WO2022204773A1 - Sequência nucleotídica quimérica, vetor de expressão em mamíferos, vacina de rna, proteína quimérica de fusão, uso na produção de vacina contra coronavírus - Google Patents

Sequência nucleotídica quimérica, vetor de expressão em mamíferos, vacina de rna, proteína quimérica de fusão, uso na produção de vacina contra coronavírus Download PDF

Info

Publication number
WO2022204773A1
WO2022204773A1 PCT/BR2022/050112 BR2022050112W WO2022204773A1 WO 2022204773 A1 WO2022204773 A1 WO 2022204773A1 BR 2022050112 W BR2022050112 W BR 2022050112W WO 2022204773 A1 WO2022204773 A1 WO 2022204773A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide sequence
chimeric
seq
fusion protein
vaccine
Prior art date
Application number
PCT/BR2022/050112
Other languages
English (en)
French (fr)
Inventor
Rúbens Prince Dos Santos ALVES
Luana Raposo De Melo Moraes APS
Bruna Felicio Milazzotto Maldonado Porchia RIBEIRO
Lennon Ramos PEREIRA
Luís Carlos De Souza FERREIRA
Original Assignee
Imunotera Soluções Terapêuticas Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imunotera Soluções Terapêuticas Ltda. filed Critical Imunotera Soluções Terapêuticas Ltda.
Publication of WO2022204773A1 publication Critical patent/WO2022204773A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/165Coronaviridae, e.g. avian infectious bronchitis virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/03Herpetoviridae, e.g. pseudorabies virus
    • C07K14/035Herpes simplex virus I or II
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • the present invention belongs to the technical field of Biotechnology. More specifically, a chimeric nucleotide sequence, the corresponding encoded fusion protein, is described, which comprises a polyepitope resulting from the selection and juxtaposition of multiple epitopes of a coronavirus protein for inducing an immune response in mammals.
  • said fusion protein comprises: a) a first peptide consisting of epitopes present in the amino acid sequence of replicase 1ab polyprotein (PR1ab); b) a first spacer; c) a modified form of herpes simplex type-1 (HSV-1) glycoprotein D (gD).
  • the replicase polyprotein is defined by SEQ ID NO: 96 flanked by a gD fragment comprising the amino acid sequence defined by SEQ ID NO: 98 in the N-terminal portion and another gD fragment comprising the amino acid sequence defined by SEQ ID NO: 100 in the C-terminal region.
  • the use of the fusion protein shows surprising results for the induction of cellular and humoral immune response against coronaviruses, SARS-CoV-2 and related viruses.
  • Symptoms of COVID-19 can range from absent and mild to severe, and include fever, dry cough, dyspnea, myalgia, tiredness, leukopenia, and even pneumonia.
  • the patient's immune system largely contributes to the picture.
  • cytokine storm an abrupt and intense release of pro-inflammatory cytokines (IFN-a, IFN-Y, IL-1 b, IL-6, IL-12, IL-18, IL- 33, TNF-a, TGFP) and chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10) result in fluid accumulation in the lungs, multiple failure and death (Li et al., 2020).
  • the virus that causes the disease belongs to the same family as MERS-CoV and SARS-CoV, being responsible for acute respiratory syndromes that have become epidemics in the last two decades.
  • SARS-CoV-2 belongs to the Coronaviridae family, order Nidovirales, which is divided into four genera ⁇ Alpha-, Beta-, Gamma-, Delta-coronavirus ), most of which are zoonotic viruses (Grifoni et al., 2020). These are enveloped viruses with positive orientation single-stranded RNA, and genomes between 26 and 32 kb with 29.8 kb, the SARS-CoV-2 genome has 14 ORFs (Open Reading Frame(s)) that encode 27 proteins.
  • ORFs Open Reading Frame(s)
  • ACE2 angiotensin converting enzyme
  • SARS-CoV-S glycoprotein 2 has 77% similarity with the SARS-CoV spike and is a natural target due to its critical role in receptor binding and consequent fusion of the virus and host membranes, and is therefore considered the main antigen (Yuan et al., 2020).
  • Cytotoxic T lymphocytes recognize antigens as short peptides (generally approximately 8 to approximately 10 amino acids in length) presented by major histocompatibility complex (MHC) class I molecules (Townsend & Bodmer, 1989).
  • MHC major histocompatibility complex
  • the characterization of these antigen fragments, called determinants of immunogenic epitopes, has allowed the design of immunization strategies based on the use of vaccines that contain these segments (Berzofsky et al., 2001; Melief & Van Der Burg, 2008).
  • As a product of recombinant DNA technology it was possible to develop a class of new biomolecules with chimeric characteristics and multi-antigen properties.
  • the product obtained may have the immunogenic determinants of the different original target proteins.
  • the fusion of different epitopes from different sources can induce a specific multivalent immune response against different pathogens/antigens through a unique construction, a strategy called polyepitope or multiepitope vaccine.
  • vaccine strategies that employ this method have been studied for the treatment of infectious diseases and cancer. There are some works that use this strategy to create vaccines against COVID-19.
  • Glycoprotein D has the ability to interact with the HVEM (Herpes Virus Entry Mediator) receptor, which promotes activation of immune cells directly by producing NF-kB (Sciortino et al., 2008) or, indirectly, by blocking the binding of BTLA (B and T Lymphocyte Attenuator) and CD160 to this receptor, which would result in co-inhibitory signals (Steinberg et al., 2011).
  • HVEM Herpes Virus Entry Mediator
  • Document PI 0904880-4 discloses the construction of two plasmids, one containing gene expressing human papilloma virus type-16 (HPV-16) E7 oncoprotein fused to herpes simplex type-1 glycoprotein D (gD) ( HSV-1) and another plasmid containing the gene that expresses interleukin-2, intended for tumor control.
  • HPV-16 human papilloma virus type-16
  • HSV-1 herpes simplex type-1 glycoprotein D
  • HSV-1 herpes simplex type-1 glycoprotein D
  • Document PI 1003749-7 discloses a hybrid protein formed by the genetic fusion of human papillomavirus type-16 (HPV-16) oncoprotein E7 with a modified form of herpes simplex type 1 glycoprotein D destined to be adjuvant vaccine to other antigens and/or as an active ingredient in pharmaceutical compositions for the control of tumors.
  • HPV-16 human papillomavirus type-16
  • Tahir UI Qamar, M., Shahid, F., Aslam, S., Ashfaq, U.A., Aslam, S., Fatima, I., Fareed, M.M., Zohaib, A., & Chen, L.L. (2020) .
  • the present invention provides a chimeric polypeptide sequence comprising a polyepitope resulting from the selection and juxtaposition of multiple epitopes of a coronavirus protein, for inducing an immune response in mammals.
  • nucleotide sequences of DNA or RNA encoding said polypeptide are also object of the invention, as well as vectors of expression in mammals comprising said nucleotide sequences.
  • the present invention provides an alternative vaccine and/or an alternative for obtaining vaccines inducing cellular and/or humoral immunity against Coronavirus, SARS-CoV-2 or COVID-19 and related viruses.
  • having as antigenic elements the non-structural proteins of the virus.
  • the present invention provides a vaccine for inducing a combined immune response of CD8 + T cells producing antiviral molecules in addition to the humoral response against SARS-CoV-2.
  • the in vivo use of the present invention provides surprising potential to promote viral load reduction, clinical recovery and protection against Coronavirus, SARS-CoV-2 or COVID-19 and related viruses, among other advantages.
  • the antigenic elements or targets of the vaccine of the invention are found in the non-structural proteins encoded by ORFIab of the Brazilian strain of SARS-CoV-2, in contrast to existing technologies in the art that focus primarily on the Spike protein. (S protein) of the virus.
  • the present invention provides the association of immunogenic epitopes of these regions comparing with the most frequent HLAs (human leukocyte antigen system) in the Brazilian human population, namely: C * 02:02, A * 32:01 , A * 68:02, A * 01:01, B * 08:01, A * 65:02, B * 51:01, B * 35:01; where each allele is frequent in at least 3% of the population of Brazil.
  • the association of immunogenic epitopes is compared to HLAs from specific ethnic groups and tailored to different populations.
  • spacers preferably defined by the amino acid sequence defined by SEQ ID NO: 94 added between the peptides, are used. Among other reasons, these separators may facilitate antigen structuring after intracellular translation into expression and/or facilitate antigen processing.
  • the sequence containing the multiepitope is inserted into the herpes virus glycoprotein D (gD) sequence.
  • gD herpes virus glycoprotein D
  • HVEM Herpes Virus Entry Mediator
  • the present invention presents the following objects:
  • the present invention provides a chimeric nucleotide sequence comprising the coding sequences, in frame, of a plurality of epitopes of a coronavirus protein.
  • said coronavirus protein is a non-structural protein of the virus, such as replicase protein 1ab.
  • the sequences encoding multiple epitopes of replicase 1ab are aligned in frame such that the encoded product is a chimeric protein of a polyepitope of replicase 1ab.
  • said nucleotide sequence further comprises a nucleotide sequence encoding a modified form of herpes simplex type-1 (HSV-1) glycoprotein D (gD).
  • said nucleotide sequence further comprises a nucleotide sequence encoding a first spacer polypeptide.
  • said nucleotide sequence comprises: a) a nucleotide sequence that encodes a first peptide comprising epitopes present in the amino acid sequence of the replicase 1ab polyprotein (PR1ab); b) a nucleotide sequence encoding a first spacer polypeptide; and c) a nucleotide sequence encoding a modified form of herpes simplex type-1 (HSV-1) glycoprotein D (gD).
  • PR1ab replicase 1ab polyprotein
  • gD herpes simplex type-1 glycoprotein D
  • the nucleotide sequence encoding the polyepitope comprises an in-frame combination of the nucleotide sequences selected from SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81, 83, 85, 87, 89, 91.
  • nucleotide sequence encoding the polyepitope is defined by SEQ ID NO: 95.
  • nucleotide sequence encoding the modified form of glycoprotein D (gD) of herpes simplex type-1 (HSV-1) is defined by SEQ ID NO: 97 and/or SEQ ID NO: 99.
  • an expression vector comprising:
  • the polypeptide sequence of the polyepitope comprises a combination of the polypeptide sequences selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 , 28, 30, 32,
  • an RNA vaccine comprising an RNA sequence encoding the aforementioned polyepitope is provided.
  • said RNA sequence comprises a combination of RNA sequences selected from SEQ ID NO: 113 to SEQ ID NO: 158. In one embodiment, said RNA sequence further comprises SEQ ID NO: 105 In a realization, the said RNA sequence further comprises SEQ ID NO: 161 and/or SEQ ID NO: 162.
  • the present invention provides a chimeric polypeptide sequence comprising a plurality of epitopes of a coronavirus protein.
  • said coronavirus protein is a non-structural protein of the virus, such as replicase protein 1ab.
  • replicase protein 1ab multiple epitopes of replicase 1ab are aligned, forming a chimeric protein of a polyepitope of replicase 1ab.
  • said polypeptide sequence further comprises a polypeptide sequence of a modified form of herpes simplex type-1 (HSV-1) glycoprotein D (gD).
  • HSV-1 herpes simplex type-1
  • gD glycoprotein D
  • said polypeptide sequence further comprises a sequence of a first spacer polypeptide.
  • the chimeric fusion protein comprises: a) a first peptide consisting of epitopes present in the amino acid sequence of the replicase 1 ab polyprotein (PR1 ab); b) a first spacer; and c) modified form of herpes simplex type-1 (HSV-1) glycoprotein D (gD).
  • PR1 ab replicase 1 ab polyprotein
  • gD herpes simplex type-1 glycoprotein D
  • the peptide sequence comprising the polyepitope is defined by SEQ ID NO: 96.
  • the peptide sequence of the modified form of gD is defined by SEQ ID NO: 98 and/or SEQ ID NO: 100.
  • Figure 1 reveals the organization of the SARS-CoV-2 genome showing the arrangement of ORFs (Open Reading Frame) and the distribution of structural and non-structural proteins (Wu et al., 2020).
  • Figure 2 shows a) a schematic of the genetic structure of Sars-CoV-2 and b) the target alleles of two regions: NSa and NSb.
  • Figure 3 shows the analysis of in vitro expression of vaccine antigens. After 36 hours of transfection with each vaccine plasmid, the cells were subjected to immunodetection of the gD protein. In (a) flow cytometry analysis was performed. In (b), after fixing the monolayer of cells on the plate, immunofluorescence was performed with antibody against glycoprotein D, where the cells that are positive for the expression of the recombinant antigen encoded by the DNA vaccines in green and the nucleus in blue of cells, such as 20x or 40x magnification.
  • Figure 4 shows the evaluation of the cellular response induced by DNA vaccines associated with ICS electroporation.
  • C57BL/6 mice aged 5-6 weeks received two intramuscular doses of vaccines (50ug pgDPOLIEP, 50ug NSA + 50ugNSB or 50ug pcDNA3.1) along with electroporation, with two weeks between applications. Two weeks after the last dose, the animals were euthanized and spleen cells were used for ex vivo stimulation with SARS-CoV-2 peptides to assess functionality (a).
  • vaccines 50ug pgDPOLIEP, 50ug NSA + 50ugNSB or 50ug pcDNA3.1
  • CD8 T lymphocytes CD3 + CD8 +
  • CD49d + CD11a hl The subpopulation of CD8 T lymphocytes (CD3 + CD8 + ) that experienced antigen encounter in vivo (CD49d + CD11a hl ), were evaluated for the relative frequency of IFNy (a), TNF (b) and IFNy + TNF-producing cells (C), as well as the absolute count of IFNy (d), TNF (e) and IFNy+TNF (f) producing cells.
  • Data represent mean ⁇ SEM and test of One-tailed Mann-Whitney, where * p ⁇ 0.05 **p ⁇ 0.01 , ***p ⁇ 0.001 , ****p ⁇ 0.0001.
  • Figure 5 shows the evaluation of the cellular response induced by DNA vaccines associated with electroporation by ELISPOT.
  • C57BL/6 mice aged 5-6 weeks received two intramuscular doses of vaccines (50ug pgDPOLIEP, 50ug NSA + 50ugNSB or 50ug pcDNA3.1) along with electroporation, with two weeks between applications.
  • Two weeks after the last dose the animals were euthanized and spleen cells were used for ex vivo stimulation with SARS-CoV-2 peptides to assess IFN-g production.
  • Data represent mean ⁇ SEM and one-tailed Mann-Whitney test, where * p ⁇ 0.05 **p ⁇ 0.01 , ****p ⁇ 0.0001.
  • Figure 6 shows a schematic representation of an embodiment of the invention, in which: in A) a chimeric polypeptide sequence embodiment of the invention (POLIEP) is schematically shown comprising the polypeptide sequences of a polyepitope of SEQ ID NO: 2 , 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46,
  • POLIEP chimeric polypeptide sequence embodiment of the invention
  • a chimeric nucleotide sequence of the invention is shown in the embodiment comprising SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 , 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 , 81 , 83, 85, 87, 89, 91 and two nucleotide sequences of gD fragments, one at 5 ' and one at 3 ' , sequences functionally linked in a plasmid expression vector (pgDPOLIEP) that works as a DNA vaccine and comprises a CMV promoter; in C) schematically shown is a chimeric polypeptide sequence embodiment of the invention (gDPOLIEP) comprising the polypeptide sequences of a polyepitope of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
  • the present invention provides an alternative vaccine and/or an alternative for obtaining vaccines inducing cellular and/or humoral immunity against Coronavirus, SARS-CoV-2 or COVID-19 and related viruses.
  • the present invention provides chimeric nucleotide sequence comprising the sequences encoding, in frame, a plurality of epitopes of a coronavirus protein, and/or the chimeric fusion polypeptide.
  • said coronavirus protein is a non-structural protein of the virus, such as replicase protein 1ab.
  • the sequences encoding multiple epitopes of replicase 1ab are aligned in frame.
  • the encoded product is a chimeric protein of a replicase 1ab polyepitope.
  • the nucleotide sequence encoding the polyepitope comprises an in-frame combination of the nucleotide sequences selected from SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81, 83, 85, 87, 89, 91 [0094] In one embodiment, the nucleotide sequence encoding the polyepitope is defined by SEQ ID NO: 95.
  • said nucleotide sequence further comprises a nucleotide sequence encoding a modified form of herpes simplex type-1 (HSV-1) glycoprotein D (gD).
  • the nucleotide sequence encoding the modified form of glycoprotein D (gD) of herpes simplex type-1 (HSV-1) is defined by SEQ ID NO: 97 and/or SEQ ID NO: 99.
  • said nucleotide sequence additionally comprises a nucleotide sequence encoding a first spacer polypeptide.
  • said chimeric nucleotide sequence comprises: a) a nucleotide sequence that encodes a first peptide comprising epitopes present in the polyprotein amino acid sequence of replicase 1ab (PR1ab); b) a nucleotide sequence encoding a first spacer polypeptide; and c) a nucleotide sequence that encodes a modified form of herpes simplex type-1 (HSV-1) glycoprotein D (gD).
  • PR1ab polyprotein amino acid sequence of replicase 1ab
  • gD herpes simplex type-1 glycoprotein D
  • said chimeric nucleotide sequence is defined by SEQ ID NO: 101.
  • a mammalian expression vector comprising said chimeric nucleotide sequence also integrates the objects of the invention.
  • said expression vector is a DNA vaccine to induce cellular and humoral immunity, having as antigenic targets the non-structural proteins of the virus, providing the induction of a combined immune response of CD8+ T cells producing antiviral molecules. in addition to the humoral response against SARS-CoV-2.
  • the use of the invention provides surprising promotion of viral load reduction, clinical recovery and protection against Coronavirus, SARS-CoV-2 or COVID-19 and related viruses.
  • said Sars-Cov2 antigens were genetically fused to another viral protein, Herpes Simplex Virus type 1 (HSV-1) glycoprotein D (gD). This fusion showed increased immunogenicity of the antigens of the antigens. The gD had an adjuvant effect for the activation of T lymphocytes.
  • HSV-1 Herpes Simplex Virus type 1 glycoprotein D
  • the present invention provides an RNA vaccine comprising an RNA sequence encoding a plurality of epitopes of a coronavirus non-structural protein.
  • said vaccine comprises the sequences coding for multiple epitopes of replicase 1ab aligned in frame.
  • said vaccine comprises a combination of RNA sequences selected from SEQ ID NO: 113 to SEQ ID NO: 158.
  • the present invention provides a chimeric fusion protein comprising a plurality of epitopes from a coronavirus non-structural protein.
  • the present invention provides a chimeric fusion protein comprising a combination of replicase 1ab peptide sequences selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 , 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 , 76, 78, 80, 82, 84, 86, 88, 90, 92.
  • said chimeric fusion protein comprises SEQ ID NO: 96.
  • said chimeric fusion protein further comprises comprising a polypeptide sequence of a modified form of herpes simplex type-1 (HSV-1) glycoprotein D (gD).
  • HSV-1 herpes simplex type-1
  • gD glycoprotein D
  • said polypeptide sequence of the modified form of glycoprotein D (gD) of herpes simplex type-1 (HSV-1) is defined by SEQ ID NO: 98 and/or SEQ ID NO: 100.
  • said chimeric fusion protein further comprises a sequence of a first spacer polypeptide, preferably defined by SEQ ID NO: 94.
  • said fusion protein comprises: a) a first peptide consisting of epitopes present in the amino acid sequence of replicase 1 ab polyprotein (PR1 ab); b) a first spacer; c) modified form of glycoprotein D (gD) of herpes simplex type-1 (HSV-1).
  • the first peptide consists of epitopes present in the amino acid sequence of the NSa regions as defined in SEQ ID NO: 110 and/or NSb as defined in SEQ ID NO: 112 in PR1 ab.
  • the spacer will consist of the amino acid sequence GGGS as defined in SEQ ID NO: 94.
  • the invention provides a vector comprising the fusion protein coding sequences defined above.
  • said vector further comprises a promoter region and Kozak sequence, wherein the promoter is preferably CMV and said vector is pcDNA3.1.
  • pep peptides
  • the vaccine of the invention in the embodiment comprising the chimeric nucleotide sequences encoding the fusion protein induced the increased production of IFN ⁇ when compared to formulations where pgDNSA + pgDNSB or the empty vaccine vector pDNA3.1 was administered.
  • pgDPOLIEP is immunogenic capable of inducing a cell-type immune response by inducing IFNy and TNF-producing CD8+ T lymphocytes.
  • the three plasmids (pCovid_NSa, pCovid_NSb and pCovid_Poliept), comprising, respectively, Seq ID 1 , 2 and 3, as well as the respective encoded peptides (purified by reversed-phase HPLC with > 95% purity), were synthesized and obtained commercially (Genscript) Figure 2 and Table 1.
  • Vaccine plasmids were validated by transfection into eukaryotic cells followed by immunodetection of target proteins. For this, HEK293-T cells were cultured (DMEM+10% FBS) in 24-well plates (10x5 cells/well) for 24 hours (37 ° C, 5% CO2). After reaching the confluence of 70-80%, cells were transfected with recombinant plasmids (pgDNSA, pgDNSB and pgDPOLIEP) or controls (pCDNA3.1) using the Lipofectamine 2000 Kit (ThermoFisher), according to the manufacturer's instructions.
  • the wells were washed (3 times) with PBS, the cells were incubated (45 min., RT) with anti-mouse/human IgG antibody conjugated to AlexaFluor 488 (Invitrogen) with shaking. After a new washing cycle, the cells were incubated (20 min., RT) with Hoechst 33342 core dye (Life Technologies) diluted (1/500) in PBS (200 ⁇ l/well). After a new washing cycle, the cells were visualized in an Evos FL immunofluorescence microscope (Thermo Fisher Scientific) and images were captured at 100x and 200x magnifications.
  • Example 3 In vivo assessment of vaccine immunogenicity
  • Animal experiments were conducted in accordance with the Ethical Principles of Animal Experimentation established by the Committee on Ethics in Animal Experimentation (CEUA).
  • C57BL/6 mice were inoculated intramuscularly according to the following immunization groups: 1) control plasmid (pCDNA3.1); 2) combined pgDNSA and pgDNSB plasmids; 3) polyepitope plasmid (pgDPOLIEP).
  • the animals were electroporated at the site of application, and 2 electrical pulses of 45 V each were applied, with an interval of duration of 450 ms (pulses that form pores in the cell membrane), and 4 pulses of 20 V each, with duration of 450 ms (transfer pulses), using the NEPA21 SuperElectroporator equipment (NepaGeneCo., Ltd.; Chiba, Japan).
  • ICS intracellular cytokines
  • the splenocytes obtained were cultured at a rate of 106 cells/well for 2 hours (37 Q C, 5% CO2) in the presence of antigen-specific stimulus (peptides: pep4- VSFCYMHHM; pep ⁇ - VAYFNMVYM) followed by addition of Brefeldin A (GolgiPlug; BD Biosciences) and stimulation for another 4 hours.
  • Antigen-specific stimulus peptides: pep4- VSFCYMHHM; pep ⁇ - VAYFNMVYM
  • Brefeldin A GolgiPlug; BD Biosciences
  • spleen cells were collected and obtained using the techniques described above. As shown in Figure 4, after two intramuscular doses of the pgDPOLIEP DNA vaccine (50pg), the CD8 + vaccine-specific T cell response was evaluated by ICS assay using 2 FI2-Db-restricted peptides contained in the DNA vaccine. The number of spleen cells capable of producing IFNy was determined, as well as the frequencies of IFNy and TNF production by antigen-experienced activated CD8 + T cells (CD49d + CD11a hl CD8a'°).
  • CD8 + T cells from mice that received the pgDPOLIEP DNA vaccine exhibited a dominant Th1 phenotype once stimulated with pep, with numbers and significantly higher numbers of IFNy-, TNF- and IL-2 producing cells, as compared to the other DNA vaccines containing the NSA and NSB portion or the pcDNA3.1 vector (Fig. 4a-f).
  • spleen cells from animals after two intramuscular doses of DNA vaccines were subjected to the ELISPOT assay (Fig. 5).
  • the formulation composed of pgDPOLIEP induced a higher production of IFNy when compared to the formulations where pgDNSA + pgDNSB or the empty vaccine vector pDNA3.1 was administered.
  • the results demonstrate that pgDPOLIEP is immunogenic capable of inducing a cell-type immune response by inducing CD8 + T lymphocytes producing IFNy and TNF.
  • the invention is similarly applicable to other vaccine vehicles, that is, the use of the invention is not limited to the incorporation of the fusion protein coding sequences by a DNA-like vector.
  • examples include: incorporation of the chimeric nucleotide sequence of the invention into vaccine viral vectors, such as the adenoviruses currently used (Janssen, Oxford) for vaccines against SarsCov2; incorporation of the chimeric nucleotide sequence of the invention into microorganisms that express the fusion protein of the invention, for subsequent inoculation of said protein, preferably purified; the use of the chimeric RNA sequence of the invention to RNA vaccine vectors, such as those currently used (Moderna, Pfizer) for vaccines against SarsCov2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A presente invenção pertence ao campo técnico da Biotecnologia. Mais especificamente, é descrita uma sequência nucleotídica quimérica, a correspondente proteína de fusão codificada, que compreende um poliepitopo resultante da seleção e justaposição de múltiplos epítopos de uma proteína de coronavírus para indução de resposta imune em mamíferos. Em uma concretização, referida proteína de fusão compreende: a) um primeiro peptídeo que consiste de epítopos presentes na sequência de aminoácidos da poliproteína da replicase 1ab (PR1ab); b) um primeiro espaçador; c) uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1). Em uma concretização, a poliproteína da replicase é definida pela SEQ ID NO: 96 flanqueadas de um fragmento gD compreendendo a sequência de aminoácidos definida pela SEQ ID NO: 98 na porção N-terminal e outro fragmento gD compreendendo a sequência de aminoácidos definida pela SEQ ID NO: 100 na região C-terminal. O uso da proteína de fusão apresenta resultados surpreendentes para a indução de resposta imune celular e humoral contra coronavírus, SARS-CoV-2 e vírus relacionados.

Description

Relatório Descritivo de Patente de Invenção
SEQUÊNCIA NUCLEOTÍDICA QUIMÉRICA, VETOR DE EXPRESSÃO EM MAMÍFEROS, VACINA DE RNA, PROTEÍNA QUIMÉRICA DE FUSÃO, USO NA PRODUÇÃO DE VACINA CONTRA CORONAVÍRUS
Campo da Invenção
[0001] A presente invenção pertence ao campo técnico da Biotecnologia. Mais especificamente, é descrita uma sequência nucleotídica quimérica, a correspondente proteína de fusão codificada, que compreende um poliepitopo resultante da seleção e justaposição de múltiplos epítopos de uma proteína de coronavírus para indução de resposta imune em mamíferos. Em uma concretização, referida proteína de fusão compreende: a) um primeiro peptídeo que consiste de epítopos presentes na sequência de aminoácidos da poliproteína da replicase 1ab (PR1ab); b) um primeiro espaçador; c) uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1). Em uma concretização, a poliproteína da replicase é definida pela SEQ ID NO: 96 flanqueadas de um fragmento gD compreendendo a sequência de aminoácidos definida pela SEQ ID NO: 98 na porção N-terminal e outro fragmento gD compreendendo a sequência de aminoácidos definida pela SEQ ID NO: 100 na região C-terminal. O uso da proteína de fusão apresenta resultados surpreendentes para a indução de resposta imune celular e humoral contra coronavírus, SARS-CoV-2 e vírus relacionados.
Antecedentes da Invenção
[0002] A re-emergência do betacoronavírus SARS-CoV-2 resultou, até o momento, em mais de 107 milhões de infecções e mais de dois milhões de mortes no mundo (Amanat & Krammer, 2020). A rápida propagação desse vírus associada à alta taxa de morbidade, bem como a ausência de estratégias terapêuticas e/ou profiláticas confirmadas cientificamente reforçam a urgência do desenvolvimento de vacinas. O caráter pandémico da COVID-19 impulsionou a corrida pelo desenvolvimento de tratamentos terapêuticos, de modo que dezenas de drogas e candidatos vacinais estão sendo testados no contexto clínico e pré-clínico (W.-H. Chen et al., 2020; Sun et al., 2020).
[0003] Os sintomas da COVID-19 podem variar de ausentes e leves até severos, e inclui febre, tosse seca, dispneia, mialgia, cansaço, leucopenia, chegando até pneumonia. O sistema imune do paciente contribui amplamente para o quadro. Em casos mais graves, um fenômeno chamado de cytokine storm, uma abrupta e intensa liberação de citocinas pró-inflamatórias (IFN-a, IFN-Y, IL-1 b, IL-6, IL-12, IL-18, IL-33, TNF-a, TGFP) e quimiocinas (CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10) resultam em um acúmulo de fluidos nos pulmões, falência múltipla e óbito (Li et al., 2020). O vírus causador da doença pertence à mesma família do MERS-CoV e SARS-CoV, sendo responsáveis por síndromes respiratórias agudas que se tornaram epidemias nas duas últimas décadas.
[0004] O SARS-CoV-2 pertence à família Coronaviridae, ordem Nidovirales, que é dividida em quatro gêneros {Alpha-, Beta-, Gama-, Delta-coronavirus ), sendo a maioria destes vírus zoonóticos (Grifoni et al., 2020). Tratam-se de vírus envelopados com RNA fita simples de orientação positiva, e genomas entre 26 e 32 kb com 29,8 kb, o genoma de SARS-CoV-2 possui 14 ORFs (do inglês Open Reading Frame(s)) que codificam 27 proteínas. Na região 5’ ficam as ORFs orflab e orfla em overlap que codificam duas poliproteínas que são processadas em 15 proteínas não estruturais (nsp1-nsp10 e nsp12-nsp16), e na região 3’ ficam as 4 proteínas estruturais (spike, envelope, membrana e nucleocapsídeo) e 8 proteínas acessórias (3a, 3b, p6, 7a, 7b, 8b, 9b, e orf14) (Wu et al., 2020), conforme mostra a Figura 1.
[0005] Ensaios de microscopia eletrónica revelaram que SARS-CoV e SARS- CoV-2 apresentam grande similaridade e entram nas células usando o mesmo receptor, a enzima conversora de angiotensina (ACE2), ao qual a proteína glicosilada do spike se liga e sofre mudanças conformacionais irreversíveis antes de entrar na célula (Wrapp et al., 2020). A glicoproteína S de SARS-CoV- 2 possui 77% de similaridade com a spike do SARS-CoV e é um alvo natural por seu papel crítico na ligação ao receptor e consequente fusão das membranas do vírus e do hospedeiro sendo, portanto, considerada o antígeno principal (Yuan et al., 2020).
[0006] A maioria das estratégias vacinais em desenvolvimento tem como alvo a proteína virai spike, a qual está presente na superfície do vírion e é responsável pela interação do vírus com o receptor celular ACE2, sendo, portanto, o principal alvo de anticorpos neutralizantes (Roper & Rehm, 2009). Entretanto, na resposta natural desenvolvida contra o coronavírus nem sempre há indução de anticorpos antígeno-específicos de longa duração. Estudos pré- clínicos com estratégias vacinais baseadas em SARS-CoV-1 inativado mostraram que, mesmo com a indução de anticorpos com capacidade neutralizante e protetora, parte dos animais imunizados apresentou complicações clínicas após o desafio, sendo relatado dano pulmonar com infiltração eosinofílica em camundongos e aumento da gravidade da doença em furão (Tseng et al., 2012; Weingartl et al., 2004). Dados epidemiológicos do surto de SARS-CoV-1 na China em 2005 sugerem que anticorpos neutralizantes de reação cruzada, detectáveis durante as primeiras duas semanas da doença, estavam correlacionados com altas taxas de mortalidade precoce pelo SARS (Yang et al., 2005). Estudos posteriores demonstraram que anticorpos gerados contra variantes da proteína S, tendem a aumentar a infecção de macrófagos humanos por um mecanismo conhecido por aumento da infecção mediado por anticorpo (ADE) (Wang et al., 2014). Esse fenômeno é a base patogênica do vírus da peritonite infecciosa felina (FIPV, um coronavírus tipo II) e a dengue grave (Tirado & Yoon, 2003).
[0007] Baseado em dados da literatura de dengue, sabe-se que quando a resposta vacinai é acompanhada da ativação de células T CD8+, o efeito patogênico dos anticorpos é neutralizado (Zellweger et al., 2014). Além disso, de acordo com estudos prévios utilizando SARS-CoV-1 , a transferência adotiva de células T CD8+ promove a redução da carga virai, recuperação clínica e proteção em condições experimentais (Zhao et al., 2010). Em pacientes convalescentes, foi possível detectar células T CD8+ e CD4+ de memória até quatro anos após a infecção primária, as quais foram responsivas à reestimulação in vitro, e resultaram na elevada produção de citocinas e moléculas com papel antiviral, como IFNy, perforina e granzima B (H. Chen et al., 2005). Estes resultados evidenciam que as células T desempenham um papel crítico na mediação de proteção contra SARS-CoV-2.
[0008] Os linfócitos T citotóxicos (CTL) reconhecem antígenos como peptídeos curtos (geralmente com aproximadamente 8 a aproximadamente 10 aminoácidos de comprimento) apresentados por moléculas de classe I do complexo principal de histocompatibilidade (MHC) (Townsend & Bodmer, 1989). A caracterização desses fragmentos de antígenos, denominados determinantes de epítopos imunogênicos, tem permitido o desenho de estratégias de imunização baseadas no uso de vacinas que contenham esses segmentos (Berzofsky et al., 2001 ; Melief & Van Der Burg, 2008). Como um produto da tecnologia de DNA recombinante, foi possível o desenvolvimento de uma classe de novas biomoléculas com características quiméricas e propriedade multi-antígeno. Ao fundir geneticamente dois ou mais segmentos antigênicos de uma ou várias proteínas alvo, o produto obtido pode possuir os determinantes imunogênicos das distintas proteínas alvos originais. Desse modo, a fusão de diferentes epítopos provenientes de diferentes fontes pode induzir resposta imunológica específica multivalente contra diferentes patógenos/antígenos através de uma construção única, estratégia essa denominada vacina de poliepítopo ou multiepítopo. De maneira geral, estratégias vacinais que empregam esse método têm sido estudadas para o tratamento de doenças infecciosas e câncer. Existem alguns trabalhos que usam dessa estratégia para a criação de vacinas contra COVID-19. Entretanto, as estratégias desenvolvidas têm proteínas estruturais como alvo Kar et al., 2020; Naz et al., 2020; Oladipo et al., 2021 ; Safavi et al., 2020; Saha et al., 2021 ; Sohail et al., 2021 ; Tahir UI Qamar et al., 2020). [0009] A glicoproteína D (gD) tem a capacidade de interagir com o receptor HVEM (do inglês Herpes Virus Entry Mediator), que promove ativação de células do sistema imunológico de modo direto pela produção de NF-kB (Sciortino et al., 2008) ou, indiretamente, pelo bloqueio da ligação de BTLA (do inglês B and T Lymphocyte Attenuator) e CD160 a este receptor que resultaria em sinais co-inibitórios (Steinberg et al., 2011). É conhecida na técnica a utilização da fusão de antígenos à gD para o desenvolvimento de vacinas terapêuticas contra tumores induzidos pelo vírus papiloma humano (HPV) tanto na forma de vacina de DNA (Diniz et al., 2010; Diniz et al., 2013; Aps et al., 2015; Diniz et al., 2016) como na forma de vacina de proteína purificada (Porchia et al., 2011 ; Porchia et al., 2017), cujos resultados demonstram um aumento significativo na indução de linfócitos T CD8+ locais e sistémicos específicos contra os antígenos tumorais geneticamente fusionados à gD. [0010] Na busca pelo estado da técnica em literaturas científica e patentária, foram encontrados os seguintes documentos que tratam sobre o tema:
[0011] O documento PI 0904880-4 revela a construção de dois plasmídeos, um contendo gene expressando a oncoproteína E7 do vírus do papiloma humano tipo-16 (HPV-16) fusionada à glicoproteína D (gD) do herpes simples tipo-1 (HSV-1) e outro plasmídeo contendo o gene que expressa a interleucina-2, destinados ao controle de tumores.
[0012] O documento PI 1003749-7 revela uma proteína híbrida, formada pela fusão genética da oncoproteína E7 do vírus do papiloma humano tipo-16 (HPV- 16) com uma forma modificada da glicoproteína D do herpes simples tipo 1 com destino a ser adjuvante vacinai a outros antígenos e/ou como ingrediente ativo em composições farmacêuticas para o controle de tumores.
[0013] Os documentos US8962816 e US9724406 revelam proteínas quiméricas, nas quais um ou mais antígenos são introduzidos na região C- terminal de uma glicoproteína D (gD) de herpes simples tipo 1 , com vistas a melhorar a resposta imune de um indivíduo ao antígeno de modo mais acentuada, quando comparada a proteína sem a fusão com gD. Estes documentos revelam possíveis aplicações para vacinas contra influenza, malária, câncer de colo de útero e HIV/AIDS.
[0014] A literatura científica que circunscreve a invenção, sem porém antecipá- la ou sugeri-la, inclui os documentos a seguir.
[0015] Amanat, F., & Krammer, F. (2020). Perspective SARS-CoV-2 Vaccines: Status Report. https://doi.Org/10.1016/j.immuni.2020.03.007 [0016] Aps, L. R., Diniz, M. O., Porchia, B. F., Sales, N. S., Moreno, A. C. R., & Ferreira, L. C. (2015). Bacillus subtilis spores as adjuvants for DNA vaccines. Vaccine, 33(20), 2328-2334. https://doi.Org/10.1016/j.vaccine.2015.03.043 [0017] Berzofsky, J. A., Ahlers, J. D., & Belyakov, I. M. (2001). Strategies for designing and optimizing new generation vaccines. In Nature Reviews Immunology (Vol. 1 , Issue 3, pp. 209-219). European Association for Cardio- Thoracic Surgery. https://doi.org/10.1038/35105075
[0018] Chen, H., Fiou, J., Jiang, X., Ma, S., Meng, M., Wang, B., Zhang, M., Zhang, M., Tang, X., Zhang, F., Wan, T., Li, N., Yu, Y., Hu, H., Yang, R., Fie, W., Wang, X., & Cao, X. (2005). Response of Memory CD8 + T Cells to Severe Acute Respiratory Syndrome (SARS) Coronavirus in Recovered SARS Patients and Healthy Individuais. The Journal of Immunology, 175(1), 591-598. https://doi.Org/10.4049/jimmunol.175.1.591
[0019] Chen, W.-H., Strych, U„ Hotez, P. J„ & Bottazzi, M. E. (2020). The SARS-CoV-2 Vaccine Pipeline: an OverView. Current Tropical Medicine Reports. https://doi.Org/10.1007/s40475-020-00201 -6
[0020] Diniz, M. O., Lasaro, M. O., Ertl, H. C., & Ferreira, L. C. (2010). Immune responses and therapeutic antitumor effects of an experimental DNA vaccine encoding human papillomavirus type 16 oncoproteins genetically fused to herpesvirus glycoprotein D. Clinicai and Vaccine Immunology, 17(10), 1576- 1583. https://doi.Org/10.1128/CVI.00264-10
[0021] Diniz, M. O., Cariri, F. A., Aps, L. R., & Ferreira, L. C. (2013). Enhanced therapeutic effects conferred by an experimental DNA vaccine targeting human papillomavirus-induced tumors. Human gene therapy, 24(10), 861-870. https://doi.Org/10.1089/hum.2013.102
[0022] Diniz, M. 0., Sales, N. S„ Silva, J. R„ & Ferreira, L. C. S. (2016). Protection against HPV-16-Associated Tumors Requires the Activation of CD8+ Effector Memory T Cells and the Control of Myeloid-Derived Suppressor Cells. Molecular cancer therapeutics, 15(8), 1920-1930. https://doi.Org/10.1158/1535-7163
[0023] Dos Santos Franco, L, Oliveira Vidal, P., & Amorim, J. Fl. (2017). In silico design of a Zika virus non-structural protein 5 aiming vaccine protection against zika and dengue in different human populations. Journal of Biomedical Science, 24(1), 1-10. https://doi.org/10.1186/s12929-017-0395-z [0024] Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R., Rawlings, S. A., Sutherland, A., Premkumar, L, Jadi, R. S., Marrama, D., de Silva, A. M., Frazier, A., Carlin, A. F., Greenbaum, J. A., Peters, B., Krammer, F., Smith, D. M., Crotty, S., & Sette, A. (2020). Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Flumans with COVID-19 Disease and Unexposed Individuais. Cell, 181 (7), 1489-1501. e15. https://doi.Org/10.1016/j. cell.2020.05.015
[0025] Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS- CoV-2. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-67749-1 [0026] Li, X., Geng, M., Peng, Y., Meng, L., & Lu, S. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. In Journal of Pharmaceutical Analysis (Vol. 10, Issue 2, pp. 102-108). Xi’an Jiaotong University. https://doi.Org/10.1016/j.jpha.2020.03.001
[0027] Melief, C. J. M., & Van Der Burg, S. H. (2008). Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. In Nature Reviews Cancer (Vol. 8, Issue 5, pp. 351-360). Nat Rev Cancer. https://doi.Org/10.1038/nrc2373 [0028] Naz, A„ Shahid, F„ Butt, T. T„ Awan, F. M„ Ali, A„ & Malik, A. (2020). Designing Multi-Epitope Vaccines to Combat Emerging Coronavirus Disease 2019 (COVID-19) by Employing Immuno-lnformatics Approach. Frontiers in Immunology, 11 , 1663. https://doi.org/10.3389/fimmu.2020.01663 [0029] Porchia, B. F., Diniz, M. O., Cariri, F. A., Santana, V. C., Amorim, J. H., Balan, A., & Ferreira, L. C. S. (2011). Purified herpes simplex type 1 glycoprotein D (gD) genetically fused with the type 16 human papillomavirus E7 oncoprotein enhances antigen-specific CD8+ T cell responses and confers protective antitumor immunity. Molecular pharmaceutics, 8(6), 2320-2330. https://doi.Org/10.1021 /mp200194s
[0030] Porchia, B. F., Moreno, A. C. R., Ramos, R. N., Diniz, M. O., de Andrade, L. H. T., Rosa, D. S., ... & Ferreira, L. C. S. (2017). Flerpes simplex virus glycoprotein D targets a specific dendritic cell subset and improves the performance of vaccines to human papillomavirus-associated tumors. Molecular cancer therapeutics, 16(9), 1922-1933. https://doi.org/10.1158/1535-7163 [0031] Oladipo, E. K„ Ajayi, A. F„ Onile, O. S„ Ariyo, O. E„ Jimah, E. M„ Ezediuno, L. O., Adebayo, O. I., Adebayo, E. T., Odeyemi, A. N., Oyeleke, M. O., Oyewole, M. P., Oguntomi, A. S., Akindiya, O. E., Aremu, V. O., Aboderin, D. O., & Oloke, J. K. (2021). Designing a conserved peptide-based subunit vaccine against SARS-CoV-2 using immunoinformatics approach. In Silico Pharmacology, 9(1). https://doi.org/10.1007/s40203-020-00062-x [0032] Roper, R. L, & Rehm, K. E. (2009). SARS vaccines: where are we? Expert Review of Vaccines, 8(7), 887-898. https://doi.org/10.1586/erv.09.43 [0033] Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612-7628. https://doi.Org/10.1016/j.vaccine.2020.10.016 [0034] Saha, R., Ghosh, P., & Burra, V. L. S. P. (2021). Designing a next generation multi-epitope based peptide vaccine candidate against SARS-CoV-2 using computational approaches. 3 Biotech, 11 (2), 47. https://doi.Org/10.1007/s13205-020-02574-x
[0035] Sciortino, M. T., Mediei, M. A., Marino-Merlo, F., Zaccaria, D., Giuffrè- Cuculletto, M., Venuti, A., Grelli, S., & Mastino, A. (2008). Involvement of HVEM receptor in activation of nuclear factor KB by herpes simplex virus 1 glycoprotein D. Cellular Microbiology, 10(11), 2297-2311. https://doi.0rg/IO.I I H/j.l 462- 5822.2008.01212.x
[0036] Sohail, M. S„ Ahmed, S. F„ Quadeer, A. A„ & McKay, M. R. (2021). In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. In Advanced Drug Delivery Reviews (Vol. 171 , pp. 29-47). Elsevier B.V. https://doi.Org/10.1016/j.addr.2021.01.007
[0037] Steinberg, M. W., Cheung, T. C., & Ware, C. F. (2011). The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation. Immunological Reviews, 244(1), 169-187. https://doi.org/10-1111/j.1600-
065X.2011.01064.x
[0038] Sun, K., Chen, J., & Viboud, C. (2020). Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. The Lancet Digital Health, 2(4), e201- e208. https://doi.Org/10.1016/S2589-7500(20)30026-1
[0039] Tahir UI Qamar, M., Shahid, F., Aslam, S., Ashfaq, U. A., Aslam, S., Fatima, I., Fareed, M. M., Zohaib, A., & Chen, L. L. (2020). Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infectious Diseases of Poverty, 9(1). https://doi.org/10.1186/s40249-020-00752- w
[0040] Tirado, S. M. C., & Yoon, K. J. (2003). Antibody-dependent enhancement of virus infection and disease. Virai Immunology, 16(1), 69-86. https://doi.Org/10.1089/088282403763635465
[0041] Townsend, A., & Bodmer, H. (1989). Antigen recognition by class I- restricted T lymphocytes. In Annual Review of Immunology (Vol. 7, pp. 601 — 624). Annu Rev Immunol. https://doi.org/10.1146/annurev.iy.07.040189.003125 [0042] Tseng, C.-T., Sbrana, E., Iwata-Yoshikawa, N., Newman, P. C., Garron, T., Atmar, R. L., Peters, C. J., & Couch, R. B. (2012). Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge with the SARS Virus. PLoS ONE, 7(4), e35421. https://doi.org/10.1371/journal.pone.0035421
[0043] Wang, S. F., Tseng, S. P., Yen, C. H., Yang, J. Y., Tsao, C. H., Shen, C. W„ Chen, K. H„ Liu, F. T„ Liu, W. T„ Chen, Y. M. A., & Huang, J. C. (2014). Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochemical and Biophysical Research Communications, 451 (2), 208-214. https://doi.Org/10.1016/j.bbrc.2014.07.090 [0044] Weingartl, H., Czub, M., Czub, S., Neufeld, J., Marszal, P., Gren, J., Smith, G., Jones, S., Proulx, R., Deschambault, Y., Grudeski, E., Andonov, A., Fie, R., Li, Y., Copps, J., Grolla, A., Dick, D., Berry, J., Ganske, S., ... Cao, J. (2004). Immunization with Modified Vaccinia Virus Ankara-Based Recombinant Vaccine against Severe Acute Respiratory Syndrome Is Associated with Enhanced Hepatitis in Ferrets. Journal of Virology, 78(22), 12672-12676. https://doi.Org/10.1128/JVI.78.22.12672-12676.2004
[0045] Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. In bioRxiv. bioRxiv. https://doi.org/10.1101/2020.02.11.944462
[0046] Wu, F„ Zhao, S„ Yu, B„ Chen, Y. M„ Wang, W„ Song, Z. G„ Hu, Y„ Tao, Z. W„ Tian, J. H„ Pei, Y. Y„ Yuan, M. L, Zhang, Y. L, Dai, F. H„ Liu, Y„ Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269. https://doi.org/10.1038/s41586-020-2008-3 [0047] Yang, Z. Y., Werner, H. C., Kong, W. P., Leung, K., Traggiai, E., Lanzavecchia, A., & Nabel, G. J. (2005). Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 797- 801. https://doi.org/10.1073/pnas.0409065102
[0048] Yuan, M„ Wu, N. C„ Zhu, X., Lee, C. C. D„ So, R. T. Y„ Lv, H„ Mok, C. K. P., & Wilson, I. A. (2020). A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science, 368(6491), 630- 633. https://doi.org/10-1126/science.abb7269
[0049] Zellweger, R. M„ Eddy, W. E„ Tang, W. W„ Miller, R„ & Shresta, S. (2014). CD8 + T Cells Prevent Antigen-lnduced Antibody-Dependent Enhancement of Dengue Disease in Mice. The Journal of Immunology, 193(8), 4117-4124. https://doi.org/10.4049/jimmunol.1401597
[0050] Zhao, J., Zhao, J., & Perlman, S. (2010). T cell responses are required for protection from clinicai disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. Journal of Virology, 84(18), 9318-9325. https://doi.Org/10.1128/JVI.01049-10
[0051] Do que se depreende da literatura pesquisada, não foram encontrados documentos antecipando ou sugerindo os ensinamentos da presente invenção, de forma que a solução aqui proposta possui, aos olhos dos inventores, aplicação industrial, novidade e atividade inventiva frente ao estado da técnica. É um dos objetivos da presente invenção proporcionar uma vacina alternativa e/ou uma alternativa para a obtenção de vacinas contra Coronavírus, SARS- CoV-2 ou COVID-19 e vírus relacionados.
Sumário da Invenção
[0052] A presente invenção provê uma sequência polipeptídica quimérica que compreende um poliepitopo resultante da seleção e justaposição de múltiplos epítopos de uma proteína de coronavírus, para indução de resposta imune em mamíferos.
[0053] As sequências nucleotídicas de DNA ou RNA codificadoras do referido polipeptídeo são também objeto da invenção, assim como os vetores de expressão em mamíferos que compreendem as referidas sequências nucleotídicas.
[0054] A presente invenção provê uma vacina alternativa e/ou uma alternativa para a obtenção de vacinas indutora de imunidade celular e/ou humoral contra Coronavírus, SARS-CoV-2 ou COVID-19 e vírus relacionados. Em uma concretização, tendo como elementos antigênicos as proteínas não estruturais do vírus.
[0055] Em uma concretização, a presente invenção proporciona uma vacina para induzir uma resposta imunológica combinada de células T CD8+ produtoras de moléculas antivirais em adição à resposta humoral contra SARS- CoV-2.
[0056] O uso in vivo da presente invenção proporciona surpreendente potencial para promover a redução da carga virai, recuperação clínica e proteção contra Coronavírus, SARS-CoV-2 ou COVID-19 e vírus relacionados, entre outras vantagens.
[0057] Em uma concretização, os elementos ou alvos antigênicos da vacina da invenção se encontram nas proteínas não-estruturais codificadas pela ORFIab da cepa brasileira de SARS-CoV-2, em contraste às tecnologias já existentes na técnica que focam principalmente na proteína Spike (proteína S) do vírus. [0058] Em uma concretização, a presente invenção proporciona a associação dos epítopos imunogênicos dessas regiões comparando com os HLAs (sistema antígeno leucocitário humano) mais frequentes na população humana brasileira, sendo eles: C*02:02, A*32:01 , A*68:02, A*01 :01 , B*08:01 , A*65:02, B*51 :01 , B*35:01 ; onde cada alelo é frequente em pelo menos 3% da população do Brasil. Em outras concretizações, a associação dos epítopos imunogênicos é comparada com HLAs de grupos étnicos específicos e personalizada a diferentes populações.
[0059] Em uma concretização, são utilizados separadores, preferencialmente definidos pela sequência de aminoácidos definido pela SEQ ID NO: 94 adicionados entre os peptídeos. Dentre outras razões, estes separadores podem facilitar a estruturação do antígeno após a tradução intracelular na expressão e/ou facilitar o processamento do antígeno.
[0060] Em uma concretização, a sequência que contém o multiepítopo está inserida na sequência da glicoproteína D (gD) do herpes vírus. A gD, entre outras vantagens, apresenta efeito adjuvante para a ativação de linfócitos T, relacionado à sua capacidade de interação com receptor HVEM (do inglês Herpes Vírus Entry Mediator) que promove ativação de células do sistema imunológico.
[0061] A presente invenção apresenta os seguintes objetos:
[0062] Em um primeiro objeto, a presente invenção proporciona uma sequência nucleotídica quimérica compreendendo as sequências codificantes, em fase, de uma pluralidade de epítopos de uma proteína de coronavirus. [0063] Em uma concretização, a referida proteína de coronavirus é uma proteína não estrutural do vírus, como a proteína da replicase 1ab. Em uma concretização, as sequências codificantes de múltiplos epítopos da replicase 1ab são alinhadas em fase, de forma que o produto codificado é uma proteína quimérica de um poliepitopo de replicase 1ab.
[0064] Em uma concretização, a referida sequência nucleotídica adicionalmente compreende uma sequência nucleotídica que codifica uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1 ). [0065] Em uma concretização, a referida sequência nucleotídica adicionalmente compreende uma sequência nucleotídica codificante de um primeiro polipeptídeo espaçador.
[0066] Em uma concretização, a referida sequência nucleotídica compreende: a) uma sequência nucleotídica que codifica um primeiro peptídeo compreendendo epítopos presentes na sequência de aminoácidos da poliproteína da replicase 1ab (PR1ab); b) uma sequência nucleotídica codificante de um primeiro polipeptídeo espaçador; e c) uma sequência nucleotídica que codifica uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
[0067] Em uma concretização, a sequência nucleotídica codificadora do poliepitopo compreende uma combinação, em fase, das sequências nucleotídicas selecionadas dentre SEQ ID NO: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91.
[0068] Em uma concretização a sequência nucleotídica codificadora do poliepitopo é definida pela SEQ ID NO: 95.
[0069] Em uma concretização a sequência nucleotídica codificadora da forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1) é definida pela SEQ ID NO: 97 e/ou SEQ ID NO: 99.
[0070] Em um segundo objeto, é provido um vetor de expressão compreendendo:
- a sequência nucleotídica quimérica codificadora do poliepitopo, referida acima; e
- um ou mais promotores de expressão funcionalmente ligados à referida sequência nucleotídica.
[0071] Em uma concretização, a sequência polipeptídica do poliepitopo compreende uma combinação das sequências polipeptídicas selecionadas dentre as SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74,
76, 78, 80, 82, 84, 86, 88, 90, 92.
[0072] Em um terceiro objeto, é provida uma vacina de RNA compreendendo uma sequência de RNA que codifica o poliepitopo referido acima.
[0073] Em uma concretização a referida sequência de RNA compreende uma combinação das sequências de RNA selecionadas dentre SEQ ID NO: 113 a SEQ ID NO: 158. Em uma concretização, a referida sequência de RNA adicionalmente compreende a SEQ ID NO: 105 Em uma concretização, a referida sequência de RNA adicionalmente compreende a SEQ ID NO: 161 e/ou SEQ ID NO: 162.
[0074] Em um quarto objeto, a presente invenção proporciona uma sequência polipeptídica quimérica compreendendo uma pluralidade de epítopos de uma proteína de coronavirus.
[0075] Em uma concretização, a referida proteína de coronavirus é uma proteína não estrutural do vírus, como a proteína da replicase 1ab. Em uma concretização, múltiplos epítopos da replicase 1ab são alinhados, formando uma proteína quimérica de um poliepitopo de replicase 1ab.
[0076] Em uma concretização, a referida sequência polipeptídica adicionalmente compreende uma sequência polipeptídica de uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
[0077] Em uma concretização, a referida sequência polipeptídica adicionalmente compreende uma sequência de um primeiro polipeptídeo espaçador.
[0078] Em uma concretização, a proteína quimérica de fusão compreende: a) um primeiro peptídeo que consiste em epítopos presentes na sequência de aminoácidos da poliproteína da replicase 1 ab (PR1 ab); b) um primeiro espaçador; e c) forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
[0079] Em uma concretização, a sequência peptídica compreendendo o poliepitopo é definida pela SEQ ID NO: 96.
[0080] Em uma concretização, a sequência peptídica da forma modificada da gD é definida pela SEQ ID NO: 98 e/ou SEQ ID NO: 100.
[0081] Como um quinto objeto é provido o uso da sequência nucleotídica quimérica, da sequência quimérica de RNA ou da proteína de fusão, para a preparação de uma vacina contra coronavirus, Sars-CoV-2 e/ou vírus relacionados. [0082] Estes e outros objetos da invenção serão imediatamente valorizados pelos versados na arte e serão descritos detalhadamente a seguir.
Breve Descrição das Figuras
[0083] São apresentadas as seguintes figuras:
[0084] A figura 1 revela a organização do genoma de SARS-CoV-2 mostrando a disposição das ORFs (Do inglês Open Reading Frame) e a distribuição das proteínas estruturais e não estruturais (Wu et al., 2020).
[0085] A figura 2 mostra a) um esquema da estrutura gênica de Sars-CoV-2 e b) os alelos alvos de duas regiões: NSa e NSb.
[0086] A figura 3 mostra a análise da expressão in vitro dos antígenos vacinais. Após 36 horas da transfecção com cada plasmídeo vacinai, as células foram submetidas à imunodetecção da proteína gD. Em (a) foi realizado análise por citometria de fluxo. Em (b), após a fixação da monocamada de células na placa, foi feita a imunofluorescência com anticorpo contra a glicoproteína D, onde em verde está marcando as células positivas para a expressão do antígeno recombinante codificado pelas vacinas de DNA e em azul o núcleo das células, como aumento de 20x ou 40x.
[0087] A figura 4 mostra a avaliação da resposta celular induzida pelas vacinas de DNA associadas à eletroporação por ICS. Camundongos C57BL/6 com 5-6 semanas receberam duas doses intramuscular das vacinas (50ug pgDPOLIEP, 50ug NSA + 50ugNSB ou 50ug de pcDNA3.1) juntamente com a eletroporação, havendo duas semanas entre as aplicações. Duas semanas após a última dose, os animais foram eutanasiados e as células do baço foram usadas para estimulo ex vivo com peptídeos do SARS-CoV-2 para avaliação de funcionalidade (a). A subpopulação de linfócitos T CD8 (CD3+CD8+) que experienciaram o encontro com o antígeno in vivo (CD49d+CD11ahl), foram avaliadas para frequência relativa de células produtoras de IFNy (a), TNF (b) e IFNy+TNF (C), bem como a contagem absoluta das células produtoras de IFNy (d), TNF (e) e IFNy+TNF (f). Os dados representam a média ± SEM e teste de Mann-Whitney unicaudal, onde *p<0.05 **p < 0.01 , ***p < 0.001 , ****p < 0.0001.
[0088] A figura 5 mostra a avaliação da resposta celular induzida pelas vacinas de DNA associadas a eletroporação por ELISPOT. Camundongos C57BL/6 com 5-6 semanas receberam duas doses intramuscular das vacinas (50ug pgDPOLIEP, 50ug NSA + 50ugNSB ou 50ug de pcDNA3.1) juntamente com a eletroporação, havendo duas semanas entre as aplicações. Duas semanas após a última dose, os animais foram eutanasiados e as células do baço foram usadas para estímulo ex vivo com peptídeos do SARS-CoV-2 para avaliação da produção de IFN-g. Os dados representam a média ± SEM e teste de Mann- Whitney unicaudal, onde *p<0.05 **p < 0.01 , ****p < 0.0001.
[0089] A figura 6 mostra uma representação esquemática de uma concretização da invenção, na qual: em A) é mostrada esquematicamente uma concretização de sequência polipeptídica quimérica da invenção (POLIEP) que compreende as sequências polipeptídicas de um poliepitopo de SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46,
48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88,
90, 92; em B) é mostrada a sequência nucleotídica quimérica da invenção na concretização em que compreende as SEQ ID NO: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 e duas sequências nucleotídicas de fragmentos da gD, uma em 5'e outra a 3', sequências estas ligadas funcionalmente em um vetor de expressão plasmidial (pgDPOLIEP) que funciona como vacina de DNA e compreende um promotor CMV; em C) é mostrada esquematicamente uma concretização de sequência polipeptídica quimérica da invenção (gDPOLIEP) que compreende as sequências polipeptídicas de um poliepitopo de SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60,
62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92 flanqueadas de um fragmento gD compreendendo a sequência de aminoácidos definida pela SEQ ID NO: 98 na porção N-terminal e outro fragmento gD compreendendo a sequência de aminoácidos definida pela SEQ ID NO: 100 na região C-terminal
Descrição Detalhada da Invenção
[0090] A presente invenção provê uma vacina alternativa e/ou uma alternativa para a obtenção de vacinas indutora de imunidade celular e/ou humoral contra Coronavírus, SARS-CoV-2 ou COVID-19 e vírus relacionados.
[0091] A presente invenção provê sequência nucleotídica quimérica compreendendo as sequências codificantes, em fase, de uma pluralidade de epítopos de uma proteína de coronavírus, e/ou do polipeptídeo quimérico de fusão.
[0092] Em uma concretização, a referida proteína de coronavírus é uma proteína não estrutural do vírus, como a proteína da replicase 1ab. Em uma concretização, as sequências codificantes de múltiplos epítopos da replicase 1ab são alinhadas em fase. O produto codificado é uma proteína quimérica de um poliepítopo de replicase 1ab.
[0093] Em uma concretização, a sequência nucleotídica codificadora do poliepítopo compreende uma combinação, em fase, das sequências nucleotídicas selecionadas dentre SEQ ID NO: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 [0094] Em uma concretização, a sequência nucleotídica codificadora do poliepítopo é definida pela SEQ ID NO: 95.
[0095] Em uma concretização, a referida sequência nucleotídica adicionalmente compreende uma sequência nucleotídica que codifica uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1 ). [0096] Em uma concretização a sequência nucleotídica codificadora da forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1) é definida pela SEQ ID NO: 97 e/ou SEQ ID NO: 99. [0097] Em uma concretização, a referida sequência nucleotídica adicionalmente compreende uma sequência nucleotídica codificante de um primeiro polipeptídeo espaçador.
[0098] Em uma concretização, a referida sequência nucleotídica quimérica compreende: a) uma sequência nucleotídica que codifica um primeiro peptídeo compreendendo epítopos presentes na sequência de aminoácidos da poliproteína da replicase 1ab (PR1ab); b) uma sequência nucleotídica codificante de um primeiro polipeptídeo espaçador; e c) uma sequência nucleotídica que codifica uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
[0099] Em uma concretização, a referida sequência nucleotídica quimérica é definida pela SEQ ID NO: 101.
[0100] Um vetor de expressão em mamíferos, compreendendo a referida sequência nucleotídica quimérica também integra os objetos da invenção. [0101] Em uma concretização, referido vetor de expressão é uma vacina de DNA para induzir imunidade celular e humoral, tendo como alvos antigênicos as proteínas não estruturais do vírus, proporcionando a indução de uma resposta imunológica combinada de células T CD8+ produtoras de moléculas antivirais em adição à resposta humoral contra SARS-CoV-2.
[0102] Em uma concretização, o uso da invenção proporciona surpreendente promoção da redução da carga virai, recuperação clínica e proteção contra Coronavírus, SARS-CoV-2 ou COVID-19 e vírus relacionados.
[0103] Em uma concretização, os antígenos de Sars-Cov2 referidos foram fusionados geneticamente a outra proteína virai, a glicoproteína D (gD) do Herpes Virus Simples tipo 1 (HSV-1). Esta fusão apresentou aumento da imunogenicidade dos antígenos dos antígenos. A gD apresentou efeito adjuvante para a ativação de linfócitos T. [0104] A presente invenção provê uma vacina de RNA compreendendo uma sequência de RNA que codifica uma pluralidade de epítopos de uma proteína não estrutural de coronavirus.
[0105] Em uma concretização, a referida vacina compreende as sequências codificantes de múltiplos epítopos da replicase 1ab alinhadas em fase.
[0106] Em uma concretização, a referida vacina compreende uma combinação das sequências de RNA selecionadas dentre SEQ ID NO: 113 a SEQ ID NO: 158.
[0107] A presente invenção provê uma proteína quimérica de fusão compreendendo uma pluralidade de epítopos de uma proteína não estrutural de coronavirus.
[0108] A presente invenção provê uma proteína quimérica de fusão compreendendo uma combinação das sequências peptídicas da replicase 1ab selecionadas dentre SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92.
[0109] Em uma concretização, a dita proteína quimérica de fusão compreende a SEQ ID NO: 96.
[0110] Em uma concretização, a dita proteína quimérica de fusão compreende adicionalmente compreender uma sequência polipeptídica de uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
[0111] Em uma concretização, a dita a sequência polipeptídica da forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1) é definida pela pela SEQ ID NO: 98 e/ou SEQ ID NO: 100.
[0112] Em uma concretização, a dita proteína quimérica de fusão adicionalmente compreende uma sequência de um primeiro polipeptídeo espaçador, preferencialmente definido pela SEQ ID NO: 94.
[0113] Em uma concretização, a dita proteína de fusão compreende: a) um primeiro peptídeo que consiste em epítopos presentes na sequência de aminoácidos da poliproteína da replicase 1 ab (PR1 ab); b) um primeiro espaçador; c) forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
[0114] Em uma concretização, o primeiro peptídeo consiste em epítopos presentes na sequência de aminoácidos das regiões NSa conforme definido na SEQ ID NO: 110 e/ou NSb conforme definido na SEQ ID NO: 112 na PR1 ab. [0115] Em uma concretização, espaçador consistir na sequência de aminoácidos GGGS conforme definido na SEQ ID NO: 94.
[0116] Em uma concretização, a invenção proporciona um vetor compreendendo as sequências codificantes da proteína de fusão definida acima. Em uma concretização, o dito vetor compreende adicionalmente uma região promotora e sequência de Kozak, em que o promotor é preferencialmente CMV e o dito vetor é pcDNA3.1 .
[0117] OS resultados mostrados neste pedido de patente demonstram que, surpreendentemente, camundongos que receberam a vacina da invenção, na concretização de DNA pgDPOLIEP, exibiram as células T CD8+ com um fenótipo Th1 dominante uma vez estimulado com peptídeos (pep), com números significativamente maiores de células produtoras de IFNy-, TNF- e IL- 2., em comparação com as outras vacinas de DNA contendo a porção NSA e NSB ou o vetor pcDNA3.1.
[0118] A vacina da invenção na concretização compreendendo as sequências nucleotidicas quimérica codificantes da proteína de fusão (denominada pgDPOLIEP) induziu a maior produção de IFNy quando comparada com as formulações onde foi administrado o pgDNSA + pgDNSB ou o vetor vacinai vazio pDNA3.1. Em conjunto, os resultados demonstram que a pgDPOLIEP é imunogênica capaz de induzir resposta imune do tipo celular pela indução de linfócitos T CD8+ produtores de IFNy e TNF. Exemplos
[0119] Os exemplos aqui mostrados têm o intuito somente de exemplificar uma das inúmeras maneiras de se realizar a invenção, contudo sem limitar, o escopo da mesma.
Exemplo 1 - Construção da vacina pqDPOLIEP
[0120] Para a escolha das sequências alvo dentro das proteínas não estruturais do Covid19, realizou-se uma análise associativa entre os epítopos preditos e as moléculas de HLA tipo I, mais frequentes na população Brasil. Para as mesmas regiões escolhidas, foram preditas os epítopos ligantes do MHC H-2Kb (C57BL/6). A frequência alélica da classe I do HLA, na população brasileira, foi recuperada do banco de dados NCBI ( https://www.ncbi.nlm.nih.gov/projects/gv/mhc/ihwg.cgi ). Alelos frequentes em pelo menos 3% da população brasileira foram selecionados (HLA: C*02:02, A*32:01 , A*68:02, A*01 :01, B*08:01, A*65:02, B*51 :01 , B*35:01) (Dos Santos Franco et al., 2017). Os epítopos dentro da sequência de aminoácidos da poliproteína da replicase 1ab (PR1ab) foram previstos usando o recurso de análise IEDB ( Immune epitope databasé)
( http://tools.immuneepitope.org/mhci/ ), de acordo com o método recomendado. Os epítopos preditos dentro da PR1ab foram classificados pelo seu valor percentual e para cada molécula de HLA considerada, foram selecionados os 5 melhores com um percentil inferior a 0.5. Foram considerados epítopos com 8, 9, 10 e 11 aminoácidos de comprimento para HLA de Classe I.
[0121] Após a análise associativa, foram selecionadas duas regiões na PFMab que concentram a maioria das sequências alvo para humanos e camundongos (NSa e NSb). A sequência nucleotídica codificante de ambas as regiões, bem como a dos peptídeos preditos em sequência e ligados pela sequência codificante dos aminoácidos GGGS, foi inserida no vetor vacinai pcDNA3.1 em fusão com a glicoproteína D (gD) do herpes vírus, com a adição da sequência de Kozak e sob o controle do promotor CMV. Os três plasmídeos (pCovid_NSa, pCovid_NSb e pCovid_Poliept), compreendendo, respectivamente, a Seq ID 1 , 2 e 3, bem como os respectivos peptídeos codificados (purificados por HPLC de fase reversa com > 95% de pureza), foram sintetizados e obtidos comercialmente (Genscript) Figura 2 e Tabela 1.
Tabela 1. Peptídeos selecionados na PR1ab do SARS-CoV-2 (GeneBank: MT126808.1)
Figure imgf000025_0001
Figure imgf000026_0001
Exemplo 2 - Avaliação da expressão da qDPOLIEP in vitro
[0122] Os plasmídeos vacinais foram validados mediante transfecção em células eucarióticas seguida de imunodetecção das proteínas alvo. Para isso, células HEK293-T foram cultivadas (DMEM+10% SFB) em placas de 24 poços (10x5 células/poço) por 24 horas (37 QC, 5% C02). Após atingir confluência de 70-80%, as células foram transfectadas com os plasmídeos recombinantes (pgDNSA, pgDNSB e pgDPOLIEP) ou controles (pCDNA3.1) utilizando o Kit Lipofectamine 2000 (ThermoFisher), de acordo as instruções do fabricante. Transcorridas 24-48 horas de transfecção, as células foram tripsinizadas, lavadas com solução PBS (2 vezes) e fixadas/permeabilizadas com tampão Cytofix (BD Biosciences) de acordo as instruções do fabricante. Após novo ciclo de lavagem, as células foram incubadas (30 min em gelo) com anticorpo monoclonal anti-gD, previamente diluídos. Após ciclo de lavagem, as células foram incubadas com anticorpo anti-lgG de camundongo/humano conjugado ao fluorocromo AlexaFluor 488 (Invitrogen) por 30 min em gelo. Após novo ciclo de lavagem as células foram ressuspendidas em PBS + 2% SFB e avaliadas por citometria de fluxo em equipamento BD LSRFortessaTM (BD Biosciences). Os dados obtidos foram analisados em software FlowJo v.10 (TreeStar, OR, USA). Como demonstrado na figura 3a, a partir da imunodetecção da gD foi possível determinar a expressão in vitro do antígeno vacinai gDPOLIEP, visto o aumento na frequência de células marcadas como positivas para expressão da gD.
[0123] A detecção da expressão das proteínas alvo em células transfectadas foi avaliada também pela técnica de imunofluorescência. Para isso, as células transfectadas conforme descrito acima foram diretamente fixadas com solução de paraformaldeído (PFA) a 4 % em PBS (300 mI/poço) por 15 minutos, em temperatura ambiente (TA). Após fixação, as células foram permeabilizadas com solução de Triton X-100 a 0,1 % em PBS (300 mI/poço) por 10 minutos a TA. Em seguida, as células foram lavadas duas vezes com PBS e bloqueadas com solução de BSA 2% em PBS (30 min., TA). Após etapa de bloqueio, foram adicionados aos poços o mAb anti-gD ou soro hiperimune, diluídos previamente em solução de bloqueio (200 mI/poço). Transcorrido 1 hora, os poços foram lavados (3 vezes) com PBS, as células foram incubadas (45 min., TA) com anticorpo anti-lgG de camundongo/humano conjugado com AlexaFluor 488 (Invitrogen), sob agitação. Após novo ciclo de lavagem, as células foram incubadas (20 min., TA) com corante para núcleo Hoechst 33342 (Life Technologies) diluído (1/500) em PBS (200 pL/poço). Após novo ciclo de lavagem, as células foram visualizadas em microscópio de imunofluorescência Evos FL (Thermo Fisher Scientific) e imagens foram capturadas com aumentos de 100x e 200x. Como demonstrado na figura 3b, a partir da imunodetecção da gD seguida de marcação secundária com FITC, foi possível determinar a expressão in vitro do antígeno vacinai gDPOLIEP, visto pela marcação de células em verde nos campos visualizados.
Exemplo 3 - Avaliação in vivo da imunoqenicidade das vacinas [0124] Os experimentos com animais foram conduzidos de acordo aos Princípios Éticos da Experimentação Animal estabelecidos pelo Comité de Ética em Experimentação Animal (CEUA). Camundongos da linhagem C57BL/6 foram inoculados por via intramuscular de acordo aos seguintes grupos de imunização: 1) plasmídeo controle (pCDNA3.1); 2) plasmídeos pgDNSA e pgDNSB combinados; 3) plasmídeo poliepitopo (pgDPOLIEP). Cada grupo de animais (n=5-10) recebeu duas doses (50 pg/animal) das formulações vacinais, sendo adotado um intervalo de 2 semanas entre as doses. Imediatamente após administração das vacinas os animais foram eletroporados no local da aplicação, sendo aplicados 2 pulsos elétricos de 45 V cada, com intervalo de duração de 450 ms (pulsos que formam poros na membrana celular), e 4 pulsos de 20 V cada, com duração de 450 ms (pulsos de transferência), utilizando o equipamento NEPA21 SuperEletroporador (NepaGeneCo., Ltd.; Chiba, Japão).
[0125] A detecção de citocinas intracelulares (ICS) foi realizada em esplenócitos de camundongos imunizados, 14 dias após a administração da última dose vacinai. Para obtenção de esplenócitos, o baço dos camundongos imunizados foi coletado, após eutanásia, e submetidos à maceração para obtenção de suspensão celular. As células obtidas foram tratadas por 5 minutos no gelo com Ack Lising Buffer (BioSource International) até ruptura das hemácias e então centrifugadas a 1500 rpm por 5 minutos. Após 2 ciclos de lavagem com meio RPMI, os esplenócitos obtidos foram cultivados a uma proporção de 106 células/poço por 2 horas (37QC, 5% CO2) na presença de estímulo antígeno-específico (peptídeos: pep4- VSFCYMHHM; pepõ- VAYFNMVYM) seguido da adição de Brefeldin A (GolgiPlug; BD Biosciences) e estímulo por mais 4 horas. As células foram incubadas com meio RPMI (controle negativo) ou em combinação com PMA/ionomicina (controle positivo). Após 0 período de estímulo, as células foram lavadas com PBS (2x), seguido pela marcação com anticorpos conjugado com fluoróforo contra CD3 e murino (clone 145-2C11 , Tonbo), CD8a (clone 53-6.7, BioLegend), CD11a (clone M17/4, eBioscience), CD49d (clone R1-2, eBioscience), todos usados na diluição de 1 :200. As células foram então fixadas e permeabilizadas com Cytofix/Cytoperm (BD Bioscience) e coradas com monoclonais conjugados com fluoróforo contra IFNy de camundongo (clone XMG1.2, Tonbo) e TNF (clone MP6-XT22, eBioscience). Os dados foram coletados em um equipamento BD LSRFortessa™ e analisados usando o software FlowJo. Para detecção da citocina IFNy secretadas pelos esplenócitos dos animais imunizados foi realizado pela técnica de ELISPOT. Brevemente, os esplenócitos dos animais imunizados foram estimulados in vitro de forma análoga ao descrito anteriormente, porém sem adição de Brefeldin A.
[0126] Com 0 objetivo de caracterizar a resposta de células T induzida após a vacinação, células do baço foram coletadas e obtidas por meio das técnicas descritas acima. Conforme demonstrado na figura 4, após duas doses intramusculares da vacina de DNA pgDPOLIEP (50pg), foi avaliada a resposta das células T CD8+ vacina-específica por ensaio de ICS usando 2 peptídeos restritos a FI2-Db, contidos na vacina de DNA. Foi determinado 0 número de células do baço capazes de produzir IFNy, bem como as frequências de produção de IFNy e TNF por células T CD8+ ativadas e experimentadas com antígeno (CD49d+CD11ahlCD8a'°). Notavelmente, as células T CD8+ de camundongos que receberam a vacina de DNA pgDPOLIEP exibiram um fenótipo Th1 dominante uma vez estimulado com pep, com números e significativamente maiores de células produtoras de IFNy-, TNF- e IL-2, uma vez em comparação com as outras vacinas de DNA contendo a porção NSA e NSB ou o vetor pcDNA3.1 (fig. 4a-f).
[0127] Com o objetivo de detectar células produtoras de IFNy, as células do baço dos animais após duas doses intramusculares das vacinas de DNA foram submetidas ao ensaio de ELISPOT (fig. 5). Como demonstrado, a formulação composta pela pgDPOLIEP induziu a maior produção de IFNy quando comparada com as formulações onde foi administrado o pgDNSA + pgDNSB ou o vetor vacinai vazio pDNA3.1. Em conjunto, os resultados demonstram que a pgDPOLIEP é imunogênica capaz de induzir resposta imune do tipo celular pela indução de linfócitos T CD8+ produtores de IFNy e TNF.
[0128] Os versados na arte imediatamente compreenderão que a invenção é semelhantemente aplicável a outros veículos vacinais, ou seja, o uso da invenção não se limita à incorporação das sequências codificantes da proteína de fusão por um vetor tipo DNA. Exemplos incluem: a incorporação da sequência nucleotídica quimérica da invenção a vetores virais vacinais, como os de adenovírus usados atualmente (Janssen, Oxford) para vacinas contra SarsCov2; a incorporação da sequência nucleotídica quimérica da invenção a microrganismos que expressão a proteína de fusão da invenção, para subsequente inoculação da referida proteína, preferencialmente purificada; o uso da sequência quimérica de RNA da invenção a vetores vacinais de RNA, como aqueles usados atualmente (Moderna, Pfizer) para vacinas contra SarsCov2.
[0129] O conceito inventivo ora revelado e exemplificado de uma ou mais formas foi tratado como segredo industrial e não foi previamente revelado até o momento do depósito deste pedido de patente ou de sua prioridade. Este segredo industrial é ativo imaterial da depositante. A eventual futura publicação do pedido de patente não constitui, em si, autorização de uso por terceiros, servindo apenas como: (i) cientificação a terceiros da existência do referido segredo industrial na data do depósito; (ii) indicação inequívoca de seu detentor; e (iii) estímulo ao desenvolvimento de novas melhorias a partir do conceito ora revelado, para evitar o reinvestimento no desenvolvimento do mesmo bem já detido pelo depositante.
[0130] Desde logo se adverte que eventual uso comercial requer autorização da detentora e que o uso não autorizado enseja sanções previstas em Lei. Neste contexto, se esclarece que a partir da revelação do presente conceito inventivo, os versados na arte poderão considerar outras formas de concretizar a invenção não idênticas às meramente exemplificadas acima, mas que na hipótese de pretensão de uso comercial tais formas poderão ser consideradas como estando dentro do escopo das reivindicações anexas.

Claims

Reivindicações
1. Sequência nucleotídica quimérica caracterizada por compreender as sequências codificantes, em fase, de uma pluralidade de epítopos de uma proteína não estrutural de coronavirus.
2. Sequência nucleotídica quimérica de acordo com a reivindicação 1 caracterizada pelo fato de compreender as sequências codificantes de múltiplos epítopos da replicase 1ab, alinhadas em fase.
3. Sequência nucleotídica quimérica de acordo com qualquer uma das reivindicações 1 a 2 caracterizada pelo fato de que a sequência nucleotídica codificadora do poliepitopo compreende uma combinação, em fase, das sequências nucleotídicas selecionadas dentre SEQ ID NO: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91.
4. Sequência nucleotídica quimérica de acordo com qualquer uma das reivindicações 1 a 3 caracterizada pelo fato de que a sequência nucleotídica codificadora do poliepitopo ser definida pela SEQ ID NO: 95.
5. Sequência nucleotídica quimérica de acordo com qualquer uma das reivindicações 1 a 4 caracterizada pelo fato de adicionalmente compreender uma sequência nucleotídica que codifica uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
6. Sequência nucleotídica quimérica de acordo com qualquer uma das reivindicações 1 a 5 caracterizada pelo fato de que a sequência nucleotídica codificadora da forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1) são definidas pelas SEQ ID NO: 97 e/ou SEQ ID NO: 99.
7. Sequência nucleotídica quimérica de acordo com qualquer uma das reivindicações 1 a 6 caracterizada pelo fato de adicionalmente compreender uma sequência nucleotídica codificante de um primeiro polipeptídeo espaçador.
8. Sequência nucleotídica quimérica de acordo com qualquer uma das reivindicações 1 a 7 caracterizada pelo fato de compreender: a) uma sequência nucleotídica que codifica um primeiro peptídeo compreendendo epítopos presentes na sequência de aminoácidos da poliproteína da replicase 1ab (PR1ab); b) uma sequência nucleotídica codificante de um primeiro polipeptídeo espaçador; e c) uma sequência nucleotídica que codifica uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
9. Sequência nucleotídica quimérica de acordo com qualquer uma das reivindicações 1 a 8, caracterizada por ser definida pela SEQ ID NO: 101.
10. Vetor de expressão em mamíferos caracterizado por compreender:
- a sequência nucleotídica quimérica codificadora do poliepitopo, conforme definida em qualquer uma das reivindicações 1 a 9; e
- um ou mais promotores de expressão funcionalmente ligados à referida sequência nucleotídica.
11. Vacina de RNA caracterizada por compreender uma sequência de RNA que codifica uma pluralidade de epítopos de uma proteína não estrutural de coronavirus.
12. Vacina de RNA de acordo com a reivindicação 11 caracterizada por compreender as sequências codificantes de múltiplos epítopos da replicase 1 ab alinhadas em fase.
13. Vacina de RNA de acordo com qualquer uma das reivindicações 11 a 12 caracterizada por compreender uma combinação das sequências de RNA selecionadas dentre SEQ ID NO: 113 a SEQ ID NO: 158.
14. Proteína quimérica de fusão caracterizada por compreender uma pluralidade de epítopos de uma proteína não estrutural de coronavirus.
15. Proteína quimérica de fusão de acordo com a reivindicação 14 caracterizada por compreender uma combinação das sequências peptídicas da replicase 1ab selecionadas dentre SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92.
16. Proteína quimérica de fusão de acordo com qualquer uma das reivindicações 14 a 15 caracterizada por compreender a SEQ ID NO: 96.
17. Proteína quimérica de fusão de acordo com qualquer uma das reivindicações 14 a 16 caracterizada por adicionalmente compreender uma sequência polipeptídica de uma forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
18. Proteína quimérica de fusão de acordo com qualquer uma das reivindicações 14 a 17 caracterizada pelo fato de que a sequência polipeptídica da forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1) definida pela SEQ ID NO: 98 e/ou SEQ ID NO: 100.
19. Proteína quimérica de fusão de acordo com qualquer uma das reivindicações 14 a 18 caracterizada por adicionalmente compreender uma sequência de um primeiro polipeptídeo espaçador.
20. Proteína quimérica de fusão de acordo com qualquer uma das reivindicações 14 a 20 caracterizada por compreender: a) um primeiro peptídeo que consiste em epítopos presentes na sequência de aminoácidos da poliproteína da replicase 1 ab (PR1 ab); b) um primeiro espaçador; e c) forma modificada da glicoproteína D (gD) do herpes simples tipo-1 (HSV-1).
21. Proteína quimérica de fusão de acordo com qualquer uma das reivindicações 14 a 21 , caracterizada por compreender a sequência de aminoácidos definida pela SEQ ID NO: 108.
22. Uso da sequência nucleotídica quimérica conforme definida em qualquer uma das reivindicações 1 a 9 ou da proteína quimérica de fusão conforme definida em qualquer uma das reivindicações 14 a 21 caracterizado por ser para a preparação de uma vacina contra coronavírus, Sars-CoV-2 e/ou vírus relacionados.
PCT/BR2022/050112 2021-04-01 2022-03-30 Sequência nucleotídica quimérica, vetor de expressão em mamíferos, vacina de rna, proteína quimérica de fusão, uso na produção de vacina contra coronavírus WO2022204773A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102021006401 2021-04-01
BR102021006401-3 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022204773A1 true WO2022204773A1 (pt) 2022-10-06

Family

ID=83455208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2022/050112 WO2022204773A1 (pt) 2021-04-01 2022-03-30 Sequência nucleotídica quimérica, vetor de expressão em mamíferos, vacina de rna, proteína quimérica de fusão, uso na produção de vacina contra coronavírus

Country Status (1)

Country Link
WO (1) WO2022204773A1 (pt)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200325182A1 (en) * 2020-06-11 2020-10-15 MBF Therapeutics, Inc. Alphaherpesvirus glycoprotein d-encoding nucleic acid constructs and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200325182A1 (en) * 2020-06-11 2020-10-15 MBF Therapeutics, Inc. Alphaherpesvirus glycoprotein d-encoding nucleic acid constructs and methods

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ALMOFTI YASSIR A., ABD-ELRAHMAN KHOUBIEB ALI, ELTILIB ELSIDEEQ E. M.: "Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)", BMC IMMUNOLOGY, vol. 22, no. 1, 1 December 2021 (2021-12-01), XP055944092, DOI: 10.1186/s12865-021-00412-0 *
CAMPBELL KATIE M., STEINER GABRIELA, WELLS DANIEL K., RIBAS ANTONI, KALBASI ANUSHA: "Prediction of SARS-CoV-2 epitopes across 9360 HLA class I alleles", BIORXIV, 1 April 2020 (2020-04-01), XP055971915, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.03.30.016931v1.full.pdf> [retrieved on 20221017], DOI: 10.1101/2020.03.30.016931 *
GANGAEV ANASTASIA, KETELAARS STEVEN L. C., PATIWAEL SANNE, DOPLER ANNA, ISAEVA OLGA I., HOEFAKKER KELLY, BIASI SARA DE, MUSSINI CR: "Profound CD8 T cell responses towards the SARS-CoV-2 ORF1ab in COVID-19 patients", RESEARCH SQUARE, 3 June 2020 (2020-06-03), XP055823190, Retrieved from the Internet <URL:https://assets.researchsquare.com/files/rs-33197/v1/d74d0485-6983-4454-9411-29e442f9736b.pdf?c=1592427421> [retrieved on 20210712], DOI: 10.21203/rs.3.rs-33197/v1 *
KOHYAMA, S. ET AL.: "Efficient induction of cytotoxic T lymphocytes specific for severe acute respiratory syndrome (SARS)-associated coronavinis by immunization with surface-linkedliposomal peptides derived from a non-structural polyprotein 1a", ANTIVIRAL RES., vol. 84, no. 2, 2009, pages 168 - 177, XP026666296, DOI: 10.1016/j.antiviral.2009.09.004 *
KUSHWAHA, S. K. ET AL.: "SARS-CoV-2 transcriptome analysis and molecular cataloguing ofimmunodominant epitopes for multi-epitope based vaccine design", GENOMICS, vol. 112, no. 6, 2020, pages 5044 - 5054, XP086408477, DOI: 10.1016/j.ygeno.2020.09.019 *
LASARO, M. O. ET AL.: "Targeting of antigen to the herpesvirus entry mediator augments primary adaptive immune responses", NAT MED., vol. 14, no. 2, 2008, pages 205 - 212, XP002603203, DOI: 10.1038/nml704 *
PEREIRA LENNON RAMOS, ALVES RÚBENS PRINCE DOS SANTOS, SALES NATIELY SILVA, ANDREATA-SANTOS ROBERT, VENCESLAU-CARVALHO ALÉXIA ADRIA: "Enhanced Immune Responses and Protective Immunity to Zika Virus Induced by a DNA Vaccine Encoding a Chimeric NS1 Fused With Type 1 Herpes Virus gD Protein", FRONTIERS IN MEDICAL TECHNOLOGY, vol. 2, XP055971918, DOI: 10.3389/fmedt.2020.604160 *
SAFAVI. A. ET AL.: "Exploring the out of sight antigens of SARS-CoV-2 to design a candidatemulti-epitope vaccine by utilizing immunoinformatics approaches", VACCINE, vol. 38, no. 48, 2020, pages 7612 - 7628, XP055937117, DOI: 10.1016/j.vaccine.2020.10.016 *

Similar Documents

Publication Publication Date Title
US20230285539A1 (en) Vaccines against sars-cov-2 and other coronaviruses
US11382968B2 (en) Coronavirus immunogenic compositions and uses thereof
Grubor-Bauk et al. NS1 DNA vaccination protects against Zika infection through T cell–mediated immunity in immunocompetent mice
Velders et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine
Hashem et al. A highly immunogenic, protective, and safe adenovirus-based vaccine expressing Middle East respiratory syndrome coronavirus S1-CD40L fusion protein in a transgenic human dipeptidyl peptidase 4 mouse model
Ohlschlager et al. Human papillomavirus type 16 L1 capsomeres induce L1-specific cytotoxic T lymphocytes and tumor regression in C57BL/6 mice
Zhou et al. Screening and identification of severe acute respiratory syndrome-associated coronavirus-specific CTL epitopes
Kim et al. Generation and characterization of a preventive and therapeutic HPV DNA vaccine
CA2900318C (en) Induction of cross-reactive cellular response against rhinovirus antigens
Hu et al. Generation and immunogenicity of porcine circovirus type 2 chimeric virus-like particles displaying porcine reproductive and respiratory syndrome virus GP5 epitope B
Wang et al. Construction and evaluation of recombinant Lactobacillus plantarum NC8 delivering one single or two copies of G protein fused with a DC-targeting peptide (DCpep) as novel oral rabies vaccine
Cao et al. A single vaccine protects against SARS-CoV-2 and influenza virus in mice
Pishraft-Sabet et al. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96
Chen et al. Ambient temperature stable, scalable COVID‐19 polymer particle vaccines induce protective immunity
Hauser et al. Augmentation of DNA vaccine potency through secretory heat shock protein-mediated antigen targeting
Kim et al. MCMV-based vaccine vectors expressing full-length viral proteins provide long-term humoral immune protection upon a single-shot vaccination
Villa Vaccines against papillomavirus infections and disease
Zong et al. HSP70 and modified HPV 16 E7 fusion gene without the addition of a signal peptide gene sequence as a candidate therapeutic tumor vaccine
Yazdanian et al. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice
WO2022204773A1 (pt) Sequência nucleotídica quimérica, vetor de expressão em mamíferos, vacina de rna, proteína quimérica de fusão, uso na produção de vacina contra coronavírus
BR102022006089A2 (pt) Sequência nucleotídica quimérica, vetor de expressão em mamíferos, vacina de rna, proteína quimérica de fusão, uso na produção de vacina contra coronavírus
Shi et al. AT cell–based SARS-CoV-2 spike protein vaccine provides protection without antibodies
WO2021108884A1 (pt) Processo de produção de uma composição imunológica de dna profilática e terapêutica contra hpv e cânceres associados ao vírus, proteína híbrida, vetor de expressão, composição imunológica e seus usos
Wei et al. DNA-epitope vaccine provided efficient protection to mice against lethal dose of influenza A virus H1N1
US20240050551A1 (en) Herpes simplex virus type 1 derived influenza vaccine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778225

Country of ref document: EP

Kind code of ref document: A1