WO2021212489A1 - Apparatus and method for flexible transmission and reception of broadcast multicast and unicast services - Google Patents

Apparatus and method for flexible transmission and reception of broadcast multicast and unicast services Download PDF

Info

Publication number
WO2021212489A1
WO2021212489A1 PCT/CN2020/086765 CN2020086765W WO2021212489A1 WO 2021212489 A1 WO2021212489 A1 WO 2021212489A1 CN 2020086765 W CN2020086765 W CN 2020086765W WO 2021212489 A1 WO2021212489 A1 WO 2021212489A1
Authority
WO
WIPO (PCT)
Prior art keywords
unicast
sub
intended service
mbms
configuration
Prior art date
Application number
PCT/CN2020/086765
Other languages
French (fr)
Inventor
Ahmed MOHAMMED MIKAEIL
Jia SHENG
Original Assignee
JRD Communication (Shenzhen) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JRD Communication (Shenzhen) Ltd. filed Critical JRD Communication (Shenzhen) Ltd.
Priority to CN202080099944.2A priority Critical patent/CN115428371A/en
Priority to PCT/CN2020/086765 priority patent/WO2021212489A1/en
Publication of WO2021212489A1 publication Critical patent/WO2021212489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly, to a multimedia broadcast/multicast service (MBMS) system.
  • MBMS multimedia broadcast/multicast service
  • Multimedia broadcast/multicast service is a point-to-multipoint interface designed to provide efficient delivery of broadcast and multicast services in Third Generation Partnership Project (3GPP) cellular networks.
  • MBMS delivers multicast services within a single cell using single cell point to multipoint (SC-PTM) transmission, and delivers broadcast services within a group of multiples cells using multimedia broadcast multicast service single frequency network (MBSFN) transmission.
  • SC-PTM uses the same Long Term Evolution (LTE) downlink (DL) shared channel and subframe structure for transmission while MBSFN defines new channels and has a different subframe structure than a regular subframe LTE to ensure the transmission over a group of cells.
  • LTE Long Term Evolution
  • DL downlink
  • the methods proposed in this disclosure provide some UE side and network (NW) side enhancements related to the support of simultaneous operations, such as transmission and reception, of MBMS and unicast in NR system.
  • NW network
  • the present disclosure provides a method executable by a UE comprising: sending of an indication message to the network, which includes information about the ongoing or available MBMS and/or unicast services that the UE is intended to receive and the frequency list of the services, as well as the concurrent intended reception mode of the UE.
  • the reception mode could be unicast only, or MBMS only, or simultaneous unicast and MBMS reception.
  • the disclosure also provides a method executable by a RAN node comprising: receiving an indication message indicating a first intended service of a first traffic type and a second intended service of a second traffic type, wherein one of the first traffic type and the second traffic type is unicast traffic, and the other one of the first traffic type and the second traffic type is non-unicast traffic; determining radio resource configuration which allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service; determining bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and a second bandwidth part to the second set of sub-slots associated with the second intended service; transmitting downlink configuration including the radio resource configuration and the bandwidth part configuration; and transmitting a downlink frame carrying the first intended service and the second intended service according to the downlink configuration.
  • the RAN radio node transmits the downlink configuration to the
  • the present disclosure provides a RAN radio node apparatus including a transceiver and a processor connected with the transceiver.
  • the processor is configured to execute the following steps comprising: receiving an indication message indicating a first intended service of a first traffic type and a second intended service of a second traffic type, wherein one of the first traffic type and the second traffic type is unicast traffic, and the other one of the first traffic type and the second traffic type is non-unicast traffic; determining radio resource configuration which allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service; determining bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and a second bandwidth part to the second set of sub-slots associated with the second intended service; transmitting downlink configuration including the radio resource configuration and the bandwidth part configuration; and transmitting a downlink frame carrying the first intended service and the second
  • the disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium.
  • the non-transitory computer readable medium when loaded to a computer, directs a processor of the computer to execute the disclosed method.
  • the non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • the disclosed method may be programmed as computer program product, that causes a computer to execute the disclosed method.
  • the disclosed method may be programmed as computer program, that causes a computer to execute the disclosed method.
  • 5G NR is targeting efficient multiplexing of multimedia broadcast/multicast and unicast services with resource allocation flexibility and reasonable latency to support a wide range of emerging 5G MBMS use cases, such as public safety, mission critical, and vehicle to everything (V2X) applications.
  • the disclosed method provides radio access network (RAN) enchantments including:
  • New UE MBMS indication methods where MBMS and/or uncast frequencies list, services list and reception mode are provided to enable the network to simultaneously multiplex MBMS and unicast transmission in at least one downlink radio frame.
  • New Subframe allocation/configuration mechanism that allows efficient multiplexing of MBMS and unicast services transmission in one NR physical downlink radio frame and achieves multiplexing gain at a scale of a fraction of a subframe
  • BWPs bandwidth parts
  • the proposed sub-slot based allocation together with BWP allocation methods can overcome the issue of the difference in frame structures and reference signals used for unicast and MBMS.
  • the proposed sub-slot based method in the disclosure leads UE to have innovative reception and decoding behavior for simultaneously receiving multiplexed services. For example, without the sub-slot based allocation, a UE may need to spend at least two time domain resource units to receive and decode MBMS and unicast services. With the new design, the UE can simultaneously receive and decode MBMS and unicast services using only one time domain resource unit. This is the innovation at UE side.
  • FIG. 1 is a schematic diagram showing a system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing an example of 5G core network.
  • FIG. 3 is a schematic diagram showing a mobile terminal and a network executing the method according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart showing a method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing indication messages and downlink reconfiguration in a single band MBMS deployment scenario.
  • FIG. 6 is a schematic diagram showing examples of frame-based and subframe-based radio resource allocation to MBMS services.
  • FIG. 7 is a schematic diagram showing an examples of frame-based radio resource allocation to MBMS and unicast services.
  • FIG. 8 is a schematic diagram showing an examples of subframe-based radio resource allocation to MBMS and unicast services.
  • FIG. 9 is a schematic diagram showing an examples of subslot-based radio resource allocation to MBMS and unicast services.
  • FIG. 10 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • each of a plurality of user equipments sends an indication message to the network, which includes information about the ongoing or available MBMS and unicast services intended by the UE, a frequency list, a reception mode of the UE.
  • the UE may include reception modes of unicast, MBMS, and simultaneous unicast and MBMS reception.
  • the network may determine that for any given sub-frame of the NR downlink radio frame, each of the intended services to be allocated with a portion or a fraction of the sub-frame.
  • a portion of a sub-frame may include a half of subframe, that is, a sub-slot or mini-slot.
  • the network configures for each sub-slot or mini-slot a downlink dedicated BWP.
  • the network may configure a dedicated downlink BWP configured with physical multicast channel (PMCH) channel and multicast control channel (MCCH) channel for MBMS, and may configure dedicated downlink BWP configured with a physical downlink shared channel (PDSCH) and physical downlink control channel (PDCCH) channel for unicast transmission.
  • the network sends the downlink radio resource allocation and the allocation configuration information to UEs so that the UEs can receive MBMS or unicast or simultaneous MBMS and unicast services at any given sub-frame and radio frame.
  • an intended service in the disclosure may represent a service of one of broadcast, multicast, groupcast, and unicast traffic types a UE is to or intends to receive.
  • a frequency may represent a frequency range or a frequency band defined based on the frequency for transmission of at least one of the intended services.
  • Downlink configuration includes radio resource configuration and the bandwidth part (BWP) configuration for the intended services.
  • the radio resource configuration allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service.
  • the bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and second bandwidth part to the second set of sub-slots associated with the second intended service.
  • the downlink configuration may be included in MBSFN area information and transmitted in a system information block (SIB) .
  • SIB system information block
  • a UE 10a, a UE 10b, a base station 200a, and a network entity device 300 executes a method according to an embodiment of the present disclosure. Connections between devices and device components are shown as lines and arrows in the FIG. 1.
  • the UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a.
  • the UE 10b may include a processor 11b, a memory 12b, and a transceiver 13b.
  • the base station 200a may include a processor 201a, a memory 202a, and a transceiver 203a.
  • the network entity device 300 may include a processor 301, a memory 302, and a transceiver 303.
  • Each of the processors 11a, 11b, 201a, and 301 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocols may be implemented in the processors 11a, 11b, 201a, and 301.
  • Each of the memory 12a, 12b, 202a, and 302 operatively stores a variety of program and information to operate a connected processor.
  • Each of the transceiver 13a, 13b, 203a, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals.
  • the base station 200a may be an eNB, a gNB, or one of other radio nodes.
  • Each of the processor 11a, 11b, 201a, and 301 may include a general-purpose central processing unit (CPU) , an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices.
  • Each of the memory 12a, 12b, 202a, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium, other storage devices, and/or any combination of the memory and storage devices.
  • Each of the transceiver 13a, 13b, 203a, and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals.
  • RF radio frequency
  • the techniques described herein can be implemented with modules, procedures, functions, entities and so on, that perform the functions described herein.
  • the modules can be stored in a memory and executed by the processors.
  • the memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
  • the network entity device 300 may be a node in a central network (CN) .
  • CN may include LTE CN or 5G core (5GC) which may include user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , the network exposure function (NEF) , and other network entities.
  • UPF user plane function
  • SMF session management function
  • AMF mobility management function
  • UDM unified data management
  • PCF policy control function
  • PCF control plane
  • CP control plane
  • UP user plane
  • CUPS authentication server
  • NSSF network slice selection function
  • NEF network exposure function
  • the 5G NR system reuses as much as possible the current unicast service architecture and procedures to deliver for MBMS services.
  • the application function (AF) 212 in a 5GC 220 is enhanced by introducing a new network function called multicast service function (MSF) which provides MBMS service layer functionality via Npcf or Nnef interface.
  • the network exposure function (NEF) and the policy control function (PCF) 213 are enhanced to exchange 5G MBMS quality of service (QoS) and service area related information with AF 212, and the session policy related information with the session management function (SMF) 214.
  • the functions of SMF 216 and the user plane function (UPF) are enhanced to support the configuration/controls of MBMS flows.
  • the access and mobility function (AMF) 215 is also enhanced to support managing of transmission resources for MBMS across next generation radio access network (NG-RAN) nodes 210 and 211. Interfaces N2, N3, N6, and N7 are defined in 5G related standards.
  • MBMS operation is detailed in the following.
  • the disclosed method is performed in a system comprising a plurality of UEs and a network.
  • the network may comprise at least one of the base station 200a and the network entity device 300.
  • the UEs may comprise the UEs 10a and 10b.
  • MBMS related network entities may combine the transmission of an LTE physical downlink shared channels (PDSCH) with a physical multicast channel (PMCH) in the same LTE radio frame.
  • PDSCH physical downlink shared channels
  • PMCH physical multicast channel
  • An MBMS capable UE can camp on “RRC_IDLE” LTE cell, access stratum configuration, and read system information SIB2 broadcasted by the cell on Broadcast Control Channel (BCCH) to discover availability of eMBMS service.
  • the UE may interpret SIB2 to identify MBMS subframes allocation configuration.
  • the MBMS subframes allocation specifies which subframes are reserved for MBSFN transmissions on the PMCH and which subframes are reserved for unicast transmissions on the PDSCH.
  • the MBSFN subframes has a repetition period of 1 to 32 frames and do not interfere with subframes used for paging or synchronization signals.
  • the UE intending to receive MBMS services may continue reading SIB13 which carries MBSFN area configuration information and the medium access control (MAC) control element for multicast channel (MCH) scheduling information (MSI) .
  • the UE may interpret the SIB13 to acquire the following information:
  • the information regarding multicast control channel (MCCH) channel including the MCCH repetition period such as 32, 64, ..., or 256 frames, the MCCH offset, such as 0, 1, ..., or 10 frames, the MCCH modification period, such as 512, or 1024 frames, a modulation and coding scheme (MCS) , the subframe allocation information for MCCH indicated by the repetition period and offset; and
  • MCCH multicast control channel
  • the MCCH repetition period such as 32, 64, ..., or 256 frames
  • the MCCH offset such as 0, 1, ..., or 10 frames
  • the MCCH modification period such as 512, or 1024 frames
  • MCS modulation and coding scheme
  • the UE may interpret the acquired information to receive MCH channel which carries a radio resource control (RRC) signaling message about MBSFN area configuration.
  • RRC radio resource control
  • Each MBSFN area is associated with one MBSFN area configuration message.
  • the MBSFN area configuration message includes:
  • TMGI temporary mobile group identity
  • MTCH multicast traffic channels
  • MSP MCH scheduling period
  • the MSI MAC control element is transmitted on the first subframe of each scheduling period of the PMCH.
  • the MSI indicates an end of the frame and subframe of each MTCH within the PMCH for the UE.
  • the UE can read this control element to receive an instance of MTCH channel.
  • the UE may check user service description (USD) and/or read SIB15 which includes a list contain the current frequency and the neighboring frequencies, where each frequency in the list is associated with a list of MBMS service area identities (SAIs) that is supported by the respective frequency while the USD includes a TMGI corresponding to each MBMS SAI, and further includes information associating the TMGIs and SAIs.
  • USD user service description
  • SIB15 which includes a list contain the current frequency and the neighboring frequencies, where each frequency in the list is associated with a list of MBMS service area identities (SAIs) that is supported by the respective frequency while the USD includes a TMGI corresponding to each MBMS SAI, and further includes information as
  • the UE may use information provided by SIB15 and the USD to determine the MBMS SAIs associated with the corresponding TMGI (s) of interest, and then specifies the frequency or frequencies associated with the MBMS SAIs as the frequency or frequencies of interests. After determining the frequency or frequencies of interests UE can sends an RRC signaling message known as MBMS interest indication message to the network to inform about intended MBMS service or services provided by the respective frequency or frequencies.
  • the disclosure provides a method allowing one or more UEs, such as one or both of the UEs 10a and 10b, to receive MBMS and unicast service in the 5G NR system.
  • the UE is in in an RRC connected mode (step 310) .
  • the UE in an RRC connected mode determines intended services of intended traffic types (step 311) and sends an indication message including intended service IDs of the services associated with the intended traffic type, carrier frequencies, and a reception mode, to the network (NW) , such as one or both of the base station 200a and the NW entity 300 (step 312) .
  • NW network
  • the NW determines radio resource configuration which indicates sub-slots allocated to different services of different traffic types, and BWP configuration which configures different DL BWPs for different services, and sends the configuration to the UE (step 313) .
  • the NW sends the downlink configuration to the UE and sends radio frames to the UE according to the downlink configuration (step 314) .
  • the NW transmits a first radio resource unit of the first intended service and a second radio resource unit of the second intended service according to the downlink configuration to the UE.
  • the first radio resource unit and the second radio resource unit are multiplexed into different time resource units on a same frequency band or multiple frequency bands.
  • the method of FIG. 3 may be applied to a plurality of UEs.
  • the UE in an RRC connected mode determines one or more intended services of one or more traffic types and sends an indication message to the NW, such as one or both of the base station 200a and the NW entity 300.
  • the traffic types include MBMS, unicast, and simultaneous MBMS and unicast.
  • the UE generates and sends an indication message indicating a list of the intended services to the NW (block 400) .
  • the indication message includes a list of intended one or more services, a list of service carrier frequencies, and a reception mode of the UE.
  • the list of intended services is a list of radio data bearers of the ongoing or intended services. For example, the radio data bearers may be identified by service identities (IDs) .
  • IDs service identities
  • the UE may send the indication message periodically at a level of granularity at one NR radio frame.
  • the message may also include a list of frequencies for the ongoing or intended MBMS and unicast services and the current supported reception mode of the UE.
  • the current supported reception mode of the UE may include one of unicast only, MBMS only, and simultaneous MBMS and unicast reception modes.
  • the NW receives the indication message from UEs and, in response to the indication message, determines sub-slots to be allocated for each service (block 401) .
  • the NW determines NR downlink configuration.
  • the NW allocates BWPs for the sub-slots (block 402) .
  • the NW receives an indication message indicating a first intended service of a first traffic type and a second intended service of a second traffic type.
  • One of the first traffic type and the second traffic type is unicast traffic
  • the other one of the first traffic type and the second traffic type is non-unicast traffic, such as broadcast, multicast, or groupcast.
  • the NW determines radio resource configuration which allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service.
  • the NW determines bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and second bandwidth part to the second set of sub-slots associated with the second intended service.
  • a BWP of a sub-slot starts at the beginning of the sub-slot in time domain.
  • the NW configures one of the allocated BWP for an MBMS service on PMCH and one of the allocated BWP for a unicast service on PDSCH (block 403) .
  • the NW generates an NR downlink radio frame to include the intended services of respective traffic types, and sends the downlink frame and the downlink configuration to UE (block 404) .
  • the downlink configuration includes radio resources allocation for the intended services of MBMS only, unicast only, or simultaneous MBMS and unicast traffic type. Radio frames of the unicast traffic type may be transmitted on PDSCH while radio frames of the MBMS traffic type may be transmitted on PMCH. Radio frames of the simultaneous unicast and MBMS transmission may be transmitted on PDSCH and PMCH.
  • the downlink configuration may be transmitted in downlink control information (DCI) or RRC signaling.
  • the UE receives and decodes the downlink configuration, and receives downlink transmission including the downlink frame according to the configuration (block 405) .
  • At the UE side at least one of the UEs transmits the indication message indicating the first intended service of the first traffic type and the second intended service of the second traffic type.
  • One of the first traffic type and the second traffic type is unicast traffic, and the other one of the first traffic type and the second traffic type is non-unicast traffic.
  • the UE receives downlink configuration responding to the indication message.
  • the downlink configuration includes radio resource configuration and bandwidth part configuration.
  • the radio resource configuration allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service.
  • the bandwidth part configuration allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and a second bandwidth part to the second set of sub-slots associated with the second intended service.
  • the UE receives and decodes a downlink frame carrying the first intended service and the second intended service according to the downlink configuration.
  • the NW may interpret the IEs to allocate and configure PDSCH and PMCH transmission in downlink.
  • the UE in an RRC connected mode camps on a frequency band F1 in a NW with single band deployed MBMS, and intends to receive MBMS services.
  • the UE may initially intend to receive two MBMS services, such as a news service (S1) and a sports service (S2) , and simultaneously a unicast service (S3) , such as file download.
  • the UE may transmit an MBMS interest indication message 501 to the NW to indicate the intended MBMS services S2 an S3 and the unicast service S3 (step 501) .
  • a news service S1
  • S2 sports service
  • S3 unicast service
  • the indication message may be represented by a message M1: [ (S1, S2) , (S3) , (F1) , Simultaneous] .
  • the network determines sub-slots allocated to different services based on the number of intended MBMS and/or unicast services and a reception mode indicated in the interest indication message. For example, when the reception mode is simultaneous MBMS and unicast reception, the NW determines a number of sub-slots in a radio frame to be allocated to intended MBMS service and a number of sub-slots in the radio frame to be allocated to intended unicast service.
  • the network configures a MBMS downlink bandwidth part for sub-slots within the radio frame 1 in a PMCH channel allocated to an MBMS service, and unicast downlink bandwidth part for sub-slots within the radio frame 1 in a PDSCH channel allocated to a unicast service.
  • the network sends downlink configuration including the downlink radio resource configuration and the BWP configuration to UE (step 502) .
  • the BWP configuration may include a bitmap indicating the bandwidth part allocation.
  • the UE can use the bitmap to decode the configuration and receive the frame.
  • the UE update the indication message as [ (S1, S2) , (F1) , MBMS] and sent the indication message to the NW.
  • the NW configures the entire downlink radio frame 2 to contain only PMCH channel for the MBMS services.
  • the NW configures the entire downlink radio frame 2 to contain only a PDSCH channel for the unicast service S3.
  • the disclosed method thus provides flexibility on radio resource allocation the for MBMS and unicast transmissions.
  • One radio frame carry MBMS service subframe and unicast service subframe. Note that some subframes were left for paging and synchronization according to current LTE design but may be alterable.
  • the UE receives a first radio resource unit of the first intended service and a second radio resource unit of the second intended service according to the downlink configuration.
  • the first radio resource unit and the second radio resource unit may be subframes, sub-slots, or mini-slots, which are multiplexed into different time slots on a same frequency band F1.
  • the UE may transmit an information element to indicate a MBMS service list to the network in both SC-PTM and MBSFN operation modes.
  • the network receives the information element indicating a MBMS service list intended by the UE in both SC-PTM and MBSFN operation modes and utilizes the information element to determine allocation of a unicast service versus a multicast/broadcast service on the downlink frame.
  • Embodiments of the disclosed method is detailed in the following.
  • the UE obtains configuration of MBMS subframes allocation from SystemInformationBlockType2, and receives MBMS according to the MBMS subframes allocation.
  • An information element (IE) mbsfn-SubframeConfigList defines the subframes allocation configuration using parameters of mbsfn-SubframeConfig IE.
  • the mbsfn-SubframeConfig indicates radio frames reserved for MBMS transmission, subframes configuration in the reserved radio frames.
  • Subframes configuration indicates which subframes are reserved for MBSFN transmissions using PMCHs and which subframes are reserved for unicast transmissions using PDSCHs.
  • the MBSFN-SubframeConfig IE contains:
  • radioFrameAllocationPeriod IE and the radioFrameAllocationOffset IE for defining the radio frames that are allocated for MBSFN;
  • subframeAllocation IE comprising a bitmap defining subframe within an MBMS radio frame that are allocated for MBSFN.
  • the bitmap is 6 bits for periodicity of one frame or 24 bits for periodicity of four consecutive radio frames. With reference to FIG. 6, for the bitmap, the following mapping applies:
  • a bit with a binary value "1" in the bitmap denotes a corresponding subframe associate with the bit is allocated for MBSFN;
  • the first/leftmost bit defines the MBSFN allocation for subframe #1, the second bit for subframe #2, third bit for subframe #3, fourth bit for subframe #6, fifth bit for subframe #7, sixth bit for subframe #8 ;
  • the first/leftmost bit defines the allocation for subframe #3, the second bit for subframe #4, third bit for subframe #7, fourth bit for subframe #8, fifth bit for subframe #9, as shown in FIG. 6.
  • This type of static allocation has the following limitations:
  • MBMS service delay as the static allocation requires UEs to wait for MBMS reserved radio frames, which cannot meet requirements of NR time sensitive use cases, such as public safety, mission critical, V2X applications, and group communications.
  • a first embodiment of the disclosed method dyamicaly allocates radio frames for MBMS according to the number of the intended services and receiption mode of the UEs.
  • An information element in the radio resource configuration includes a bitmap which indicates a first set of subframes in the radio frame being allocated to the first intended service, and a second set of subframes in the radio frame being allocated to the second intended service.
  • the intended services may include MBMS and/or unicast.
  • a new parameter such as RadioframeRepetionPeriodNR is proposed in the disclosed method as an element of MBSFN-SubframeConfig-NR and MBSFN-SubslotConfig-NR in NR to define and schedule reception period of radio frames used to carry MBMS.
  • the RadioframeRepetionPeriodNR includes a parameter oneFrameNR indicating a repetition period of one frame, and a parameter fourFramesNR indicating a repetition period of four frames.
  • the parameter oneFrameNR includes a bitmap subslotsBitmapOneFrame.
  • the parameter fourFramesNR includes a bitmap subslotsBitmapFourFrames. For example, scheduling of MBMS can be defined for every radio frame or every four radio frames, which are respectively represented by rf1 or rf4 in Table 1. As shown in FIG. 8, an radio frame is expected to be used for MBMS transimission.
  • an NR radio frame can be allocated to MBMS, unicast, or simultaneously MBMS and unicast transimisson.
  • Radio resources, such as subframes or sub-slots, in an NR radio frame can be allocated to MBMS services and unicast services according to intended MBMS and unicast services indicated by the UEs.
  • Radio resources allocated for intended MBMS and unicast services indicated by the UEs may be represented by percentages in the radio frame.
  • a bitmap is defined in subframeAllocation IE to indicate subframes within an MBMS reserved radio frame that are allocated for MBSFN.
  • the bitmap may be 6 bits for a repetition period of one radio frame or 24 bits for a repetition period of four consecutive radio frames.
  • This bitmap defines radio resources allocation for MBMS with a level of granularity down to one sub-frame. With reference to FIG. 7, for example, any particular sub-frame can be allocated to either unicast transmission on PDSCH channel, or MBMS transmission on PMCH, but not both.
  • an information element in the radio resource configuration includes a bitmap which indicates a first set of sub-slots in the radio frame being allocated to the first intended service, and a second set of sub-slots in the radio frame being allocated to the second intended service.
  • the bitmap indicates indices of the first set of sub-slots and the second set of sub-slots.
  • the disclosure redefines the bitmap indicated by subframeAllocation IE to indicate a subslot based allocation conisdering the differences in subcarrier spcacing and the number of the subslots supported by each subcarrier spacing used as given by subslotsBitmapOneFrame, subslotsBitmapFourFrames and the paramter maxnrofsubslotsNR which indicate the length of the bitmap according to NR subcarrier spcacing (see Table 3) .
  • the new bitmap in NR can also be set by subslotsBitmapOneFrame as being used for the repetition period of one radio frame.
  • the new bitmap in NR can be set by subslotsBitmapFourFrames as being used for the repetition period of four radio frames.
  • the radio resource configuration further allocates sub-slots for paging and synchronization.
  • a major advantage of the slot-based allocation is saving frame resources reserved for paging and synchronization.
  • Table 2 shows an example of the slot-based allocation, where only half of a subframe is reserved for paging and synchronization, which improves resources utilization for MBMS up to 80%compared with 60%in subframe based resource allocation.
  • Table 2 An example of MBMS Sub-slot allocation in NR
  • an SIB13 area configuration message including MBSFNAreaConfiguration, MBMS-NotificationConfig, and MBSFN-AreaInfoList IEs is sent from the network to the UEs.
  • the subframeAllocation IE is used to define the subframes that are allocated for MBSFN tranismission.
  • the radio resource configuration may be transmitted in a system information block which includes at least one of a common sub-slot allocation pattern, MBMS notification configuration, and MBSFN area information.
  • the network provides the new proposed subslot based bitmap to the UEs via an area configuration message.
  • the UEs decode the bitmap to determine subslot based resource allocation.
  • the area configuration message may be carried in an LTE SIB 13 or any other newly defiend NR MBMS related SIB to indicate the subslot based bitmap using a parameter of common subslot allocatio patterns CommonSubslot-AllocPatternList-NR of the MBSFNAreaConfiguration-NR IE as shown in Table 4, and the parameter sl-AllocInfo-nr of the MBMS-NotificationConfig-NR IE shown in Table 5, as well as the parameter subSlot-AllocInfo-NR of the MBSFN-AreaInfoList-NR IE as shown in Table 7.
  • the parameter indicated by CommonSubslot-AllocPatternList-NR is MBSFN-SubframeConfig-NR.
  • the CommonSubslot-AllocPatternList-NR stands is a subslot based bitmap and contian a list of MBSFN-SubframeConfig-NR for different areas.
  • the radio resource configuration may be transmitted in a system information block which includes MBSFN area information.
  • the MBSFN area information includes scheduling information and configuration for MCH, MCCH, and MTCH, MCCH notification, and MCS associated with at least one of the first intended service and the second intended service.
  • the MBSFN-AreaInfoList IE contains:
  • MBMS control information for one or more MBSFN areas including, for example, scheduling information for MCH, MCCH, MTCH, MCCH configuration indicating how MTCH is organized and how to access MTCH, MCCH notification, and the MCS used for the intended services;
  • the information about MBSFN subframe allocation including repetition periods and subframe offsets indicating MBSFN subframes.
  • the current MBMS frame/sub-frame structure used for MBMS has different types of cyclic prefix (CP) , CP durations, carrier spacing, and numbers of symbols per subframe used for common unicast transmission.
  • Current MBMS design cannot support efficient multiplexing of MBMS and unicast in time in a scale smaller than a sub-frame, which may increase delay, and thus is unsuitable for 5G time sensitive use-cases, such as public safety, mission critical, V2X applications, and group communications.
  • a fourth embodiment of the disclosed method is provided to address the differences on physical layer (PHY) frame/sub-frame structures and reference signals structures used for MBMS and unicast service and to achieve a level of granularity of MBMS and unicast multiplexing at a fraction of a single subframe.
  • PHY physical layer
  • the method allocates different types of bandwidth part to different services using a new IE, namely, MBSFN-SubslotsBWPConfig within the MBSFN-AreaInfo-NR.
  • Each service may be configured with different types of CP, CP durations, carrier spacing, numbers of symbols and channels and reference signal.
  • the MBSFN-SubslotsBWPConfig IE is used to configure the bandwidth part for an MBSFN area and contains the following IEs:
  • BWP-MbmsDownlinkBWP a UE specific BWP configured to include configuration of both PMCH and MCCH channels for MBMS transmission and physical downlink control channel (PDCCH) channel for tracking MCCH changes which comprise MCCH notifications change broadcasted on PDCCH;
  • PDCCH physical downlink control channel
  • BWP-UnicastDownlinkBWP a UE specific BWP configured to include configuration of PDCCH and PDSCH for unicast transmission;
  • BWP-MBSFNDownlink a cell specific BWP used to perform initial access process
  • MBMS-SubSlotsConfig a parameter configuring MBMS sub-slot (mini-slot) transmission periodicity within an NR downlink radio frame
  • UNICAST-SubSlotsConfig a parameter configuring unicast sub-slot (mini-slot) transmission periodicity within an NR downlink radio frame.
  • Dynamic MBMS scheduling in NR can be realized by configuring MBMS control channels MCCH and PMCH within BWPs allocated to each MBSFN area.
  • the fixed scheduling for MCCH repetition period and MCCH offset as used in LTE MBMS are not required in the disclosed method because the MCCH control channels are automatically scheduled within the configured BWPs.
  • bandwidth parts include a configuration IE namely MBSFN-SubslotsBWPConfig IE, defining transmission periodicity of MBMS and unicast subslots within the NR time-division duplex (TDD) /frequency-division duplex (FDD) radio frames.
  • TDD time-division duplex
  • FDD frequency-division duplex
  • MBMS-SubSlotsConfig uses the bitmap configured in MBSFN-SubframeConfig-NR IE to determine transmission periodicity of MBMS within the NR downlink radio frames
  • UNICAST-SubSlotsConfig uses the bitmap configured in MBSFN-SubframeConfig-NR IE to determine transmission periodicity of unicast within the NR downlink radio frames.
  • a bitmap in the fifth embodiment representing both unicast and MBMS may be [01101] , where “0” represents sub-slots for one or more unicast services, and “1” represents sub-slots for one or more MBMS services.
  • the unicast bitmap UNICAST-SubSlotsConfig can be [0xx0x]
  • the MBSM bitmap MBMS-SubSlotsConfig can be [x11x1] , where x is a null value.
  • the IE subslottype includes parameters mbm-subslot and unicast-subslot.
  • the parameter mbm-subslot indicates a number of MBMS subslots
  • the parameters unicast-subslot indicates a number of unicast subslots
  • the parameters SubSlotIndex indicates the indices of unicast or MBMS subslots, that is, the indices within the NR TDD downlink (DL) /uplink (UL) or FDD DL radio frame periodicity.
  • FIG. 10 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 10 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • RF radio frequency
  • the application circuitry 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) , and/or non-volatile memory, such as flash memory.
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the units as separating components for explanation are or are not physically separated.
  • the units are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
  • dynamic scheduling is provided to allocate radio resources to services of different traffic types in a level of granularity down to a fraction of a subframe or a sub-slot (mini-slot) .
  • Different BWPs are configured to associated with services of different traffic types.
  • the disclosed method provides radio access network (RAN) enchantments including:
  • New UE MBMS indication methods where MBMS and/or uncast frequencies list, services list and reception mode are provided to enable the network to simultaneously multiplex MBMS and unicast transmission in at least one downlink radio frame.
  • BWPs bandwidth parts
  • the proposed sub-slot based allocation together with BWP allocation methods can overcome the issue of the difference in frame structures and reference signals used for unicast and MBMS.
  • the proposed sub-slot based method in the disclosure leads UE to have innovative reception and decoding behavior for simultaneously receiving multiplexed services. For example, without the sub-slot based allocation, a UE may need to spend at least two time domain resource units to receive and decode MBMS and unicast services. With the new design, the UE can simultaneously receive and decode MBMS and unicast services using only one time domain resource unit. This is the innovation at UE side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for flexible transmission and reception of broadcast and unicast services. A UE generates and sends an indication message indicating the list of intended services to a RAN node. The RAN node receives the indication message comprising a first intended service of a first traffic type, such as unicast, and a second intended service of a second traffic type, such as MBMS. The RAN node determines radio resource configuration allocating a first set of sub-slots of the radio frame to the first intended service, and a second set of sub-slots of the radio frame to the second intended service, and determines BWP configuration allocating a first BWP to the first set of sub-slots, and a second BWP to the second set of sub-slots. The RAN node transmits the configuration to the UE which receives and decodes the configuration to receive downlink transmission.

Description

APPARATUS AND METHOD FOR FLEXIBLE TRANSMISSION AND RECEPTION OF BROADCAST MULTICAST AND UNICAST SERVICES Technical Field
The present disclosure relates to the field of wireless communication, and more particularly, to a multimedia broadcast/multicast service (MBMS) system.
Background Art
Multimedia broadcast/multicast service (MBMS) is a point-to-multipoint interface designed to provide efficient delivery of broadcast and multicast services in Third Generation Partnership Project (3GPP) cellular networks. MBMS delivers multicast services within a single cell using single cell point to multipoint (SC-PTM) transmission, and delivers broadcast services within a group of multiples cells using multimedia broadcast multicast service single frequency network (MBSFN) transmission. SC-PTM uses the same Long Term Evolution (LTE) downlink (DL) shared channel and subframe structure for transmission while MBSFN defines new channels and has a different subframe structure than a regular subframe LTE to ensure the transmission over a group of cells.
Technical Problem
Current MBMS design in technical specification such as technical specification (TS) 36.300 and TS 36.331 has many technical problems at both user equipment (UE) and radio access network (RAN) sides that may prevent the support of simultaneous operation of MBMS and unicast services. Simultaneous operation of MBMS and unicast services is a necessary requirement in a fifth generation (5G) and beyond mobile network. For example, at UE side, information elements (IEs) or signaling messages provided by UE to network to indicate ongoing MBMS and unicast services are not well defined to support 5G use cases. At RAN side, no efficient mechanism is available to support flexible multiplexing of MBMS and unicast services due to fact that MBMS and unicast services have different frame structures. The present disclosure proposes an apparatus and methods to improve the current MBMS specifications to address these problems, which is essential to achieve the objectives of new radio (NR) MBMS requirements.
Technical Solution
The methods proposed in this disclosure provide some UE side and network (NW) side enhancements related to the support of simultaneous operations, such as transmission and reception, of MBMS and unicast in NR system.
In a first aspect, the present disclosure provides a method executable by a UE comprising: sending of an indication message to the network, which includes information about the ongoing or available MBMS and/or unicast services that the UE is intended to receive and the frequency list of the services, as well as the concurrent intended reception mode of the UE. The reception mode could be unicast only, or MBMS only, or simultaneous unicast and MBMS reception.
In a second aspect, the disclosure also provides a method executable by a RAN node comprising: receiving an indication message indicating a first intended service of a first traffic type and a second intended service of a second traffic type, wherein one of the first traffic type and the second traffic type is unicast traffic, and the other one of the first traffic type and the second traffic type is non-unicast traffic; determining radio resource configuration which allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service; determining bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and a second bandwidth part to the second set of sub-slots associated with the second intended service; transmitting downlink configuration including the radio resource configuration and the bandwidth part configuration; and transmitting a downlink frame carrying the first intended service and the second intended service according to the downlink configuration. The RAN radio node transmits the downlink configuration to the UE, and the UEs decode the configuration to receive downlink transmission.
In a third aspect, the present disclosure provides a RAN radio node apparatus including a transceiver and a processor connected with the transceiver. The processor is configured to execute the following steps comprising: receiving an indication message indicating a first intended service of a first traffic type and a second intended service of a second traffic type, wherein one of the first traffic type and  the second traffic type is unicast traffic, and the other one of the first traffic type and the second traffic type is non-unicast traffic; determining radio resource configuration which allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service; determining bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and a second bandwidth part to the second set of sub-slots associated with the second intended service; transmitting downlink configuration including the radio resource configuration and the bandwidth part configuration; and transmitting a downlink frame carrying the first intended service and the second intended service according to the downlink configuration. The disclosed methods may be implemented in a chip. The chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium. The non-transitory computer readable medium, when loaded to a computer, directs a processor of the computer to execute the disclosed method.
The non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
The disclosed method may be programmed as computer program product, that causes a computer to execute the disclosed method.
The disclosed method may be programmed as computer program, that causes a computer to execute the disclosed method.
Advantageous Effects
5G NR is targeting efficient multiplexing of multimedia broadcast/multicast and unicast services with resource allocation flexibility and reasonable latency to support a wide range of emerging 5G MBMS use cases, such as public safety, mission critical, and vehicle to everything (V2X) applications. The disclosed method provides radio access network (RAN) enchantments including:
1) New UE MBMS indication methods, where MBMS and/or uncast frequencies list, services list and reception mode are provided to enable the network to simultaneously multiplex MBMS and unicast transmission in at least one downlink radio frame.
2) New radio frame allocation mechanism for MBMS that is more flexible than current MBMS resource allocation is provided
3) New Subframe allocation/configuration mechanism that allows efficient multiplexing of MBMS and unicast services transmission in one NR physical downlink radio frame and achieves multiplexing gain at a scale of a fraction of a subframe;
4) New Allocation of different bandwidth parts (BWPs) to different services to address differences between MBMS and common unicast frame structures, and reference signals structures;
5) Dynamic scheduling for MBMS control information that improves efficiency of MBMS and unicast multiplexing in one sub-frame of a downlink radio frame.
The proposed sub-slot based allocation together with BWP allocation methods can overcome the issue of the difference in frame structures and reference signals used for unicast and MBMS.
The proposed sub-slot based method in the disclosure leads UE to have innovative reception and decoding behavior for simultaneously receiving multiplexed services. For example, without the sub-slot based allocation, a UE may need to spend at least two time domain resource units to receive and decode MBMS and unicast services. With the new design, the UE can simultaneously receive and decode MBMS and unicast services using only one time domain resource unit. This is the innovation at UE side.
Description of Drawings
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures.
FIG. 1 is a schematic diagram showing a system according to an embodiment of the present disclosure.
FIG. 2 is a schematic diagram showing an example of 5G core network.
FIG. 3 is a schematic diagram showing a mobile terminal and a network executing the method according to an embodiment of the present disclosure.
FIG. 4 is a flowchart showing a method according to an embodiment of the present disclosure.
FIG. 5 is a schematic diagram showing indication messages and downlink reconfiguration in a single band MBMS deployment scenario.
FIG. 6 is a schematic diagram showing examples of frame-based and subframe-based radio resource allocation to MBMS services.
FIG. 7 is a schematic diagram showing an examples of frame-based radio resource allocation to MBMS and unicast services.
FIG. 8 is a schematic diagram showing an examples of subframe-based radio resource allocation to MBMS and unicast services.
FIG. 9 is a schematic diagram showing an examples of subslot-based radio resource allocation to MBMS and unicast services.
FIG. 10 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
In the disclosed method, each of a plurality of user equipments (UEs) sends an indication message to the network, which includes information about the ongoing or available MBMS and unicast services intended by the UE, a frequency list, a reception mode of the UE. The UE may include reception modes of unicast, MBMS, and simultaneous unicast and MBMS reception. According to the received message, the network may determine that for any given sub-frame of the NR downlink radio frame, each of the intended services to be allocated with a portion or a fraction of the sub-frame. A portion of a sub-frame may include a half of subframe, that is, a sub-slot or mini-slot. The network configures for each sub-slot or mini-slot a downlink dedicated BWP. For example, the network may configure a dedicated downlink BWP configured with physical multicast channel (PMCH) channel and multicast control channel (MCCH) channel for MBMS, and may configure dedicated downlink BWP configured with a physical downlink shared channel (PDSCH) and physical downlink control channel (PDCCH) channel for unicast transmission. The network sends the downlink radio resource allocation and the allocation configuration information to UEs so that the UEs can receive MBMS or unicast or simultaneous MBMS and unicast services at any given sub-frame and radio frame.
In the description, an intended service in the disclosure may represent a service of one of broadcast, multicast, groupcast, and unicast traffic types a UE is to or intends to receive. A frequency may represent a frequency range or a frequency band defined based on the frequency for transmission of at least one of the intended services. Downlink configuration includes radio resource configuration and the bandwidth part (BWP) configuration for the intended services. The radio resource configuration allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service. The bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and second bandwidth part to the second set of sub-slots associated with the second intended service. The downlink configuration may be included in MBSFN area information and transmitted in a system information block (SIB) .
With reference to FIG. 1, a UE 10a, a UE 10b, a base station 200a, and a network entity device 300 executes a method according to an embodiment of the present disclosure. Connections between devices and device components are shown as lines and arrows in the FIG. 1. The UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a. The UE 10b may include a processor 11b, a memory  12b, and a transceiver 13b. The base station 200a may include a processor 201a, a memory 202a, and a transceiver 203a. The network entity device 300 may include a processor 301, a memory 302, and a transceiver 303. Each of the  processors  11a, 11b, 201a, and 301 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocols may be implemented in the  processors  11a, 11b, 201a, and 301. Each of the  memory  12a, 12b, 202a, and 302 operatively stores a variety of program and information to operate a connected processor. Each of the  transceiver  13a, 13b, 203a, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals. The base station 200a may be an eNB, a gNB, or one of other radio nodes.
Each of the  processor  11a, 11b, 201a, and 301 may include a general-purpose central processing unit (CPU) , an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices. Each of the  memory  12a, 12b, 202a, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium, other storage devices, and/or any combination of the memory and storage devices. Each of the  transceiver  13a, 13b, 203a, and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules, procedures, functions, entities and so on, that perform the functions described herein. The modules can be stored in a memory and executed by the processors. The memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
The network entity device 300 may be a node in a central network (CN) . CN may include LTE CN or 5G core (5GC) which may include user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , the network exposure function (NEF) , and other network entities.
The 5G NR system reuses as much as possible the current unicast service architecture and procedures to deliver for MBMS services. For example, with reference to FIG. 2, the application function (AF) 212 in a 5GC 220 is enhanced by introducing a new network function called multicast service function (MSF) which provides MBMS service layer functionality via Npcf or Nnef interface. The network exposure function (NEF) and the policy control function (PCF) 213 are enhanced to exchange 5G MBMS quality of service (QoS) and service area related information with AF 212, and the session policy related information with the session management function (SMF) 214. The functions of SMF 216 and the user plane function (UPF) are enhanced to support the configuration/controls of MBMS flows. The access and mobility function (AMF) 215 is also enhanced to support managing of transmission resources for MBMS across next generation radio access network (NG-RAN)  nodes  210 and 211. Interfaces N2, N3, N6, and N7 are defined in 5G related standards.
MBMS operation is detailed in the following. In the description, the disclosed method is performed in a system comprising a plurality of UEs and a network. The network may comprise at least one of the base station 200a and the network entity device 300. The UEs may comprise the UEs 10a and 10b.
To deliver MBMS over one same LTE frame with unicast service, MBMS related network entities may combine the transmission of an LTE physical downlink shared channels (PDSCH) with a physical multicast channel (PMCH) in the same LTE radio frame. An MBMS capable UE can camp on “RRC_IDLE” LTE cell, access stratum configuration, and read system information SIB2 broadcasted by the cell on Broadcast Control Channel (BCCH) to discover availability of eMBMS service. The UE may interpret SIB2 to identify MBMS subframes allocation configuration. The MBMS subframes allocation specifies which subframes are reserved for MBSFN transmissions on the PMCH and which subframes are reserved for unicast transmissions on the PDSCH. The MBSFN subframes has a repetition period of 1 to 32 frames and do not interfere with subframes used for paging or synchronization signals. After determining the subframes allocated for MBMS, the UE intending to receive MBMS services may continue reading SIB13 which carries MBSFN area configuration information and the medium access control (MAC) control element for multicast channel (MCH) scheduling information (MSI) . The UE may interpret the SIB13 to acquire the following information:
(1) the MBSFN area identifier of each area supported by the cell;
(2) the information regarding multicast control channel (MCCH) channel including the MCCH repetition period such as 32, 64, ..., or 256 frames, the MCCH offset, such as 0, 1, ..., or 10 frames, the MCCH modification period, such as 512, or 1024 frames, a modulation and coding scheme (MCS) , the subframe allocation information for MCCH indicated by the repetition period and offset; and
(3) an MCCH change notification configuration.
The UE may interpret the acquired information to receive MCH channel which carries a radio resource control (RRC) signaling message about MBSFN area configuration. Each MBSFN area is associated with one MBSFN area configuration message. The MBSFN area configuration message includes:
(1) the temporary mobile group identity (TMGI) and the session identifier for each multicast traffic channels (MTCH) which is identified by a logical channel identifier in each PMCH;
(2) the allocated resources for each PMCH in the area and the allocation period, such as 4, 8..., or 256 frames, of the allocated resources for all the PMCHs within the area; and
(3) the MCH scheduling period (MSP) , such as 8, 16 , ..., or 1024 radio frames, over which the MSI MAC control element is transmitted.
The MSI MAC control element is transmitted on the first subframe of each scheduling period of the PMCH. The MSI indicates an end of the frame and subframe of each MTCH within the PMCH for the UE. The UE can read this control element to receive an instance of MTCH channel. To determine the frequency that provide the MBMS service to be received by UE, the UE may check user service description (USD) and/or read SIB15 which includes a list contain the current frequency and the neighboring frequencies, where each frequency in the list is associated with a list of MBMS service area identities (SAIs) that is supported by the respective frequency while the USD includes a TMGI corresponding to each MBMS SAI, and further includes information associating the TMGIs and SAIs. For one or more MBMS services of interest, the UE may use information provided by SIB15 and the USD to determine the MBMS SAIs associated with the corresponding TMGI (s) of interest, and then specifies the frequency or frequencies associated with the MBMS SAIs as the frequency or frequencies of interests. After determining the frequency or frequencies of interests UE can sends an RRC signaling message known as MBMS interest indication message to the network to inform about intended MBMS service or services provided by the respective frequency or frequencies.
The disclosure provides a method allowing one or more UEs, such as one or both of the UEs 10a and 10b, to receive MBMS and unicast service in the 5G NR system. With reference to FIG. 3, the UE is in in an RRC connected mode (step 310) . The UE in an RRC connected mode determines intended services of intended traffic types (step 311) and sends an indication message including intended service IDs of the services associated with the intended traffic type, carrier frequencies, and a reception mode, to the network (NW) , such as one or both of the base station 200a and the NW entity 300 (step 312) . In response to the indication message, the NW determines radio resource configuration which indicates sub-slots allocated to different services of different traffic types, and BWP configuration which configures different DL BWPs for different services, and sends the configuration to the UE (step 313) . The NW sends the downlink configuration to the UE and sends radio frames to the UE according to the downlink configuration (step 314) . The NW transmits a first radio resource unit of the first intended service and a second radio resource unit of the second intended service according to the downlink configuration to the UE. The first radio resource unit and the second radio resource unit are multiplexed into different time resource units on a same frequency band or multiple frequency bands. The method of FIG. 3 may be applied to a plurality of UEs.
With reference to FIG. 4, the UE in an RRC connected mode determines one or more intended services of one or more traffic types and sends an indication message to the NW, such as one or both of the base station 200a and the NW entity 300. The traffic types include MBMS, unicast, and simultaneous MBMS and unicast. The UE generates and sends an indication message indicating a list of the intended services to the NW (block 400) . The indication message includes a list of intended one or more services, a list of service carrier frequencies, and a reception mode of the UE. The list of intended services is a list of radio data bearers of the ongoing or intended services. For example, the radio data bearers may be identified by service identities (IDs) . The UE may send the indication message periodically at a level of  granularity at one NR radio frame. The message may also include a list of frequencies for the ongoing or intended MBMS and unicast services and the current supported reception mode of the UE. The current supported reception mode of the UE may include one of unicast only, MBMS only, and simultaneous MBMS and unicast reception modes.
The NW receives the indication message from UEs and, in response to the indication message, determines sub-slots to be allocated for each service (block 401) . In response to the received indication message from UE, the NW determines NR downlink configuration. The NW allocates BWPs for the sub-slots (block 402) . Specifically, the NW receives an indication message indicating a first intended service of a first traffic type and a second intended service of a second traffic type. One of the first traffic type and the second traffic type is unicast traffic, and the other one of the first traffic type and the second traffic type is non-unicast traffic, such as broadcast, multicast, or groupcast. The NW determines radio resource configuration which allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service. The NW determines bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and second bandwidth part to the second set of sub-slots associated with the second intended service. A BWP of a sub-slot (mini-slot) starts at the beginning of the sub-slot in time domain. The NW configures one of the allocated BWP for an MBMS service on PMCH and one of the allocated BWP for a unicast service on PDSCH (block 403) .
The NW generates an NR downlink radio frame to include the intended services of respective traffic types, and sends the downlink frame and the downlink configuration to UE (block 404) . The downlink configuration includes radio resources allocation for the intended services of MBMS only, unicast only, or simultaneous MBMS and unicast traffic type. Radio frames of the unicast traffic type may be transmitted on PDSCH while radio frames of the MBMS traffic type may be transmitted on PMCH. Radio frames of the simultaneous unicast and MBMS transmission may be transmitted on PDSCH and PMCH. The downlink configuration may be transmitted in downlink control information (DCI) or RRC signaling. The UE receives and decodes the downlink configuration, and receives downlink transmission including the downlink frame according to the configuration (block 405) .
At the UE side, at least one of the UEs transmits the indication message indicating the first intended service of the first traffic type and the second intended service of the second traffic type. One of the first traffic type and the second traffic type is unicast traffic, and the other one of the first traffic type and the second traffic type is non-unicast traffic. The UE receives downlink configuration responding to the indication message. The downlink configuration includes radio resource configuration and bandwidth part configuration. The radio resource configuration allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service. The bandwidth part configuration allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and a second bandwidth part to the second set of sub-slots associated with the second intended service. The UE receives and decodes a downlink frame carrying the first intended service and the second intended service according to the downlink configuration.
Examples of the disclosed method using the proposed new IEs are detailed in the following. The NW may interpret the IEs to allocate and configure PDSCH and PMCH transmission in downlink.
With reference to FIG. 5, in the example of single band MBMS deployment, the UE in an RRC connected mode camps on a frequency band F1 in a NW with single band deployed MBMS, and intends to receive MBMS services. The UE may initially intend to receive two MBMS services, such as a news service (S1) and a sports service (S2) , and simultaneously a unicast service (S3) , such as file download. The UE may transmit an MBMS interest indication message 501 to the NW to indicate the intended MBMS services S2 an S3 and the unicast service S3 (step 501) . As shown in FIG. 5, the indication message may be represented by a message M1: [ (S1, S2) , (S3) , (F1) , Simultaneous] . Depending on the content of the received message from all UEs in the network, the network determines sub-slots allocated to different services based on the number of intended MBMS and/or unicast services and a reception mode indicated in the interest indication message. For example, when the reception mode is simultaneous MBMS and unicast reception, the NW determines a number of sub-slots in a radio frame to be allocated to intended MBMS service and a number of sub-slots in the radio frame to be allocated to intended unicast service.
With reference to FIG. 5, the network configures a MBMS downlink bandwidth part for sub-slots within the radio frame 1 in a PMCH channel allocated to an MBMS service, and unicast downlink bandwidth part for sub-slots within the radio frame 1 in a PDSCH channel allocated to a unicast service. The network sends downlink configuration including the downlink radio resource configuration and the BWP configuration to UE (step 502) . For example, the BWP configuration may include a bitmap indicating the bandwidth part allocation. The UE can use the bitmap to decode the configuration and receive the frame. If the unicast service S3 stops temporarily while the news service S1 and sports service S2 are still running, the UE update the indication message as [ (S1, S2) , (F1) , MBMS] and sent the indication message to the NW. As shown in FIG. 5, the NW configures the entire downlink radio frame 2 to contain only PMCH channel for the MBMS services. Similarly, when the MBMS services S1 and S2 are stopped and the unicast service S3 is running, the NW configures the entire downlink radio frame 2 to contain only a PDSCH channel for the unicast service S3. The disclosed method thus provides flexibility on radio resource allocation the for MBMS and unicast transmissions. One radio frame carry MBMS service subframe and unicast service subframe. Note that some subframes were left for paging and synchronization according to current LTE design but may be alterable.
In an embodiment of the disclosure, the UE receives a first radio resource unit of the first intended service and a second radio resource unit of the second intended service according to the downlink configuration. The first radio resource unit and the second radio resource unit may be subframes, sub-slots, or mini-slots, which are multiplexed into different time slots on a same frequency band F1.
The UE may transmit an information element to indicate a MBMS service list to the network in both SC-PTM and MBSFN operation modes. The network receives the information element indicating a MBMS service list intended by the UE in both SC-PTM and MBSFN operation modes and utilizes the information element to determine allocation of a unicast service versus a multicast/broadcast service on the downlink frame.
Embodiments of the disclosed method is detailed in the following.
According to TS 36.331, the UE obtains configuration of MBMS subframes allocation from SystemInformationBlockType2, and receives MBMS according to the MBMS subframes allocation. An information element (IE) mbsfn-SubframeConfigList defines the subframes allocation configuration using parameters of mbsfn-SubframeConfig IE. The mbsfn-SubframeConfig indicates radio frames reserved for MBMS transmission, subframes configuration in the reserved radio frames. Subframes configuration indicates which subframes are reserved for MBSFN transmissions using PMCHs and which subframes are reserved for unicast transmissions using PDSCHs. According to TS 36.331 clause 6.3.7, the MBSFN-SubframeConfig IE contains:
1) . radioFrameAllocationPeriod IE and the radioFrameAllocationOffset IE for defining the radio frames that are allocated for MBSFN; and
2) . subframeAllocation IE comprising a bitmap defining subframe within an MBMS radio frame that are allocated for MBSFN.
The bitmap is 6 bits for periodicity of one frame or 24 bits for periodicity of four consecutive radio frames. With reference to FIG. 6, for the bitmap, the following mapping applies:
1) . A bit with a binary value "1" in the bitmap denotes a corresponding subframe associate with the bit is allocated for MBSFN;
2) . For FDD the first/leftmost bit defines the MBSFN allocation for subframe #1, the second bit for subframe #2, third bit for subframe #3, fourth bit for subframe #6, fifth bit for subframe #7, sixth bit for subframe #8 ; and
3) . For TDD the first/leftmost bit defines the allocation for subframe #3, the second bit for subframe #4, third bit for subframe #7, fourth bit for subframe #8, fifth bit for subframe #9, as shown in FIG. 6.
According to the above MBSFN design as in TS 36.331, the MBMS radio frame allocation which is determined by MBSFN-SubframeConfig of SystemInformationBlockType2 is statiscally defiend using the equation: [SFN mode N=X] , where N =radioFrameAllocationPeriod and X =radioFrameAllocationOffset (Figure. 8) . This type of static allocation has the following limitations:
1) . Inflexibility in multiplexing of MBMS and unicast as the static allocation prevents UEs from receiving MBMS services during non-MBMS reserved frames even if some UE intend to receive MBMS services during non-MBMS radio frames.
2) . Wasting of radio frame resources as the static allocation leads to reservation of frame resources for unicast services when few or no UE intends to receive MBMS.
3) . MBMS service delay as the static allocation requires UEs to wait for MBMS reserved radio frames, which cannot meet requirements of NR time sensitive use cases, such as public safety, mission critical, V2X applications, and group communications.
A first embodiment of the disclosed method dyamicaly allocates radio frames for MBMS according to the number of the intended services and receiption mode of the UEs. An information element in the radio resource configuration includes a bitmap which indicates a first set of subframes in the radio frame being allocated to the first intended service, and a second set of subframes in the radio frame being allocated to the second intended service. The intended services may include MBMS and/or unicast. With reference to Table 1, a new parameter such as RadioframeRepetionPeriodNR is proposed in the disclosed method as an element of MBSFN-SubframeConfig-NR and MBSFN-SubslotConfig-NR in NR to define and schedule reception period of radio frames used to carry MBMS. The RadioframeRepetionPeriodNR includes a parameter oneFrameNR indicating a repetition period of one frame, and a parameter fourFramesNR indicating a repetition period of four frames. The parameter oneFrameNR includes a bitmap subslotsBitmapOneFrame. The parameter fourFramesNR includes a bitmap subslotsBitmapFourFrames. For example, scheduling of MBMS can be defined for every radio frame or every four radio frames, which are respectively represented by rf1 or rf4 in Table 1. As shown in FIG. 8, an radio frame is expected to be used for MBMS transimission. With the dynamic allcation, an NR radio frame can be allocated to MBMS, unicast, or simultaneously MBMS and unicast transimisson. Radio resources, such as subframes or sub-slots, in an NR radio frame can be allocated to MBMS services and unicast services according to intended MBMS and unicast services indicated by the UEs. Radio resources allocated for intended MBMS and unicast services indicated by the UEs may be represented by percentages in the radio frame.
Table 1: Proposed MBSFN-SubframeConfig IE for NR MBMS
Figure PCTCN2020086765-appb-000001
A bitmap is defined in subframeAllocation IE to indicate subframes within an MBMS reserved radio frame that are allocated for MBSFN. The bitmap may be 6 bits for a repetition period of one radio frame or 24 bits for a repetition period of four consecutive radio frames. This bitmap defines radio resources allocation for MBMS with a level of granularity down to one sub-frame. With reference to FIG. 7, for example, any particular sub-frame can be allocated to either unicast transmission on PDSCH channel, or MBMS transmission on PMCH, but not both.
In a second embodiment of the disclosed method, an information element in the radio resource configuration includes a bitmap which indicates a first set of sub-slots in the radio frame being allocated to the first intended service, and a second set of sub-slots in the radio frame being allocated to the second intended service. The bitmap indicates indices of the first set of sub-slots and the second set of sub-slots. To achieve efficient multiplexing of MBMS and unicast at a level of granularity smaller than current MBMS design and to minimize latency, the disclosure redefines the bitmap indicated by subframeAllocation IE to indicate a subslot based allocation conisdering the differences in subcarrier spcacing and the number of the subslots supported by each subcarrier spacing used as given by subslotsBitmapOneFrame, subslotsBitmapFourFrames and the paramter maxnrofsubslotsNR which indicate the length of the bitmap according to NR subcarrier spcacing (see Table 3) . Note that, silmilar to LTE, the new bitmap in NR can also be set by subslotsBitmapOneFrame as being used for the repetition period of one radio frame. Alternatively, the new bitmap in NR can be set by subslotsBitmapFourFrames as being used for the repetition period of four radio frames. The radio resource configuration further allocates sub-slots for paging and synchronization. A major advantage of the slot-based allocation is saving frame resources reserved for paging and synchronization. Table 2 shows an example of the slot-based allocation, where only half of a subframe is reserved for paging and synchronization, which improves resources utilization for MBMS up to 80%compared with 60%in subframe based resource allocation.
Table 2: An example of MBMS Sub-slot allocation in NR
Figure PCTCN2020086765-appb-000002
Table 3:
Figure PCTCN2020086765-appb-000003
Figure PCTCN2020086765-appb-000004
In current MBMS design, an SIB13 area configuration message including MBSFNAreaConfiguration, MBMS-NotificationConfig, and MBSFN-AreaInfoList IEs is sent from the network to the UEs. The subframeAllocation IE is used to define the subframes that are allocated for MBSFN tranismission.
The radio resource configuration may be transmitted in a system information block which includes at least one of a common sub-slot allocation pattern, MBMS notification configuration, and MBSFN area information.
In a third embodiment of the dislcosed method, the network provides the new proposed subslot based bitmap to the UEs via an area configuration message. The UEs decode the bitmap to determine subslot based resource allocation. The area configuration message may be carried in an LTE SIB 13 or any other newly defiend NR MBMS related SIB to indicate the subslot based bitmap using a parameter of common subslot allocatio patterns CommonSubslot-AllocPatternList-NR of the MBSFNAreaConfiguration-NR IE as shown in Table 4, and the parameter sl-AllocInfo-nr of the MBMS-NotificationConfig-NR IE shown in Table 5, as well as the parameter subSlot-AllocInfo-NR of the MBSFN-AreaInfoList-NR IE as shown in Table 7. The parameter indicated by CommonSubslot-AllocPatternList-NR is MBSFN-SubframeConfig-NR.  The CommonSubslot-AllocPatternList-NR stands is a subslot based bitmap and contian a list of MBSFN-SubframeConfig-NR for different areas. The radio resource configuration may be transmitted in a system information block which includes MBSFN area information. The MBSFN area information includes scheduling information and configuration for MCH, MCCH, and MTCH, MCCH notification, and MCS associated with at least one of the first intended service and the second intended service.
Table 4: MBSFNAreaConfiguration-NR IE for NR MBMS
Figure PCTCN2020086765-appb-000005
Table 5: MBMS-NotificationConfig-NR IE for NR MBMS
Figure PCTCN2020086765-appb-000006
After detecting the subframes configuration or the sub-slots configuration in NR, the UE continues to reads SIB13 SystemInformationBlockType13 or a newly defined SIB in NR to determine the MBSFN area configuration. The MBSFN-AreaInfoList IE contains:
1) MBMS control information for one or more MBSFN areas, including, for example, scheduling information for MCH, MCCH, MTCH, MCCH configuration indicating how MTCH is organized and how to access MTCH, MCCH notification, and the MCS used for the intended services; and
2) The information about MBSFN subframe allocation including repetition periods and subframe offsets indicating MBSFN subframes.
As shown in Table 6, the current MBMS frame/sub-frame structure used for MBMS has different types of cyclic prefix (CP) , CP durations, carrier spacing, and numbers of symbols per subframe used for common unicast transmission. Current MBMS design cannot support efficient multiplexing of MBMS and unicast in time in a scale smaller than a sub-frame, which may increase delay, and thus is unsuitable for 5G time sensitive use-cases, such as public safety, mission critical, V2X applications, and group communications.
Table 6: Difference in frame structure used for MBMS and unicast
Figure PCTCN2020086765-appb-000007
A fourth embodiment of the disclosed method is provided to address the differences on physical layer (PHY) frame/sub-frame structures and reference signals structures used for MBMS and unicast service and to achieve a level of granularity of MBMS and unicast multiplexing at a fraction of a single subframe. With reference to Table 8, the method allocates different types of bandwidth part to different services using a new IE, namely, MBSFN-SubslotsBWPConfig within the MBSFN-AreaInfo-NR. Each service may be configured with different types of CP, CP durations, carrier spacing, numbers of symbols and channels and reference signal. The MBSFN-SubslotsBWPConfig IE is used to configure the bandwidth part for an MBSFN area and contains the following IEs:
1) . BWP-MbmsDownlinkBWP: a UE specific BWP configured to include configuration of both PMCH and MCCH channels for MBMS transmission and physical downlink control channel (PDCCH) channel for tracking MCCH changes which comprise MCCH notifications change broadcasted on PDCCH;
2) . BWP-UnicastDownlinkBWP: a UE specific BWP configured to include configuration of PDCCH and PDSCH for unicast transmission;
3) . BWP-MBSFNDownlink: a cell specific BWP used to perform initial access process;
4) . MBMS-SubSlotsConfig: a parameter configuring MBMS sub-slot (mini-slot) transmission periodicity within an NR downlink radio frame; and
5) . UNICAST-SubSlotsConfig: a parameter configuring unicast sub-slot (mini-slot) transmission periodicity within an NR downlink radio frame.
Dynamic MBMS scheduling in NR can be realized by configuring MBMS control channels MCCH and PMCH within BWPs allocated to each MBSFN area. The fixed scheduling for MCCH repetition period and MCCH offset as used in LTE MBMS are not required in the disclosed method because the MCCH control channels are automatically scheduled within the configured BWPs.
Table 7: Proposed MBSFN-AreaInfoList-NR IE for NR MBMS
Figure PCTCN2020086765-appb-000008
Table 8
Figure PCTCN2020086765-appb-000009
Figure PCTCN2020086765-appb-000010
In a fifth embodiment of the disclosed method, bandwidth parts include a configuration IE namely MBSFN-SubslotsBWPConfig IE, defining transmission periodicity of MBMS and unicast subslots within the NR time-division duplex (TDD) /frequency-division duplex (FDD) radio frames. With reference to Table 9, MBMS-SubSlotsConfig uses the bitmap configured in MBSFN-SubframeConfig-NR IE to determine transmission periodicity of MBMS within the NR downlink radio frames, and UNICAST-SubSlotsConfig uses the bitmap configured in MBSFN-SubframeConfig-NR IE to determine transmission periodicity of unicast within the NR downlink radio frames. For example, a bitmap in the fifth embodiment representing both unicast and MBMS may be [01101] , where “0” represents sub-slots for one or more unicast services, and “1” represents sub-slots for one or more MBMS services. Accordingly, the unicast bitmap UNICAST-SubSlotsConfig can be [0xx0x] , and the MBSM bitmap MBMS-SubSlotsConfig can be [x11x1] , where x is a null value. With reference to FIG. 9, in MBMS-SubSlotsConfig and UNICAST-SubSlotsConfig, the IE subslottype includes parameters mbm-subslot and unicast-subslot. The parameter mbm-subslot indicates a number of MBMS subslots, and the parameters unicast-subslot indicates a number of unicast subslots while the parameters SubSlotIndex indicates the indices of unicast or MBMS subslots, that is, the indices within the NR TDD downlink (DL) /uplink (UL) or FDD DL radio frame periodicity.
Table 9
Figure PCTCN2020086765-appb-000011
Figure PCTCN2020086765-appb-000012
FIG. 10 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 10 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
The application circuitry 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry. In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) , and/or non-volatile memory, such as flash memory. In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
In the disclosure, dynamic scheduling is provided to allocate radio resources to services of different traffic types in a level of granularity down to a fraction of a subframe or a sub-slot (mini-slot) . Different BWPs are configured to associated with services of different traffic types. The disclosed method provides radio access network (RAN) enchantments including:
1) New UE MBMS indication methods, where MBMS and/or uncast frequencies list, services list and reception mode are provided to enable the network to simultaneously multiplex MBMS and unicast transmission in at least one downlink radio frame.
2) New radio frame allocation mechanism for MBMS that is more flexible than current MBMS resource allocation;
3) Subframe allocation/configuration that allows efficient multiplexing of MBMS and unicast services transmission in one NR physical downlink radio frame and achieves multiplexing gain at a scale of a fraction of a subframe;
4) Allocation of different bandwidth parts (BWPs) to different services to address the differences between MBMS and common unicast in terms of frame structures and reference signals structures;
5) Dynamic scheduling for MBMS control information that improves efficiency of MBMS and unicast multiplexing in one downlink radio frame.
The proposed sub-slot based allocation together with BWP allocation methods can overcome the issue of the difference in frame structures and reference signals used for unicast and MBMS.
The proposed sub-slot based method in the disclosure leads UE to have innovative reception and decoding behavior for simultaneously receiving multiplexed services. For example, without the sub-slot based allocation, a UE may need to spend at least two time domain resource units to receive and decode MBMS and unicast services. With the new design, the UE can simultaneously receive and decode MBMS and unicast services using only one time domain resource unit. This is the innovation at UE side.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (34)

  1. A method flexible transmission and reception of broadcast multicast and unicast services, executable by a RAN radio node, comprising:
    receiving an indication message indicating a first intended service of a first traffic type and a second intended service of a second traffic type, wherein one of the first traffic type and the second traffic type is unicast traffic, and the other one of the first traffic type and the second traffic type is non-unicast traffic;
    determining radio resource configuration which allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service;
    determining bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and a second bandwidth part to the second set of sub-slots associated with the second intended service;
    transmitting downlink configuration including the radio resource configuration and the bandwidth part configuration; and
    transmitting a downlink frame carrying the first intended service and the second intended service according to the downlink configuration.
  2. The method of claim 1, wherein the indication message further comprises a reception mode for receiving the first intended service and the second intended service.
  3. The method of claim 2, wherein the reception mode comprises one of a unicast reception mode, a non-unicast reception mode, and a simultaneous unicast and non-unicast reception mode.
  4. The method of claim 3, wherein the non-unicast reception mode comprises an MBMS reception mode, and the simultaneous unicast and non-unicast reception mode comprises a simultaneous unicast and MBMS reception mode.
  5. The method of claim 1, wherein the non-unicast traffic comprises at least one of broadcast traffic, multicast traffic, and groupcast traffic.
  6. The method of claim 1, wherein the radio resource configuration comprises an information element including a bitmap which indicates a first set of subframes in the radio frame being allocated to the first intended service, and a second set of subframes in the radio frame being allocated to the second intended service.
  7. The method of claim 1, wherein the bitmap is configured as a 6-bit bitmap for a repetition period of one radio frame, and configured as a 24-bit bitmap for a repetition period of four consecutive radio frames.
  8. The method of claim 1, wherein the radio resource configuration comprises an information element including a bitmap which indicates the first set of sub-slots being allocated to the first intended service, and the second set of sub-slots being allocated to the second intended service.
  9. The method of claim 1, wherein the bitmap indicates indices of the first set of sub-slots and the second set of sub-slots.
  10. The method of claim 1, wherein the radio resource configuration is transmitted in a system information block which includes at least one of a common sub-slot allocation pattern, MBMS notification configuration, and MBSFN area information.
  11. The method of claim 1, wherein the radio resource configuration is transmitted in a system information block which includes MBSFN area information, and the MBSFN area information includes scheduling information and configuration for MCH, MCCH, and MTCH, MCCH notification, and MCS associated with at least one of the first intended service and the second intended service.
  12. The method of claim 1, wherein the radio resource configuration allocates sub-slots for paging and synchronization.
  13. The method of claim 1, wherein the radio resource configuration is included in MBSFN area information.
  14. The method of claim 1, wherein the bandwidth part configuration is included in MBSFN area information which include :
    an information element for a UE specific BWP configured with PMCH and MCCH channels for MBMS transmission;
    an information element for a UE specific BWP configured with PDCCH and PDSCH for unicast transmission;
    an information element for a cell specific BWP used to perform initial access process;
    a parameter configuring MBMS sub-slot transmission periodicity within the radio frame; and
    a parameter configuring unicast sub-slot transmission periodicity within the radio frame.
  15. The method of claim 1, further comprising:
    transmitting a first radio resource unit of the first intended service and a second radio resource unit of the second intended service according to the downlink configuration, wherein the first radio resource unit and the second radio resource unit are multiplexed into different time resource units on a same frequency band.
  16. A radio node apparatus comprising:
    a transceiver; and
    a processor connected with the transceiver and configured to execute the following steps comprising:
    receiving an indication message indicating a first intended service of a first traffic type and a second intended service of a second traffic type, wherein one of the first traffic type and the second traffic type is unicast traffic, and the other one of the first traffic type and the second traffic type is non-unicast traffic;
    determining radio resource configuration which allocates a first set of sub-slots in a radio frame to the first intended service, and a second set of sub-slots in the radio frame to the second intended service;
    determining bandwidth part configuration which allocates a first bandwidth part to the first set of sub-slots associated with the first intended service, and a second bandwidth part to the second set of sub-slots associated with the second intended service;
    transmitting downlink configuration including the radio resource configuration and the bandwidth part configuration; and
    transmitting a downlink frame carrying the first intended service and the second intended service according to the downlink configuration.
  17. The apparatus of claim 16, wherein the indication message further comprises a reception mode for receiving the first intended service and the second intended service.
  18. The apparatus of claim 17, wherein the reception mode comprises one of a unicast reception mode, a non-unicast reception mode, and a simultaneous unicast and non-unicast reception mode.
  19. The apparatus of claim 18, wherein the non-unicast reception mode comprises an MBMS reception mode, and the simultaneous unicast and non-unicast reception mode comprises a simultaneous unicast and MBMS reception mode.
  20. The apparatus of claim 16, wherein the non-unicast traffic comprises at least one of broadcast traffic, multicast traffic, and groupcast traffic.
  21. The apparatus of claim 16, wherein the radio resource configuration comprises an information element including a bitmap which indicates a first set of subframes in the radio frame being allocated to the first intended service, and a second set of subframes in the radio frame being allocated to the second intended service.
  22. The apparatus of claim 16, wherein the bitmap is configured as a 6-bit bitmap for a repetition period of one radio frame, and configured as a 24-bit bitmap for a repetition period of four consecutive radio frames.
  23. The apparatus of claim 16, wherein the radio resource configuration comprises an information element including a bitmap which indicates the first set of sub-slots being allocated to the first intended service, and the second set of sub-slots being allocated to the second intended service.
  24. The apparatus of claim 16, wherein the bitmap indicates indices of the first set of sub-slots and the second set of sub-slots.
  25. The apparatus of claim 16, wherein the radio resource configuration is transmitted in a system information block which includes at least one of a common sub-slot allocation pattern, MBMS notification configuration, and MBSFN area information.
  26. The apparatus of claim 16, wherein the radio resource configuration is transmitted in a system information block which includes MBSFN area information, and the MBSFN area information includes scheduling information and configuration for MCH, MCCH, and MTCH, MCCH notification, and MCS associated with at least one of the first intended service and the second intended service.
  27. The apparatus of claim 16, wherein the radio resource configuration allocates sub-slots for paging and synchronization.
  28. The apparatus of claim 16, wherein the radio resource configuration is included in MBSFN area information.
  29. The apparatus of claim 16, wherein the bandwidth part configuration is included in MBSFN area information which include :
    an information element for a UE specific BWP configured with PMCH and MCCH channels for MBMS transmission;
    an information element for a UE specific BWP configured with PDCCH and PDSCH for unicast transmission;
    an information element for a cell specific BWP used to perform initial access process;
    a parameter configuring MBMS sub-slot transmission periodicity within the radio frame; and
    a parameter configuring unicast sub-slot transmission periodicity within the radio frame.
  30. The apparatus of claim 16, wherein the processor is configured to execute the steps of :
    transmitting a first radio resource unit of the first intended service and a second radio resource unit of the second intended service according to the downlink configuration, wherein the first radio resource unit and the second radio resource unit are multiplexed into different time resource units on a same frequency band.
  31. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any of the methods of claims 1 to 15.
  32. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute any of the methods of claims 1 to 15.
  33. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute any of the methods of claims 1 to 15.
  34. A computer program, wherein the computer program causes a computer to execute any of the methods of claims 1 to 15.
PCT/CN2020/086765 2020-04-24 2020-04-24 Apparatus and method for flexible transmission and reception of broadcast multicast and unicast services WO2021212489A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080099944.2A CN115428371A (en) 2020-04-24 2020-04-24 Apparatus and method for flexible transmission and reception of broadcast multicast and unicast services
PCT/CN2020/086765 WO2021212489A1 (en) 2020-04-24 2020-04-24 Apparatus and method for flexible transmission and reception of broadcast multicast and unicast services

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086765 WO2021212489A1 (en) 2020-04-24 2020-04-24 Apparatus and method for flexible transmission and reception of broadcast multicast and unicast services

Publications (1)

Publication Number Publication Date
WO2021212489A1 true WO2021212489A1 (en) 2021-10-28

Family

ID=78270974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086765 WO2021212489A1 (en) 2020-04-24 2020-04-24 Apparatus and method for flexible transmission and reception of broadcast multicast and unicast services

Country Status (2)

Country Link
CN (1) CN115428371A (en)
WO (1) WO2021212489A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190246244A1 (en) * 2018-02-02 2019-08-08 Qualcomm Incorporated Carrier capability signaling with regard to multiple carrier numerologies
US20190363843A1 (en) * 2018-05-27 2019-11-28 Brian Gordaychik Next generation radio technologies
WO2020033089A1 (en) * 2018-08-09 2020-02-13 Convida Wireless, Llc Broadcast, multicast, and unicast on sidelink for 5g ev2x

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190246244A1 (en) * 2018-02-02 2019-08-08 Qualcomm Incorporated Carrier capability signaling with regard to multiple carrier numerologies
US20190363843A1 (en) * 2018-05-27 2019-11-28 Brian Gordaychik Next generation radio technologies
WO2020033089A1 (en) * 2018-08-09 2020-02-13 Convida Wireless, Llc Broadcast, multicast, and unicast on sidelink for 5g ev2x

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER HHI, FRAUNHOFER IIS: "Design of NR V2X Physical Layer Structures", 3GPP DRAFT; R1-1912287, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051819981 *

Also Published As

Publication number Publication date
CN115428371A (en) 2022-12-02

Similar Documents

Publication Publication Date Title
US8982872B2 (en) Transmitting method and device for scheduling information
RU2469489C2 (en) Method to produce/configure mbsfn subframes and appropriate production device
US20100329171A1 (en) Method and Apparatus for Handling Subframe of Multimedia Broadcast Multicast Service Single Frequency Network in Wireless Communication System
US20110013574A1 (en) Method of Handling Unicast Transmission on Multimedia Broadcast Multicast Service Subframe and Related Communication Device
EP3101922B1 (en) Apparatus
WO2020248918A1 (en) Communication method and apparatus
US8861422B2 (en) Method of managing multimedia broadcast multicast service reception and related communication device
AU2021321883A1 (en) Information Communication, Receiving, Configuration, Sending Method, Resource Configuration Method and Device
US20230276471A1 (en) Methods and systems for managing multicast broadcast service (mbs) services
US20160013977A1 (en) Service Processing Method for New Carrier Type Cell, Apparatus, and Communications System
EP3200488B1 (en) Paging method and device
CN115428481B (en) Apparatus and method for unicast, broadcast and multicast services
US20230284044A1 (en) Methods and apparatuses for radio communication
CN113453337B (en) Broadcast multicast service transmission method, broadcast multicast service transmission indication method and equipment
US20120155367A1 (en) Method and apparatus for receiving multicast and broadcast service in a broadband wireless communication system
CN110351709B (en) Communication method and communication device
WO2021212489A1 (en) Apparatus and method for flexible transmission and reception of broadcast multicast and unicast services
US20110149832A1 (en) Method for data transmitting in mobile multicast broadcast service
WO2021190596A1 (en) Control information scheduling and modification notification for multicast and broadcast
CN116325818A (en) Communication method and device
WO2022006818A1 (en) Network entity device, user equipment, and method for dynamic adjustment of mbms transmission areas
WO2022205338A1 (en) User equipment, base station, and wireless communication method for mbs
CN114727230B (en) Information transmission method and device
US20240032071A1 (en) Method and apparatus for time-division transmission of heterogeneous physical-layer signals
WO2022198385A1 (en) User equipment, base station, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932558

Country of ref document: EP

Kind code of ref document: A1