WO2022205176A1 - 一种电化学装置及电子装置 - Google Patents

一种电化学装置及电子装置 Download PDF

Info

Publication number
WO2022205176A1
WO2022205176A1 PCT/CN2021/084681 CN2021084681W WO2022205176A1 WO 2022205176 A1 WO2022205176 A1 WO 2022205176A1 CN 2021084681 W CN2021084681 W CN 2021084681W WO 2022205176 A1 WO2022205176 A1 WO 2022205176A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
separator
pole piece
adhesive layer
electrochemical device
Prior art date
Application number
PCT/CN2021/084681
Other languages
English (en)
French (fr)
Inventor
赵士猛
Original Assignee
宁德新能源科技有限公司
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司, 东莞新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2021/084681 priority Critical patent/WO2022205176A1/zh
Priority to EP21867913.2A priority patent/EP4089786A1/en
Priority to CN202180001889.3A priority patent/CN113366690A/zh
Priority to US17/709,193 priority patent/US20220320595A1/en
Publication of WO2022205176A1 publication Critical patent/WO2022205176A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of electrochemical technology, and in particular, to an electrochemical device and an electronic device.
  • Lithium-ion batteries electrochemical devices
  • the market has put forward higher requirements for lithium-ion batteries, requiring lithium-ion batteries to have higher energy density and better safety.
  • problems such as drops and collisions will inevitably occur. It is particularly important to improve the safety of lithium-ion batteries in abuse situations such as drops and impacts.
  • the purpose of the present application is to provide an electrochemical device and an electronic device, so as to improve the safety performance of the electrochemical device and reduce the influence on the energy density of the electrochemical device.
  • the specific technical solutions are as follows:
  • the present application is explained by taking a lithium ion battery as an example of an electrochemical device, but the electrochemical device of the present application is not limited to a lithium ion battery.
  • a first aspect of the present application provides an electrochemical device comprising a casing and a wound electrode assembly disposed in the casing, the electrode assembly including a first pole piece, a second pole piece having an opposite polarity to the first pole piece A pole piece, a first isolation film or a second isolation film is arranged between the first pole piece and the second pole piece, and the first pole piece includes a first current collector.
  • the surface of the first isolation film and/or the second isolation film facing away from the center of the electrode assembly is provided with a first adhesive layer, and the first isolation film and/or the second isolation film protrude from the tail end of the electrode assembly and pass through the first adhesive layer.
  • the layer is bonded to the shell, and the bonding area of the first adhesive layer and the shell is greater than or equal to 10% of the contact area between the shell and the electrode assembly.
  • a first isolation film or a second isolation film is arranged between the first pole piece and the second pole piece, that is, the first isolation film and the second isolation film can be alternately arranged on the first pole piece and the second pole piece.
  • the electrode assembly may be a first pole piece, a first isolation film, a second pole piece, and a second isolation film that are stacked in order and then formed by winding, or may be a first isolation film, a first pole piece, The second isolation film and the second pole piece are stacked in sequence and then formed by winding.
  • first isolation film and the second isolation film both have two sides, and the first isolation film and the second isolation film may represent two sections of different parts of one isolation film, or may respectively represent two isolation films.
  • one side of the first separator and the second separator may face the center of the electrode assembly, and the other side may be away from the center of the electrode assembly.
  • the inventors found that by arranging the first adhesive layer on the surface of the first separator and/or the second separator away from the center of the electrode assembly, the first separator and/or the second separator protruded from the tail end of the electrode assembly, so that the The first separator and/or the second separator are bonded to the casing through the first adhesive layer, so that the electrode assembly and the casing can be integrated, which improves the safety of the lithium-ion battery and effectively avoids The effect of additional double-sided tape between the shell and the lithium-ion battery on the energy density of lithium-ion batteries.
  • the surface of the first isolation film facing away from the center of the electrode assembly is provided with a first adhesive layer, the first isolation film protrudes from the tail end of the electrode assembly, and the first isolation film passes through the first adhesive layer bonding with the shell;
  • a first adhesive layer is provided on the surface of the second separator away from the center of the electrode assembly, the second separator protrudes from the tail end of the electrode assembly, and the second separator is connected to the shell through the first adhesive layer. body bonding;
  • a first adhesive layer is provided on the surfaces of the first isolation membrane and the second isolation membrane away from the center of the electrode assembly, and the first isolation membrane and the second isolation membrane protrude from the tail end of the electrode assembly, The first isolation film and the second isolation film are bonded to the casing through the first adhesive layer.
  • the bonding method of the first isolation film and the second isolation film to the casing in the present application.
  • the second isolation film may be firstly adhered to the first isolation film through the first adhesive layer on the surface thereof, and then The first isolation film is then bonded to the housing through the first adhesive layer on its surface; alternatively, the extended part of the second isolation film may slightly exceed the extended part of the first isolation film, and the second isolation film may first pass through its surface
  • the first adhesive layer is bonded to the first isolation film, the first adhesive layer of the excess part is bonded to the shell, and the first isolation film is bonded to the shell through the first adhesive layer on its surface.
  • the bonding area between the first adhesive layer and the casing should not be too small, otherwise the adhesive performance between the first adhesive layer and the casing may be affected.
  • the bonding area between the first adhesive layer and the casing be greater than or equal to 10% of the contact area between the casing and the electrode assembly, the electrode assembly and the casing can be tightly bonded together.
  • the area where the first adhesive layer is bonded to the casing mentioned in this application may refer to the area of the bonding area after the first adhesive layer is bonded to the casing.
  • the tail end mentioned in this application may refer to the tail end of the outermost pole piece in the lithium ion battery (or electrode assembly) of the winding structure.
  • the present application may be an encapsulation bag or other structures capable of encapsulating the electrode assembly.
  • the electrode assembly referred to in this application may be a lithium-ion battery that has not been packaged or injected with electrolyte.
  • the first pole piece and the second pole piece have opposite polarities.
  • the first pole piece is a positive pole piece
  • the second pole piece is a negative pole piece
  • the second pole piece is also A second current collector may be included.
  • the surface of the first separator and/or the second separator facing the center of the electrode assembly is further provided with a second adhesive layer, and the first separator and/or the second separator are The trailing end of the sheet protrudes and is bonded with the first current collector through the second adhesive layer.
  • the surface of the first isolation film facing the center of the electrode assembly is further provided with a second adhesive layer, and the first isolation film protrudes from the end of the second pole piece and passes through the second adhesive layer It is bonded with the first current collector, so that the side of the first separator facing away from the center of the electrode assembly is bonded to the casing through the first adhesive layer, and the side of the first separator facing the center of the electrode assembly is bonded to the first collector through the second adhesive layer.
  • the surface of the second isolation film facing the center of the electrode assembly is further provided with a second adhesive layer, the second isolation film protrudes from the trailing end of the second pole piece and communicates with the second adhesive layer through the second adhesive layer.
  • a current collector is bonded, so that the side of the second separator facing away from the center of the electrode assembly is bonded to the casing through the first adhesive layer, and the side of the second separator facing the center of the electrode assembly is bonded to the first current collector through the second adhesive layer catch;
  • the surfaces of the first isolation film and the second isolation film facing the center of the electrode assembly are both provided with a second adhesive layer, and both the first isolation film and the second isolation film end from the end of the second pole piece end extended.
  • the application does not specifically limit the bonding method of the first isolation film and the second isolation film to the casing.
  • the first isolation film may be firstly adhered to the casing through the first adhesive layer on the side away from the center of the electrode assembly. , and then bond with the side of the second isolation film away from the center of the electrode assembly through the second adhesive layer facing the center of the electrode assembly, and then the side of the second isolation film facing the center of the electrode assembly passes through the second adhesive layer on the surface.
  • a current collector is bonded.
  • the surface of the first separator facing away from the center of the electrode assembly faces the surface of the first pole piece facing the center of the electrode assembly
  • the surface of the first separator facing the center of the electrode assembly faces the second pole piece facing away from the center The surface of the center of the electrode assembly.
  • the surface of the second separator facing away from the center of the electrode assembly faces the surface of the second pole piece facing the center of the electrode assembly, and the surface of the second separator facing the center of the electrode assembly faces away from the first pole piece The surface of the center of the electrode assembly.
  • the adhesive force F 1 between the first isolation film or the second isolation film and the casing is 5N/m to 55N/m.
  • the bonding between the first isolation film and the housing The force F 1 is 5N/m to 55N/m; in the second possible embodiment, when the second isolation film is bonded to the housing, in the area where the second isolation film is bonded to the housing, the second The adhesive force F 1 between the separator and the case is 5 N/m to 55 N/m.
  • the adhesive force F 2 between the first separator or the second separator and the first current collector is 5.01 N/m to 60 N/m.
  • the adhesive force F 2 between the first separator and the first current collector is 5.01N/m to 60N /m; in the second possible embodiment, when the second separator is bonded to the first current collector, the adhesive force F 2 between the second separator and the first current collector is 5.01N/m to 60N/m.
  • the adhesive force between the first separator and the surface of the first current collector facing away from the center of the electrode assembly is F 2
  • the adhesive force between the first separator and the casing is F 1
  • the difference between F 2 and F 1 is 1 N/m to 15 N/m.
  • the adhesive force between the second separator and the surface of the first current collector away from the center of the electrode assembly is F 2
  • the adhesive force between the second separator and the casing is F 1
  • F 2 and F 1 The difference is 1 N/m to 15 N/m.
  • the bonding area between the part of the first separator beyond the tail end of the second pole piece and the surface of the first current collector facing away from the center of the electrode assembly is S 1.
  • the bonding area between the part of the first isolation film beyond the end of the second pole piece and the casing is S 2 , then S 1 is greater than S 2 .
  • the bonding area between the part of the second isolation membrane beyond the end of the second pole piece and the surface of the first current collector away from the center of the electrode assembly is S 1
  • the part of the second isolation membrane beyond the end of the second pole piece and the shell The bonding area between them is S 2 , then S 1 is greater than S 2 .
  • the above arrangement makes the bonding force between the separator and the surface of the first current collector away from the center of the electrode assembly stronger and the bonding more reliable, thereby ensuring that the electrode assembly is bonded as a whole, and effectively preventing the lithium ion battery from falling during the process of falling The structure is destroyed, further improving the safety of lithium-ion batteries.
  • the first separator protrudes from the tail end of the electrode assembly, and the second separator extends beyond the tail end of the second pole piece and does not extend beyond the first pole end of the piece.
  • the first isolation film can wrap the second isolation film, so that the first isolation film has more area to bond with the first current collector, and can improve the current collector (aluminum foil) tearing or the second isolation film The eversion problem further improves the safety of lithium-ion batteries.
  • the first adhesive layer and the second adhesive layer comprise high molecular polymers, so that the first adhesive layer and the second adhesive layer have excellent adhesive properties.
  • the monomers forming the high molecular polymer may include two monomers, wherein the first monomer is propylene, and the second monomer includes ethylene, vinylidene fluoride, vinyl chloride, butylene At least one of diene, isoprene, styrene, acrylonitrile, ethylene oxide, propylene oxide, acrylate, vinyl acetate, or caprolactone.
  • the ratio between the monomers is not specifically limited, and can be any ratio as long as the requirements of the present application are met.
  • the high molecular polymer is particles, and the average particle diameter of the particles is 1 ⁇ m to 10 ⁇ m, preferably 2 ⁇ m to 5 ⁇ m.
  • the particle size of the macromolecular polymer of the present application is within the above-mentioned range, which can better play a bonding effect in the adhesive layer.
  • the thickness of the first adhesive layer and the second adhesive layer is 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 15 ⁇ m.
  • the thickness of the adhesive layer is too small (for example, less than 1 ⁇ m)
  • the adhesive force between the adhesive layer and the shell is small.
  • the thickness of the adhesive layer is too large (for example, greater than 50 ⁇ m)
  • the relative content of active materials in the lithium-ion battery decreases, Affects the energy density of lithium-ion batteries.
  • controlling the thickness of the adhesive layer within the above-mentioned range can further improve the adhesion performance between the separator and the casing, and at the same time, has little effect on the energy density of the lithium-ion battery.
  • the first monomer accounts for 30 mol% to 95 mol% of the total amount of monomers forming the high molecular polymer, preferably 50 mol% to 90 mol%, more preferably 60 mol% to 80 mol%
  • the third The dimonomer accounts for 5 mol % to 70 mol % of the total monomer amount forming the high molecular polymer, preferably 10 mol % to 50 mol %, more preferably 20 mol % to 40 mol %.
  • the isotacticity of the high molecular weight polymer is 45% to 80%, preferably 60% to 80%.
  • an adhesive layer having a suitable softening temperature and good adhesiveness can be obtained.
  • the softening temperature of the high molecular polymer is 130°C to 170°C, preferably 155°C to 170°C.
  • the high molecular polymer of the present application can have better adhesive properties.
  • the adhesion performance between the separator and the casing extending from the tail end of the electrode assembly can be improved, and the safety of the lithium ion battery can be further improved.
  • the weight average molecular weight of the high molecular polymer is 5000 g/mol to 1000000 g/mol, preferably 10000 g/mol to 500000 g/mol.
  • the weight average molecular weight is within the above-mentioned range, a high molecular polymer having good adhesiveness can be obtained.
  • the adhesive force between the first separator and the first pole piece is greater than the adhesive force between the first separator and the housing, thereby ensuring that the electrode assembly is bonded as a whole, The structure of the lithium-ion battery is effectively prevented from being damaged in the process of falling, and the safety of the lithium-ion battery is further improved.
  • the preparation method of the macromolecular polymer of the present application is not particularly limited, and a preparation method known to those skilled in the art can be adopted, which can be selected according to different types of monomers used, such as solution method, slurry method, gas phase method and the like.
  • the second monomer is selected from ethylene
  • the following methods can be used:
  • the main catalyst and the co-catalyst are respectively dissolved in hexane to obtain the hexane solution of the main catalyst and the hexane solution of the co-catalyst, then the hexane is added to the reaction kettle, and then the hexane solution of the main catalyst and the co-catalyst are mixed under nitrogen protection.
  • the hexane solution of the catalyst was added to the reaction kettle, then propylene and ethylene were introduced, and the temperature was raised to 50°C to 60°C. During the reaction, the pressure in the reaction kettle was maintained at 0.3MPa to 0.5MPa. After the reaction for 0.5h to 2h, acidified ethanol was used. The reaction was terminated, and the obtained product was washed 3 to 5 times with absolute ethanol, filtered, and dried in a vacuum drying oven at 50°C to 70°C for 3h to 5h.
  • the main catalyst and co-catalyst there is no particular limitation on the main catalyst and co-catalyst in this application, as long as the purpose of the invention can be achieved.
  • a metallocene catalyst system is used, wherein the main catalyst includes a metallocene complex (such as ferrocene or its derivatives), The catalyst includes methylaluminoxane; and the addition amount of the main catalyst and the co-catalyst is not particularly limited in the present application, as long as the purpose of the present invention can be achieved.
  • the reaction kettle can be evacuated first before the reaction, and then the reaction kettle is replaced with nitrogen for 3 to 5 times to make the reaction kettle clean.
  • the second monomer is selected from butadiene
  • it is the same as the above-mentioned preparation method of propylene-ethylene copolymer except that ethylene in the above-mentioned preparation method of propylene-ethylene copolymer is replaced by butadiene.
  • the difference from the above-mentioned preparation method of propylene-ethylene copolymer is that ethylene in the preparation method of propylene-ethylene copolymer is replaced by acrylate, and under nitrogen protection, hexane, main The hexane solution of the catalyst and the hexane solution of the co-catalyst were added to the reaction kettle, then acrylate was added, and propylene was introduced, and the rest were the same as the preparation method of the above-mentioned propylene-ethylene copolymer.
  • the acrylate monomer can be selected from any one of methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, isooctyl acrylate or hydroxyethyl acrylate.
  • copolymerization of other monomers is not listed one by one in this application, and preparation methods known in the art can be used.
  • the positive electrode sheet in the present application is not particularly limited, as long as the purpose of the present application can be achieved.
  • a positive electrode sheet typically includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode current collector is not particularly limited, and can be any positive electrode current collector known in the art, such as aluminum foil, aluminum alloy foil, or composite current collector.
  • the positive electrode active material layer includes a positive electrode active material
  • the positive electrode active material is not particularly limited, and any positive electrode active material known in the art can be used, for example, it can include nickel cobalt lithium manganate (811, 622, 523, 111), At least one of lithium, lithium iron phosphate, lithium-rich manganese-based material, lithium cobaltate, lithium manganate, lithium iron manganese phosphate, or lithium titanate.
  • a negative electrode sheet typically includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode current collector is not particularly limited, and any negative electrode current collector known in the art can be used, such as copper foil, aluminum foil, aluminum alloy foil, and composite current collector.
  • the negative electrode active material layer includes a negative electrode active material, and the negative electrode active material is not particularly limited, and any negative electrode active material known in the art may be used.
  • at least one of artificial graphite, natural graphite, mesocarbon microspheres, soft carbon, hard carbon, silicon, silicon carbon, lithium titanate, and the like may be included.
  • the lithium ion battery of the present application further includes an electrolyte, and the electrolyte may be one or more of a gel electrolyte, a solid electrolyte, and an electrolyte, and the electrolyte includes a lithium salt and a non-aqueous solvent.
  • the lithium salt is selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2.
  • LiPF 6 may be chosen as the lithium salt because it gives high ionic conductivity and improves cycling characteristics.
  • the non-aqueous solvent may be a carbonate compound, a carboxylate compound, an ether compound, other organic solvents, or a combination thereof.
  • the above-mentioned carbonate compound may be a chain carbonate compound, a cyclic carbonate compound, a fluorocarbonate compound, or a combination thereof.
  • Examples of the above-mentioned chain carbonate compound are dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), carbonic acid Methyl ethyl ester (MEC) and combinations thereof.
  • Examples of cyclic carbonate compounds are ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylethylene carbonate (VEC), and combinations thereof.
  • fluorocarbonate compounds are fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate Ethyl carbonate, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-dicarbonate Fluoro-1-methylethylene, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate, and combinations thereof.
  • FEC fluoroethylene carbonate
  • 1,2-difluoroethylene carbonate 1,1-difluoroethylene carbonate
  • 1,1,2-trifluoroethylene carbonate Ethyl carbonate 1,1,2,2-tetrafluoroethylene carbonate
  • 1-fluoro-2-methylethylene carbonate 1-fluoro-1-methylethylene carbonate
  • 1,2-dicarbonate Fluoro-1-methylethylene 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethyl
  • carboxylate compounds are methyl formate, methyl acetate, ethyl acetate, n-propyl acetate, tert-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone , caprolactone, valerolactone, mevalonolactone, caprolactone, and combinations thereof.
  • ether compounds examples include dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethyl ether Oxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, and combinations thereof.
  • Examples of the above-mentioned other organic solvents are dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, Formamide, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, and phosphate esters and combinations thereof.
  • the present application also provides an electronic device, which includes the electrochemical device described in any one of the above embodiments of the present application, and has good safety performance.
  • electronic devices may include, but are not limited to, notebook computers, pen input computers, mobile computers, e-book players, portable telephones, portable fax machines, portable copiers, portable printers, headsets, VCRs, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notepads, calculators, memory cards, portable recorders, radios, backup power supplies, motors, automobiles, motorcycles, assisted bicycles, bicycles, Lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large-scale household storage batteries and lithium-ion capacitors, etc.
  • a lithium ion battery can be manufactured by the following process: overlapping the positive electrode and the negative electrode through a separator, and wrapping them into the casing as required, so that the separator protrudes from the tail end of the electrode assembly and is connected with the first adhesive layer through the first adhesive layer.
  • the case is glued, and the electrolyte is injected into the case and sealed.
  • an overcurrent preventing element, a guide plate, etc. can also be placed in the case as required, so as to prevent pressure rise and overcharge and discharge inside the lithium ion battery.
  • isotacticity refers to the percentage of isotactic polymer in the total amount of high molecular weight polymers.
  • particle size refers to the average particle size of the polymer particles.
  • the present application provides an electrochemical device and an electronic device, which include a casing and a wound electrode assembly disposed in the casing.
  • An adhesive layer, the first isolation film and/or the second isolation film protrude from the tail end of the electrode assembly and are bonded to the case through the first adhesive layer, and the area of the first adhesive layer and the case to be bonded is greater than or equal to the case
  • the contact area between the body and the electrode assembly is 10%, so that the electrode assembly and the casing are closely bonded together, and the safety of the lithium ion battery is improved.
  • the influence on the energy density of the lithium ion battery due to the additionally disposed double-sided adhesive can be avoided.
  • FIG. 1 is a schematic structural diagram of an electrochemical device in an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of an electrochemical device in another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an electrochemical device in yet another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electrochemical device in a fourth embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electrochemical device in a fifth embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electrochemical device in a sixth embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electrochemical device in a seventh embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electrochemical device in an eighth embodiment of the present application.
  • Fig. 9a is a schematic diagram of the bonding manner of the first adhesive layer of the isolation film and the shell in an embodiment of the application;
  • Fig. 9b is a schematic diagram of the bonding manner of the first adhesive layer of the isolation film and the shell in another embodiment of the application;
  • Fig. 9c is a schematic diagram of the bonding manner of the first adhesive layer of the isolation film and the shell in still another embodiment of the application;
  • Example 10 is a schematic structural diagram of the lithium ion battery in Example 1 of the application.
  • Example 11 is a schematic structural diagram of the lithium ion battery in Example 2 of the application.
  • Example 12 is a schematic structural diagram of the lithium ion battery in Example 3 of the application.
  • Example 13 is a schematic structural diagram of the lithium ion battery in Example 4 of the application.
  • Example 14 is a schematic structural diagram of the lithium ion battery in Example 5 of the application.
  • FIG. 15 is a schematic structural diagram of the lithium ion battery of Comparative Example 1.
  • FIG. 15 is a schematic structural diagram of the lithium ion battery of Comparative Example 1.
  • the present application is explained by taking a lithium ion battery as an example of an electrochemical device, but the electrochemical device of the present application is not limited to a lithium ion battery.
  • FIG. 1 is a schematic structural diagram of an electrochemical device in an embodiment of the application. As shown in FIG. 1 , it includes a casing 4 and a wound electrode assembly disposed in the casing 4 , and the electrode assembly includes a first pole piece 1.
  • the second pole piece 2 which has the opposite polarity to the first pole piece 1, is provided with a first isolation film 31 or a second isolation film 32 between the first pole piece 1 and the second pole piece 2.
  • the sheet 1 includes a first current collector 11 .
  • the surface of the first isolation film 31 away from the center O of the electrode assembly is provided with a first adhesive layer 7 , the first isolation film 31 protrudes from the end of the electrode assembly, and the first isolation film 31 passes through the first adhesive layer 7 and the shell 4 . bonding.
  • the second pole piece 2 may also include a second current collector 21 .
  • FIG. 2 is a schematic structural diagram of an electrochemical device in another embodiment of the present application.
  • a first adhesive layer 7 is provided on the surface of the second separator 32 away from the center of the electrode assembly, and the second separator 32 is separated from the electrode assembly.
  • the tail end of the assembly protrudes, and the second isolation film 32 is bonded to the casing 4 through the first adhesive layer 7 .
  • FIG. 3 is a schematic structural diagram of an electrochemical device in yet another embodiment of the application.
  • the surfaces of the first isolation membrane 31 and the second isolation membrane 32 facing away from the center of the electrode assembly are both provided with a first adhesive layer 7,
  • the first isolation film 31 and the second isolation film 32 protrude from the tail end of the electrode assembly, and the first isolation film 31 and the second isolation film 32 are bonded to the casing 4 through the first adhesive layer 7 .
  • FIG. 4 is a schematic structural diagram of the electrochemical device in the fourth embodiment of the application.
  • the surface of the first isolation film 31 facing the center of the electrode assembly is further provided with a second adhesive layer 8 .
  • the first isolation film 31 is further provided with a second adhesive layer 8 . It extends from the end of the second pole piece 2 and is bonded to the first current collector 11 through the second adhesive layer 8 , so that the side of the first isolation film 31 facing away from the center of the electrode assembly passes through the first adhesive layer 7 and the casing 4 Bonding, the side of the first isolation film 31 facing the center of the electrode assembly is bonded to the first current collector 11 through the second adhesive layer 8 .
  • FIG. 5 is a schematic structural diagram of the electrochemical device in the fifth embodiment of the present application.
  • the surface of the second isolation film 32 facing the center of the electrode assembly is further provided with a second adhesive layer 8 , and the second isolation film 32 It extends from the end of the second pole piece 2 and is bonded to the first current collector 11 through the second adhesive layer 8 , so that the side of the second isolation film 32 away from the center of the electrode assembly passes through the first adhesive layer 7 and the casing 4 Bonding, the side of the second isolation film 32 facing the center of the electrode assembly is bonded to the first current collector 11 through the second adhesive layer 8 .
  • FIG. 6 is a schematic structural diagram of the electrochemical device in the sixth embodiment of the present application.
  • the surfaces of the first isolation membrane 31 and the second isolation membrane 32 facing the center of the electrode assembly are both provided with a second adhesive layer 8 , the first isolation film 31 and the second isolation film 32 both protrude from the trailing end of the second pole piece 2 .
  • the first isolation film 31 can be bonded to the casing 4 through the first adhesive layer 7 on the side away from the center of the electrode assembly, and then the second adhesive layer 8 and the second isolation film 32 away from the electrode assembly through the second adhesive layer 8 on the side facing the center of the electrode assembly.
  • the center side is bonded, and then, the side of the second isolation film 32 facing the center of the electrode assembly is bonded to the first current collector 11 through the second adhesive layer 8 on the surface thereof.
  • FIG. 7 is a schematic structural diagram of the electrochemical device in the sixth embodiment of the application. As shown in FIG. 7 , along the winding direction of the electrode assembly, the part of the first separator 31 beyond the tail end of the second pole piece 2 is connected with the first separator 31 . The bonding area between the current collectors 11 is greater than the bonding area between the part of the first isolation membrane 31 beyond the end of the second pole piece 2 and the casing 4 .
  • FIG. 8 is a schematic structural diagram of a lithium ion battery in an eighth embodiment of the present application.
  • the first separator 31 protrudes from the end of the electrode assembly, and the second separator 32 extends from the end of the electrode assembly.
  • the first isolation film 31 wraps the second isolation film 32, so that the first isolation film 31 has more area and the first isolation film 31.
  • the current collector 11 is adhered and can improve the problem of current collector (aluminum foil) tearing or the eversion of the second separator 32 .
  • FIG. 9a is a schematic diagram of the bonding manner of the first adhesive layer of the isolation film and the casing in an embodiment of the present application.
  • the width w 1 of the first adhesive layer may be equal to the width w 2 of the casing, or slightly smaller than the width w 2 of the casing.
  • FIG. 9b is a schematic diagram of a bonding manner between the first adhesive layer of the isolation film and the casing in another embodiment of the present application.
  • the width w 1 of the first adhesive layer may be smaller than the width w 2 of the casing.
  • FIG. 9c is a schematic diagram of a bonding manner between the first adhesive layer of the isolation film and the casing in still another embodiment of the present application.
  • the width w 1 of the first adhesive layer may be smaller than the width w 2 of the casing, and the tail end of the first adhesive layer may be in an irregular shape (eg, a wave shape).
  • the bonding method between the adhesive layer of the separator and the casing shown in the above-mentioned Figures 9a to 9c as long as the bonding area between the first adhesive layer and the casing is greater than or equal to 10% of the contact area between the casing and the electrode assembly .
  • the lithium-ion battery After the lithium-ion battery is fully charged according to the 0.5C charging method, the lithium-ion battery is left open for 2h (hours), and the thickness, voltage and internal resistance of the lithium-ion battery are measured; the lithium-ion battery to be tested is freely dropped from a height of 1.2m to 18mm to 20mm On a thick horizontal hardboard. All six sides of the lithium-ion battery are dropped, and the total number of drops per lithium-ion battery is 6 times. It is required that the lithium-ion battery has no obvious deformation, no leakage, no fire, and no explosion, otherwise the test fails.
  • the battery After the lithium-ion battery is fully charged according to the 0.5C charging method, the battery is left open for 2 hours.
  • a metal rod of 15.8mm ⁇ 0.2mm is placed horizontally on the upper surface of the geometric center of the lithium-ion battery.
  • a heavy object with a mass of 9.1kg ⁇ 0.1kg hits the surface of the lithium-ion battery with the metal rod in a free fall state from a height of 610mm ⁇ 25mm, and is observed for 6 hours. It is required that the battery should not leak, fire or explode, otherwise the test will fail.
  • the strip sample was adhered to the stainless steel plate with double-sided tape, and the 180° peel force test method was used to test the adhesion between the isolation film, the first pole piece and the shell respectively, and the test speed was 300mm/min. , the test length is 40mm.
  • the weight-average molecular weight refers to a molecular weight that is statistically averaged by mass.
  • DSC differential scanning calorimeter
  • the isotacticity of the polymer was tested according to the FTIR (Fourier transform infrared spectroscopy) method, in which the FTIR method adopts the national standard GB/T 21186-2007 "Fourier transform infrared spectrometer".
  • FTIR Fastier transform infrared spectroscopy
  • the obtained high molecular polymer has an average particle size of 2 ⁇ m, a softening temperature of 170° C., an isotacticity of 80%, and a weight-average molecular weight of 100,000 g/mol.
  • PVDF polyvinylidene fluoride
  • PAA polyacrylic acid
  • the adhesive layer slurry is uniformly coated on the two surfaces of the polyethylene (PE) isolation film substrate with a thickness of 9 ⁇ m at the end to form the first adhesive layer and the second adhesive layer, the first adhesive layer and the second adhesive layer The thicknesses were respectively 3 ⁇ m.
  • a second separator was prepared in the same manner.
  • the positive active material lithium cobaltate, acetylene black, and polyvinylidene fluoride (PVDF) were mixed in a mass ratio of 94:3:3, and then N-methylpyrrolidone (NMP) was added as a solvent to prepare a solid content of 75%. slurry and mix well.
  • the slurry was uniformly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, dried at 90° C., and then cold-pressed to obtain a positive electrode sheet with a positive active material layer thickness of 100 ⁇ m, and then on the other surface of the positive electrode sheet.
  • the above steps are repeated to obtain a positive electrode sheet coated with a positive electrode active material layer on both sides. Weld the positive pole piece to the tab for later use.
  • the negative active material artificial graphite, acetylene black, styrene-butadiene rubber and sodium carboxymethyl cellulose are mixed in a mass ratio of 96:1:1.5:1.5, and then deionized water is added as a solvent to prepare a slurry with a solid content of 70% , and stir well.
  • the slurry was evenly coated on one surface of a copper foil with a thickness of 8 ⁇ m, dried at 110° C., and after cold pressing, a negative electrode pole piece with a negative electrode active material layer thickness of 150 ⁇ m was obtained on one side coated with a negative electrode active material layer, Then, the above coating steps are repeated on the other surface of the negative electrode pole piece to obtain a negative electrode pole piece coated with a negative electrode active material layer on both sides. Weld the negative pole piece to the tab for later use.
  • the non-aqueous organic solvent In an environment with a water content of less than 10 ppm, the non-aqueous organic solvents ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), propyl propionate (PP), vinylene carbonate ( VC) mix according to mass ratio 20:30:20:28:2, then in non-aqueous organic solvent, add lithium hexafluorophosphate (LiPF 6 ) to dissolve and mix uniformly, obtain electrolyte, wherein, LiPF 6 and the mass ratio of non-aqueous organic solvent 8:92.
  • LiPF 6 lithium hexafluorophosphate
  • the above-prepared positive pole piece, first separator, negative pole piece, and second separator are stacked in order, so that the first separator and the second separator are in the middle of the positive pole piece and the negative pole piece to play the role of isolation , and winding to obtain the electrode assembly, put the electrode assembly into the casing (aluminum-plastic film packaging bag), make the first isolation film protrude from the tail end of the electrode assembly, and make the first isolation film at the tail end of the first isolation film by hot pressing.
  • An adhesive layer is bonded to the shell (aluminum-plastic film packaging bag), and the bonding area between the first adhesive layer and the shell is 10% of the contact area between the shell and the electrode assembly (area a shown in Figure 10), and the The water is removed at 80°C, the prepared electrolyte is injected, and the lithium ion battery is obtained through the processes of vacuum packaging, standing, forming, and shaping.
  • the bonding area between the first adhesive layer and the case is 20% of the contact area between the case and the electrode assembly (area a shown in Figure 11 ), the rest is the same as in Example 1 .
  • the bonding area between the first adhesive layer and the case is 30% of the contact area between the case and the electrode assembly (area a shown in Figure 12), the rest is the same as in Example 1 .
  • the bonding area between the first adhesive layer and the case is 50% of the contact area between the case and the electrode assembly (area a shown in Figure 13 ), the rest is the same as in Example 1 .
  • the bonding area between the first adhesive layer and the case is 100% of the contact area between the case and the electrode assembly (area a shown in Figure 14), the rest is the same as in Example 1 .
  • PVDF polyvinylidene fluoride
  • PAA polyacrylic acid
  • PVDF polyvinylidene fluoride
  • PAA polyacrylic acid
  • PVDF polyvinylidene fluoride
  • PAA polyacrylic acid
  • Example 7 The same procedure as in Example 7 was performed except that in ⁇ Preparation of High-Molecular Polymer>, the softening temperature of the high-molecular polymer was adjusted to 160° C. and the isotacticity was 70%.
  • Example 7 The same procedure as in Example 7 was performed except that in ⁇ Preparation of High-Molecular Polymer>, the softening temperature of the high-molecular polymer was adjusted to 155° C. and the isotacticity was 65%.
  • Example 7 The same procedure as in Example 7 was performed except that in ⁇ Preparation of High-Molecular Polymer>, the softening temperature of the high-molecular polymer was adjusted to 140° C. and the isotacticity was 55%.
  • Example 7 The same procedure as in Example 7 was performed except that in ⁇ Preparation of High-Molecular Polymer>, the softening temperature of the high-molecular polymer was adjusted to 130° C. and the isotacticity was 45%.
  • Example 5 The rest is the same as that of Example 5 except that ⁇ Preparation of high molecular polymer> is different from that of Example 5.
  • Example 5 The rest is the same as that of Example 5 except that ⁇ Preparation of high molecular polymer> is different from that of Example 5.
  • Example 5 The rest is the same as that of Example 5 except that ⁇ Preparation of high molecular polymer> is different from that of Example 5.
  • the adhesive layer slurry was uniformly coated on one of the surfaces of the end of the polyethylene (PE) separator film substrate with a thickness of 9 ⁇ m.
  • the rest is the same as in Example 5, except that the side of the first isolation film containing the first adhesive layer is bonded to the shell.
  • the second separator extends beyond the end of the second pole piece and does not exceed the end of the first pole piece, and the side of the first separator away from the center of the electrode assembly passes through the first adhesive layer and The shell is bonded, and the side of the first separator facing the center of the electrode assembly is bonded to the first current collector through the second adhesive layer to form the structure shown in FIG.
  • the positive pole piece, the separator, and the negative pole piece are stacked in sequence, so that the separator is in the middle of the positive and negative pole pieces to play the role of isolation, and the electrode assembly is obtained by winding, forming the structure shown in Figure 15.
  • the electrode assembly is put into an aluminum-plastic film packaging bag, and the moisture is removed at 80 ° C, the prepared electrolyte is injected, and the lithium ion battery is obtained through vacuum packaging, standing, forming, and shaping.
  • Example 2 The rest is the same as Example 1, except that in ⁇ Preparation of Lithium Ion Battery>, the bonding area between the first adhesive layer and the case is 5% of the contact area between the case and the electrode assembly.
  • Example 2 The same procedure as in Example 1 was performed except that the particle size of the high molecular polymer was adjusted to 0.5 ⁇ m in ⁇ Preparation of the high molecular polymer>.
  • Example 1 30/200 27/200 698
  • Example 2 21/200 18/200 697
  • Example 3 7/200 4/200 698
  • Example 4 2/200 1/200 691
  • Example 5 0/200 0/200 686
  • Example 6 5/200 3/200 697
  • Example 7 4/200 1/200 696
  • Example 8 2/200 0/200 698
  • Example 9 3/200 1/200 697
  • Example 10 4/200 2/200 695
  • Example 11 7/200 3/200 697
  • Example 12 15/200 18/200 698
  • Example 13 23/200 20/200 698
  • Example 14 27/200 31/200 696
  • Example 15 1/200 0/200 696
  • Example 16 2/200 1/200 698
  • Example 17 1/200 0/200 698
  • Example 18 0/200 0/200 685
  • Example 19 0/200 0/200 679
  • Example 20 8/200 4/200 701
  • Example 21 0/200 0/200 699 Comparative Example 1 97/200 69/200 703 Comparative Example 2 43/200 34/200 697 Comparative Example 3 32/200 29/200 697 Comparative Example 4 36/200 32/200 678
  • the area ratio of the first adhesive layer to the shell usually also affects the drop resistance and impact resistance of the lithium ion battery. It can be seen from Examples 1 to 21 and Comparative Example 2 that as long as the area ratio of the first adhesive layer and the shell to be bonded is within the scope of the present application, the drop resistance and impact resistance of the lithium ion battery can be improved. performance, thereby improving the safety of lithium-ion batteries.
  • the particle size of the high molecular polymer usually also affects the adhesive properties of the adhesive layer. It can be seen from Examples 1 to 21 and Comparative Examples 3 to 4 that as long as the particle size of the high molecular polymer is within the scope of the present application, the drop resistance and impact resistance of lithium ion batteries can be improved, thereby improving the Safety of Lithium-Ion Batteries.
  • the content of high molecular polymer in the adhesive layer usually also affects the adhesive properties of the adhesive layer. It can be seen from Examples 6 to 8 that as long as the content of the high molecular polymer in the adhesive layer is within the scope of the present application, the drop resistance and impact resistance of the lithium ion battery can be improved, thereby improving the lithium ion battery. security.
  • the softening temperature and isotacticity of high molecular polymers usually also affect the adhesive properties of the adhesive layer. It can be seen from Examples 9 to 14 that as long as the content of the high molecular polymer in the adhesive layer is within the scope of the present application, the drop resistance and impact resistance of the lithium ion battery can be improved, thereby improving the lithium ion battery. security.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种电化学装置及电子装置,其中电化学装置包括壳体和设置于壳体内的卷绕式电极组件,电极组件包括第一极片、与第一极片的极性相反的第二极片,在第一极片和第二极片之间设置有第一隔离膜或第二隔离膜,第一极片包括第一集流体,第一隔离膜和/或第二隔离膜背离电极组件中心的表面设置有第一胶层,第一隔离膜和/或第二隔离膜自电极组件的收尾端伸出并通过第一胶层与壳体粘接,第一胶层与壳体粘接的面积大于或等于壳体与电极组件接触面积的10%。本申请使电极组件与壳体紧密粘接在一起,提高了电化学装置的安全性。

Description

一种电化学装置及电子装置 技术领域
本申请涉及电化学技术领域,具体涉及一种电化学装置及电子装置。
背景技术
锂离子电池(电化学装置)具有比能量大、工作电压高、自放电率低、体积小、重量轻等特点,广泛应用于电能储存、便携式电子设备和电动汽车等各个领域。随着锂离子电池的使用范围不断扩大,市场对锂离子电池提出了更高的要求,要求锂离子电池具有更高的能量密度,同时也要求其具有更好的安全性。锂离子电池在使用过程中,不可避免的会出现跌落、碰撞等问题,提高锂离子电池在跌落、撞击等滥用情况时的安全性就显得尤为重要。
锂离子电池的壳体与电极组件之间通常没有粘接性,导致锂离子电池在跌落、撞击等滥用情况下,电极组件与壳体之间容易产生相对位移,导致安全隐患。因此亟需一种新的技术方案,能够在提升锂离子电池的安全性能的同时减少对锂离子电池能量密度的影响。
发明内容
本申请的目的在于提供一种电化学装置及电子装置,以提高电化学装置的安全性能,减少对电化学装置的能量密度的影响。具体技术方案如下:
需要说明的是,本申请的以下内容中,以锂离子电池作为电化学装置的例子来解释本申请,但是本申请的电化学装置并不仅限于锂离子电池。
具体技术方案如下:
本申请的第一方面提供了一种电化学装置,其包括壳体和设置于壳体内的卷绕式电极组件,电极组件包括第一极片、与第一极片的极性相反的第二极片,在第一极片和第二极片之间设置有第一隔离膜或第二隔离膜,第一极片包括第一集流体。其中,第一隔离膜和/或第二隔离膜背离电极组件中心的表面设置有第一胶层,第一隔离膜和/或第二隔离膜自电极组件的收尾端伸出并通过第一胶层与壳体粘接,第一胶层与壳体粘接的面积大于或等于壳体与电极组件接触面积的10%。
本申请中,在第一极片和第二极片之间设置有第一隔离膜或第二隔离膜,也即第一隔离膜和第二隔离膜可以交替设置于第一极片和第二极片之间,本申请对具体设置方式没有特别限制,只要满足本申请要求即可。示例性地,电极组件可以是第一极片、第一隔离膜、 第二极片、第二隔离膜按顺序叠好后经卷绕形成,也可以是第一隔离膜、第一极片、第二隔离膜、第二极片按顺序叠好后经卷绕形成。
可以理解的是,第一隔离膜和第二隔离膜均具有两面,第一隔离膜和第二隔离膜可以表示一条隔离膜的不同部分的两段,也可分别表示两条隔离膜。本申请的锂离子电池中,第一隔离膜和第二隔离膜的其中一面可以朝向电极组件中心,另一面可以背离电极组件中心。发明人发现,通过在第一隔离膜和/或第二隔离膜背离电极组件中心的表面设置第一胶层,第一隔离膜和/或第二隔离膜自电极组件的收尾端伸出,使第一隔离膜和/或第二隔离膜通过第一胶层与壳体粘接,能够使电极组件与壳体成为一个整体,提高了锂离子电池的安全性,还能有效避免因在电极组件和壳体之间额外设置双面胶对锂离子电池能量密度的影响。
其中,在第一种可能的实施方式中,第一隔离膜背离电极组件中心的表面设置第一胶层,第一隔离膜自电极组件的收尾端伸出,第一隔离膜通过第一胶层与壳体粘接;
在第二种可能的实施方式中,第二隔离膜背离电极组件中心的表面设置第一胶层,第二隔离膜自电极组件的收尾端伸出,第二隔离膜通过第一胶层与壳体粘接;
在第三种可能的实施方式中,第一隔离膜和第二隔离膜背离电极组件中心的表面均设置第一胶层,第一隔离膜和第二隔离膜自电极组件的收尾端伸出,第一隔离膜和第二隔离膜通过第一胶层与壳体粘接。本申请对第一隔离膜和第二隔离膜与壳体的粘接方式没有特别限制,示例性地,第二隔离膜可以先通过其表面的第一胶层与第一隔离膜粘接,然后第一隔离膜再通过其表面的第一胶层与壳体粘接;或者,第二隔离膜伸出的部分可以略微超过第一隔离膜伸出的部分,第二隔离膜可以先通过其表面的第一胶层与第一隔离膜粘接,其超出部分的第一胶层再与壳体粘接,第一隔离膜再通过其表面的第一胶层与壳体粘接。
发明人还发现,第一胶层与壳体之间的粘接面积不宜过小,否则可能影响第一胶层与壳体之间的粘接性能。通过使第一胶层与壳体粘接的面积大于或等于壳体与电极组件接触面积的10%,能够使电极组件与壳体紧密粘接在一起。本申请所说的第一胶层与壳体粘接的面积,可以指第一胶层与壳体粘接后粘接区域的面积。本申请所说的收尾端可以指在卷绕结构的锂离子电池(或电极组件)中,最外层极片的收尾端。
本申请对壳体没有特别限制,例如可以是封装袋或者其他能够起到封装电极组件的结构。本申请所说的电极组件可以是还未进行封装、未注入电解液的锂离子电池。本申请中的第一极片和第二极片极性相反,在一种可选的实施方案中,第一极片为正极极片,第二 极片为负极极片,第二极片也可以包括第二集流体。
在本申请的一种实施方案中,第一隔离膜和/或第二隔离膜朝向电极组件中心的表面还设置有第二胶层,第一隔离膜和/或第二隔离膜自第二极片的收尾端伸出并通过第二胶层与第一集流体粘接。上述设置方式使电极组件与壳体粘接更加牢靠,进一步提高锂离子电池的安全性。
其中,在第一种可能的实施方式中,第一隔离膜朝向电极组件中心的表面还设置有第二胶层,第一隔离膜自第二极片的收尾端伸出并通过第二胶层与第一集流体粘接,从而使第一隔离膜背离电极组件中心的一面通过第一胶层与壳体粘接,第一隔离膜朝向电极组件中心的一面通过第二胶层与第一集流体粘接;
在第二种可能的实施方式中,第二隔离膜朝向电极组件中心的表面还设置有第二胶层,第二隔离膜自第二极片的收尾端伸出并通过第二胶层与第一集流体粘接,从而使第二隔离膜背离电极组件中心的一面通过第一胶层与壳体粘接,第二隔离膜朝向电极组件中心的一面通过第二胶层与第一集流体粘接;
在第三种可能的实施方式中,第一隔离膜和第二隔离膜朝向电极组件中心的表面均设置有第二胶层,第一隔离膜和第二隔离膜均自第二极片的收尾端伸出。本申请对第一隔离膜和第二隔离膜与壳体的粘接方式没有特别限制,示例性地,第一隔离膜可以先通过背离电极组件中心的一面的第一胶层与壳体粘接,再通过朝向电极组件中心的一面的第二胶层与第二隔离膜背离电极组件中心的一面粘接,然后第二隔离膜朝向电极组件中心的一面再通过其表面的第二胶层与第一集流体粘接。
在本申请的一种实施方案中,第一隔离膜背离电极组件中心的表面面对第一极片朝向电极组件中心的表面,第一隔离膜朝向电极组件中心的表面面对第二极片背离电极组件中心的表面。
在本申请的一种实施方案中,第二隔离膜背离电极组件中心的表面面对第二极片朝向电极组件中心的表面,第二隔离膜朝向电极组件中心的表面面对第一极片背离电极组件中心的表面。
在本申请的一种实施方案中,在第一隔离膜或第二隔离膜与壳体粘接的区域中,第一隔离膜或第二隔离膜与壳体之间的粘接力F 1为5N/m至55N/m。其中,在第一种可能的实施方式中,第一隔离膜与壳体粘接时,则在第一隔离膜与壳体粘接的区域中,第一隔离膜与壳体之间的粘接力F 1为5N/m至55N/m;在第二种可能的实施方式中,第二隔离膜与壳 体粘接时,则在第二隔离膜与壳体粘接的区域中,第二隔离膜与壳体之间的粘接力F 1为5N/m至55N/m。通过控制粘接力F 1在上述范围内,能够进一步提高隔离膜与壳体之间的粘接性能。
在本申请的一种实施方案中,第一隔离膜或第二隔离膜与第一集流体之间的粘接力F 2为5.01N/m至60N/m。通过控制粘接力F 2在上述范围内,能够进一步提高隔离膜与壳体之间的粘接性能。
其中,在第一种可能的实施方式中,第一隔离膜与第一集流体粘接时,则第一隔离膜与第一集流体之间的粘接力F 2为5.01N/m至60N/m;在第二种可能的实施方式中,第二隔离膜与第一集流体粘接时,则第二隔离膜与第一集流体之间的粘接力F 2为5.01N/m至60N/m。
在本申请的一种实施方案中,第一隔离膜与第一集流体背离电极组件中心的表面之间的粘接力为F 2,第一隔离膜与壳体之间的粘接力为F 1,则F 2与F 1之间的差值为1N/m至15N/m。或者,第二隔离膜与第一集流体背离电极组件中心的表面之间的粘接力为F 2,第二隔离膜与壳体之间的粘接力为F 1,则F 2与F 1之间的差值为1N/m至15N/m。上述设置方式使得隔离膜的两面受力均匀,避免因两面受力不均匀而在锂离子电池跌落过程中造成的损坏,从而进一步提高锂离子电池的安全性。
在本申请的一种实施方案中,沿着电极组件的卷绕方向,第一隔离膜超出第二极片收尾端的部分与第一集流体背离电极组件中心的表面之间的粘接面积为S 1,第一隔离膜超出第二极片收尾端的部分与壳体之间的粘接面积为S 2,则S 1大于S 2。或者,第二隔离膜超出第二极片收尾端的部分与第一集流体背离电极组件中心的表面之间的粘接面积为S 1,第二隔离膜超出第二极片收尾端的部分与壳体之间的粘接面积为S 2,则S 1大于S 2。上述设置方式使得隔离膜与第一集流体背离电极组件中心的表面之间粘接力更大,粘接更加牢靠,从而保证电极组件粘接为一个整体,有效避免锂离子电池在跌落的过程中结构被破坏,进一步提高了锂离子电池的安全性。
在本申请的一种实施方案中,沿着电极组件的卷绕方向,第一隔离膜自电极组件的收尾端伸出,第二隔离膜超出第二极片的收尾端且不超出第一极片的收尾端。上述设置方式,第一隔离膜可以包裹住第二隔离膜,从而使第一隔离膜有更多的面积和第一集流体粘接,并能改善集流体(铝箔)撕裂或第二隔离膜外翻问题,进一步提高锂离子电池的安全性。
在本申请的一种实施方案中,第一胶层和第二胶层包括高分子聚合物,使得第一胶层 和第二胶层具有优良的粘接性能。
在本申请的一种实施方案中,形成该高分子聚合物的单体可以包括两种单体,其中,第一单体为丙烯,第二单体包括乙烯、偏氟乙烯、氯乙烯、丁二烯、异戊二烯、苯乙烯、丙烯腈、环氧乙烷、环氧丙烷、丙烯酸酯、醋酸乙烯酯或己内酯中的至少一种。在选择多种单体的组合提供第二单体时,各单体之间的比例没有具体限定,可以为任意比例,只要满足本申请的要求即可。
在本申请的一种实施方案中,高分子聚合物为颗粒,颗粒的平均粒径为1μm至10μm,优选为2μm至5μm。本申请高分子聚合物颗粒尺寸在上述范围内,可以在胶层中更好地起到粘接作用。
在本申请的一种实施方案中,第一胶层和第二胶层的厚度为1μm至50μm,优选为2μm至30μm,更优选为3μm至15μm。当胶层厚度过小时(例如小于1μm),胶层与壳体之间的粘接力较小,当胶层厚度过大时(例如大于50μm),锂离子电池中活性材料的相对含量下降,影响锂离子电池的能量密度。不限于任何理论,控制胶层厚度在上述范围内,能够进一步提高隔离膜与壳体之间的粘接性能,同时对锂离子电池的能量密度影响较小。
在本申请的一种实施方案中,第一单体占形成高分子聚合物的总单体量的30mol%至95mol%,优选为50mol%至90mol%,更优选为60mol%至80mol%,第二单体占形成高分子聚合物的总单体量的5mol%至70mol%,优选为10mol%至50mol%,更优选为20mol%至40mol%。通过控制第一单体和第二单体的含量在上述范围内,能够得到粘接性能优异的高分子聚合物。
在本申请的一种实施方案中,高分子聚合物的等规度为45%至80%,优选为60%至80%。高分子聚合物的等规度在上述范围内,可以获得软化温度适当、粘接性良好的胶层。
在本申请的一种实施方案中,高分子聚合物的软化温度为130℃至170℃,优选为155℃至170℃。通过控制本申请的高分子聚合物的软化温度,可以使本申请的高分子聚合物具有更好的粘接性能。特别地,当本申请胶层中包含上述高分子聚合物时,可以提高自电极组件的收尾端伸出的隔离膜与壳体之间的粘接性能,进一步提高锂离子电池的安全性。
在本申请的一种实施方案中,高分子聚合物的重均分子量为5000g/mol至1000000g/mol,优选为10000g/mol至500000g/mol。重均分子量在上述范围内,可以获得粘接性良好的高分子聚合物。
发明人发现,锂离子电池跌落时壳体先受到冲击,内部的电极组件与壳体产生相对位 移,较薄的电极极片相对于较厚的壳体更易被撕裂。在本申请的一种实施方案中,第一隔离膜与第一极片之间的粘接力大于第一隔离膜与壳体之间的粘接力,从而保证电极组件粘接为一个整体,有效避免锂离子电池在跌落的过程中结构被破坏,进一步提高了锂离子电池的安全性。
本申请的高分子聚合物的制备方法没有特别限制,可以采用本领域技术人员公知的制备方法,根据所采用的单体种类不同进行选择,例如溶液法、浆液法、气相法等等。
例如,当第二单体选自乙烯时,可以采用以下方法:
将主催化剂和助催化剂分别溶解在己烷中,得到主催化剂的己烷溶液和助催化剂的己烷溶液,然后将己烷加入反应釜,再在氮气保护下将主催化剂的己烷溶液、助催化剂的己烷溶液加入反应釜,然后通入丙烯和乙烯,升温至50℃至60℃,反应过程中维持反应釜中的压力为0.3MPa至0.5MPa,反应0.5h至2h后,用酸化乙醇终止反应,所得产物用无水乙醇洗涤3次至5次,过滤后,在50℃至70℃真空干燥箱中干燥3h至5h。
本申请对主催化剂和助催化剂没有特别限制,只要能达到本申请发明目的即可,例如,使用茂金属催化体系,其中主催化剂包括茂金属配合物(例如二茂铁或其衍生物),助催化剂包括甲基铝氧烷;并且本申请对主催化剂和助催化剂的添加量没有特别限制,只要能达到本申请发明目的即可。另外,反应釜在反应前可以先真空抽排,再用氮气置换反应釜3次至5次,使反应釜洁净。
当第二单体选自丁二烯时,除将上述丙烯-乙烯共聚物制备方法中的乙烯替换为丁二烯以外,其余与上述丙烯-乙烯共聚物制备方法相同。
当第二单体选自丙烯酸酯时,与上述丙烯-乙烯共聚物制备方法的不同点为:将丙烯-乙烯共聚物制备方法中的乙烯替换为丙烯酸酯,在氮气保护下将己烷、主催化剂的己烷溶液、助催化剂的己烷溶液加入反应釜,然后加入丙烯酸酯,再通入丙烯,其余与上述丙烯-乙烯共聚物制备方法相同。
其中,丙烯酸酯单体可以选自丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸丁酯、丙烯酸异辛酯或丙烯酸羟乙酯中的任一种。
对于其他单体的共聚,本申请中不一一列举,可以采用本领域公知的制备方法。
本申请中的正极极片没有特别限制,只要能够实现本申请目的即可。例如,正极极片通常包含正极集流体和正极活性材料层。其中,正极集流体没有特别限制,可以为本领域公知的任何正极集流体,例如铝箔、铝合金箔或复合集流体等。正极活性材料层包括正极 活性材料,正极活性材料没有特别限制,可以使用本领域公知的任何正极活性材料,例如,可以包括镍钴锰酸锂(811、622、523、111)、镍钴铝酸锂、磷酸铁锂、富锂锰基材料、钴酸锂、锰酸锂、磷酸锰铁锂或钛酸锂中的至少一种。
本申请中的负极极片没有特别限制,只要能够实现本申请目的即可。例如,负极极片通常包含负极集流体和负极活性材料层。其中,负极集流体没有特别限制,可以使用本领域公知的任何负极集流体,例如铜箔、铝箔、铝合金箔以及复合集流体等。负极活性材料层包括负极活性材料,负极活性材料没有特别限制,可以使用本领域公知的任何负极活性材料。例如,可以包括人造石墨、天然石墨、中间相碳微球、软碳、硬碳、硅、硅碳、钛酸锂等中的至少一种。
本申请的锂离子电池还包括电解质,电解质可以是凝胶电解质、固态电解质和电解液中的一种或多种,电解液包括锂盐和非水溶剂。
在本申请一些实施方案中,锂盐选自LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiSiF 6、LiBOB和二氟硼酸锂中的一种或多种。举例来说,锂盐可以选用LiPF 6,因为它可以给出高的离子导电率并改善循环特性。非水溶剂可为碳酸酯化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。上述碳酸酯化合物可为链状碳酸酯化合物、环状碳酸酯化合物、氟代碳酸酯化合物或其组合。
上述链状碳酸酯化合物的实例为碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)及其组合。环状碳酸酯化合物的实例为碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)及其组合。氟代碳酸酯化合物的实例为碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯及其组合。
上述羧酸酯化合物的实例为甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内酯、甲瓦龙酸内酯、己内酯及其组合。
上述醚化合物的实例为二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃及其组合。
上述其它有机溶剂的实例为二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、和磷酸酯及其组合。
本申请还提供了一种电子装置,其包括本申请上述任一实施方案中所述的电化学装置,具有良好的安全性能。
本申请的电子装置没有特别限定,其可以是用于现有技术中已知的任何电子装置。在一些实施例中,电子装置可以包括,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
电化学装置的制备过程为本领域技术人员所熟知的,本申请没有特别的限制。例如锂离子电池可以通过以下过程制造:将正极和负极经由隔离膜重叠,并根据需要将其卷绕后放入壳体内,使隔离膜自电极组件的收尾端伸出并通过第一胶层与壳体粘接,将电解液注入壳体并封口。此外,也可以根据需要将防过电流元件、导板等置于壳体中,从而防止锂离子电池内部的压力上升、过充放电。
本申请中,术语“等规度”表示全同立构聚合物在高分子聚合物总量中所占的百分数。
术语“粒径”指聚合物颗粒的平均粒径。
本申请提供了一种电化学装置及电子装置,其包括壳体和设置于壳体内的卷绕式电极组件,通过在第一隔离膜和/或第二隔离膜背离电极组件中心的表面设置第一胶层,第一隔离膜和/或第二隔离膜自电极组件的收尾端伸出并通过第一胶层与壳体粘接,第一胶层与壳体粘接的面积大于或等于壳体与电极组件接触面积的10%,从而使电极组件与壳体紧密粘接在一起,提高了锂离子电池的安全性。并且,由于不再需要在电极组件和壳体之间额外设置双面胶,因此能够避免因额外设置双面胶对锂离子电池的能量密度的影响。
附图说明
为了更清楚地说明本申请和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为本申请一种实施方案中的电化学装置的结构示意图;
图2为本申请另一种实施方案中的电化学装置的结构示意图;
图3为本申请再一种实施方案中的电化学装置的结构示意图;
图4为本申请第四种实施方案中的电化学装置的结构示意图;
图5为本申请第五种实施方案中的电化学装置的结构示意图;
图6为本申请第六种实施方案中的电化学装置的结构示意图;
图7为本申请第七种实施方案中的电化学装置的结构示意图;
图8为本申请第八种实施方案中的电化学装置的结构示意图;
图9a为本申请一种实施方案中隔离膜的第一胶层与壳体粘接方式的示意图;
图9b为本申请另一种实施方案中隔离膜的第一胶层与壳体粘接方式的示意图;
图9c为本申请再一种实施方案中隔离膜的第一胶层与壳体粘接方式的示意图;
图10为本申请实施例1中的锂离子电池的结构示意图;
图11为本申请实施例2中的锂离子电池的结构示意图;
图12为本申请实施例3中的锂离子电池的结构示意图;
图13为本申请实施例4中的锂离子电池的结构示意图;
图14为本申请实施例5中的锂离子电池的结构示意图;
图15为对比例1的锂离子电池的结构示意图。
图中,1.第一极片,2.第二极片,4.壳体,6.极耳,7.第一胶层,8.第二胶层,11.第一集流体,21.第二集流体,31.第一隔离膜,32.第二隔离膜。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图和实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,本申请的具体实施方式中,以锂离子电池作为电化学装置的例子来解释本申请,但是本申请的电化学装置并不仅限于锂离子电池。
图1为本申请一种实施方案中的电化学装置的结构示意图,如图1所示,其包括壳体4和设置于壳体4内的卷绕式电极组件,电极组件包括第一极片1、与第一极片1的极性相反的第二极片2,在第一极片1和第二极片2之间设置有第一隔离膜31或第二隔离膜32,第一极片1包括第一集流体11。其中,第一隔离膜31背离电极组件中心O的表面设置第一胶层7,第一隔离膜31自电极组件的收尾端伸出,第一隔离膜31通过第一胶层7 与壳体4粘接。图1中还示出了极耳6,第二极片2也可以包括第二集流体21。
图2为本申请另一种实施方案中的电化学装置的结构示意图,如图2所示,第二隔离膜32背离电极组件中心的表面设置第一胶层7,第二隔离膜32自电极组件的收尾端伸出,第二隔离膜32通过第一胶层7与壳体4粘接。
图3为本申请再一种实施方案中的电化学装置的结构示意图,如图3所示,第一隔离膜31和第二隔离膜32背离电极组件中心的表面均设置第一胶层7,第一隔离膜31和第二隔离膜32自电极组件的收尾端伸出,第一隔离膜31和第二隔离膜32通过第一胶层7与壳体4粘接。
图4为本申请第四种实施方案中的电化学装置的结构示意图,如图4所示,第一隔离膜31朝向电极组件中心的表面还设置有第二胶层8,第一隔离膜31自第二极片2的收尾端伸出并通过第二胶层8与第一集流体11粘接,从而使第一隔离膜31背离电极组件中心的一面通过第一胶层7与壳体4粘接,第一隔离膜31朝向电极组件中心的一面通过第二胶层8与第一集流体11粘接。
图5为本申请第五种实施方案中的电化学装置的结构示意图,如图5所示,第二隔离膜32朝向电极组件中心的表面还设置有第二胶层8,第二隔离膜32自第二极片2的收尾端伸出并通过第二胶层8与第一集流体11粘接,从而使第二隔离膜32背离电极组件中心的一面通过第一胶层7与壳体4粘接,第二隔离膜32朝向电极组件中心的一面通过第二胶层8与第一集流体11粘接。
图6为本申请第六种实施方案中的电化学装置的结构示意图,如图6所示,第一隔离膜31和第二隔离膜32朝向电极组件中心的表面均设置有第二胶层8,第一隔离膜31和第二隔离膜32均自第二极片2的收尾端伸出。第一隔离膜31可以先通过背离电极组件中心的一面的第一胶层7与壳体4粘接,再通过朝向电极组件中心的一面的第二胶层8与第二隔离膜32背离电极组件中心的一面粘接,然后,第二隔离膜32朝向电极组件中心的一面再通过其表面的第二胶层8与第一集流体11粘接。
图7为本申请第六种实施方案中的电化学装置的结构示意图,如图7所示,沿着电极组件的卷绕方向,第一隔离膜31超出第二极片2收尾端的部分与第一集流体11之间的粘接面积,大于第一隔离膜31超出第二极片2收尾端的部分与壳体4之间的粘接面积。
图8为本申请第八种实施方案中的锂离子电池的结构示意图,如图8所示,该锂离子电池中,第一隔离膜31自电极组件的收尾端伸出,第二隔离膜32超出第二极片2的收尾 端且不超出第一极片1的收尾端,第一隔离膜31将第二隔离膜32包裹住,从而使第一隔离膜31有更多的面积和第一集流体11粘接,并能改善集流体(铝箔)撕裂或第二隔离膜32外翻问题。
图9a为本申请一种实施方案中隔离膜的第一胶层与壳体粘接方式的示意图。第一胶层的宽度w 1可以等于壳体的宽度w 2,或者略小于壳体的宽度w 2。图9b为本申请另一种实施方案中隔离膜的第一胶层与壳体粘接方式的示意图。第一胶层的宽度w 1可以小于壳体的宽度w 2。图9c为本申请再一种实施方案中隔离膜的第一胶层与壳体粘接方式的示意图。第一胶层的宽度w 1可以小于壳体的宽度w 2,同时第一胶层的收尾端可以为不规则形状(例如波浪形)。上述图9a至图9c所示的隔离膜的胶层与壳体粘接方式中,只要使得第一胶层与壳体粘接的面积大于或等于壳体与电极组件接触面积的10%即可。
实施例
以下,举出实施例及对比例来对本申请的实施方式进行更具体地说明。各种的试验及评价按照下述的方法进行。另外,只要无特别说明,“份”、“%”为质量基准。
测试方法和设备:
锂离子电池跌落测试:
锂离子电池按照0.5C充电制式充满电结束后,开路搁置2h(小时),测量锂离子电池的厚度、电压和内阻;将待测试锂离子电池从高度1.2m的位置自由跌落到18mm至20mm厚的水平硬木板上。锂离子电池的六个面都要进行跌落,每个锂离子电池的总跌落次数为6次。要求锂离子电池无明显变形、不漏液、不起火、不爆炸,否则测试未通过。
重物冲击测试:
锂离子电池按照0.5C充电制式充满电结束后,开路搁置2h,按照国家标准GB31241-2014第7.7条的规定,将15.8mm±0.2mm的金属棒横置在锂离子电池几何中心上表面,采用质量为9.1kg±0.1kg的重物从610mm±25mm的高处自由落体状态撞击放有金属棒的锂离子电池表面,并观察6h。要求电池应不漏液、不起火,不爆炸,否则测试未通过。
粘接力测试:
拆开放完电的成品锂离子电池,将隔离膜(第一隔离膜或第二隔离膜)与第一极片粘接的部分、隔离膜与壳体粘接的部分分别裁切为10mm×100mm的条状试样,用双面胶将试样粘在不锈钢板上,采用180°剥离力测试方法分别测试隔离膜与第一极片及壳体间的 粘接力,测试速度为300mm/min,测试长度为40mm。
高分子聚合物重均分子量测试:
采用凝胶渗透色谱法(GPC)测试高分子聚合物的重均分子量。本申请中,重均分子量是指按质量统计平均的分子量。
高分子聚合物软化温度测试:
采用通用型差示扫描量热仪(DSC)法:称取5mg高分子聚合物样品,以5℃/min的升温速率升温至150℃,采集DSC曲线,由所得DSC曲线确定高分子聚合物的软化温度。
高分子聚合物等规度测试:
按照FTIR(傅里叶变换红外光谱)法测试高分子聚合物的等规度,其中FTIR法采用国家标准GB/T 21186-2007《傅立叶变换红外光谱仪》。
实施例1
<1-1.第一隔离膜的制备>
<1-1-1.高分子聚合物的制备>
在1L不锈钢反应釜中,氮气保护下加入己烷溶剂77份(体积分数)、主催化剂二茂铁的己烷溶液(二茂铁含量70mg/L)19份(体积分数)、助催化剂甲基铝氧烷的己烷溶液(甲基铝氧烷含量10mg/L)4份(体积分数),然后加入偏氟乙烯(PVDF),再通入丙烯,升温至50℃,控制反应釜压力0.4MPa,通过调整丙烯/偏氟乙烯的加入量使第一、第二单体间的摩尔比为60:40,反应1h后,用酸化乙醇终止反应,得到丙烯-偏氟乙烯共聚物,所得产物用无水乙醇洗涤3次,过滤后,在60℃真空干燥箱中干燥4h。制得的高分子聚合物的平均粒径为2μm,软化温度为170℃,等规度为80%,重均分子量为100000g/mol。
<1-1-2.胶层浆料的制备>
将聚偏氟乙烯(PVDF)、聚丙烯酸(PAA)、所制得的高分子聚合物按照质量比70∶10∶20混合,得到混合物,然后将混合物溶解在丙酮中,得到固含量为40%的胶层浆料。
<1-1-3.含有胶层的隔离膜的制备>
将胶层浆料均匀涂覆在厚度为9μm的聚乙烯(PE)隔离膜基材收尾处的两个表面上,形成第一胶层和第二胶层,第一胶层和第二胶层厚度分别为3μm。以相同方法制备第二隔离膜。
<1-2.正极极片的制备>
将正极活性材料钴酸锂、乙炔黑、聚偏二氟乙烯(PVDF)按质量比94∶3∶3混合, 然后加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,冷压后得到正极活性材料层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。将正极极片焊接极耳后待用。
<1-3.负极极片的制备>
将负极活性材料人造石墨、乙炔黑、丁苯橡胶及羧甲基纤维素钠按质量比96∶1∶1.5∶1.5混合,然后加入去离子水作为溶剂,调配成固含量为70%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为8μm的铜箔的一个表面上,110℃条件下烘干,冷压后得到负极活性材料层厚度为150μm的单面涂覆负极活性材料层的负极极片,然后在该负极极片的另一个表面上重复以上涂覆步骤,得到双面涂覆有负极活性材料层的负极极片。将负极极片焊接极耳后待用。
<1-4.电解液的制备>
在含水量小于10ppm的环境下,将非水有机溶剂碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸亚丙酯(PC)、丙酸丙酯(PP)、碳酸亚乙烯酯(VC)按照质量比20∶30∶20∶28∶2混合,然后向非水有机溶剂中加入六氟磷酸锂(LiPF 6)溶解并混合均匀,得到电解液,其中,LiPF 6与非水有机溶剂的质量比为8∶92。
<1-5.锂离子电池的制备>
将上述制备的正极极片、第一隔离膜、负极极片、第二隔离膜按顺序叠好,使第一隔离膜、第二隔离膜处于正极极片、负极极片中间起到隔离的作用,并卷绕得到电极组件,将电极组件装入壳体(铝塑膜包装袋)中,使第一隔离膜自电极组件的收尾端伸出并通过热压使第一隔离膜收尾处的第一胶层与壳体(铝塑膜包装袋)粘接,第一胶层与壳体粘接的面积为壳体与电极组件接触面积的10%(如图10所示a区域),并在80℃下脱去水分,注入配好的电解液,经过真空封装、静置、化成、整形等工序得到锂离子电池。
实施例2
除了在<锂离子电池的制备>中,第一胶层与壳体粘接的面积为壳体与电极组件接触面积的20%(如图11所示a区域)以外,其余与实施例1相同。
实施例3
除了在<锂离子电池的制备>中,第一胶层与壳体粘接的面积为壳体与电极组件接触面积的30%(如图12所示a区域)以外,其余与实施例1相同。
实施例4
除了在<锂离子电池的制备>中,第一胶层与壳体粘接的面积为壳体与电极组件接触面积的50%(如图13所示a区域)以外,其余与实施例1相同。
实施例5
除了在<锂离子电池的制备>中,第一胶层与壳体粘接的面积为壳体与电极组件接触面积的100%(如图14所示a区域)以外,其余与实施例1相同。
实施例6
除了在<胶层的制备>中,将聚偏氟乙烯(PVDF)、聚丙烯酸(PAA)、所制得的高分子聚合物按照质量比60∶10∶30混合以外,其余与实施例3相同。
实施例7
除了在<胶层的制备>中,将聚偏氟乙烯(PVDF)、聚丙烯酸(PAA)、所制得的高分子聚合物按照质量比50∶10∶40混合以外,其余与实施例3相同。
实施例8
除了在<胶层的制备>中,将聚偏氟乙烯(PVDF)、聚丙烯酸(PAA)、所制得的高分子聚合物按照质量比40∶10∶50混合以外,其余与实施例3相同。
实施例9
除了在<高分子聚合物的制备>中,调整高分子聚合物的软化温度为160℃,等规度为70%以外,其余与实施例7相同。
实施例10
除了在<高分子聚合物的制备>中,调整高分子聚合物的软化温度为155℃,等规度为65%以外,其余与实施例7相同。
实施例11
除了在<高分子聚合物的制备>中,调整高分子聚合物的软化温度为150℃,等规度为60%以外,其余与实施例7相同。
实施例12
除了在<高分子聚合物的制备>中,调整高分子聚合物的软化温度为140℃,等规度为55%以外,其余与实施例7相同。
实施例13
除了在<高分子聚合物的制备>中,调整高分子聚合物的软化温度为135℃,等规度为 50%以外,其余与实施例7相同。
实施例14
除了在<高分子聚合物的制备>中,调整高分子聚合物的软化温度为130℃,等规度为45%以外,其余与实施例7相同。
实施例15
除了<高分子聚合物的制备>与实施例5不同以外,其余与实施例5相同。
<高分子聚合物的制备>
在1L不锈钢反应釜中,氮气保护下加入己烷溶剂77份(体积分数)、主催化剂二茂铁的己烷溶液(二茂铁含量70mg/L)19份(体积分数)、助催化剂甲基铝氧烷的己烷溶液(甲基铝氧烷含量10mg/L)4份(体积分数),然后通入丙烯/丁二烯混合气,升温至50℃,控制反应釜压力0.4MPa,通过调整丙烯/丁二烯的加入量使第一、第二单体间的摩尔比为30:70,反应1h后,用酸化乙醇终止反应,得到丙烯-丁二烯共聚物,所得产物用无水乙醇洗涤3次,过滤后,在60℃真空干燥箱中干燥4h。
实施例16
除了<高分子聚合物的制备>与实施例5不同以外,其余与实施例5相同。
<高分子聚合物的制备>
在1L不锈钢反应釜中,氮气保护下加入己烷溶剂77份(体积分数)、主催化剂二茂铁的己烷溶液(二茂铁含量70mg/L)19份(体积分数)、助催化剂甲基铝氧烷的己烷溶液(甲基铝氧烷含量10mg/L)4份(体积分数),然后加入丙烯酸乙酯,再通入丙烯,升温至50℃,控制反应釜压力0.4MPa,通过调整丙烯/丙烯酸乙酯的加入量使第一、第二单体间的摩尔比为30:70,反应1h后,用酸化乙醇终止反应,得到丙烯-丙烯酸乙酯共聚物,所得产物用无水乙醇洗涤3次,过滤后,在60℃真空干燥箱中干燥4h。
实施例17
除了<高分子聚合物的制备>与实施例5不同以外,其余与实施例5相同。
<高分子聚合物的制备>
在1L不锈钢反应釜中,氮气保护下加入己烷溶剂77份(体积分数)、主催化剂二茂铁的己烷溶液(二茂铁含量70mg/L)19份(体积分数)、助催化剂甲基铝氧烷的己烷溶液(甲基铝氧烷含量10mg/L)4份(体积分数),然后加入丙烯酸乙酯,再通入丙烯和乙烯,升温至50℃,控制反应釜压力0.4MPa,通过调整丙烯/乙烯/丙烯酸乙酯的加入量使第一、 第二单体的摩尔比为30:70(其中乙烯单体和丙烯酸乙酯单体等摩尔比),反应1h后,用酸化乙醇终止反应,得到丙烯-乙烯-丙烯酸乙酯共聚物,所得产物用无水乙醇洗涤3次,过滤后,在60℃真空干燥箱中干燥4h。
实施例18
除了在<高分子聚合物的制备>中,调整高分子聚合物的粒径为5μm,在<含有胶层的隔离膜的制备>中,调整第一胶层和第二胶层的厚度分别为10μm以外,其余与实施例5相同。
实施例19
除了在<高分子聚合物的制备>中,调整高分子聚合物的粒径为10μm,在<含有胶层的隔离膜的制备>中,调整第一胶层和第二胶层的厚度分别为15μm以外,其余与实施例5相同。
实施例20
除了在<含有胶层的隔离膜的制备>中,将胶层浆料均匀涂覆在厚度为9μm的聚乙烯(PE)隔离膜基材收尾处的其中一个表面上,在<锂离子电池的制备>中,使第一隔离膜含有第一胶层的一面与壳体粘接以外,其余与实施例5相同。
实施例21
除了在<锂离子电池的制备>中,第二隔离膜超出第二极片的收尾端且不超出第一极片的收尾端,第一隔离膜背离电极组件中心的一面通过第一胶层与壳体粘接,第一隔离膜朝向电极组件中心的一面通过第二胶层与第一集流体粘接,形成如图8所示的结构以外,其余与实施例5相同。
对比例1
除了在<隔离膜的制备>中,隔离膜表面不设置第一胶层;<锂离子电池的制备>与实施例1不同以外,其余与实施例1相同。
<锂离子电池的制备>
将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正负极极片中间起到隔离的作用,并卷绕得到电极组件,形成如图15所示的结构。将电极组件装入铝塑膜包装袋中,并在80℃下脱去水分,注入配好的电解液,经过真空封装、静置、化成、整形等工序得到锂离子电池。
对比例2
除了在<锂离子电池的制备>中,第一胶层与壳体粘接的面积为壳体与电极组件接触面积的5%以外,其余与实施例1相同。
对比例3
除了在<高分子聚合物的制备>中,调整高分子聚合物的粒径为0.5μm以外,其余与实施例1相同。
对比例4
除了在<高分子聚合物的制备>中,调整高分子聚合物的粒径为20μm,在<隔离膜的制备>中,分别调整第一胶层和第二胶层的厚度为30μm以外,其余与实施例1相同。
各实施例和对比例的测试结果如表1所示:
表1
序号 跌落测试未通过比例 重物冲击测试未通过比例 能量密度(Wh/L)
实施例1 30/200 27/200 698
实施例2 21/200 18/200 697
实施例3 7/200 4/200 698
实施例4 2/200 1/200 691
实施例5 0/200 0/200 686
实施例6 5/200 3/200 697
实施例7 4/200 1/200 696
实施例8 2/200 0/200 698
实施例9 3/200 1/200 697
实施例10 4/200 2/200 695
实施例11 7/200 3/200 697
实施例12 15/200 18/200 698
实施例13 23/200 20/200 698
实施例14 27/200 31/200 696
实施例15 1/200 0/200 696
实施例16 2/200 1/200 698
实施例17 1/200 0/200 698
实施例18 0/200 0/200 685
实施例19 0/200 0/200 679
实施例20 8/200 4/200 701
实施例21 0/200 0/200 699
对比例1 97/200 69/200 703
对比例2 43/200 34/200 697
对比例3 32/200 29/200 697
对比例4 36/200 32/200 678
从实施例1至21和对比例1可以看出,本申请锂离子电池的跌落测试和重物冲击测试结果均优于对比例1,表明具有本申请隔离膜的锂离子电池显著提高了其抗跌落性能和抗重物冲击性能,降低电池在特殊状况下的失效风险,从而提高锂离子电池的安全性,对锂离子电池的能量密度基本没有影响。
第一胶层与壳体粘接的面积比例通常也会影响锂离子电池的抗跌落性能和抗重物冲击性能。从实施例1至21和对比例2可以看出,只要使得第一胶层与壳体粘接的面积比例在本申请的范围内,就能够提高锂离子电池的抗跌落性能和抗重物冲击性能,从而提高锂离子电池的安全性。
高分子聚合物的粒径通常也会影响胶层的粘接性能。从实施例1至21和对比例3至4可以看出,只要使得高分子聚合物的粒径在本申请范围内,就能够提高锂离子电池的抗跌落性能和抗重物冲击性能,从而提高锂离子电池的安全性。
从实施例1至5可以看出,随着第一胶层与壳体粘接的面积比例增大,锂离子电池的抗跌落性能和抗重物冲击性能得到提高,尤其是实施例5,其跌落测试和重物冲击测试结果最佳。
高分子聚合物在胶层中的含量通常也会影响胶层的粘接性能。从实施例6至8可以看出,只要使得高分子聚合物在胶层中的含量在本申请范围内,就能够提高锂离子电池的抗跌落性能和抗重物冲击性能,从而提高锂离子电池的安全性。
高分子聚合物的软化温度、等规度通常也会影响胶层的粘接性能。从实施例9至14可以看出,只要使得高分子聚合物在胶层中的含量在本申请范围内,就能够提高锂离子电池的抗跌落性能和抗重物冲击性能,从而提高锂离子电池的安全性。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (16)

  1. 一种电化学装置,其包括壳体和设置于所述壳体内的卷绕式电极组件,所述电极组件包括第一极片、与所述第一极片的极性相反的第二极片,在所述第一极片和所述第二极片之间设置有第一隔离膜或第二隔离膜,所述第一极片包括第一集流体,
    其中,所述第一隔离膜和/或所述第二隔离膜背离所述电极组件中心的表面设置有第一胶层,所述第一隔离膜和/或所述第二隔离膜自所述电极组件的收尾端伸出并通过所述第一胶层与所述壳体粘接,所述第一胶层与所述壳体粘接的面积大于或等于所述壳体与所述电极组件接触面积的10%。
  2. 根据权利要求1所述的电化学装置,其中,所述第一隔离膜和/或所述第二隔离膜朝向所述电极组件中心的表面还设置有第二胶层,所述第一隔离膜和/或所述第二隔离膜自所述第二极片的收尾端伸出并通过所述第二胶层与所述第一集流体粘接。
  3. 根据权利要求1所述的电化学装置,其中,所述第一隔离膜背离所述电极组件中心的表面面对所述第一极片朝向所述电极组件中心的表面,所述第一隔离膜朝向所述电极组件中心的表面面对所述第二极片背离所述电极组件中心的表面。
  4. 根据权利要求3所述的电化学装置,其中,所述第二隔离膜背离所述电极组件中心的表面面对所述第二极片朝向所述电极组件中心的表面,所述第二隔离膜朝向所述电极组件中心的表面面对所述第一极片背离所述电极组件中心的表面。
  5. 根据权利要求1所述的电化学装置,其中,在所述第一隔离膜或所述第二隔离膜与所述壳体粘接的区域中,所述第一隔离膜或所述第二隔离膜与所述壳体之间的粘接力F 1为5N/m至55N/m。
  6. 根据权利要求2所述的电化学装置,其中,所述第一隔离膜或所述第二隔离膜与所述第一集流体之间的粘接力F 2为5.01N/m至60N/m。
  7. 根据权利要求2所述的电化学装置,其中,所述第一隔离膜与所述第一集流体背离所述电极组件中心的表面之间的粘接力为F 2,所述第一隔离膜与所述壳体之间的粘接力为F 1,或者,所述第二隔离膜与所述第一集流体背离所述电极组件中心的表面之间的粘接力为F 2,所述第二隔离膜与所述壳体之间的粘接力为F 1,则所述F 2与所述F 1之间的差值为1N/m至15N/m。
  8. 根据权利要求1所述的电化学装置,其中,沿着所述电极组件的卷绕方向,所述第一隔离膜超出所述第二极片收尾端的部分与所述第一集流体背离所述电极组件中心的表 面之间的粘接面积为S 1,所述第一隔离膜超出所述第二极片收尾端的部分与所述壳体之间的粘接面积为S 2,所述S 1大于所述S 2,或者,所述第二隔离膜超出所述第二极片收尾端的部分与所述第一集流体背离所述电极组件中心的表面之间的粘接面积为S 1,所述第二隔离膜超出所述第一极片收尾端的部分与所述壳体之间的粘接面积为S 2,则所述S 1大于所述S 2
  9. 根据权利要求1所述的电化学装置,其中,沿着所述电极组件的卷绕方向,所述第一隔离膜自所述电极组件的收尾端伸出,所述第二隔离膜超出所述第二极片的收尾端且不超出所述第一极片的收尾端。
  10. 根据权利要求1或2所述的电化学装置,其中,所述第一胶层和所述第二胶层包括高分子聚合物。
  11. 根据权利要求10所述的电化学装置,其中,形成所述高分子聚合物的单体包括第一单体和第二单体,所述第一单体为丙烯,所述第二单体包括乙烯、偏氟乙烯、氯乙烯、丁二烯、异戊二烯、苯乙烯、丙烯腈、环氧乙烷、环氧丙烷、丙烯酸酯、醋酸乙烯酯或己内酯中的至少一种。
  12. 根据权利要求10所述的电化学装置,其中,所述高分子聚合物为颗粒,所述颗粒的平均粒径为1μm至10μm。
  13. 根据权利要求1或2所述的电化学装置,其中,所述第一胶层和所述第二胶层的厚度为1μm至50μm。
  14. 根据权利要求11所述的电化学装置,其中,所述第一单体占形成所述高分子聚合物的总单体量的30mol%至95mol%,所述第二单体占形成所述高分子聚合物的总单体量的5mol%至70mol%。
  15. 根据权利要求10所述的电化学装置,其中,所述高分子聚合物满足以下特征中的至少一者:
    (a)所述高分子聚合物的等规度为45%至80%;
    (b)所述高分子聚合物的软化温度为130℃至170℃;
    (c)所述高分子聚合物的重均分子量为5000g/mol至1000000g/mol。
  16. 一种电子装置,其包括权利要求1-15任一项所述的电化学装置。
PCT/CN2021/084681 2021-03-31 2021-03-31 一种电化学装置及电子装置 WO2022205176A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/084681 WO2022205176A1 (zh) 2021-03-31 2021-03-31 一种电化学装置及电子装置
EP21867913.2A EP4089786A1 (en) 2021-03-31 2021-03-31 Electrochemical device and electronic device
CN202180001889.3A CN113366690A (zh) 2021-03-31 2021-03-31 一种电化学装置及电子装置
US17/709,193 US20220320595A1 (en) 2021-03-31 2022-03-30 Electrochemical apparatus and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084681 WO2022205176A1 (zh) 2021-03-31 2021-03-31 一种电化学装置及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/709,193 Continuation US20220320595A1 (en) 2021-03-31 2022-03-30 Electrochemical apparatus and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2022205176A1 true WO2022205176A1 (zh) 2022-10-06

Family

ID=77523068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084681 WO2022205176A1 (zh) 2021-03-31 2021-03-31 一种电化学装置及电子装置

Country Status (4)

Country Link
US (1) US20220320595A1 (zh)
EP (1) EP4089786A1 (zh)
CN (1) CN113366690A (zh)
WO (1) WO2022205176A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972422A (zh) * 2021-10-22 2022-01-25 宁德新能源科技有限公司 电化学装置和电子装置
WO2024092708A1 (zh) * 2022-11-04 2024-05-10 宁德新能源科技有限公司 二次电池的壳体、二次电池和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270042A1 (en) * 2011-04-20 2012-10-25 Nitto Denko Corporation Pressure-sensitive adhesive tape for electrochemical device
CN203690420U (zh) * 2014-01-23 2014-07-02 东莞新能源科技有限公司 锂离子电池
CN206040883U (zh) * 2016-09-22 2017-03-22 宁德新能源科技有限公司 一种卷绕式电芯
CN211350858U (zh) * 2020-03-25 2020-08-25 宁德新能源科技有限公司 电化学装置及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270042A1 (en) * 2011-04-20 2012-10-25 Nitto Denko Corporation Pressure-sensitive adhesive tape for electrochemical device
CN203690420U (zh) * 2014-01-23 2014-07-02 东莞新能源科技有限公司 锂离子电池
CN206040883U (zh) * 2016-09-22 2017-03-22 宁德新能源科技有限公司 一种卷绕式电芯
CN211350858U (zh) * 2020-03-25 2020-08-25 宁德新能源科技有限公司 电化学装置及电子装置

Also Published As

Publication number Publication date
CN113366690A (zh) 2021-09-07
US20220320595A1 (en) 2022-10-06
EP4089786A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2022141448A1 (zh) 电化学装置、电子装置及电化学装置的制备方法
KR102658100B1 (ko) 이차 전지, 이차 전지를 포함하는 장치, 이차 전지의 제조 방법 및 접착제 조성물
WO2022110050A1 (zh) 一种电化学装置和电子装置
US20220320595A1 (en) Electrochemical apparatus and electronic apparatus
CN110249473B (zh) 非水电解质二次电池
WO2021212428A1 (zh) 锂金属电池及其制备方法、包含锂金属电池的装置和负极极片
WO2022141508A1 (zh) 一种电化学装置和电子装置
WO2022205165A1 (zh) 一种隔离膜及包含所述隔离膜的电化学装置和电子装置
WO2021023133A1 (zh) 正极极片及其相关的电化学装置和设备
CN114901766B (zh) 用于二次电池的溶胀带和包括其的圆柱型二次电池
WO2021108990A1 (zh) 二次电池及其制备方法和共聚物和装置
WO2022205156A1 (zh) 一种隔离膜及包含该隔离膜的电化学装置和电子装置
WO2024088363A1 (zh) 一种电池
WO2021163926A1 (zh) 正极极片与包含其的电化学装置及电子装置
WO2022110041A1 (zh) 一种电化学装置和电子装置
WO2021017801A1 (zh) 功能化隔离膜、其制备方法、锂金属电池和包含锂金属电池的装置
WO2021196116A1 (zh) 电极极片、电化学装置及包含其的电子装置
US20230387416A1 (en) Positive electrode plate, secondary battery and preparation method thereof and battery module, battery pack and power consuming device comprising the secondary battery
US20230207966A1 (en) Electrochemical device and electronic device containing same
WO2023133798A1 (zh) 一种用于锂离子二次电池的正极复合材料、正极和电池
WO2022110042A1 (zh) 一种电化学装置和电子装置
KR20210124063A (ko) 이차전지용 스웰링 테이프 및 이를 포함하는 원통형 이차전지
CN114361710A (zh) 一种隔离膜、包含该隔离膜的电化学装置及电子装置
WO2022246630A1 (zh) 二次电池、其制备方法和包含其的装置、以及粘结剂配方
US20240136688A1 (en) Battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021867913

Country of ref document: EP

Effective date: 20220324

NENP Non-entry into the national phase

Ref country code: DE