WO2022204890A1 - 随机接入资源的选择方法、终端设备和网络设备 - Google Patents

随机接入资源的选择方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022204890A1
WO2022204890A1 PCT/CN2021/083653 CN2021083653W WO2022204890A1 WO 2022204890 A1 WO2022204890 A1 WO 2022204890A1 CN 2021083653 W CN2021083653 W CN 2021083653W WO 2022204890 A1 WO2022204890 A1 WO 2022204890A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
terminal device
terminal
resource
compensation amount
Prior art date
Application number
PCT/CN2021/083653
Other languages
English (en)
French (fr)
Inventor
范江胜
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180095826.9A priority Critical patent/CN116998213A/zh
Priority to PCT/CN2021/083653 priority patent/WO2022204890A1/zh
Priority to EP21933576.7A priority patent/EP4319441A4/en
Publication of WO2022204890A1 publication Critical patent/WO2022204890A1/zh
Priority to US18/475,189 priority patent/US20240015802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18547Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
    • H04B7/1855Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station using a telephonic control signal, e.g. propagation delay variation, Doppler frequency variation, power variation, beam identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present application relates to the field of communications, and more particularly, to a method for selecting random access resources, a terminal device and a network device.
  • the 5G New Radio (NR, New Radio) system supports a four-step random access mechanism (4-step RACH) and a two-step random access mechanism (2-step RACH).
  • the terminal device will first select the random access type before initiating the random access process, that is, choose to use the four-step random access mechanism or the two-step random access mechanism; this process is based on the reference signal received power (RSRP) configured by the network.
  • RSRP reference signal received power
  • Reference Signal Received Power to judge, when the terminal device measures the RSRP value of the serving cell or the target cell is greater than the RSRP threshold value configured by the network, the terminal device chooses to use the two-step type random access method to initiate a random access attempt; otherwise, The terminal equipment chooses to use the four-step random access method to initiate a random access attempt.
  • the signal measurement results received by any terminal device in the satellite signal coverage area are generally not very different.
  • the embodiments of the present application provide a method, terminal equipment and network equipment for selecting random access resources, which can be applied to the selection process of random access resources by terminal equipment in a satellite system.
  • An embodiment of the present application proposes a method for selecting random access resources, including:
  • the terminal device selects random access resources based on at least one predefined manner: the predefined manner includes:
  • the embodiment of the present application also proposes a method for selecting random access resources, including:
  • the network device sends the feeder link delay compensation amount to the terminal device through a system broadcast message or dedicated signaling, which is used for the terminal device to select random access resources.
  • the embodiment of the present application also proposes a terminal device, including:
  • a selection module configured to select random access resources based on at least one predefined manner: the predefined manner includes:
  • An embodiment of the present application proposes a network device, including: a feeder link delay compensation amount sending module, configured to send a feeder link delay compensation amount to a terminal device through a system broadcast message or dedicated signaling, for the terminal The device selects random access resources.
  • An embodiment of the present application further provides a terminal device, including: a processor and a memory, where the memory is used to store a computer program, the processor is used to call and run the computer program stored in the memory, and execute any of the above method.
  • An embodiment of the present application also proposes a network device, including: a processor, a memory, and a transceiver, where the memory is used to store a computer program, the processor is used to call and run the computer program stored in the memory, and control the transceiver, Perform a method as described in any of the above.
  • An embodiment of the present application further proposes a chip, including: a processor, configured to call and run a computer program from a memory, so that a device on which the chip is installed executes the method executed by any of the above-mentioned terminal devices.
  • An embodiment of the present application further proposes a chip, including: a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the method performed by any of the foregoing network devices.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program, and the computer program enables a computer to execute the method executed by any of the foregoing terminal devices.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method executed by any one of the foregoing network devices.
  • the embodiments of the present application also provide a computer program product, including computer program instructions, the computer program instructions cause the computer to execute the method as executed by any of the above terminal devices.
  • the embodiments of the present application also provide a computer program product, including computer program instructions, the computer program instructions enable a computer to execute the method executed by any of the foregoing network devices.
  • An embodiment of the present application further provides a computer program, the computer program enables a computer to execute any of the above-mentioned methods executed by a terminal device.
  • the embodiment of the present application also provides a computer program, the computer program enables a computer to execute any of the methods executed by the above network device.
  • the terminal device selects the random access resource based on at least one predefined method, so that the terminal device can flexibly select the random access resource before triggering the random result process, and more reasonably compare the two-step random access resource with the random access resource.
  • Four-step random access resources are selected to improve the utilization rate of random access resources.
  • the embodiments of the present application are especially applicable to the selection of random access resources by terminal equipment in a satellite system.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method 200 for selecting random access resources according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method 300 for selecting random access resources according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a terminal device 400 according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal device 500 according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device 600 according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device 700 according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip 900 according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • LTE LTE-based access to unlicensed spectrum
  • LTE-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • This embodiment of the present application does not limit the applied spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with a mobile device.
  • the network device can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a WCDMA
  • a base station NodeB, NB
  • it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, wearable device, and network equipment (gNB) in NR networks Or network equipment in the PLMN network that evolves in the future.
  • AP Access Point
  • BTS Base Transceiver Station
  • gNB network equipment
  • a network device provides services for a cell
  • a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network device (for example, a frequency domain resource).
  • the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell), where the small cell can include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc.
  • These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the four-step random access mechanism (4-step RACH) is a function introduced in NR R15.
  • the four-step random access process includes the following steps:
  • Step 1 The message corresponding to Step 1 is also called MSG 1.
  • the terminal device sends the random access preamble to the network device through the random access channel.
  • the terminal device needs to select a time-frequency resource, that is, the random access opportunity (RO, RACH Occasion), send random access preamble;
  • RO random access opportunity
  • Step 2 The message corresponding to Step 2 is also called MSG 2.
  • the network device needs to reply to the terminal device MSG2 within a certain time window after receiving the MSG1 sent by the terminal device.
  • MSG2 includes MSG3 scheduling resources, and the network allocates it to the terminal.
  • Information such as the temporary cell radio network temporary identifier (C-RNTI, Cell Radio Network Temporary Identifier) used by the device, the time advance from the terminal device to the network estimated by the network, and the RACH failure fallback time parameter;
  • C-RNTI Cell Radio Network Temporary Identifier
  • Step 3 The message corresponding to Step 3 is also called MSG 3, which mainly includes information such as the identity of the terminal device itself, the reason for access, etc.;
  • Step 4 The message corresponding to Step 4 is also called MSG 4, which is mainly used by the network device to inform the terminal device of contention resolution and configuration information of SRB1;
  • a random access procedure may include multiple random access attempts. Because random access attempts may also fail, the network device generally informs the terminal device of the maximum number of random access attempts M (M is a positive integer) in a random access process through the configuration process. Once the terminal device continuously triggers M times If the random access attempt has not been successful, the terminal device will consider the random access process to be unsuccessful.
  • M is a positive integer
  • the two-step random access mechanism (2-step RACH) is a function introduced in NR R16.
  • the two-step random access process includes the following steps:
  • Step 1 The message corresponding to Step 1 is also called MSG A, which can be simply understood as combining the functions of MSG 1 and MSG 3 in the four-step random access process to obtain MSG A and then send it;
  • Step 2 The message corresponding to Step 2 is also called MSG B, which can be simply understood as combining the functions of MSG 2 and MSG 4 in the four-step random access process to obtain MSG B before sending.
  • the network device Under the two-step random access mechanism, the network device will also inform the terminal device of the maximum number of random access attempts M (M is a positive integer) in a random access process through the configuration process. Once the terminal device triggers M random access times continuously If the attempt has not been successful, the terminal device will consider that the random access process has failed. This is the same as the four-step random access mechanism, but there are differences between the two mechanisms.
  • the network device may An additional threshold N is configured for the terminal device to fall back to using the four-step random access attempt after N consecutive two-step random access attempts fail, usually N is a positive integer less than M. If the network device does not configure the above-mentioned threshold N, the terminal device cannot fall back to using the four-step random access mechanism after selecting the two-step random access mechanism.
  • the terminal device may be involved in two random access attempts and four-step random access simultaneously in one random access process. try. Otherwise, when the aforementioned conditions are not satisfied, the terminal device can only use the same type of random access mechanism in one random access process, until the terminal device continuously triggers M times of random access attempts of the same type, and the terminal device has not succeeded. The device will consider this random access process to fail.
  • the terminal device will first select the random access type (two-step or four-step random access) before initiating the random access process. This process is judged based on the RSRP threshold configured by the network.
  • the terminal device detects the serving cell or target
  • the terminal device chooses to use the two-step random access method to initiate a random access attempt;
  • the terminal device chooses to use the four-step random access method to initiate a random access attempt.
  • the two-step random access mechanism saves time delay compared with the four-step random access mechanism, but because the MSGA carries a large amount of information in the two-step random access process, under the same channel conditions, the probability of the MSGA being decoded incorrectly by the network will be higher. It is larger than MSG 1, so the existing NR R16 standard stipulates that only when the RSRP measurement result of the target cell is higher than the RSRP threshold configured by the target cell, the terminal equipment can select the two-step random access type to initiate a random access attempt; otherwise, the terminal equipment A device can only initiate random access attempts using the four-step random access type. This method is also to take advantage of the two-step random access mechanism as much as possible.
  • Satellites can be divided into synchronous orbit (GEO, Geostationary Earth Orbit), medium orbit (MEO, Medium Earth Orbit) and low orbit (LEO, Low Earth Orbit).
  • GEO synchronous orbit
  • MEO Medium Earth Orbit
  • LEO Low Earth Orbit
  • the coverage diameter of GEO can reach thousands of kilometers (usually 3 satellites cover the world), and it is relatively stationary on the ground; MEO/LEO, depending on the orbital height, has a coverage diameter ranging from tens of kilometers to thousands of kilometers.
  • terrestrial cells usually cover a diameter of several hundred meters to thousands of meters, the coverage of satellite cells is much larger than that of terrestrial cells. Because the signal coverage characteristics of satellite cells are different from those of terrestrial cells, the signal measurement results received by any terminal device in the satellite signal coverage area are generally not very different, that is to say, the far-near effect in the satellite coverage area is less obvious than that of terrestrial cells.
  • FIG. 1 is a schematic diagram of satellite cell signal coverage.
  • the satellite in FIG. 1 may be a transparent relay type satellite, in which case the base station is located at the ground station, and the satellite is only used for signal amplification and transparent relay of the ground station.
  • the satellite in Figure 1 may also have all the functions of the base station (in this scenario, the satellite has a complete communication protocol stack) or some functions (this scenario refers to the CU-DU separation scenario, at this time, the CU is the ground station, and the DU is in the satellite. above) type of satellite.
  • the satellite due to the high distance of the satellite orbit from the ground (usually ranging from several hundred kilometers to tens of thousands of kilometers), the satellite is respectively connected to each point in the coverage area of the satellite cell in Figure 1 (such as point A and point B). It is almost the same as the absolute distance between points C); and the satellite signal measurement results are mainly related to the distance from the satellite to the terminal device, so the satellite cell measurement results measured by any terminal device under the coverage area of a satellite cell are not much different. . In addition to the influence of the measurement error itself of the terminal equipment, it is difficult to use the method based on the RSRP threshold of the target cell in the related art to select the random access resource.
  • FIG. 2 is a schematic flowchart of a method 200 for selecting random access resources according to an embodiment of the present application.
  • the method can optionally be applied to FIG. 1 . system shown, but not limited thereto.
  • the method includes at least some of the following.
  • the terminal device selects random access resources based on at least one predefined manner: the predefined manner includes:
  • the above step S210 may be used to select random access resources. For example, the terminal device selects a two-step type random access resource to initiate a random access attempt, or selects a four-step type random access resource to initiate a random access attempt.
  • the terminal device selects random access resources based on the signal propagation delay or the signal propagation distance.
  • the predefined methods for selecting random access resources based on signal propagation delay or signal propagation distance include at least the following three:
  • Method 1 Selection based on the round trip delay (RTT, Round Trip Time) obtained by the terminal device;
  • Mode 2 Based on the absolute distance selection of the service link between the terminal device and the service satellite;
  • Mode 3 Selection based on the delay compensation amount of the feeder link between the ground station and the serving satellite.
  • the entire Uu interface link includes two segments, the first segment is the service link, which refers to the link between the terminal equipment and the serving satellite; the second segment is the feeder link, which refers to the ground The link between the station and the serving satellite.
  • Transparent transponder satellites do not have signal correction processing capabilities, and can only simply amplify and retransmit signals.
  • Regenerative satellites can not only amplify and retransmit signals, but also correct and process signals.
  • mode 1 and mode 2 are applicable to all types of satellites, and mode 3 is applicable to transparent forwarding type satellites. The above three methods are described in detail below.
  • the RTT duration is mainly used by the terminal device to maintain synchronization with the network device, and the synchronization mechanism is crucial to the resource scheduling process.
  • the RTT value refers to the back-and-forth propagation delay value of the signal between the terminal device and the serving cell.
  • the RTT value is equal to twice the sum of the feeder link delay compensation amount and the service link delay compensation amount; for regeneration type satellites, the RTT value is equal to the service chain delay compensation amount. Twice the amount of road delay compensation.
  • the RTT value can generally reflect the distance information between the terminal device and the network device; due to the attenuation characteristics of wireless signals with the propagation distance, the propagation distance information can largely reflect the signal attenuation expectation, so the RTT value It can also reflect the signal attenuation expectations to a large extent.
  • the probability of the two-step random access attempt being successfully received by the network device is lower than that of the four-step random access attempt.
  • the advantages of the mechanism generally require that when the signal attenuation is expected to be low (that is, the signal propagation distance is small), the two-step random access mechanism is preferentially used; on the contrary, when the signal attenuation is expected to be high (that is, the signal propagation distance is large) , the four-step random access mechanism is preferentially used.
  • the present application proposes that the terminal device selects a two-step type random access resource when the RTT acquired by the terminal device is less than or equal to the first threshold; otherwise, the terminal device selects a four-step type random access resource. into resources. Further, after selecting the random access resource, the terminal device may use the selected random access resource to initiate a random access attempt.
  • the terminal device may select a two-step type random access resource when the acquired RTT is greater than or equal to the first threshold; otherwise, select a four-step type random access resource. Further, after selecting the random access resource, the terminal device may use the selected random access resource to initiate a random access attempt.
  • the above-mentioned first threshold is sent by the network device to the terminal device, and the terminal device receives the first threshold through a system broadcast message or dedicated signaling.
  • the terminal device can receive the feeder link delay compensation amount through system broadcast messages or dedicated signaling, and use the feeder link delay compensation amount and service link delay compensation amount Calculate RTT. For example, add the feeder link delay compensation amount and the serving link delay compensation amount, and then multiply the sum obtained by the addition by 2 to obtain the RTT.
  • the terminal device may calculate the above-mentioned RTT by using the service link delay compensation amount.
  • the RTT value is equal to twice the service link delay compensation amount.
  • the terminal device may use the absolute distance of the service link to determine the delay compensation amount of the service link. For example, the terminal device obtains the geographic location information of the terminal device and the real-time location information of the serving satellite; and determines the absolute distance of the serving link according to the geographic location information of the terminal device and the real-time location information of the serving satellite. Usually, the terminal device can obtain its own geographical location information through the positioning module, and the real-time position information of the serving satellite can be obtained through the cell system broadcast information or ephemeris information. In this way, the terminal device can easily calculate the service chain. absolute distance.
  • the service link delay compensation amount can be determined by using the absolute distance of the service link and the transmission speed of the signal; for example, the service link delay compensation amount can be obtained by dividing the absolute distance of the service link by the transmission speed of the signal.
  • the above ephemeris information in the embodiments of the present application has a similar meaning to the satellite orbit operation data and ephemeris commonly used in the field of satellite communications.
  • the meaning of the ephemeris is to inform the user of the initial position state vector information of the satellite at a defined time starting point.
  • the time starting point information is public and does not need to be bound to a certain satellite.
  • the remaining six parameters are required to represent A satellite orbit operation data, in which the absolute space position vector of the satellite needs to be represented by three parameters, and the space velocity vector of the satellite needs to be represented by three parameters. Then, after obtaining the orbital operation data of a satellite, theoretically, the spatial position information of the satellite at any point in the future can be accurately calculated and predicted.
  • the feeder link delay compensation amount is also required. It is often difficult to calculate the distance of the feeder link or the delay compensation amount of the feeder link. For security reasons, the specific geographic location information of the ground gateway (network equipment is usually set in the ground gateway) will not be used. Actively provided to terminal equipment. Therefore, in the embodiments of the present application, the terminal device can receive the feeder link delay compensation amount sent by the network device through a system broadcast message or dedicated signaling.
  • the feeder link delay compensation amount proposed by the embodiments of the present application may be determined by the network device according to the location of the serving satellite and the position of the network device; or, the feeder link delay compensation amount may be determined by the network device according to the location of the network device. Any time synchronization reference point specified by the serving cell is determined, wherein the time synchronization reference point includes any point between the serving satellite and the network device. It can be seen that the embodiment of the present application proposes a more flexible way of determining the feeder link delay compensation amount, and the value of the feeder link delay compensation amount determined in the latter way is less than or equal to the former way.
  • the determined value of the feeder link delay compensation amount correspondingly, the RTT value calculated by the feeder link delay compensation amount determined by the latter method is also less than or equal to the feeder link determined by the former method.
  • the RTT value calculated by the electrical link delay compensation amount The terminal device does not need to perceive this, but only needs to receive the feeder link delay compensation amount from the network device, use the feeder link delay compensation amount to calculate the RTT value, and select random access resources according to the RTT value.
  • Method 2 is also applicable to all types of satellites. The difference from method 1 is that method 2 only determines which random access type to use by obtaining the signal propagation distance information of the service link between the terminal device and the serving satellite. Easier to execute.
  • the entire Uu interface link includes the service link between the terminal equipment and the serving satellite, and the feeder link between the gateway station and the serving satellite.
  • the service link between the terminal equipment and the serving satellite there is only one segment of the entire Uu interface link, that is, the service link between the terminal equipment and the serving satellite.
  • the absolute distance of the service link can reflect the signal propagation distance of the satellite network to a certain extent; due to the attenuation characteristics of wireless signals with the propagation distance, the signal propagation distance can largely reflect the signal attenuation expectation. The absolute distance of the link can also reflect the expected signal attenuation to a large extent.
  • the probability of the two-step random access attempt being successfully received by the network device is lower than that of the four-step random access attempt.
  • the advantages of the mechanism generally require that when the signal attenuation is expected to be low (that is, the signal propagation distance is small), the two-step random access mechanism is preferentially used; on the contrary, when the signal attenuation is expected to be high (that is, the signal propagation distance is large) , the four-step random access mechanism is preferentially used.
  • this application proposes that the terminal equipment selects two-step type random access resources when the absolute distance of the service link is less than or equal to the second threshold; otherwise, the terminal equipment selects four-step type random access resources . Further, after selecting the random access resource, the terminal device may use the selected random access resource to initiate a random access attempt.
  • the terminal device may select a two-step type random access resource when the absolute distance of the service link is greater than or equal to the second threshold; otherwise, select a four-step type random access resource. Further, after selecting the random access resource, the terminal device may use the selected random access resource to initiate a random access attempt.
  • the above-mentioned second threshold is sent by the network device to the terminal device, and the terminal device receives the second threshold through a system broadcast message or dedicated signaling.
  • the method for determining the absolute distance of the service link by the terminal device is the same as the corresponding method in the foregoing method 1, and details are not described herein again.
  • Mode 3 is only applicable to transparent relay type satellites. Mode 3 relies on system broadcast messages or dedicated signaling, because terminal equipment usually cannot directly calculate and obtain the feeder link delay compensation between the ground station and the serving satellite. The amount of feeder link delay compensation between the station and the serving satellite is communicated to the terminal equipment.
  • the entire Uu interface link includes the service link between the terminal equipment and the serving satellite, and the feeder link between the gateway station and the serving satellite.
  • the feeder link delay compensation amount can reflect the signal propagation delay of the satellite network to a certain extent; due to the attenuation characteristics of wireless signals with the propagation delay, the signal propagation delay can be largely It reflects the signal attenuation expectation, so the feeder delay compensation amount can also reflect the signal attenuation expectation to a large extent.
  • the probability of the two-step random access attempt being successfully received by the network device is lower than that of the four-step random access attempt.
  • the advantages of the mechanism generally require that when the signal attenuation expectation is low (that is, the signal propagation delay is small), the two-step random access mechanism is preferentially used; on the contrary, when the signal attenuation expectation is high (that is, the signal propagation delay is large) ), the four-step random access mechanism is preferentially used.
  • this application proposes that the terminal equipment selects two-step type random access resources when the feeder link delay compensation amount is less than or equal to the third threshold; otherwise, the terminal equipment selects four-step type random access resources access resources. Further, after selecting the random access resource, the terminal device may use the selected random access resource to initiate a random access attempt.
  • the terminal device may select a two-step type random access resource when the feeder link delay compensation amount is greater than or equal to a third threshold; otherwise, select a four-step type random access resource . Further, after selecting the random access resource, the terminal device may use the selected random access resource to initiate a random access attempt.
  • the above-mentioned third threshold is sent by the network device to the terminal device, and the terminal device receives the third threshold through a system broadcast message or dedicated signaling.
  • the embodiment of the present application proposes a more flexible way of determining the feeder link delay compensation amount.
  • the feeder link delay compensation amount proposed in this application can be determined by the network device according to the serving satellite. The position and the position of the network equipment are determined; or, the feeder link delay compensation amount can be determined by the network equipment according to any time synchronization reference point specified by the serving cell, wherein the time synchronization reference point includes the time synchronization between the serving satellite and the network equipment. any point.
  • the terminal device does not need to perceive this, but only needs to receive the feeder link delay compensation amount from the network device, and select random access resources accordingly.
  • the three random access resource selection manners in the foregoing manners 1 to 3 may be used independently or in combination, which is not limited in this application.
  • the three methods for selecting random access resources in the above-mentioned methods 1 to 3 can be used for the terminal equipment to determine the random access resources before the initial random access attempt of any random access process, or for the terminal equipment to determine the random access resources in any random access process.
  • the random access resource is determined before each random access attempt in the random access process.
  • the three random access resource selection manners in the foregoing manners 1 to 3 may also be used in combination with the measurement results of the target cell or the serving cell.
  • the terminal device may further include:
  • the terminal device determines whether the measurement result of the target cell or the serving cell is greater than or equal to the fourth threshold, and if so, executes the step of selecting the random access resource by the terminal device based on at least one predefined mode (such as mode 1 to mode 3); otherwise , the terminal equipment selects the four-step type random access resource.
  • the terminal device may further include:
  • the terminal device determines whether the measurement result of the target cell or the serving cell is greater than or equal to the fourth threshold, and if so, the terminal device selects the four-step type random access resource; otherwise, the terminal device selects random access based on at least one predefined method. resource steps.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a predefined mode 4 is proposed, in which the terminal device selects random access resources based on the service identifier information that triggers the random access process.
  • the service identification information includes at least one of the following identifications:
  • the access cause value (Cause Value) identifier that triggers the terminal to initiate the random access procedure
  • the identifier of the terminal type (UE Identity) that triggers the terminal to initiate the random access procedure
  • the above at least one service identification information is predefined by the protocol, and 64 types of ACs are defined in the existing protocol, numbered 0 to 63 respectively.
  • the protocol defines the corresponding relationship between each AC value and one or a group of services; and each AC corresponds to a Cause Value identifier, and the protocol specifies the mapping relationship between the two.
  • the protocol also specifies several terminal type identifiers. Whenever a service is triggered by the non-access stratum (NAS, Non-Access Stratum) or the access stratum (AS, Access Stratum), the AS will obtain the information from the NAS or the AS itself. AC, Cause Value, and UE Identity information related to the service, and access control is performed based on this information.
  • the embodiments of the present application may pre-specify a predefined identifier, such as a predetermined AC, Cause Value or UE Identity.
  • a predefined identifier such as a predetermined AC, Cause Value or UE Identity.
  • Mode 4 can be used for the terminal device to determine the random access resource before the initial random access attempt of any random access process, or for the terminal device to determine the random access resource before each random access attempt of any random access process .
  • the terminal device when triggering the random access process, the terminal device obtains the service identifier information that triggers the random access process, and selects the corresponding random access resource according to the service identifier information, so as to flexibly implement the two-step type random access process. Select between incoming resources and four-step random access resources to improve the utilization of random access resources.
  • way 4 may also be used in combination with the measurement result of the target cell or the serving cell.
  • the terminal device selects the random access resource by applying Mode 4, it may further include:
  • the terminal device determines whether the measurement result of the target cell or the serving cell is greater than or equal to the fourth threshold, and if so, executes the step of selecting random access resources by the terminal device based on Mode 4; otherwise, the terminal device selects four-step type random access resources.
  • the terminal device may further include:
  • the terminal equipment determines whether the measurement result of the target cell or the serving cell is greater than or equal to the fourth threshold, and if so, the terminal equipment selects the four-step type random access resource;
  • the present application does not limit the method used in any combination of mode 4 and mode 1 to mode 3.
  • a predefined method 5 is proposed.
  • the terminal device selects random access resources based on its own terminal type, including the following processes:
  • the terminal device determines the terminal type of the terminal device
  • the terminal device selects the two-step type random access resource; otherwise, the terminal device selects the four-step type random access resource.
  • the above-mentioned preset types may be pre-specified in the embodiments of the present application. After the terminal device determines its own terminal type, it determines whether it belongs to the preset type. If so, it selects a two-step type random access resource to initiate a random access attempt; otherwise, it selects a four-step type random access resource to initiate a random access attempt. .
  • the terminal device may determine the terminal type of the terminal device in at least one of the following manners:
  • the terminal type identifier is set when it leaves the factory;
  • the terminal type of the terminal device is determined according to the capability information of the terminal device.
  • the protocol can directly specify the terminal types of several terminals, and the division of terminal types can consider various capabilities supported by the terminals. Capability information of at least one of the following dimensions of the terminal device can usually be considered when classifying the terminal type:
  • Application scenarios of terminal support equipment such as satellite communication scenarios, terrestrial communication scenarios, and delay-sensitive scenarios;
  • the terminal type of a terminal device with one transmit antenna and one receive antenna is type 1; the terminal type of a terminal device with one transmit antenna and two receive antennas is type 2; the terminal type of a terminal device with one transmit antenna and four or more receive antennas
  • the terminal type of the terminal equipment is type 3; the terminal type of the terminal equipment with two or more transmit antennas is type 4.
  • two or more dimensions may be considered at the same time for the classification of terminal types.
  • the terminal type supporting a terminal device with a maximum transmit power of P1 and a minimum bandwidth of B1 is type 1
  • the terminal type of a terminal device that supports a maximum transmit power of P2 and a minimum bandwidth of B2 is type 2.
  • the terminal type of the terminal device can be pre-defined according to the capability information of the terminal device in advance, and the terminal type can be stored in the terminal device; when the terminal device performs random access, the terminal device can use the pre-stored terminal type. A random access resource is selected and a random access attempt is initiated.
  • the network device determines the terminal type of the terminal device according to the capability information of the terminal device and/or the local policy information of the network device, the terminal device obtains its own terminal type from the network device through the NAS process, and uses the terminal type to select random access resources and initiate a random access attempt.
  • the terminal device determines its own terminal type according to its own capability information, and uses the terminal type to select random access resources and initiate a random access attempt.
  • Mode 5 can be used for the terminal device to determine the random access resource before the initial random access attempt of any random access process, or for the terminal device to determine the random access resource before each random access attempt of any random access process .
  • way 5 may also be used in combination with the measurement result of the target cell or the serving cell.
  • the terminal device selects the random access resource using mode 5, it may further include:
  • the terminal device determines whether the measurement result of the target cell or the serving cell is greater than or equal to the fourth threshold, and if so, executes the step of selecting the random access resource by the terminal device based on Mode 5; otherwise, the terminal device selects the four-step type random access resource.
  • the terminal device may further include:
  • the terminal device determines whether the measurement result of the target cell or the serving cell is greater than or equal to the fourth threshold. If so, the terminal device selects the four-step type random access resource and initiates a random access attempt; otherwise, the terminal device selects random access based on method 5. The steps of accessing resources and initiating random access attempts.
  • the present application does not limit the method used in any combination of mode 5 and mode 1 to mode 4.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a predefined manner 6 in which the terminal device selects random access resources based on the access probability parameter.
  • the network device may configure the random access resource selection probability configuration information to the terminal device through a system broadcast message or dedicated signaling, and the random access resource selection probability configuration information may include an access probability parameter; the terminal device Which random access resource is selected is determined based on the access probability parameter and the random number generated by itself.
  • way 6 may include the following process:
  • the terminal device generates random numbers
  • the terminal device selects a two-step type random access resource; otherwise, the terminal device selects a four-step type random access resource.
  • the access probability parameter specifies that the probability that the terminal device selects the two-step random access resource to initiate a random access attempt is 0.6, which means that each time the selection process is triggered, the terminal device has a 60% probability to select the two-step random access resource to initiate a random access attempt. Random access attempt.
  • the final selection result depends on the random number generated by the terminal itself. If the value of the generated random number falls within the probability range defined by 60%, the terminal device selects two-step random access resources to initiate a random access attempt; otherwise, the terminal device selects The four-step random access resource initiates a random access attempt.
  • way 6 may include the following process:
  • the terminal device generates random numbers
  • the terminal device selects a four-step type random access resource; otherwise, the terminal device selects a two-step type random access resource.
  • the access probability parameter specifies that the probability that the terminal device selects the four-step random access resource to initiate a random access attempt is 0.3, which means that each time the selection process is triggered, the terminal device has a 30% probability to select the four-step random access resource to initiate a random access attempt. Random access attempt.
  • the final selection result depends on the random number generated by the terminal itself. If the value of the generated random number falls within the probability range defined by 30%, the terminal device selects the four-step random access resource to initiate a random access attempt; otherwise, the terminal device selects the random access resource.
  • a two-step random access resource initiates a random access attempt.
  • Mode 6 can be used for the terminal device to determine the random access resource before the initial random access attempt of any random access process, or for the terminal device to determine the random access resource before each random access attempt of any random access process .
  • each terminal device in the system randomly generates random numbers, the random numbers generated by all terminal devices will be evenly distributed; each terminal device randomly accesses resources and By selecting among the four-step random access resources, the ratio of the terminal equipment that selects the two-step random access resource and the terminal equipment that selects the four-step random access resource in the system can be consistent with the ratio specified by the access probability parameter. .
  • way 6 may also be used in combination with the measurement result of the target cell or the serving cell.
  • the terminal device selects the random access resource by applying mode 6, it may further include:
  • the terminal device determines whether the measurement result of the target cell or serving cell is greater than or equal to the fourth threshold, and if so, executes the step of selecting random access resources by the terminal device based on Mode 6; otherwise, the terminal device selects four-step type random access resources.
  • the terminal device may further include:
  • the terminal equipment determines whether the measurement result of the target cell or the serving cell is greater than or equal to the fourth threshold, and if so, the terminal equipment selects the four-step type random access resource;
  • the present application does not limit the method used in any combination of mode 6 and mode 1 to mode 5.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the cell measurement results may be cell-level or beam-level measurement results, and the measurement results may include reference signal received power (RSRP, Reference Signal Received Power). At least one of Signal Received Power), Reference Signal Received Quality (RSRQ, Reference Signal Received Quality), and Signal to Noise Ratio (SINR, Signal to Interference plus Noise Ratio).
  • RSRP Reference Signal Received Power
  • RSS Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • the terminal device can compare the measured RSRP measurement result of the target cell or serving cell with the RSRP threshold configured by the network device, and measure the RSRP of the serving cell in the target cell.
  • the terminal device selects random access resources based on the rules corresponding to the above-mentioned predefined methods (such as at least one of methods 1 to 6); otherwise, the RSRP measurement result in the target cell or serving cell
  • the terminal device selects the four-step type random access resource to initiate an initial random access attempt.
  • the terminal device selects the four-step type random access resource to initiate an initial random access attempt; otherwise, the RSRP measurement of the target cell or the serving cell
  • the terminal device selects random access resources based on a rule corresponding to the above-mentioned predefined manners (eg, at least one of manners 1 to 6).
  • the network device may notify the terminal device of the above-mentioned fourth threshold, and the terminal device receives the fourth threshold through a system broadcast message or dedicated signaling.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the network device may notify the terminal equipment which predefined manner to use to select random access resources.
  • the network device may indicate through predefined mode indication information, and the terminal device receives the predefined mode indication information through system broadcast messages or dedicated signaling, and determines the random access resource for selecting the random access resource according to the predefined mode indication information. and then select random access resources using the determined predefined method and initiate a random access attempt.
  • the above-mentioned pre-defined mode indication information may be in the form of a bit mapping mode or a bit combination value value mode.
  • the length of the pre-defined mode indication information may be 3 bits, and each bit corresponds to one pre-defined mode.
  • the value of the bit corresponding to the predefined mode in the predefined mode indication information is set to '1', and the value of the other bits is set to '0'.
  • the terminal device selects the random access resource in the manner indicated by the predefined manner indication information according to the received predefined manner indication information.
  • the terminal device can select the random access resource in the default mode according to the agreement.
  • the above examples of the meaning of the bit mapping mode can also be extended to other predefined modes, which will not be repeated here.
  • the pre-defined mode indication information adopts the bit combination value mode
  • the length of the pre-defined mode indication information can be 2 bits, and the two bit combination values have 4 possibilities, including '00', '01', '10', and '11', each of which can correspond to a predefined mode.
  • the value of the predefined mode indication information is set to the value corresponding to the predefined mode agreed in the protocol; the terminal device adopts the predefined mode according to the received predefined mode indication information.
  • the random access resource is selected according to the mode indicated by the mode indication information.
  • the terminal device can use the default mode to select the random access resource according to the agreement.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the random access resource may include at least one of the following configuration information:
  • Random access preamble resource configuration for terminal equipment to initiate random access attempts
  • the above-mentioned RO resource configuration for the terminal device to initiate a random access attempt and/or the above-mentioned random access preamble resource configuration for the terminal device to initiate a random access attempt may be configured with a synchronization signal block (SSB, Synchronization Signal Block) Associated, or configured independently of the SSB.
  • SSB Synchronization Signal Block
  • the above-mentioned time backoff parameter for controlling the behavior of the terminal device after a random access attempt fails specifies the minimum time between the failure of one random access attempt and the initiation of the next random access attempt in the same random access procedure. time interval.
  • the time backoff parameter can be used to prevent the terminal device from frequently initiating random access attempts.
  • the power ramping parameter specifies the power ramping amount information when the next random access attempt is initiated after a random access attempt fails in the same random access process.
  • the transmit power of the next random access attempt is equal to the sum of the transmit power of the previous random access attempt and the increment specified by the power ramping parameter.
  • the transmit power when the next random access attempt is initiated is equal to that of the previous random access attempt.
  • the transmit power at this time is equal to the transmit power at the previous random access attempt.
  • the above-mentioned first method is more flexible in using the power ramp parameter.
  • the terminal device can select random access resources more flexibly, and more reasonably choose between two-step random access resources and four-step random access resources , to improve the utilization of random access resources.
  • the above multiple predetermined manners can be used separately or in combination.
  • the usage scenarios of the above methods are flexible, and can be applied to the random access resource judgment of the terminal device during the initial random access attempt of any random access process, and can also be used for each random access process of the terminal device in any random access process. Random access resource judgment during a random access attempt.
  • the above method of selecting random access resources is especially suitable for the selection of random access resources by terminal equipment in a satellite network.
  • FIG. 3 is a schematic flowchart of a method 300 for selecting random access resources according to an embodiment of the present application.
  • the method may optionally be applied to FIG. 1 shows the system, but is not limited to this.
  • the method includes at least some of the following.
  • the network device sends the feeder link delay compensation amount to the terminal device through a system broadcast message or dedicated signaling, which is used for the terminal device to select random access resources.
  • the feeder link delay compensation amount sent by the network device to the terminal device can be used for the terminal device to calculate the signal propagation delay (such as RTT), and compare the RTT or feeder link delay compensation amount with the corresponding threshold value. Select the corresponding random access resource.
  • the signal propagation delay such as RTT
  • the feeder link delay compensation amount is determined by the network device according to the location of the serving satellite and the network device; or, the feeder link delay compensation amount is synchronized by the network device according to any time specified by the serving cell.
  • a reference point is determined, wherein the time synchronization reference point includes any point between the serving satellite and the network device.
  • the above method may also include:
  • the network device sends the real-time position information or ephemeris information of the serving satellite to the terminal device through a system broadcast message, so that the terminal device can select random access resources.
  • the real-time location information or ephemeris information of the serving satellite sent by the network device can be used by the terminal device to calculate the absolute distance of the service link in combination with its own geographic location information, or further use the absolute distance of the service link and the delay of the feeder link.
  • the compensation amount calculates the signal propagation delay (eg RTT), and selects the corresponding random access resource according to the comparison result of the RTT or the absolute distance of the service link and the corresponding threshold.
  • the above method may also include:
  • the network device sends the terminal type of the terminal device to the terminal device through the NAS process, which is used for the terminal device to select random access resources.
  • random access resources corresponding to different terminal types may be pre-specified.
  • the terminal device receives its own terminal type, it selects the corresponding random access resource according to the received terminal type to initiate random access. try.
  • the above method may also include:
  • the network device sends the access probability parameter to the terminal device through a system broadcast message or dedicated signaling, which is used for the terminal device to select random access resources.
  • the terminal device can select the corresponding random access resource to initiate a random access attempt according to the received access probability parameter and the random number generated by itself.
  • the specific selection method has been introduced in the above embodiments, and will not be repeated here.
  • the above method may also include:
  • the network device sends the first threshold, the second threshold, the third threshold or the fourth threshold to the terminal device through a system broadcast message or dedicated signaling, for the terminal device to select random access resources.
  • the above method may also include:
  • the network device sends the predefined mode indication information to the terminal device through a system broadcast message or dedicated signaling, which is used for the terminal device to determine the predefined mode for selecting random access resources.
  • the above process of selecting random access resources can be used by the terminal equipment to determine random access resources before an initial random access attempt of any random access process, or the above process of selecting random access resources can be used by terminals.
  • the device determines random access resources before each random access attempt in any random access process.
  • the above random access resource includes at least one of the following configuration information:
  • Random access preamble resource configuration for terminal equipment to initiate random access attempts
  • the above-mentioned RO resource configuration for the terminal device to initiate a random access attempt and/or the above-mentioned random access preamble resource configuration for the terminal device to initiate a random access attempt may be associated with the SSB configuration or be performed independently of the SSB. configuration.
  • the above-mentioned time backoff parameter for controlling the behavior of the terminal equipment after a random access attempt fails specifies the minimum time interval between the failure of a random access attempt and the initiation of the next random access attempt in the same random access process. .
  • the above-mentioned power ramping parameter specifies the power ramping amount information when the next random access attempt is initiated after a random access attempt fails in the same random access process.
  • the network device sends the feeder link delay compensation amount to the terminal device through a system broadcast message or dedicated signaling, or further sends other related information, which can be used by the terminal device to select random access resources, so as to enable the terminal device to select random access resources.
  • the terminal device can flexibly and reasonably select between two-step random access resources or four-step random access resources, thereby improving the utilization rate of random access resources.
  • FIG. 4 is a schematic structural diagram of a terminal device 400 according to an embodiment of the present application, including:
  • the selection module 410 is configured to select random access resources based on at least one predefined manner: the predefined manner includes:
  • the above-mentioned selection module 410 is used to:
  • a two-step type random access resource is selected; otherwise, a four-step type random access resource is selected.
  • the above-mentioned selection module 410 is used to:
  • a two-step type random access resource is selected; otherwise, a four-step type random access resource is selected.
  • FIG. 5 is a schematic structural diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes a selection module 410 and further includes:
  • the calculation module 520 is configured to receive the feeder link delay compensation amount through a system broadcast message or dedicated signaling, and use the feeder link delay compensation amount and the service link delay compensation amount to calculate the RTT; or, use the service link delay compensation amount to calculate the RTT; The RTT is calculated by the link delay compensation amount.
  • the above-mentioned terminal device 500 may further include:
  • the service link delay compensation amount determination module 530 is configured to use the absolute distance of the service link to determine the service link delay compensation amount.
  • the above-mentioned terminal device 500 may further include:
  • the first receiving module 540 is configured to receive the first threshold through a system broadcast message or dedicated signaling.
  • the above-mentioned selection module 410 is used to:
  • a two-step type random access resource is selected; otherwise, a four-step type random access resource is selected.
  • the above-mentioned selection module 410 is used to:
  • the two-step type random access resource is selected; otherwise, the four-step type random access resource is selected.
  • the above-mentioned terminal device 500 may further include:
  • the service link absolute distance determination module 550 is used to obtain the geographic location information of the terminal device and the real-time location information of the serving satellite; according to the geographic location information of the terminal device and the real-time location information of the serving satellite, determine the absolute distance of the service link .
  • the above-mentioned absolute distance determination module 540 of the service link acquires the real-time position information of the service satellite through a system broadcast message or ephemeris information.
  • the above-mentioned terminal device 500 may further include:
  • the second receiving module 560 is configured to receive the second threshold through a system broadcast message or dedicated signaling.
  • the above-mentioned selection module 410 is used to:
  • a two-step type random access resource is selected; otherwise, a four-step type random access resource is selected.
  • the above-mentioned selection module 410 is used to:
  • a two-step type random access resource is selected; otherwise, a four-step type random access resource is selected.
  • the above-mentioned terminal device 500 may further include:
  • the feeder link delay compensation amount receiving module 570 is configured to receive the feeder link delay compensation amount through a system broadcast message or dedicated signaling.
  • the above-mentioned feeder link delay compensation amount is determined by the network device according to the location of the serving satellite and the location of the network device; or,
  • the above-mentioned feeder link delay compensation amount is determined by the network device according to any time synchronization reference point specified by the serving cell, wherein the time synchronization reference point includes any point between the serving satellite and the network device.
  • the above-mentioned terminal device 500 may further include:
  • the third receiving module 580 is configured to receive the third threshold through a system broadcast message or dedicated signaling.
  • the above-mentioned selection module 410 is used to:
  • the above-mentioned service identification information includes at least one of the following:
  • Terminal type identifier Terminal type identifier
  • the above-mentioned selection module 410 is used to:
  • the above-mentioned terminal device 500 may further include:
  • a terminal type determination module 590 configured to determine the terminal type of the terminal device in at least one of the following ways:
  • the terminal type identifier is set when it leaves the factory;
  • the terminal type of the terminal device is determined according to the capability information of the terminal device.
  • the capability information of the above-mentioned terminal device includes at least one of the following:
  • the terminal equipment supports DC capability and/or CA capability
  • the size of the bandwidth supported by the terminal device is the size of the bandwidth supported by the terminal device
  • the number of transmitting antennas and/or the number of receiving antennas supported by the terminal device are the number of transmitting antennas and/or the number of receiving antennas supported by the terminal device;
  • the radio access technology RAT type supported by the terminal device is not limited to the radio access technology RAT type.
  • the application scenarios supported by the above terminal device include at least one of the following:
  • the above-mentioned selection module 410 is used to:
  • the above-mentioned selection module 410 is used to:
  • the above-mentioned terminal device 500 may further include:
  • the access probability parameter receiving module 591 is configured to receive the access probability parameter through a system broadcast message or dedicated signaling.
  • the above-mentioned terminal device 500 may further include:
  • the first judgment module 592 is used to judge whether the measurement result of the target cell or the serving cell is greater than or equal to the fourth threshold, and if so, select random access resources based on at least one predefined method; otherwise, select the four-step type random access resource. into resources.
  • the above-mentioned terminal device 500 may further include:
  • the second judging module 593 is configured to judge whether the measurement result of the target cell or the serving cell is greater than or equal to the fourth threshold, and if so, select the four-step type random access resource; otherwise, select random access in at least one predefined manner resource.
  • the above measurement result is a cell-level or beam-level measurement result; and the measurement result includes at least one of RSRP, RSRQ, and SINR.
  • the above-mentioned terminal device 500 may further include:
  • the fourth receiving module 594 is configured to receive the fourth threshold through a system broadcast message or dedicated signaling.
  • the above process of selecting random access resources is used for the terminal device to determine random access resources before an initial random access attempt of any random access process, or the above process of selecting random access resources is used by the terminal device when The random access resource is determined before each random access attempt in any random access process.
  • the above-mentioned terminal device 500 may further include:
  • the predefined mode determination module 595 is configured to receive the defined mode indication information through a system broadcast message or dedicated signaling, and determine a predefined mode for selecting random access resources according to the predefined mode indication information.
  • the above random access resource includes at least one of the following configuration information:
  • Random access preamble resource configuration for terminal equipment to initiate random access attempts
  • the above-mentioned RO resource configuration for the terminal device to initiate a random access attempt and/or the above-mentioned random access preamble resource configuration for the terminal device to initiate a random access attempt may be associated with the SSB configuration or be performed independently of the SSB. configuration.
  • the above-mentioned time backoff parameter for controlling the behavior of the terminal equipment after a random access attempt fails specifies the minimum time interval between the failure of a random access attempt and the initiation of the next random access attempt in the same random access process. .
  • the above-mentioned power ramping parameter specifies the power ramping amount information when the next random access attempt is initiated after a random access attempt fails in the same random access process.
  • the usage of the above-mentioned power climbing parameters includes:
  • the transmit power of the next random access attempt is equal to the sum of the transmit power of the previous random access attempt and the increment specified by the power ramping parameter.
  • the usage of the above-mentioned power climbing parameters includes:
  • the transmit power of the next random access attempt is equal to the transmit power of the previous random access attempt and the The sum of the increments specified by the power ramp parameter;
  • the transmit power when the next random access attempt is initiated is equal to the transmit power when the previous random access attempt is initiated.
  • FIG. 6 is a schematic structural diagram of a network device 600 according to an embodiment of the present application, including:
  • the feeder link delay compensation amount sending module 610 is configured to send the feeder link delay compensation amount to the terminal device through a system broadcast message or dedicated signaling, so that the terminal device can select random access resources.
  • the above-mentioned feeder link delay compensation amount is determined by the network device according to the location of the serving satellite and the location of the network device; or,
  • the above-mentioned feeder link delay compensation amount is determined by the network device according to any time synchronization reference point specified by the serving cell, wherein the time synchronization reference point includes any point between the serving satellite and the network device.
  • FIG. 7 is a schematic structural diagram of a network device 700 according to an embodiment of the present application.
  • the terminal device 700 includes a selection module feeder link delay compensation amount sending module 610, and further includes:
  • the location or ephemeris information sending module 720 is configured to send the real-time location information or ephemeris information of the serving satellite to the terminal device through a system broadcast message, so that the terminal device can select random access resources.
  • the foregoing network device 700 may further include:
  • the terminal type sending module 730 is configured to send the terminal type of the terminal device to the terminal device through the NAS process, so that the terminal device can select random access resources.
  • the foregoing network device 700 may further include:
  • the access probability parameter sending module 740 is configured to send the access probability parameter to the terminal device through a system broadcast message or dedicated signaling, so that the terminal device can select random access resources.
  • the foregoing network device 700 may further include:
  • the threshold sending module 750 is configured to send the first threshold, the second threshold, the third threshold or the fourth threshold to the terminal device through a system broadcast message or dedicated signaling, so that the terminal device can select random access resources.
  • the foregoing network device 700 may further include:
  • the predefined mode sending module 760 is configured to send the predefined mode indication information to the terminal device through a system broadcast message or dedicated signaling, so as to instruct the terminal device to determine the predefined mode for selecting random access resources.
  • the above process of selecting random access resources is used for the terminal device to determine random access resources before an initial random access attempt of any random access process, or the above process of selecting random access resources is used for the terminal.
  • the device determines random access resources before each random access attempt in any random access process.
  • the above random access resource includes at least one of the following configuration information:
  • Random access preamble resource configuration for terminal equipment to initiate random access attempts
  • the above-mentioned RO resource configuration for the terminal device to initiate a random access attempt and/or the above-mentioned random access preamble resource configuration for the terminal device to initiate a random access attempt may be associated with the SSB configuration or be performed independently of the SSB. configuration.
  • the above-mentioned time backoff parameter for controlling the behavior of the terminal equipment after a random access attempt fails specifies the minimum time interval between the failure of a random access attempt and the initiation of the next random access attempt in the same random access process. .
  • the above-mentioned power ramping parameter specifies the power ramping amount information when the next random access attempt is initiated after a random access attempt fails in the same random access process.
  • the functions described by the respective modules (submodules, units or components, etc.) in the terminal device 400 , the terminal device 500 , the network device 600 , and the network device 700 in the embodiments of the present application may be described by different modules (submodules). , unit or component, etc.), or can be realized by the same module (sub-module, unit or component, etc.), for example, the first receiving module and the second receiving module may be different modules, or the same module. , all of which can achieve their corresponding functions in the embodiments of the present application.
  • the sending module and the receiving module in the embodiments of the present application may be implemented by the transceiver of the device, and some or all of the other modules may be implemented by the processor of the device.
  • FIG. 8 is a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820 .
  • the processor 810 may call and run a computer program from the memory 820 to implement the methods in the embodiments of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated in the processor 810 .
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 800 may be the terminal device of the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 800 may be a network device in this embodiment of the present application, and the communication device 800 may implement corresponding processes implemented by the network device in each method in the embodiment of the present application, which is not repeated here for brevity.
  • FIG. 9 is a schematic structural diagram of a chip 900 according to an embodiment of the present application.
  • the chip 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 900 may further include a memory 920 .
  • the processor 910 may call and run a computer program from the memory 920 to implement the methods in the embodiments of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated in the processor 910 .
  • the chip 900 may further include an input interface 930 .
  • the processor 910 may control the input interface 930 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940 .
  • the processor 910 may control the output interface 940 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)), and the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a Solid State Disk (SSD)
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及随机接入资源的选择方法、终端设备和网络设备,其中方法包括,终端设备基于至少一种预定义方式选择随机接入资源:该预定义方式包括:基于该终端设备获取的往返时延(RTT)选择;基于服务链路绝对距离选择;基于馈电链路时延补偿量选择;基于该终端设备触发随机接入过程的业务标识信息选择;基于该终端设备的终端类型选择;基于接入概率参数选择。本申请实施例可以实现灵活地选择随机接入资源,更加合理地在两步随机接入资源与四步随机接入资源之间进行选择,提高随机接入资源的利用率。

Description

随机接入资源的选择方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及随机接入资源的选择方法、终端设备和网络设备。
背景技术
5G新空口(NR,New Radio)系统支持四步随机接入机制(4-step RACH)和两步随机接入机制(2-step RACH)。相关技术中,终端设备在发起随机接入过程之前会先选择随机接入类型,即选择采用四步随机接入机制还是两步随机接入机制;该过程基于网络配置的参考信号接收功率(RSRP,Reference Signal Received Power)阈值进行判断,当终端设备测得服务小区或者目标小区的RSRP值大于网络配置的RSRP阈值时,终端设备选择使用两步类型随机接入方式发起随机接入尝试;否则,终端设备选择使用四步类型随机接入方式发起随机接入尝试。
但是,对于卫星小区,通常卫星信号覆盖区域中的任意终端设备接收到的信号测量结果差异不大,再加上终端设备测量误差本身的影响,很难使用基于RSRP阈值的方法选择随机接入类型。因此,卫星系统需要定义新的机制用于终端设备选择随机接入资源。
发明内容
本申请实施例提供随机接入资源的选择方法、终端设备和网络设备,可以应用于卫星系统中终端设备对随机接入资源的选择过程。
本申请实施例提出一种随机接入资源的选择方法,包括:
终端设备基于至少一种预定义方式选择随机接入资源:该预定义方式包括:
基于该终端设备获取的往返时延(RTT)选择;
基于服务链路绝对距离选择;
基于馈电链路时延补偿量选择;
基于该终端设备触发随机接入过程的业务标识信息选择;
基于该终端设备的终端类型选择;
基于接入概率参数选择。
本申请实施例还提出一种随机接入资源的选择方法,包括:
网络设备通过系统广播消息或专用信令向终端设备发送馈电链路时延补偿量,用于供该终端设备选择随机接入资源。
本申请实施例还提出一种终端设备,包括:
选择模块,用于基于至少一种预定义方式选择随机接入资源:该预定义方式包括:
基于该终端设备获取的RTT选择;
基于服务链路绝对距离选择;
基于馈电链路时延补偿量选择;
基于该终端设备触发随机接入过程的业务标识信息选择;
基于该终端设备的终端类型选择;
基于接入概率参数选择。
本申请实施例提出一种网络设备,包括:馈电链路时延补偿量发送模块,用于通过系统广播消息或专用信令向终端设备发送馈电链路时延补偿量,以供该终端设备选择随机接入资源。
本申请实施例还提出一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如上述任一项所述的方法。
本申请实施例还提出一种网络设备,包括:处理器、存储器和收发器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,并控制该收发器,执行如上述任一项所述的方法。
本申请实施例还提出一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述任一项终端设备执行的方法。
本申请实施例还提出一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述任一项网络设备执行的方法。
本申请实施例还提出一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行如上述任一项终端设备执行的方法。
本申请实施例还提出一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行如上述任一项网络设备执行的方法。
本申请实施例还提出一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执 行如上述任一项终端设备执行的方法。
本申请实施例还提出一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如上述任一项网络设备执行的方法。
本申请实施例还提出一种计算机程序,该计算机程序使得计算机执行如上述任一项终端设备执行的方法。
本申请实施例还提出一种计算机程序,该计算机程序使得计算机执行如上述任一项网络设备执行的方法。
本申请实施例,通过终端设备基于至少一种预定义方式选择随机接入资源,能够实现终端设备在触发随机结果过程之前灵活地选择随机接入资源,更加合理地在两步随机接入资源与四步随机接入资源之间进行选择,提高随机接入资源的利用率。本申请实施例尤其适用于卫星系统中终端设备对随机接入资源的选择。
附图说明
图1是本申请实施例的应用场景的示意图。
图2是根据本申请实施例的一种随机接入资源的选择方法200的示意性流程图。
图3是根据本申请实施例的一种随机接入资源的选择方法300的示意性流程图。
图4是根据本申请实施例的终端设备400结构示意图。
图5是根据本申请实施例的终端设备500结构示意图。
图6是根据本申请实施例的网络设备600结构示意图。
图7是根据本申请实施例的网络设备700结构示意图。
图8是根据本申请实施例的通信设备800示意性结构图;
图9是根据本申请实施例的芯片900的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
需要说明的是,本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。同时描述的“第一”、“第二”描述的对象可以相同,也可以不同。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为 穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
四步随机接入机制(4-step RACH)是NR R15版本引入的功能,四步随机接入过程包括以下步骤:
步骤1:步骤1对应的消息也称为MSG 1,终端设备通过随机接入信道向网络设备发送随机接入前导码,该过程终端设备需要选择一个时频资源,即随机接入机会(RO,RACH Occasion),发送随机接入前导码;
步骤2:步骤2对应的消息也称为MSG 2,在正常情况下,网络设备收到终端设备发送的MSG1后需要在一定时间窗内回复终端设备MSG2,MSG2包括MSG3调度资源、网络分配给终端设备使用的临时小区无线网络临时标识(C-RNTI,Cell Radio Network Temporary Identifier)、网络估计的终端设备到网络的时间提前量、RACH失败回退时间参数等信息;
步骤3:步骤3对应的消息也称为MSG 3,主要包括终端设备自身的身份标识、接入原因等信息;
步骤4:步骤4对应的消息也称为MSG 4,主要用于网络设备告知终端设备竞争解决以及SRB1的配置信息;
在四步随机接入机制下,一次随机接入过程可能包含多次随机接入尝试。因为随机接入尝试也会有失败的情况,网络设备一般会通过配置过程告知终端设备一次随机接入过程的最大随机接入尝试次数M(M为正整数),一旦终端设备连续触发了M次随机接入尝试还未成功,终端设备会认为本次随机接入过程失败。
两步随机接入机制(2-step RACH)是NR R16版本引入的功能,两步随机接入过程包括以下步骤:
步骤1:步骤1对应的消息也称为MSG A,可以简单理解为是将四步随机接入过程中的MSG 1和MSG 3功能合并后得到MSG A再发送;
步骤2:步骤2对应的消息也称为MSG B,可以简单理解为是将四步随机接入过程中的MSG 2和MSG 4功能合并后得到MSG B再发送。
在两步随机接入机制下,网络设备也会通过配置过程告知终端设备一次随机接入过程的最大随机接入尝试次数M(M为正整数),一旦终端设备连续触发了M次随机接入尝试还未成功,终端设备会认为本次随机接入过程失败。这一点和四步随机接入机制一致,但两种机制间也存在不同点,当网络设备同时配置有两步随机接入机制和四步随机接入机制资源时,网络设备可能会向终端设备配置一个额外的阈值N,用于终端设备在N次连续两步类型的随机接入尝试失败后回退到使用四步类型的随机接入尝试,通常N为小于M的正整数。如果网络设备不配置上述阈值N,则终端设备在选择了两步类型随机接入机制后不能回退到使用四步类型随机接入机制。
网络设备同时配置了两步类型随机接入和四步类型随机接入资源以及回退阈值N时,终端设备在一次随机接入过程中可能同时涉及两次随机接入尝试和四步随机接入尝试。否则,在前述条件不满足时,终端设备在一次随机接入过程中只能使用同一种类型的随机接入机制,直到终端设备连续触发了M次相同类型的随机接入尝试还未成功,终端设备会认为本次随机接入过程失败。
相关技术中,终端设备在发起随机接入过程之前会先选择随机接入类型(两步还是四步随机接入),该过程基于网络配置的RSRP阈值判断,当终端设备测得服务小区或者目标小区RSRP值大于网络配置的RSRP阈值时,终端设备选择使用两步类型随机接入方式发起随机接入尝试;否则(当终端设备测得服务小区或者目标小区RSRP值小于或者等于网络配置的RSRP阈值时),终端设备选择使用四步类型随机接入方式发起随机接入尝试。
两步随机接入机制比四步随机接入机制节省时延,但是由于两步随机接入过程中的MSGA承载的信息量较大,在相同信道条件下,MSG A被网络解码出错的概率会比MSG 1大,因而现有NR R16标准规定,只有在目标小区的RSRP测量结果高于目标小区配置的RSRP阈值时,终端设备才能选择两步随机接入类型发起随机接入尝试;否则,终端设备只能使用四步随机接入类型发起随机接入尝试。这种方式也是为了尽可能发挥两步随机接入机制的优势。
然而,上述方式无法应用于卫星系统中。卫星可以分为同步轨道(GEO,Geostationary Earth Orbit)、中轨道(MEO,Medium Earth Orbit)和低轨道(LEO,Low Earth Orbit)。GEO覆盖直径可达数千公里(通常3颗卫星覆盖全球),相对地面静止;MEO/LEO又根据轨道高度的不同,覆盖直径从几十公里到上千公里不等。而地面小区通常覆盖直径为几百米到上千米,卫星小区的覆盖远大于地面小区。由于卫星小区的信号覆盖特点与地面小区不同,通常卫星信号覆盖区域中的任意终端设备接收到的信号测量结果差异不大,也就是说卫星覆盖区域中的远近效应没有地面小区明显。
图1是卫星小区信号覆盖示意图。图1中的卫星可以是透明转发类型卫星,此时基站位于地面站,卫星仅用于地面站信号的放大及透明转发。图1中的卫星也可能是具有基站全部功能(该场景下,卫星具有完整的通信协议栈)或者部分功能(该场景指的是CU-DU分离场景,此时CU为地面站,DU在卫星上)类型的卫星。
不论卫星属于上述何种卫星类型,由于卫星轨道距离地面较高(通常从几百公里到几万公里不等),卫星分别与图1中卫星小区覆盖区域中各个点(如点A、点B和点C)点之间的绝对距离相差无几;而卫星信号测量结果主要与卫星到终端设备的距离远近相关,因而一个卫星小区覆盖区域下的任意终端设备测得的卫星小区测量结果差异不大。再加上终端设备测量误差本身的影响,因此很难使用相关技术中基于目标小区RSRP阈值的方法选择随机接入资源的方式。
本申请实施例提出一种随机接入资源的选择方法,图2是根据本申请实施例的一种随机接入资源的选择方法200的示意性流程图,该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210:终端设备基于至少一种预定义方式选择随机接入资源:该预定义方式包括:
基于该终端设备获取的往返时延(RTT,Round-Trip Time)选择;
基于服务链路绝对距离选择;
基于馈电链路时延补偿量选择;
基于该终端设备触发随机接入过程的业务标识信息选择;
基于该终端设备的终端类型选择;
基于接入概率参数选择。
在一些实施方式中,终端设备触发随机接入过程之前,可以采用上述步骤S210选择随机接入资源。例如,终端设备选择两步类型随机接入资源发起随机接入尝试,或者选择四步类型随机接入资源发起随机接入尝试。
针对上述各种预定义方式,通过以下具体实施例进行详细介绍。
实施例一:
在本实施例中,终端设备基于信号传播时延或者信号传播距离选择随机接入资源。基于信号传播时延或者信号传播距离选择随机接入资源的预定义方式至少包括如下三种:
方式1:基于终端设备获取的往返时延(RTT,Round Trip Time)选择;
方式2:基于终端设备与服务卫星之间的服务链路绝对距离选择;
方式3:基于地面站与服务卫星之间的馈电链路时延补偿量选择。
对于透明转发类型卫星,整个Uu口链路包括两段,第一段为服务链路,指的是终端设备与服务卫星之间的链路;第二段为馈电链路,指的是地面站与服务卫星之间的链路。透明转发卫星并不具备信号修正处理能力,只能单纯放大和转发信号。
对于再生类型卫星,整个Uu口链路只有一段,即:终端设备与服务卫星之间的服务链路。再生类型卫星不仅可以放大转发信号,还能修正处理信号。
上述三种随机接入资源的选择方式中,方式1和方式2适用于所有类型卫星,方式3适用于透明转发类型卫星。以下分别详述上述三种方式。
方式1:
相关技术中,RTT时长主要被终端设备用来维护与网络设备之间的同步,同步机制对于资源调度过程至关重要。RTT值指的是终端设备与服务小区之间的信号来回传播时延值。对于透明转发类型卫星,由于网络设备通常设置在地面站,RTT值等于馈电链路时延补偿量与服务链路时延补偿量的和的二倍;对于再生类型卫星,RTT值等于服务链路时延补偿量的二倍。不论是何种类型的卫星,RTT值一般能够反映终端设备与网络设备之间的距离信息;由于无线信号随传播距离的衰减特性,传播距离信息可以很大程度上反映信号衰减预期,因此RTT值也就能够在很大程度上反映信号衰减预期。
在相同发射功率背景下,由于两步随机接入机制有效载荷较大,两步随机接入尝试被网络设备成功接收的概率要低于四步随机接入尝试,为了充分发挥两步随机接入机制优势特性,一般要求在信号衰减预期较低(也就是信号传播距离较小)时,优先使用两步随机接入机制;相反,在信号衰减预期较高(也就是信号传播距离较大)时,优先使用四步随机接入机制。
基于上述需求分析,对于方式1,本申请提出在终端设备获取的RTT小于或者等于第一阈值的情况下,终端设备选择两步类型随机接入资源;否则,该终端设备选择四步类型随机接入资源。进一步地,终端设备在选择随机接入资源之后,可以采用选定的随机接入资源发起随机接入尝试。
或者,在另一些实施方式中,终端设备可以在获取的RTT大于或者等于第一阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。进一步地,终端设备在选择随机接入资源之后,可以采用选定的随机接入资源发起随机接入尝试。
在一些实施方式中,上述第一阈值由网络设备发送至终端设备,终端设备通过系统广播消息或专用信令接收该第一阈值。
针对卫星类型为透明转发类型的应用场景,终端设备可以通过系统广播消息或专用信令接收馈电链路时延补偿量,利用该馈电链路时延补偿量和服务链路时延补偿量计算RTT。例如,将馈电链路时延补偿量与服务链路时延补偿量相加,再将相加得到的和乘以2,得到RTT。
或者,针对卫星类型为再生类型的应用场景,终端设备可以利用服务链路时延补偿量计算上述RTT。例如,RTT值等于服务链路时延补偿量的二倍。
其中,终端设备可以利用服务链路绝对距离,确定服务链路时延补偿量。例如,终端设备获取终端设备的地理位置信息和服务卫星的实时位置信息;根据该终端设备的地理位置信息和该服务卫星的实时位置信息,确定服务链路绝对距离。通常终端设备可以通过定位模块获取自身所处的地理位置信息,而服务卫星的实时位置信息可以通过小区系统广播信息或者星历信息获取,采用这种方式,终端设备可以较为方便地计算出服务链路绝对距离。利用服务链路绝对距离以及信号的传输速度,可以确定出服务链路时延补偿量;例如,采用服务链路绝对距离除以信号的传输速度,可以得到服务链路时延补偿量。
本申请实施方式中的上述星历信息与卫星通信领域常用的卫星轨道运行数据和星历图(Ephemeris)的含义类似。星历图的含义就是告知使用方在某一定义的时间起点时卫星的初始位置状态矢量信息,通常时间起点信息是公共的,不用单独与某一颗卫星绑定,剩下需要6个参数表征一个卫星轨道运行数据,其中卫星的绝对空间位置矢量需要三个参数表示,卫星的空间速度矢量需要三个参数表示。那么获得了一个卫星的轨道运行数据后,理论上讲,该卫星在未来任何时间点的空间位置信息都是可精准计算并预测的。
如上所述,计算RTT值时,除了需要服务链路时延补偿量以外,还需要馈电链路时延补偿量。馈电链路的距离或馈电链路时延补偿量的计算往往比较困难,出于安全因素考虑,地面信关站(网络设备通常设置在地面信关站中)的具体地理位置信息不会主动提供给终端设备。因此,本申请实施方式可以由终端设备通过系统广播消息或专用信令接收网络设备发送的馈电链路时延补偿量。
需要强调的是,本申请实施方式提出的馈电链路时延补偿量可以由网络设备根据服务卫星的位置和网络设备的位置确定;或者,馈电链路时延补偿量可以由网络设备根据服务小区规定的任意时间同步参考点确定,其中,该时间同步参考点包括服务卫星与网络设备之间的任意一点。可以看出,本申请实施例提出了更为灵活的馈电链路时延补偿量的确定方式,后一种方式确定出的馈电链路时延补偿量的数值小于或等于前一种方式确定出的馈电链路时延补偿量的数值,相应地,采用后一种方式确定出的馈电链路时延补偿量计算的RTT值也小于或等于采用前一种方式确定出的馈电链路时延补偿量计算的RTT值。终端设备对此不必感知,只需要从网络设备接收馈电链路时延补偿量,并利用该馈电链路时延补偿量计算RTT值,根据RTT值选择随机接入资源即可。
方式2:
方式2也适用于所有类型卫星,与方式1的不同点在于,方式2仅通过获取终端设备与服务卫星之间的服务链路信号传播距离信息判断使用何种随机接入类型,相比方式1执行起来更容易。
对于透明转发类型卫星,整个Uu口链路包括终端设备与服务卫星之间的服务链路、以及信关站与服务卫星之间的馈电链路。对于再生类型卫星,整个Uu口链路只有一段,即终端设备与服务卫星之间的服务链路。无论哪种类型的卫星,服务链路绝对距离都能够一定程度上反映卫星网络的信号传播距离;由于无线信号随传播距离的衰减特性,信号传播距离可以很大程度上反映信号衰减预期,因此服务链路绝对距离也就能够在很大程度上反映信号衰减预期。
在相同发射功率背景下,由于两步随机接入机制有效载荷较大,两步随机接入尝试被网络设备成功接收的概率要低于四步随机接入尝试,为了充分发挥两步随机接入机制优势特性,一般要求在信号衰减预期较低(也就是信号传播距离较小)时,优先使用两步随机接入机制;相反,在信号衰减预期较高(也就是信号传播距离较大)时,优先使用四步随机接入机制。
基于上述分析,对于方式2,本申请提出在服务链路绝对距离小于或者等于第二阈值的情况下,终端设备选择两步类型随机接入资源;否则,终端设备选择四步类型随机接入资源。进一步地,终端设备在选择随机接入资源之后,可以采用选定的随机接入资源发起随机接入尝试。
或者,在另一些实施方式中,终端设备可以在服务链路绝对距离大于或者等于第二阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。进一步地,终端设备在选择随机接入资源之后,可以采用选定的随机接入资源发起随机接入尝试。
在一些实施方式中,上述第二阈值由网络设备发送至终端设备,终端设备通过系统广播消息或专用信令接收该第二阈值。
终端设备确定服务链路绝对距离的方法与上述方式1中的对应方法相同,在此不再赘述。
方式3:
方式3仅适用于透明转发类型卫星。方式3依赖于系统广播消息或者专用信令,因为终端设备通常不能直接计算获取地面站与服务卫星之间的馈电链路时延补偿量,网络设备通常通过系统广播消息或者专用信令将地面站与服务卫星之间的馈电链路时延补偿量告知终端设备。
对于透明转发类型卫星,整个Uu口链路包括终端设备与服务卫星之间的服务链路、以及信关站与服务卫星之间的馈电链路。对于再生类型卫星,整个Uu口链路只有一段,即终端设备与服务卫星之间的服务链路。无论哪种类型的卫星,馈电链路时延补偿量都能够一定程度上反映卫星网络的信号传播传播时延;由于无线信号随传播时延的衰减特性,信号传播时延可以很大程度上反映信号衰减预期,因此馈电链路时延补偿量也就能够在很大程度上反映信号衰减预期。
在相同发射功率背景下,由于两步随机接入机制有效载荷较大,两步随机接入尝试被网络设备成功接收的概率要低于四步随机接入尝试,为了充分发挥两步随机接入机制优势特性,一般要求在信号衰减预期较低(也就是信号传播时延较小)时,优先使用两步随机接入机制;相反,在信号衰减预期较高(也就是信号传播时延较大)时,优先使用四步随机接入机制。
基于上述分析,对于方式3,本申请提出在馈电链路时延补偿量小于或者等于第三阈值的情况下,终端设备选择两步类型随机接入资源;否则,终端设备选择四步类型随机接入资源。进一步地,终端设备在选择随机接入资源之后,可以采用选定的随机接入资源发起随机接入尝试。
或者,在另一些实施方式中,终端设备可以在馈电链路时延补偿量大于或者等于第三阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。进一步地,终端设备在选择随机接入资源之后,可以采用选定的随机接入资源发起随机接入尝试。
在一些实施方式中,上述第三阈值由网络设备发送至终端设备,终端设备通过系统广播消息或专用信令接收该第三阈值。
与上述方式1中的介绍相同,本申请实施方式提出更为灵活的馈电链路时延补偿量的确定方式,本申请提出的馈电链路时延补偿量可以由网络设备根据服务卫星的位置和网络设备的位置确定;或者,馈电链路时延补偿量可以由网络设备根据服务小区规定的任意时间同步参考点确定,其中,该时间同步参考点包括服务卫星与网络设备之间的任意一点。终端设备对此不必感知,只需要从网络设备接收馈电链路时延补偿量,并据此选择随机接入资源即可。
上述方式1至方式3中的三种随机接入资源的选择方式可以独立使用或者组合使用,本申请对此不做限制。
此外,上述方式1至方式3中的三种随机接入资源的选择方式可以用于终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者用于终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
在一些实施方式中,上述方式1至方式3中的三种随机接入资源的选择方式还可以与目标小区或者服务小区的测量结果结合使用。
例如,在终端设备应用上述预定义方式(如方式1至方式3)之前还可以包括:
终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则执行终端设备基于至少一种预定义方式(如方式1至方式3)选择随机接入资源的步骤;否则,终端设备选择四步类型随机接入资源。
或者,在终端设备应用上述预定义方式(如方式1至方式3)之前还可以包括:
终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则终端设备选择四步类型随机接入资源;否则,执行终端设备基于至少一种预定义方式选择随机接入资源的步骤。
实施例二:
在本实施例中,提出预定义方式4,终端设备基于触发随机接入过程的业务标识信息选择随机接入资源。
在一些实施方式中,该业务标识信息包括如下标识中的至少一项:
触发终端发起随机接入过程的接入分类(AC,Access Category)标识;
触发终端发起随机接入过程的接入原因值(Cause Value)标识;
触发终端发起随机接入过程的终端类型标识(UE Identity)标识;
上述至少一种业务标识信息是协议预定义的,现有协议中定义了64种AC,分别编号0~63。协议中定义了每一个AC值与一个或者一组业务之间的对应关系;而每一个AC又与一个Cause Value标识对应,协议会规定二者之间的映射关系。协议也规定了若干种终端类型标识,每当非接入层(NAS,Non-Access Stratum)或者接入层(AS,Access Stratum)触发一项业务时,AS就会从NAS或者AS自身获取与该业务相关的AC、Cause Value以及UE Identity信息,基于这些信息进行接入控制。
基于上述技术,本申请实施方式可以预先规定预定义标识,如规定预定的AC、Cause Value或者UE Identity,当该预定义标识关联的业务被触发时,终端设备选择两步类型随机接入资源发起随机接入尝试;否则,终端设备选择四步类型随机接入资源发起随机接入尝试。
方式4可以用于终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者用于终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
通过这种方式,终端设备在触发随机接入过程时,获取触发该随机接入过程的业务标识信息,并根据该业务标识信息选择对应的随机接入资源,从而灵活地在两步类型随机接入资源和四步类型随机接入资源之间进行选择,提高随机接入资源利用率。
在一些实施方式中,方式4还可以与目标小区或者服务小区的测量结果结合使用。
例如,在终端设备应用方式4选择随机接入资源之前还可以包括:
终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则执行终端设备基于方式4选择随机接入资源的步骤;否则,终端设备选择四步类型随机接入资源。
或者,在终端设备应用方式4选择随机接入资源之前还可以包括:
终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则终端设备选择四步类型随机接入资源;否则,执行终端设备基于方式4选择随机接入资源的步骤。
可选的,本申请并不限制方式4与方式1~方式3任意组合使用的方法。
实施例三:
在本实施例中,提出预定义方式5,终端设备基于自身终端类型选择随机接入资源,包括以下过程:
终端设备确定终端设备的终端类型;
在终端设备的终端类型为预设类型的情况下,终端设备选择两步类型随机接入资源;否则,终端设备选择四步类型随机接入资源。
本申请实施方式可以预先规定上述预设类型。终端设备确定自身的终端类型后,判断是否属于该预设类型,如果属于,则选择两步类型随机接入资源发起随机接入尝试;否则,选择四步类型随机接入资源发起随机接入尝试。
在一些实施方式中,终端设备可以采用以下至少一种方式确定终端设备的终端类型:
获取预先定义的终端设备的终端类型,比如:终端类型标识出厂就被设置好;
通过NAS过程获取终端设备的终端类型;
根据终端设备的能力信息确定终端设备的终端类型。
协议可以直接规定若干终端的终端类型,终端类型的划分可以考虑终端支持的多种能力。在划分终端类型时通常可以考虑终端设备的如下至少一个维度的能力信息:
1)终端设备支持的最大发射功率等级;
2)终端支持设备的应用场景,比如卫星通信场景、地面通信场景和时延要求敏感场景;
3)终端设备支持的双链接(DC,Dual Connectivity)/载波聚合(CA,Carrier Aggregation)能力;
4)终端设备支持的带宽组合能力;
5)终端设备支持的带宽大小;
6)终端设备是否在自身签约的运营商网络中接受服务;
7)终端设备支持的发送天线个数和/或接收天线个数;
8)终端设备支持的无线接入技术RAT类型。
在一种分类规则下,仅按照终端设备支持的发送天线个数和/或接收天线个数划分若干终端类型。例如:有一个发射天线和一个接收天线的终端设备的终端类型为类型1;有一个发射天线和两个接收天线的终端设备的终端类型为类型2;有一个发射天线和四个及以上接收天线的终端设备的终端类型为类型3;有两个或两个以上发射天线的终端设备的终端类型为类型4。
在另一种分类规则下,可以同时考虑两种或者两种以上维度进行终端类型的分划分。例如:支持最大发射功率为P1且支持最小带宽为B1的终端设备的终端类型为类型1,支持最大发射功率为P2且支持最小带宽为B2的终端设备的终端类型为类型2。
其他多种维度对终端类型进行划分的逻辑与上述举例类似,在此不再赘述。
按照上述确定终端类型的方式,可以预先根据终端设备的能力信息预先定义终端设备的终端类型,并将该终端类型保存在终端设备中;终端设备在进行随机接入时,利用预先保存的终端类型选择随机接入资源并发起随机接入尝试。
或者,由网络设备根据终端设备的能力信息和/或网络设备本地策略信息确定该终端设备的终端类型,终端设备通过NAS过程从网络设备获取自身的终端类型,并利用该终端类型选择随机接入资源并发起随机接入尝试。
或者,终端设备根据自身的能力信息确定自身的终端类型,并利用该终端类型选择随机接入资源并发起随机接入尝试。
方式5可以用于终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者用于终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
在一些实施方式中,方式5还可以与目标小区或者服务小区的测量结果结合使用。
例如,在终端设备应用方式5选择随机接入资源之前还可以包括:
终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则执行终端设备基于方式5选择随机接入资源的步骤;否则,终端设备选择四步类型随机接入资源。
或者,在终端设备应用方式5选择随机接入资源之前还可以包括:
终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则终端设备选择四步类型随机接入资源并发起随机接入尝试;否则,执行终端设备基于方式5选择随机接入资源并发起随机接入尝试的步骤。
可选的,本申请并不限制方式5与方式1~方式4任意组合使用的方法。
实施例四:
在本实施例中,提出预定义方式6,终端设备基于接入概率参数选择随机接入资源。在本实施例中,网络设备可以通过系统广播消息或专用信令将随机接入资源选择概率配置信息配置给终端设备,该随机接入资源选择概率配置信息中可以包括接入概率参数;终端设备基于该接入概率参数以及自身产生的随机数决定选择哪种随机接入资源。
在一些实施方式中,方式6可以包括以下过程:
终端设备生成随机数;
在随机数属于该接入概率参数规定的数值范围内时,终端设备选择两步类型随机接入资源;否则,终端设备选择四步类型随机接入资源。
例如,接入概率参数规定终端设备选择两步随机接入资源发起随机接入尝试的概率为0.6,则表示每一次选择过程触发时,终端设备有60%的概率选择两步随机接入资源发起随机接入尝试。最终选择的结果取决于终端自身产生的随机数,如果产生的随机数数值落在60%定义的概率范围内,则终端设备选择两步随机接入资源发起随机接入尝试;否则,终端设备选择四步随机接入资源发起随机接入尝试。
或者,方式6可以包括以下过程:
终端设备生成随机数;
在随机数属于该接入概率参数规定的数值范围内时,终端设备选择四步类型随机接入资源;否则,终端设备选择两步类型随机接入资源。
例如,接入概率参数规定终端设备选择四步随机接入资源发起随机接入尝试的概率为0.3,则表示 每一次选择过程触发时,终端设备有30%的概率选择四步随机接入资源发起随机接入尝试。最终选择的结果取决于终端自身产生的随机数,如果产生的随机数数值落在30%定义的概率范围内,则终端设备选择四步随机接入资源发起随机接入尝试;否则,终端设备选择两步随机接入资源发起随机接入尝试。
方式6可以用于终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者用于终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
由于系统中各个终端设备随机生成随机数,因此所有终端设备生成的随机数将均匀分布;每个终端设备根据接收到的接入概率参数以及自身生成的随机数在两步类型随机接入资源和四步类型随机接入资源间进行选择,能够实现系统中选择两步类型随机接入资源的终端设备与选择四步类型随机接入资源的终端设备的比例与接入概率参数所规定的比例一致。
在一些实施方式中,方式6还可以与目标小区或者服务小区的测量结果结合使用。
例如,在终端设备应用方式6选择随机接入资源之前还可以包括:
终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则执行终端设备基于方式6选择随机接入资源的步骤;否则,终端设备选择四步类型随机接入资源。
或者,在终端设备应用方式6选择随机接入资源之前还可以包括:
终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则终端设备选择四步类型随机接入资源;否则,执行终端设备基于方式6选择随机接入资源的步骤。
可选的,本申请并不限制方式6与方式1~方式5任意组合使用的方法。
实施例五:
在上述方式1至方式6结合目标小区或服务小区的测量结果进行使用时,该小区测量结果可以为小区级或波束级的测量结果,并且该述测量结果可以包括参考信号接收功率(RSRP,Reference Signal Received Power)、参考信号接收质量(RSRQ,Reference Signal Received Quality)和信噪比(SINR,Signal to Interference plus Noise Ratio)中的至少一项。
例如:网络设备配置的第四阈值是基于RSRP的阈值时,终端设备可以将测量到的目标小区或服务小区的RSRP测量结果与网络设备配置的RSRP阈值进行比较,在目标小区服务小区的RSRP测量结果高于该第四阈值时,终端设备基于上述预定义方式(如方式1至方式6中的至少一种)对应的规则选择随机接入资源;否则,在目标小区或服务小区的RSRP测量结果低于或者等于该第四阈值时,终端设备选择四步类型随机接入资源发起初始随机接入尝试。或者,又如,在目标小区服务小区的RSRP测量结果高于该第四阈值时,终端设备选择四步类型随机接入资源发起初始随机接入尝试;否则,在目标小区或服务小区的RSRP测量结果低于或者等于该第四阈值时,终端设备基于上述预定义方式(如方式1至方式6中的至少一种)对应的规则选择随机接入资源。
在一些实施方式中,网络设备可以将上述第四阈值通知终端设备,终端设备通过系统广播消息或专用信令接收该第四阈值。
实施例六:
当存在上述至少两种预定义方式时,网络设备可以通知终端设备采用何种预定义方式进行随机接入资源的选择。在一些实施方式中,网络设备可以通过预定义方式指示信息进行指示,终端设备通过系统广播消息或专用信令接收预定义方式指示信息,根据该预定义方式指示信息确定用于选择随机接入资源的预定义方式,之后采用确定出的预定义方式选择随机接入资源并发起随机接入尝试。
上述预定义方式指示信息可以采用比特映射方式或者比特组合取值方式等形式。
当预定义方式指示信息采用比特映射方式时,例如,如果定义了三种预定义方式,预定义方式指示信息的长度可以为3比特,每个比特分别对应一种预定义方式。当网络设备准备激活其中一种预定义方式时,将预定义方式指示信息中对应该预定义方式的比特取值置为‘1’,将其他比特取值置为‘0’。终端设备根据接收到的预定义方式指示信息,采用预定义方式指示信息所指示的方式选择随机接入资源。当预定义方式指示信息不出现时,终端设备可以根据协议约定,使用默认的方式选择随机接入资源。上述比特映射方式含义的举例也可以扩展到其他数量的预定义方式,在此不再赘述。
当预定义方式指示信息采用比特组合取值方式时,例如,如果定义了四种预定义方式,预定义方式指示信息的长度可以为2比特,两个比特组合取值有4种可能性,包括‘00’、‘01’、‘10’以及‘11’,每一种取值可以对应一种预定义方式。当网络设备准备激活其中一种预定义方式时,将预定义方式指示信息的取值设置为协议约定的该预定义方式对应的数值;终端设备根据接收到的预定义方式指示信息,采用预定义方式指示信息所指示的方式选择随机接入资源。当预定义方式指示信息不出现时,终端设备可以根据协议约定使用默认的方式选择随机接入资源。上述比特组合取值方式含义的举例也可以扩展到其他数量的预定义方式,这里不再赘述。
实施例七:
在上述实施方式中,随机接入资源可以包括以下配置信息中的至少一项:
用于终端设备发起随机接入尝试的RO资源配置;
用于终端设备发起随机接入尝试的随机接入前导码资源配置;
用于控制终端设备随机接入尝试失败后行为的时间回退参数和功率爬升参数。
其中,上述用于终端设备发起随机接入尝试的RO资源配置和/或上述用于终端设备发起随机接入尝试的随机接入前导码资源配置可以与同步信号块(SSB,Synchronization Signal Block)配置进行关联、或者独立于SSB进行配置。
在一些实施方式中,上述用于控制终端设备随机接入尝试失败后行为的时间回退参数规定同一次随机接入过程中一次随机接入尝试失败到下一次随机接入尝试发起之间的最小时间间隔。时间回退参数可以用于阻止终端设备频繁发起随机接入尝试。
在一些实施方式中,功率爬升参数规定同一次随机接入过程中,在一次随机接入尝试失败后,发起下一次随机接入尝试时的功率增长量信息。
功率爬升参数的具体使用方式至少可以有以下两种:
第一种,在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率与功率爬升参数规定的增量之和。
这种方式无需判断前后两次选择发起随机接入尝试的SSB索引(SSB index)是否改变,即无论是否改变,后一次总是在前面一次随机接入发射功率的基础上增加功率爬升参数规定的增量。
第二种,在前后两次选择发起随机接入尝试的SSB索引不同的情况下,在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率与功率爬升参数规定的增量之和;否则,在前后两次选择发起随机接入尝试的SSB索引相同的情况下,在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率。
这种方式需要判断前后两次选择发起随机接入尝试的SSB索引是否改变;只有在改变时,后一次才在前面一次随机接入发射功率基础上增加功率爬升参数规定的增量。
相较第二种方式,上述第一种方式对功率爬升参数的使用方式更为灵活。
以上介绍了多种选择随机接入资源的方式,采用上述方式,终端设备可以更加灵活地选择随机接入资源,更加合理地在两步随机接入资源与四步随机接入资源之间进行选择,提高随机接入资源的利用率。上述多种预定方式可以分别使用、或者结合使用。并且,上述方式的使用场景灵活,既可以应用于终端设备在任意随机接入过程的初始随机接入尝试时的随机接入资源判断,也可以用于终端设备在任意随机接入过程中的每一次随机接入尝试时的随机接入资源判断。上述选择随机接入资源的方式尤其适用于卫星网络中终端设备对随机接入资源的选择。
本申请实施例还提出一种随机接入资源的选择方法,图3是根据本申请实施例的一种随机接入资源的选择方法300的示意性流程图,该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S310;网络设备通过系统广播消息或专用信令向终端设备发送馈电链路时延补偿量,用于供该终端设备选择随机接入资源。
网络设备向终端设备发送的馈电链路时延补偿量,可以用于供终端设备计算信号传播时延(如RTT),并根据RTT或馈电链路时延补偿量与相应阈值的比较结果选择对应的随机接入资源。
可选地,上述馈电链路时延补偿量由网络设备根据服务卫星的位置和该网络设备的位置确定;或者,馈电链路时延补偿量由网络设备根据服务小区规定的任意时间同步参考点确定,其中,该时间同步参考点包括服务卫星与网络设备之间的任意一点。这种馈电链路时延补偿量的确定方式更为灵活,并且终端设备对此无需感知,只需要采用网络设备通过系统广播消息或专用信令发送的馈电链路时延补偿量选择随机接入资源并发起随机接入尝试;或者只需要采用网络设备发送的馈电链路时延补偿量计算RTT,并采用该RTT值选择随机接入资源并发起随机接入尝试。
可选地,上述方法还可以包括:
网络设备通过系统广播消息向终端设备发送服务卫星的实时位置信息或者星历信息,用于供该终端设备选择随机接入资源。
网络设备向发送的服务卫星的实时位置信息或者星历信息,可以用于供终端设备结合自身的地理位置信息计算服务链路绝对距离,或者进一步采用服务链路绝对距离和馈电链路时延补偿量计算信号传播时延(如RTT),并根据RTT或服务链路绝对距离与相应阈值的比较结果选择对应的随机接入资源。
可选地,上述方法还可以包括:
网络设备通过NAS过程向终端设备发送终端设备的终端类型,用于供该终端设备选择随机接入资源。
在一些实施方式中,可以预先规定不同的终端类型对应的随机接入资源,终端设备在接收到自身的终端类型时,根据接收到的自身的终端类型选择对应的随机接入资源发起随机接入尝试。
可选地,上述方法还可以包括:
网络设备通过系统广播消息或专用信令向终端设备发送接入概率参数,用于供该终端设备选择随机接入资源。
终端设备可以根据收到的接入概率参数,结合自身生成的随机数,选择对应的随机接入资源发起随机接入尝试。具体的选择方式在上述实施例中已有介绍,在此不再赘述。
可选地,上述方法还可以包括:
网络设备通过系统广播消息或专用信令向终端设备发送第一阈值、第二阈值、第三阈值或第四阈值,用于供终端设备选择随机接入资源。
上述第一阈值、第二阈值、第三阈值及第四阈值的使用方式在上述实施例中已有介绍,在此不再赘述。
可选地,上述方法还可以包括:
网络设备通过系统广播消息或专用信令向终端设备发送预定义方式指示信息,用于供终端设备确定选择随机接入资源的预定义方式。
可选地,上述选择随机接入资源的过程用于可以终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者,上述选择随机接入资源的过程可以用于终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
可选地,上述随机接入资源包括以下配置信息中的至少一项:
用于终端设备发起随机接入尝试的RO资源配置;
用于终端设备发起随机接入尝试的随机接入前导码资源配置;
用于控制终端设备随机接入尝试失败后行为的时间回退参数和功率爬升参数。
可选地,上述用于终端设备发起随机接入尝试的RO资源配置和/或上述用于终端设备发起随机接入尝试的随机接入前导码资源配置可以与SSB配置进行关联或者独立于SSB进行配置。
可选地,上述用于控制终端设备随机接入尝试失败后行为的时间回退参数规定同一次随机接入过程中一次随机接入尝试失败到下一次随机接入尝试发起之间的最小时间间隔。
可选地,上述功率爬升参数规定同一次随机接入过程中,在一次随机接入尝试失败后,发起下一次随机接入尝试时的功率增长量信息。
以上通过多个实施例从不同角度描述了本申请实施例的具体设置和实现方式。利用上述至少一个实施例,网络设备通过系统广播消息或专用信令向终端设备发送馈电链路时延补偿量,或进一步发送其他相关信息,可以供该终端设备选择随机接入资源,以使终端设备能够灵活合理在两步随机接入资源或四步随机接入资源之间进行选择,从而提高随机接入资源的利用率。
与上述至少一个实施例的处理方法相对应地,本申请实施例还提供了一种终端设备,图4是根据本申请实施例的终端设备400结构示意图,包括:
选择模块410,用于基于至少一种预定义方式选择随机接入资源:该预定义方式包括:
基于该终端设备获取的RTT选择;
基于服务链路绝对距离选择;
基于馈电链路时延补偿量选择;
基于该终端设备触发随机接入过程的业务标识信息选择;
基于该终端设备的终端类型选择;
基于接入概率参数选择。
可选地,上述选择模块410用于,
在终端设备获取的RTT小于或者等于第一阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
可选地,上述选择模块410用于,
在终端设备获取的RTT大于或者等于第一阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
本申请实施例还提供了一种终端设备,图5是根据本申请实施例的终端设备500结构示意图,该终端设备500包括选择模块410,还包括:
计算模块520,用于通过系统广播消息或专用信令接收馈电链路时延补偿量,利用该馈电链路时延补偿量和服务链路时延补偿量计算该RTT;或者,利用服务链路时延补偿量计算该RTT。
如图5所示,可选地,上述终端设备500还可以包括:
服务链路时延补偿量确定模块530,用于利用服务链路绝对距离,确定该服务链路时延补偿量。
如图5所示,可选地,上述终端设备500还可以包括:
第一接收模块540,用于通过系统广播消息或专用信令接收该第一阈值。
可选地,上述选择模块410用于,
在该服务链路绝对距离小于或者等于第二阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
可选地,上述选择模块410用于,
在该服务链路绝对距离大于或者等于第二阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
如图5所示,可选地,上述终端设备500还可以包括:
服务链路绝对距离确定模块550,用于获取终端设备的地理位置信息和服务卫星的实时位置信息;根据该终端设备的地理位置信息和该服务卫星的实时位置信息,确定该服务链路绝对距离。
可选地,上述服务链路绝对距离确定模块540通过系统广播消息或星历信息,获取服务卫星的实时位置信息。
如图5所示,可选地,上述终端设备500还可以包括:
第二接收模块560,用于通过系统广播消息或专用信令接收该第二阈值。
可选地,上述选择模块410用于,
在该馈电链路时延补偿量小于或者等于第三阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
可选地,上述选择模块410用于,
在该馈电链路时延补偿量大于或者等于第三阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
如图5所示,可选地,上述终端设备500还可以包括:
馈电链路时延补偿量接收模块570,用于通过系统广播消息或专用信令接收上述馈电链路时延补偿量。
可选地,上述馈电链路时延补偿量由网络设备根据服务卫星的位置和该网络设备的位置确定;或者,
上述馈电链路时延补偿量由网络设备根据服务小区规定的任意时间同步参考点确定,其中,该时间同步参考点包括该服务卫星与该网络设备之间的任意一点。
如图5所示,可选地,上述终端设备500还可以包括:
第三接收模块580,用于通过系统广播消息或专用信令接收该第三阈值。
可选地,上述选择模块410用于,
获取触发随机接入过程的业务标识信息,在该业务标识信息为预定义标识的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
可选地,上述业务标识信息包括以下至少一项:
接入分类(AC)标识;
接入原因值标识;
终端类型标识。
可选地,上述选择模块410用于,
确定该终端设备的终端类型;在该终端设备的终端类型为预设类型的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
如图5所示,可选地,上述终端设备500还可以包括:
终端类型确定模块590,用于采用以下至少一种方式确定该终端设备的终端类型:
获取预先定义的该终端设备的终端类型,比如:终端类型标识出厂就被设置好;
通过NAS过程获取该终端设备的终端类型;
根据该终端设备的能力信息确定该终端设备的终端类型。
可选地,上述终端设备的能力信息包括以下至少一项:
该终端设备支持的最大发射功率等级;
该终端设备支持的应用场景;
该终端设备支持DC能力和/或CA能力;
该终端设备支持的带宽组合能力;
该终端设备支持的带宽大小;
该终端设备是否在自身签约的运营商网络中接受服务;
该终端设备支持的发送天线个数和/或接收天线个数;
该终端设备支持的无线接入技术RAT类型。
可选地,上述终端设备支持的应用场景包括以下至少一项:
卫星通信场景;
地面通信场景;
时延要求敏感场景。
可选地,上述选择模块410用于,
生成随机数;在该随机数属于该接入概率参数规定的数值范围内时,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
可选地,上述选择模块410用于,
生成随机数;在该随机数属于该接入概率参数规定的数值范围内时,选择四步类型随机接入资源;否则,选择两步类型随机接入资源。
如图5所示,可选地,上述终端设备500还可以包括:
接入概率参数接收模块591,用于通过系统广播消息或专用信令接收该接入概率参数。
如图5所示,可选地,上述终端设备500还可以包括:
第一判断模块592,用于判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则基于至少一种预定义方式选择随机接入资源;否则,选择四步类型随机接入资源。
如图5所示,可选地,上述终端设备500还可以包括:
第二判断模块593,用于判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则选择四步类型随机接入资源;否则,至少一种预定义方式选择随机接入资源。
可选地,上述测量结果为小区级或波束级的测量结果;并且,该测量结果包括RSRP、RSRQ和SINR中的至少一项。
如图5所示,可选地,上述终端设备500还可以包括:
第四接收模块594,用于通过系统广播消息或专用信令接收该第四阈值。
可选地,上述选择随机接入资源的过程用于终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者,上述选择随机接入资源的过程用于终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
如图5所示,可选地,上述终端设备500还可以包括:
预定义方式确定模块595,用于通过系统广播消息或专用信令接收该义方式指示信息,根据该预定义方式指示信息确定用于选择随机接入资源的预定义方式。
可选地,上述随机接入资源包括以下配置信息中的至少一项:
用于终端设备发起随机接入尝试的RO资源配置;
用于终端设备发起随机接入尝试的随机接入前导码资源配置;
用于控制终端设备随机接入尝试失败后行为的时间回退参数和功率爬升参数。
可选地,上述用于终端设备发起随机接入尝试的RO资源配置和/或上述用于终端设备发起随机接入尝试的随机接入前导码资源配置可以与SSB配置进行关联或者独立于SSB进行配置。
可选地,上述用于控制终端设备随机接入尝试失败后行为的时间回退参数规定同一次随机接入过程中一次随机接入尝试失败到下一次随机接入尝试发起之间的最小时间间隔。
可选地,上述功率爬升参数规定同一次随机接入过程中,在一次随机接入尝试失败后,发起下一次随机接入尝试时的功率增长量信息。
可选地,上述功率爬升参数的使用方式包括:
在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率与该功率爬升参数规定的增量之和。
可选地,上述功率爬升参数的使用方式包括:
在前后两次选择发起随机接入尝试的SSB索引不同的情况下,在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率与该功率爬升参数规定的增量之和;
在前后两次选择发起随机接入尝试的SSB索引相同的情况下,在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率。
应理解,根据本申请实施例的终端设备中的模块的上述及其他操作和/或功能分别为了实现图2的方法200中的终端设备的相应流程,为了简洁,在此不再赘述。
本申请实施例还提出一种网络设备,图6是根据本申请实施例的网络设备600结构示意图,包括:
馈电链路时延补偿量发送模块610,用于通过系统广播消息或专用信令向终端设备发送馈电链路时延补偿量,以供该终端设备选择随机接入资源。
可选地,上述馈电链路时延补偿量由网络设备根据服务卫星的位置和该网络设备的位置确定;或者,
上述馈电链路时延补偿量由网络设备根据服务小区规定的任意时间同步参考点确定,其中,该时间同步参考点包括该服务卫星与该网络设备之间的任意一点。
本申请实施例还提供了一种网络设备,图7是根据本申请实施例的网络设备700结构示意图,该终端设700包括选择模块馈电链路时延补偿量发送模块610,还包括:
位置或星历信息发送模块720,用于通过系统广播消息向终端设备发送服务卫星的实时位置信息或者星历信息,以供该终端设备选择随机接入资源。
如图7所示,可选地,上述网络设备700还可以包括:
终端类型发送模块730,用于通过NAS过程向终端设备发送该终端设备的终端类型,用于供该终端设备选择随机接入资源。
如图7所示,可选地,上述网络设备700还可以包括:
接入概率参数发送模块740,用于通过系统广播消息或专用信令向终端设备发送接入概率参数,以供该终端设备选择随机接入资源。
如图7所示,可选地,上述网络设备700还可以包括:
阈值发送模块750,用于通过系统广播消息或专用信令向终端设备发送第一阈值、第二阈值、第三阈值或第四阈值,以供该终端设备选择随机接入资源。
如图7所示,可选地,上述网络设备700还可以包括:
预定义方式发送模块760,用于通过系统广播消息或专用信令向终端设备发送预定义方式指示信息,以指示该终端设备确定选择随机接入资源的预定义方式。
可选地,上述选择随机接入资源的过程用于该终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者,上述选择随机接入资源的过程用于该终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
可选地,上述随机接入资源包括以下配置信息中的至少一项:
用于终端设备发起随机接入尝试的RO资源配置;
用于终端设备发起随机接入尝试的随机接入前导码资源配置;
用于控制终端设备随机接入尝试失败后行为的时间回退参数和功率爬升参数。
可选地,上述用于终端设备发起随机接入尝试的RO资源配置和/或上述用于终端设备发起随机接入尝试的随机接入前导码资源配置可以与SSB配置进行关联或者独立于SSB进行配置。
可选地,上述用于控制终端设备随机接入尝试失败后行为的时间回退参数规定同一次随机接入过程中一次随机接入尝试失败到下一次随机接入尝试发起之间的最小时间间隔。
可选地,上述功率爬升参数规定同一次随机接入过程中,在一次随机接入尝试失败后,发起下一次随机接入尝试时的功率增长量信息。
应理解,根据本申请实施例的网络设备中的模块的上述及其他操作和/或功能分别为了实现图3的方法300中的网络设备的相应流程,为了简洁,在此不再赘述。
需要说明,关于本申请实施例的终端设备400、终端设备500、网络设备600和网络设备700中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一接收模块与第二接收模块可以是不同的模块,也可以是同一个模块,均能够实现其在本申请实施例中的相应功能。此外,本申请实施例中的发送模块和接收模块,可通过设备的收发机实现,其余各模块中的部分或全部可通过设备的处理器实现。
图8是根据本申请实施例的通信设备800示意性结构图。图8所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图8所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施 例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图9是根据本申请实施例的芯片900的示意性结构图。图9所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (108)

  1. 一种随机接入资源的选择方法,包括:
    终端设备基于至少一种预定义方式选择随机接入资源:所述预定义方式包括:
    基于所述终端设备获取的往返时延RTT选择;
    基于服务链路绝对距离选择;
    基于馈电链路时延补偿量选择;
    基于所述终端设备触发随机接入过程的业务标识信息选择;
    基于所述终端设备的终端类型选择;
    基于接入概率参数选择。
  2. 根据权利要求1所述的方法,所述基于所述终端设备获取的RTT选择,包括:
    在所述终端设备获取的RTT小于或者等于第一阈值的情况下,所述终端设备选择两步类型随机接入资源;否则,所述终端设备选择四步类型随机接入资源。
  3. 根据权利要求1所述的方法,所述基于所述终端设备获取的RTT选择,包括:
    在所述终端设备获取的RTT大于或者等于第一阈值的情况下,所述终端设备选择两步类型随机接入资源;否则,所述终端设备选择四步类型随机接入资源。
  4. 根据权利要求2或3所述的方法,所述终端设备获取RTT的方式包括:
    终端设备通过系统广播消息或专用信令接收馈电链路时延补偿量,利用所述馈电链路时延补偿量和服务链路时延补偿量计算所述RTT;或者,
    终端设备利用服务链路时延补偿量计算所述RTT。
  5. 根据权利要求4所述的方法,还包括:
    所述终端设备利用服务链路绝对距离,确定所述服务链路时延补偿量。
  6. 根据权利要求2至5任一所述的方法,还包括:
    所述终端设备通过系统广播消息或专用信令接收所述第一阈值。
  7. 根据权利要求1所述的方法,所述基于服务链路绝对距离选择,包括:
    在所述服务链路绝对距离小于或者等于第二阈值的情况下,所述终端设备选择两步类型随机接入资源;否则,所述终端设备选择四步类型随机接入资源。
  8. 根据权利要求1所述的方法,所述基于服务链路绝对距离选择,包括:
    在所述服务链路绝对距离大于或者等于第二阈值的情况下,所述终端设备选择两步类型随机接入资源;否则,所述终端设备选择四步类型随机接入资源。
  9. 根据权利要求5、7或8所述的方法,所述终端设备确定服务链路绝对距离的方式包括:
    终端设备获取所述终端设备的地理位置信息和服务卫星的实时位置信息;
    根据所述终端设备的地理位置信息和所述服务卫星的实时位置信息,确定所述服务链路绝对距离。
  10. 根据权利要求9所述的方法,所述终端设备获取所述服务卫星的实时位置信息,包括:
    所述终端设备通过系统广播消息或星历信息,获取服务卫星的实时位置信息。
  11. 根据权利要求7至10任一所述的方法,还包括:
    所述终端设备通过系统广播消息或专用信令接收所述第二阈值。
  12. 根据权利要求1所述的方法,所述基于馈电链路时延补偿量选择,包括:
    在所述馈电链路时延补偿量小于或者等于第三阈值的情况下,所述终端设备选择两步类型随机接入资源;否则,所述终端设备选择四步类型随机接入资源。
  13. 根据权利要求1所述的方法,所述基于馈电链路时延补偿量选择,包括:
    在所述馈电链路时延补偿量大于或者等于第三阈值的情况下,所述终端设备选择两步类型随机接入资源;否则,所述终端设备选择四步类型随机接入资源。
  14. 根据权利要求12或13所述的方法,所述终端设备获取馈电链路时延补偿量的方式包括:
    终端设备通过系统广播消息或专用信令接收所述馈电链路时延补偿量。
  15. 根据权利要求1、4、12、13或14所述的方法,其中,
    所述馈电链路时延补偿量由网络设备根据服务卫星的位置和所述网络设备的位置确定;或者,
    所述馈电链路时延补偿量由网络设备根据服务小区规定的任意时间同步参考点确定,其中,所述时间同步参考点包括所述服务卫星与所述网络设备之间的任意一点。
  16. 根据权利要求12至15任一所述的方法,还包括:
    所述终端设备通过系统广播消息或专用信令接收所述第三阈值。
  17. 根据权利要求1所述的方法,所述基于所述终端设备触发随机接入过程的业务标识信息选择, 包括:
    终端设备获取触发随机接入过程的业务标识信息,在所述业务标识信息为预定义标识的情况下,所述终端设备选择两步类型随机接入资源;否则,所述终端设备选择四步类型随机接入资源。
  18. 根据权利要求17所述的方法,所述业务标识信息包括以下至少一项:
    接入分类AC标识;
    接入原因值标识;
    终端类型标识。
  19. 根据权利要求1所述的方法,所述基于所述终端设备的终端类型选择,包括:
    终端设备确定所述终端设备的终端类型;
    在所述终端设备的终端类型为预设类型的情况下,所述终端设备选择两步类型随机接入资源;否则,所述终端设备选择四步类型随机接入资源。
  20. 根据权利要求19所述的方法,所述终端设备采用以下至少一种方式确定所述终端设备的终端类型:
    获取预先定义的所述终端设备的终端类型;
    通过NAS过程获取所述终端设备的终端类型;
    根据所述终端设备的能力信息确定所述终端设备的终端类型。
  21. 根据权利要求20所述的方法,所述终端设备的能力信息包括以下至少一项:
    所述终端设备支持的最大发射功率等级;
    所述终端设备支持的应用场景;
    所述终端设备支持双链接DC能力和/或载波聚合CA能力;
    所述终端设备支持的带宽组合能力;
    所述终端设备支持的带宽大小;
    所述终端设备是否在自身签约的运营商网络中接受服务;
    所述终端设备支持的发送天线个数和/或接收天线个数;
    所述终端设备支持的无线接入技术RAT类型。
  22. 根据权利要求21所述的方法,所述终端设备支持的应用场景包括以下至少一项:
    卫星通信场景;
    地面通信场景;
    时延要求敏感场景。
  23. 根据权利要求1所述的方法,所述基于接入概率参数选择,包括:
    终端设备生成随机数;
    在所述随机数属于所述接入概率参数规定的数值范围内时,所述终端设备选择两步类型随机接入资源;否则,所述终端设备选择四步类型随机接入资源。
  24. 根据权利要求1所述的方法,所述基于接入概率参数选择,包括:
    终端设备生成随机数;
    在所述随机数属于所述接入概率参数规定的数值范围内时,所述终端设备选择四步类型随机接入资源;否则,所述终端设备选择两步类型随机接入资源。
  25. 根据权利要求23或24所述的方法,还包括:
    终端设备通过系统广播消息或专用信令接收所述接入概率参数。
  26. 根据权利要求1至25任一所述的方法,还包括:
    终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则执行所述终端设备基于至少一种预定义方式选择随机接入资源的步骤;否则,所述终端设备选择四步类型随机接入资源。
  27. 根据权利要求1至25任一所述的方法,还包括:
    终端设备判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则终端设备选择四步类型随机接入资源;否则,执行所述终端设备基于至少一种预定义方式选择随机接入资源的步骤。
  28. 根据权利要求26或27所述的方法,所述测量结果为小区级或波束级的测量结果;并且,所述测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ和信噪比SINR中的至少一项。
  29. 根据权利要求26至28任一所述的方法,还包括:
    所述终端设备通过系统广播消息或专用信令接收所述第四阈值。
  30. 根据权利要求1至29任一所述的方法,所述选择随机接入资源的过程用于所述终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者,所述选择随机接入资源的过程用于所述 终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
  31. 根据权利要求1至30任一所述的方法,还包括:
    终端设备通过系统广播消息或专用信令接收预定义方式指示信息,根据所述预定义方式指示信息确定用于选择随机接入资源的预定义方式。
  32. 根据权利要求1至31任一所述的方法,所述随机接入资源包括以下配置信息中的至少一项:
    用于终端设备发起随机接入尝试的随机接入机会RO资源配置;
    用于终端设备发起随机接入尝试的随机接入前导码资源配置;
    用于控制终端设备随机接入尝试失败后行为的时间回退参数和功率爬升参数。
  33. 根据权利要求32所述的方法,所述用于终端设备发起随机接入尝试的RO资源配置和/或所述用于终端设备发起随机接入尝试的随机接入前导码资源配置可以与同步信号块SSB配置进行关联或者独立于SSB进行配置。
  34. 根据权利要求32所述的方法,所述用于控制终端设备随机接入尝试失败后行为的时间回退参数规定同一次随机接入过程中一次随机接入尝试失败到下一次随机接入尝试发起之间的最小时间间隔。
  35. 根据权利要32所述的方法,所述功率爬升参数规定同一次随机接入过程中,在一次随机接入尝试失败后,发起下一次随机接入尝试时的功率增长量信息。
  36. 根据权利要求35所述的方法,所述功率爬升参数的使用方式包括:
    在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率与所述功率爬升参数规定的增量之和。
  37. 根据权利要求35所述的方法,所述功率爬升参数的使用方式包括:
    在前后两次选择发起随机接入尝试的SSB索引不同的情况下,在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率与所述功率爬升参数规定的增量之和;
    在前后两次选择发起随机接入尝试的SSB索引相同的情况下,在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率。
  38. 一种随机接入资源的选择方法,包括:
    网络设备通过系统广播消息或专用信令向终端设备发送馈电链路时延补偿量,用于供所述终端设备选择随机接入资源。
  39. 根据权利要求38所述的方法,其中,
    所述馈电链路时延补偿量由网络设备根据服务卫星的位置和所述网络设备的位置确定;或者,
    所述馈电链路时延补偿量由网络设备根据服务小区规定的任意时间同步参考点确定,其中,所述时间同步参考点包括所述服务卫星与所述网络设备之间的任意一点。
  40. 根据权利要求38或39所述的方法,还包括:
    网络设备通过系统广播消息向终端设备发送服务卫星的实时位置信息或者星历信息,用于供所述终端设备选择随机接入资源。
  41. 根据权利要求38至40任一所述的方法,还包括:
    网络设备通过NAS过程向终端设备发送所述终端设备的终端类型,用于供所述终端设备选择随机接入资源。
  42. 根据权利要求38至41任一所述的方法,还包括:
    网络设备通过系统广播消息或专用信令向终端设备发送接入概率参数,用于供所述终端设备选择随机接入资源。
  43. 根据权利要求38至42任一所述的方法,还包括:
    网络设备通过系统广播消息或专用信令向终端设备发送第一阈值、第二阈值、第三阈值或第四阈值,用于供所述终端设备选择随机接入资源。
  44. 根据权利要求38至43任一所述的方法,还包括:
    网络设备通过系统广播消息或专用信令向终端设备发送预定义方式指示信息,用于指示所述终端设备确定选择随机接入资源的预定义方式。
  45. 根据权利要求38至44任一所述的方法,所述选择随机接入资源的过程用于所述终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者,所述选择随机接入资源的过程用于所述终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
  46. 根据权利要求38至45任一所述的方法,所述随机接入资源包括以下配置信息中的至少一项:
    用于终端设备发起随机接入尝试的RO资源配置;
    用于终端设备发起随机接入尝试的随机接入前导码资源配置;
    用于控制终端设备随机接入尝试失败后行为的时间回退参数和功率爬升参数。
  47. 根据权利要求46所述的方法,所述用于终端设备发起随机接入尝试的RO资源配置和/或所述用于终端设备发起随机接入尝试的随机接入前导码资源配置可以与SSB配置进行关联或者独立于SSB进行配置。
  48. 根据权利要求46所述的方法,所述用于控制终端设备随机接入尝试失败后行为的时间回退参数规定同一次随机接入过程中一次随机接入尝试失败到下一次随机接入尝试发起之间的最小时间间隔。
  49. 根据权利要46所述的方法,所述功率爬升参数规定同一次随机接入过程中,在一次随机接入尝试失败后,发起下一次随机接入尝试时的功率增长量信息。
  50. 一种终端设备,包括:
    选择模块,用于基于至少一种预定义方式选择随机接入资源:所述预定义方式包括:
    基于所述终端设备获取的往返时延RTT选择;
    基于服务链路绝对距离选择;
    基于馈电链路时延补偿量选择;
    基于所述终端设备触发随机接入过程的业务标识信息选择;
    基于所述终端设备的终端类型选择;
    基于接入概率参数选择。
  51. 根据权利要求50所述的终端设备,所述选择模块用于,
    在所述终端设备获取的RTT小于或者等于第一阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
  52. 根据权利要求50所述的终端设备,所述选择模块用于,
    在所述终端设备获取的RTT大于或者等于第一阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
  53. 根据权利要求51或52所述的终端设备,所述终端设备还包括:
    计算模块,用于通过系统广播消息或专用信令接收馈电链路时延补偿量,利用所述馈电链路时延补偿量和服务链路时延补偿量计算所述RTT;或者,利用服务链路时延补偿量计算所述RTT。
  54. 根据权利要求53所述的终端设备,所述终端设备还包括:
    服务链路时延补偿量确定模块,用于利用服务链路绝对距离,确定所述服务链路时延补偿量。
  55. 根据权利要求51至54任一所述的终端设备,还包括:
    第一接收模块,用于通过系统广播消息或专用信令接收所述第一阈值。
  56. 根据权利要求50所述的终端设备,所述选择模块用于,
    在所述服务链路绝对距离小于或者等于第二阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
  57. 根据权利要求50所述的终端设备,所述选择模块用于,
    在所述服务链路绝对距离大于或者等于第二阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
  58. 根据权利要求54、56或57所述的终端设备,所述终端设备还包括:
    服务链路绝对距离确定模块,用于获取所述终端设备的地理位置信息和服务卫星的实时位置信息;根据所述终端设备的地理位置信息和所述服务卫星的实时位置信息,确定所述服务链路绝对距离。
  59. 根据权利要求58所述的终端设备,所述服务链路绝对距离确定模块通过系统广播消息或星历信息,获取服务卫星的实时位置信息。
  60. 根据权利要求56至59任一所述的终端设备,还包括:
    第二接收模块,用于通过系统广播消息或专用信令接收所述第二阈值。
  61. 根据权利要求50所述的终端设备,所述选择模块用于,
    在所述馈电链路时延补偿量小于或者等于第三阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
  62. 根据权利要求50所述的终端设备,所述选择模块用于,
    在所述馈电链路时延补偿量大于或者等于第三阈值的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
  63. 根据权利要求61或62所述的终端设备,所述终端设备还包括:
    馈电链路时延补偿量接收模块,用于通过系统广播消息或专用信令接收所述馈电链路时延补偿量。
  64. 根据权利要求50、53、61、62或63所述的终端设备,其中,
    所述馈电链路时延补偿量由网络设备根据服务卫星的位置和所述网络设备的位置确定;或者,
    所述馈电链路时延补偿量由网络设备根据服务小区规定的任意时间同步参考点确定,其中,所述时间同步参考点包括所述服务卫星与所述网络设备之间的任意一点。
  65. 根据权利要求61至64任一所述的终端设备,所述终端设备还包括:
    第三接收模块,用于通过系统广播消息或专用信令接收所述第三阈值。
  66. 根据权利要求50所述的终端设备,所述选择模块用于,
    获取触发随机接入过程的业务标识信息,在所述业务标识信息为预定义标识的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
  67. 根据权利要求66所述的终端设备,所述业务标识信息包括以下至少一项:
    接入分类AC标识;
    接入原因值标识;
    终端类型标识。
  68. 根据权利要求50所述的终端设备,所述选择模块用于,
    确定所述终端设备的终端类型;在所述终端设备的终端类型为预设类型的情况下,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
  69. 根据权利要求68所述的终端设备,所述终端设备还包括:
    终端类型确定模块,用于采用以下至少一种方式确定所述终端设备的终端类型:
    获取预先定义的所述终端设备的终端类型;
    通过NAS过程获取所述终端设备的终端类型;
    根据所述终端设备的能力信息确定所述终端设备的终端类型。
  70. 根据权利要求69所述的终端设备,所述终端设备的能力信息包括以下至少一项:
    所述终端设备支持的最大发射功率等级;
    所述终端设备支持的应用场景;
    所述终端设备支持双链接DC能力和/或载波聚合CA能力;
    所述终端设备支持的带宽组合能力;
    所述终端设备支持的带宽大小;
    所述终端设备是否在自身签约的运营商网络中接受服务;
    所述终端设备支持的发送天线个数和/或接收天线个数;
    所述终端设备支持的无线接入技术RAT类型。
  71. 根据权利要求70所述的终端设备,所述终端设备支持的应用场景包括以下至少一项:
    卫星通信场景;
    地面通信场景;
    时延要求敏感场景。
  72. 根据权利要求50所述的终端设备,所述选择模块用于,
    生成随机数;在所述随机数属于所述接入概率参数规定的数值范围内时,选择两步类型随机接入资源;否则,选择四步类型随机接入资源。
  73. 根据权利要求50所述的终端设备,所述选择模块用于,
    生成随机数;在所述随机数属于所述接入概率参数规定的数值范围内时,选择四步类型随机接入资源;否则,选择两步类型随机接入资源。
  74. 根据权利要求72或73所述的终端设备,所述终端设备还包括:
    接入概率参数接收模块,用于通过系统广播消息或专用信令接收所述接入概率参数。
  75. 根据权利要求50至74任一所述的终端设备,还包括:
    第一判断模块,用于判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则基于至少一种所述预定义方式选择随机接入资源;否则,选择四步类型随机接入资源。
  76. 根据权利要求50至74任一所述的终端设备,还包括:
    第二判断模块,用于判断目标小区或服务小区的测量结果是否大于或者等于第四阈值,如果是,则选择四步类型随机接入资源;否则,至少一种所述预定义方式选择随机接入资源。
  77. 根据权利要求75或76所述的终端设备,所述测量结果为小区级或波束级的测量结果;并且,所述测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ和信噪比SINR中的至少一项。
  78. 根据权利要求75至77任一所述的终端设备,所述终端设备还包括:还包括:
    第四接收模块,用于通过系统广播消息或专用信令接收所述第四阈值。
  79. 根据权利要求50至78任一所述的终端设备,所述选择随机接入资源的过程用于所述终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者,所述选择随机接入资源的过程用 于所述终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
  80. 根据权利要求50至79任一所述的终端设备,还包括:
    预定义方式确定模块,用于通过系统广播消息或专用信令接收预定义方式指示信息,根据所述预定义方式指示信息确定用于选择随机接入资源的预定义方式。
  81. 根据权利要求50至80任一所述的终端设备,所述随机接入资源包括以下配置信息中的至少一项:
    用于终端设备发起随机接入尝试的随机接入机会RO资源配置;
    用于终端设备发起随机接入尝试的随机接入前导码资源配置;
    用于控制终端设备随机接入尝试失败后行为的时间回退参数和功率爬升参数。
  82. 根据权利要求81所述的终端设备,所述用于终端设备发起随机接入尝试的RO资源配置和/或所述用于终端设备发起随机接入尝试的随机接入前导码资源配置可以与同步信号块SSB配置进行关联或者独立于SSB进行配置。
  83. 根据权利要求81所述的终端设备,所述用于控制终端设备随机接入尝试失败后行为的时间回退参数规定同一次随机接入过程中一次随机接入尝试失败到下一次随机接入尝试发起之间的最小时间间隔。
  84. 根据权利要81所述的终端设备,所述功率爬升参数规定同一次随机接入过程中,在一次随机接入尝试失败后,发起下一次随机接入尝试时的功率增长量信息。
  85. 根据权利要求84所述的终端设备,所述功率爬升参数的使用方式包括:
    在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率与所述功率爬升参数规定的增量之和。
  86. 根据权利要求84所述的终端设备,所述功率爬升参数的使用方式包括:
    在前后两次选择发起随机接入尝试的SSB索引不同的情况下,在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率与所述功率爬升参数规定的增量之和;
    在前后两次选择发起随机接入尝试的SSB索引相同的情况下,在一次随机接入尝试失败后,发起下一次随机接入尝试时的发射功率等于前面一次随机接入尝试时的发射功率。
  87. 一种网络设备,包括:
    馈电链路时延补偿量发送模块,用于通过系统广播消息或专用信令向终端设备发送馈电链路时延补偿量,以供所述终端设备选择随机接入资源。
  88. 根据权利要求87所述的网络设备,其中,
    所述馈电链路时延补偿量由网络设备根据服务卫星的位置和所述网络设备的位置确定;或者,
    所述馈电链路时延补偿量由网络设备根据服务小区规定的任意时间同步参考点确定,其中,所述时间同步参考点包括所述服务卫星与所述网络设备之间的任意一点。
  89. 根据权利要求87或88所述的网络设备,还包括:
    位置或星历信息发送模块,用于通过系统广播消息向终端设备发送服务卫星的实时位置信息或者星历信息,以供所述终端设备选择随机接入资源。
  90. 根据权利要求87至49任一所述的网络设备,还包括:
    终端类型发送模块,用于通过NAS过程向终端设备发送所述终端设备的终端类型,用于供所述终端设备选择随机接入资源。
  91. 根据权利要求87至90任一所述的网络设备,还包括:
    接入概率参数发送模块,用于通过系统广播消息或专用信令向终端设备发送接入概率参数,以供所述终端设备选择随机接入资源。
  92. 根据权利要求87至91任一所述的网络设备,还包括:
    阈值发送模块,用于通过系统广播消息或专用信令向终端设备发送第一阈值、第二阈值、第三阈值或第四阈值,以供所述终端设备选择随机接入资源。
  93. 根据权利要求87至92任一所述的网络设备,还包括:
    预定义方式发送模块,用于通过系统广播消息或专用信令向终端设备发送预定义方式指示信息,以指示所述终端设备确定选择随机接入资源的预定义方式。
  94. 根据权利要求87至93任一所述的网络设备,所述选择随机接入资源的过程用于所述终端设备在任意随机接入过程的初始随机接入尝试前判断随机接入资源,或者,所述选择随机接入资源的过程用于所述终端设备在任意随机接入过程的每一次随机接入尝试前判断随机接入资源。
  95. 根据权利要求87至94任一所述的网络设备,所述随机接入资源包括以下配置信息中的至少一 项:
    用于终端设备发起随机接入尝试的RO资源配置;
    用于终端设备发起随机接入尝试的随机接入前导码资源配置;
    用于控制终端设备随机接入尝试失败后行为的时间回退参数和功率爬升参数。
  96. 根据权利要求95所述的网络设备,所述用于终端设备发起随机接入尝试的RO资源配置和/或所述用于终端设备发起随机接入尝试的随机接入前导码资源配置可以与SSB配置进行关联或者独立于SSB进行配置。
  97. 根据权利要求95所述的网络设备,所述用于控制终端设备随机接入尝试失败后行为的时间回退参数规定同一次随机接入过程中一次随机接入尝试失败到下一次随机接入尝试发起之间的最小时间间隔。
  98. 根据权利要95所述的网络设备,所述功率爬升参数规定同一次随机接入过程中,在一次随机接入尝试失败后,发起下一次随机接入尝试时的功率增长量信息。
  99. 一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至49中任一项所述的方法。
  100. 一种网络设备,包括:处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,并控制所述收发器,执行如权利要求50至98中任一项所述的方法。
  101. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至49中任一项所述的方法。
  102. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求50至98中任一项所述的方法。
  103. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至49中任一项所述的方法。
  104. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求50至98中任一项所述的方法。
  105. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至49中任一项所述的方法。
  106. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求50至98中任一项所述的方法。
  107. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至49中任一项所述的方法。
  108. 一种计算机程序,所述计算机程序使得计算机执行如权利要求50至98中任一项所述的方法。
PCT/CN2021/083653 2021-03-29 2021-03-29 随机接入资源的选择方法、终端设备和网络设备 WO2022204890A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180095826.9A CN116998213A (zh) 2021-03-29 2021-03-29 随机接入资源的选择方法、终端设备和网络设备
PCT/CN2021/083653 WO2022204890A1 (zh) 2021-03-29 2021-03-29 随机接入资源的选择方法、终端设备和网络设备
EP21933576.7A EP4319441A4 (en) 2021-03-29 2021-03-29 DIRECT ACCESS RESOURCE SELECTION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US18/475,189 US20240015802A1 (en) 2021-03-29 2023-09-26 Random access resource selection method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083653 WO2022204890A1 (zh) 2021-03-29 2021-03-29 随机接入资源的选择方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/475,189 Continuation US20240015802A1 (en) 2021-03-29 2023-09-26 Random access resource selection method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2022204890A1 true WO2022204890A1 (zh) 2022-10-06

Family

ID=83457285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083653 WO2022204890A1 (zh) 2021-03-29 2021-03-29 随机接入资源的选择方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20240015802A1 (zh)
EP (1) EP4319441A4 (zh)
CN (1) CN116998213A (zh)
WO (1) WO2022204890A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018132843A1 (en) * 2017-01-13 2018-07-19 Motorola Mobility Llc Method and apparatus for performing contention based random access in a carrier frequency
CN109845378A (zh) * 2016-09-28 2019-06-04 索尼公司 下一代无线系统中的随机接入
CN110913499A (zh) * 2018-09-18 2020-03-24 维沃移动通信有限公司 一种随机接入方法及终端
CN111278153A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 随机接入方法及装置、通信设备
CN111565473A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 一种随机接入方法和装置
CN112423402A (zh) * 2019-08-21 2021-02-26 中国移动通信有限公司研究院 随机接入的选择方法、装置及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845378A (zh) * 2016-09-28 2019-06-04 索尼公司 下一代无线系统中的随机接入
WO2018132843A1 (en) * 2017-01-13 2018-07-19 Motorola Mobility Llc Method and apparatus for performing contention based random access in a carrier frequency
CN110913499A (zh) * 2018-09-18 2020-03-24 维沃移动通信有限公司 一种随机接入方法及终端
CN111278153A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 随机接入方法及装置、通信设备
CN111565473A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 一种随机接入方法和装置
CN112423402A (zh) * 2019-08-21 2021-02-26 中国移动通信有限公司研究院 随机接入的选择方法、装置及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4319441A4 *

Also Published As

Publication number Publication date
CN116998213A (zh) 2023-11-03
EP4319441A4 (en) 2024-08-28
EP4319441A1 (en) 2024-02-07
US20240015802A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
US11463194B2 (en) Information determination method, terminal apparatus, and network apparatus
WO2020186532A1 (zh) 无线通信方法、终端设备和网络设备
CN112640347B (zh) 无线通信的方法、终端设备和网络设备
EP4164291B1 (en) Condition-based secondary node or primary secondary cell addition method and device
EP4109938B1 (en) Sidelink capability sending method and terminal device
WO2021138866A1 (zh) 信息确定方法、信息指示方法、终端设备和网络设备
KR20200119863A (ko) 신호 전송 방법 및 기기
US20240008098A1 (en) Method for resource configuration, terminal device, and network device
US20230189135A1 (en) Cell access selection method, terminal device, and network device
US20230013617A1 (en) Method for sending media access control control element and terminal device
WO2022204890A1 (zh) 随机接入资源的选择方法、终端设备和网络设备
EP4255090A1 (en) Data transmission method, terminal devices, and network device
EP4087149A1 (en) Beam selection method, terminal device, and network device
EP4057736B1 (en) Parameter setting method, parameter indication method, terminal device, and network device
WO2024065324A1 (zh) 通信方法和设备
EP4224986A1 (en) Method for determining relay scheme, and device
WO2022021165A1 (zh) 中继发现方法和终端
WO2022246763A1 (zh) 波束失败恢复方法、终端设备和网络设备
WO2024040598A1 (zh) 无线通信的方法和终端设备
WO2023133839A1 (zh) 通信方法和设备
EP4210415A1 (en) Method for reporting random access situation, and terminal device and network device
WO2023044735A9 (zh) 无线通信的方法和终端设备
WO2022036509A1 (zh) 请求多播控制信道信令的方法、终端设备和通信设备
WO2020133469A1 (zh) 随机接入方法、终端设备和网络设备
CN117956603A (zh) 一种协作传输方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933576

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095826.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021933576

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021933576

Country of ref document: EP

Effective date: 20231030