WO2022202608A1 - Polyester film and image display device using same - Google Patents

Polyester film and image display device using same Download PDF

Info

Publication number
WO2022202608A1
WO2022202608A1 PCT/JP2022/012283 JP2022012283W WO2022202608A1 WO 2022202608 A1 WO2022202608 A1 WO 2022202608A1 JP 2022012283 W JP2022012283 W JP 2022012283W WO 2022202608 A1 WO2022202608 A1 WO 2022202608A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thickness
layer
less
polyester film
Prior art date
Application number
PCT/JP2022/012283
Other languages
French (fr)
Japanese (ja)
Inventor
博史 柴野
潤 稲垣
正太郎 西尾
究 河合
靖 佐々木
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2023509099A priority Critical patent/JPWO2022202608A1/ja
Priority to KR1020237036114A priority patent/KR20230161475A/en
Priority to CN202280023640.7A priority patent/CN117120242A/en
Publication of WO2022202608A1 publication Critical patent/WO2022202608A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a polyester film (for example, an optical polyester film).
  • the present invention is typically suitably used for each member of an image display device, such as a polarizer protective film, a base film for a touch panel (e.g., a transparent electrode base film), a scattering prevention film, a screen surface protection film, and the like. It relates to polyester film.
  • Polyester films are excellent in transparency, mechanical strength, and stability against chemicals, and are used as optical films. These optical polyester films are usually biaxially stretched films and have birefringence. Therefore, it is known that rainbow-like color unevenness (rainbow spots) occurs when used in a portion through which polarized light passes. ing.
  • a high-retardation polyester film on the surface of a liquid crystal display device, there is a technology that eliminates blackouts and iridescence when viewing images with polarized sunglasses (for example, Patent Document 1), and a polarizer protective film.
  • Patent Document 2 A technique for eliminating iridescence by using it as a base material (for example, Patent Document 2) and a technique for using it in combination as a touch panel substrate or a scattering prevention film (for example, Patent Document 3) are known. If the film is stretched in only one direction to obtain a high retardation film, the strength and elongation in the direction perpendicular to the stretched direction will be low, so breakage is likely to occur during film formation and processing of the resulting film. , productivity and workability may decrease. In addition, by first stretching in the direction orthogonal to the main stretching direction at a low magnification and then stretching in the main stretching direction, the strength and elongation in the direction orthogonal to the main stretching direction are increased, and the production speed is increased.
  • the film stretched 2.5 to 5.0 times in the width direction (TD) is folded with the MD direction as the folding direction. It has been proposed to use it as a film for display devices (for example, Patent Documents 5 and 6).
  • Patent Documents 5 and 6 there is still room for improvement in the uniformity of thickness and flatness. If the thickness unevenness in the MD direction is large, it is likely to break not only during film formation but also during slitting, especially when the cutting blade is worn or at high speed, and productivity and workability are poor. tend to become
  • One object of the present invention is to provide a polyester film that has high in-plane retardation, excellent thickness uniformity, and good productivity, workability, and flatness.
  • a further object of the present invention is to provide a polyester film that, when used as a film for each application of an image display device, has good visibility in which rainbow spots are less noticeable regardless of the type of image display device or the type of light source. is to provide
  • the present inventor has completed the present invention as a result of intensive studies to achieve this object.
  • the present invention includes the following aspects.
  • Item 1 In-plane retardation is 3000 nm or more and 30000 nm or less, The degree of plane orientation is 0.128 or more and 0.155 or less, Thickness unevenness in the film production flow direction is 8% or less, A polyester film (the thickness unevenness is a value obtained by (maximum thickness - minimum thickness) / average thickness x 100 (%)).
  • Item 2 Item 1. The polyester according to item 1, wherein A/B, which is the ratio of A and B below, is 5 or less when Fourier transform is performed on the thickness measurement data in the film production flow direction and the frequency is replaced with the period of the length of the film. the film.
  • A Average value of the top 5 amplitude values with a period of 10 cm or more
  • B Average value of the top 5 amplitude values with a period of 10 cm or less
  • Item 3 3. Item 1 or 2, wherein Amax/B, which is the ratio of Amax and B below, is 7 or less when the thickness measurement data in the film production flow direction is Fourier transformed and the frequency is replaced by the period of the length of the film. polyester film.
  • Amax The maximum value of amplitude at a period of 10 cm or more
  • Item 4 The polyester film according to any one of Items 1 to 3, which has a NZ coefficient of 1.65 or more and 3 or less.
  • Item 5 The polyester film according to any one of Items 1 to 4, which has a thickness of 25 ⁇ m or more and 150 ⁇ m or less.
  • Item 6 The polyester film according to any one of items 1 to 5, which has a breaking elongation of 4% or more in the direction of film production.
  • Item 7 The polyester film according to any one of Items 1 to 6, which has a breaking strength of 50 MPa or more in the film forming flow direction.
  • Item 8 A polarizer protective film comprising the polyester film according to any one of Items 1 to 7.
  • Item 9 A polarizing plate in which the polarizer protective film according to Item 8 and a polarizer are laminated.
  • Item 10 An image display device in which the polarizing plate according to Item 9 is installed on the viewing side of an image display cell.
  • Item 11 A transparent electrode substrate film comprising the polyester film according to any one of items 1 to 7.
  • Item 12 Item 8. A shatterproof film comprising the polyester film according to any one of items 1 to 7.
  • Item 13 A screen surface protection film comprising the polyester film according to any one of items 1 to 7.
  • Item 14 An image display device comprising any one of the transparent electrode base film of Item 11, the anti-scattering film of Item 12, and the screen surface protective film of Item 13.
  • Item 15 The image display device according to Item 14, which is a flexible image display device.
  • the polyester film of the present invention can suppress iridescence, it is suitably used for a polarizer protective film, a transparent electrode base film for touch panels, a scattering prevention film, a screen surface protective film for an image display device, and the like. It has excellent bending durability when used in a flexible image display device.
  • FIG. 4 is a graph showing the results of frequency analysis of thickness unevenness in the film production flow direction for Film A.
  • FIG. 10 is a graph showing the results of frequency analysis of thickness unevenness in the direction of flow of film production for Film D.
  • FIG. 4 is a graph showing the results of frequency analysis of thickness unevenness in the film production flow direction for Film A.
  • polyester film of the present invention examples include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polytetramethylene terephthalate (PBT), which can increase in-plane retardation and has low moisture permeability and moisture absorption. ), and polyethylene naphthalate (PEN), among which PET or PEN is preferred.
  • PET polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • PBT polytetramethylene terephthalate
  • PEN polyethylene naphthalate
  • These polyesters may be copolymerized with a carboxylic acid component and/or a glycol component other than the main constituent component. is preferably 10 mol % or less, more preferably 5 mol % or less, and particularly preferably 2 mol % or less.
  • the intrinsic viscosity (IV) of the polyester resin constituting the polyester film of the present invention is preferably 0.45 dL/g or more and 1.5 dL/g or less.
  • the IV is preferably 0.5 dL/g or more and 1.5 dL/g or less.
  • the lower limit of IV is more preferably 0.53 dL/g, still more preferably 0.55 L/g.
  • the upper limit of IV is more preferably 1.2 dL/g, still more preferably 1 dL/g, and particularly preferably 0.8 dL/g.
  • the lower limit of IV is preferably 0.45 dL/g, more preferably 0.48 dL/g, still more preferably 0.5 dL/g, and particularly preferably 0.53 dL/g.
  • the upper limit of IV is more preferably 1 dL/g, more preferably 0.8 dL/g, still more preferably 0.75 dL/g, and particularly preferably 0.7 dL/g.
  • the lower limit of the in-plane retardation (Re) of the polyester film is preferably 3000 nm, more preferably 4000 nm, still more preferably 4300 nm, particularly preferably 4500 nm, most preferably 5000 nm. Iridescent spots can be suppressed by adjusting the content to the above lower limit or higher.
  • the upper limit of Re is preferably 30000 nm, more preferably 15000 nm, still more preferably 12000 nm, particularly preferably 10000 nm, most preferably 9500 nm. When the thickness is equal to or less than the above upper limit, the thickness of the film is not increased more than necessary, and it becomes easy to cope with thinning of the image display device and the like.
  • Re is preferably 5500 nm or more, more preferably 6000 nm or more, even more preferably 6000 nm or more, and particularly preferably 6500 nm or more.
  • base film for touch panels e.g., transparent electrode base film
  • screen surface protection film e.g., PET film
  • foldable film e.g., PET film
  • the lower limit of the degree of plane orientation is preferably 0.128, more preferably 0.129, still more preferably 0.13, and more than 0.13. preferably.
  • the upper limit of the degree of plane orientation is preferably 0.155, more preferably 0.152, still more preferably 0.15.
  • the upper limit of the degree of plane orientation is more preferably 0.145, more preferably 0.14, Especially preferred is 0.138, most preferred is 0.136.
  • the lower limit of the degree of plane orientation ( ⁇ P) is more preferably 0.135, more preferably 0.138, and particularly preferably 0. .14.
  • the degree of planar orientation is (nx+ny)/ It is a value obtained by 2-nz.
  • the lower limit of the NZ coefficient is preferably 1.65, more preferably 1.68, still more preferably 1.7, particularly preferably greater than 1.7 .
  • the upper limit of the NZ coefficient is preferably 3, more preferably 2.7, even more preferably 2.5, and particularly preferably 2.3.
  • the upper limit of the NZ coefficient is more preferably 1.9, more preferably 1.85, and particularly preferably. is 1.8.
  • the lower limit of the NZ coefficient is more preferably 1.8, still more preferably 1.85, and particularly preferably 1 when it is desired to impart excellent bending resistance such as for use in a flexible image display device. .9.
  • the lower limit of the thickness of the polyester film of the present invention is preferably 25 ⁇ m, more preferably 30 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m and 55 ⁇ m in this order.
  • the upper limit of the thickness is preferably 150 ⁇ m, more preferably 130 ⁇ m, 100 ⁇ m, 90 ⁇ m and 85 ⁇ m in that order. In the present specification, "preferred in order" means that numerical values with a narrower range are more preferable. If the thickness is equal to or less than the above upper limit, the thickness of the unstretched film is also reduced when the unstretched film is heated, so it becomes easier to uniformly raise the temperature in the thickness direction of the film in a short time, and it becomes easier to suppress unevenness in thickness. .
  • the thickness is preferably 40 to 85 ⁇ m.
  • the thickness is preferably 25 to 70 ⁇ m, and the thickness is preferably 60 to 150 ⁇ m for a screen surface protective film for a non-flexible image display device.
  • the thickness of a film of a predetermined size is measured at a predetermined speed (e.g., 1.5 m / min in the MD direction. speed), continuously measured at predetermined intervals (e.g., 0.1 second intervals), arbitrarily select a predetermined number of data (e.g., 2048 points continuously) from the obtained data, and average them It can be calculated by
  • the upper limit of the thickness unevenness in the flow direction of the polyester film of the present invention (hereinafter referred to as the longitudinal direction, the MD direction, or the direction perpendicular to the main stretching direction when stretching) is preferably 8%, more preferably. is 7%, more preferably 6%, particularly preferably 5%, most preferably 4%.
  • the thickness unevenness in the MD direction is preferably as low as possible, but from a practical point of view, the lower limit is preferably 0.1%, more preferably 0.5%.
  • the unevenness of thickness is a value obtained by (maximum value of thickness - minimum value)/average value of thickness x 100 (%) in the following thickness measurement.
  • the data obtained by measuring the thickness of the film in the MD direction is subjected to Fourier transform (for example, fast Fourier transform), and the obtained results are analyzed by the length period of the film in the MD direction (specifically, the frequency is changed to the length ),
  • A is the average of the top 5 amplitudes with a period of 10 cm or more
  • B is the average of the top 5 amplitudes with a period of less than 10 cm
  • the lower limit of A/B is It is preferably 0.5, more preferably 1, still more preferably 1.3, particularly preferably 1.5, and most preferably 1.8.
  • the upper limit of A/B is preferably 5, more preferably 4.5, even more preferably 4, and particularly preferably 3.5.
  • the lower limit of Amax/B is preferably 0.7, more preferably 1.4, and still more preferably 1.8, Particularly preferred is 2, most preferred is 2.2.
  • the upper limit of Amax/B is 7, preferably 6, still more preferably 5, particularly preferably 4.5, and most preferably 4.
  • A, Amax and B are preferably calculated by the following specific method.
  • the thickness of the central portion of the film is continuously captured at intervals of 0.1 seconds at a speed of 1.5 m/min.
  • 2048 points (5.12 m in length) of the obtained data to perform frequency analysis by fast Fourier transform.
  • 5 points with the largest amplitude are selected in descending order, the average value of these is A, and the largest amplitude value among these 5 points is Amax.
  • the thickness unevenness in the MD direction is caused by the vibration of the electrode or the vibration of the apparatus used when the molten resin is electrostatically adhered to the cooling roll. It is often caused by the effects of chill roll roundness or runout at time, or by the automatic adjustment of the die lip spacing. For example, thickness unevenness caused by electrode blurring or device vibration often has a period of several centimeters or less. However, if the film is weakly stretched in the MD direction, unevenness in thickness cannot be sufficiently suppressed even if these adjustments are made, and unevenness in thickness with a period of several tens of centimeters to several meters becomes noticeable, causing problems due to unevenness in thickness. .
  • a polyester resin typically PET
  • it is put into an extruder, melted at 260 to 300°C, and extruded into a sheet from a die onto a cooling roll to obtain an unstretched film.
  • the unstretched film is preheated to raise the temperature, and finally stretched by applying tension in the MD direction.
  • the unstretched film is heated in multiple stages.
  • the temperature is called the stretching temperature and will be described separately.
  • MD stretching a film is heated by a plurality of low-speed rolls and then stretched with a difference in peripheral speed from the high-speed rolls.
  • final roll when heating with a final roll of low speed rolls (hereinafter sometimes simply referred to as "final roll"), when heating with an infrared heater (IR heater) and so on.
  • IR heater infrared heater
  • the temperature at which the film separates from the final roll is the stretching temperature
  • the temperature at which the film separates from the low-speed roll (heating roll) immediately before the final roll is the preheating temperature.
  • the highest temperature in the region heated by the IR heater is the stretching temperature
  • the temperature at the time of separation from the final roll (heating roll) is the preheating temperature.
  • the preheating temperature for MD stretching is preferably 60° C. or higher, more preferably 65° C. or higher, and even more preferably 70° C. or higher. By setting the preheating temperature within the above range, the temperature difference in the thickness direction of the film can be reduced even if the film-forming speed is high, and stable stretching becomes possible.
  • the preheating temperature for MD stretching is preferably 95° C. or lower, more preferably 90° C. or lower, still more preferably 85° C. or lower, particularly preferably 82° C. or lower, and most preferably 80° C. or lower. By setting the preheating temperature within the above range, sticking between the film and the roll is suppressed, and stable film running becomes possible.
  • the slackness of the film between the preheating rolls can be suppressed and the tension between the preheating rolls can be reduced, unnecessary elongation of the film in the preheating process can be reduced, and thickness unevenness and deterioration of flatness can be reduced. can be suppressed.
  • the molecular weight of the polyester is low (when the IV is low), the slack of the film is likely to occur. g or less, it is preferably 85° C. or less.
  • the stretching temperature for MD stretching is preferably 86°C or higher, more preferably 88°C or higher, still more preferably 89°C or higher, particularly preferably 90°C or higher, and most preferably 91°C or higher.
  • the stretching temperature is low, the SS (stress-strain) characteristics of the unstretched film may not allow the stress to rise moderately with respect to the strain, resulting in unstable stretching.
  • the stretching temperature for MD stretching is preferably 110°C or lower, and more preferably 105°C or lower, 102°C or lower, 100°C or lower, 98°C or lower, and 96°C or lower in this order.
  • the stretching temperature within the above range, the film does not become too soft and slack during stretching can be suppressed.
  • the stretching temperature when tension is applied, the film tends to stretch from the latter half of 80° C., but if the stretching temperature is within the above range, stretching at positions other than the assumed positions can be suppressed and stretching can be stabilized.
  • the lower the molecular weight, the easier it is to loosen for example, when IV is 0.7 dl / g or less, it is preferably 100 ° C. or less, and when IV is 0.65 dl / g or less, it is 98 ° C. or less. is preferably
  • the difference between the stretching temperature and the preheating temperature is preferably 11° C. or higher, more preferably 12° C. or higher, still more preferably 13° C. or higher. Also, the difference between the stretching temperature and the preheating temperature is preferably 24° C. or less, more preferably 23° C. or less, still more preferably 22° C. or less.
  • the film In MD stretching, as described above, it is necessary to quickly raise the temperature of the film from the preheating temperature to the stretching temperature. It can be difficult. Therefore, when the film is heated by the final roll, it is preferable to increase the embrace angle of the film to the final roll to prolong the contact time between the final heating roll and the film.
  • the embrace angle is preferably 30 degrees or more, more preferably 45 degrees or more, still more preferably 60 degrees or more, and particularly preferably 70 degrees or more.
  • the roll used in the preheating process and the roll in the stretching process may be a roll with a surface plated with chrome plating, nickel plating, cobalt alloy plating, etc., and the surface of the roll becomes hot and sticking of the polyester resin is observed. In such a case, it is preferable to use a fluororesin-coated roll.
  • the roundness is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 10 ⁇ m or less, and usually 0.1 ⁇ m or more.
  • the runout is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, and usually 0.1 ⁇ m or more.
  • the diameter of the roll depends on the size of the stretching machine, but is preferably 100 to 500 mm, more preferably 150 to 400 mm, if the width of the unstretched film is about 700 to 2500 mm. and more preferably 170 to 350 mm.
  • the lower limit of the MD stretching ratio is preferably 1.05 times, more preferably 1.08 times, and still more preferably 1.1 times.
  • the upper limit of the MD draw ratio is preferably 2 times, more preferably 1.8 times, and still more preferably 1.7 times.
  • the upper limit of the MD draw ratio is more preferably 1.25 times, more preferably 1.2 times. and particularly preferably 1.18 times.
  • the lower limit of the MD draw ratio is more preferably 1.2 times, still more preferably 1.25 times, and particularly preferably 1.25 times. is 1.3 times.
  • the upper limit of the thickness unevenness in the direction (TD direction) perpendicular to the flow direction of the film is preferably 5%, more preferably 4%, still more preferably 3.5%, particularly Preferably it is 3%.
  • a lower thickness unevenness in the TD direction is preferable, but from a practical point of view, the lower limit is preferably 0.1%, more preferably 0.5%.
  • Thickness unevenness in the TD direction is achieved, for example, by controlling the lip spacing during casting, reducing unevenness in film temperature in the TD direction during TD stretching, and setting the degree of plane orientation and the NZ coefficient within an appropriate range. be able to.
  • TD stretching the film after MD stretching is preheated and stretched at preferably 80 to 130°C, more preferably 90 to 120°C.
  • the draw ratio for TD stretching is preferably 3 to 6.5 times, more preferably 3.2 to 6.2 times, still more preferably 3.5 to 6.0 times, and particularly preferably 3.7 to 5.8 times. Double.
  • Stretching is preferably followed by heat setting.
  • the heat setting temperature is preferably 150 to 250°C, more preferably 170 to 230°C.
  • the heat setting time is preferably 3 to 60 seconds, more preferably 5 to 30 seconds.
  • the relaxation treatment is preferably 0.5 to 10%, more preferably 1 to 5%.
  • the lower limit of the breaking elongation in the MD direction of the polyester film of the present invention is preferably 4%, more preferably 5%, 6%, 7%, 8%, 9%, 10% in that order.
  • the upper limit of the breaking elongation in the MD direction is preferably 50%, more preferably 40%, still more preferably 30%, particularly preferably 25%, and most preferably 20%.
  • the lower limit of the breaking elongation in the TD direction of the polyester film of the present invention is preferably 50%, more preferably 60%.
  • the upper limit of the breaking elongation in the TD direction is preferably 200%, more preferably 150%, even more preferably 120%, and particularly preferably 100%.
  • the lower limit of the breaking strength in the MD direction of the polyester film of the present invention is preferably 50 MPa, more preferably 55 MPa, still more preferably 60 MPa, and particularly preferably 65 MPa.
  • the upper limit of the breaking strength in the MD direction is preferably 150 MPa, more preferably 130 MPa, even more preferably 120 MPa, particularly preferably 110 MPa, and most preferably 100 MPa.
  • the lower limit of the breaking strength in the TD direction of the polyester film of the present invention is preferably 300 MPa, more preferably 330 MPa, still more preferably 350 MPa.
  • the upper limit of the breaking strength in the TD direction is preferably 500 MPa, more preferably 450 MPa, still more preferably 420 MPa, particularly preferably 400 MPa.
  • the lower limit of the heat shrinkage rate at 150°C of the polyester film of the present invention is preferably -0.5%, more preferably -0.1% in both the MD and TD directions.
  • the upper limit of the heat shrinkage rate at 150°C in both the MD direction and the TD direction is preferably 3%, more preferably 2.7%, still more preferably 2.5%, and particularly preferably 2%. is.
  • the polyester film of the present invention preferably has a light transmittance of 20% or less at a wavelength of 380 nm.
  • the light transmittance at a wavelength of 380 nm is more preferably 15% or less, even more preferably 10% or less, and particularly preferably 5% or less.
  • the light transmittance is measured in a direction perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500).
  • a spectrophotometer for example, Hitachi U-3500.
  • it preferably has a low ultraviolet transmittance.
  • the light transmittance of the polyester film of the present invention at a wavelength of 380 nm is set to 20% or less, for example, by adding an ultraviolet absorber to the film, applying a coating liquid containing the ultraviolet absorber to the film surface, It can be achieved by appropriately adjusting the type and concentration of the ultraviolet absorbent and the thickness of the film.
  • UV absorbers are known substances. Examples of the UV absorber include organic UV absorbers and inorganic UV absorbers, but organic UV absorbers are preferred from the viewpoint of transparency.
  • organic UV absorbers examples include benzotriazole-based, benzophenone-based, cyclic iminoester-based, and combinations thereof, but are not particularly limited as long as the absorbance is within the desired range.
  • particles having an average particle size of 0.05 to 2 ⁇ m to the polyester film of the present invention in order to improve slipperiness.
  • inorganic particles such as titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride, etc.
  • examples include organic polymer particles such as styrene, acrylic, melamine, benzoguanamine, and silicone particles. These particles may be added to the entire film, or may be added only to the skin layer in a skin-core coextruded multilayer structure.
  • the film itself does not contain particles, and particles are added to the easy-adhesion layer to be described later.
  • the polyester film of the present invention may be subjected to treatments such as corona treatment, flame treatment and plasma treatment to improve adhesiveness.
  • the polyester film of the present invention may be provided with an easy-adhesion layer in order to improve adhesion to an adhesive, a coat layer, and the like.
  • Polyester resins, polyurethane resins, polycarbonate resins, acrylic resins, and the like are used as the resins used for the easy-adhesion layer, and polyester resins, polyester-polyurethane resins, polycarbonate-polyurethane resins, and acrylic resins are preferred.
  • the easy-adhesion layer is preferably crosslinked. Examples of cross-linking agents include isocyanate compounds, melamine compounds, epoxy resins, oxazoline compounds, and the like. Addition of a water-soluble resin such as polyvinyl alcohol to the easy-adhesion layer is also a useful means for improving adhesion to the polarizer.
  • the easy-adhesion layer can be provided by coating and drying the film as a water-based paint containing these resins and, if necessary, a cross-linking agent, particles, and the like. Examples of the particles include those used in the base material described above.
  • the easy-adhesion layer may be provided on the film (for example, stretched film) off-line, but is preferably provided in-line during the film-forming process. When provided in-line, it may be before the longitudinal stretching (MD stretching) or before the transverse stretching (TD stretching), but it is applied immediately before the transverse stretching, and is dried and crosslinked in the preheating, heating, and heat treatment steps by the tenter. preferably.
  • the coating amount (coating amount after drying) of the easily adhesive layer is preferably 0.01 to 1.0 g/m 2 , more preferably 0.03 to 0.5 g/m 2 .
  • the polyester film of the present invention is provided with functional layers such as a hard coat layer, an antireflection layer, a low reflection layer, an antiglare layer and an antistatic layer.
  • the antireflection layer, the low reflection layer, and the antiglare layer are collectively referred to as a reflection reduction layer.
  • the reflection-reducing layer not only prevents external light from being reflected on the display screen and makes it difficult to see, but also has the effect of suppressing reflection at the interface to reduce iridescence or make it less noticeable.
  • the substrate film for example, a transparent electrode substrate film
  • a refractive index adjusting layer in order to make the transparent electrode layer inconspicuous.
  • the base film the film in the state before the functional layer is provided.
  • the substrate film may contain the above-described easy-adhesion layer.
  • the upper limit of the reflectance of the polyester film measured from the side of the reflection-reducing layer is preferably 5%, more preferably 4%, even more preferably 3%, particularly preferably 2%, and most preferably 1%. 0.5%.
  • the thickness is equal to or less than the above upper limit, the reflection of outside light can be reduced, and the visibility of the screen can be improved.
  • the lower limit of the reflectance is not particularly defined, it is preferably 0.01%, more preferably 0.1% from a practical point of view.
  • the reflection reducing layer there are various types such as a low reflection layer, an antireflection layer, an antiglare layer, and the like.
  • the low-reflection layer is a layer having a function of reducing the reflectance by providing a low-refractive-index layer (low-refractive-index layer) on the surface of the base film to reduce the difference in refractive index from air.
  • the antireflection layer is a layer that controls reflection by controlling the thickness of the low refractive index layer to interfere the reflected light from the interface.
  • the thickness of the low refractive index layer is preferably about the wavelength of visible light (400 to 700 nm)/(refractive index of low refractive index layer ⁇ 4). It is also a preferred form to provide a high refractive index layer between the antireflection layer and the base film, and two or more low refractive index layers and/or high refractive index layers are provided to further enhance the antireflection effect by multiple interference. You can raise it.
  • a combination of the high refractive index layer and the low refractive index layer is sometimes called an antireflection layer.
  • the upper limit of the reflectance is preferably 2%, more preferably 1.5%, even more preferably 1.2%, and particularly preferably 1%.
  • the refractive index of the low refractive index layer is preferably 1.45 or less, more preferably 1.42 or less. Moreover, the refractive index of the low refractive index layer is preferably 1.2 or more, more preferably 1.25 or more. The refractive index of the low refractive index layer is a value measured under the condition of a wavelength of 589 nm.
  • the thickness of the low-refractive-index layer is not limited, it can usually be appropriately set within the range of about 30 nm to 1 ⁇ m.
  • the thickness of the low refractive index layer is preferably 70 to 120 nm, more preferably 75 to 110 nm.
  • the low refractive index layer preferably includes (1) a layer made of a resin composition containing a binder resin and low refractive index particles, (2) a layer made of a fluororesin that is a low refractive index resin, (3) silica or (4) a thin film of a low refractive index substance such as silica and magnesium fluoride;
  • polyester, polyurethane, polyamide, polycarbonate, acrylic, etc. can be used without particular limitation.
  • acrylic is preferred, and one obtained by polymerizing (crosslinking) a photopolymerizable compound by light irradiation is preferred.
  • the photopolymerizable compound examples include photopolymerizable monomers, photopolymerizable oligomers, and photopolymerizable polymers, and these can be appropriately adjusted and used.
  • the photopolymerizable compound is preferably a combination of a photopolymerizable monomer and a photopolymerizable oligomer or photopolymerizable polymer. These photopolymerizable monomers, photopolymerizable oligomers and photopolymerizable polymers are preferably polyfunctional.
  • polyfunctional monomers examples include pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate (PETTA), and dipentaerythritol pentaacrylate (DPPA).
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • PETTA pentaerythritol tetraacrylate
  • DPPA dipentaerythritol pentaacrylate
  • a monofunctional monomer may be used in combination for adjustment of coating viscosity and hardness.
  • Polyfunctional oligomers include polyester (meth)acrylate, urethane (meth)acrylate, polyester-urethane (meth)acrylate, polyether (meth)acrylate, polyol (meth)acrylate, melamine (meth)acrylate, and isocyanurate (meth)acrylate. Acrylate, epoxy (meth)acrylate, and the like.
  • Polyfunctional polymers include urethane (meth)acrylate, isocyanurate (meth)acrylate, polyester-urethane (meth)acrylate, epoxy (meth)acrylate, and the like.
  • the resin composition (1) may contain a polymerization initiator, a cross-linking agent catalyst, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a leveling agent, a surfactant, and the like.
  • Examples of the low refractive index particles contained in the resin composition (1) include silica particles (for example, hollow silica particles), magnesium fluoride particles, etc. Among them, hollow silica particles are preferred. Such hollow silica particles can be produced, for example, by the production method described in Examples of JP-A-2005-099778.
  • the average particle size of the primary particles of the low refractive index particles is preferably 5 to 200 nm, more preferably 5 to 100 nm, even more preferably 10 to 80 nm.
  • the low refractive index particles are more preferably surface-treated with a silane coupling agent, and more preferably surface-treated with a silane coupling agent having a (meth)acryloyl group.
  • the content of the low refractive index particles in the low refractive index layer is preferably 10 to 400 parts by mass, more preferably 10 to 250 parts by mass, and further 50 to 200 parts by mass with respect to 100 parts by mass of the binder resin. Preferred is 80 to 180 parts by weight, most preferred is 100 to 180 parts by weight.
  • a polymerizable compound containing at least a fluorine atom in the molecule or a polymer thereof can be used.
  • the polymerizable compound is not particularly limited, but preferably has a curing reactive group such as a photopolymerizable functional group or a thermosetting polar group. A compound having these multiple curing reactive groups at the same time may also be used. In contrast to this polymerizable compound, the polymer does not have the above curing reactive groups.
  • a fluorine-containing monomer having an ethylenically unsaturated bond can be widely used.
  • the surface of the low-refractive-index layer may be an uneven surface in order to provide anti-glare properties, but it is also preferable that it is a smooth surface.
  • the arithmetic mean roughness SRa (JIS B0601:1994) of the surface of the low refractive index layer is preferably 20 nm or less, more preferably 15 nm or less, and even more preferably. is 10 nm or less, particularly preferably 1 to 8 nm.
  • the ten-point average roughness Rz (JIS B0601:1994) of the surface of the low refractive index layer is preferably 160 nm or less, more preferably 50 to 155 nm.
  • the refractive index of the high refractive index layer is preferably 1.55 to 1.85, more preferably 1.56 to 1.7.
  • the refractive index of the high refractive index layer is a value measured under the condition of a wavelength of 589 nm.
  • the thickness of the high refractive index layer is preferably 30-200 nm, more preferably 50-180 nm.
  • the high refractive index layer may be a plurality of layers, it is preferably two layers or less, more preferably a single layer. In the case of multiple layers, the total thickness of the multiple layers is preferably within the above range.
  • the refractive index of the high refractive index layer on the low refractive index layer side is preferably higher.
  • the refractive index of the high refractive index layer on the low refractive index layer side is The index is preferably 1.6 to 1.85, and the refractive index of the other high refractive index layer is preferably 1.55 to 1.7.
  • the high refractive index layer is preferably made of a resin composition containing high refractive index particles and a resin.
  • Antimony pentoxide particles, zinc oxide particles, titanium oxide particles, cerium oxide particles, tin-doped indium oxide particles, antimony-doped tin oxide particles, yttrium oxide particles, zirconium oxide particles, and the like are preferable as the high refractive index particles.
  • titanium oxide particles and zirconium oxide particles are preferred.
  • Two or more kinds of high refractive index particles may be used in combination.
  • the resins used for the high refractive index layer include the same resins as those listed for the low refractive index layer, except for fluorine-based resins.
  • the surface of the high refractive index layer is also flat.
  • the above method for flattening the low refractive index layer is used.
  • the average particle size of the high refractive index particles and the primary particles of the high refractive index particles is preferably 5 to 200 nm, more preferably 5 to 100 nm, even more preferably 10 to 80 nm. These particles are more preferably surface-treated, more preferably surface-treated with a silane coupling agent, and more preferably surface-treated with a silane coupling agent having a (meth)acryloyl group.
  • the content of the high refractive index particles in the high refractive index layer is preferably 10 to 400 parts by mass, more preferably 10 to 250 parts by mass, and further 50 to 200 parts by mass with respect to 100 parts by mass of the binder resin. Preferred is 80 to 180 parts by weight, most preferred is 100 to 180 parts by weight.
  • a resin composition containing a photopolymerizable compound is applied to a base film, dried, and then the coated resin composition is irradiated with light such as ultraviolet rays.
  • light such as ultraviolet rays.
  • a resin composition containing a photopolymerizable compound is applied to a base film, dried, and then the coated resin composition is irradiated with light such as ultraviolet rays.
  • the coated resin composition is irradiated with light such as ultraviolet rays.
  • light such as ultraviolet rays.
  • thermoplastic resin a thermosetting resin, a solvent, a polymerization initiator, a combination thereof, or the like may be added to the resin composition of the high refractive index layer and the low refractive index layer.
  • dispersants surfactants, antistatic agents, silane coupling agents, thickeners, anti-coloring agents, coloring agents (pigments, dyes), antifoaming agents, leveling agents, flame retardants, UV absorbers, adhesion imparting agents agents, polymerization inhibitors, antioxidants, surface modifiers, lubricants, combinations thereof, and the like may be added.
  • the anti-glare layer is a layer that prevents reflection of the shape of a light source when external light is reflected on the surface and reduces glare, by providing irregularities on the surface to cause diffuse reflection.
  • the arithmetic mean roughness (SRa) of the irregularities on the surface of the antiglare layer is preferably 0.02 to 0.25 ⁇ m, more preferably 0.02 to 0.15 ⁇ m, still more preferably 0.02 to 0. .12 ⁇ m.
  • the ten-point average roughness (Rzjis) of unevenness on the surface of the antiglare layer is preferably from 0.15 to 2 ⁇ m, more preferably from 0.2 to 1.2 ⁇ m, and still more preferably from 0.3 to 0.3 ⁇ m. 8 ⁇ m.
  • SRa and Rzjis are calculated from a roughness curve measured using a contact roughness meter in accordance with JIS B0601-1994 or JIS B0601-2001.
  • Examples of methods for providing the antiglare layer on the base film include the following methods. ⁇ Apply anti-glare layer paint containing particles (filler), etc. ⁇ Cure anti-glare layer resin while it is in contact with a mold with uneven structure. It is applied to the mold that has it and transferred to the base film. ⁇ A paint that causes spinodal decomposition during drying and film formation
  • the lower limit of the thickness of the antiglare layer is preferably 0.1 ⁇ m, more preferably 0.5 ⁇ m.
  • the upper limit of the thickness of the antiglare layer is preferably 100 ⁇ m, more preferably 50 ⁇ m, and still more preferably 20 ⁇ m.
  • the refractive index of the antiglare layer is preferably 1.2 to 1.8, more preferably 1.4 to 1.7.
  • the refractive index of the antiglare layer is a value measured under the condition of a wavelength of 589 nm.
  • the low refractive index layer may be provided with unevenness to form an antiglare and low reflective layer, and the surface of the hard coat layer or high refractive index layer may be uneven, and the low refractive index layer may be provided thereon to provide an antireflection function. may be used as an antiglare and antireflection layer.
  • the hard coat layer It is also a preferred form to provide a hard coat layer as a lower layer of the reflection reducing layer.
  • the hard coat layer preferably has a pencil hardness of H or more, more preferably 2H or more.
  • the hard coat layer can be provided, for example, by applying and curing a composition (solution) containing a thermosetting resin or a radiation-curable resin.
  • Thermosetting resins include acrylic resins, urethane resins, phenolic resins, urea melamine resins, epoxy resins, unsaturated polyester resins, silicone resins, and combinations thereof. If necessary, a curing agent is added to these curable resins in the thermosetting resin composition.
  • the radiation-curable resin is preferably a compound having a radiation-curable functional group (radiation-curable compound).
  • a saturated bond group, an epoxy group, an oxetanyl group, and the like can be mentioned.
  • the ionizing radiation-curable compound a compound having an ethylenically unsaturated bond group is preferable, and a compound having two or more ethylenically unsaturated bond groups is more preferable.
  • Polyfunctional (meth)acrylate compounds having the above are more preferable.
  • a polyfunctional (meth)acrylate compound may be a monomer, an oligomer, or a polymer.
  • the difunctional or higher monomer content in the compound having a radiation-curable functional group is preferably 50% by mass or more, more preferably 70% by mass or more.
  • the trifunctional or higher monomer preferably accounts for 50% by mass or more, more preferably 70% by mass or more.
  • the compounds having a radiation-curable functional group can be used singly or in combination of two or more.
  • the thickness of the hard coat layer is preferably in the range of 0.1-100 ⁇ m, more preferably in the range of 0.8-20 ⁇ m.
  • the hard coat layer preferably has a refractive index of 1.45 to 1.7, more preferably 1.5 to 1.6.
  • the refractive index of the hard coat layer is a value measured at a wavelength of 589 nm.
  • Examples of adjusting the refractive index of the hard coat layer include a method of adjusting the refractive index of the resin, and a method of adjusting the refractive index of the particles when particles are added.
  • Examples of the particles include those exemplified as the particles of the antiglare layer.
  • it may be called a reflection reduction layer including a hard-coat layer.
  • an easily adhesive layer may be provided between the functional layer and the base film.
  • the resins, cross-linking agents, and the like mentioned for the easy-adhesion layer are preferably used.
  • the easy-adhesion layers may be provided on both sides of the substrate film, and in that case, the easy-adhesion layers on both sides may have the same composition or different compositions.
  • the polyester film of the present invention can be suitably used as a polarizer protective film.
  • the polyester film of the present invention can be laminated with a polarizer to form a polarizing plate.
  • a polarizer for example, uniaxially stretched polyvinyl alcohol (PVA) to which iodine or an organic dichroic dye is adsorbed, a liquid crystal compound and an organic dichroic dye that are aligned, or a liquid crystalline
  • PVA uniaxially stretched polyvinyl alcohol
  • a liquid crystalline polarizer composed of a dichroic dye, a wire grid type polarizer, and the like can be used without particular limitation.
  • a film-shaped polarizer made by adsorbing iodine or an organic dichroic dye to uniaxially stretched polyvinyl alcohol (PVA) and a roll-shaped polarizer protective film are adhered by PVA-based, UV-curable, etc. It can be laminated using an adhesive or adhesive and wound into a roll.
  • the thickness of this type of polarizer is preferably 5 to 30 ⁇ m, more preferably 8 to 25 m, particularly preferably 10 to 20 m.
  • the thickness of the adhesive or adhesive is preferably 1-10 ⁇ m, more preferably 2-5 ⁇ m.
  • a polarizer obtained by coating an unstretched base material such as PET or polypropylene with PVA and uniaxially stretching it together with the base material to adsorb iodine or an organic dichroic dye is also preferably used.
  • the polarizer surface of the polarizer laminated on the substrate (the surface on which the substrate is not laminated) and the polarizer protective film are attached together with an adhesive or adhesive, and then the polarizer is attached.
  • the polarizer protective film and the polarizer can be bonded together by peeling off the base material used for the production. Also in this case, it is preferable to stick together in a roll form and take up the roll.
  • the thickness of this type of polarizer is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m, particularly preferably 3 to 6 ⁇ m.
  • the thickness of the adhesive or adhesive is preferably 1-10 ⁇ m, more preferably 2-5 ⁇ m.
  • a polarizer protective film is laminated with an oriented polarizer consisting of a liquid crystal compound and an organic dichroic dye, or a liquid crystalline dichroic material is laminated on the polarizer protective film.
  • a polarizing plate can be obtained by applying a coating liquid containing a polar dye, drying it, photocuring or thermally curing it, and laminating a polarizer. Examples of the method for orienting the liquid crystalline polarizer include a method of rubbing the surface of the object to be coated and a method of irradiating polarized ultraviolet rays to cure the liquid crystalline polarizer while aligning it.
  • the surface of the polarizer protective film may be directly rubbed and coated with the coating liquid, or the polarizer protective film may be directly coated with the coating liquid and irradiated with polarized ultraviolet rays. It is also a preferable method to provide an orientation layer on the polarizer protective film before providing the liquid crystalline polarizer (that is, to laminate the liquid crystalline polarizer on the polarizer protective film via the orientation layer).
  • a method for providing the orientation layer - A method of coating polyvinyl alcohol and its derivatives, polyimide and its derivatives, acrylic resin, polysiloxane derivative, etc., and rubbing the surface thereof to form an alignment layer (rubbing alignment layer); - A method of applying a coating solution containing a polymer or monomer having a photoreactive group such as a cinnamoyl group or a chalcone group and a solvent, and irradiating polarized ultraviolet rays to harden the alignment layer (photoalignment layer), etc. is mentioned.
  • a liquid crystalline polarizer is provided on a releasable film according to the above method, the liquid crystalline polarizer surface and the polarizer film are bonded together with an adhesive or a pressure-sensitive adhesive, and then a releasable film is attached.
  • a polarizer film and a polarizer can also be bonded together by peeling.
  • the thickness of the liquid crystalline polarizer is preferably 0.1 to 7 ⁇ m, more preferably 0.3 to 5 ⁇ m, particularly preferably 0.5 to 3 ⁇ m.
  • the thickness of the adhesive or adhesive is preferably 1-10 ⁇ m, more preferably 2-5 ⁇ m.
  • the polyester film of the present invention is preferably laminated on the opposite side of the polarizer to the image display cell side.
  • the angle formed by the absorption axis of the polarizer and the slow axis of the film is preferably about 90 degrees or about 0 degrees.
  • “about” means an error of 7 degrees or less.
  • the error is preferably 5 degrees or less, more preferably 3 degrees or less, particularly preferably 2 degrees or less, most preferably 1.5 degrees or less. It is preferable that the above angle is provided over the entire range of the polarizing plate.
  • the polarizer is a liquid crystalline polarizer or a wire grid type polarizer, it is easy to make the absorption axis of the polarizer oblique to the slow axis of the polyester film.
  • the angle between them may be 30-60 degrees, preferably about 45 degrees.
  • the surface of the polarizer on the liquid crystal cell side may be in a state in which nothing is laminated, or may be an adhesive, and a cured layer is provided on the polarizer.
  • a polarizer protective film different from the above polarizer protective film may be provided.
  • a preferable cured layer includes the hard coat layer described above. When it is an adhesive, a release film may be further laminated.
  • a separate peelable protective film may be laminated.
  • the polarizer protective film on the liquid crystal cell side of the polarizer includes cellulose-based (TAC) film, acrylic film, polycyclic olefin (COP) film, and the like.
  • TAC cellulose-based
  • COP polycyclic olefin
  • the polarizer protective film on the side of the liquid crystal cell may have a retardation of almost zero, and has a phase difference called an optical compensation film for controlling color tone changes when the display screen is viewed from an oblique direction. It may be a film.
  • a liquid crystal compound for forming the retardation layer may be a rod-like liquid crystal compound, a discotic liquid crystal compound, or the like, depending on the required retardation characteristics.
  • the liquid crystal compound preferably has a photocurable reactive group such as a double bond in order to fix the alignment state.
  • an alignment layer is provided as a lower layer of the retardation layer, and the alignment layer is rubbed or irradiated with polarized ultraviolet rays, and then coated thereon. It is possible to impart alignment controllability such that the liquid crystal compound to be aligned is aligned in a specific direction.
  • the retardation of the optical compensation film can be set as appropriate depending on the type of liquid crystal cell used and the viewing angle to be secured.
  • the retardation layer can be provided by applying a composition paint for retardation layer.
  • the composition paint for retardation layer may contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, a cross-linking agent, a combination thereof, and the like.
  • a solvent a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, a cross-linking agent, a combination thereof, and the like.
  • the ones described in the alignment control layer and the liquid crystalline polarizer can be used.
  • a retardation layer is provided by coating the composition paint for retardation layer on the release surface of the release film or the orientation control layer, followed by drying, heating, and curing.
  • the conditions described in the section on the alignment control layer and the liquid crystalline polarizer are used as preferable conditions.
  • An adhesive or pressure-sensitive adhesive is used when bonding a polarizer to a polarizer protective film or a retardation film.
  • a water-based adhesive such as a polyvinyl alcohol-based adhesive or a photocurable adhesive is preferably used.
  • photocurable adhesives include acrylic adhesives and epoxy adhesives.
  • An acrylic adhesive is preferably used as the adhesive.
  • a liquid crystal cell is a cell in which a liquid crystal compound is sealed between thin substrates such as glass on which circuits are formed.
  • the thickness is preferably 1 mm or less, more preferably 0.7 mm or less, further preferably 0.5 mm or less, and particularly preferably 0.4 mm or less from the viewpoint of thinning.
  • the method of the liquid crystal cell is not particularly limited. This is a preferred method for applying the present invention because it is parallel or orthogonal to the long side direction of the .
  • both the maximum transmittance and minimum transmittance in the wavelength range of 420 nm to 460 nm of blue pixels are preferably 80% or more, more preferably 85% or more.
  • the difference between the maximum transmittance and the minimum transmittance for wavelengths of 420 nm to 460 nm is preferably 4% or less, more preferably 3% or less.
  • a liquid crystal display panel is preferably formed by bonding polarizing plates to the viewing side and the light source side of the liquid crystal cell. Bonding is preferably performed with an adhesive. An acrylic adhesive is preferably used as the adhesive.
  • the polarizing plate using the polyester film may be either the polarizing plate on the light source side or the polarizing plate on the viewing side, or may be both polarizing plates.
  • the polarizing plate is preferably a circularly polarizing plate.
  • a circular polarizer typically has a quarter-wave layer laminated on the viewing side of a polarizer.
  • the quarter-wave layer includes not only one quarter-wave layer but also a combination of a quarter-wave layer and a half-wave layer, and a retardation layer such as a C plate. Including added ones.
  • a retardation layer such as a quarter-wave layer, a half-wave layer, and a C plate may be a film or a coat layer. These retardation layers may be the same as those described for the retardation layer of the polarizing plate, as long as the retardation and the orientation direction thereof are appropriate.
  • the polyester film of the present invention is suitably used as a transparent electrode substrate film for touch panels and the like.
  • the transparent conductive layer is provided on at least one side of the polyester film, and may be provided on both sides.
  • transparent conductive layers include conductive paste mesh prints, carbon nanotube-containing coats, self-assembled nano-silver coats, acicular conductive filler-containing coats, metal oxide thin films, and the like.
  • metal oxide thin films are preferable, and preferable examples include thin films of indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), tin antimony oxide, zinc aluminum oxide, and indium zinc oxide.
  • the transparent conductive layer is preferably formed into a pattern shape such as a line shape or a lattice shape by etching.
  • the thickness of the transparent conductive layer is preferably 5 to 500 nm, more preferably 15 to 250 nm, even more preferably 20 to 100 nm. Due to the above thickness, it is possible to suppress the tint caused by the conductive layer while ensuring conductivity.
  • a transparent conductive layer can be formed by a known method such as a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, or a sol-gel method.
  • a resist mask with a predetermined pattern can be formed by photolithography, and then an etching process can be performed to form a pattern or the like.
  • the transparent conductive layer may be amorphous, but the amorphous transparent conductive layer is heat-treated at 130 to 180° C. for 0.5 to 2 hours to grow crystals to form a crystalline transparent conductive layer, It is preferable to increase the conductivity.
  • the refractive index adjusting layer may be a layer having a refractive index close to that of the transparent conductive layer (high refractive index layer), or a high refractive index layer and a low refractive index layer may be provided in this order. In particular, it is preferable to provide the high refractive index layer and the low refractive index layer in this order.
  • the polyester film of the present invention is preferably used as a shatterproof film.
  • the shatterproof film is used by bonding it to the glass plate. It can prevent scattering and exposure to the outside.
  • the anti-scattering film may be laminated on either the viewing side or the anti-viewing side of the glass plate.
  • OCA optical substrate-less pressure-sensitive adhesive
  • the polyester film of the present invention is preferably used as a screen surface protective film.
  • the screen surface protective film is laminated on the viewing side of the screen of the image display device, and can protect the internal image display cells from external shocks and prevent the surface from being damaged.
  • the screen surface protective film is preferably attached to the image display portion using an adhesive. It is also preferable that the screen surface protective film is positioned on the outermost surface of the image display portion and is of a type that can be peeled off and replaced when damaged. In this case, it is preferable that the adhesive has such an adhesive strength that it can be peeled off by hand.
  • the polyester film of the present invention is also preferably used in flexible image display devices, such as polarizer protective films, back cover films, transparent electrode substrate films, and screen surface protective films of flexible image display devices. Among them, it is preferably used as a back cover film and a screen surface protective film.
  • the flexible image display device may be of a V type, a double door type, a W type, or the like with a foldable image display portion, or may be wound into a roll.
  • the slow axis of the polyester film is 30 to 60 degrees with respect to the absorption axis of the polarizing plate. , preferably about 45 degrees, so that blackout and iridescence do not occur when viewed with sunglasses.
  • Refractive index of polyester film Using a molecular orientation meter (MOA-6004 type molecular orientation meter manufactured by Oji Keisoku Co., Ltd.), the slow axis direction of the film was determined, and the slow axis direction was parallel to the long side. A rectangle was cut out and used as a sample for measurement.
  • MOA-6004 type molecular orientation meter manufactured by Oji Keisoku Co., Ltd.
  • the refractive index in the orthogonal biaxial direction (refractive index in the slow axis direction: ny, fast axis (refractive index in the direction perpendicular to the slow axis direction): nx), and the refractive index in the thickness direction ( nz) was determined by an Abbe refractometer (NAR-4T manufactured by Atago Co., measuring wavelength 589 nm).
  • ) was calculated as the biaxial refractive index anisotropy ( ⁇ Nxy) by the above method (1).
  • the in-plane retardation (Re) was obtained from the product ( ⁇ Nxy ⁇ d) of the refractive index anisotropy ( ⁇ Nxy) and the film thickness d (nm).
  • ) and ⁇ Nyz (
  • NZ Coefficient was obtained by substituting nx, ny, and nz into the expression
  • frequency analysis was performed by fast Fourier transform using Microsoft's Excel (registered trademark) spreadsheet software. Furthermore, the frequency of the obtained analysis data was converted into a length period, and each amplitude was obtained. Among those with a length period of 10 cm or more, 5 points with the largest amplitude were selected, and the average value of these was designated as A, and the largest value of amplitude among these 5 points was designated as Amax. Furthermore, among those with a length period of less than 10 cm, five points with the largest amplitude were selected, and B was the average value of these five points. The data in the second half of the frequency analysis data, which is said to be a ghost of the length period, was ignored, and only the analysis data in the first half was used.
  • A/B and Amax/B were obtained from the obtained values of A, Amax, and B.
  • the TD direction thickness unevenness is obtained by slitting the central portion of the TD direction of the film after film formation to a width of 1000 mm, cutting out a sample of 1000 mm ⁇ width 50 mm in the TD direction of this film, and measuring with a continuous thickness meter in the same manner. Based on the data obtained, it was obtained as (maximum thickness - minimum thickness) / average thickness x 100.
  • a length cycle of 10 cm or more corresponds to a frequency of 0.25 Hz or less.
  • PET Polyethylene terephthalate/polyester B
  • PET PET (B)
  • an ultraviolet absorber (2,2′-(1,4-phenylene)bis(4H-3,1-benzoxazinone-4-one) and 90 parts by weight of PET (A).
  • a transesterification reaction and a polycondensation reaction were carried out by a conventional method to obtain 46 mol % of terephthalic acid, 46 mol % of isophthalic acid and 8 mol % of sodium 5-sulfonatoisophthalate as dicarboxylic acid components (relative to the total dicarboxylic acid components).
  • a water-dispersible sulfonic acid metal base-containing copolymer polyester resin was prepared having a composition of 50 mol % ethylene glycol and 50 mol % neopentyl glycol as the glycol component (relative to the total glycol component).
  • Silysia 310 was added to 99.46 parts by mass of the water-dispersible copolymer polyester resin liquid. 0.54 parts by mass of the aqueous dispersion was added, and 20 parts by mass of water was added while stirring to obtain an adhesion-improving coating liquid.
  • PET After drying under reduced pressure (1 Torr) at 135° C. for 6 hours, 90 parts by mass of PET (A) resin pellets containing no particles and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber as raw materials for the base film intermediate layer. , supplied to extruder 2 (for intermediate layer II layer), and PET (A) was dried by a conventional method, supplied to extruder 1 (for outer layer I layer and outer layer III), and melted at 285 ° C. .
  • This unstretched PET film was led to an MD stretching machine consisting of low speed rolls and high speed rolls.
  • the film was heated to a preheating temperature with a plurality of low-speed rolls, further heated to a stretching temperature with an infrared heater between the low-speed rolls and the high-speed rolls, and stretched using the difference in peripheral speed between the low-speed rolls and the high-speed rolls.
  • Table 1 shows the preheating temperature, stretching temperature, and stretching ratio.
  • the number of infrared heaters to be turned on is the number of the infrared heaters that are turned on for heating among the infrared heaters arranged in a plurality of rows in the MD direction.
  • Each roll of the MD stretching machine had a diameter of 180 to 250 mm, a surface chromium plating, and a roundness of 10 ⁇ m or less and a runout of 20 ⁇ m or less.
  • the adhesion-improving coating solution was applied to both surfaces of the MD-stretched film so that the coating amount after drying was 0.08 g/m 2 and dried.
  • the obtained film having the coating layer formed thereon was guided to a tenter stretching machine, and while holding the ends of the film with clips, it was guided to a tenter at 100° C. and stretched in the width direction.
  • the film was treated in a heat setting zone at 200° C. for 10 seconds, and further subjected to a relaxation treatment of 2% in the width direction to obtain a stretched PET film.
  • Table 1 shows the film-forming conditions and characteristic values such as uneven thickness of these films.
  • the light transmittance at a wavelength of 380 nm was in the range of 2.3 to 2.5% for all films except for Film H which was 8.5%.
  • the results of film A are shown in FIG. 1
  • the results of film D are shown in FIG.
  • film A had large thickness unevenness, probably because the MD stretching temperature was low. , A/B, etc. also decreased. Comparing FIG. 1 (Film A) and FIG. 2 (Film D), it can be seen that Film A has a frequency of 0.25 Hz or less (period 10 cm or more) is larger. On the other hand, when the MD stretching temperature was too high as in Film E, the thickness unevenness in the MD direction became large, probably because slackness and stretching positions became irregular. Moreover, the preheating temperature of the film F was high, and the film sometimes slackened during the preheating process and stuck to the roll, resulting in large thickness unevenness in the MD direction.
  • Films BD, EG, and J can be suitably used, for example, as polarizer protective films.
  • the film H can be suitably used as, for example, a transparent electrode substrate film, a scattering prevention film, and a screen surface protection film for a flexible image display device.
  • polarizing plate (Preparation of polarizing plate) Among the polyester films produced in Examples, films C, D, and J, which had particularly good unevenness in thickness, were used to produce polarizing plates as follows.
  • a polarizing plate was produced by laminating the polyester film prepared above on one side of a polarizer and a triacetyl cellulose film (40 ⁇ m in thickness) on the opposite side by roll-to-roll.
  • An ultraviolet curable adhesive was used for bonding. In both cases, the angle between the slow axis of the polyester film and the absorption axis of the polarizer was 90 degrees, and the deviation was 0.5 degrees or less.
  • the resulting polarizing plate was cut and replaced with a viewing side polarizing plate of a commercially available 42-inch liquid crystal television. All of the polarizing plates had good visibility with no iridescence observed even when viewed from an oblique direction.
  • the present invention can provide a polyester film that has high in-plane retardation, is excellent in thickness uniformity, and has good productivity, workability, and flatness.
  • the polyester film has good visibility with inconspicuous iridescence regardless of the type of image display device and the type of light source, and is suitably used for various applications of the image display device.

Abstract

The present invention provides a polyester film that has excellent uniformity in thickness while ensuring high in-plane retardation and that also provides excellent productivity, workability, and flatness. Disclosed is a polyester film having an in-plane retardation of 3,000-30,000 nm, a plane orientation degree of 0.128-0.155, and a thickness irregularity of 8% or less (here, the thickness irregularity is a value determined by: (maximum thickness-minimum thickness)/average thickness×100(%)) in a film-forming flow direction.

Description

ポリエステルフィルムおよびそれを用いた画像表示装置POLYESTER FILM AND IMAGE DISPLAY DEVICE USING THE SAME
 本発明は、ポリエステルフィルム(例えば光学用のポリエステルフィルム)に関する。本発明は、代表的には、偏光子保護フィルム、タッチパネルなどの基材フィルム(例えば透明電極基材フィルム)、飛散防止フィルム、画面表面保護フィルム、など画像表示装置の各部材に好適に用いられるポリエステルフィルムに関する。 The present invention relates to a polyester film (for example, an optical polyester film). The present invention is typically suitably used for each member of an image display device, such as a polarizer protective film, a base film for a touch panel (e.g., a transparent electrode base film), a scattering prevention film, a screen surface protection film, and the like. It relates to polyester film.
 ポリエステルフィルムは、透明性、機械的強度、薬品などに対する安定性に優れ、光学用のフィルムとして用いられている。これらの光学用のポリエステルフィルムは通常二軸延伸フィルムであり、複屈折性を有するために、偏光が通過する部位に用いた場合には虹状の色むら(虹斑)が生じることが知られている。
 一方、高レタデーションのポリエステルフィルムを液晶表示装置の表面に設けることで、偏光サングラスを掛けて画像を観察した時のブラックアウトや虹斑を解消する技術(例えば、特許文献1)、偏光子保護フィルムとして用いることで虹斑を解消する技術(例えば、特許文献2)、タッチパネル基材や飛散防止フィルムとして組み合わせて用いる技術(例えば、特許文献3)が知られている。
 高レタデーションのフィルムを得るために一方向のみに延伸した場合には、延伸方向と直交する方向の強伸度が低くなるために、成膜中や得られたフィルムの加工中で破断が生じやすく、生産性、作業性が低下する場合がある。また、初めに主延伸方向とは直交する方向に低倍率で延伸した後に主延伸方向に延伸を行うことで主延伸方向と直交する方向の強伸度を上げたり、生産速度を上げたりしながら必要なレタデーションを確保することもできるが、主延伸方向と直交する方向にも延伸を行った場合、厚み斑が生じて平面性が悪くなる場合がある。
 長手方向(MD)に2.0倍以下で延伸、好ましくは1.3倍以下で延伸したのち、幅方向(TD)に4.15倍以上延伸することで幅方向の引張強さに対する長手方向の引張強さの比を0.25~0.6とし、MD方向での引張り強さ、弾性率向上するという技術が知られている(例えば、特許文献4)。しかし、かかる技術は依然として厚みの均一性及び平面性が悪いという問題点がある。
 さらに、長手方向(MD)に1.0~3.4倍で延伸したのち、幅方向(TD)に2.5~5.0倍延伸したフィルムを、MD方向を折りたたみ方向にして折りたたみ型画像表示装置のフィルムとして用いることが提案されている(例えば、特許文献5及び6)。しかし、かかる技術においても、厚みの均一性及び平面性はまだ改良の余地がある。
 MD方向での厚み斑が大きい場合は、成膜時の破断だけでなく、スリット時も破断しやすく、特に切断刃が摩耗してきた場合及び高速時に破断が起こりやすく、生産性及び作業性が悪くなる傾向がある。
Polyester films are excellent in transparency, mechanical strength, and stability against chemicals, and are used as optical films. These optical polyester films are usually biaxially stretched films and have birefringence. Therefore, it is known that rainbow-like color unevenness (rainbow spots) occurs when used in a portion through which polarized light passes. ing.
On the other hand, by providing a high-retardation polyester film on the surface of a liquid crystal display device, there is a technology that eliminates blackouts and iridescence when viewing images with polarized sunglasses (for example, Patent Document 1), and a polarizer protective film. A technique for eliminating iridescence by using it as a base material (for example, Patent Document 2) and a technique for using it in combination as a touch panel substrate or a scattering prevention film (for example, Patent Document 3) are known.
If the film is stretched in only one direction to obtain a high retardation film, the strength and elongation in the direction perpendicular to the stretched direction will be low, so breakage is likely to occur during film formation and processing of the resulting film. , productivity and workability may decrease. In addition, by first stretching in the direction orthogonal to the main stretching direction at a low magnification and then stretching in the main stretching direction, the strength and elongation in the direction orthogonal to the main stretching direction are increased, and the production speed is increased. Although the required retardation can be ensured, if the film is also stretched in the direction perpendicular to the main stretching direction, unevenness in thickness may occur and flatness may be deteriorated.
Stretched in the longitudinal direction (MD) at 2.0 times or less, preferably at 1.3 times or less, and then stretched in the width direction (TD) at 4.15 times or more to increase the tensile strength in the longitudinal direction. The tensile strength ratio of 0.25 to 0.6 is known to improve the tensile strength and elastic modulus in the MD direction (eg, Patent Document 4). However, this technique still suffers from poor thickness uniformity and flatness.
Furthermore, after stretching 1.0 to 3.4 times in the longitudinal direction (MD), the film stretched 2.5 to 5.0 times in the width direction (TD) is folded with the MD direction as the folding direction. It has been proposed to use it as a film for display devices (for example, Patent Documents 5 and 6). However, even with this technique, there is still room for improvement in the uniformity of thickness and flatness.
If the thickness unevenness in the MD direction is large, it is likely to break not only during film formation but also during slitting, especially when the cutting blade is worn or at high speed, and productivity and workability are poor. tend to become
国際公開第2011/058774号WO2011/058774 国際公開第2011/162198号WO2011/162198 国際公開第2014/123209号WO2014/123209 国際公開第2017/091031号WO2017/091031 国際公開第2018/159285号WO2018/159285 国際公開第2020/162119号WO2020/162119
 本発明の1つの目的は、高い面内レタデーションを有しながらも厚み均一性に優れ、生産性、作業性、及び平面性の良好なポリエステルフィルムを提供することにある。また、本発明のさらなる目的は、画像表示装置の各用途のフィルムとして用いた場合には、画像表示装置の種類や光源の種類に関わらず、虹斑が目立ちにくい良好な視認性を有するポリエステルフィルムを提供することにある。 One object of the present invention is to provide a polyester film that has high in-plane retardation, excellent thickness uniformity, and good productivity, workability, and flatness. A further object of the present invention is to provide a polyester film that, when used as a film for each application of an image display device, has good visibility in which rainbow spots are less noticeable regardless of the type of image display device or the type of light source. is to provide
 本発明者は、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。
 本発明は以下の態様を包含する。
項1:
面内レタデーションが3000nm以上30000nm以下、
面配向度が0.128以上0.155以下、
製膜流れ方向の厚み斑が8%以下、
であるポリエステルフィルム(なお、厚み斑は、(最大厚み-最小厚み)/平均厚み×100(%)で求められる値である)。
The present inventor has completed the present invention as a result of intensive studies to achieve this object.
The present invention includes the following aspects.
Item 1:
In-plane retardation is 3000 nm or more and 30000 nm or less,
The degree of plane orientation is 0.128 or more and 0.155 or less,
Thickness unevenness in the film production flow direction is 8% or less,
A polyester film (the thickness unevenness is a value obtained by (maximum thickness - minimum thickness) / average thickness x 100 (%)).
項2:
製膜流れ方向の厚み測定データをフーリエ変換し、周波数をフィルムの長さの周期に置き換えたときに、下記Aと下記Bの比率であるA/Bが5以下である項1に記載のポリエステルフィルム。
 A:周期が10cm以上で、振幅の値の上位5点の振幅の平均値
 B:周期が10cm以下で、振幅の値の上位5点の振幅の平均値
Item 2:
Item 1. The polyester according to item 1, wherein A/B, which is the ratio of A and B below, is 5 or less when Fourier transform is performed on the thickness measurement data in the film production flow direction and the frequency is replaced with the period of the length of the film. the film.
A: Average value of the top 5 amplitude values with a period of 10 cm or more B: Average value of the top 5 amplitude values with a period of 10 cm or less
項3:
製膜流れ方向の厚み測定データをフーリエ変換し、周波数をフィルムの長さの周期に置き換えたときに、下記AmaxとBの比率であるAmax/Bが7以下である項1又は2に記載のポリエステルフィルム。
 Amax:周期が10cm以上で振幅の最大値
Item 3:
3. Item 1 or 2, wherein Amax/B, which is the ratio of Amax and B below, is 7 or less when the thickness measurement data in the film production flow direction is Fourier transformed and the frequency is replaced by the period of the length of the film. polyester film.
Amax: The maximum value of amplitude at a period of 10 cm or more
項4:
NZ係数が1.65以上3以下である項1~3のいずれかに記載のポリエステルフィルム。
Item 4:
Item 4. The polyester film according to any one of Items 1 to 3, which has a NZ coefficient of 1.65 or more and 3 or less.
項5:
厚みが25μm以上150μm以下である項1~4のいずれかに記載のポリエステルフィルム。
Item 5:
Item 5. The polyester film according to any one of Items 1 to 4, which has a thickness of 25 μm or more and 150 μm or less.
項6:
製膜流れ方向の破断伸度が4%以上である項1~5のいずれかに記載のポリエステルフィルム。
Item 6:
Item 6. The polyester film according to any one of items 1 to 5, which has a breaking elongation of 4% or more in the direction of film production.
項7:
製膜流れ方向の破断強度が50MPa以上である項1~6のいずれかに記載のポリエステルフィルム。
Item 7:
Item 7. The polyester film according to any one of Items 1 to 6, which has a breaking strength of 50 MPa or more in the film forming flow direction.
項8:
項1~7のいずれかに記載のポリエステルフィルムからなる偏光子保護フィルム。
Item 8:
A polarizer protective film comprising the polyester film according to any one of Items 1 to 7.
項9:
項8に記載の偏光子保護フィルムと偏光子が積層された偏光板。
Item 9:
A polarizing plate in which the polarizer protective film according to Item 8 and a polarizer are laminated.
項10:
項9に記載の偏光板が画像表示セルの視認側に設置された画像表示装置。
Item 10:
Item 10. An image display device in which the polarizing plate according to Item 9 is installed on the viewing side of an image display cell.
項11:
項1~7のいずれかに記載のポリエステルフィルムからなる透明電極基材フィルム。
Item 11:
A transparent electrode substrate film comprising the polyester film according to any one of items 1 to 7.
項12:
項1~7のいずれかに記載のポリエステルフィルムからなる飛散防止フィルム。
Item 12:
Item 8. A shatterproof film comprising the polyester film according to any one of items 1 to 7.
項13:
項1~7のいずれかに記載のポリエステルフィルムからなる画面表面保護フィルム。
Item 13:
A screen surface protection film comprising the polyester film according to any one of items 1 to 7.
項14:
項11に記載の透明電極基材フィルム、項12に記載の飛散防止フィルム、及び項13に記載の画面表面保護フィルムのいずれかを含む画像表示装置。
Item 14:
An image display device comprising any one of the transparent electrode base film of Item 11, the anti-scattering film of Item 12, and the screen surface protective film of Item 13.
項15:
可撓性画像表示装置である項14に記載の画像表示装置。
Item 15:
Item 15. The image display device according to Item 14, which is a flexible image display device.
 本発明により、高い面内レタデーションを有しながらも、厚み均一性、生産性、作業性、及び平面性に優れたポリエステルフィルムを得ることができる。さらに本発明のポリエステルフィルムは、虹斑が抑制できるために、偏光子保護フィルム、タッチパネルなどの透明電極基材フィルム、飛散防止フィルム、画像表示装置の画面表面保護フィルムなどに好適に用いられ、可撓性画像表示装置に用いた場合には優れた折り曲げ耐久性を有する。 According to the present invention, a polyester film having high in-plane retardation and excellent thickness uniformity, productivity, workability, and flatness can be obtained. Furthermore, since the polyester film of the present invention can suppress iridescence, it is suitably used for a polarizer protective film, a transparent electrode base film for touch panels, a scattering prevention film, a screen surface protective film for an image display device, and the like. It has excellent bending durability when used in a flexible image display device.
フィルムAについて、製膜流れ方向の厚み斑の周波数解析の結果を示すグラフである。4 is a graph showing the results of frequency analysis of thickness unevenness in the film production flow direction for Film A. FIG. フィルムDについて、製膜流れ方向の厚み斑の周波数解析の結果を示すグラフである。10 is a graph showing the results of frequency analysis of thickness unevenness in the direction of flow of film production for Film D. FIG.
 本発明のポリエステルフィルムの好適な例としては、面内レタデーションを大きくできる点、透湿性や吸湿性が低い点で、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリテトラメチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)などが挙げられ、中でもPET又はPENが好ましい。これらのポリエステルは、主構成成分以外のカルボン酸成分及び/又はグリコール成分が共重合されていてもよいが、カルボン酸成分及びグリコール成分の合計量を100モル%とした場合に、主構成成分以外のカルボン酸成分及び/又はグリコール成分の合計量は10モル%以下であることが好ましく、さらには5モル%以下、特には2モル%以下であることが好ましい。 Preferable examples of the polyester film of the present invention include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polytetramethylene terephthalate (PBT), which can increase in-plane retardation and has low moisture permeability and moisture absorption. ), and polyethylene naphthalate (PEN), among which PET or PEN is preferred. These polyesters may be copolymerized with a carboxylic acid component and/or a glycol component other than the main constituent component. is preferably 10 mol % or less, more preferably 5 mol % or less, and particularly preferably 2 mol % or less.
 本発明のポリエステルフィルムを構成するポリエステル樹脂の固有粘度(IV)は、0.45dL/g以上1.5dL/g以下であることが好ましい。
 PETの場合、IVは0.5dL/g以上1.5dL/g以下であることが好ましい。IVの下限はより好ましくは0.53dL/gであり、さらに好ましくは0.55L/gである。IVの上限はより好ましくは1.2dL/gであり、さらに好ましくは1dL/gであり、特に好ましくは0.8dL/gである。
 PENの場合、IVの下限は好ましくは0.45dL/gであり、より好ましくは0.48dL/gであり、さらに好ましくは0.5dL/gであり、特に好ましくは0.53dL/gである。IVの上限はより好ましくは1dL/gであり、より好ましくは0.8dL/gであり、さらに好ましくは0.75dL/gであり、特に好ましくは0.7dl/gである。
 上記範囲とすることで、耐衝撃性など機械的強度により優れたフィルムとなり、より安定した製膜が行いやすく、また機器に大きな負荷をかけることなく、厚み斑の少ないフィルムを効率よく製造することができる。
The intrinsic viscosity (IV) of the polyester resin constituting the polyester film of the present invention is preferably 0.45 dL/g or more and 1.5 dL/g or less.
For PET, the IV is preferably 0.5 dL/g or more and 1.5 dL/g or less. The lower limit of IV is more preferably 0.53 dL/g, still more preferably 0.55 L/g. The upper limit of IV is more preferably 1.2 dL/g, still more preferably 1 dL/g, and particularly preferably 0.8 dL/g.
For PEN, the lower limit of IV is preferably 0.45 dL/g, more preferably 0.48 dL/g, still more preferably 0.5 dL/g, and particularly preferably 0.53 dL/g. . The upper limit of IV is more preferably 1 dL/g, more preferably 0.8 dL/g, still more preferably 0.75 dL/g, and particularly preferably 0.7 dL/g.
By setting it in the above range, a film having excellent mechanical strength such as impact resistance can be obtained, more stable film formation can be easily performed, and a film with less thickness unevenness can be efficiently produced without imposing a large load on the equipment. can be done.
 本発明ではポリエステルフィルムの面内レタデーション(Re)の下限は好ましくは3000nmであり、より好ましくは4000nmであり、さらに好ましくは4300nmであり、特に好ましくは4500nmであり、最も好ましくは5000nmである。上記下限以上にすることで虹斑を抑制することができる。
 Reの上限は好ましくは30000nmであり、より好ましくは15000nmであり、さらに好ましくは12000nmであり、特に好ましくは10000nmであり、最も好ましくは9500nmである。上記上限以下にすることで、必要以上にフィルムを厚くすることがなく、画像表示装置などの薄型化に対応しやすくなる。
 また、斜め方向から見た場合に虹斑が抑制される角度を広くするためには、Reは好ましくは5500nm以上、より好ましくは6000nm以上、さらに好ましくは6000nm以上、特に好ましくは6500nm以上である。飛散防止フィルム、タッチパネルなどの基材フィルム(例えば透明電極基材フィルム)、画面表面保護フィルム、フォルダブル用フィルム(例えばPETフィルム)などで視野角が多少狭くても薄いフィルムが好ましい場合、Reは7000nm以下がより好ましく、6500nm以下がさらに好ましく、6000nm以下が特に好ましい。
In the present invention, the lower limit of the in-plane retardation (Re) of the polyester film is preferably 3000 nm, more preferably 4000 nm, still more preferably 4300 nm, particularly preferably 4500 nm, most preferably 5000 nm. Iridescent spots can be suppressed by adjusting the content to the above lower limit or higher.
The upper limit of Re is preferably 30000 nm, more preferably 15000 nm, still more preferably 12000 nm, particularly preferably 10000 nm, most preferably 9500 nm. When the thickness is equal to or less than the above upper limit, the thickness of the film is not increased more than necessary, and it becomes easy to cope with thinning of the image display device and the like.
In order to widen the angle at which iris spots are suppressed when viewed obliquely, Re is preferably 5500 nm or more, more preferably 6000 nm or more, even more preferably 6000 nm or more, and particularly preferably 6500 nm or more. Shatterproof film, base film for touch panels (e.g., transparent electrode base film), screen surface protection film, foldable film (e.g., PET film), etc. When thin films are preferable even if the viewing angle is somewhat narrow, Re 7000 nm or less is more preferable, 6500 nm or less is still more preferable, and 6000 nm or less is particularly preferable.
 本発明のポリエステルフィルムは、面配向度(ΔP)の下限が好ましくは0.128であり、より好ましくは0.129であり、さらに好ましくは0.13であり、特には0.13を超えていることが好ましい。面配向度の上限は好ましくは0.155、より好ましくは0.152、さらに好ましくは0.15である。上記範囲とすることで、虹斑を抑制しながら破断が起こりにくいなどの製膜安定性をさらに高めることができる。
 偏光子保護フィルムとして用いる場合、斜め方向からの虹斑をより効果的に制御したい場合などにおいて、面配向度の上限は、より好ましくは0.145であり、さらに好ましくは0.14であり、特に好ましくは0.138であり、最も好ましくは0.136である。
 可撓性画像表示装置に用いるなど、優れた耐屈曲性を付与したい場合などにおいて、面配向度(ΔP)の下限は、より好ましくは0.135、さらに好ましくは0.138、特に好ましくは0.14である。
 面配向度は、遅相軸方向の屈折率をny、進相軸(遅相軸方向と直交する方向の屈折率)をnx、厚さ方向の屈折率をnzとした場合に(nx+ny)/2-nzで求められる値である。
In the polyester film of the present invention, the lower limit of the degree of plane orientation (ΔP) is preferably 0.128, more preferably 0.129, still more preferably 0.13, and more than 0.13. preferably. The upper limit of the degree of plane orientation is preferably 0.155, more preferably 0.152, still more preferably 0.15. By setting the content within the above range, it is possible to further improve the stability of film formation, such as preventing breakage while suppressing iridescence.
When used as a polarizer protective film, when it is desired to more effectively control rainbow spots from oblique directions, etc., the upper limit of the degree of plane orientation is more preferably 0.145, more preferably 0.14, Especially preferred is 0.138, most preferred is 0.136.
When it is desired to provide excellent bending resistance such as for use in a flexible image display device, the lower limit of the degree of plane orientation (ΔP) is more preferably 0.135, more preferably 0.138, and particularly preferably 0. .14.
The degree of planar orientation is (nx+ny)/ It is a value obtained by 2-nz.
 本発明のポリエステルフィルムは、NZ係数の下限は好ましくは1.65であり、より好ましくは1.68であり、さらに好ましくは1.7であり、特には1.7を超えていることが好ましい。
 NZ係数の上限は好ましくは3であり、より好ましくは2.7であり、さらに好ましくは2.5であり、特に好ましくは2.3である。
 上記範囲とすることで、虹斑を抑制しながら破断が起こりにくいなどの製膜安定性をさらに高めることができる。
 偏光子保護フィルムとして用いる場合、斜め方向からの虹斑をより効果的に制御したい場合などにおいて、NZ係数の上限はより好ましくは1.9であり、さらに好ましくは1.85であり、特に好ましくは1.8である。
 可撓性画像表示装置に用いるなど、優れた耐屈曲性を付与したい場合などにおいて、NZ係数の下限は、より好ましくは1.8であり、さらに好ましくは1.85であり、特に好ましくは1.9である。
 NZ係数は、NZ=|ny-nz|/|ny-nx|で求められる値である。
In the polyester film of the present invention, the lower limit of the NZ coefficient is preferably 1.65, more preferably 1.68, still more preferably 1.7, particularly preferably greater than 1.7 .
The upper limit of the NZ coefficient is preferably 3, more preferably 2.7, even more preferably 2.5, and particularly preferably 2.3.
By setting the content within the above range, it is possible to further improve the stability of film formation, such as preventing breakage while suppressing iridescence.
When used as a polarizer protective film, when it is desired to more effectively control rainbow spots from oblique directions, etc., the upper limit of the NZ coefficient is more preferably 1.9, more preferably 1.85, and particularly preferably. is 1.8.
The lower limit of the NZ coefficient is more preferably 1.8, still more preferably 1.85, and particularly preferably 1 when it is desired to impart excellent bending resistance such as for use in a flexible image display device. .9.
The NZ coefficient is a value obtained by NZ=|ny-nz|/|ny-nx|.
 面配向度及びNZ係数を上記範囲とすることで、ハードコート層、反射防止層、防眩層などの機能性層との密着性や、偏光子等と貼り合わせた場合の接着性を確保することもできる。 By setting the degree of plane orientation and the NZ coefficient within the above ranges, adhesion to functional layers such as hard coat layers, antireflection layers, and antiglare layers, as well as adhesion to polarizers and the like, are ensured. can also
 本発明のポリエステルフィルムの厚みの下限は好ましくは25μmであり、さらには30μm、40μm、45μm、50μm、55μmの順で好ましい。
 厚みの上限は好ましくは150μmであり、さらには130μm、100μm、90μm、85μmの順で好ましい。なお、本明細書で、順で好ましいとは、範囲がより狭くなっていく数値の方が好ましいことである。
 厚みが上記上限以下であれば、未延伸フィルムを加熱する時に、未延伸フィルムの厚みも薄くなるため、短時間でフィルムの厚み方向に均一に温度を上げやすくなり、厚み斑を抑制し易くなる。また、画像表示装置の薄型化に対応しやすくなる。
 なお、偏光子保護フィルムであれば厚みは40~85μmが好ましく、飛散防止フィルム、タッチパネルなどの基材フィルム(例えば透明電極基材フィルム)、又は可撓性画像表示装置の画面表面保護フィルムであれば、厚みは25~70μmが好ましく、非可撓性の画像表示装置の画面表面保護フィルムであれば厚みは60~150μmが好ましい。
 厚みは、例えば、接触式連続厚み計を用いて、所定のサイズ(例えば、幅約50mm、長さ約6m)のフィルムの厚みを、所定の速度(例えば、MD方向に1.5m/分の速度)、所定の間隔(例えば、0.1秒間隔)で連続的に測定し、得られたデータから、所定の数(例えば、連続的に2048点)のデータを任意に選び、それらの平均により算出することができる。
The lower limit of the thickness of the polyester film of the present invention is preferably 25 µm, more preferably 30 µm, 40 µm, 45 µm, 50 µm and 55 µm in this order.
The upper limit of the thickness is preferably 150 μm, more preferably 130 μm, 100 μm, 90 μm and 85 μm in that order. In the present specification, "preferred in order" means that numerical values with a narrower range are more preferable.
If the thickness is equal to or less than the above upper limit, the thickness of the unstretched film is also reduced when the unstretched film is heated, so it becomes easier to uniformly raise the temperature in the thickness direction of the film in a short time, and it becomes easier to suppress unevenness in thickness. . Moreover, it becomes easy to respond to thinning of the image display device.
In the case of a polarizer protective film, the thickness is preferably 40 to 85 μm. Whether it is a scattering prevention film, a base film for a touch panel (for example, a transparent electrode base film), or a screen surface protective film for a flexible image display device. For example, the thickness is preferably 25 to 70 μm, and the thickness is preferably 60 to 150 μm for a screen surface protective film for a non-flexible image display device.
For the thickness, for example, using a contact-type continuous thickness meter, the thickness of a film of a predetermined size (e.g., width of about 50 mm, length of about 6 m) is measured at a predetermined speed (e.g., 1.5 m / min in the MD direction. speed), continuously measured at predetermined intervals (e.g., 0.1 second intervals), arbitrarily select a predetermined number of data (e.g., 2048 points continuously) from the obtained data, and average them It can be calculated by
 本発明のポリエステルフィルムの製膜流れ方向(以下、長手方向、MD方向、延伸する場合は主延伸方向と直交する方向ということもある)の厚み斑の上限は好ましくは8%であり、より好ましくは7%であり、さらに好ましくは6%であり、特に好ましくは5%であり、最も好ましくは4%である。
 MD方向の厚み斑は低い方が好ましいが、現実面からは、下限は好ましくは0.1%であり、さらに好ましくは0.5%である。
 なお、厚み斑は以下の厚み測定において、(厚みの最大値-最小値)/厚みの平均値×100(%)で求められる値である。
The upper limit of the thickness unevenness in the flow direction of the polyester film of the present invention (hereinafter referred to as the longitudinal direction, the MD direction, or the direction perpendicular to the main stretching direction when stretching) is preferably 8%, more preferably. is 7%, more preferably 6%, particularly preferably 5%, most preferably 4%.
The thickness unevenness in the MD direction is preferably as low as possible, but from a practical point of view, the lower limit is preferably 0.1%, more preferably 0.5%.
The unevenness of thickness is a value obtained by (maximum value of thickness - minimum value)/average value of thickness x 100 (%) in the following thickness measurement.
 本発明において、フィルムの厚みをMD方向に測定したデータをフーリエ変換(例えば高速フーリエ変換)し、得られた結果をフィルムのMD方向の長さ周期で解析(具体的には、周波数を長さの周期に置き換え)し、Aを周期10cm以上で振幅の大きさの上位5点の平均、Bを周期10cm未満で振幅の大きさの上位5点の平均とした場合、A/Bの下限は好ましくは0.5であり、より好ましくは1であり、さらに好ましくは1.3であり、特に好ましくは1.5であり、最も好ましくは1.8である。
 A/Bの上限は好ましくは5であり、より好ましくは4.5であり、さらに好ましくは4であり、特に好ましくは3.5である。
In the present invention, the data obtained by measuring the thickness of the film in the MD direction is subjected to Fourier transform (for example, fast Fourier transform), and the obtained results are analyzed by the length period of the film in the MD direction (specifically, the frequency is changed to the length ), A is the average of the top 5 amplitudes with a period of 10 cm or more, and B is the average of the top 5 amplitudes with a period of less than 10 cm, the lower limit of A/B is It is preferably 0.5, more preferably 1, still more preferably 1.3, particularly preferably 1.5, and most preferably 1.8.
The upper limit of A/B is preferably 5, more preferably 4.5, even more preferably 4, and particularly preferably 3.5.
 上記において、周期10cm以上で振幅の最大値をAmaxとした場合、Amax/Bは、下限が好ましくは0.7であり、より好ましくは1.4であり、さらに好ましくは1.8であり、特に好ましくは2であり、最も好ましくは2.2である。Amax/Bの上限は7であり、より好ましくは6であり、さらに好ましくは5であり、特に好ましくは4.5であり、最も好ましくは4である。
 A/B及び/又はAmax/Bを上記範囲とすることで、より高い生産性を保ちながら安定生産が可能で、製膜時及び後加工でも破断が起こりにくく、急峻なピークを有する光源を用いた液晶表示装置であっても、色斑が目立ちにくいフィルムにすることができる。
In the above, when the maximum value of amplitude at a period of 10 cm or more is Amax, the lower limit of Amax/B is preferably 0.7, more preferably 1.4, and still more preferably 1.8, Particularly preferred is 2, most preferred is 2.2. The upper limit of Amax/B is 7, preferably 6, still more preferably 5, particularly preferably 4.5, and most preferably 4.
By setting A/B and/or Amax/B within the above range, stable production is possible while maintaining higher productivity, breakage is less likely to occur during film formation and post-processing, and a light source with a sharp peak is used. Even in the case of a liquid crystal display device having a conventional film, the film can be made into a film in which color spots are hardly conspicuous.
 なお、A、Amax及びBは以下の具体的な方法で算出することが好ましい。
・フィルムを1.5m/分の速度で中央部の厚みを連続的に0.1秒間隔で取り込む。
・得られたデータを連続的に2048点(長さ5.12m分)用いて高速フーリエ変換による周波数分析を行う。
・得られた解析データの周波数を長さ周期に換算し、また振幅を求める。
・長さ周期が10cm以上のもののうち、振幅の最も大きいものから順に5点を選びこれらの平均値をAとし、この5点の中で振幅の最も大きな値をAmaxとする。
・長さ周期が10cm未満のもののうち、振幅の最も大きいものから順に5点を選びこれらの平均値をBとする。なお、ゴーストと言われる周波数解析データの後半部のデータは無視し、前半部のみの解析データを用いるものとする。
In addition, A, Amax and B are preferably calculated by the following specific method.
- The thickness of the central portion of the film is continuously captured at intervals of 0.1 seconds at a speed of 1.5 m/min.
・Continuously use 2048 points (5.12 m in length) of the obtained data to perform frequency analysis by fast Fourier transform.
・Convert the frequency of the obtained analysis data into a length cycle and obtain the amplitude.
・Among the length cycles of 10 cm or more, 5 points with the largest amplitude are selected in descending order, the average value of these is A, and the largest amplitude value among these 5 points is Amax.
・Select 5 points in descending order of amplitude from those with a length period of less than 10 cm, and let B be the average value of these points. Note that data in the second half of the frequency analysis data, which is called ghost, is ignored, and only the analysis data in the first half is used.
 本発明者らの検討によると、MD方向の延伸を行わない場合、MD方向の厚み斑は、冷却ロールに溶融樹脂を静電密着させる際に用いる電極のぶれ又は装置の振動で生じたり、キャスト時の冷却ロールの真円度又は振れの影響で生じたり、ダイのリップ間隔の自動調整で生じたりすることが多い。例えば電極のぶれ又は装置の振動に起因する厚み斑は、周期が数cm以下であることが多い。しかし、MD方向に弱く延伸した場合には、これらを調整しても厚み斑が十分に抑制できず、周期が数10cmから数mの厚み斑が顕著になり、厚み斑に起因する問題が生じる。 According to the studies of the present inventors, when stretching in the MD direction is not performed, the thickness unevenness in the MD direction is caused by the vibration of the electrode or the vibration of the apparatus used when the molten resin is electrostatically adhered to the cooling roll. It is often caused by the effects of chill roll roundness or runout at time, or by the automatic adjustment of the die lip spacing. For example, thickness unevenness caused by electrode blurring or device vibration often has a period of several centimeters or less. However, if the film is weakly stretched in the MD direction, unevenness in thickness cannot be sufficiently suppressed even if these adjustments are made, and unevenness in thickness with a period of several tens of centimeters to several meters becomes noticeable, causing problems due to unevenness in thickness. .
 本発明者らのさらなる検討によると、MD方向に弱く延伸する場合は、延伸時の予熱温度及び延伸温度を適正な範囲に管理する必要があり、適正な温度から外れた場合には、延伸斑が生じる、延伸の位置が一定せずに延伸が安定しない、フィルムの弛みが生じる、フィルムがロールから滑らかに剥離されない、といった現象が起こり、数10cmから数mの厚み斑が顕著になり、また、平面性も悪くなることを見出した。 According to further studies by the present inventors, when weakly stretching in the MD direction, it is necessary to control the preheating temperature and stretching temperature during stretching within an appropriate range. , the stretching position is not constant and the stretching is not stable, the film sag occurs, and the film does not peel off smoothly from the roll. , the flatness also deteriorates.
 以下に本発明のポリエステルフィルムを得るために好ましい製膜条件を説明する。 Preferred film forming conditions for obtaining the polyester film of the present invention are described below.
 まず、ポリエステル樹脂(代表的にはPET)を乾燥後、押出機に投入し、260~300℃で溶融し、ダイから冷却ロール上にシート状に押出し、未延伸フィルムを得る。このときに、樹脂が冷却ロールに速やかに密着するように樹脂に電荷を与えたり、空気を吹き付けたり、チャンバーで減圧することが好ましい。この時にワイヤー電極やバンド電極の張力、固定方法を調整して電極の振動を少なくする、空気の気流や減圧が安定するよう制御する、このキャスティング設備がモーターなどの機械的振動の影響を受けにくいようにする等を行うことが好ましい。 First, after drying a polyester resin (typically PET), it is put into an extruder, melted at 260 to 300°C, and extruded into a sheet from a die onto a cooling roll to obtain an unstretched film. At this time, it is preferable to charge the resin, blow air, or reduce the pressure in a chamber so that the resin can quickly adhere to the chill roll. At this time, adjust the tension and fixing method of the wire electrode and band electrode to reduce electrode vibration, control the air flow and pressure reduction so that it is stable, and make this casting equipment less susceptible to mechanical vibrations such as motors. It is preferable to take measures such as
 次に、未延伸フィルムを予熱して昇温し、最終的にMD方向に張力を加えて延伸する。この場合、未延伸フィルムを多段階で加熱していくが、張力を加えて延伸する延伸工程に入る前の加熱工程でのフィルム表面の最高到達温度を予熱温度、延伸中のフィルム表面の最高到達温度を延伸温度と言い、分けて説明する。
 具体例で説明すると、MD延伸では、フィルムは複数の低速ロールにより昇温されその後の高速ロールとの周速差で延伸される。この場合、フィルム表面を最終的に延伸温度にする方法として、低速ロールの最終ロール(以下、単に「最終ロール」と称する場合がある)で加熱する場合、赤外線ヒーター(IRヒーター)で加熱する場合などがある。
Next, the unstretched film is preheated to raise the temperature, and finally stretched by applying tension in the MD direction. In this case, the unstretched film is heated in multiple stages. The temperature is called the stretching temperature and will be described separately.
Specifically, in MD stretching, a film is heated by a plurality of low-speed rolls and then stretched with a difference in peripheral speed from the high-speed rolls. In this case, as a method of finally bringing the film surface to the stretching temperature, when heating with a final roll of low speed rolls (hereinafter sometimes simply referred to as "final roll"), when heating with an infrared heater (IR heater) and so on.
 最終ロールで加熱する場合は、最終ロールからフィルムが離れる時点の温度が延伸温度となり、最終ロールの1つ手前の低速ロール(加熱ロール)からフィルムが離れる時点の温度が予熱温度となる。IRヒーターで加熱する場合は、IRヒーターで加熱されている領域で最高の温度が延伸温度となり、最終ロール(加熱ロール)から離れる時点の温度が予熱温度となる。 When heating with the final roll, the temperature at which the film separates from the final roll is the stretching temperature, and the temperature at which the film separates from the low-speed roll (heating roll) immediately before the final roll is the preheating temperature. In the case of heating with an IR heater, the highest temperature in the region heated by the IR heater is the stretching temperature, and the temperature at the time of separation from the final roll (heating roll) is the preheating temperature.
 MD延伸の予熱温度は好ましくは60℃以上、より好ましくは65℃以上、さらに好ましくは70℃以上である。予熱温度を上記範囲とすることで、製膜速度が早くてもフィルムの厚み方向での温度差を小さくでき、安定した延伸が可能となる。
 MD延伸の予熱温度は、好ましくは95℃以下、より好ましくは90℃以下、さらに好ましくは85℃以下、特に好ましくは82℃以下、最も好ましくは80℃以下である。予熱温度を上記範囲とすることで、フィルムとロールとの貼り付きを抑制し、安定したフィルムの走行が可能となる。また、予熱ロール間でのフィルムの弛みを抑制し、予熱ロール間での張力を小さくできるため、予熱工程での不必要なフィルムの伸びを小さくすることができ、厚み斑及び平面性の低下を抑制することができる。また、フィルムの弛み等はポリエステルの分子量が低い場合(IVが低い場合)に生じやすく、例えばIVが0.7dl/g以下の場合は90℃以下であることが好ましく、IVが0.65dl/g以下の場合は85℃以下であることが好ましい。
The preheating temperature for MD stretching is preferably 60° C. or higher, more preferably 65° C. or higher, and even more preferably 70° C. or higher. By setting the preheating temperature within the above range, the temperature difference in the thickness direction of the film can be reduced even if the film-forming speed is high, and stable stretching becomes possible.
The preheating temperature for MD stretching is preferably 95° C. or lower, more preferably 90° C. or lower, still more preferably 85° C. or lower, particularly preferably 82° C. or lower, and most preferably 80° C. or lower. By setting the preheating temperature within the above range, sticking between the film and the roll is suppressed, and stable film running becomes possible. In addition, since the slackness of the film between the preheating rolls can be suppressed and the tension between the preheating rolls can be reduced, unnecessary elongation of the film in the preheating process can be reduced, and thickness unevenness and deterioration of flatness can be reduced. can be suppressed. In addition, when the molecular weight of the polyester is low (when the IV is low), the slack of the film is likely to occur. g or less, it is preferably 85° C. or less.
 MD延伸の延伸温度は、好ましくは86℃以上、より好ましくは88℃以上、さらに好ましくは89℃以上、特に好ましくは90℃以上、最も好ましくは91℃以上である。延伸温度が低い場合には未延伸フィルムのS-S(応力-ひずみ)特性で、ひずみに対して応力が緩やかに上昇せず延伸が安定しない場合がある。 The stretching temperature for MD stretching is preferably 86°C or higher, more preferably 88°C or higher, still more preferably 89°C or higher, particularly preferably 90°C or higher, and most preferably 91°C or higher. When the stretching temperature is low, the SS (stress-strain) characteristics of the unstretched film may not allow the stress to rise moderately with respect to the strain, resulting in unstable stretching.
 MD延伸の延伸温度は、好ましくは110℃以下であり、さらには105℃以下、102℃以下、100℃以下、98℃以下、96℃以下の順で好ましい。延伸温度を上記範囲とすることで、フィルムが柔らかくなりすぎず、延伸中の弛みを抑制することができる。特に、張力が加わった場合にフィルムは80℃後半から伸びやすくなるが、延伸温度が上記範囲であれば想定の位置以外での延伸を抑制し、延伸を安定させることができる。また、上記のように、分子量が低いほど弛みやすいため、例えばIVが0.7dl/g以下の場合は100℃以下であることが好ましく、IVが0.65dl/g以下の場合は98℃以下であることが好ましい。 The stretching temperature for MD stretching is preferably 110°C or lower, and more preferably 105°C or lower, 102°C or lower, 100°C or lower, 98°C or lower, and 96°C or lower in this order. By setting the stretching temperature within the above range, the film does not become too soft and slack during stretching can be suppressed. In particular, when tension is applied, the film tends to stretch from the latter half of 80° C., but if the stretching temperature is within the above range, stretching at positions other than the assumed positions can be suppressed and stretching can be stabilized. In addition, as described above, since the lower the molecular weight, the easier it is to loosen, for example, when IV is 0.7 dl / g or less, it is preferably 100 ° C. or less, and when IV is 0.65 dl / g or less, it is 98 ° C. or less. is preferably
 MD延伸で延伸温度と予熱温度との差は好ましくは11℃以上、より好ましくは12℃以上、さらに好ましくは13℃以上である。また、延伸温度と予熱温度との差は好ましくは24℃以下、より好ましくは23℃以下、さらに好ましくは22℃以下である。
 上記範囲にすることで、予熱時の疑似延伸及びロールへのフィルムの貼り付きを抑制しながら、製膜速度が早くても延伸時にフィルムの厚み方向での温度差を小さくでき、安定した延伸が可能となる。
In MD stretching, the difference between the stretching temperature and the preheating temperature is preferably 11° C. or higher, more preferably 12° C. or higher, still more preferably 13° C. or higher. Also, the difference between the stretching temperature and the preheating temperature is preferably 24° C. or less, more preferably 23° C. or less, still more preferably 22° C. or less.
By setting it to the above range, while suppressing pseudo-stretching during preheating and sticking of the film to the roll, the temperature difference in the thickness direction of the film during stretching can be reduced even if the film-forming speed is high, and stable stretching can be performed. It becomes possible.
 MD延伸では、上記のように、予熱温度から速やかに延伸温度までフィルムの温度を上げる必要があるが、急激に加熱しすぎてもフィルムの厚み方向での温度差が大きくなり、安定した延伸が困難となる場合がある。そのため、最終ロールで加熱する場合には、最終ロールへのフィルムの抱き角を大きくして最終加熱ロールとフィルムの接触時間を長くすることが好ましい。抱き角は好ましくは30度以上、より好ましくは45度以上、さらに好ましくは60度以上、特に好ましくは70度以上である。
 また、IRヒーターを用いる場合であれば、MD方向に複数設けるか、MD方向に幅の広いヒーターを用いることが好ましい。
In MD stretching, as described above, it is necessary to quickly raise the temperature of the film from the preheating temperature to the stretching temperature. It can be difficult. Therefore, when the film is heated by the final roll, it is preferable to increase the embrace angle of the film to the final roll to prolong the contact time between the final heating roll and the film. The embrace angle is preferably 30 degrees or more, more preferably 45 degrees or more, still more preferably 60 degrees or more, and particularly preferably 70 degrees or more.
In the case of using an IR heater, it is preferable to provide a plurality of heaters in the MD direction or to use a heater with a wide width in the MD direction.
 予熱工程で用いるロール及び延伸工程のロールは、表面にクロムメッキ、ニッケルメッキ、コバルト合金メッキなどのメッキが施されたロールであってもよく、ロール表面が高温となりポリエステル樹脂の貼り付きが見られるような場合にはフッ素樹脂加工されたロールを用いることが好ましい。 The roll used in the preheating process and the roll in the stretching process may be a roll with a surface plated with chrome plating, nickel plating, cobalt alloy plating, etc., and the surface of the roll becomes hot and sticking of the polyester resin is observed. In such a case, it is preferable to use a fluororesin-coated roll.
 予熱工程で用いるロール及び延伸工程のロールの真円度及び振れの精度を高めることも重要である。真円度は好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下であり、通常、0.1μm以上である。振れは好ましくは40μm以下、より好ましくは30μm以下、さらに好ましくは20μm以下であり、通常、0.1μm以上である。
 ロールの直径は、延伸機の大きさにもよるが、未延伸フィルムの幅が700~2500mm程度のフィルムを生産するものの場合であれば、好ましくは100~500mmであり、より好ましくは150~400mmであり、さらに好ましくは170~350mmである。
It is also important to improve the accuracy of the roundness and deflection of the rolls used in the preheating process and the rolls used in the stretching process. The roundness is preferably 30 μm or less, more preferably 20 μm or less, still more preferably 10 μm or less, and usually 0.1 μm or more. The runout is preferably 40 μm or less, more preferably 30 μm or less, still more preferably 20 μm or less, and usually 0.1 μm or more.
The diameter of the roll depends on the size of the stretching machine, but is preferably 100 to 500 mm, more preferably 150 to 400 mm, if the width of the unstretched film is about 700 to 2500 mm. and more preferably 170 to 350 mm.
 MD延伸の倍率の下限は好ましくは1.05倍であり、より好ましくは1.08倍であり、さらに好ましくは1.1倍である。MD延伸倍率の上限は好ましくは2倍であり、より好ましくは1.8倍であり、さらに好ましくは1.7倍である。上記範囲にすることでさらに作業性に優れ、虹斑を抑制したフィルムとすることができる。また、偏光子保護フィルムとして用いる場合、斜め方向からの虹斑をより効果的に制御したい場合などにおいて、MD延伸倍率の上限はより好ましくは1.25倍であり、さらに好ましくは1.2倍であり、特に好ましくは1.18倍である。可撓性画像表示装置に用いるなど、優れた耐屈曲性を付与したい場合などにおいて、MD延伸倍率の下限はより好ましくは1.2倍であり、さらに好ましくは1.25倍であり、特に好ましくは1.3倍である。 The lower limit of the MD stretching ratio is preferably 1.05 times, more preferably 1.08 times, and still more preferably 1.1 times. The upper limit of the MD draw ratio is preferably 2 times, more preferably 1.8 times, and still more preferably 1.7 times. By adjusting the content to the above range, it is possible to obtain a film that is more excellent in workability and suppresses iridescence. Further, when used as a polarizer protective film, when it is desired to more effectively control iridescence from an oblique direction, the upper limit of the MD draw ratio is more preferably 1.25 times, more preferably 1.2 times. and particularly preferably 1.18 times. When it is desired to provide excellent bending resistance such as for use in a flexible image display device, the lower limit of the MD draw ratio is more preferably 1.2 times, still more preferably 1.25 times, and particularly preferably 1.25 times. is 1.3 times.
 本発明において、フィルムの製膜流れ方向と直交する方向(TD方向)の厚み斑の上限は好ましくは5%であり、より好ましくは4%であり、さらに好ましくは3.5%であり、特に好ましくは3%である。TD方向の厚み斑は低い方が好ましいが、現実面からは下限は好ましくは0.1%であり、さらに好ましくは0.5%である。
 TD方向の厚み斑は、例えば、キャスト時のリップ間隔を制御すること、TD延伸時のTD方向のフィルム温度の斑を小さくすること、面配向度やNZ係数を適正範囲にすることで達成することができる。
In the present invention, the upper limit of the thickness unevenness in the direction (TD direction) perpendicular to the flow direction of the film is preferably 5%, more preferably 4%, still more preferably 3.5%, particularly Preferably it is 3%. A lower thickness unevenness in the TD direction is preferable, but from a practical point of view, the lower limit is preferably 0.1%, more preferably 0.5%.
Thickness unevenness in the TD direction is achieved, for example, by controlling the lip spacing during casting, reducing unevenness in film temperature in the TD direction during TD stretching, and setting the degree of plane orientation and the NZ coefficient within an appropriate range. be able to.
 TD延伸では、MD延伸後のフィルムを予熱し、好ましくは80~130℃、より好ましくは90~120℃で延伸する。TD延伸の延伸倍率は3~6.5倍が好ましく、より好ましくは3.2~6.2倍、さらに好ましくは3.5~6.0倍、特に好ましくは3.7倍~5.8倍である。 In TD stretching, the film after MD stretching is preheated and stretched at preferably 80 to 130°C, more preferably 90 to 120°C. The draw ratio for TD stretching is preferably 3 to 6.5 times, more preferably 3.2 to 6.2 times, still more preferably 3.5 to 6.0 times, and particularly preferably 3.7 to 5.8 times. Double.
 延伸に続き熱固定を行うことが好ましい。熱固定温度は150~250℃が好ましく、より好ましくは170~230℃である。熱固定時間は3~60秒が好ましく、より好ましくは5~30秒である。
 熱固定において、主延伸方向及び/又はこれと直交する方向に緩和処理を行うことも好ましい。緩和処理は、0.5~10%が好ましく、より好ましくは1~5%である。
Stretching is preferably followed by heat setting. The heat setting temperature is preferably 150 to 250°C, more preferably 170 to 230°C. The heat setting time is preferably 3 to 60 seconds, more preferably 5 to 30 seconds.
In heat setting, it is also preferable to perform a relaxation treatment in the main drawing direction and/or in a direction perpendicular thereto. The relaxation treatment is preferably 0.5 to 10%, more preferably 1 to 5%.
 本発明のポリエステルフィルムのMD方向の破断伸度の下限は、好ましくは4%であり、さらには5%、6%、7%、8%、9%、10%の順で好ましい。MD方向の破断伸度の上限は好ましくは50%であり、より好ましくは40%であり、さらに好ましくは30%であり、特に好ましくは25%であり、最も好ましくは20%である。 The lower limit of the breaking elongation in the MD direction of the polyester film of the present invention is preferably 4%, more preferably 5%, 6%, 7%, 8%, 9%, 10% in that order. The upper limit of the breaking elongation in the MD direction is preferably 50%, more preferably 40%, still more preferably 30%, particularly preferably 25%, and most preferably 20%.
 本発明のポリエステルフィルムのTD方向の破断伸度の下限は、好ましくは50%であり、より好ましくは60%である。TD方向の破断伸度の上限は、好ましくは200%であり、より好ましくは150%であり、さらに好ましくは120%であり、特に好ましくは100%である。 The lower limit of the breaking elongation in the TD direction of the polyester film of the present invention is preferably 50%, more preferably 60%. The upper limit of the breaking elongation in the TD direction is preferably 200%, more preferably 150%, even more preferably 120%, and particularly preferably 100%.
 本発明のポリエステルフィルムのMD方向の破断強度の下限は好ましくは50MPaであり、より好ましくは55MPaであり、さらに好ましくは60MPaであり、特に好ましくは65MPaである。MD方向の破断強度の上限は好ましくは150MPaであり、より好ましくは130MPaであり、さらに好ましくは120MPaであり、特に好ましくは110MPaであり、最も好ましくは100MPaである。 The lower limit of the breaking strength in the MD direction of the polyester film of the present invention is preferably 50 MPa, more preferably 55 MPa, still more preferably 60 MPa, and particularly preferably 65 MPa. The upper limit of the breaking strength in the MD direction is preferably 150 MPa, more preferably 130 MPa, even more preferably 120 MPa, particularly preferably 110 MPa, and most preferably 100 MPa.
 本発明のポリエステルフィルムのTD方向の破断強度の下限は、好ましくは300MPaであり、より好ましくは330MPaであり、さらに好ましくは350MPaである。
 TD方向の破断強度の上限は好ましくは500MPaであり、より好ましくは450MPaであり、さらに好ましくは420MPaであり、特に好ましくは400MPaである。
 破断伸度及び破断強度を上記範囲内とすることで、さらに作業性に優れたフィルムとなる。破断伸度及び破断強度は、JIS K 7113に準じて測定される値である。
The lower limit of the breaking strength in the TD direction of the polyester film of the present invention is preferably 300 MPa, more preferably 330 MPa, still more preferably 350 MPa.
The upper limit of the breaking strength in the TD direction is preferably 500 MPa, more preferably 450 MPa, still more preferably 420 MPa, particularly preferably 400 MPa.
By setting the elongation at break and the strength at break within the above ranges, a film with even better workability can be obtained. The breaking elongation and breaking strength are values measured according to JIS K7113.
 本発明のポリエステルフィルムの150℃での熱収縮率は、MD方向及びTD方向ともに、下限が好ましくは-0.5%であり、より好ましくは-0.1%である。150℃での熱収縮率は、MD方向及びTD方向ともに、上限は好ましくは3%であり、より好ましくは2.7%であり、さらに好ましくは2.5%であり、特に好ましくは2%である。 The lower limit of the heat shrinkage rate at 150°C of the polyester film of the present invention is preferably -0.5%, more preferably -0.1% in both the MD and TD directions. The upper limit of the heat shrinkage rate at 150°C in both the MD direction and the TD direction is preferably 3%, more preferably 2.7%, still more preferably 2.5%, and particularly preferably 2%. is.
 本発明のポリエステルフィルムは、波長380nmの光線透過率が20%以下であることが望ましい。波長380nmの光線透過率は15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。前記光線透過率が20%以下であれば、偏光層中のヨウ素や二色性色素の紫外線による変質を抑制することができる。なお、前記光線透過率は、フィルムの平面に対して垂直方向に測定したものであり、分光光度計(例えば、日立U-3500型)を用いて測定することができる。特に偏光子保護フィルムとして用いられる場合には、紫外線の透過率が低いことが好ましい。 The polyester film of the present invention preferably has a light transmittance of 20% or less at a wavelength of 380 nm. The light transmittance at a wavelength of 380 nm is more preferably 15% or less, even more preferably 10% or less, and particularly preferably 5% or less. When the light transmittance is 20% or less, deterioration of iodine and dichroic dye in the polarizing layer due to ultraviolet rays can be suppressed. The light transmittance is measured in a direction perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500). Especially when it is used as a polarizer protective film, it preferably has a low ultraviolet transmittance.
 本発明のポリエステルフィルムの波長380nmの光線透過率を20%以下にすることは、例えば、フィルム中に紫外線吸収剤を添加すること、紫外線吸収剤を含有した塗布液をフィルム表面に塗布すること、紫外線吸収剤の種類、濃度、及びフィルムの厚みを適宜調節すること等によって達成できる。紫外線吸収剤は公知の物質である。紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤が挙げられるが、透明性の観点から有機系紫外線吸収剤が好ましい。 The light transmittance of the polyester film of the present invention at a wavelength of 380 nm is set to 20% or less, for example, by adding an ultraviolet absorber to the film, applying a coating liquid containing the ultraviolet absorber to the film surface, It can be achieved by appropriately adjusting the type and concentration of the ultraviolet absorbent and the thickness of the film. UV absorbers are known substances. Examples of the UV absorber include organic UV absorbers and inorganic UV absorbers, but organic UV absorbers are preferred from the viewpoint of transparency.
 有機系紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、環状イミノエステル系、及びその組み合わせ等が挙げられるが所望の吸光度の範囲であれば特に限定されない。 Examples of organic UV absorbers include benzotriazole-based, benzophenone-based, cyclic iminoester-based, and combinations thereof, but are not particularly limited as long as the absorbance is within the desired range.
 また、本発明のポリエステルフィルムには滑り性向上のため、平均粒径0.05~2μmの粒子を添加することも好ましい。粒子としては、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレー、リン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウム等の無機粒子、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。
 これら粒子はフィルム全体に添加してもよいが、スキン-コアの共押出多層構造にし、スキン層のみに添加してもよい。また、フィルム自体には粒子を含まず、後述する易接着層に粒子を添加することも好ましい。
In addition, it is preferable to add particles having an average particle size of 0.05 to 2 μm to the polyester film of the present invention in order to improve slipperiness. As the particles, inorganic particles such as titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride, etc. Examples include organic polymer particles such as styrene, acrylic, melamine, benzoguanamine, and silicone particles.
These particles may be added to the entire film, or may be added only to the skin layer in a skin-core coextruded multilayer structure. Moreover, it is also preferable that the film itself does not contain particles, and particles are added to the easy-adhesion layer to be described later.
 本発明のポリエステルフィルムにはコロナ処理、火炎処理、プラズマ処理などの接着性を向上させる処理を行ってもよい。 The polyester film of the present invention may be subjected to treatments such as corona treatment, flame treatment and plasma treatment to improve adhesiveness.
(易接着層)
 本発明のポリエステルフィルムは接着剤、コート層等との密着性を向上させるため、易接着層が設けられていてもよい。
 易接着層に用いられる樹脂は、ポリエステル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、アクリル樹脂などが用いられ、ポリエステル樹脂、ポリエステルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、アクリル樹脂が好ましい。易接着層は架橋されていることが好ましい。架橋剤としては、イソシアネート化合物、メラミン化合物、エポキシ樹脂、オキサゾリン化合物等が挙げられる。また、易接着層にポリビニルアルコールなどの水溶性樹脂を添加することも偏光子との密着性を向上させるために有用な手段である。
(Easy adhesion layer)
The polyester film of the present invention may be provided with an easy-adhesion layer in order to improve adhesion to an adhesive, a coat layer, and the like.
Polyester resins, polyurethane resins, polycarbonate resins, acrylic resins, and the like are used as the resins used for the easy-adhesion layer, and polyester resins, polyester-polyurethane resins, polycarbonate-polyurethane resins, and acrylic resins are preferred. The easy-adhesion layer is preferably crosslinked. Examples of cross-linking agents include isocyanate compounds, melamine compounds, epoxy resins, oxazoline compounds, and the like. Addition of a water-soluble resin such as polyvinyl alcohol to the easy-adhesion layer is also a useful means for improving adhesion to the polarizer.
 易接着層はこれら樹脂と必要により架橋剤、粒子等を添加した水系塗料としてフィルムに塗布・乾燥して設けることができる。粒子としては上述の基材に用いられるものが例示される。
 易接着層は、フィルム(例えば延伸済みのフィルム)にオフラインで設けてもよいが、製膜工程中にインラインで設けることが好ましい。インラインで設ける場合は、縦延伸(MD延伸)前、横延伸(TD延伸)前のいずれであってもよいが、横延伸直前に塗工され、テンターによる予熱、加熱、熱処理工程で乾燥、架橋されることが好ましい。なお、ロールによる縦延伸直前でインラインコートする場合には塗工後、縦型乾燥機で乾燥させた後に延伸ロールに導くことが好ましい。
 易接着層の塗工量(乾燥後の塗工量)は0.01~1.0g/mが好ましく、さらには0.03~0.5g/mが好ましい。
The easy-adhesion layer can be provided by coating and drying the film as a water-based paint containing these resins and, if necessary, a cross-linking agent, particles, and the like. Examples of the particles include those used in the base material described above.
The easy-adhesion layer may be provided on the film (for example, stretched film) off-line, but is preferably provided in-line during the film-forming process. When provided in-line, it may be before the longitudinal stretching (MD stretching) or before the transverse stretching (TD stretching), but it is applied immediately before the transverse stretching, and is dried and crosslinked in the preheating, heating, and heat treatment steps by the tenter. preferably. In the case of in-line coating immediately before longitudinal stretching by rolls, it is preferable to dry the film with a vertical dryer after coating and then guide it to the stretching rolls.
The coating amount (coating amount after drying) of the easily adhesive layer is preferably 0.01 to 1.0 g/m 2 , more preferably 0.03 to 0.5 g/m 2 .
(機能性層)
 本発明のポリエステルフィルムには、ハードコート層、反射防止層、低反射層、防眩層、帯電防止層などの機能性層が設けられていることも好ましい形態である。反射防止層、低反射層、及び防眩層を総称して反射低減層という。反射低減層は、表示画面に外光が映り込んで見にくくなることを防ぐだけでなく、界面の反射を抑制して虹斑を低減させたり、目立ち難くさせたりする作用もある。また、タッチパネルなどの基材フィルム(例えば透明電極基材フィルム)として用いられる場合には、透明電極層を目立ちにくくするため、屈折率調整層を設けることも好ましい。なお、機能性層が設けられたポリエステルフィルムにおいて、機能性層が設けられる前の状態のフィルムを基材フィルムという。なお、基材フィルムは上記易接着層を含んでいる場合もある。
(functional layer)
It is also a preferred embodiment that the polyester film of the present invention is provided with functional layers such as a hard coat layer, an antireflection layer, a low reflection layer, an antiglare layer and an antistatic layer. The antireflection layer, the low reflection layer, and the antiglare layer are collectively referred to as a reflection reduction layer. The reflection-reducing layer not only prevents external light from being reflected on the display screen and makes it difficult to see, but also has the effect of suppressing reflection at the interface to reduce iridescence or make it less noticeable. Further, when used as a substrate film (for example, a transparent electrode substrate film) for a touch panel or the like, it is also preferable to provide a refractive index adjusting layer in order to make the transparent electrode layer inconspicuous. In addition, in the polyester film provided with the functional layer, the film in the state before the functional layer is provided is referred to as the base film. In addition, the substrate film may contain the above-described easy-adhesion layer.
 反射低減層側から測定したポリエステルフィルムの反射率の上限は好ましくは5%であり、より好ましくは4%であり、さらに好ましくは3%であり、特に好ましくは2%であり、最も好ましくは1.5%である。上記上限以下であると外光の反射を低減でき、画面の視認性を向上することができる。反射率の下限は好ましくは特に規定されるものではないが、現実的な面から好ましくは0.01%であり、さらに好ましくは0.1%である。
 反射低減層としては、低反射層、反射防止層、防眩層、など様々な種類がある。
The upper limit of the reflectance of the polyester film measured from the side of the reflection-reducing layer is preferably 5%, more preferably 4%, even more preferably 3%, particularly preferably 2%, and most preferably 1%. 0.5%. When the thickness is equal to or less than the above upper limit, the reflection of outside light can be reduced, and the visibility of the screen can be improved. Although the lower limit of the reflectance is not particularly defined, it is preferably 0.01%, more preferably 0.1% from a practical point of view.
As the reflection reducing layer, there are various types such as a low reflection layer, an antireflection layer, an antiglare layer, and the like.
(低反射層)
 低反射層は、基材フィルムの表面に低屈折率の層(低屈折率層)を設けることで空気との屈折率差を小さくして、反射率を低減させる機能を有する層である。
(low reflection layer)
The low-reflection layer is a layer having a function of reducing the reflectance by providing a low-refractive-index layer (low-refractive-index layer) on the surface of the base film to reduce the difference in refractive index from air.
(反射防止層)
 反射防止層は、低屈折率層の厚みをコントロールして、界面の反射光を干渉させて反射を制御する層である。低屈折率層の厚みは、可視光の波長(400~700mn)/(低屈折率層の屈折率×4)程度となることが好ましい。
 反射防止層と基材フィルムとの間には高屈折率層を設けることも好ましい形態であり、低屈折率層及び/又は高屈折率層を2層以上設け、多重干渉により反射防止効果をさらに高めてもよい。高屈折率層と低屈折率層を合わせて反射防止層ということがある。
(Antireflection layer)
The antireflection layer is a layer that controls reflection by controlling the thickness of the low refractive index layer to interfere the reflected light from the interface. The thickness of the low refractive index layer is preferably about the wavelength of visible light (400 to 700 nm)/(refractive index of low refractive index layer×4).
It is also a preferred form to provide a high refractive index layer between the antireflection layer and the base film, and two or more low refractive index layers and/or high refractive index layers are provided to further enhance the antireflection effect by multiple interference. You can raise it. A combination of the high refractive index layer and the low refractive index layer is sometimes called an antireflection layer.
 反射防止層の場合、反射率の上限は好ましくは2%であり、より好ましくは1.5%であり、さらに好ましくは1.2%であり、特に好ましくは1%である。 In the case of the antireflection layer, the upper limit of the reflectance is preferably 2%, more preferably 1.5%, even more preferably 1.2%, and particularly preferably 1%.
(低屈折率層)
 低屈折率層の屈折率は、1.45以下が好ましく、1.42以下がより好ましい。また、低屈折率層の屈折率は、1.2以上が好ましく、1.25以上がより好ましい。
 なお、低屈折率層の屈折率は、波長589nmの条件で測定される値である。
(Low refractive index layer)
The refractive index of the low refractive index layer is preferably 1.45 or less, more preferably 1.42 or less. Moreover, the refractive index of the low refractive index layer is preferably 1.2 or more, more preferably 1.25 or more.
The refractive index of the low refractive index layer is a value measured under the condition of a wavelength of 589 nm.
 低屈折率層の厚みは限定されないが、通常、30nm~1μm程度の範囲内から適宜設定すればよい。また、反射防止層として用いる場合は、低屈折率層の厚みは70~120nmが好ましく、75~110nmがより好ましい。 Although the thickness of the low-refractive-index layer is not limited, it can usually be appropriately set within the range of about 30 nm to 1 μm. When used as an antireflection layer, the thickness of the low refractive index layer is preferably 70 to 120 nm, more preferably 75 to 110 nm.
 低屈折率層としては、好ましくは(1)バインダ樹脂及び低屈折率粒子を含有する樹脂組成物からなる層、(2)低屈折率樹脂であるフッ素系樹脂からなる層、(3)シリカ又はフッ化マグネシウムを含有するフッ素系樹脂組成物からなる層、(4)シリカ、フッ化マグネシウム等の低屈折率物質の薄膜等が挙げられる。 The low refractive index layer preferably includes (1) a layer made of a resin composition containing a binder resin and low refractive index particles, (2) a layer made of a fluororesin that is a low refractive index resin, (3) silica or (4) a thin film of a low refractive index substance such as silica and magnesium fluoride;
 (1)の樹脂組成物に含有されるバインダ樹脂としては、ポリエステル、ポリウレタン、ポリアミド、ポリカーボネート、アクリルなど特に制限なく用いることができる。中でもアクリルが好ましく、光照射により光重合性化合物を重合(架橋)させて得られたものであることが好ましい。 As the binder resin contained in the resin composition (1), polyester, polyurethane, polyamide, polycarbonate, acrylic, etc. can be used without particular limitation. Among them, acrylic is preferred, and one obtained by polymerizing (crosslinking) a photopolymerizable compound by light irradiation is preferred.
 光重合性化合物としては、光重合性モノマー、光重合性オリゴマー、光重合性ポリマーが挙げられ、これらを適宜調整して用いることができる。光重合性化合物としては、光重合性モノマーと、光重合性オリゴマー又は光重合性ポリマーとの組み合わせが好ましい。これらの光重合性モノマー、光重合性オリゴマー、光重合性ポリマーは多官能のものが好ましい。 Examples of the photopolymerizable compound include photopolymerizable monomers, photopolymerizable oligomers, and photopolymerizable polymers, and these can be appropriately adjusted and used. The photopolymerizable compound is preferably a combination of a photopolymerizable monomer and a photopolymerizable oligomer or photopolymerizable polymer. These photopolymerizable monomers, photopolymerizable oligomers and photopolymerizable polymers are preferably polyfunctional.
 多官能モノマーとしては、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)等が挙げられる。なお、塗工粘度や硬度の調整のため、単官能モノマーを併用してもよい。 Examples of polyfunctional monomers include pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate (PETTA), and dipentaerythritol pentaacrylate (DPPA). In addition, a monofunctional monomer may be used in combination for adjustment of coating viscosity and hardness.
 多官能オリゴマーとしては、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル-ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、メラミン(メタ)アクリレート、イソシアヌレート(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。 Polyfunctional oligomers include polyester (meth)acrylate, urethane (meth)acrylate, polyester-urethane (meth)acrylate, polyether (meth)acrylate, polyol (meth)acrylate, melamine (meth)acrylate, and isocyanurate (meth)acrylate. Acrylate, epoxy (meth)acrylate, and the like.
 多官能ポリマーとしては、ウレタン(メタ)アクリレート、イソシアヌレート(メタ)アクリレート、ポリエステル-ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。 Polyfunctional polymers include urethane (meth)acrylate, isocyanurate (meth)acrylate, polyester-urethane (meth)acrylate, epoxy (meth)acrylate, and the like.
 (1)の樹脂組成物には、上記成分の他に重合開始剤、架橋剤の触媒、重合禁止剤、酸化防止剤、紫外線吸収剤、レベリング剤、界面活性剤などが含まれていてもよい。 In addition to the above components, the resin composition (1) may contain a polymerization initiator, a cross-linking agent catalyst, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a leveling agent, a surfactant, and the like. .
 (1)の樹脂組成物に含まれる低屈折率粒子としては、シリカ粒子(例えば、中空シリカ粒子)、フッ化マグネシウム粒子等が挙げられ、中でも、中空シリカ粒子が好ましい。このような中空シリカ粒子は、例えば、特開2005-099778号公報の実施例に記載の製造方法により作製できる。 Examples of the low refractive index particles contained in the resin composition (1) include silica particles (for example, hollow silica particles), magnesium fluoride particles, etc. Among them, hollow silica particles are preferred. Such hollow silica particles can be produced, for example, by the production method described in Examples of JP-A-2005-099778.
 低屈折率粒子の一次粒子の平均粒子径は、5~200nmが好ましく、5~100nmがより好ましく、10~80nmがさらに好ましい。
 低屈折率粒子は、シランカップリング剤で表面処理されたものがより好ましく、中でも(メタ)アクリロイル基を有するシランカップリング剤で表面処理されたものが好ましい。
The average particle size of the primary particles of the low refractive index particles is preferably 5 to 200 nm, more preferably 5 to 100 nm, even more preferably 10 to 80 nm.
The low refractive index particles are more preferably surface-treated with a silane coupling agent, and more preferably surface-treated with a silane coupling agent having a (meth)acryloyl group.
 低屈折率層における低屈折率粒子の含有量は、バインダ樹脂100質量部に対して、10~400質量部であることが好ましく、10~250質量部がより好ましく、50~200質量部がさらに好ましく、80~180質量部が特に好ましく、100~180質量部が最も好ましい。 The content of the low refractive index particles in the low refractive index layer is preferably 10 to 400 parts by mass, more preferably 10 to 250 parts by mass, and further 50 to 200 parts by mass with respect to 100 parts by mass of the binder resin. Preferred is 80 to 180 parts by weight, most preferred is 100 to 180 parts by weight.
 (2)のフッ素系樹脂としては、少なくとも分子中にフッ素原子を含む重合性化合物又はその重合体を用いることができる。重合性化合物としては特に限定されないが、例えば、光重合性官能基、熱硬化極性基等の硬化反応性基を有するものが好ましい。また、これら複数の硬化反応性基を同時に併せ持つ化合物でもよい。この重合性化合物に対し、重合体は、上記の硬化反応性基等を有しないものである。 As the fluororesin (2), a polymerizable compound containing at least a fluorine atom in the molecule or a polymer thereof can be used. The polymerizable compound is not particularly limited, but preferably has a curing reactive group such as a photopolymerizable functional group or a thermosetting polar group. A compound having these multiple curing reactive groups at the same time may also be used. In contrast to this polymerizable compound, the polymer does not have the above curing reactive groups.
 光重合性官能基を有する化合物としては、例えば、エチレン性不飽和結合を有するフッ素含有モノマーを広く用いることができる。 As a compound having a photopolymerizable functional group, for example, a fluorine-containing monomer having an ethylenically unsaturated bond can be widely used.
 低屈折率層には耐指紋性を向上させる目的で、公知のポリシロキサン系又はフッ素系の防汚剤を適宜添加することも好ましい。 For the purpose of improving anti-fingerprint properties, it is also preferable to appropriately add a known polysiloxane-based or fluorine-based antifouling agent to the low refractive index layer.
 低屈折率層の表面は、防眩性を出すために凹凸面であってもよいが、平滑面であることも好ましい。
 低屈折率層の表面が平滑面である場合、低屈折率層の表面の算術平均粗さSRa(JIS B0601:1994)は、好ましくは20nm以下であり、より好ましくは15nm以下であり、さらに好ましくは10nm以下であり、特に好ましくは1~8nmである。また、低屈折率層の表面の十点平均粗さRz(JIS B0601:1994)は、好ましくは160nm以下であり、より好ましくは50~155nmである。
The surface of the low-refractive-index layer may be an uneven surface in order to provide anti-glare properties, but it is also preferable that it is a smooth surface.
When the surface of the low refractive index layer is a smooth surface, the arithmetic mean roughness SRa (JIS B0601:1994) of the surface of the low refractive index layer is preferably 20 nm or less, more preferably 15 nm or less, and even more preferably. is 10 nm or less, particularly preferably 1 to 8 nm. The ten-point average roughness Rz (JIS B0601:1994) of the surface of the low refractive index layer is preferably 160 nm or less, more preferably 50 to 155 nm.
(高屈折率層)
 高屈折率層の屈折率は1.55~1.85とすることが好ましく、1.56~1.7とすることがより好ましい。
 なお、高屈折率層の屈折率は、波長589nmの条件で測定される値である。
(High refractive index layer)
The refractive index of the high refractive index layer is preferably 1.55 to 1.85, more preferably 1.56 to 1.7.
The refractive index of the high refractive index layer is a value measured under the condition of a wavelength of 589 nm.
 高屈折率層の厚みは、30~200nmであることが好ましく、50~180nmであることがより好ましい。高屈折率層は複数の層であってもよいが、2層以下が好ましく、単層がより好ましい。複数の層の場合は、複数の層の厚みの合計が、上記範囲内であることが好ましい。 The thickness of the high refractive index layer is preferably 30-200 nm, more preferably 50-180 nm. Although the high refractive index layer may be a plurality of layers, it is preferably two layers or less, more preferably a single layer. In the case of multiple layers, the total thickness of the multiple layers is preferably within the above range.
 高屈折率層を2層とする場合は、低屈折率層側の高屈折率層の屈折率をより高くすることが好ましく、具体的には、低屈折率層側の高屈折率層の屈折率は1.6~1.85であることが好ましく、他方の高屈折率層の屈折率は1.55~1.7であることが好ましい。 When two high refractive index layers are used, the refractive index of the high refractive index layer on the low refractive index layer side is preferably higher. Specifically, the refractive index of the high refractive index layer on the low refractive index layer side is The index is preferably 1.6 to 1.85, and the refractive index of the other high refractive index layer is preferably 1.55 to 1.7.
 高屈折率層は高屈折率粒子及び樹脂を含む樹脂組成物からなることが好ましい。
 高屈折率粒子としては、五酸化アンチモン粒子、酸化亜鉛粒子、酸化チタン粒子、酸化セリウム粒子、スズドープ酸化インジウム粒子、アンチモンドープ酸化スズ粒子、酸化イットリウム粒子、及び酸化ジルコニウム粒子等が好ましい。これらの中でも酸化チタン粒子及び酸化ジルコニウム粒子が好適である。
The high refractive index layer is preferably made of a resin composition containing high refractive index particles and a resin.
Antimony pentoxide particles, zinc oxide particles, titanium oxide particles, cerium oxide particles, tin-doped indium oxide particles, antimony-doped tin oxide particles, yttrium oxide particles, zirconium oxide particles, and the like are preferable as the high refractive index particles. Among these, titanium oxide particles and zirconium oxide particles are preferred.
 高屈折率粒子は2種以上を併用してもよい。特に、第1の高屈折率粒子とそれより表面電荷量が少ない第2の高屈折率粒子とを添加することも凝集を防ぐためには好ましい。 Two or more kinds of high refractive index particles may be used in combination. In particular, it is also preferable to add the first high refractive index particles and the second high refractive index particles having a smaller surface charge amount to prevent aggregation.
 高屈折率層に用いられる樹脂としては、フッ素系樹脂を除いて低屈折率層で挙げた樹脂と同じものが挙げられる。 The resins used for the high refractive index layer include the same resins as those listed for the low refractive index layer, except for fluorine-based resins.
 高屈折率層の上に設けられる低屈折率層を平坦にするためには、高屈折率層の表面も平坦であることが好ましい。高屈折率層の表面を平坦にする方法としては、上記の低屈折率層を平坦にする方法が用いられる。 In order to flatten the low refractive index layer provided on the high refractive index layer, it is preferable that the surface of the high refractive index layer is also flat. As a method for flattening the surface of the high refractive index layer, the above method for flattening the low refractive index layer is used.
 高屈折率粒子及び高屈折率粒子の一次粒子の平均粒子径は、5~200nmが好ましく、5~100nmがより好ましく、10~80nmがさらに好ましい。
 これら粒子は、表面処理されたものがより好ましく、シランカップリング剤で表面処理されたものがより好ましく、中でも(メタ)アクリロイル基を有するシランカップリング剤で表面処理されたものが好ましい。
The average particle size of the high refractive index particles and the primary particles of the high refractive index particles is preferably 5 to 200 nm, more preferably 5 to 100 nm, even more preferably 10 to 80 nm.
These particles are more preferably surface-treated, more preferably surface-treated with a silane coupling agent, and more preferably surface-treated with a silane coupling agent having a (meth)acryloyl group.
 高屈折率層における高屈折率粒子の含有量は、バインダ樹脂100質量部に対して、10~400質量部であることが好ましく、10~250質量部がより好ましく、50~200質量部がさらに好ましく、80~180質量部が特に好ましく、100~180質量部が最も好ましい。 The content of the high refractive index particles in the high refractive index layer is preferably 10 to 400 parts by mass, more preferably 10 to 250 parts by mass, and further 50 to 200 parts by mass with respect to 100 parts by mass of the binder resin. Preferred is 80 to 180 parts by weight, most preferred is 100 to 180 parts by weight.
 高屈折率層及び低屈折率層は、例えば、光重合性化合物を含む樹脂組成物を、基材フィルムに塗布し、乾燥させた後、塗膜状の樹脂組成物に紫外線等の光を照射して、光重合性化合物を重合(架橋)させることにより形成することができる。 For the high refractive index layer and the low refractive index layer, for example, a resin composition containing a photopolymerizable compound is applied to a base film, dried, and then the coated resin composition is irradiated with light such as ultraviolet rays. can be formed by polymerizing (crosslinking) the photopolymerizable compound.
 高屈折率層及び低屈折率層の樹脂組成物には、必要に応じて、熱可塑性樹脂、熱硬化性樹脂、溶剤、重合開始剤、これらの組合せ等を添加してもよい。さらに、分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、易滑剤、これらの組合せ等を添加していてもよい。 If necessary, a thermoplastic resin, a thermosetting resin, a solvent, a polymerization initiator, a combination thereof, or the like may be added to the resin composition of the high refractive index layer and the low refractive index layer. In addition, dispersants, surfactants, antistatic agents, silane coupling agents, thickeners, anti-coloring agents, coloring agents (pigments, dyes), antifoaming agents, leveling agents, flame retardants, UV absorbers, adhesion imparting agents agents, polymerization inhibitors, antioxidants, surface modifiers, lubricants, combinations thereof, and the like may be added.
(防眩層)
 防眩層は表面に凹凸を設けて乱反射させることで、外光が表面で反射する場合の光源の形の映り込みを防止したり、眩しさを低減したりさせる層である。
(Antiglare layer)
The anti-glare layer is a layer that prevents reflection of the shape of a light source when external light is reflected on the surface and reduces glare, by providing irregularities on the surface to cause diffuse reflection.
 防眩層の表面の凹凸の算術平均粗さ(SRa)は、好ましくは0.02~0.25μmであり、より好ましくは0.02~0.15μmであり、さらに好ましくは0.02~0.12μmである。 The arithmetic mean roughness (SRa) of the irregularities on the surface of the antiglare layer is preferably 0.02 to 0.25 μm, more preferably 0.02 to 0.15 μm, still more preferably 0.02 to 0. .12 μm.
 防眩層の表面の凹凸の十点平均粗さ(Rzjis)は、好ましくは0.15~2μmであり、より好ましくは0.2~1.2μmであり、さらに好ましくは0.3~0.8μmである。 The ten-point average roughness (Rzjis) of unevenness on the surface of the antiglare layer is preferably from 0.15 to 2 μm, more preferably from 0.2 to 1.2 μm, and still more preferably from 0.3 to 0.3 μm. 8 μm.
 SRa及びRzjisは、JIS B0601-1994又はJIS B0601-2001に準拠して、接触型粗さ計を用いて測定される粗さ曲線から算出される。 SRa and Rzjis are calculated from a roughness curve measured using a contact roughness meter in accordance with JIS B0601-1994 or JIS B0601-2001.
 基材フィルムに防眩層を設ける方法としては、例えば、以下の方法が挙げられる。
 ・粒子(フィラー)等を含む防眩層用塗料を塗工する
 ・防眩層用樹脂を、凹凸構造を有する金型に接触させた状態で硬化させる
 ・防眩層用樹脂を、凹凸構造を有する金型に塗布し、基材フィルムに転写する
 ・乾燥、製膜時にスピノーダル分解が生じる塗料を塗工する
Examples of methods for providing the antiglare layer on the base film include the following methods.
・Apply anti-glare layer paint containing particles (filler), etc. ・Cure anti-glare layer resin while it is in contact with a mold with uneven structure. It is applied to the mold that has it and transferred to the base film. ・A paint that causes spinodal decomposition during drying and film formation
 防眩層の厚みの下限は、好ましくは0.1μmであり、より好ましくは0.5μmである。防眩層の厚みの上限は、好ましくは100μmであり、より好ましくは50μmであり、さらに好ましくは20μmである。 The lower limit of the thickness of the antiglare layer is preferably 0.1 μm, more preferably 0.5 μm. The upper limit of the thickness of the antiglare layer is preferably 100 µm, more preferably 50 µm, and still more preferably 20 µm.
 防眩層の屈折率は、好ましくは1.2~1.8であり、より好ましくは1.4~1.7である。
 なお、防眩層の屈折率は、波長589nmの条件で測定される値である。
 低屈折率層に凹凸を設けて防眩性低反射層としてもよく、ハードコート層又は高屈折率層の表面を凹凸にして、この上に低屈折率層を設けて反射防止機能を持たせて、防眩性反射防止層としてもよい。
The refractive index of the antiglare layer is preferably 1.2 to 1.8, more preferably 1.4 to 1.7.
The refractive index of the antiglare layer is a value measured under the condition of a wavelength of 589 nm.
The low refractive index layer may be provided with unevenness to form an antiglare and low reflective layer, and the surface of the hard coat layer or high refractive index layer may be uneven, and the low refractive index layer may be provided thereon to provide an antireflection function. may be used as an antiglare and antireflection layer.
(ハードコート層)
 上記の反射低減層の下層としてハードコート層を設けることも好ましい形態である。
 ハードコート層は鉛筆硬度でH以上が好ましく、2H以上がより好ましい。ハードコート層は、例えば、熱硬化性樹脂又は放射線硬化性樹脂を含む組成物(溶液)を塗布、硬化させて設けることができる。
(Hard coat layer)
It is also a preferred form to provide a hard coat layer as a lower layer of the reflection reducing layer.
The hard coat layer preferably has a pencil hardness of H or more, more preferably 2H or more. The hard coat layer can be provided, for example, by applying and curing a composition (solution) containing a thermosetting resin or a radiation-curable resin.
 熱硬化性樹脂としては、アクリル樹脂、ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、これらの組合せ等が挙げられる。熱硬化性樹脂組成物には、これら硬化性樹脂に、必要に応じて硬化剤が添加される。 Thermosetting resins include acrylic resins, urethane resins, phenolic resins, urea melamine resins, epoxy resins, unsaturated polyester resins, silicone resins, and combinations thereof. If necessary, a curing agent is added to these curable resins in the thermosetting resin composition.
 放射線硬化性樹脂は、放射線硬化性官能基を有する化合物(放射線硬化性化合物)であることが好ましく、放射線硬化性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基、エポキシ基、オキセタニル基等が挙げられる。このうち、電離放射線硬化性化合物としては、エチレン性不飽和結合基を有する化合物が好ましく、エチレン性不飽和結合基を2つ以上有する化合物がより好ましく、中でも、エチレン性不飽和結合基を2つ以上有する、多官能性(メタ)アクリレート系化合物が更に好ましい。多官能性(メタ)アクリレート系化合物としては、モノマーであってもオリゴマーであってもポリマーであってもよい。 The radiation-curable resin is preferably a compound having a radiation-curable functional group (radiation-curable compound). A saturated bond group, an epoxy group, an oxetanyl group, and the like can be mentioned. Among these, as the ionizing radiation-curable compound, a compound having an ethylenically unsaturated bond group is preferable, and a compound having two or more ethylenically unsaturated bond groups is more preferable. Polyfunctional (meth)acrylate compounds having the above are more preferable. A polyfunctional (meth)acrylate compound may be a monomer, an oligomer, or a polymer.
 これらの具体例としては、上記のバインダ樹脂として挙げたものが用いられる。
 ハードコートとしての硬度を達成するためには、放射線硬化性官能基を有する化合物中、2官能以上のモノマーが50質量%以上であることが好ましく、70質量%以上であることがより好ましい。さらには、放射線硬化性官能基を有する化合物中、3官能以上のモノマーが50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 上記放射線硬化性官能基を有する化合物は、1種単独で又は2種以上を組み合わせて用いることができる。
As specific examples thereof, those mentioned as the binder resin are used.
In order to achieve hardness as a hard coat, the difunctional or higher monomer content in the compound having a radiation-curable functional group is preferably 50% by mass or more, more preferably 70% by mass or more. Furthermore, in the compound having a radiation-curable functional group, the trifunctional or higher monomer preferably accounts for 50% by mass or more, more preferably 70% by mass or more.
The compounds having a radiation-curable functional group can be used singly or in combination of two or more.
 ハードコート層の厚みは、0.1~100μmの範囲が好ましく、0.8~20μmの範囲がより好ましい。 The thickness of the hard coat layer is preferably in the range of 0.1-100 μm, more preferably in the range of 0.8-20 μm.
 ハードコート層の屈折率は、1.45~1.7であることがより好ましく、1.5~1.6であることがさらに好ましい。
 なお、ハードコート層の屈折率は、波長589nmの条件で測定される値である。
The hard coat layer preferably has a refractive index of 1.45 to 1.7, more preferably 1.5 to 1.6.
The refractive index of the hard coat layer is a value measured at a wavelength of 589 nm.
 ハードコート層の屈折率を調整するためには、樹脂の屈折率を調整する方法、粒子を添加する場合は粒子の屈折率を調整する方法等が挙げられる。
 粒子としては、防眩層の粒子として例示したものが挙げられる。
 なお、本発明において、ハードコート層も含めて、反射低減層と称する場合がある。
Examples of adjusting the refractive index of the hard coat layer include a method of adjusting the refractive index of the resin, and a method of adjusting the refractive index of the particles when particles are added.
Examples of the particles include those exemplified as the particles of the antiglare layer.
In addition, in this invention, it may be called a reflection reduction layer including a hard-coat layer.
 機能性層を設ける場合、機能性層と基材フィルムとの間に易接着層を設けてもよい。易接着層は上述の易接着層で挙げた樹脂、架橋剤などが好適に用いられる。また、易接着層は基材フィルムの両面に設けられていてもよく、その場合、両面の易接着層は同じ組成であっても異なった組成であってもよい。 When the functional layer is provided, an easily adhesive layer may be provided between the functional layer and the base film. For the easy-adhesion layer, the resins, cross-linking agents, and the like mentioned for the easy-adhesion layer are preferably used. Also, the easy-adhesion layers may be provided on both sides of the substrate film, and in that case, the easy-adhesion layers on both sides may have the same composition or different compositions.
(偏光板)
 本発明のポリエステルフィルムは、偏光子保護フィルムとして好適に使用することができる。本発明のポリエステルフィルムは偏光子と積層され、偏光板にすることができる。
(偏光子)
 偏光子としては、例えば、一軸延伸したポリビニルアルコール(PVA)にヨウ素又は有機系の二色性色素を吸着させたもの、液晶化合物と有機系の二色性色素を配向させたもの又は液晶性の二色性色素とからなる液晶性の偏光子、ワイヤーグリッド方式のものなどを特に制限なく用いることができる。
(Polarizer)
The polyester film of the present invention can be suitably used as a polarizer protective film. The polyester film of the present invention can be laminated with a polarizer to form a polarizing plate.
(Polarizer)
As a polarizer, for example, uniaxially stretched polyvinyl alcohol (PVA) to which iodine or an organic dichroic dye is adsorbed, a liquid crystal compound and an organic dichroic dye that are aligned, or a liquid crystalline A liquid crystalline polarizer composed of a dichroic dye, a wire grid type polarizer, and the like can be used without particular limitation.
 一軸延伸したポリビニルアルコール(PVA)にヨウ素又は有機系の二色性色素を吸着させたフィルム状の偏光子とロール状に巻き取られた偏光子保護フィルムとをPVA系、紫外線硬化型などの接着剤、又は粘着剤を用いて貼り合わせ、ロール状に巻き取ることができる。このタイプの偏光子の厚みとしては、5~30μmが好ましく、さらには8~25mが好ましく、特には10~20mが好ましい。接着剤又は粘着剤の厚みは、1~10μmが好ましく、さらに好ましくは2~5μmである。 A film-shaped polarizer made by adsorbing iodine or an organic dichroic dye to uniaxially stretched polyvinyl alcohol (PVA) and a roll-shaped polarizer protective film are adhered by PVA-based, UV-curable, etc. It can be laminated using an adhesive or adhesive and wound into a roll. The thickness of this type of polarizer is preferably 5 to 30 μm, more preferably 8 to 25 m, particularly preferably 10 to 20 m. The thickness of the adhesive or adhesive is preferably 1-10 μm, more preferably 2-5 μm.
 また、PET、ポリプロピレンなどの未延伸の基材にPVAを塗工し、基材と共に一軸延伸してヨウ素又は有機系の二色性色素を吸着させた偏光子も好ましく用いられる。この偏光子を用いる場合は、基材に積層された偏光子の偏光子面(基材が積層されていない面)と偏光子保護フィルムとを接着剤又は粘着剤で貼り合わせ、その後偏光子を作製する時に用いた基材を剥離することで、偏光子保護フィルムと偏光子を貼り合わせることができる。この場合も、ロール状で貼り合わせ、巻き取りを行うことが好ましい。このタイプの偏光子の厚みとしては、1~10μmが好ましく、さらには2~8μmが好ましく、特には3~6μmが好ましい。接着剤又は粘着剤の厚みは、1~10μmが好ましく、さらに好ましくは2~5μmである。 Also, a polarizer obtained by coating an unstretched base material such as PET or polypropylene with PVA and uniaxially stretching it together with the base material to adsorb iodine or an organic dichroic dye is also preferably used. When using this polarizer, the polarizer surface of the polarizer laminated on the substrate (the surface on which the substrate is not laminated) and the polarizer protective film are attached together with an adhesive or adhesive, and then the polarizer is attached. The polarizer protective film and the polarizer can be bonded together by peeling off the base material used for the production. Also in this case, it is preferable to stick together in a roll form and take up the roll. The thickness of this type of polarizer is preferably 1 to 10 μm, more preferably 2 to 8 μm, particularly preferably 3 to 6 μm. The thickness of the adhesive or adhesive is preferably 1-10 μm, more preferably 2-5 μm.
 液晶性の偏光子の場合は、偏光子保護フィルムに液晶化合物と有機系の二色性色素とからなる偏光子を配向させたものを積層するか、又は偏光子保護フィルムに液晶性の二色性色素を含有するコート液を塗工した後、乾燥させ、光又は熱硬化させて偏光子を積層することにより、偏光板とすることができる。液晶性の偏光子を配向させる方法としては、塗工対象物の表面をラビング処理する方法、偏光の紫外線を照射して液晶性の偏光子を配向させながら硬化させる方法等が挙げられる。偏光子保護フィルムの表面を直接ラビング処理して、コート液を塗工してもよく、偏光子保護フィルムに直接コート液を塗工してこれに偏光紫外線を照射してもよい。また、液晶性の偏光子を設ける前に、偏光子保護フィルムに配向層を設ける(すなわち、偏光子保護フィルムに配向層を介して液晶性の偏光子を積層する)ことも好ましい方法である。配向層を設ける方法としては、
・ポリビニルアルコール及びその誘導体、ポリイミド及びその誘導体、アクリル樹脂、ポリシロキサン誘導体などを塗工し、その表面をラビング処理して配向層(ラビング配向層)とする方法、
・シンナモイル基及びカルコン基等の光反応性基を有するポリマー又はモノマーと溶剤とを含む塗工液を塗布し、偏光紫外線を照射することによって配向硬化させ配向層(光配向層)とする方法
等が挙げられる。
In the case of a liquid crystalline polarizer, a polarizer protective film is laminated with an oriented polarizer consisting of a liquid crystal compound and an organic dichroic dye, or a liquid crystalline dichroic material is laminated on the polarizer protective film. A polarizing plate can be obtained by applying a coating liquid containing a polar dye, drying it, photocuring or thermally curing it, and laminating a polarizer. Examples of the method for orienting the liquid crystalline polarizer include a method of rubbing the surface of the object to be coated and a method of irradiating polarized ultraviolet rays to cure the liquid crystalline polarizer while aligning it. The surface of the polarizer protective film may be directly rubbed and coated with the coating liquid, or the polarizer protective film may be directly coated with the coating liquid and irradiated with polarized ultraviolet rays. It is also a preferable method to provide an orientation layer on the polarizer protective film before providing the liquid crystalline polarizer (that is, to laminate the liquid crystalline polarizer on the polarizer protective film via the orientation layer). As a method for providing the orientation layer,
- A method of coating polyvinyl alcohol and its derivatives, polyimide and its derivatives, acrylic resin, polysiloxane derivative, etc., and rubbing the surface thereof to form an alignment layer (rubbing alignment layer);
- A method of applying a coating solution containing a polymer or monomer having a photoreactive group such as a cinnamoyl group or a chalcone group and a solvent, and irradiating polarized ultraviolet rays to harden the alignment layer (photoalignment layer), etc. is mentioned.
 離型性を有するフィルムに上記の方法に準じて液晶性の偏光子を設け、液晶性の偏光子面と偏光子フィルムとを接着剤又は粘着剤で貼り合わせ、その後離型性を有するフィルムを剥離することで、偏光子フィルムと偏光子とを貼り合わせることもできる。 A liquid crystalline polarizer is provided on a releasable film according to the above method, the liquid crystalline polarizer surface and the polarizer film are bonded together with an adhesive or a pressure-sensitive adhesive, and then a releasable film is attached. A polarizer film and a polarizer can also be bonded together by peeling.
 液晶性の偏光子の厚みとしては、0.1~7μmが好ましく、さらには0.3~5μmが好ましく、特には0.5~3μmが好ましい。接着剤又は粘着剤の厚みは、1~10μmが好ましく、さらに好ましくは2~5μmである。 The thickness of the liquid crystalline polarizer is preferably 0.1 to 7 μm, more preferably 0.3 to 5 μm, particularly preferably 0.5 to 3 μm. The thickness of the adhesive or adhesive is preferably 1-10 μm, more preferably 2-5 μm.
(偏光子と偏光子保護フィルムとの積層)
 本発明のポリエステルフィルムは偏光子の画像表示セル側とは反対面に積層されていることが好ましい。偏光子とフィルムを積層させて偏光板とする際に、偏光子の吸収軸とフィルムの遅相軸とがなす角度は約90度又は約0度であることが好ましい。本明細書において、「約」とは、7度以下の誤差を意味する。誤差は5度以下が好ましく、さらに好ましくは3度以下であり、特に好ましくは2度以下、最も好ましくは1.5度以下である。偏光板の全範囲で上記の角度となることが好ましい。
 なお、偏光子が液晶性偏光子やワイヤーグリッド方式の場合であれば、ポリエステルフィルムの遅相軸に対して偏光子の吸収軸を斜めにすることも容易であり、遅相軸と吸収軸とのなす角度は30~60度であってもよく、好ましくは約45度である。
(Lamination of polarizer and polarizer protective film)
The polyester film of the present invention is preferably laminated on the opposite side of the polarizer to the image display cell side. When a polarizer and a film are laminated to form a polarizing plate, the angle formed by the absorption axis of the polarizer and the slow axis of the film is preferably about 90 degrees or about 0 degrees. As used herein, "about" means an error of 7 degrees or less. The error is preferably 5 degrees or less, more preferably 3 degrees or less, particularly preferably 2 degrees or less, most preferably 1.5 degrees or less. It is preferable that the above angle is provided over the entire range of the polarizing plate.
If the polarizer is a liquid crystalline polarizer or a wire grid type polarizer, it is easy to make the absorption axis of the polarizer oblique to the slow axis of the polyester film. The angle between them may be 30-60 degrees, preferably about 45 degrees.
(偏光子の画像表示セル側の面)
 偏光板が液晶表示装置用である場合、偏光子の液晶セル側の面は何も積層されていない状態であってもよく、粘着剤であってもよく、偏光子上に硬化層が設けられたものであっても良く、上記の偏光子保護フィルムとは異なる偏光子保護フィルムが設けられていてもよい。好ましい硬化層としては前述のハードコート層が挙げられる。粘着剤である場合はさらに離型フィルムが積層されていてもよい。また、積層されていない状態、硬化層の場合、偏光子保護フィルムの場合などにおいて、別途剥離可能な保護フィルムが積層されていてもよい。
(Surface of the polarizer on the image display cell side)
When the polarizing plate is for a liquid crystal display device, the surface of the polarizer on the liquid crystal cell side may be in a state in which nothing is laminated, or may be an adhesive, and a cured layer is provided on the polarizer. A polarizer protective film different from the above polarizer protective film may be provided. A preferable cured layer includes the hard coat layer described above. When it is an adhesive, a release film may be further laminated. In addition, in a non-laminated state, in the case of a cured layer, or in the case of a polarizer protective film, a separate peelable protective film may be laminated.
 偏光子の液晶セル側の面の偏光子保護フィルムは、セルロース系(TAC)フィルム、アクリルフィルム、ポリ環状オレフィン(COP)フィルムなどが挙げられる。液晶セル側の面の偏光子保護フィルムは、レタデーションがほぼゼロのものであってもよく、表示画面を斜め方向から見た場合の色調の変化を制御するための光学補償フィルムと言われる位相差フィルムであってもよい。 The polarizer protective film on the liquid crystal cell side of the polarizer includes cellulose-based (TAC) film, acrylic film, polycyclic olefin (COP) film, and the like. The polarizer protective film on the side of the liquid crystal cell may have a retardation of almost zero, and has a phase difference called an optical compensation film for controlling color tone changes when the display screen is viewed from an oblique direction. It may be a film.
 光学補償フィルムで必要な位相差を出すためには、フィルムを延伸するか、フィルム上に液晶化合物等の位相差層を塗工する、別途、離型性フィルム上に液晶化合物等の位相差層を設け、これを転写する、等の方法が挙げられる。位相差層を形成するための液晶化合物は棒状液晶化合物、ディスコティク液晶化合物など、要求される位相差特性に合わせて用いられる。液晶化合物は配向状態を固定させるため、二重結合などの光硬化性の反応基を有していることが好ましい。液晶化合物を配向させて、位相差を持たせるためには、例えば、位相差層の下層として配向層を設け、配向層をラビング処理するか、偏光紫外線を照射することにより、この上に塗工する液晶化合物が特定方向に配向するような配向制御性を付与することができる。 In order to obtain the necessary retardation in the optical compensation film, the film should be stretched, or a retardation layer such as a liquid crystal compound should be applied on the film. is provided and transferred. A liquid crystal compound for forming the retardation layer may be a rod-like liquid crystal compound, a discotic liquid crystal compound, or the like, depending on the required retardation characteristics. The liquid crystal compound preferably has a photocurable reactive group such as a double bond in order to fix the alignment state. In order to align the liquid crystal compound and provide a retardation, for example, an alignment layer is provided as a lower layer of the retardation layer, and the alignment layer is rubbed or irradiated with polarized ultraviolet rays, and then coated thereon. It is possible to impart alignment controllability such that the liquid crystal compound to be aligned is aligned in a specific direction.
 光学補償フィルムの位相差は、使用する液晶セルのタイプ、どの程度の視野角を確保するかなどで適宜設定できる。 The retardation of the optical compensation film can be set as appropriate depending on the type of liquid crystal cell used and the viewing angle to be secured.
 位相差層は位相差層用組成物塗料を塗工して設けることができる。位相差層用組成物塗料は、溶剤、重合開始剤、増感剤、重合禁止剤、レベリング剤、重合性非液晶化合物、架橋剤、これらの組合せ等を含んでもよい。これらは、配向制御層及び液晶性の偏光子の部分で説明した物を用いることができる。 The retardation layer can be provided by applying a composition paint for retardation layer. The composition paint for retardation layer may contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, a cross-linking agent, a combination thereof, and the like. For these, the ones described in the alignment control layer and the liquid crystalline polarizer can be used.
 位相差層用組成物塗料を離型性フィルムの離型面又は配向制御層上に塗工後、乾燥、加熱、硬化することにより、位相差層が設けられる。 A retardation layer is provided by coating the composition paint for retardation layer on the release surface of the release film or the orientation control layer, followed by drying, heating, and curing.
 これらの条件も配向制御層及び液晶性の偏光子の部分で説明した条件が好ましい条件として用いられる。 As for these conditions, the conditions described in the section on the alignment control layer and the liquid crystalline polarizer are used as preferable conditions.
 偏光子と偏光子保護フィルムや位相差フィルムを貼り合わせる場合、接着剤又は粘着剤が用いられる。接着剤は、ポリビニルアルコール系などの水系の接着剤又は光硬化性の接着剤が好ましく用いられる。光硬化性の接着剤としてはアクリル系、エポキシ系の接着剤などが挙げられる。粘着剤はアクリル系の粘着剤が好ましく用いられる。 An adhesive or pressure-sensitive adhesive is used when bonding a polarizer to a polarizer protective film or a retardation film. As the adhesive, a water-based adhesive such as a polyvinyl alcohol-based adhesive or a photocurable adhesive is preferably used. Examples of photocurable adhesives include acrylic adhesives and epoxy adhesives. An acrylic adhesive is preferably used as the adhesive.
(液晶セル)
 液晶セルは、回路が形成されたガラス等の薄い基板の間に液晶化合物が封入されたものである。基板がガラスの場合、厚みは1mm以下が好ましく、薄型化の観点から厚みは0.7mm以下がより好ましく、さらに好ましくは0.5mm以下、特に好ましくは0.4mm以下である。
(liquid crystal cell)
A liquid crystal cell is a cell in which a liquid crystal compound is sealed between thin substrates such as glass on which circuits are formed. When the substrate is glass, the thickness is preferably 1 mm or less, more preferably 0.7 mm or less, further preferably 0.5 mm or less, and particularly preferably 0.4 mm or less from the viewpoint of thinning.
 液晶セルの方式は特に限定されるものではないが、VA方式及びIPS方式は斜め方向から見た場合の色のシフトが少ない方式であることや、これらの方式では偏光板の吸収軸は液晶セルの長辺方向と平行又は直交となるため、本発明を適応するのに好ましい方式である。 The method of the liquid crystal cell is not particularly limited. This is a preferred method for applying the present invention because it is parallel or orthogonal to the long side direction of the .
 液晶セルに組み込まれるカラーフィルターとしては、青色画素の420nm~460nmの波長範囲の最大透過率と最小透過率がいずれも80%以上が好ましく、さらには85%以上が好ましい。420nm~460nmの波長の最大透過率と最小透過率の差は4%以下であることが好ましく、さらには3%以下であることが好ましい。 For the color filter incorporated in the liquid crystal cell, both the maximum transmittance and minimum transmittance in the wavelength range of 420 nm to 460 nm of blue pixels are preferably 80% or more, more preferably 85% or more. The difference between the maximum transmittance and the minimum transmittance for wavelengths of 420 nm to 460 nm is preferably 4% or less, more preferably 3% or less.
(液晶パネル)
 液晶セルの視認側及び光源側にそれぞれ偏光板が貼り合わされ、液晶表示パネルとすることが好ましい。貼り合わせは粘着剤で貼り合わされることが好ましい。粘着剤はアクリル系の粘着剤が好ましく用いられる。
(liquid crystal panel)
A liquid crystal display panel is preferably formed by bonding polarizing plates to the viewing side and the light source side of the liquid crystal cell. Bonding is preferably performed with an adhesive. An acrylic adhesive is preferably used as the adhesive.
 液晶パネルにおいて、上記のポリエステルフィルムを用いた偏光板は、光源側の偏光板及び視認側の偏光板のいずれの偏光板であってもよく、さらに、両方の偏光板であってもよい。 In the liquid crystal panel, the polarizing plate using the polyester film may be either the polarizing plate on the light source side or the polarizing plate on the viewing side, or may be both polarizing plates.
 画像表示装置が有機又は無機のエレクトロルミネッセンスセル、マイクロLEDなどの場合、偏光板は円偏光板であることが好ましい。円偏光板は、典型的には、偏光子の視認側に1/4波長層が積層されている。1/4波長層は、1/4波長層が1層のみのものだけでなく、1/4波長層と1/2波長層を組み合わせたもの、さらにはこれらにCプレートなどの位相差層を加えたものも含まれる。1/4波長層、1/2波長層、Cプレートなどの位相差層は、フィルムであってもコート層であっても良い。これら位相差層は位相差やその配向方向が適正となっていれば、偏光板の位相差層で説明したものであってもよい。 When the image display device is an organic or inorganic electroluminescence cell, micro LED, or the like, the polarizing plate is preferably a circularly polarizing plate. A circular polarizer typically has a quarter-wave layer laminated on the viewing side of a polarizer. The quarter-wave layer includes not only one quarter-wave layer but also a combination of a quarter-wave layer and a half-wave layer, and a retardation layer such as a C plate. Including added ones. A retardation layer such as a quarter-wave layer, a half-wave layer, and a C plate may be a film or a coat layer. These retardation layers may be the same as those described for the retardation layer of the polarizing plate, as long as the retardation and the orientation direction thereof are appropriate.
(透明電極基材フィルム)
 本発明のポリエステルフィルムは、タッチパネルなどの透明電極基材フィルムとして好適に用いられる。透明導電層はポリエステルフィルムの少なくとも片面に設けられ、両側に設けられていてもよい。
(Transparent electrode base film)
The polyester film of the present invention is suitably used as a transparent electrode substrate film for touch panels and the like. The transparent conductive layer is provided on at least one side of the polyester film, and may be provided on both sides.
 透明導電層としては、導電性ペーストのメッシュ印刷物、カーボンナノチューブ含有コート、自己組織化ナノ銀コート、針状導電フィラー含有コート、酸化金属薄膜などが挙げられる。中でも、酸化金属薄膜が好ましく、酸化インジウム、酸化亜鉛、酸化錫、インジウム錫酸化物(ITO)、錫アンチモン酸化物、亜鉛アルミニウム酸化物、インジウム亜鉛酸化物等の薄膜が好ましい例として挙げられる。 Examples of transparent conductive layers include conductive paste mesh prints, carbon nanotube-containing coats, self-assembled nano-silver coats, acicular conductive filler-containing coats, metal oxide thin films, and the like. Among them, metal oxide thin films are preferable, and preferable examples include thin films of indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), tin antimony oxide, zinc aluminum oxide, and indium zinc oxide.
 透明導電層は、エッチングによりライン状又は格子状のようなパターン形状に形成されてなることが好ましい。 The transparent conductive layer is preferably formed into a pattern shape such as a line shape or a lattice shape by etching.
 透明導電層の厚さは5~500nmであることが好ましく、15~250nmであることがより好ましく、20~100nmであることがさらに好ましい。上記厚さにより、導電性を確保しながら、導電層に起因する色味を抑えることができる。 The thickness of the transparent conductive layer is preferably 5 to 500 nm, more preferably 15 to 250 nm, even more preferably 20 to 100 nm. Due to the above thickness, it is possible to suppress the tint caused by the conductive layer while ensuring conductivity.
 真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法、ゾル-ゲル法等の公知の方法により、透明導電層を形成することができる。 A transparent conductive layer can be formed by a known method such as a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, or a sol-gel method.
 透明導電層は製膜後、フォトリソグラフィー法により所定のパターンのレジストマスクを形成した後エッチング処理を施してパターン等を形成することができる。 After forming the transparent conductive layer, a resist mask with a predetermined pattern can be formed by photolithography, and then an etching process can be performed to form a pattern or the like.
 透明導電層は非晶質であってもよいが、非晶質の透明導電層を130~180℃で0.5~2時間加熱処理して結晶を成長させて結晶質の透明導電層とし、導電性を上げることが好ましい。 The transparent conductive layer may be amorphous, but the amorphous transparent conductive layer is heat-treated at 130 to 180° C. for 0.5 to 2 hours to grow crystals to form a crystalline transparent conductive layer, It is preferable to increase the conductivity.
 透明導電層の下層として、ハードコート層、屈折率調整層を設けることも好ましい形態である。屈折率調整層は透明導電層に近い屈折率の層(高屈折率層)であってもよく、高屈折率層と低屈折率層をこの順に設けても良い。特に高屈折率層と低屈折率層をこの順に設けることが好ましい。 It is also a preferred form to provide a hard coat layer and a refractive index adjusting layer as a lower layer of the transparent conductive layer. The refractive index adjusting layer may be a layer having a refractive index close to that of the transparent conductive layer (high refractive index layer), or a high refractive index layer and a low refractive index layer may be provided in this order. In particular, it is preferable to provide the high refractive index layer and the low refractive index layer in this order.
 本発明のポリエステルフィルムは、飛散防止フィルムとして好ましく用いられる。飛散防止フィルムは、タッチパネルなどの基材、画面表面カバーなどにガラス板が用いられている場合に、ガラス板に貼り合わせて使用され、ガラス板が割れた場合に破片が内部構造を傷つけたり、外部に飛び散ったり露出するのを防ぐことができる。飛散防止フィルムはガラス板の視認側及び反視認側のいずれに積層されていてもよい。ガラス板に積層する場合は、OCAと言われる光学用の基材レス粘着剤を用いて貼り合わされることが好ましい。 The polyester film of the present invention is preferably used as a shatterproof film. When a glass plate is used as a base material for a touch panel or as a screen surface cover, the shatterproof film is used by bonding it to the glass plate. It can prevent scattering and exposure to the outside. The anti-scattering film may be laminated on either the viewing side or the anti-viewing side of the glass plate. When laminating on a glass plate, it is preferable to use an optical substrate-less pressure-sensitive adhesive called OCA.
 本発明のポリエステルフィルムは画面表面保護フィルムとして好ましく用いられる。画面表面保護フィルムは、画像表示装置の画面の視認側に積層され、内部の画像表示セルを外部の衝撃から保護したり、表面が傷付くことを防いだりすることができる。画面表面保護フィルムは粘着剤を用いて画像表示部に貼り合わされることが好ましい。画面表面保護フィルムは、画像表示部最表面に位置し、傷付いた場合には剥がして交換できるタイプのものであることも好ましい。この場合、粘着剤は手で剥離可能な程度の粘着力であることが好ましい。 The polyester film of the present invention is preferably used as a screen surface protective film. The screen surface protective film is laminated on the viewing side of the screen of the image display device, and can protect the internal image display cells from external shocks and prevent the surface from being damaged. The screen surface protective film is preferably attached to the image display portion using an adhesive. It is also preferable that the screen surface protective film is positioned on the outermost surface of the image display portion and is of a type that can be peeled off and replaced when damaged. In this case, it is preferable that the adhesive has such an adhesive strength that it can be peeled off by hand.
 本発明のポリエステルフィルムは可撓性画像表示装置に用いられることも好ましく、可撓性画像表示装置の偏光子保護フィルム、背面カバーフィルム、透明電極基材フィルム、画面表面保護フィルム等で用いられる。中でも、背面カバーフィルム、画面表面保護フィルムとして用いられることが好ましい。
 可撓性画像表示装置としては、V型、観音開き型、W型などで画像表示部が折りたためるものであってもよく、ロール状に巻き取られるものであってもよい。
 可撓性画像表示装置に用いられる場合は、ポリエステルフィルムの遅相軸を折りたたむ方向と直交するように配置すること、言い換えると、折り目が遅相軸となるよう配置することが好ましい。
The polyester film of the present invention is also preferably used in flexible image display devices, such as polarizer protective films, back cover films, transparent electrode substrate films, and screen surface protective films of flexible image display devices. Among them, it is preferably used as a back cover film and a screen surface protective film.
The flexible image display device may be of a V type, a double door type, a W type, or the like with a foldable image display portion, or may be wound into a roll.
When used in a flexible image display device, it is preferable to arrange the slow axis of the polyester film so as to be orthogonal to the folding direction, in other words, to arrange so that the crease becomes the slow axis.
 画像表示装置の偏光板より視認側で、透明電極基材フィルム、飛散防止フィルム、画面表面保護フィルムとして用いる場合などにおいて、偏光板の吸収軸に対してポリエステルフィルムの遅相軸を30~60度、好ましくは約45度となるように配置させ、サングラスで観察した場合にブラックアウトが起こらず、虹斑も生じないようにすることも好ましい形態である。 When used as a transparent electrode base film, a scattering prevention film, a screen surface protective film, etc. on the viewing side of the polarizing plate of an image display device, the slow axis of the polyester film is 30 to 60 degrees with respect to the absorption axis of the polarizing plate. , preferably about 45 degrees, so that blackout and iridescence do not occur when viewed with sunglasses.
 以下、実施例を参照して本発明をより具体的に説明するが、本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。なお、以下の実施例における物性等の評価方法は以下の通りである。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited by the following examples, and can be carried out with appropriate modifications within the scope of the gist of the present invention. Both of them are included in the technical scope of the present invention. The methods for evaluating physical properties and the like in the following examples are as follows.  
(1)ポリエステルフィルムの屈折率  
 分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いて、フィルムの遅相軸方向を求め、遅相軸方向が長辺と平行になるように、4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(遅相軸方向の屈折率:ny、進相軸(遅相軸方向と直交する方向の屈折率):nx)、及び厚さ方向の屈折率(nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求めた。
(1) Refractive index of polyester film
Using a molecular orientation meter (MOA-6004 type molecular orientation meter manufactured by Oji Keisoku Co., Ltd.), the slow axis direction of the film was determined, and the slow axis direction was parallel to the long side. A rectangle was cut out and used as a sample for measurement. For this sample, the refractive index in the orthogonal biaxial direction (refractive index in the slow axis direction: ny, fast axis (refractive index in the direction perpendicular to the slow axis direction): nx), and the refractive index in the thickness direction ( nz) was determined by an Abbe refractometer (NAR-4T manufactured by Atago Co., measuring wavelength 589 nm).
(2)面内リタデーション(Re) 
 面内リタデーションとは、フィルム上の直交する二軸の屈折率の異方性(△Nxy=|nx-ny|)とフィルム厚みd(nm)との積(△Nxy×d)で定義されるパラメーターであり、光学的等方性、異方性を示す尺度である。上記(1)の方法により、前記二軸の屈折率差の絶対値(|nx-ny|)を二軸の屈折率の異方性(△Nxy)として算出した。屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)により、面内リタデーション(Re)を求めた。 
(2) In-plane retardation (Re)
The in-plane retardation is defined as the product (ΔNxy×d) of the refractive index anisotropy (ΔNxy=|nx−ny|) and the film thickness d (nm) on the film. It is a parameter and a measure of optical isotropy and anisotropy. The absolute value of the biaxial refractive index difference (|nx−ny|) was calculated as the biaxial refractive index anisotropy (ΔNxy) by the above method (1). The in-plane retardation (Re) was obtained from the product (ΔNxy×d) of the refractive index anisotropy (ΔNxy) and the film thickness d (nm).
(3)厚さ方向リタデーション(Rth) 
 厚さ方向リタデーションとは、フィルム厚さ方向断面から見たときの2つの複屈折△Nxz(=|nx-nz|)、及び△Nyz(=|ny-nz|)にそれぞれフィルム厚さdを掛けて得られるリタデーションの平均を示すパラメーターである。上記(1)の方法によりnx、ny、及びnzを求め、(△Nxz×d)と(△Nyz×d)との平均値を算出して厚さ方向リタデーション(Rth)を求めた。 
(3) Thickness direction retardation (Rth)
The retardation in the thickness direction refers to the two birefringences ΔNxz (=|nx-nz|) and ΔNyz (=|ny-nz|) when viewed from the cross section in the film thickness direction, and the film thickness d It is a parameter indicating the average retardation obtained by multiplication. nx, ny, and nz were obtained by the method (1) above, and the average value of (ΔNxz×d) and (ΔNyz×d) was calculated to obtain the retardation in the thickness direction (Rth).
(4)面配向度
nx、ny、及びnzを、|nx+ny|/2-nzで表される式に代入して、面配向度を求めた。
(4) The degrees of planar orientation nx, ny, and nz were substituted into the formula represented by |nx+ny|/2−nz to determine the degree of planar orientation.
(5)NZ係数
 nx、ny、及びnzを、|ny-nz|/|ny-nx|で表される式に代入して、NZ係数を求めた。
(5) NZ Coefficient The NZ coefficient was obtained by substituting nx, ny, and nz into the expression |ny-nz|/|ny-nx|.
(6)偏光子の吸収軸
 吸収軸が既知である偏光フィルターと偏光子とを重ね合わせて面光源の上に置き、偏光フィルターを回転させて最も暗くなる状態の偏光フィルターの吸収軸の方向と90度の方向を偏光子の吸収軸方向とした。なお、PVAを長手方向に延伸した長尺状の偏光子の場合、長手方向が吸収軸方向となるため、長手方向を吸収軸方向とみなすことができる。
(6) Absorption axis of polarizer A polarizing filter with a known absorption axis and a polarizer are placed on top of a surface light source, and the polarizing filter is rotated to obtain the darkest absorption axis of the polarizing filter. The direction of 90 degrees was taken as the absorption axis direction of the polarizer. In the case of a long polarizer in which PVA is stretched in the longitudinal direction, the longitudinal direction is the absorption axis direction, so the longitudinal direction can be regarded as the absorption axis direction.
(7)フィルムの遅相軸方向
 分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)で測定した。
(7) Slow axis direction of film Measured with a molecular orienter (MOA-6004 type molecular orienter manufactured by Oji Instruments Co., Ltd.).
(8)波長380nmにおける光線透過率  
 分光光度計(日立製作所製、U-3500型)を用い、空気層を標準として波長300~500nm領域の光線透過率を測定し、波長380nmにおける光線透過率を求めた。
(8) Light transmittance at a wavelength of 380 nm
Using a spectrophotometer (U-3500, manufactured by Hitachi, Ltd.), the light transmittance in the wavelength range of 300 to 500 nm was measured with the air layer as a standard, and the light transmittance at a wavelength of 380 nm was obtained.
(9)固有粘度
 試料0.2gをフェノール/1,1,2,2-テトラクロルエタン(60/40(重量比))の混合溶媒50ml中に溶解し、30℃でオストワルド粘度計を用いて測定した。
(9) Intrinsic viscosity 0.2 g of a sample was dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane (60/40 (weight ratio)), and measured at 30°C using an Ostwald viscometer. It was measured.
(10)フィルム厚み及びフーリエ変換後の周波数特性
 ミクロン計測器株式会社による接触式連続厚み計(厚み計部分は安立電気株式会社製)を用いて、得られたフィルムの幅方向の中央部からMD方向に幅約50mm、長さ約6mのサンプルを切り出し、厚みをMD方向に1.5m/分の速度で測定し、データを連続的に0.1秒間隔で取り込んだ。
 得られたデータから、連続的に2048点(長さ5.12m分)を任意に選び、その厚みの平均値をフィルム厚みとした。測定データのうち、(最大の厚み-最小の厚み)/平均厚み×100で求められる値をMD方向厚み斑(%)とした。
 また、選んだ2048点のデータから、マイクロソフト社の表計算ソフトであるエクセル(登録商標)を用いて高速フーリエ変換による周波数分析を行った。さらに、得られた解析データの周波数を長さ周期に換算すると共に、それぞれの振幅を求めた。
 長さ周期が10cm以上のもののうち、振幅の大きいものから5点を選びこれらの平均値をAとし、この5点の中で振幅の最も大きな値をAmaxとした。さらに、長さ周期が10cm未満のもののうち、振幅の大きいものから5点を選びこれらの平均値をBとした。長さ周期はゴーストと言われる周波数解析データの後半部のデータは無視し、前半部のみの解析データを用いた。
 得られたA、Amax、及びBの値から、A/B及びAmax/Bを求めた。TD方向厚み斑は、製膜後のフィルムのTD方向の中央部分を幅1000mmにスリットし、このフィルムのTD方向に1000mm×幅50mmのサンプルを切り出し、同様に連続厚み計で測定し、得られたデータに基づいて、(最大の厚み-最小の厚み)/平均厚み×100として求めた。
 なお、長さ周期が10cm以上は周波数が0.25Hz以下に相当する。
(10) Film thickness and frequency characteristics after Fourier transform MD from the center in the width direction of the obtained film using a contact-type continuous thickness meter by Micron Keiseki Co., Ltd. A sample with a width of about 50 mm and a length of about 6 m was cut in the direction, and the thickness was measured in the MD direction at a speed of 1.5 m/min, and the data was continuously captured at 0.1 second intervals.
From the obtained data, 2048 points (for a length of 5.12 m) were continuously selected arbitrarily, and the average value of the thickness was taken as the film thickness. Among the measurement data, the value obtained by (maximum thickness−minimum thickness)/average thickness×100 was taken as MD direction thickness unevenness (%).
Further, from the selected 2048 points of data, frequency analysis was performed by fast Fourier transform using Microsoft's Excel (registered trademark) spreadsheet software. Furthermore, the frequency of the obtained analysis data was converted into a length period, and each amplitude was obtained.
Among those with a length period of 10 cm or more, 5 points with the largest amplitude were selected, and the average value of these was designated as A, and the largest value of amplitude among these 5 points was designated as Amax. Furthermore, among those with a length period of less than 10 cm, five points with the largest amplitude were selected, and B was the average value of these five points. The data in the second half of the frequency analysis data, which is said to be a ghost of the length period, was ignored, and only the analysis data in the first half was used.
A/B and Amax/B were obtained from the obtained values of A, Amax, and B. The TD direction thickness unevenness is obtained by slitting the central portion of the TD direction of the film after film formation to a width of 1000 mm, cutting out a sample of 1000 mm × width 50 mm in the TD direction of this film, and measuring with a continuous thickness meter in the same manner. Based on the data obtained, it was obtained as (maximum thickness - minimum thickness) / average thickness x 100.
A length cycle of 10 cm or more corresponds to a frequency of 0.25 Hz or less.
(11)破断強度及び破断伸度
 JIS K 7113に準ずる。フィルムの長手方向及び幅方向に幅10mm、長さ100mmの試料を、剃刀を用いて切り出して試料とした。23℃、65%RHの雰囲気下で12時間放置したあと、測定は23℃、65%RHの雰囲気下、チャック間距離100mm、引っ張り速度200mm/分の条件で行い、5回の測定結果の平均値を用いた。測定装置としては島津製作所社製オートグラフAG5000Aを用いた。
(11) Breaking strength and breaking elongation Conforming to JIS K7113. A sample having a width of 10 mm and a length of 100 mm was cut out using a razor to obtain a sample. After being left for 12 hours in an atmosphere of 23°C and 65% RH, measurement was performed in an atmosphere of 23°C and 65% RH under the conditions of a chuck distance of 100 mm and a pulling speed of 200 mm/min. values were used. Autograph AG5000A manufactured by Shimadzu Corporation was used as a measuring device.
(12)フィルム温度
 放射温度計(チノー社製IR-BZPHGN1)を用い、製膜機の横から検出部を差し入れて測定した。測定データは10秒間のスムージングをかけた。
(12) Film temperature A radiation thermometer (IR-BZPHGN1 manufactured by Chino Co., Ltd.) was used to measure the temperature by inserting the detection part from the side of the film forming machine. The measured data were smoothed for 10 seconds.
(13)生産性
 得られたフィルムの中央部を幅1000mmにスリットした時の破断回数で評価した。なお、スリットに用いた切断刃は、比較例相当である従来のフィルムの切断に使用され、規定使用量を超えて取り外されたものを再度組み付けて行い、走行速度はスリッターの設計の最高速度の90%の速度で行った。
○:1日の破断回数が0回である。
△:1日の破断回数が1回である。
×:1日の破断回数が2回以上である。
(13) Productivity Evaluation was made by the number of breaks when slitting the central portion of the obtained film to a width of 1000 mm. The cutting blade used for slitting was used for cutting the conventional film, which is equivalent to the comparative example, and was removed after exceeding the specified amount of use, and then reassembled. It ran at 90% speed.
◯: The number of ruptures per day is 0.
Δ: The number of ruptures per day is 1.
x: The number of ruptures per day is 2 or more.
(14)平面性
 平面のガラス板上にイオン交換水を滴下し、この上に幅1000mmのフィルムを長さ2000mmに切断したものを載せ、ローラーで水の層が均一になるように貼り付けた。斜め方向からフィルムに映る天井の蛍光灯を観察し、平面性を評価した。
○:映った蛍光灯の曲がりは少なく、平面性は良い。
△:映った蛍光灯の曲がりはあるものの、許容できるものである。
×:映った蛍光灯の曲がりは大きく、平面性は悪い。
(14) Planarity Ion-exchanged water was dropped on a flat glass plate, and a film with a width of 1000 mm cut into a length of 2000 mm was placed on this and pasted with a roller so that the water layer was uniform. . The fluorescent lamp on the ceiling reflected on the film was observed from an oblique direction to evaluate the flatness.
◯: The reflected fluorescent lamp has little curvature, and the flatness is good.
Δ: Although the reflected fluorescent lamp is curved, it is acceptable.
x: The curvature of the reflected fluorescent lamp is large, and the planarity is poor.
・ポリエステルA(PET(A))
 固有粘度0.62dl/gのポリエチレンテレフタレート
・ポリエステルB(PET(B))
 紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジノン-4-オン)10質量部及びPET(A)90質量部の溶融混合物。
・Polyester A (PET (A))
Polyethylene terephthalate/polyester B (PET (B)) with an intrinsic viscosity of 0.62 dl/g
A molten mixture of 10 parts by weight of an ultraviolet absorber (2,2′-(1,4-phenylene)bis(4H-3,1-benzoxazinone-4-one) and 90 parts by weight of PET (A).
(接着性改質塗布液の調製)  
 常法によりエステル交換反応及び重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%及び5-スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%及びネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、及びノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質塗布液を得た。  
(Preparation of adhesion-improving coating liquid)
A transesterification reaction and a polycondensation reaction were carried out by a conventional method to obtain 46 mol % of terephthalic acid, 46 mol % of isophthalic acid and 8 mol % of sodium 5-sulfonatoisophthalate as dicarboxylic acid components (relative to the total dicarboxylic acid components). A water-dispersible sulfonic acid metal base-containing copolymer polyester resin was prepared having a composition of 50 mol % ethylene glycol and 50 mol % neopentyl glycol as the glycol component (relative to the total glycol component). Next, after mixing 51.4 parts by mass of water, 38 parts by mass of isopropyl alcohol, 5 parts by mass of n-butyl cellosolve, and 0.06 parts by mass of a nonionic surfactant, the mixture is heated and stirred, and when the temperature reaches 77°C, After adding 5 parts by mass of the water-dispersible sulfonic acid metal group-containing copolymer polyester resin and continuing to stir until the lumps of the resin disappear, the aqueous resin dispersion is cooled to room temperature and the solid content concentration is 5.0% by mass. A homogeneous water-dispersible copolyester resin liquid was obtained. Furthermore, after dispersing 3 parts by mass of aggregated silica particles (manufactured by Fuji Silysia Co., Ltd., Silysia 310) in 50 parts by mass of water, Silysia 310 was added to 99.46 parts by mass of the water-dispersible copolymer polyester resin liquid. 0.54 parts by mass of the aqueous dispersion was added, and 20 parts by mass of water was added while stirring to obtain an adhesion-improving coating liquid.
(偏光子)  
 ヨウ素水溶液中で連続して染色した厚さ80μmのロール状のポリビニルアルコールフィルムを搬送方向に5倍延伸し、ホウ酸溶液中で処理したのち水洗し、乾燥して長尺の偏光子を得た。
(Polarizer)
A roll-shaped polyvinyl alcohol film with a thickness of 80 μm that was continuously dyed in an iodine aqueous solution was stretched 5 times in the conveying direction, treated in a boric acid solution, washed with water, and dried to obtain a long polarizer. .
(ポリエステルフィルムA~H)  
 基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給し、また、PET(A)を常法により乾燥して押出機1(外層I層及び外層III用)にそれぞれ供給し、285℃で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層の厚さの比は10:80:10となるように各押し出し機の吐出量を調整した。  
(Polyester film A to H)
After drying under reduced pressure (1 Torr) at 135° C. for 6 hours, 90 parts by mass of PET (A) resin pellets containing no particles and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber as raw materials for the base film intermediate layer. , supplied to extruder 2 (for intermediate layer II layer), and PET (A) was dried by a conventional method, supplied to extruder 1 (for outer layer I layer and outer layer III), and melted at 285 ° C. . These two types of polymers are each filtered with a stainless sintered filter material (nominal filtration accuracy: 10 μm, 95% cut of particles), laminated in a two-type, three-layer confluence block, extruded in a sheet form from a nozzle, An unstretched film was produced by winding the film around a casting drum having a surface temperature of 30° C. and solidifying it by cooling using an electrostatic casting method. At this time, the discharge rate of each extruder was adjusted so that the thickness ratio of the I layer, the II layer, and the III layer was 10:80:10.
 この未延伸PETフィルムを低速ロール及び高速ロールからなるMD延伸機に導いた。複数の低速ロールでフィルムを予熱温度まで加熱し、さらに低速ロール-高速ロール間にある赤外線ヒーターで延伸温度まで加熱して、高速ロールとの周速差を利用して延伸した。
 予熱温度、延伸温度、及び延伸倍率は表1の通りである。なお、赤外線ヒーター点灯数はMD方向に複数列設置した赤外線ヒーターのうち、加熱に用いるために点灯させた列数である。
 なお、MD延伸機の各ロールは、直径180~250mmの表面クロムメッキで、いずれも真円度が10μm以下、振れが20μm以下のものを用いた。
This unstretched PET film was led to an MD stretching machine consisting of low speed rolls and high speed rolls. The film was heated to a preheating temperature with a plurality of low-speed rolls, further heated to a stretching temperature with an infrared heater between the low-speed rolls and the high-speed rolls, and stretched using the difference in peripheral speed between the low-speed rolls and the high-speed rolls.
Table 1 shows the preheating temperature, stretching temperature, and stretching ratio. The number of infrared heaters to be turned on is the number of the infrared heaters that are turned on for heating among the infrared heaters arranged in a plurality of rows in the MD direction.
Each roll of the MD stretching machine had a diameter of 180 to 250 mm, a surface chromium plating, and a roundness of 10 μm or less and a runout of 20 μm or less.
 引き続き、MD延伸されたフィルムの両面に乾燥後の塗布量が0.08g/mになるように、上記接着性改質塗布液を塗布し、乾燥させた。得られた塗布層を形成したフィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、100℃のテンターに導き、幅方向に延伸した。次に、幅方向に延伸された幅を保ったまま、熱固定ゾーンで200℃、10秒間の処理し、さらに幅方向に2%の緩和処理を行い、延伸PETフィルムを得た。 Subsequently, the adhesion-improving coating solution was applied to both surfaces of the MD-stretched film so that the coating amount after drying was 0.08 g/m 2 and dried. The obtained film having the coating layer formed thereon was guided to a tenter stretching machine, and while holding the ends of the film with clips, it was guided to a tenter at 100° C. and stretched in the width direction. Next, while maintaining the stretched width in the width direction, the film was treated in a heat setting zone at 200° C. for 10 seconds, and further subjected to a relaxation treatment of 2% in the width direction to obtain a stretched PET film.
(フィルムI及びJ)
 上記の未延伸PETフィルムをMD延伸機に導き、複数のロールで加熱しながら、低速ロールの最後から2番目のロールで予熱温度まで昇温し、最終の低速ロールで延伸温度まで加熱した。フィルムは高速ロールとの周速差を利用して延伸した。なお、最終の低速ロール及び最終の低速ロールに設置されたニップロールは表面にフッ素樹脂加工を行ったものを用いた。あとは上記と同様にしてTD延伸、熱固定を行い、延伸PETフィルムを得た。
(Films I and J)
The above unstretched PET film was guided to an MD stretching machine, heated by a plurality of rolls, heated to a preheating temperature by the penultimate low-speed roll, and heated to a stretching temperature by a final low-speed roll. The film was stretched using the difference in peripheral speed between the high-speed rolls. The surface of the final low-speed roll and the nip roll installed on the final low-speed roll were treated with fluorine resin. After that, TD stretching and heat setting were performed in the same manner as above to obtain a stretched PET film.
 これらのフィルムの製膜条件、厚み斑などの特性値を表1に示す。なお、波長380nmにおける光線透過率はフィルムHが8.5%であった以外、いずれも2.3~2.5%の範囲内であった。
 また、厚み斑の周波数解析の結果のグラフの例として、フィルムAの結果を図1に、フィルムDの結果を図2に示す。
Table 1 shows the film-forming conditions and characteristic values such as uneven thickness of these films. The light transmittance at a wavelength of 380 nm was in the range of 2.3 to 2.5% for all films except for Film H which was 8.5%.
As examples of graphs of the results of frequency analysis of thickness unevenness, the results of film A are shown in FIG. 1, and the results of film D are shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、フィルムAは、MD延伸温度が低いためか、厚み斑が大きかったが、フィルムB及びフィルムCのようにMD延伸温度を上げることにより、MD方向厚み斑は小さくなり、A/B等の値も小さくなった。このことは、図1(フィルムA)と図2(フィルムD)を比べると、フィルムAの方が、周波数0.25Hzを超える(周期10cm未満)の振幅に対して周波数0.25Hz以下(周期10cm以上)の振幅が大きくなっていることからも見て取れる。
 一方、フィルムEのようにMD延伸温度が高すぎる場合には、弛みや延伸位置が不規則になるためかMD方向厚み斑は大きくなった。また、フィルムFは予熱温度が高く、予熱工程での弛みやロールにフィルムが貼り付くことがあり、MD方向厚み斑は大きくなった。
 フィルムG及びHのように、MD延伸倍率を大きくしても、予熱及び延伸の温度が適正であれは、MD方向厚み斑は抑制されていた。ロール加熱での延伸においても、フィルムIのように予熱温度が高すぎ、延伸温度が低すぎる場合には厚み斑は大きいが、温度を適正化することで、厚み斑を小さくすることができた。
 フィルムB~D、E~G、及びJは、例えば、偏光子保護フィルムに好適に使用することができる。また、フィルムHは、例えば、透明電極基材フィルム、飛散防止フィルム、可撓性画像表示装置の画面表面保護フィルムとして好適に使用することができる。
As is clear from Table 1, film A had large thickness unevenness, probably because the MD stretching temperature was low. , A/B, etc. also decreased. Comparing FIG. 1 (Film A) and FIG. 2 (Film D), it can be seen that Film A has a frequency of 0.25 Hz or less (period 10 cm or more) is larger.
On the other hand, when the MD stretching temperature was too high as in Film E, the thickness unevenness in the MD direction became large, probably because slackness and stretching positions became irregular. Moreover, the preheating temperature of the film F was high, and the film sometimes slackened during the preheating process and stuck to the roll, resulting in large thickness unevenness in the MD direction.
As in Films G and H, even if the MD draw ratio was increased, if the preheating and drawing temperatures were appropriate, the thickness unevenness in the MD direction was suppressed. Even in stretching with roll heating, thickness unevenness is large when the preheating temperature is too high and the stretching temperature is too low as in Film I, but the thickness unevenness can be reduced by optimizing the temperature. .
Films BD, EG, and J can be suitably used, for example, as polarizer protective films. Moreover, the film H can be suitably used as, for example, a transparent electrode substrate film, a scattering prevention film, and a screen surface protection film for a flexible image display device.
(偏光板の作製)
 実施例で作製したポリエステルフィルムの中でも、特に厚み斑が良好であった、フィルムC、D、及びJを用いて、以下のように偏光板を作製した。
 偏光子の片面に、上記で作製したポリエステルフィルムを、反対面にトリアセチルセルロールフィルム(厚さ40μm)をロールツーロールで貼り合わせ、偏光板を作製した。貼り合わせには、紫外線硬化型の接着剤を用いた。いずれもポリエステルフィルムの遅相軸と偏光子の吸収軸との角度は90度、ずれは0.5度以下であった。
(Preparation of polarizing plate)
Among the polyester films produced in Examples, films C, D, and J, which had particularly good unevenness in thickness, were used to produce polarizing plates as follows.
A polarizing plate was produced by laminating the polyester film prepared above on one side of a polarizer and a triacetyl cellulose film (40 μm in thickness) on the opposite side by roll-to-roll. An ultraviolet curable adhesive was used for bonding. In both cases, the angle between the slow axis of the polyester film and the absorption axis of the polarizer was 90 degrees, and the deviation was 0.5 degrees or less.
(画像表示装置の評価)
 得られた偏光板を切断し、市販の42型の液晶テレビの視認側偏光板と交換した。いずれの偏光板であっても斜め方向から見ても虹斑は観察されず良好な視認性を有していた。
(Evaluation of image display device)
The resulting polarizing plate was cut and replaced with a viewing side polarizing plate of a commercially available 42-inch liquid crystal television. All of the polarizing plates had good visibility with no iridescence observed even when viewed from an oblique direction.
 本発明は、高い面内レタデーションを有しながらも厚み均一性に優れ、生産性、作業性、及び平面性の良好なポリエステルフィルムを提供することができる。当該ポリエステルフィルムは、画像表示装置の種類や光源の種類に関わらず虹斑が目立ちにくく良好な視認性を有し、画像表示装置の様々な用途に好適に用いられる。 The present invention can provide a polyester film that has high in-plane retardation, is excellent in thickness uniformity, and has good productivity, workability, and flatness. The polyester film has good visibility with inconspicuous iridescence regardless of the type of image display device and the type of light source, and is suitably used for various applications of the image display device.

Claims (15)

  1. 面内レタデーションが3000nm以上30000nm以下、
    面配向度が0.128以上0.155以下、
    製膜流れ方向の厚み斑が8%以下、であるポリエステルフィルム(なお、厚み斑は、(最大厚み-最小厚み)/平均厚み×100(%)で求められる値である)。
    In-plane retardation is 3000 nm or more and 30000 nm or less,
    The degree of plane orientation is 0.128 or more and 0.155 or less,
    A polyester film having thickness unevenness in the flow direction of film formation of 8% or less (the thickness unevenness is a value obtained by (maximum thickness−minimum thickness)/average thickness×100(%)).
  2. 製膜流れ方向の厚み測定データをフーリエ変換し、周波数をフィルムの長さの周期に置き換えたときに、下記Aと下記Bの比率であるA/Bが5以下である請求項1に記載のポリエステルフィルム。
     A:周期が10cm以上で、振幅の値の上位5点の振幅の平均値
     B:周期が10cm以下で、振幅の値の上位5点の振幅の平均値
    2. The method according to claim 1, wherein A/B, which is the ratio of A and B below, is 5 or less when Fourier transform is performed on the thickness measurement data in the flow direction of film formation and the frequency is replaced with the period of the length of the film. polyester film.
    A: Average value of the top 5 amplitude values with a period of 10 cm or more B: Average value of the top 5 amplitude values with a period of 10 cm or less
  3. 製膜流れ方向の厚み測定データをフーリエ変換し、周波数をフィルムの長さの周期に置き換えたときに、下記AmaxとBの比率であるAmax/Bが7以下である請求項1又は2に記載のポリエステルフィルム。
     Amax:周期が10cm以上で振幅の最大値
    3. The ratio of Amax and B described below, Amax/B, is 7 or less when Fourier transform is performed on the thickness measurement data in the film production flow direction and the frequency is replaced with the period of the length of the film. polyester film.
    Amax: The maximum value of amplitude at a period of 10 cm or more
  4. NZ係数が1.65以上3以下である請求項1~3のいずれかに記載のポリエステルフィルム。 4. The polyester film according to any one of claims 1 to 3, which has a NZ coefficient of 1.65 or more and 3 or less.
  5. 厚みが25μm以上150μm以下である請求項1~4のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 4, which has a thickness of 25 µm or more and 150 µm or less.
  6. 製膜流れ方向の破断伸度が4%以上である請求項1~5のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 5, which has a breaking elongation of 4% or more in the direction of film production.
  7. 製膜流れ方向の破断強度が50MPa以上である請求項1~6のいずれかに記載のポリエステルフィルム。 7. The polyester film according to any one of claims 1 to 6, which has a breaking strength of 50 MPa or more in the film-forming flow direction.
  8. 請求項1~7のいずれかに記載のポリエステルフィルムからなる偏光子保護フィルム。 A polarizer protective film comprising the polyester film according to any one of claims 1 to 7.
  9. 請求項8に記載の偏光子保護フィルムと偏光子が積層された偏光板。 A polarizing plate in which the polarizer protective film according to claim 8 and a polarizer are laminated.
  10. 請求項9に記載の偏光板が画像表示セルの視認側に設置された画像表示装置。 An image display device in which the polarizing plate according to claim 9 is installed on the viewing side of an image display cell.
  11. 請求項1~7のいずれかに記載のポリエステルフィルムからなる透明電極基材フィルム。 A transparent electrode substrate film comprising the polyester film according to any one of claims 1 to 7.
  12. 請求項1~7のいずれかに記載のポリエステルフィルムからなる飛散防止フィルム。 A shatterproof film made of the polyester film according to any one of claims 1 to 7.
  13. 請求項1~7のいずれかに記載のポリエステルフィルムからなる画面表面保護フィルム。 A screen surface protective film comprising the polyester film according to any one of claims 1 to 7.
  14. 請求項11に記載の透明電極基材フィルム、請求項12に記載の飛散防止フィルム、及び請求項13に記載の画面表面保護フィルムのいずれかを含む画像表示装置。 An image display device comprising any one of the transparent electrode substrate film according to claim 11, the anti-scattering film according to claim 12, and the screen surface protective film according to claim 13.
  15. 可撓性画像表示装置である請求項14に記載の画像表示装置。 15. The image display device of claim 14, which is a flexible image display device.
PCT/JP2022/012283 2021-03-24 2022-03-17 Polyester film and image display device using same WO2022202608A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023509099A JPWO2022202608A1 (en) 2021-03-24 2022-03-17
KR1020237036114A KR20230161475A (en) 2021-03-24 2022-03-17 Polyester film and image display device using the same
CN202280023640.7A CN117120242A (en) 2021-03-24 2022-03-17 Polyester film and image display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021050518 2021-03-24
JP2021-050518 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202608A1 true WO2022202608A1 (en) 2022-09-29

Family

ID=83395786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012283 WO2022202608A1 (en) 2021-03-24 2022-03-17 Polyester film and image display device using same

Country Status (5)

Country Link
JP (1) JPWO2022202608A1 (en)
KR (1) KR20230161475A (en)
CN (1) CN117120242A (en)
TW (1) TW202243861A (en)
WO (1) WO2022202608A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190437A (en) * 2015-03-31 2016-11-10 東レ株式会社 Biaxially oriented polyester film and production method therefor
JP2016200835A (en) * 2016-08-10 2016-12-01 東洋紡株式会社 Polarizing plate
JP2017102442A (en) * 2015-11-20 2017-06-08 東レ株式会社 Biaxial orientation polyester film
JP2019028472A (en) * 2012-07-30 2019-02-21 東洋紡株式会社 Liquid crystal display device, polarizing plate and polarizer protective film
JP2019168692A (en) * 2018-03-23 2019-10-03 東洋紡株式会社 Flexible image display device and method of manufacturing circularly polarizing plate used for the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888853B2 (en) 2009-11-12 2012-02-29 学校法人慶應義塾 Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
EP2587304B1 (en) 2010-06-22 2019-12-18 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
JP5370601B1 (en) 2013-02-08 2013-12-18 東洋紡株式会社 Image display device
CN108463749B (en) 2015-11-27 2023-01-10 Skc株式会社 Polarizer protective film, polarizing plate and display device comprising same
WO2018159285A1 (en) 2017-03-02 2018-09-07 東洋紡株式会社 Polyester film as surface protective film for foldable display and application thereof
WO2020162119A1 (en) 2019-02-08 2020-08-13 東洋紡株式会社 Polyester film and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028472A (en) * 2012-07-30 2019-02-21 東洋紡株式会社 Liquid crystal display device, polarizing plate and polarizer protective film
JP2016190437A (en) * 2015-03-31 2016-11-10 東レ株式会社 Biaxially oriented polyester film and production method therefor
JP2017102442A (en) * 2015-11-20 2017-06-08 東レ株式会社 Biaxial orientation polyester film
JP2016200835A (en) * 2016-08-10 2016-12-01 東洋紡株式会社 Polarizing plate
JP2019168692A (en) * 2018-03-23 2019-10-03 東洋紡株式会社 Flexible image display device and method of manufacturing circularly polarizing plate used for the same

Also Published As

Publication number Publication date
KR20230161475A (en) 2023-11-27
CN117120242A (en) 2023-11-24
JPWO2022202608A1 (en) 2022-09-29
TW202243861A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
US20220236467A1 (en) Polarization plate for folding display
TWI653136B (en) Laminated polyester film and polarizing plate using the same
JP2016126130A (en) Laminate for organic el display device and organic el display device
JP2006251224A (en) Method for manufacturing polarizing plate
JPWO2020241313A1 (en) Folding display
WO2019182121A1 (en) Electroluminescent display device
KR20210143822A (en) Anti-reflection circular polarizing plate and image display device using same
JP2023081987A (en) Manufacturing method of polarizing plate
JP7259452B2 (en) electroluminescence display
JPWO2020085307A1 (en) Orientation film for transfer of liquid crystal compound alignment layer
JP2005062458A (en) Polarizing plate and liquid crystal display device
JP7099440B2 (en) A polarizing plate and a display device equipped with the polarizing plate.
JP2020008860A (en) Optical multilayer film, optical component having the same, and display device
JP6815955B2 (en) Laminates, polarizing plates, liquid crystal display panels and image display devices
JP7259453B2 (en) FLEXIBLE IMAGE DISPLAY DEVICE AND METHOD FOR MANUFACTURING CIRCULARLY POLARIZED PLATE USED THEREOF
JP7331400B2 (en) FLEXIBLE IMAGE DISPLAY DEVICE AND METHOD FOR MANUFACTURING CIRCULARLY POLARIZED PLATE USED THEREOF
WO2022202608A1 (en) Polyester film and image display device using same
JP2022058558A (en) Laminate for organic el display device and organic el display device
JP7088420B2 (en) Liquid crystal display device
CN115335222A (en) Laminate for thin film layer transfer
JP3840209B2 (en) Manufacturing method of laminated polarizing plate with liner
JP2023032119A (en) Folding-type display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509099

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237036114

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036114

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775396

Country of ref document: EP

Kind code of ref document: A1