can be assumed for NR MBS, but it should take into consideration the facts that multiple MCCHs or single MCCH can be used. Therefore, in some embodiments of the present disclosure, the following options can be considered for RNTI for MCCH scheduling in NR MBS.
  • the network/base station (such as gNB) may configure a fixed RNTI for MCCH scheduling if there is a single MCCH per cell (or per the area under gNB) to provide a PTM control plane scheduling configuration for MBS services.
  • the network/base station (such as gNB) may configure multiple fixed MCCH-RNTIs for scheduling of multiple MCCH scheduling, each MCCH RNTI is corresponding to an MCCH if multiple MCCHs are configured per cell (or per the area under gNB) to provide the PTM control plane scheduling configuration for MBS services.
  • the network/base station (such as gNB) may flexibly configure the number of MCCH-RNTIs according to the number of flexibly configured MCCHs per cell (or per the area under gNB) to provide the PTM control plane scheduling configuration for MBS services.
  • SC-MCCH single cell MCCH
  • a change notification for single cell MCCH uses a new introduced SC-N-RNTI and a DCI format for M-RNTI is reused for SC-N-RNTI, but only one bit in the 8-bit bitmap is used considering that there is only one SC-MCCH in a cell for SC-PTM.
  • the SC-MCCH change notification scrambled by SC-N-RNTI can be transmitted in a first subframe of MCCH transmission window to notify the change of SC-MCCH scheduled in the same sub-frame.
  • MCCH change notification mechanism is used to notify the changes of MCCH configuration due to session start for delivery mode 2 of NR MBS (other cases FFS, if any) ” . Therefore, in some embodiments of the present disclosure, for the notification change for NR MBS, taking LTE SC-PTM mechanisms as baseline, there are several options for MCCH change notification as flows:
  • the network/base station (such as gNB) may configure a new RNTI for MCCH change notification for NR MBS with no additional information such as the 8 bits bitmap used in LTE.
  • the base station (such as gNB) may configure a new RNTI for MCCH change notification with some additional information such as the 8 bits bitmap for MCCH association with beam and/or UE service of interest.
  • NR for search spaces of common channels such as broadcast control channel (BCCH) and paging control channel (PCCH) , PDCCH occasions are associated with synchronization signal block (SSBs) in a pre-defined manner. Therefore, a network/base station (such as gNB) can sweep a PDCCH in beam directions associated with SSBs. In this way, if a UE is aware of the pre-defined mapping, the UE can receive system information (SI) messages and paging on PDCCH occasions according to its detected SSBs for the purpose of power saving.
  • SI system information
  • MCCHs are also common channels and they are quite similar to BCCHs, MCCHs just carry different control messages (i.e. broadcast channel/multicast scheduling) .
  • the network/base station (such as gNB) can configure PDCCH occasions (i.e., in MBS SIB) for MCCH search space and associates them with SSBs in a pre-defined way, so that the UE can receive MCCH scheduling on PDCCH occasions within the SIB according to its detected SSB to save power.
  • PDCCH occasions i.e., in MBS SIB
  • MBS SIB MBS SIB
  • Beam sweeping has been agreed for the NR MBS user plane data scheduling as stated in according to RAN1 103 agreements: For RRC_IDLE/RRC_INACTIVE UEs, beam sweeping is supported for group-common PDCCH/PDSCH.
  • the user control plane scheduling can also support multi beam operations.
  • a set of repetition PDCCHs can be configured for the monitoring occasion of the MCCH scheduling and/or the MCCH change notification and can be associated to a SSB for sweeping the MCCH scheduling and/or the MCCH change notification into a specific direction .
  • the association configuration needs to take into account the design and configuration of MCCH (such as the single MCCH and multiple MCCH configuration) as well as the association of MCCH with service (s) of interest of UEs as detailed in some embodiments below.
  • FIG. 12 illustrates an example of an association between PDCCH occasions in an MCCH search space and an SSB according to an embodiment of the present disclosure.
  • FIG. 12 illustrates that, in some embodiments, for single MCCH configuration, The network/gNB may configure based on the reported beams measurement quality by UEs multiple beams and configuring a single MCCH and/or a MCCH notification change with different scheduling configurations (such as diverse modification periods and repetition periods etc. ) to support scheduling of the MRBs configured for each beam in order to support scheduling of multiple configured MRBs within a beam as illustrated in the above embodiments.
  • different scheduling configurations such as diverse modification periods and repetition periods etc.
  • the network/gNB may configure for each configured MCCH and/or the MCCH change notification scheduling configuration a specific RNTI with additional bitmap (e.g., 8 bits bitmap) and associate the scheduling with a monitoring occasion.
  • the network/gNB may configure for each of the configured MCCH and/or MCCH change notification scheduling configuration monitoring occasion, a set of PDCCHs repetitions associated with the monitoring occasion and associate each PDCCH repetition to an SSB.
  • the network/gNB may configure the beam sweeping for the MCCH and/or the MCCH change notification scheduling configuration to the directions of the associated SSBs by sweeping the configured PDCCH to the associated SSB beam directions.
  • the UE only needs to acquire one PDCCH to receive the configure MCCH or MCCH change notification.
  • the network/base station (such as gNB) may use the additional information e.g., 8 bits bitmap to differentiate the MCCH scheduling configurations for different services scheduled with the same MCCH for different UEs within the same beam
  • FIG. 13 illustrates an example of an association between PDCCH occasions in an MCCH search space and an SSB according to an embodiment of the present disclosure.
  • FIG. 13 illustrates that, in some embodiments, for multiples MCCHs configurations, the network/gNB may configure based on the reported beams measurement quality by UEs multiple beams and configuring multiple MCCHs and/or MCCH change notifications each with different scheduling configurations (e., g., modification periods and repetition periods etc. ) to support scheduling of the MRBs configured for each beam.
  • the network/gNB may configure for each of the configured MCCH and/or MCCH change notification an RNTI and associating each with a monitoring occasion.
  • the network/gNB may configure for the configured monitoring occasion of the configured MCCH and/or the MCCH change notification, a set of PDCCHs repetitions and associating each PDCCH repetition to an SSB.
  • the network/gNB may configure the beam sweeping for the MCCH and/or the MCCH change notification in the directions of the associated SSBs by sweeping the configured PDCCH to the associated SSB beam directions.
  • the UE only needs to acquire one PDCCH to receive the configured MCCH scheduling or MCCH change notification. Because the configured MCCH scheduling or MCCH change notification is associated with MRBs carrying the service of interest of the UEs, even if the UE monitors PDDCH blindly, the UE can only acquire MCCH that serves its service (s) of interest.
  • the new method provides a flexible MBS scheduling that capable of supporting the diversity of 5G MBS services and the dynamicity of the user distribution within the service area as well as the dynamicity on the user service interest change as required by the 3GPP documentation on NR MBS.
  • the new method provides a separate control plane scheduling for different MBS services which could help on reducing signalling overhead e.g., for delay tolerant services if these services are scheduled together along with the delay sensitive services are configured together using the same control plane configuration and scheduling.
  • the new method allows the UE to monitor only the MCCH configuration associated with the service that the UE is interested to receive, and this can help in UE complexity reduction.
  • Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes.
  • Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product.
  • FIG. 14 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 14 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the first positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultra book, a smartphone, a AR/VR glasses, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment (UE), a base station, and wireless communication methods for multicast/broadcast service (MBS) are provided. A wireless communication method for MBS performed by the UE includes reporting, to a base station, a service interest of the UE and a beam quality measurement report of the UE, and receiving from the base station, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE, and monitoring the MCCH and the beam sweeping configuration to receive the related service interest. This can solve issues in the prior art, provide a flexible MBS scheduling, provide a separate control plane scheduling for different MBS services, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.

Description

USER EQUIPMENT, BASE STATION, AND WIRELESS COMMUNICATION METHOD FOR MBS
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of wireless communication systems, and more particularly, to a user equipment (UE) , a base station, and wireless communication methods for multicast/broadcast service (MBS) , which can provide a flexible control plane (CP) scheduling mechanism for efficient MBS delivery and reception.
2. Description of the Related Art
Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These wireless communication systems may be capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as long term evolution (LTE) systems and fifth generation (5G) systems which may be referred to as new radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform-spread-OFDM (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipments (UEs) . A wireless communication network may include a base station that can support communication for a UE. The UE may communicate with the base station via downlink (DL) and uplink (UL) . The DL refers to a communication link from the base station to the UE, and the UL refers to a communication link from the UE to the base station.
In a 3rd generation partnership project (3GPP) cellular network, broadcast and multicast services may be transported via a transport service called multimedia broadcast/multicast service (MBMS) . A broadcast multicast service center (BM-SC) server is responsible to disseminate a media content to a group of subscribers. When a UE moves out of a network coverage, the UE may be unable to use the MBMS because uplink and downlink connections to the BM-SC server are no longer available. MBMS is a point-to-multipoint (PTM) interface specification designed to provide efficient delivery of broadcast and multicast services within 3GPP cellular networks. Examples of MBMS interface specifications include those described in universal mobile telecommunication system (UMTS) and long term evolution (LTE) communication specifications. For broadcast transmission across multiple cells, the specifications define transmission over single-frequency network configurations. Intended applications include mobile TV, news, radio broadcasting, file delivery, emergency alerts, and others. When services are broadcasted by MBMS, all cells inside a multimedia broadcast/multicast service single frequency network (MBSFN) area transmit the same MBMS service.
Users access these services and obtain the MBMS content through wireless communication devices such as cellular phones, tablets, laptops, and other devices with wireless transceivers that communicate with the base station within the communication system. The base station provides wireless service to the wireless communication devices, sometimes referred to as mobile devices or UEs, within cells. A user can access at least some multimedia services through a UE using either a point-to-point (PTP) connection or a PTM transmission. In 3GPP systems, PTP services can be provided using unicast techniques and PTM transmissions can be provided using MBMS communication, transmitted over an MBSFN or single cell point to multipoint (SC-PTM) communication. In systems operating in accordance with a revision of 3GPP long term evolution (LTE) communication specification, MBMS is provided using eMBMS. Accordingly, an MBMS service can be provided using either unicast service, MBSFN, or SC-PTM in an LTE system.
In radio access network (RAN) meeting #88-e held during June 29, 2020 to July 3, 2020, a new working item was approved to target a RAN support of multicast/broadcast services (MBS) in 5G. Aims of this working item is to provide the support in RAN to enable general MBS services over 5GS to support different MBS services such as public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, software delivery over wireless, group communications, and IoT applications. One of key objectives of this RAN working item is to study and specify the support for basic mobility with service continuity for 5G new radio (NR) multicast/broadcast services (MBS) .
During recent 3GPP meetings (RAN-112e and RAN-113e) , there were wide discussions on MBS control plane (CP) issues for NR MBS. The discussions on the regard of MBS control plane design have focused on reusing LTE SC-PTM design for NR MBS (i.e. due to the similarity i.e., both LTE SC-PTM and NR MBS considers single cell only operation) . However, as per the requirements of the approved working in RAN #88-e meeting the design of NR MBS control plane should consider flexibility of scheduling to support dynamicity to support dynamic distribution of UEs within the area, dynamic control of the service area and the flexibility of configuration of MBS control channels to support different services with high degree of resource efficiency; or otherwise, more signalling overheads may happen e.g., if delay tolerant services and delay sensitive services are configured together in one control channel, whereby the control channel needs to be frequently scheduled in order to fulfil a latency requirement from the delay sensitive service.
Therefore, there is a need for a user equipment (UE) , a base station, and wireless communication methods, which can solve issues in the prior art, provide a flexible MBS scheduling, a separate control plane scheduling for different MBS service, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
SUMMARY
An object of the present disclosure is to propose a user equipment (UE) , a base station, and a wireless communication method for multicast/broadcast service (MBS) , which can solve issues in the prior art, provide a flexible MBS scheduling, provide a separate control plane scheduling for different MBS services, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
In a first aspect of the present disclosure, a wireless communication method for multicast/broadcast service (MBS) performed by a user equipment (UE) comprises reporting, to a base station, a service interest of the UE and a beam quality measurement report of the UE, receiving, from the base station, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE, and monitoring the MCCH and beam sweeping configuration related to the service interest of the UE.
In a second aspect of the present disclosure, a wireless communication method for multicast/broadcast service (MBS) performed by a base station comprises receiving, from one or more user equipments (UEs) , a service interest of the one or more UEs and a beam quality measurement report of the one or more UEs, determining a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs based on the service interest of the one or more UEs and the beam quality measurement report of the one or more UEs, and configuring, to the one or more UEs, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs.
In a third aspect of the present disclosure, a user equipment (UE) comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to report, to a base station, a service interest of the UE and a beam quality measurement report of the UE. The transceiver is configured to receive, from the base station, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE. The processor is configured to monitor the MCCH and beam sweeping configuration related to the service interest of the UE.
In a fourth aspect of the present disclosure, a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The transceiver is configured to receive, from one or more user equipments  (UEs) , a service interest of the one or more UEs and a beam quality measurement report of the one or more UEs. The processor is configured to determine a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs based on the service interest of the one or more UEs and the beam quality measurement report of the one or more UEs. The processor is configured to configure, to the one or more UEs, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE.
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a sixth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
In a seventh aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above method.
In an eighth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
In a ninth aspect of the present disclosure, a computer program causes a computer to execute the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to illustrate the embodiments of the present disclosure or related art more clearly, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB) of communication in a communication network system according to an embodiment of the present disclosure.
FIG. 2 is a flowchart illustrating a wireless communication method for MBS performed by a UE according to an embodiment of the present disclosure.
FIG. 3 is a flowchart illustrating a wireless communication method for MBS performed by a base station according to an embodiment of the present disclosure.
FIG. 4 is a schematic diagram illustrating an example of a wireless communication method for MBS performed by a base station and one or more UEs according to an embodiment of the present disclosure.
FIG. 5 is a schematic diagram illustrating an example of a wireless communication method for MBS performed by one or more UEs according to an embodiment of the present disclosure.
FIG. 6 is a schematic diagram illustrating an example of a wireless communication method for MBS performed by a base station according to an embodiment of the present disclosure.
FIG. 7 is a schematic diagram illustrating an example of an MCCH configuration and an SSB or beam association configuration based on a UE report according to an embodiment of the present disclosure.
FIG. 8 is a schematic diagram illustrating an example of a single MCCH configuration according to an embodiment of the present disclosure.
FIG. 9 is a schematic diagram illustrating an example of a multiple MCCH configuration according to an embodiment of the present disclosure.
FIG. 10 is a schematic diagram illustrating an example of an MBS control channel configuration based on a service interest and a beam report of a UE according to an embodiment of the present disclosure.
FIG. 11 is a schematic diagram illustrating an example of a configuration of MCCH according to an embodiment of the present disclosure.
FIG. 12 is a schematic diagram illustrating an example of an association between PDCCH occasions in an MCCH search space and an SSB according to an embodiment of the present disclosure.
FIG. 13 is a schematic diagram illustrating an example of an association between PDCCH occasions in an MCCH search space and an SSB according to an embodiment of the present disclosure.
FIG. 14 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
Multicast/broadcast services (MBSs) are expected to cover diversity of 5G applications and services ranging from public safety, mission critical, V2X, transparent IPv4/IPv6 multicast delivery, IPTV, software delivery over wireless to group communications and IoT applications. These applications and services have a variety of requirements in term of delay (e.g., mission critical and V2X) and reliability (i.e., lossless transamination such as software delivery) . On the top of that there is a high possibility that multiple set of these applications and services can be provided simultaneously to UEs within an MBS service area, besides the possibility that the UEs interest over theses provided service/services may fluctuate over to over time. In order to provide a flexible of scheduling to support both the diversity of 5G MBS services and the dynamicity of the user distribution within the service area as well as the dynamicity on the user service interest change, some embodiments of the present disclosure provide a new method that utilizes multi beam operations and flexible control plane (CP) configuration to provide efficient scheduling for better delivery and reception of 5G MBS to handle diverse requirements of different 5G NR MBS services.
FIG. 1 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB) 20 for communication in a communication network system 30 according to an embodiment of the present disclosure are provided. The communication network system 30 includes the one or more UEs 10 and the base station 20. The one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  memory  12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21 in which case those can be communicatively coupled to the  processor  11 or 21 via various means as is known in the art.
In some embodiments, the processor 11 is configured to report, to the base station 20, a service interest of the UE 10 and a beam quality measurement report of the UE 10. The transceiver 13 is configured to receive, from the base station  20, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE 10. The processor 11 is configured to monitor the MCCH and beam sweeping configuration related to the service interest of the UE 10. This can solve issues in the prior art, provide a flexible MBS scheduling, provide a separate control plane scheduling for different MBS services, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
In some embodiments, the transceiver 23 is configured to receive, from the one or more UEs 10, a service interest of the one or more UEs 10 and a beam quality measurement report of the one or more UEs 10. The processor 21 is configured to determine a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs 10 based on the service interest of the one or more UEs 10 and the beam quality measurement report of the UE 10. The processor 21 is configured to configure, to the one or more UEs 10, the multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs 10. This can solve issues in the prior art, provide a flexible MBS scheduling, provide a separate control plane scheduling for different MBS services, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
FIG. 2 illustrates a wireless communication method 200 for multicast/broadcast service (MBS) performed by a user equipment (UE) according to an embodiment of the present disclosure. In some embodiments, the method 200 includes: a block 202, reporting, to a base station, a service interest of the UE and a beam quality measurement report of the UE, a block 204, receiving, from the base station, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE, and a block 206, monitoring the MCCH and beam sweeping configuration related to the service interest of the UE. This can solve issues in the prior art, provide a flexible MBS scheduling, provide a separate control plane scheduling for different MBS services, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
FIG. 3 illustrates a wireless communication method 300 for multicast/broadcast service (MBS) performed by a base station according to an embodiment of the present disclosure. In some embodiments, the method 300 includes: a block 302, receiving, from one or more user equipments (UEs) , a service interest of the one or more UEs and a beam quality measurement report of the one or more UEs, a block 304, determining a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs based on the service interest of the one or more UEs and the beam quality measurement report of the one or more UEs, and a block 306, configuring, to the one or more UEs, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs. This can solve issues in the prior art, provide a flexible MBS scheduling, provide a separate control plane scheduling for different MBS services, reduce a signalling overhead, reduce a UE complexity, and/or provide a good communication performance.
In some embodiments, the beam quality measurement report of the UE comprises at least one of the followings: a UE best beam report; uplink channel state information reference signals (CSI-RSs) ; or a measurement quality of uplink sounding reference signals (SRSs) . In some embodiments, the beam quality measurement report of the UE is periodic, semi-persistent, or aperiodic, and/or the uplink CSI-RSs is used for the UE in a radio resource control (RRC) connected mode and comprises a reference signal receive power (RSRP) measurement of a beam, a reference signal receive quality (RSRQ) measurement of the beam, or a channel quality indicator (CQI) measurement of the beam, and/or the measurement quality of the uplink SRSs is used for the UE in an RRC idle/inactive mode. In some embodiments, the base station configures, to the UE, the MCCH and beam sweeping configuration through an RRC signalling or a downlink control information (DCI) periodically, semi-persistently, or dynamically according to the UE report. In some embodiments, the base station determines the MCCH and beam sweeping configuration by configuring the MCCH and beam sweeping configuration based on a single MCCH or multiple MCCHs.
In some embodiments, the base station is configured to configure the single MCCH per cell or per area under the base station to provide a point-to-multipoint (PTM) control plane (CP) scheduling configuration for group-common (gc) -PDCCHs or gc-physical downlink shared channels (PDSCHs) which schedule multicast traffic channels (MTCHs) carrying MBS services. In some embodiments, the base station is configured to configure multiple MCCHs per cell or per area under the base station to provide a PTM CP scheduling configuration for gc-PDCCHs or gc-PDSCHs which schedule multicast traffic channels (MTCHs) carrying MBS services. In some embodiments, the base station determines the MCCH and beam sweeping configuration by configuring an MCCH within an MBS defined system information block (SIB) , configuring a radio network terminal identifier (RNTI) for MCCH scheduling, and/or configuring an RNTI for MCCH notification change scheduling. In some embodiments, the base station is configured to configure a fixed RNTI for MCCH scheduling if there is a single MCCH per cell or per area under the base station (e.g., the area under the gNB distribution unit or gNB-DU) to provide a PTM CP scheduling configuration for MBS services.
In some embodiments, the base station is configured to configure multiple fixed MCCH RNTIs for scheduling of multiple MCCH scheduling, each MCCH RNTI is corresponding to an MCCH if multiple MCCHs are configured per cell or per area under the base station (e.g., the area under the gNB distribution unit or gNB-DU) to provide a PTM CP scheduling configuration for MBS services. In some embodiments, the base station is configured to flexibly configure a number of MCCH RNTIs according to a number of flexibly configured MCCHs per cell or per area under the base station to provide a PTM CP scheduling configuration for MBS services. In some embodiments, the base station determines the MCCH and beam sweeping configuration by configuring an association between an MCCH search space, PDCCH occasions, and a synchronization signal block (SSB) for scheduling of an MCCH within an MBS SIB.
In some embodiments, the base station determines the MCCH and beam sweeping configuration by configuring an association between an MCCH scheduling and/or an MCCH change notification, PDCCH occasions, and an SSB for sweeping the MCCH scheduling and/or the MCCH change notification into SSB directions. In some embodiments, the base station is configured to configure a new RNTI for MCCH change notification for MBS with no additional information (e.g., bits bitmap) for MCCH and area association as in LTE. In some embodiments, the base station is configured to configure a new RNTI for MCCH change notification with some additional information (e.g., x bits bitmap, where x ∈ 2, 4, 8, 16, 32, etc. ) for MCCH association with the best quality beam of the UE and/or the service interest of the UE.
FIG. 4 illustrates an example of a wireless communication method for MBS performed by a base station and one or more UEs according to an embodiment of the present disclosure. FIG. 5 illustrates an example of a wireless communication method for MBS performed by one or more UEs according to an embodiment of the present disclosure. FIG. 6 illustrates an example of a wireless communication method for MBS performed by a base station according to an embodiment of the present disclosure. FIG. 4 to FIG. 6 illustrate that, in some embodiments, to achieve a flexible scheduling to support a diversity of 5G MBS services and a dynamicity of a user distribution within a service area as well as a dynamicity on a user service interest change, some embodiments of the present disclosure provide a new method/mechanism that utilizes multi beam operations and flexible control plane (CP) configuration to provide efficient scheduling to handle diverse requirements of different 5G NR MBS services. In some embodiments, one or more UEs report its/their service interest and its/their beam quality measurement report to a network/gNB. After gathering the beam quality measurement and the service interests’ related information from one or more UEs, the base station e.g., gNB determines an appropriate MBS control plane (CP) configuration (i.e., a service interest related MCCH scheduling configuration and beam related configuration for each UE) required to schedule an MBS user plane service traffic for each UE. After that, the base station e.g., gNB provides interest service related MCCH scheduling and configurations and the best beam sweeping configuration to the one or more UEs. Upon the reception of the scheduling configuration from the gNB, each UE monitors only the MCCH configuration associated with the service that the UE is interested to receive.
In some embodiments, the beam quality measurement report of the UE includes at least one of the followings: a UE best beam report; uplink channel state information reference signals (CSI-RSs) , such as a reference signal receive power (RSRP) measurement of a beam, a reference signal receive quality (RSRQ) measurement of the beam, or a channel quality indicator (CQI) measurement of the beam (i.e., for radio resource control (RRC) connected UEs) ; or a measurement quality of uplink sounding reference signals (SRSs) (i.e., for RRC idle/inactive UEs) . Optionally, the beam quality measurement report of the UE is periodic. Optionally, the beam quality measurement report of the UE is semi-persistent. Optionally, the beam quality measurement report of the UE is aperiodic.
In some embodiments, the UE receives, form the base station, the MCCH and beam sweeping configuration through an RRC signalling or a downlink control information (DCI) periodically, semi-persistently, or dynamically. In details, in some embodiments, the MCCH and beam sweeping configuration is provided by a base station (such as gNB) to UEs. Optionally, the MCCH and beam sweeping configuration can be sent on an RRC signalling or a downlink control information (DCI) periodically (e.g., every 5 ms, 10 ms, or 20 ms, etc. ) or semi-persistently or dynamically based on reports of UEs.
In some embodiments, the base station determines the MCCH and beam sweeping configuration, by mapping, by the base station, quality of service (QoS) flows of different MBS services of the service interest of the multiple UEs into a same MBS or multicast radio bearers (MRB) if the multiple UEs within a beam are interested to receive a same set of services. In some embodiments, the base station determines the MCCH and beam sweeping configuration, by configuring for each MRB a separate MCCH to guarantee that each UE can be configured to monitor the MCCH that carries a scheduling of MRB associated with QoS flows of service/services that the UE is interested to receive. In some embodiments, the base station determines the MCCH and beam sweeping configuration, by configuring, by the base station, based on the beam measurement quality report by the one or more UEs, multiple beams and configuring a single MCCH and/or a MCCH notification change with different scheduling configurations comprising diverse modification periods and repetition periods to support a scheduling of MRBs configured for each beam. In some embodiments, the base station determines the MCCH and beam sweeping configuration, by configuring, by the base station, for each of a configured MCCH and/or an MCCH change notification scheduling configuration, a specific RNTI with additional bitmap and associating a scheduling with a monitoring occasion.
In some embodiments, the base station determines the MCCH and beam sweeping configuration, by configuring each of a configured MCCH and/or an MCCH change notification scheduling configuration monitoring occasion, a set of PDCCH repetitions associated with each monitoring occasion and associating each PDCCH repetition to an SSB. In some embodiments, the base station determines the MCCH and beam sweeping configuration, by configuring, by the base station, a beam sweeping for an MCCH and/or an MCCH change notification scheduling configuration to directions of associated SSBs by sweeping a configured PDCCH to associated SSB beam directions. In some embodiments, the base station determines the MCCH and beam sweeping configuration by configuring the one or more UEs to acquire only one PDCCH to receive a configured MCCH or an MCCH change notification associated with the service interest of the one or more UEs. In some embodiments, the base station determines the MCCH and beam sweeping configuration, by configuring by the base station, based on the beam measurement quality report by the one or more UEs, multiple beams and configuring multiple MCCHs each with different scheduling configurations comprising modification periods and repetition periods to support a scheduling of MRBs configured for each beam.
FIG. 7 illustrates an example of an MCCH configuration and an SSB or beam association configuration based on a UE report according to an embodiment of the present disclosure. In some embodiments, the appropriate control plane scheduling as illustrated in FIG. 4 includes at least one of the following: configuring the appropriate control plane scheduling based on either single/one MCCH (i.e., with diverse modification periods and repetition periods) or multiple MCCHs (each  with different modification periods and repetition periods, etc. ) ; configuring an appropriate scheduling pattern for the configured MCCH within an MBS defined system information block (SIB) , a radio network terminal identifier (RNTI) configuration for MCCH scheduling, and/or an RNTI for MCCH notification change scheduling; configuring an association between an MCCH search space (i.e., in a system information block (SIB) ) , physical downlink control channel (PDCCH) occasions, and a synchronization signal block (SSB) for a scheduling of MCCH within an MBS SIB; or configuring an association between an MCCH scheduling and/or an MCCH change notification, PDCCH occasions, and an SSB for sweeping the MCCH scheduling and/or the MCCH change notification into specific SSB directions.
In details, in some embodiments, the service interest related MCCH and beam sweeping configuration which is provided by a gNB to UEs can be sent on an RRC signalling or a downlink DCI periodically (e.g., every 5 ms, 10 ms, or 20 ms, etc. ) or semi-persistently or dynamically based on reports of UEs.
In details, in some embodiments, the appropriate control plane (CP) scheduling configuration as illustrated in FIG. 7 includes at least one of the followings:
Configuring the appropriate control plane (CP) scheduling based on either single/one MCCH (i.e., with diverse modification periods and repetition periods) or multiple MCCHs (each with different modification periods and repetition periods etc. )
Configuring an appropriate scheduling pattern for a configured MCCH within an MBS defined system information block (SIB) , an RNTI configuration for MCCH scheduling, and/or an RNTI for MCCH notification change scheduling.
Configuring an association between an MCCH search space (i.e., in SIB) , PDCCH occasions, and an SSB for scheduling of MCCH within an MBS SIB.
Configuring an association between MCCH scheduling/MCCH change notification, PDCCH occasions, and a synchronization signal block (SSB) for sweeping the MCCH scheduling and/or the MCCH change notification into specific SSB directions.
Regarding NR MBS PTM configuration control plane (CP) scheduling, MBS can adopt SC-PTM two-step based scheduling approach, i.e., by providing, on an SIB carried by BCCH, a scheduling configuration about a location of multicast control channel (MCCH) which is used to provide a scheduling of the MBS channel control plane for MBS services. The major benefit of the above two-step configuration provides a separate MCCH scheduling independent from SIB scheduling, in terms of e.g., a repetition period, a duration, and a modification period which is more flexible for providing different scheduling configuration for different MBS services. FIG. 8 illustrates an example of a single MCCH configuration according to an embodiment of the present disclosure. FIG. 9 illustrates an example of a multiple MCCH configuration according to an embodiment of the present disclosure. FIG. 8 and FIG. 9 illustrate that, in some embodiments, to handle diverse requirement of different MBS services in NR MBS delivery mode 2, the following options can be configured by a network such as a base station (such as gNB) based on service interest-related information collected interest from UE reports or provided by a core network.
Option 1: The network may configure a single MCCH per cell (or per the area under gNB-DU) to provide a PTM control plane (CP) scheduling configuration for gc-PDCCH (s) /gc-PDSCH (s) which schedule/carry MTCHs carrying MBS services as illustrated in FIG. 8.
Option 2: The network may configure multiple MCCHs per cell (or per the area under gNB-DU) to provide a PTM control plane (CP) scheduling configuration for gc-PDCCH (s) /gc-PDSCH (s) which schedule/carry MTCHs carrying MBS services as illustrated in FIG. 9.
In some embodiments, in the case of multiple MCCHs, in order for a base station (such as a gNB) to determine an appropriate number of MCCHs that can be configured to schedule MBS services of interest for different UEs within a  beam, the base station (such as gNB) requires some knowledge about how these services are mapped into radio bearers since the radio bearers are the only channel available between the UE and the base station (such as gNB) from the perspective of data plane scheduling. For 5G NR QoS model for unicast transmission defined in TS 23.501, 5GC and NG-RAN ensure a downlink (DL) QoS by mapping DL packets to appropriate QoS flows and then to the radio bearers in two stage. In some examples, in the first stage, the 5GC associates DL packets of different services with QoS flows and QoS flow identifier (QFI) . In some examples, in the second stage, the NG-RAN maps DL QoS flows of different services into different data radio bearers (DRBs) . As for NR MBS, it has been agreed in RAN2-112e that the function of mapping of QoS flows to radio bearers in service data adaptation protocol (SDAP) is required for mapping between MBS DL QoS flows and MBS or multicast radio bearers (MRBs) . Therefore, the base station (such as gNB) may utilize the knowledge reported by UEs or acquired form 5G core (e.g., multicast) regarding the service interest of UEs to map the MBS DL OoS flows to appropriate MBS radio bearers (MRBs) using a SDAP function. The mapping can be in a way that the base station (such as gNB) maps the OoS flows of different MBS services into the same MRB if multiple UEs within the beam are interested to receive these same set of services. In this way, the base station (such as gNB) may configure for each MRB a separate MCCH (i.e., the number of MCCH per beam/cell is associated with the number of the configured MRB per beam/cell) . This can guarantee that each UE can be configured to monitor the MCCH that carries the scheduling of MRB associated with the QoS flows of service/services that the UE is interested to receive.
FIG. 10 illustrates an example of an MBS control channel configuration based on a service interest and a beam report of a UE according to an embodiment of the present disclosure. For example, as illustrated in FIG. 10, for the first beam, three MCCHs are configured for three services (such as service 1, service 2, and service 3) assuming that their QoS flows are mapped to three MRBs. For example, for the second beam, single MCCH is configure for a single MRB and for a service (such as for service 1) . For example, for the third beam, only two MCCHs are configured due to mapping QoS flows associated with two services (such as service 1 and service 2) into a single MRB because all UEs in the third beam are interested to receive these services (such as service 1 and service 2) .
FIG. 11 illustrates an example of a configuration of MCCH according to an embodiment of the present disclosure. FIG. 11 illustrates that, in some embodiments, for NR efficient scheduling of MCCH within SIBs, the LTE approach can be reused. Considering that the granularity of the scheduling in NR is a slot. Therefore, a base station (such as gNB) may configure an MBS specific system information block (e.g., MBS SIB or M-SIB) with an appropriate transmission window to carry MCCH. The configuration of the transmission window may compromise configuration of an MCCH repetition period (i.e., multiple NR slots) , an MCCH modification period, an MCCH radio frame offset with reference the system frame number (SFN) boundary, a first slot in a radio frame where MCCH can be scheduled, and a duration during which MCCH can be scheduled (e.g. expressed in the number of slots) as illustrated in FIG. 11.
Scheduling of MCCH:
According to LTE MBMS, a SC-PTM uses a SC-RNTI with a fixed value to schedule a transmission of SC-MCCH message. Due to the fact, the NR MBS is also scheduled within a cell, a similar configuration can be assumed for NR MBS, but it should take into consideration the facts that multiple MCCHs or single MCCH can be used. Therefore, in some embodiments of the present disclosure, the following options can be considered for RNTI for MCCH scheduling in NR MBS.
Option 1: The network/base station (such as gNB) may configure a fixed RNTI for MCCH scheduling if there is a single MCCH per cell (or per the area under gNB) to provide a PTM control plane scheduling configuration for MBS services.
Option 2: The network/base station (such as gNB) may configure multiple fixed MCCH-RNTIs for scheduling of multiple MCCH scheduling, each MCCH RNTI is corresponding to an MCCH if multiple MCCHs are configured per cell (or per the area under gNB) to provide the PTM control plane scheduling configuration for MBS services.
Option3: The network/base station (such as gNB) may flexibly configure the number of MCCH-RNTIs according to the number of flexibly configured MCCHs per cell (or per the area under gNB) to provide the PTM control plane scheduling configuration for MBS services.
Change notification of MCCH:
In LTE, a change notification for single cell MCCH (SC-MCCH) uses a new introduced SC-N-RNTI and a DCI format for M-RNTI is reused for SC-N-RNTI, but only one bit in the 8-bit bitmap is used considering that there is only one SC-MCCH in a cell for SC-PTM. The SC-MCCH change notification scrambled by SC-N-RNTI can be transmitted in a first subframe of MCCH transmission window to notify the change of SC-MCCH scheduled in the same sub-frame. As for NR MBS, it was agreed In RAN2#113e that “assume that MCCH change notification mechanism is used to notify the changes of MCCH configuration due to session start for delivery mode 2 of NR MBS (other cases FFS, if any) ” . Therefore, in some embodiments of the present disclosure, for the notification change for NR MBS, taking LTE SC-PTM mechanisms as baseline, there are several options for MCCH change notification as flows:
Option 1: The network/base station (such as gNB) may configure a new RNTI for MCCH change notification for NR MBS with no additional information such as the 8 bits bitmap used in LTE.
Option 2: The base station (such as gNB) may configure a new RNTI for MCCH change notification with some additional information such as the 8 bits bitmap for MCCH association with beam and/or UE service of interest.
Association between an MCCH search space (in SIB) , PDCCH occasions, and an SSB:
In NR, for search spaces of common channels such as broadcast control channel (BCCH) and paging control channel (PCCH) , PDCCH occasions are associated with synchronization signal block (SSBs) in a pre-defined manner. Therefore, a network/base station (such as gNB) can sweep a PDCCH in beam directions associated with SSBs. In this way, if a UE is aware of the pre-defined mapping, the UE can receive system information (SI) messages and paging on PDCCH occasions according to its detected SSBs for the purpose of power saving. For NR MBS, MCCHs are also common channels and they are quite similar to BCCHs, MCCHs just carry different control messages (i.e. broadcast channel/multicast scheduling) . Therefore, in some embodiments of the present disclosure, for the search space of MCCH, the network/base station (such as gNB) can configure PDCCH occasions (i.e., in MBS SIB) for MCCH search space and associates them with SSBs in a pre-defined way, so that the UE can receive MCCH scheduling on PDCCH occasions within the SIB according to its detected SSB to save power.
Association between MCCH scheduling/MCCH change notification, PDCCH occasions, and an SSB:
Beam sweeping has been agreed for the NR MBS user plane data scheduling as stated in according to RAN1 103 agreements: For RRC_IDLE/RRC_INACTIVE UEs, beam sweeping is supported for group-common PDCCH/PDSCH. For efficient and unified service scheduling of MBS services, the user control plane scheduling can also support multi beam operations. In order to support beam sweeping for the MCCH and the MCCH change notification, a set of repetition PDCCHs can be configured for the monitoring occasion of the MCCH scheduling and/or the MCCH change notification and can be associated to a SSB for sweeping the MCCH scheduling and/or the MCCH change notification into a specific direction . However, the association configuration needs to take into account the design and configuration of MCCH (such as the single MCCH and multiple MCCH configuration) as well as the association of MCCH with service (s) of interest of UEs as detailed in some embodiments below.
Single MCCH configuration:
FIG. 12 illustrates an example of an association between PDCCH occasions in an MCCH search space and an SSB according to an embodiment of the present disclosure. FIG. 12 illustrates that, in some embodiments, for single MCCH configuration, The network/gNB may configure based on the reported beams measurement quality by UEs multiple beams and configuring a single MCCH and/or a MCCH notification change with different scheduling configurations (such as diverse modification periods and repetition periods etc. ) to support scheduling of the MRBs configured for each beam in order to support scheduling of multiple configured MRBs within a beam as illustrated in the above embodiments. The network/gNB may configure for each configured MCCH and/or the MCCH change notification scheduling configuration a specific RNTI with additional bitmap (e.g., 8 bits bitmap) and associate the scheduling with a monitoring occasion. The network/gNB may configure for each of the configured MCCH and/or MCCH change notification scheduling configuration monitoring occasion, a set of PDCCHs repetitions associated with the monitoring occasion and associate each PDCCH repetition to an SSB. The network/gNB may configure the beam sweeping for the MCCH and/or the MCCH change notification scheduling configuration to the directions of the associated SSBs by sweeping the configured PDCCH to the associated SSB beam directions. Thereby, the UE only needs to acquire one PDCCH to receive the configure MCCH or MCCH change notification. However, using only the above configurations the UE within a beam will end up monitoring more than one MCCH. To avoid this, in some embodiments of the present disclosure, the network/base station (such as gNB) may use the additional information e.g., 8 bits bitmap to differentiate the MCCH scheduling configurations for different services scheduled with the same MCCH for different UEs within the same beam
Multiple MCCHs configuration: .
FIG. 13 illustrates an example of an association between PDCCH occasions in an MCCH search space and an SSB according to an embodiment of the present disclosure. FIG. 13 illustrates that, in some embodiments, for multiples MCCHs configurations, the network/gNB may configure based on the reported beams measurement quality by UEs multiple beams and configuring multiple MCCHs and/or MCCH change notifications each with different scheduling configurations (e., g., modification periods and repetition periods etc. ) to support scheduling of the MRBs configured for each beam. The network/gNB may configure for each of the configured MCCH and/or MCCH change notification an RNTI and associating each with a monitoring occasion. The network/gNB may configure for the configured monitoring occasion of the configured MCCH and/or the MCCH change notification, a set of PDCCHs repetitions and associating each PDCCH repetition to an SSB. The network/gNB may configure the beam sweeping for the MCCH and/or the MCCH change notification in the directions of the associated SSBs by sweeping the configured PDCCH to the associated SSB beam directions. Thereby, the UE only needs to acquire one PDCCH to receive the configured MCCH scheduling or MCCH change notification. Because the configured MCCH scheduling or MCCH change notification is associated with MRBs carrying the service of interest of the UEs, even if the UE monitors PDDCH blindly, the UE can only acquire MCCH that serves its service (s) of interest.
In summary, in some embodiments, major advantages and innovative aspects of the new flexible MBS control plane scheduling mechanism compared to the prior arts such as a reusing LTE MBMS SC-PTM mechanism as reported on most proposals submitted to RAN-13e include but not limited to:
1. In some embodiments, the new method provides a flexible MBS scheduling that capable of supporting the diversity of 5G MBS services and the dynamicity of the user distribution within the service area as well as the dynamicity on the user service interest change as required by the 3GPP documentation on NR MBS.
2. In some embodiments, the new method provides a separate control plane scheduling for different MBS services which could help on reducing signalling overhead e.g., for delay tolerant services if these services are scheduled together along with the delay sensitive services are configured together using the same control plane configuration and scheduling.
3. In some embodiments, the new method allows the UE to monitor only the MCCH configuration associated with the service that the UE is interested to receive, and this can help in UE complexity reduction.
Commercial interests for some embodiments are as follows. 1. Solving issues in the prior art. 2. Providing a flexible MBS scheduling. 3. Providing a separate control plane scheduling for different MBS services. 4. Reducing a signalling overhead. 5. Reducing a UE complexity. 6. Providing a good communication performance. 7. Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes. Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present disclosure propose technical mechanisms.
FIG. 14 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 14 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated. The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency. The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a  memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) . The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface. In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The first positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultra book, a smartphone, a AR/VR glasses, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments  can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (39)

  1. A wireless communication method for multicast/broadcast service (MBS) performed by a user equipment (UE) , comprising:
    reporting, to a base station, a service interest of the UE and a beam quality measurement report of the UE;
    receiving, from the base station, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the UE; and
    monitoring the MCCH and beam sweeping configuration related to the service interest of the UE.
  2. The wireless communication method of claim 1, wherein the beam quality measurement report of the UE comprises at least one of the followings: a UE best beam report; uplink channel state information reference signals (CSI-RSs) ; or a measurement quality of uplink sounding reference signals (SRSs) .
  3. The wireless communication method of claim 2, wherein the beam quality measurement report of the UE is periodic, semi-persistent, or aperiodic, and/or the uplink CSI-RSs is used for the UE in a radio resource control (RRC) connected mode and comprises a reference signal receive power (RSRP) measurement of a beam, a reference signal receive quality (RSRQ) measurement of the beam, or a channel quality indicator (CQI) measurement of the beam, and/or the measurement quality of the uplink SRSs is used for the UE in an RRC idle/inactive mode.
  4. The wireless communication method of claim 1, wherein the UE receives, form the base station, the MCCH and beam sweeping configuration through an RRC signalling or a downlink control information (DCI) periodically, semi-persistently, or dynamically according to a report provided by the UE.
  5. The wireless communication method of claim 1, wherein the MCCH and beam sweeping configuration comprises a configuration based on a single MCCH or multiple MCCHs.
  6. The wireless communication method of claim 1, wherein the MCCH and beam sweeping configuration comprises a configured MCCH within an MBS defined system information block (SIB) , a radio network terminal identifier (RNTI) configuration for MCCH scheduling, and/or an RNTI for MCCH notification change scheduling.
  7. The wireless communication method of claim 1, wherein the MCCH and beam sweeping configuration comprises a configuration of an association between an MCCH search space, physical downlink control channel (PDCCH) occasions, and a synchronization signal block (SSB) for scheduling of an MCCH within an MBS SIB.
  8. The wireless communication method of claim 1, wherein the MCCH and beam sweeping configuration comprises a configuration of an association between an MCCH scheduling and/or an MCCH change notification, PDCCH occasions, and an SSB for sweeping the MCCH scheduling and/or the MCCH change notification into SSB directions.
  9. A wireless communication method for multicast/broadcast service (MBS) performed by a base station, comprising:
    receiving, from one or more user equipments (UEs) , a service interest of the one or more UEs and a beam quality measurement report of the one or more UEs;
    determining a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs based on the service interest of the one or more UEs and the beam quality measurement report of the one or more UEs; and
    configuring, to the one or more UEs, a multicast control channel (MCCH) and beam sweeping configuration related to the service interest of the one or more UEs.
  10. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration, by mapping, by the base station, quality of service (QoS) flows of different MBS services of the service interest of the multiple UEs into a same MBS or multicast radio bearers (MRB) if the multiple UEs within a beam are interested to receive a same set of services.
  11. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration, by configuring for each MRB a separate MCCH to guarantee that each UE can be configured to monitor the  MCCH that carries a scheduling of MRB associated with QoS flows of service/services that the UE is interested to receive.
  12. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration, by configuring, by the base station, based on the beam measurement quality report by the one or more UEs, multiple beams and configuring a single MCCH and/or a MCCH notification change with different scheduling configurations comprising diverse modification periods and repetition periods to support a scheduling of MRBs configured for each beam.
  13. The wireless communication method of claim 12, wherein the base station determines the MCCH and beam sweeping configuration, by configuring, by the base station, for each of a configured MCCH and/or an MCCH change notification scheduling configuration, a specific RNTI with additional bitmap and associating a scheduling with a monitoring occasion.
  14. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration, by configuring by the base station, based on the beam measurement quality report by the one or more UEs, multiple beams and configuring multiple MCCHs each with different scheduling configurations comprising modification periods and repetition periods to support a scheduling of MRBs configured for each beam.
  15. The wireless communication method of claim 14, wherein the base station determines the MCCH and beam sweeping configuration, by configuring by the base station for each of a configured MCCH and/or an MCCH change notification, an RNTI without additional bitmap and associating each with a monitoring occasion.
  16. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration, by configuring each of a configured MCCH and/or an MCCH change notification scheduling configuration monitoring occasion, a set of PDCCH repetitions associated with each monitoring occasion and associating each PDCCH repetition to an SSB.
  17. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration, by configuring, by the base station, a beam sweeping for an MCCH and/or an MCCH change notification scheduling configuration to directions of associated SSBs by sweeping a configured PDCCH to associated SSB beam directions.
  18. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration by configuring the one or more UEs to acquire only one PDCCH to receive a configured MCCH or an MCCH change notification associated with the service interest of the one or more UEs.
  19. The wireless communication method of claim 9, wherein the beam quality measurement report of the UE comprises at least one of the followings: a UE best beam report; uplink channel state information reference signals (CSI-RSs) ; or a measurement quality of uplink sounding reference signals (SRSs) .
  20. The wireless communication method of claim 19, wherein the beam quality measurement report of the UE is periodic, semi-persistent, or aperiodic, and/or the uplink CSI-RSs is used for the UE in a radio resource control (RRC) connected mode and comprises a reference signal receive power (RSRP) measurement of a beam, a reference signal receive quality (RSRQ) measurement of the beam, or a channel quality indicator (CQI) measurement of the beam, and/or the measurement quality of the uplink SRSs is used for the UE in an RRC idle/inactive mode.
  21. The wireless communication method of claim 9, wherein the base station configures, to the UE, the MCCH and beam sweeping configuration through an RRC signalling or a downlink control information (DCI) periodically, semi-persistently, or dynamically.
  22. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration by configuring the MCCH and beam sweeping configuration based on a single MCCH or multiple MCCHs.
  23. The wireless communication method of claim 22, wherein the base station is configured to configure the single MCCH per cell or per area under the base station comprising the area under a gNB distribution unit to provide a point-to-multipoint (PTM) control plane (CP) scheduling configuration for group-common (gc) -PDCCHs or gc-physical downlink shared  channels (PDSCHs) which schedule multicast traffic channels (MTCHs) carrying MBS services.
  24. The wireless communication method of claim 22, wherein the base station is configured to configure multiple MCCHs per cell or per area under the base station comprising the area under a gNB distribution unit to provide a PTM CP scheduling configuration for gc-PDCCHs or gc-PDSCHs which schedule multicast traffic channels (MTCHs) carrying MBS services.
  25. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration by configuring an MCCH within an MBS defined system information block (SIB) , configuring a radio network terminal identifier (RNTI) for MCCH scheduling, and/or configuring an RNTI for MCCH notification change scheduling.
  26. The wireless communication method of claim 25, wherein the base station is configured to configure a fixed RNTI for MCCH scheduling if there is a single MCCH per cell or per area under the base station to provide a PTM CP scheduling configuration for MBS services.
  27. The wireless communication method of claim 25, wherein the base station is configured to configure multiple fixed MCCH RNTIs for scheduling of multiple MCCH scheduling, each MCCH RNTI is corresponding to an MCCH if multiple MCCHs are configured per cell or per area under the base station comprising the area under a gNB distribution unit to provide a PTM CP scheduling configuration for MBS services.
  28. The wireless communication method of claim 25, wherein the base station is configured to flexibly configure a number of MCCH RNTIs according to a number of flexibly configured MCCHs per cell or per area under comprising the area under a gNB distribution unit the base station to provide a PTM CP scheduling configuration for MBS services.
  29. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration by configuring an association between an MCCH search space, PDCCH occasions, and a synchronization signal block (SSB) for scheduling of an MCCH within an MBS SIB.
  30. The wireless communication method of claim 9, wherein the base station determines the MCCH and beam sweeping configuration by configuring an association between an MCCH scheduling and/or an MCCH change notification, PDCCH occasions, and an SSB for sweeping the MCCH scheduling and/or the MCCH change notification into a specific direction.
  31. The wireless communication method of claim 9, wherein the base station is configured to configure a new RNTI for MCCH change notification for MBS with no additional information.
  32. The wireless communication method of claim 9, wherein the base station is configured to configure a new RNTI for MCCH change notification with some additional information for MCCH association with a best quality beam of the UE and/or the service interest of the UE.
  33. A user equipment (UE) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to execute the method of any one of claims 1 to 8.
  34. A base station, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to execute the method of any one of claims 9 to 32.
  35. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 1 to 32.
  36. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any one of claims 1 to 32.
  37. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any one of claims 1 to 32.
  38. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 32.
  39. A computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 32.
PCT/CN2021/085022 2021-04-01 2021-04-01 User equipment, base station, and wireless communication method for mbs WO2022205338A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180096790.6A CN117121515A (en) 2021-04-01 2021-04-01 User equipment, base station and MBS wireless communication method
PCT/CN2021/085022 WO2022205338A1 (en) 2021-04-01 2021-04-01 User equipment, base station, and wireless communication method for mbs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085022 WO2022205338A1 (en) 2021-04-01 2021-04-01 User equipment, base station, and wireless communication method for mbs

Publications (1)

Publication Number Publication Date
WO2022205338A1 true WO2022205338A1 (en) 2022-10-06

Family

ID=83457810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085022 WO2022205338A1 (en) 2021-04-01 2021-04-01 User equipment, base station, and wireless communication method for mbs

Country Status (2)

Country Link
CN (1) CN117121515A (en)
WO (1) WO2022205338A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956698A (en) * 2014-01-23 2015-09-30 华为技术有限公司 Trunking communication method, base station, user equipment, and system
CN106993275A (en) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 Multimedia broadcast multi-broadcasting business MBMS transmission processing method and processing device
US20190239032A1 (en) * 2018-01-30 2019-08-01 Qualcomm Incorporated Local broadcast for group calls
US20190268879A1 (en) * 2016-07-26 2019-08-29 Lg Electronics Inc. Method and device for receiving mbms control information through beam
CN110546967A (en) * 2017-03-09 2019-12-06 Lg电子株式会社 method and device for receiving MBMS service based on wave beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956698A (en) * 2014-01-23 2015-09-30 华为技术有限公司 Trunking communication method, base station, user equipment, and system
CN106993275A (en) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 Multimedia broadcast multi-broadcasting business MBMS transmission processing method and processing device
US20190268879A1 (en) * 2016-07-26 2019-08-29 Lg Electronics Inc. Method and device for receiving mbms control information through beam
CN110546967A (en) * 2017-03-09 2019-12-06 Lg电子株式会社 method and device for receiving MBMS service based on wave beam
US20190239032A1 (en) * 2018-01-30 2019-08-01 Qualcomm Incorporated Local broadcast for group calls

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "MBS for Idle and Inactive mode UE", 3GPP DRAFT; R2-2009157, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942177 *

Also Published As

Publication number Publication date
CN117121515A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
US8830894B2 (en) Notification method and system for information change of multimedia broadcast multicast service control channel
US8982872B2 (en) Transmitting method and device for scheduling information
US9008701B2 (en) Multimedia broadcast and multicast service notification in long term evolution
US20130194999A1 (en) Client-assisted target multicast area detection
CN102158807B (en) Method and device for monitoring MCCH (Multicast Control Channel) notification information and user equipment
US9398425B2 (en) Group communications over evolved multimedia broadcast/multicast services
US20140194100A1 (en) Enabling a wireless communication device to swtich from one local network to a separate wide area network for a high priority multicast group communication
TWI414194B (en) Method of managing multimedia broadcast multicast service reception and related communication device
CN103404217A (en) Communication units and methods for control channel change notification in broadcast communication system supporting carrier aggregation
WO2011050996A1 (en) Technique for notifying changes on a multimedia broadcast multicast service specific system information
CN113950002B (en) Switching method, terminal and base station of broadcast multicast transmission mode
US20230179963A1 (en) Communication control method, base station, and user equipment
US20160013977A1 (en) Service Processing Method for New Carrier Type Cell, Apparatus, and Communications System
EP3500029A1 (en) Method for transmitting multicast service, method for receiving multicast service, and apparatus
WO2022027537A1 (en) Apparatus and method for multicast/broadcast service
CN113661722A (en) Service data transmission method and device, network equipment and terminal equipment
CN113728663B (en) DRX configuration method and device, terminal equipment and network equipment
CN115699650A (en) TCI state management method and device of MBS (multicast broadcast multicast service) service and terminal equipment
WO2022205338A1 (en) User equipment, base station, and wireless communication method for mbs
CN113728683B (en) BWP configuration method and device, terminal equipment and network equipment
CN112398605B (en) Multicast control channel sending method and device
WO2022198385A1 (en) User equipment, base station, and wireless communication method
CN114342421A (en) Service data transmission method and device, and terminal device
WO2022006818A1 (en) Network entity device, user equipment, and method for dynamic adjustment of mbms transmission areas
WO2021212489A1 (en) Apparatus and method for flexible transmission and reception of broadcast multicast and unicast services

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933996

Country of ref document: EP

Kind code of ref document: A1