WO2022202561A1 - Plant cultivation system - Google Patents

Plant cultivation system Download PDF

Info

Publication number
WO2022202561A1
WO2022202561A1 PCT/JP2022/011985 JP2022011985W WO2022202561A1 WO 2022202561 A1 WO2022202561 A1 WO 2022202561A1 JP 2022011985 W JP2022011985 W JP 2022011985W WO 2022202561 A1 WO2022202561 A1 WO 2022202561A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cultivation
plant
carbon dioxide
environment
Prior art date
Application number
PCT/JP2022/011985
Other languages
French (fr)
Japanese (ja)
Inventor
晋平 村上
和也 藤岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022202561A1 publication Critical patent/WO2022202561A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general

Definitions

  • the present invention relates to a plant cultivation system.
  • a cultivation apparatus such as a plant factory
  • light, temperature, humidity, and carbon dioxide (CO 2 ) concentration are controlled in a completely closed cultivation room or a semi-closed cultivation room like a facility in a building.
  • Plants such as vegetables are produced by artificially controlling the internal environment.
  • cultivation apparatuses are roughly classified into a complete artificial light type that uses artificial light from a light source such as an LED without using sunlight, and a solar type that uses sunlight.
  • Closed-type cultivation rooms have higher insulation than semi-closed-type ones, but in either case, it is necessary to maintain a constant indoor environment, such as temperature and humidity, so the environment is controlled using air conditioners and dehumidifiers is done.
  • the plant cultivation apparatus of Patent Document 1 discloses a technology that can appropriately homogenize and maintain air quality conditions suitable for plant cultivation, contributing to stable quality of plants and an increase in yield.
  • this plant cultivation apparatus includes a housing, an air recovery pipe, an air conditioner, and an air supply pipe.
  • casing has the space which cultivates a plant inside.
  • the air recovery pipe is connected to the recovery hole of the housing for recovering the air inside the housing.
  • the air conditioner adjusts the temperature, humidity, and CO 2 concentration of the air recovered from the recovery holes through the air recovery pipes to conditions suitable for plant cultivation.
  • the air supply pipe connects the air conditioner and the supply hole of the housing, and supplies the air adjusted by the air conditioner into the housing through the supply hole of the housing.
  • the sensor is for measuring the air quality state of the air sucked into the air conditioner, and is arranged only on the upstream side of the air flow path. It is
  • Patent Document 1 by using a technique such as Patent Document 1, it becomes possible to appropriately homogenize the air quality conditions in the plant cultivation environment. However, since the actual growth conditions of plants are not constant, it is not possible, for example, to harvest the plants at the appropriate harvest time.
  • the present invention has been made in view of the above circumstances, and its object is to make it possible to grasp the actual growth situation of plants, to adjust the harvest period of plants to be produced and to increase profits. It is to provide a plant cultivation system that is
  • a plant cultivation system is characterized by the following (1) to (14).
  • a plant cultivation system having a cultivation chamber inside which forms a closed space isolated from the outside air, and a cultivation container that is arranged in the closed space and can be used for cultivating plants,
  • a plant cultivation system comprising: a cultivation environment control unit that forms a cultivation environment necessary for cultivating the plant in the closed space and performs measurements for evaluating photosynthesis of the plant in the cultivation environment.
  • the cultivation environment control unit has a photosynthesis evaluation unit that evaluates photosynthesis in the plant in the closed space based on the air environment state detected in at least two locations in the air duct, The plant cultivation system according to (1) above.
  • the cultivation environment control unit controls at least the air environment adjustment unit so that the evaluation result of the photosynthesis evaluation unit is reflected in the adjustment of the cultivation environment for the plant in the closed space.
  • the air environment adjustment unit has a carbon dioxide supply source capable of supplying carbon dioxide to the air pipeline and an oxygen supply source capable of supplying oxygen to the air pipeline.
  • the photosynthesis evaluation unit detects at least one of carbon dioxide concentration, oxygen concentration, and humidity as the air environmental state;
  • the plant cultivation system according to any one of (2) to (4) above.
  • the photosynthesis evaluation unit detects the carbon dioxide concentration at a position near the air inlet of the cultivation room as a first carbon dioxide concentration, and detects the carbon dioxide concentration at a position near the air outlet of the cultivation room. Having a carbon dioxide detection unit that detects as a second carbon dioxide concentration, The plant cultivation system according to any one of (2) to (5) above.
  • the photosynthesis evaluation unit detects the oxygen concentration at a position near the air inlet of the cultivation room as a first oxygen concentration, and detects the oxygen concentration at a position near the air outlet of the cultivation room as a second oxygen concentration. Having an oxygen detection unit that detects as the oxygen concentration of The plant cultivation system according to any one of (2) to (6) above.
  • the air environment adjustment unit has an air conditioning mechanism that adjusts the temperature and humidity of the air passing through the air pipeline.
  • the plant cultivation system according to any one of (2) to (7) above.
  • the photosynthesis evaluation unit detects a carbon dioxide concentration at a first position near the air inlet of the cultivation room as a first carbon dioxide concentration, and detects carbon dioxide at a second position near the air outlet of the cultivation room. Having a carbon dioxide detection unit that detects the carbon concentration as a second carbon dioxide concentration,
  • the air environment adjustment unit includes a carbon dioxide supply source capable of supplying carbon dioxide to a third location between the first location and the second location on the air conduit, and capable of supplying oxygen to the third location. an oxygen supply source, and a supply-side carbon dioxide detection unit capable of detecting at least carbon dioxide concentration in the vicinity of the third position,
  • the plant cultivation system according to any one of (2) to (8) above.
  • the photosynthesis evaluation unit determines the plant in the closed space based on the amount of carbon dioxide reduction per hour calculated from the measured values of at least the first carbon dioxide concentration and the second carbon dioxide concentration to assess photosynthesis in The plant cultivation system according to (6) above.
  • (11) a lighting unit that irradiates the closed space with light necessary for growing the plant; a nutrient solution tank connected to the cultivation container via a predetermined liquid passage,
  • the plant cultivation system according to any one of (1) to (10) above.
  • the lighting unit includes a light source body arranged outside the closed space, and a light guide mechanism for guiding the light emitted from the light source body to the inside of the closed space and irradiating the plant in the closed space.
  • the cultivation environment control unit measures and evaluates the plant cultivation environments in the plurality of cultivation rooms individually and reflects them in the control.
  • the plant cultivation system according to any one of (1) to (12) above.
  • the cultivation environment control unit controls the plant cultivation environment in the cultivation chamber so as to uniform the growth of the plant based on the results of evaluating the photosynthesis of the plant.
  • the plant cultivation system according to any one of (1) to (13) above.
  • the plant cultivation system having the above configuration (1) a cultivation environment suitable for plant growth is formed in a closed space by the control of the cultivation environment control unit, and the actual growth situation of the plant is correctly evaluated by photosynthesis. Then, the evaluation results can be reflected in cultivation.
  • the cultivation room is in a closed space, the cultivation environment can be easily adjusted, and the cultivation environment required for evaluating photosynthesis can be measured with high accuracy.
  • the closed space includes a semi-enclosed space and a completely closed space, and the semi-enclosed space means a space isolated from the outside air except for a part necessary for environmental control, A completely closed space means a closed space completely cut off from the outside air.
  • the air environment in the closed space is adjusted by the air environment adjustment section using the air conduit connected to the air outlet and air inlet of the cultivation room. Therefore, the air passing through the air duct is subject to adjustment by the air environment adjusting section, that is, since the space to be adjusted is smaller than the entire closed space, the air environment is adjusted to be suitable for plant growth. is easy.
  • the photosynthesis evaluation unit evaluates the photosynthesis of plants based on the air environment conditions detected at two points on the air pipeline, highly accurate evaluation is possible. That is, when measuring the air environment state at two points on the air pipeline, the air environment on the introduction side before plants consume carbon dioxide etc. by photosynthesis and the air environment after plants consume carbon dioxide etc. by photosynthesis It becomes easy to detect the air environment on the exhaust side with little error.
  • the cross-sectional area of the air pipeline is smaller than that of the cultivation room, the concentration of carbon dioxide in the air becomes uniform, and measurement errors are reduced.
  • the plant cultivation system configured in (3) above, it is possible to make adjustments so that the growing conditions of plants are uniformed by feedback control that reflects the evaluation results of the photosynthesis evaluation unit in the adjustment of the cultivation environment. That is, when the actual growth rate of the plant is slow compared to the target reference state, it is possible to adjust the cultivation environment in the direction of promoting the growth, and the actual growth rate of the plant is too fast compared to the reference state. In this case, it is possible to adjust the cultivation environment so as to suppress the growth.
  • the carbon dioxide and oxygen in the air in the cultivation environment consumed by the plants during photosynthesis can be replenished, so the carbon dioxide concentration in the cultivation environment in the closed space, Oxygen concentration can be maintained in an appropriate state.
  • the plant cultivation system configured in (5) above, by detecting at least one of the carbon dioxide concentration, oxygen concentration, and humidity as the air environment state, it is possible to evaluate the photosynthesis of the plants in the closed space.
  • the first carbon dioxide concentration is detected in the air introduced into the cultivation chamber from the air inlet, and the second carbon dioxide concentration is detected in the air exhausted from the air outlet of the cultivation chamber. Detect carbon concentration. Therefore, based on the difference between the first carbon dioxide concentration and the second carbon dioxide concentration, it is possible to accurately grasp the amount of carbon dioxide consumed by the photosynthesis of the plant, and uniform the growth situation of the plant. can help to do so.
  • the first oxygen concentration is detected in the air introduced into the cultivation chamber from the air inlet, and the second oxygen concentration is detected in the air exhausted from the air outlet of the cultivation chamber. to detect Therefore, based on the difference between the first oxygen concentration and the second oxygen concentration, it is possible to accurately grasp the amount of oxygen consumed by the photosynthesis of the plant. can help.
  • the temperature and humidity of the air in the air duct can be adjusted using the air conditioning mechanism, so the temperature and humidity in the plant cultivation environment can be properly maintained. For example, it is possible to prevent the humidity in the cultivation environment from rising due to evaporation of water from the cultivated plants. Also, a temperature suitable for plant growth can be maintained.
  • the air is introduced from the first position into the cultivation chamber through the air inlet, is exhausted from the cultivation chamber through the air outlet, and reaches the second position.
  • Carbon dioxide can be replenished from the third location without affecting environmental changes. Therefore, based on the measurement results at the first position and the second position, it becomes easy to accurately grasp the amount of carbon dioxide consumed by the photosynthesis of the plants in the cultivation room.
  • the plant cultivation system having the configuration (10) above it becomes easy to grasp the actual growth situation of the plant during the cultivation period with high accuracy. Since the photosynthetic reaction has a great influence on plant growth, understanding the speed of the photosynthetic reaction and its changes is useful for accurately understanding the growth conditions of plants. In addition, since carbon dioxide in the air is consumed in the photosynthetic reaction, the state of the photosynthetic reaction of plants in the closed space is calculated based on the amount of carbon dioxide decrease per hour calculated from the measured value of the carbon dioxide concentration. can be estimated.
  • the illumination unit can irradiate the closed space with light necessary for plant growth, and the nutrient solution tank can supply the nutrient solution required for plant growth to the cultivation container. .
  • the illumination unit can irradiate the closed space with the light necessary for plant growth, the amount of photosynthesis can be measured under the same conditions as during cultivation.
  • the plants cultivated inside each of the plurality of cultivation rooms can be individually managed while maintaining an appropriate cultivation environment. Therefore, it becomes easy to simultaneously manage plants of different varieties in different cultivation environments, or to simultaneously manage a plurality of groups of plants of the same variety so that they can be harvested at different times.
  • the cultivation environment control unit controls the growth of the plants so that they grow uniformly. It will be possible to make adjustments to equalize the quantity and stabilize the quality according to shipping standards.
  • the plant cultivation system of the present invention can grasp the actual growth status of plants, and can be used to adjust the harvest period of plants to be produced and to increase profits.
  • FIG. 1 is a block diagram showing a configuration example of main parts of a plant cultivation system according to an embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view showing an enlarged cross-sectional structure of a portion of the lighting device.
  • FIG. 3 is a flow chart showing an example of main operations of the plant cultivation system.
  • FIG. 4 is a block diagram showing the configuration of the plant cultivation system of modification-1.
  • FIG. 5 is a block diagram showing the configuration of the plant cultivation system of modification-2.
  • FIG. 6 is a block diagram showing the configuration of the plant cultivation system of modification-3.
  • FIG. 7 is a block diagram showing the configuration of the plant cultivation system of Modification-4.
  • FIG. 1 shows a configuration example of a plant cultivation device 100, which is a main part of a plant cultivation system according to an embodiment of the present invention.
  • the plant cultivation apparatus 100 shown in FIG. 1 includes one cultivation chamber 10 necessary for cultivating plants 15.
  • This cultivation room 10 has a closed space 13 formed inside a box-shaped housing 11 .
  • the box-shaped housing 11 is a closed space 13 surrounded by a plurality of walls, a bottom, a ceiling, etc., which are made of a material that has heat insulation and light shielding properties, and also has airtightness and watertightness to some extent.
  • the box-shaped housing 11 is made of, for example, a material such as a resin such as urethane foam, or a fiber-based heat insulating material such as glass wool or rock wool.
  • each part of the inner wall of the box-shaped housing 11 is made of a material having a high light reflectance.
  • the closed space 13 in the box-shaped housing 11 is isolated from the outside air, and the air environment of the cultivation room 10, that is, the conditions such as carbon dioxide concentration, oxygen concentration, temperature, humidity, etc., are different from the outside air. ing.
  • a cultivation container 12 capable of cultivating a plurality of plants 15 is installed near the bottom of the cultivation room 10 .
  • a lighting device 14 is installed near the ceiling in the cultivation room 10 in order to irradiate the plant 15 with light necessary for growing it.
  • the light source of the lighting device 14 is located outside the cultivation room 10 as will be described later. Light from the light source is guided into the cultivation room 10 by a light guide plate 18 arranged in the cultivation room 10 , and emitted from the ceiling in the cultivation room 10 toward the plant 15 below.
  • the lighting device 14 is not limited to a configuration in which light from a light source provided outside the cultivation chamber 10 is guided into the cultivation chamber 10 by the light guide plate 18 and emitted to the plants 15.
  • a configuration in which an LED light source is arranged above the plant 15 and the light is directly emitted from the LED light source to the plant 15 may be employed.
  • An air inlet 10a is formed on one wall surface of the cultivation room 10, and an air outlet 10b is formed on the opposite wall surface, in order to enable adjustment of the air environment in the cultivation room 10.
  • a conduit outlet 21a of the air conduit 21 is connected to the air inlet 10a, and a conduit inlet 21b of the air conduit 21 is connected to the air outlet 10b.
  • the air conduit 21 is composed of a pipe or the like that is airtight and has a substantially constant cross-sectional area, and forms an air flow path for circulating the air inside the cultivation room 10 outside. That is, the air in the cultivation chamber 10 enters the air conduit 21 from the air outlet 10b through the conduit inlet 21b, passes through the flow path in the air conduit 21, reaches the conduit outlet 21a, and passes through the air inlet 10a. It is introduced again into the cultivation room 10 via the.
  • An air pump (AP) 22 and an air conditioner 23 are connected in the middle of the flow path of the air pipe 21 .
  • the air pump 22 has a function of forming an air flow in the direction from the conduit outlet 21a toward the inside of the cultivation chamber 10 .
  • the air conditioning unit 23 has a dehumidification/humidification function and a temperature control function for the air passing through the air conduit 21 .
  • Cylinders 24 and 25 are also connected to the air line 21 via a supply line 26 .
  • Cylinder 24 can supply carbon dioxide (CO 2 ) accumulated therein to supply line 26 as needed.
  • the cylinder 25 can supply the oxygen (O 2 ) accumulated therein to the supply line 26 as needed.
  • Each cylinder 24 , 25 is provided with a solenoid valve for controlling the supply of carbon dioxide and oxygen from each cylinder 24 , 25 to the supply line 26 , or the amount of supply.
  • a solenoid valve is controlled by the control part 50 as an example.
  • the plant cultivation device 100 is equipped with a plurality of sensors 31 and 32 to enable measurement of the air environment within the closed space 13.
  • the sensor 31 has a function of measuring the concentration of carbon dioxide
  • the sensor 32 has a function of measuring the concentration of oxygen.
  • the sensors 31 and 32 are configured to be capable of measuring at the air environment measurement points 33 and 34 and the supplementary air measurement point 35, respectively.
  • a plurality of sets of sensors 31 and 32 may be prepared in advance, and independent sensors 31 and 32 may be individually installed near the air environment measurement points 33 and 34 and the supply air measurement point 35, respectively.
  • a sensor capable of measuring at a plurality of measurement points may be used, that is, the sensor may be used in common.
  • sensors for detecting the temperature, humidity, carbon dioxide concentration, etc. in the internal environment of the closed space 13 may be added.
  • sensors for enabling measurement of the air environment in the closed space 13 may be installed at locations other than the air environment measurement points 33 and 34 and the supplementary air measurement point 35, i.e., outside the air pipeline 21. good.
  • the ceiling of the cultivation room 10 is provided with an outlet and an inlet for the air in the closed space 13, and the carbon dioxide concentration or the oxygen concentration is added to any point in the air pipeline connecting these outlets and inlets.
  • a sensor may be installed for detection. With this sensor, the carbon dioxide concentration or oxygen concentration after being affected by photosynthesis by the plants 15 in the cultivation room 10 can be measured.
  • an air flow can be formed in the cultivation chamber 10 in the direction from the air inlet 10a to the air outlet 10b.
  • the width in the cultivation room 10 that is, the dimension in the left-right direction in FIG. 1
  • the depth that is, the dimension in the direction perpendicular to the paper surface in FIG. Since the height is relatively small, a stable horizontal air flow can be formed in the cultivation chamber 10 .
  • the air environment measurement point 33 is on the air pipeline 21 near the air inlet 10a, so the carbon dioxide concentration before being affected by photosynthesis by the plants 15 in the cultivation room 10 , and oxygen concentration can be stably measured at the air environment measuring point 33 .
  • the air environment measurement point 34 is on the air pipeline 21 near the air outlet 10b, the carbon dioxide concentration and oxygen concentration after being affected by photosynthesis by the plants 15 in the cultivation room 10 are measured at the air environment measurement point 34 can be measured in a stable state.
  • the inside of the cultivation room 10 It is possible to evaluate photosynthesis by the entire plant 15 and estimate the growth status. Similarly, for example, based on the difference between the oxygen concentration measured at the air environment measurement point 33 and the oxygen concentration measured at the air environment measurement point 34, photosynthesis by the entire plant 15 in the cultivation room 10 is evaluated. It is also possible to extrapolate the situation.
  • a nutrient solution tank 41 is installed adjacent to the cultivation room 10 as shown in FIG.
  • One end of the nutrient solution supply pipe 42 is connected to the nutrient solution tank 41 , and the other end is connected to the cultivation container 12 via the nutrient solution inlet 10 c of the cultivation chamber 10 .
  • One end of the waste liquid pipe 43 is connected to the cultivation container 12 via the waste liquid outlet 10 d of the cultivation chamber 10 , and the other end is connected to the nutrient solution tank 41 .
  • the fertilizer supply source 45 is connected to the fertilizer supply section 46 and the fertilizer supply source 45 is connected to the nutrient solution tank 41 via the fertilizer supply pipe 47 .
  • the fertilizer supply unit 46 can take in fertilizer necessary for promoting the growth of the plants 15 in the cultivation chamber 10 from the fertilizer supply source 45 and supply the fertilizer to the nutrient solution tank 41 as necessary. Then, for example, pH (hydrogen ion concentration index) and EC (electrical conductivity) in the nutrient solution tank 41 are controlled to be target values.
  • the nutrient solution 41 a in the nutrient solution tank 41 is driven by the pump 44 to supply the required amount to the inside of the cultivation container 12 via the nutrient solution supply pipe 42 . Moreover, the waste liquid discharged from the cultivation container 12 is collected in the nutrient solution tank 41 via the waste liquid pipe 43 .
  • a control unit 50 having a function of controlling the plant cultivation device 100 is connected to the plant cultivation device 100 in a communicable state.
  • the control unit 50 can be configured by a personal computer installed near the plant cultivation apparatus 100, which is a plant factory, or by cloud application software using a server connected to the Internet. can. Furthermore, it is conceivable to configure them by combining them.
  • control unit 50 determines the cultivation environment of the plant 15 in the plant cultivation apparatus 100, that is, the carbon dioxide concentration, oxygen concentration, temperature, humidity, and intensity of the light emitted in the air in the closed space 13. grasp.
  • control unit 50 estimates the actual growth state of the plant 15 by evaluating the photosynthesis of the plant 15 based on changes in the carbon dioxide concentration.
  • control part 50 produces
  • control unit 50 calculates the cultivation conditions necessary for harvesting the plants 15 at the optimum harvesting period according to the varieties of the plants 15 actually cultivated in the cultivation chamber 10, and sets the control parameters SG2. reflect. That is, the carbon dioxide concentration, the oxygen concentration, the temperature, the humidity, the intensity of the irradiated light, etc. representing the environment in the closed space 13 necessary for cultivating the plant 15 in an optimal state are output as the control parameter SG2. be.
  • a local control unit that manages the state near the plant cultivation apparatus 100 controls each part of the plant cultivation apparatus 100 according to the control parameter SG2 input from the control unit 50. That is, the temperature adjustment amount and humidity adjustment amount of the air conditioning unit 23, the flow rate of the air pump 22, the supply amount of carbon dioxide and oxygen from the cylinders 24 and 25, the light emission intensity of the lighting device 14, etc. are adjusted according to the control parameter SG2. .
  • the amount of fertilizer supplied from the fertilizer supply unit 46 to the nutrient solution tank 41 and the amount of nutrient solution 41a supplied from the nutrient solution tank 41 to the cultivation container 12 are also controlled according to the control parameter SG2 input from the control unit 50. can be adjusted.
  • FIG. 2 shows a partial cross-sectional structure of the illumination device 14 attached to the plant cultivation apparatus 100 of FIG.
  • a thin light source board 14b is fixed substantially in the center of the opening of the heat sink 14c, and the LED light source section 14a is installed on the light source board 14b.
  • the light source substrate 14b is an electrically insulating resin plate on which a circuit pattern such as copper foil is formed.
  • the actual LED light source section 14a is composed of a large number of LED elements arranged in a line on the light source substrate 14b. Each LED element can emit blue, white, or ultraviolet light in the X-axis direction.
  • the light guide plate 18 is sandwiched and fixed between the heat sinks 14c at the top and bottom, with the side end face 18a facing the light emitting surface of the LED light source part 14a with a gap.
  • the light guide plate 18 has a uniform thickness in the Z-axis direction over its entirety, and the dimension in the thickness direction is, for example, several mm to 10 mm.
  • a wavelength conversion film 14d is arranged between the LED light source section 14a and the side end surface 18a of the light guide plate 18 .
  • This wavelength conversion film 14 d has a function of converting the wavelength of blue, white, or ultraviolet light emitted from the LED light source section 14 a into light of a spectrum suitable for the growth of the plant 15 . It is possible to switch the spectrum of the light with which the plant 15 is irradiated by attaching and detaching the wavelength conversion film 14d or by exchanging the type of film.
  • the light emitted from the LED light source section 14a is wavelength-converted by the wavelength conversion film 14d, enters the light guide plate 18 from the side end face 18a, propagates while being repeatedly reflected, and is formed below the light guide plate 18.
  • the light is emitted downward from the diffusion surface 18b, and the plant 15 is irradiated with the light.
  • the upper surface of the light guide plate 18 is a reflecting surface 18c.
  • the LED light source section 14a since the LED light source section 14a generates a large amount of heat when emitting light, it is necessary to dissipate the heat to the outside air with the heat sink 14c and suppress the temperature rise. Also, if the heat generated by the LED light source unit 14a affects the temperature in the cultivation chamber 10, a relatively large amount of energy is required for air conditioning to maintain the temperature in the cultivation chamber 10 at a temperature suitable for cultivating the plants 15. Become. However, as shown in FIG. 2, the LED light source section 14a of the lighting device 14 is arranged in the space outside the cultivation room 10, so the heat generated by the LED light source section 14a does not affect the temperature inside the cultivation room 10. can be avoided. Therefore, in the plant cultivation apparatus 100 of FIG. 1, the energy consumption in the air conditioning unit 23 when cultivating the plants 15 can be reduced, and the running cost of this plant factory can be reduced.
  • FIG. 3 shows an example of main operations in the plant cultivation system of FIG.
  • the operations shown in FIG. 3 mainly correspond to the contents of processing in the control unit 50 .
  • step S11 the control unit 50 acquires the carbon dioxide concentration information V1in at the entrance of the cultivation room obtained by the sensor 31 measuring at the air environment measuring point 33 as part of the measurement result SG1.
  • step S12 the control unit 50 acquires the carbon dioxide concentration information V1out at the exit of the cultivation room obtained by the sensor 31 measuring at the air environment measuring point 34 as part of the measurement result SG1.
  • step S13 the control unit 50 acquires the oxygen concentration information V2in at the entrance of the cultivation room obtained by the sensor 32 measuring at the air environment measuring point 33 as part of the measurement result SG1.
  • step S14 the control unit 50 acquires the oxygen concentration information V2out at the exit of the cultivation room obtained by the sensor 32 measuring at the air environment measuring point 34 as part of the measurement result SG1.
  • step S15 the control unit 50 calculates an evaluation value of the photosynthetic rate of the plants 15 in the cultivation room 10 based on the information of the measurement results obtained in steps S11 to S14.
  • the plant 15 irradiated with light grows while performing photosynthesis in the air of the cultivation environment. Therefore, it is photosynthesis that greatly contributes to the growth rate of the plant 15 .
  • carbon dioxide in the air is absorbed and moisture is discharged. Therefore, for example, it is possible to evaluate the photosynthetic rate as an estimated value by a known technique based on the result of measuring the consumption of carbon dioxide. Acquisition of the oxygen concentration information V2in and V2out in steps S13 and S14 is not essential.
  • the control unit 50 supplies the difference between the carbon dioxide concentration information V1in at the cultivation room entrance and the carbon dioxide concentration information V1out at the cultivation room exit to the cultivation room 10 near the air environment measurement point 33 .
  • the result of detection by an air volume sensor may be used.
  • an air volume sensor is installed at the cultivation room entrance and the cultivation room exit, and each air volume at the cultivation room entrance and the cultivation room exit is calculated. Calculate the inflow and emission of carbon dioxide from each calculated air volume and the carbon dioxide concentration detected by the carbon dioxide concentration sensor, calculate the consumption of carbon dioxide as the difference between the inflow and emission, and calculate the photosynthetic rate can be evaluated.
  • the control unit 50 compares the photosynthetic rate evaluation value V3 calculated in step S15 with the reference value V3r (steps S16 to S18).
  • This reference value V3r is set in accordance with the target cultivation environment for harvesting the plant 15 in a state in which the quality such as the size of the plant 15 falls within a predetermined standard, for example, at the planned optimal harvesting period. Then, the control unit 50 sequentially determines.
  • the control unit 50 proceeds from step S17 to step S19. Then, the control unit 50 automatically adjusts various control parameters of the cultivation room environment so as to increase the photosynthetic rate. For example, “increase the amount of light emitted by the lighting device 14", “increase the concentration of carbon dioxide in the air supplied from the air conduit 21 to the air inlet 10a”, and “supply from the air conduit 21 to the air inlet 10a”.
  • the controller 50 changes various control parameters in order to enable adjustments such as "increase air flow velocity".
  • step S18 the control unit 50 proceeds from step S18 to step S20.
  • the control unit 50 automatically adjusts various control parameters of the cultivation room environment so as to suppress the photosynthetic rate. For example, “reduce the amount of light emitted by the lighting device 14”, “reduce the concentration of carbon dioxide in the air supplied from the air conduit 21 to the air inlet 10a”, and “supply from the air conduit 21 to the air inlet 10a
  • the controller 50 changes various control parameters in order to enable adjustment such as "lowering the flow velocity of the air”.
  • the control unit 50 performs control so that the adjustment results in steps S19 and S20 are reflected in the actual cultivation environment of the plant cultivation apparatus 100. That is, the control unit 50 gives the changed control parameter SG2 to the plant cultivation device 100 in the next step S21, and the plant cultivation device 100 follows the control parameter SG2 input from the control unit 50 to change the air environment of the cultivation room 10 and the lighting device. 14 to control the amount of light.
  • the present embodiment describes a case where various control parameters are changed based on the results of photosynthesis evaluation, the present invention is not limited to this. That is, for example, the results of photosynthetic evaluation can be used only for adjusting the harvest time.
  • FIG. 4 shows the configuration of the plant cultivation system of modification-1.
  • a sensor 37 is added to the plant cultivation device 100, but the configuration other than that is the same as that of FIG.
  • the added sensor 37 has a function of detecting moisture (H 2 O), and in the example of FIG. can do.
  • the control unit 50 shown in FIG. 4 controls the air conditioning unit 23 based on the humidity information obtained by the measurement of the sensor 37 so that the cultivation environment of the plant 15 has an appropriate humidity.
  • the humidity in the cultivation environment of the plants 15 can be appropriately maintained using the measurement results of the sensor 37, so it becomes easy to cultivate the plants 15 in a desirable air environment.
  • the difference in humidity measured at the two air environment measurement points 33 and 34 can be used to detect changes in the amount of moisture associated with photosynthesis of the plants 15 in the cultivation room 10, the information can be used to estimate the photosynthetic rate. It is also possible to help
  • FIG. 5 shows the configuration of the plant cultivation system of modification-2.
  • the plant cultivation system shown in FIG. 5 is configured on the assumption that a plurality of the plant cultivation apparatuses 100 shown in FIG. 1 or 4 are prepared in advance and these are operated simultaneously.
  • the multiple-environment control unit 51 shown in FIG. 5 centrally controls a plurality of plant cultivation apparatuses 100 in mutually independent environments by one multiple-environment control unit 51 .
  • the multiple-environment control unit 51 can be realized using a device such as a personal computer installed near the plant cultivation device 100, as in the case of the control unit 50 in FIG. It is also possible to implement functions.
  • a plurality of plant cultivation apparatuses 100A, 100B, 100C, and 100D shown in FIG. 5 each correspond to the plant cultivation apparatus 100 of FIG. 1 or FIG.
  • the plurality of plant cultivation apparatuses 100A to 100D each have an independent closed space 13 cultivation room 10 .
  • the plurality of plant cultivation apparatuses 100A to 100D are independent of each other in terms of the air environment in each closed space 13, the intensity of the light emitted by the lighting device 14, and the environment inside the cultivation container 12, respectively.
  • plants 15 of the same variety with different harvest periods are divided into a plurality of groups and cultivated simultaneously.
  • a plurality of different types of plants 15 can be divided into a plurality of groups and cultivated at the same time.
  • the plant cultivation device 100A belonging to the A group transmits the information measured by the sensors 31, 32, etc. inside it to the multiple environment control unit 51 as the measurement result SG1-A.
  • the multiple environment control unit 51 evaluates the photosynthesis of the A group based on the measurement result SG1-A input from the plant cultivation apparatus 100A.
  • the multi-environment control unit 51 reflects the evaluation result to generate a control parameter SG2 for bringing the growth status of the plants 15 of the A group closer to the target conditions such as the harvest period, and provides the control parameter SG2 to the plant cultivation apparatus 100A.
  • the multi-environment control unit 51 accumulates information on the growth status and cultivation environment of the plants 15 in the A group, and reflects the information in future control.
  • the plant cultivation device 100B belonging to the B group transmits the information measured by the sensors 31, 32, etc. inside it to the multiple environment control unit 51 as the measurement result SG1-B.
  • the multiple environment control unit 51 evaluates the photosynthesis of the B group based on the measurement result SG1-B input from the plant cultivation apparatus 100B.
  • the multi-environment control unit 51 reflects the evaluation result to generate a control parameter SG2 for bringing the growth state of the plant 15 of the B group closer to the target condition, and provides the control parameter SG2 to the plant cultivation apparatus 100B.
  • the multi-environment control unit 51 accumulates information on the growth status and cultivation environment of the plants 15 of the B group, and reflects the information in future control.
  • the plant cultivation device 100C belonging to the C group transmits the information measured by the sensors 31, 32, etc. inside it to the multiple environment control unit 51 as the measurement result SG1-C.
  • the multi-environment control unit 51 evaluates the photosynthesis of the C group based on the measurement result SG1-C input from the plant cultivation device 100C.
  • the multi-environment control unit 51 reflects the evaluation result to generate a control parameter SG2 for bringing the growth state of the plant 15 of the C group closer to the target condition, and provides the control parameter SG2 to the plant cultivation apparatus 100C.
  • the multi-environment control unit 51 accumulates information on the growth status and cultivation environment of the plants 15 of the C group, and reflects the information in future control.
  • the plant cultivation device 100D belonging to the D group transmits the information measured by the sensors 31, 32, etc. inside it to the multiple environment control unit 51 as the measurement result SG1-D.
  • the multiple environment control unit 51 evaluates the photosynthesis of the D group based on the measurement result SG1-D input from the plant cultivation device 100D.
  • the multi-environment control unit 51 reflects the evaluation result to generate a control parameter SG2 for bringing the growth state of the plant 15 of the B group closer to the target condition, and provides the control parameter SG2 to the plant cultivation device 100D.
  • the multi-environment control unit 51 accumulates information on the growth status and cultivation environment of the plants 15 in the D group, and reflects the information in future control.
  • the plants 15 of groups A to D can be cultivated in individually optimized environments by dividing the cultivation environment for each group. Therefore, it becomes easy to unify the amount of growth of the plants 15 for each group, stabilize the quality such as the plant size in accordance with the shipping standards of the plants 15 for each group, and adjust the harvest time for each group. Furthermore, it also becomes possible to simultaneously cultivate a plurality of varieties of plants 15 having different appropriate cultivation conditions in an optimum environment. In addition, by centrally managing the plant cultivation apparatuses 100A to 100D of a plurality of groups with one multiple environment control unit 51, it is possible to reduce the management cost and adjust the balance of the cultivation conditions among the groups. become.
  • each cultivation chamber 10 of the plurality of plant cultivation apparatuses 100A to 100D forms an independent closed space 13 and their environments are independently controlled, they are not affected by the layout. Therefore, for example, each cultivation chamber 10 of a plurality of plant cultivation apparatuses 100A to 100D can be arranged in a vertically stacked state.
  • the cultivation environment may change depending on the height and location of each cultivation container or each shelf. Because of this, uniform cultivation conditions cannot be achieved throughout.
  • the environment of each cultivation room 10 of the plurality of groups of plant cultivation apparatuses 100A to 100D is not affected by differences in height and location. For this reason, in the case of the plant cultivation system of FIG. 5, it is possible to create a uniform environment as a whole, or to simultaneously create environments that are intentionally different from each other.
  • FIG. 6 shows the configuration of the plant cultivation system of modification-3.
  • the air flow path of the air conditioning unit 23A is connected to the closed space 13 inside the cultivation room 10 via air pipes 21A and 21B.
  • the air conditioning unit 23A has dehumidification and temperature control functions.
  • the air in the closed space 13 is introduced into the air conditioning section 23A through the air conduit 21A, and the air after the temperature and humidity have been appropriately adjusted flows from the air conditioning section 23A through the air conduit 21B into the cultivation room 10. to adjust the environment for cultivating the plant 15.
  • a cylinder 24 for replenishing carbon dioxide is connected to the air conditioning section 23A via a predetermined pipe. Therefore, when the concentration of carbon dioxide in the air introduced into the air conditioning section 23A through the air conduit 21A is low, carbon dioxide is replenished from the cylinder 24. FIG. Thereby, the air with increased carbon dioxide concentration can be supplied from the air conditioning unit 23A to the cultivation room 10 via the air conduit 21B.
  • the supplementary air measurement point 35A is arranged inside the cultivation room 10 near the outlet of the air pipe 21B.
  • the temperature, humidity, and carbon dioxide concentration of the air at the make-up air measurement point 35A can be measured using the sensors 31, 32, and 37 shown in FIG. 4, for example.
  • the sensor 30 is installed in the cultivation room 10 at a position opposite to the supply air measurement point 35A.
  • This sensor 30 has the function of measuring the temperature, humidity, and carbon dioxide concentration of the air, and further has the function of transmitting the data of the measurement results to the outside of the cultivation room 10 using wireless communication. ing.
  • a sensor 30A is installed in the nutrient solution tank 41.
  • This sensor 30A has a function of measuring the hydrogen ion concentration index (pH) and electrical conductivity (EC) in the nutrient solution 41a in the nutrient solution tank 41, and furthermore, the data of the measurement results are transmitted using wireless communication. It also has a function of transmitting to the outside of the nutrient solution tank 41 .
  • the control unit 50 grasps the change in carbon concentration.
  • a time-series change in the carbon dioxide concentration detected by the sensor 30 the time from the photosynthesis start time on the same day, that is, the time at which the lighting device 14 is turned on, to the photosynthesis end time, that is, the time at which the lighting device 14 is turned off. of carbon dioxide concentration changes.
  • the measurement data transmitted by each sensor 30, 30A by wireless communication is transmitted, for example, directly to the control unit 50 shown in FIG. 1 or via a predetermined communication relay device. Therefore, in the plant cultivation apparatus 200 of FIG. 6 as well, the control unit 50 can grasp the air environment in the cultivation room 10 representing the cultivation environment of the plant 15 and the environmental state of the nutrient solution 41a. Then, the control unit 50 evaluates the photosynthesis of the plants 15 in the cultivation chamber 10 in the plant cultivation apparatus 200 based on the change in the carbon dioxide concentration, grasps the growth state of the plants 15, and outputs the result of the cultivation chamber 10. Control to reflect the cultivation environment.
  • FIG. 7 shows the configuration of the plant cultivation system of modification-4.
  • the sensor 31 is not provided in the plant cultivation apparatus 100, but only the sensor 32 is provided, but the other configuration is the same as that of FIG.
  • the sensor 32 is configured to be able to measure the concentration of oxygen at each of the air environment measurement points 33 and 34 and the supplementary air measurement point 35. That is, the sensor 32 has a function of measuring the concentration of oxygen, and the plant cultivation apparatus 100 shown in FIG. 7 is not provided with a sensor that measures the concentration of carbon dioxide. By providing the sensor 32 for measuring at least the concentration of oxygen in this manner, changes in the oxygen concentration can be grasped, and photosynthesis can be evaluated based thereon.
  • control unit 50 does not acquire the carbon dioxide concentration information V1in and V1out in the operation example described with reference to FIG. Get V2in and V2out. Based on these pieces of information, the control unit 50 can similarly calculate the oxygen discharge amount and evaluate the photosynthetic rate.
  • the plant cultivation apparatus 100 includes at least a sensor 31 configured to measure the concentration of carbon dioxide, a sensor 32 configured to measure the concentration of oxygen, or a sensor 37 having a function of detecting moisture (H2O). Any one of In other words, the plant cultivation apparatus 100 may have at least one of the sensors 31, 32, and 37 described above, and may have two or more different sensors among them. may
  • the humidity measured at the air environment measurement point 33 and the air environment measurement Based on the difference from the humidity measured at the point 34, it is possible to evaluate the photosynthesis by the entire plant 15 in the cultivation room 10 and estimate the growth condition. More specifically, in the operation example described with reference to FIG. 3, the information on the carbon dioxide concentration V1in, V1out and the information on the oxygen concentration V2in, V2out are not acquired, and the humidity information is acquired instead. Based on these pieces of information, the controller 50 can similarly calculate the water discharge amount and evaluate the photosynthetic rate.
  • H2O moisture
  • the lighting device 14 including the light guide plate 18 is provided in the cultivation room 10
  • measurements for evaluating photosynthesis can be performed under the same light conditions as those used during cultivation. Therefore, accurate measurement is possible.
  • the plant cultivation system of this embodiment it is conceivable to cover part of the plant being cultivated with a measurement chamber or the like for measurement. In this case, if the lighting device is placed outside the chamber or the like, part of the light emitted from the lighting device is reflected by the chamber or the like, so the light conditions during cultivation and the light conditions during measurement are different. do not match, and the actual growth conditions are not reflected correctly in the measurement results.
  • accurate measurement can be performed under the light conditions during cultivation, so it is possible to grasp the actual growth status of the plant.
  • a plant cultivation system comprising A plant comprising a cultivation environment control unit (control unit 50) that forms a cultivation environment necessary for cultivating the plant in the closed space and performs measurements for evaluating photosynthesis of the plant in the cultivation environment. cultivation system.
  • the cultivation environment control unit includes a photosynthesis evaluation unit (control unit 50) that evaluates photosynthesis in the plant in the closed space based on the air environment state detected at at least two locations in the air duct.
  • the cultivation environment control unit controls at least the air environment adjustment unit so that the evaluation result of the photosynthesis evaluation unit is reflected in the adjustment of the cultivation environment for the plant in the closed space (S15 to S21 ), The plant cultivation system according to [2] above.
  • the air environment adjustment unit includes a carbon dioxide supply source (cylinder 24) capable of supplying carbon dioxide to the air pipeline, and an oxygen supply source (cylinder 24) capable of supplying oxygen to the air pipeline. 25), The plant cultivation system according to [2] or [3] above.
  • the photosynthesis evaluation unit detects at least one of carbon dioxide concentration, oxygen concentration and humidity as the air environmental conditions.
  • the plant cultivation system according to any one of [2] to [4] above.
  • the photosynthesis evaluation unit detects the carbon dioxide concentration at a position near the air inlet of the cultivation room as a first carbon dioxide concentration (S11), and the carbon dioxide at a position near the air outlet of the cultivation room. Having a carbon dioxide detection unit (sensor 31) that detects the carbon concentration as a second carbon dioxide concentration (S12),
  • S11 first carbon dioxide concentration
  • S12 second carbon dioxide concentration
  • the photosynthesis evaluation unit detects the oxygen concentration in the vicinity of the air inlet of the cultivation chamber as a first oxygen concentration (S13), and the oxygen concentration in the vicinity of the air outlet of the cultivation chamber. as a second oxygen concentration (S14) having an oxygen detection unit (sensor 32),
  • S13 first oxygen concentration
  • S14 second oxygen concentration
  • sensor 32 oxygen detection unit
  • the air environment adjustment unit has an air conditioning mechanism (air conditioning unit 23) that adjusts the temperature and humidity of the air passing through the air pipeline.
  • air conditioning unit 23 air conditioning unit 23
  • the plant cultivation system according to any one of [2] to [7] above.
  • the photosynthesis evaluation unit detects a carbon dioxide concentration at a first position (duct outlet 21a) near the air inlet of the cultivation room as the first carbon dioxide concentration, and near the air outlet of the cultivation room.
  • the air environment adjustment unit includes a carbon dioxide supply source (cylinder 24) capable of supplying carbon dioxide to a third position (air supply point 21c) located between the first position and the second position on the air pipeline.
  • an oxygen supply source capable of supplying oxygen to the third position
  • a supply-side carbon dioxide detector capable of detecting at least carbon dioxide concentration near the third position
  • the photosynthesis evaluation unit the plant in the closed space based on the amount of carbon dioxide reduction per hour calculated from the measured values of at least the first carbon dioxide concentration and the second carbon dioxide concentration Evaluate photosynthesis in (S15), The plant cultivation system according to [6] above.
  • a lighting unit (lighting device 14) that irradiates the closed space with light necessary for growing the plant; a nutrient solution tank (41) connected to the cultivation container via a predetermined liquid passage, The plant cultivation system according to any one of [1] to [10] above.
  • the lighting unit includes a light source body (LED light source section 14a) arranged outside the closed space, and guides the light emitted from the light source body to the inside of the closed space and directs it to the plant in the closed space. Having a light guide mechanism (light guide plate 18) for irradiation, The plant cultivation system according to [11] above.
  • the cultivation environment control unit individually measures and evaluates the plant cultivation environments in the plurality of cultivation rooms and reflects them in control.
  • the plant cultivation system according to any one of [1] to [12] above.
  • the cultivation environment control unit controls the plant cultivation environment in the cultivation chamber so as to uniform the growth of the plant based on the results of evaluating the photosynthesis of the plant (S15 to S21), The plant cultivation system according to any one of [1] to [13] above.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)

Abstract

Provided is a new plant cultivation system that makes it possible to ascertain the actual growth status of plants, and that helps to adjust the harvest time of plants to be produced and to increase profits. On the basis of data acquired by detecting the air environment in a closed space (13) forming a cultivation room (10) for actually cultivating plants (15), a control unit (50) calculates evaluation values of, inter alia, the photosynthesis rate of the plants (15), reflects the evaluation results in the air environment in the cultivation room (10), and controls the growth rate of the plants (15). An air pipeline (21) for circulating air in the cultivation room (10) is connected to the outside of the cultivation room (10), and an air-conditioning unit (23) and a supply pipeline (26) for air supply are connected on the air pipeline (21). The air environment is measured at positions near a pipeline outlet (21a) and a pipeline inlet (21b), and parameters such as changes in carbon dioxide concentration due to the difference in position can be detected. Alternatively, parameters such as changes in carbon dioxide concentration are detected from changes over time.

Description

植物栽培システムplant cultivation system
 本発明は、植物栽培システムに関する。 The present invention relates to a plant cultivation system.
 一般的に植物工場などの栽培装置では、建物内の施設のように、完全に閉鎖された栽培室や、半閉鎖された栽培室内において、光、温度、湿度及び二酸化炭素(CO)濃度といった内部環境を人工的に制御して、野菜等の植物が生産される。また、このような栽培装置は太陽光を使わずLED等の光源からの人工光を利用する完全人工光型と、太陽光を利用する太陽光型とに大別される。閉鎖型の栽培室は、半閉鎖型に比べて断熱性が高いが、いずれの場合も、温度、湿度などの室内環境を一定に保つ必要があるため、エアコンや除湿機を利用して環境制御が行われる。 Generally, in a cultivation apparatus such as a plant factory, light, temperature, humidity, and carbon dioxide (CO 2 ) concentration are controlled in a completely closed cultivation room or a semi-closed cultivation room like a facility in a building. Plants such as vegetables are produced by artificially controlling the internal environment. In addition, such cultivation apparatuses are roughly classified into a complete artificial light type that uses artificial light from a light source such as an LED without using sunlight, and a solar type that uses sunlight. Closed-type cultivation rooms have higher insulation than semi-closed-type ones, but in either case, it is necessary to maintain a constant indoor environment, such as temperature and humidity, so the environment is controlled using air conditioners and dehumidifiers is done.
 例えば特許文献1の植物栽培装置は、植物の栽培に適した空質条件を適正に均質化し、維持することができ、植物の品質安定及び収穫量増に寄与するための技術を開示している。この植物栽培装置は、具体的には、筐体と、空気回収用配管と、空調装置と、空気供給用配管と、を備える。筐体は、植物を栽培する空間を内部に有する。空気回収用配管は、筐体内の空気を回収する筐体の回収穴と連結される。空調装置は、回収穴から空気回収用配管を介して回収した空気の温度、湿度、及びCO濃度を植物の栽培に対応した条件に調整する。空気供給用配管は、空調装置と筐体の供給穴とを連結して、空調装置で調整後の空気を筐体の供給穴から筐体内に供給する。また、特許文献1の段落0026、0027に示されているように、センサは空調装置に吸い込まれた空気の空質状態を計測するためのものであり、空気の流路の上流側にのみ配置されている。 For example, the plant cultivation apparatus of Patent Document 1 discloses a technology that can appropriately homogenize and maintain air quality conditions suitable for plant cultivation, contributing to stable quality of plants and an increase in yield. . Specifically, this plant cultivation apparatus includes a housing, an air recovery pipe, an air conditioner, and an air supply pipe. A housing|casing has the space which cultivates a plant inside. The air recovery pipe is connected to the recovery hole of the housing for recovering the air inside the housing. The air conditioner adjusts the temperature, humidity, and CO 2 concentration of the air recovered from the recovery holes through the air recovery pipes to conditions suitable for plant cultivation. The air supply pipe connects the air conditioner and the supply hole of the housing, and supplies the air adjusted by the air conditioner into the housing through the supply hole of the housing. Further, as described in paragraphs 0026 and 0027 of Patent Document 1, the sensor is for measuring the air quality state of the air sucked into the air conditioner, and is arranged only on the upstream side of the air flow path. It is
日本国特開2017-205072号公報Japanese Patent Application Laid-Open No. 2017-205072
 例えば特許文献1のような技術を利用することで、植物の栽培環境において空質条件を適正に均質化することが可能になる。しかしながら、植物の実際の生育状況は一定ではないので、例えば適切な収穫期に植物を収穫することができない。 For example, by using a technique such as Patent Document 1, it becomes possible to appropriately homogenize the air quality conditions in the plant cultivation environment. However, since the actual growth conditions of plants are not constant, it is not possible, for example, to harvest the plants at the appropriate harvest time.
 そこで、植物の実際の生育状況を把握するための新たな技術が求められる。 Therefore, new technology is required to grasp the actual growth status of plants.
 本発明は、上記の状況に鑑みてなされたものであり、その目的は、実際の植物の生育状況を把握可能にして、生産する植物の収穫期の調整や収益の増大化のために役立つ新たな植物栽培システムを提供することである。 The present invention has been made in view of the above circumstances, and its object is to make it possible to grasp the actual growth situation of plants, to adjust the harvest period of plants to be produced and to increase profits. It is to provide a plant cultivation system that is
 前述した目的を達成するために、本発明に係る植物栽培システムは、下記(1)~(14)を特徴としている。
(1) 外気から隔離された閉鎖空間を内部に形成する栽培室と、前記閉鎖空間内に配置され、植物の栽培に利用可能な栽培容器とを有する植物栽培システムであって、
 前記閉鎖空間内に前記植物の栽培に必要な栽培環境を形成し、かつ、前記栽培環境における前記植物の光合成を評価するための測定を行う栽培環境制御部、を備えた植物栽培システム。
In order to achieve the above object, a plant cultivation system according to the present invention is characterized by the following (1) to (14).
(1) A plant cultivation system having a cultivation chamber inside which forms a closed space isolated from the outside air, and a cultivation container that is arranged in the closed space and can be used for cultivating plants,
A plant cultivation system comprising: a cultivation environment control unit that forms a cultivation environment necessary for cultivating the plant in the closed space and performs measurements for evaluating photosynthesis of the plant in the cultivation environment.
(2) 一端が前記栽培室の空気出口と接続され、他端が前記栽培室の空気入口と接続された空気循環のための空気管路と、
 前記空気管路と接続され、前記閉鎖空間内における前記植物の生育に必要な空気環境を調整する空気環境調整部と、を更に備え、
 前記栽培環境制御部は、前記空気管路における少なくとも2箇所で検出した空気環境状態に基づいて、前記閉鎖空間内の前記植物における光合成を評価する光合成評価部を有する、
 上記(1)に記載の植物栽培システム。
(2) an air conduit for air circulation, one end of which is connected to the air outlet of the cultivation chamber and the other end of which is connected to the air inlet of the cultivation chamber;
an air environment adjustment unit connected to the air duct and adjusting an air environment necessary for the growth of the plant in the closed space;
The cultivation environment control unit has a photosynthesis evaluation unit that evaluates photosynthesis in the plant in the closed space based on the air environment state detected in at least two locations in the air duct,
The plant cultivation system according to (1) above.
(3) 前記栽培環境制御部は、前記光合成評価部の評価結果を前記閉鎖空間内の前記植物に対する前記栽培環境の調整に反映するように、少なくとも前記空気環境調整部を制御する、
 上記(2)に記載の植物栽培システム。
(3) The cultivation environment control unit controls at least the air environment adjustment unit so that the evaluation result of the photosynthesis evaluation unit is reflected in the adjustment of the cultivation environment for the plant in the closed space.
The plant cultivation system according to (2) above.
(4) 前記空気環境調整部は、前記空気管路に対して二酸化炭素を供給可能な二酸化炭素供給源、及び前記空気管路に対して酸素を供給可能な酸素供給源を有する、
 上記(2)又は(3)に記載の植物栽培システム。
(4) The air environment adjustment unit has a carbon dioxide supply source capable of supplying carbon dioxide to the air pipeline and an oxygen supply source capable of supplying oxygen to the air pipeline.
The plant cultivation system according to (2) or (3) above.
(5) 前記光合成評価部は、前記空気環境状態として、二酸化炭素濃度、酸素濃度及び湿度の少なくともいずれかを検出する、
 上記(2)乃至(4)のいずれかに記載の植物栽培システム。
(5) the photosynthesis evaluation unit detects at least one of carbon dioxide concentration, oxygen concentration, and humidity as the air environmental state;
The plant cultivation system according to any one of (2) to (4) above.
(6) 前記光合成評価部は、前記栽培室の前記空気入口の近傍位置における二酸化炭素濃度を第1の二酸化炭素濃度として検出すると共に、前記栽培室の前記空気出口の近傍位置における二酸化炭素濃度を第2の二酸化炭素濃度として検出する二酸化炭素検出部を有する、
 上記(2)乃至(5)のいずれかに記載の植物栽培システム。
(6) The photosynthesis evaluation unit detects the carbon dioxide concentration at a position near the air inlet of the cultivation room as a first carbon dioxide concentration, and detects the carbon dioxide concentration at a position near the air outlet of the cultivation room. Having a carbon dioxide detection unit that detects as a second carbon dioxide concentration,
The plant cultivation system according to any one of (2) to (5) above.
(7) 前記光合成評価部は、前記栽培室の前記空気入口の近傍位置における酸素濃度を第1の酸素濃度として検出し、かつ、前記栽培室の前記空気出口の近傍位置における酸素濃度を第2の酸素濃度として検出する酸素検出部を有する、
 上記(2)乃至(6)のいずれかに記載の植物栽培システム。
(7) The photosynthesis evaluation unit detects the oxygen concentration at a position near the air inlet of the cultivation room as a first oxygen concentration, and detects the oxygen concentration at a position near the air outlet of the cultivation room as a second oxygen concentration. Having an oxygen detection unit that detects as the oxygen concentration of
The plant cultivation system according to any one of (2) to (6) above.
(8) 前記空気環境調整部は、前記空気管路を通過する空気に対して温度及び湿度の調整を行う空調機構を有する、
 上記(2)乃至(7)のいずれかに記載の植物栽培システム。
(8) The air environment adjustment unit has an air conditioning mechanism that adjusts the temperature and humidity of the air passing through the air pipeline.
The plant cultivation system according to any one of (2) to (7) above.
(9) 前記光合成評価部は、前記栽培室の空気入口近傍の第1位置における二酸化炭素濃度を第1の二酸化炭素濃度として検出し、かつ、前記栽培室の空気出口近傍の第2位置における二酸化炭素濃度を第2の二酸化炭素濃度として検出する二酸化炭素検出部を有し、
 前記空気環境調整部は、前記空気管路上の前記第1位置と前記第2位置との間にある第3位置に二酸化炭素を供給可能な二酸化炭素供給源、前記第3位置に酸素を供給可能な酸素供給源、及び前記第3位置の近傍で少なくとも二酸化炭素濃度を検出可能な補給側二酸化炭素検出部を有する、
 上記(2)乃至(8)のいずれかに記載の植物栽培システム。
(9) The photosynthesis evaluation unit detects a carbon dioxide concentration at a first position near the air inlet of the cultivation room as a first carbon dioxide concentration, and detects carbon dioxide at a second position near the air outlet of the cultivation room. Having a carbon dioxide detection unit that detects the carbon concentration as a second carbon dioxide concentration,
The air environment adjustment unit includes a carbon dioxide supply source capable of supplying carbon dioxide to a third location between the first location and the second location on the air conduit, and capable of supplying oxygen to the third location. an oxygen supply source, and a supply-side carbon dioxide detection unit capable of detecting at least carbon dioxide concentration in the vicinity of the third position,
The plant cultivation system according to any one of (2) to (8) above.
(10) 前記光合成評価部は、少なくとも前記第1の二酸化炭素濃度、及び前記第2の二酸化炭素濃度の計測値から算出される時間あたりの二酸化炭素減少量に基づいて前記閉鎖空間内の前記植物における光合成を評価する、
 上記(6)に記載の植物栽培システム。
(10) The photosynthesis evaluation unit determines the plant in the closed space based on the amount of carbon dioxide reduction per hour calculated from the measured values of at least the first carbon dioxide concentration and the second carbon dioxide concentration to assess photosynthesis in
The plant cultivation system according to (6) above.
(11) 前記植物の生育に必要な光を前記閉鎖空間内に照射する照明ユニットと、
 所定の液体通路を経由して前記栽培容器と接続された養液タンクと、を有する、
 上記(1)乃至(10)のいずれかに記載の植物栽培システム。
(11) a lighting unit that irradiates the closed space with light necessary for growing the plant;
a nutrient solution tank connected to the cultivation container via a predetermined liquid passage,
The plant cultivation system according to any one of (1) to (10) above.
(12) 前記照明ユニットは、前記閉鎖空間の外側に配置された光源本体と、前記光源本体の出射した光を前記閉鎖空間の内側に導き前記閉鎖空間内の前記植物に照射する導光機構とを有する、
 上記(11)に記載の植物栽培システム。
(12) The lighting unit includes a light source body arranged outside the closed space, and a light guide mechanism for guiding the light emitted from the light source body to the inside of the closed space and irradiating the plant in the closed space. having
The plant cultivation system according to (11) above.
(13) それぞれが独立した前記閉鎖空間を形成する複数の前記栽培室を有し、
 前記栽培環境制御部は、複数の前記栽培室における植物栽培環境を個別に測定及び評価して制御に反映する、
 上記(1)乃至(12)のいずれかに記載の植物栽培システム。
(13) having a plurality of cultivation chambers each forming an independent closed space;
The cultivation environment control unit measures and evaluates the plant cultivation environments in the plurality of cultivation rooms individually and reflects them in the control.
The plant cultivation system according to any one of (1) to (12) above.
(14) 前記栽培環境制御部は、前記植物の光合成を評価した結果に基づいて、前記植物の生育を均一化するように前記栽培室における植物栽培環境を制御する、
 上記(1)乃至(13)のいずれかに記載の植物栽培システム。
(14) The cultivation environment control unit controls the plant cultivation environment in the cultivation chamber so as to uniform the growth of the plant based on the results of evaluating the photosynthesis of the plant.
The plant cultivation system according to any one of (1) to (13) above.
 上記(1)の構成の植物栽培システムによれば、栽培環境制御部の制御により、閉鎖空間で植物の生育に適した栽培環境を形成し、かつ、実際の植物の生育状況を光合成により正しく評価してその評価結果を栽培に反映することが可能になる。また、栽培室が閉鎖空間内にあるので、栽培環境の調整が容易であり、光合成を評価するために必要な栽培環境の測定を高精度で行うことが可能になる。
 尚、本開示において、閉鎖空間とは、半閉鎖空間と完全閉鎖空間とを含み、半閉鎖空間とは、環境調節のために必要な部位を除いて、外気から遮断された空間を意味し、完全閉鎖空間とは、外気から完全に遮断され閉鎖された空間を意味する。
According to the plant cultivation system having the above configuration (1), a cultivation environment suitable for plant growth is formed in a closed space by the control of the cultivation environment control unit, and the actual growth situation of the plant is correctly evaluated by photosynthesis. Then, the evaluation results can be reflected in cultivation. In addition, since the cultivation room is in a closed space, the cultivation environment can be easily adjusted, and the cultivation environment required for evaluating photosynthesis can be measured with high accuracy.
In the present disclosure, the closed space includes a semi-enclosed space and a completely closed space, and the semi-enclosed space means a space isolated from the outside air except for a part necessary for environmental control, A completely closed space means a closed space completely cut off from the outside air.
 上記(2)の構成の植物栽培システムによれば、閉鎖空間内における空気環境は、栽培室の空気出口、及び空気入口と接続された空気管路を用いて空気環境調整部により調整される。したがって、空気管路を通過する空気が空気環境調整部による調整の対象となる、すなわち、調整対象となる空間が閉鎖空間全体と比較して小さいため、植物の生育に適した空気環境に調整することが容易である。また、光合成評価部が空気管路上の2箇所で検出した空気環境状態から植物の光合成を評価するので、精度の高い評価が可能になる。すなわち、空気管路上の2箇所で空気環境状態を測定する場合には、植物が光合成により二酸化炭素等を消費する前の導入側の空気環境と、植物が光合成により二酸化炭素等を消費した後の排気側の空気環境とを誤差の少ない状態で検出することが容易になる。また、空気管路上では栽培室よりも断面積が小さいため空気中の二酸化炭素濃度等が均一になり、測定誤差が減少する。 According to the plant cultivation system having the configuration (2) above, the air environment in the closed space is adjusted by the air environment adjustment section using the air conduit connected to the air outlet and air inlet of the cultivation room. Therefore, the air passing through the air duct is subject to adjustment by the air environment adjusting section, that is, since the space to be adjusted is smaller than the entire closed space, the air environment is adjusted to be suitable for plant growth. is easy. In addition, since the photosynthesis evaluation unit evaluates the photosynthesis of plants based on the air environment conditions detected at two points on the air pipeline, highly accurate evaluation is possible. That is, when measuring the air environment state at two points on the air pipeline, the air environment on the introduction side before plants consume carbon dioxide etc. by photosynthesis and the air environment after plants consume carbon dioxide etc. by photosynthesis It becomes easy to detect the air environment on the exhaust side with little error. In addition, since the cross-sectional area of the air pipeline is smaller than that of the cultivation room, the concentration of carbon dioxide in the air becomes uniform, and measurement errors are reduced.
 上記(3)の構成の植物栽培システムによれば、光合成評価部の評価結果を栽培環境の調整に反映するフィードバック制御により、植物の生育状況が均一化するように調整できる。すなわち、目標の基準状態に比べて実際の植物の生育速度が遅い場合に生育を促進する方向に栽培環境を調整することが可能であり、基準状態に比べて実際の植物の生育速度が早すぎる場合は生育を抑制する方向に栽培環境を調整することが可能である。 According to the plant cultivation system configured in (3) above, it is possible to make adjustments so that the growing conditions of plants are uniformed by feedback control that reflects the evaluation results of the photosynthesis evaluation unit in the adjustment of the cultivation environment. That is, when the actual growth rate of the plant is slow compared to the target reference state, it is possible to adjust the cultivation environment in the direction of promoting the growth, and the actual growth rate of the plant is too fast compared to the reference state. In this case, it is possible to adjust the cultivation environment so as to suppress the growth.
 上記(4)の構成の植物栽培システムによれば、植物が光合成に伴って消費する栽培環境の空気中の二酸化炭素、及び酸素を補給できるので、閉鎖空間内の栽培環境における二酸化炭素濃度、及び酸素濃度を適正な状態に維持可能である。 According to the plant cultivation system having the configuration of (4) above, the carbon dioxide and oxygen in the air in the cultivation environment consumed by the plants during photosynthesis can be replenished, so the carbon dioxide concentration in the cultivation environment in the closed space, Oxygen concentration can be maintained in an appropriate state.
 上記(5)の構成の植物栽培システムによれば、空気環境状態として、二酸化炭素濃度、酸素濃度及び湿度の少なくともいずれかを検出することで、閉鎖空間内の植物における光合成を評価可能となる。 According to the plant cultivation system configured in (5) above, by detecting at least one of the carbon dioxide concentration, oxygen concentration, and humidity as the air environment state, it is possible to evaluate the photosynthesis of the plants in the closed space.
 上記(6)の構成の植物栽培システムによれば、栽培室に空気入口から導入される空気について第1の二酸化炭素濃度を検出し、栽培室の空気出口から排気される空気について第2の二酸化炭素濃度を検出する。したがって、第1の二酸化炭素濃度と第2の二酸化炭素濃度との差異に基づいて、植物の光合成に伴う二酸化炭素消費量を高精度で把握することが可能であり、植物の生育状況を均一化するために役立てることができる。 According to the plant cultivation system having the configuration (6) above, the first carbon dioxide concentration is detected in the air introduced into the cultivation chamber from the air inlet, and the second carbon dioxide concentration is detected in the air exhausted from the air outlet of the cultivation chamber. Detect carbon concentration. Therefore, based on the difference between the first carbon dioxide concentration and the second carbon dioxide concentration, it is possible to accurately grasp the amount of carbon dioxide consumed by the photosynthesis of the plant, and uniform the growth situation of the plant. can help to do so.
 上記(7)の構成の植物栽培システムによれば、栽培室に空気入口から導入される空気について第1の酸素濃度を検出し、栽培室の空気出口から排気される空気について第2の酸素濃度を検出する。したがって、第1の酸素濃度と第2の酸素濃度との差異に基づいて、植物の光合成に伴う酸素消費量を高精度で把握することが可能であり、植物の生育状況を均一化するために役立てることができる。 According to the plant cultivation system having the configuration (7) above, the first oxygen concentration is detected in the air introduced into the cultivation chamber from the air inlet, and the second oxygen concentration is detected in the air exhausted from the air outlet of the cultivation chamber. to detect Therefore, based on the difference between the first oxygen concentration and the second oxygen concentration, it is possible to accurately grasp the amount of oxygen consumed by the photosynthesis of the plant. can help.
 上記(8)の構成の植物栽培システムによれば、空調機構を利用して空気管路における空気の温度及び湿度を調整できるので、植物の栽培環境における温度及び湿度も適正に維持できる。例えば、栽培している植物からの水分の蒸散に伴って栽培環境における湿度が上昇するのを防止できる。また、植物の生育に適した温度を維持できる。 According to the plant cultivation system having the configuration (8) above, the temperature and humidity of the air in the air duct can be adjusted using the air conditioning mechanism, so the temperature and humidity in the plant cultivation environment can be properly maintained. For example, it is possible to prevent the humidity in the cultivation environment from rising due to evaporation of water from the cultivated plants. Also, a temperature suitable for plant growth can be maintained.
 上記(9)の構成の植物栽培システムによれば、第1位置から空気入口を通って栽培室に導入され、更に栽培室から空気出口を通って排気され第2位置に至るまでの間の空気環境変化に影響を与えることなく、第3位置から二酸化炭素を補給できる。したがって、第1位置、及び第2位置における測定結果に基づき、栽培室内における植物の光合成に伴う二酸化炭素消費量を正確に把握することが容易になる。 According to the plant cultivation system configured in (9) above, the air is introduced from the first position into the cultivation chamber through the air inlet, is exhausted from the cultivation chamber through the air outlet, and reaches the second position. Carbon dioxide can be replenished from the third location without affecting environmental changes. Therefore, based on the measurement results at the first position and the second position, it becomes easy to accurately grasp the amount of carbon dioxide consumed by the photosynthesis of the plants in the cultivation room.
 上記(10)の構成の植物栽培システムによれば、植物の栽培期間中における実際の生育状況を高精度で把握することが容易になる。光合成反応は、植物生育への影響が非常に大きいので、光合成反応の速度やその変化を把握することが植物の生育状況を正確に知るために役立つ。また、光合成反応に伴って空気中の二酸化炭素が消費されるので、閉鎖空間内の植物に関しては、二酸化炭素濃度の計測値から算出される時間あたりの二酸化炭素減少量に基づいて光合成反応の状況を推定できる。 According to the plant cultivation system having the configuration (10) above, it becomes easy to grasp the actual growth situation of the plant during the cultivation period with high accuracy. Since the photosynthetic reaction has a great influence on plant growth, understanding the speed of the photosynthetic reaction and its changes is useful for accurately understanding the growth conditions of plants. In addition, since carbon dioxide in the air is consumed in the photosynthetic reaction, the state of the photosynthetic reaction of plants in the closed space is calculated based on the amount of carbon dioxide decrease per hour calculated from the measured value of the carbon dioxide concentration. can be estimated.
 上記(11)の構成の植物栽培システムによれば、照明ユニットにより植物の生育に必要な光を閉鎖空間内に照射でき、養液タンクにより植物の生育に必要な養液を栽培容器に供給できる。また、照明ユニットにより植物の生育に必要な光を閉鎖空間内に照射できるため、栽培時と同じ条件で光合成量を測定することができる。 According to the plant cultivation system having the configuration (11) above, the illumination unit can irradiate the closed space with light necessary for plant growth, and the nutrient solution tank can supply the nutrient solution required for plant growth to the cultivation container. . In addition, since the illumination unit can irradiate the closed space with the light necessary for plant growth, the amount of photosynthesis can be measured under the same conditions as during cultivation.
 上記(12)の構成の植物栽培システムによれば、光の出射に伴って生じる光源本体の発熱の影響で閉鎖空間内の温度が上昇するのを避けることができる。これにより、閉鎖空間内の温度を適正に維持するためのエネルギー消費を大幅に削減できる。 According to the plant cultivation system having the configuration (12) above, it is possible to prevent the temperature in the closed space from rising due to the heat generated by the light source main body as the light is emitted. This significantly reduces the energy consumption required to maintain the proper temperature in the enclosed space.
 上記(13)の構成の植物栽培システムによれば、複数の栽培室のそれぞれの内部で栽培される植物を、個別に適正な栽培環境を維持しながら個別に管理することができる。したがって、異なる品種の植物を互いに異なる栽培環境で同時に管理したり、同じ品種の複数グループの植物をそれぞれ異なる時期に収穫できるように同時に管理することが容易になる。 According to the plant cultivation system having the configuration (13) above, the plants cultivated inside each of the plurality of cultivation rooms can be individually managed while maintaining an appropriate cultivation environment. Therefore, it becomes easy to simultaneously manage plants of different varieties in different cultivation environments, or to simultaneously manage a plurality of groups of plants of the same variety so that they can be harvested at different times.
 上記(14)の構成の植物栽培システムによれば、栽培環境制御部が植物の生育を均一化するように制御するので、例えば植物の収穫期を狙い通りに調整したり、収穫期毎の生産量を均一化したり、出荷規格に合わせて品質を安定化するように調整することが可能になる。 According to the plant cultivation system having the above configuration (14), the cultivation environment control unit controls the growth of the plants so that they grow uniformly. It will be possible to make adjustments to equalize the quantity and stabilize the quality according to shipping standards.
 本発明の植物栽培システムは、実際の植物の生育状況を把握可能であり、生産する植物の収穫期の調整や収益の増大化のために役立てることができる。 The plant cultivation system of the present invention can grasp the actual growth status of plants, and can be used to adjust the harvest period of plants to be produced and to increase profits.
 以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための最良の形態を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。 The above is a brief description of the present invention. Furthermore, the details of the present invention will be further clarified by reading the best mode for carrying out the invention described below with reference to the accompanying drawings.
図1は、本発明の実施形態における植物栽培システムの主要部の構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of main parts of a plant cultivation system according to an embodiment of the present invention. 図2は、照明装置の一部分の断面構造を拡大して示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing an enlarged cross-sectional structure of a portion of the lighting device. 図3は、植物栽培システムの主要な動作例を示すフローチャートである。FIG. 3 is a flow chart showing an example of main operations of the plant cultivation system. 図4は、変形例-1の植物栽培システムの構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the plant cultivation system of modification-1. 図5は、変形例-2の植物栽培システムの構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the plant cultivation system of modification-2. 図6は、変形例-3の植物栽培システムの構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the plant cultivation system of modification-3. 図7は、変形例-4の植物栽培システムの構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of the plant cultivation system of Modification-4.
 本発明に関する具体的な実施の形態について、各図を参照しながら以下に説明する。
<植物栽培システムの構成>
 本発明の実施形態における植物栽培システムの主要部である植物栽培装置100の構成例を図1に示す。
Specific embodiments of the present invention will be described below with reference to each drawing.
<Configuration of plant cultivation system>
FIG. 1 shows a configuration example of a plant cultivation device 100, which is a main part of a plant cultivation system according to an embodiment of the present invention.
 図1に示した植物栽培装置100は、植物15を栽培するために必要な1つの栽培室10を備えている。この栽培室10は、箱状筐体11の内側に形成された閉鎖空間13を有している。すなわち、箱状筐体11は、断熱性や遮光性を有し、更にある程度の気密性及び水密性を有する材料により構成される複数の壁部、底部、天井部などで囲まれた閉鎖空間13を形成している。箱状筐体11は、例えば、ウレタンフォーム等の樹脂や、グラスウール、ロックウール等の繊維系断熱材といった材料により構成される。また、発生した光を栽培室10の内部で効率よく植物15に照射可能にするために、箱状筐体11の内壁各部は光の反射率が高い材料を用いて構成してある。 The plant cultivation apparatus 100 shown in FIG. 1 includes one cultivation chamber 10 necessary for cultivating plants 15. This cultivation room 10 has a closed space 13 formed inside a box-shaped housing 11 . That is, the box-shaped housing 11 is a closed space 13 surrounded by a plurality of walls, a bottom, a ceiling, etc., which are made of a material that has heat insulation and light shielding properties, and also has airtightness and watertightness to some extent. forming The box-shaped housing 11 is made of, for example, a material such as a resin such as urethane foam, or a fiber-based heat insulating material such as glass wool or rock wool. In order to efficiently irradiate the plants 15 with the generated light inside the cultivation chamber 10, each part of the inner wall of the box-shaped housing 11 is made of a material having a high light reflectance.
 したがって、箱状筐体11内の閉鎖空間13は外気から隔離されており、栽培室10の空気環境、すなわち二酸化炭素濃度、酸素濃度、温度、湿度等の条件は、外気とは異なる状態になっている。 Therefore, the closed space 13 in the box-shaped housing 11 is isolated from the outside air, and the air environment of the cultivation room 10, that is, the conditions such as carbon dioxide concentration, oxygen concentration, temperature, humidity, etc., are different from the outside air. ing.
 図1に示すように、栽培室10の底部近傍には複数の植物15の栽培が可能な栽培容器12が設置されている。また、植物15の生育に必要な光を照射するために、照明装置14が栽培室10内の天井付近に設置されている。実際には、後述するように照明装置14の光源は栽培室10の外側にある。そしてその光源の光が栽培室10内に配置された導光板18で栽培室10内に導かれ、栽培室10内で天井から下方の植物15に向けて光が出射される。尚、照明装置14は、栽培室10の外側に設けられた光源の光が、導光板18で栽培室10内に導かれて植物15に出射される構成に限らず、栽培室10内において植物15の上方にLED光源が配置され、LED光源から植物15に光を直接出射する構成でもよい。 As shown in FIG. 1, a cultivation container 12 capable of cultivating a plurality of plants 15 is installed near the bottom of the cultivation room 10 . In addition, a lighting device 14 is installed near the ceiling in the cultivation room 10 in order to irradiate the plant 15 with light necessary for growing it. Actually, the light source of the lighting device 14 is located outside the cultivation room 10 as will be described later. Light from the light source is guided into the cultivation room 10 by a light guide plate 18 arranged in the cultivation room 10 , and emitted from the ceiling in the cultivation room 10 toward the plant 15 below. The lighting device 14 is not limited to a configuration in which light from a light source provided outside the cultivation chamber 10 is guided into the cultivation chamber 10 by the light guide plate 18 and emitted to the plants 15. A configuration in which an LED light source is arranged above the plant 15 and the light is directly emitted from the LED light source to the plant 15 may be employed.
 栽培室10内の空気環境の調整を可能にするために、栽培室10の一方の壁面に空気入口10aが形成され、反対側の壁面に空気出口10bが形成されている。そして、空気管路21の管路出口21aが空気入口10aと接続され、空気管路21の管路入口21bが空気出口10bと接続されている。 An air inlet 10a is formed on one wall surface of the cultivation room 10, and an air outlet 10b is formed on the opposite wall surface, in order to enable adjustment of the air environment in the cultivation room 10. A conduit outlet 21a of the air conduit 21 is connected to the air inlet 10a, and a conduit inlet 21b of the air conduit 21 is connected to the air outlet 10b.
 空気管路21は、一例として、気密性を有し断面積が略一定のパイプなどで構成され、栽培室10内の空気をその外側で循環するための空気流路を形成している。すなわち、栽培室10内の空気は空気出口10bから管路入口21bを介して空気管路21に入り、空気管路21内の流路を通過して管路出口21aに至り、空気入口10aを介して栽培室10内に再び導入される。 As an example, the air conduit 21 is composed of a pipe or the like that is airtight and has a substantially constant cross-sectional area, and forms an air flow path for circulating the air inside the cultivation room 10 outside. That is, the air in the cultivation chamber 10 enters the air conduit 21 from the air outlet 10b through the conduit inlet 21b, passes through the flow path in the air conduit 21, reaches the conduit outlet 21a, and passes through the air inlet 10a. It is introduced again into the cultivation room 10 via the.
 空気管路21の流路の途中には、エアポンプ(AP)22、及び空調部23が接続されている。エアポンプ22は、管路出口21aから栽培室10内に向かう方向の空気の流れを形成する機能を有している。空調部23は、空気管路21を通過する空気に対する除湿・加湿機能、及び温度調節機能を有している。 An air pump (AP) 22 and an air conditioner 23 are connected in the middle of the flow path of the air pipe 21 . The air pump 22 has a function of forming an air flow in the direction from the conduit outlet 21a toward the inside of the cultivation chamber 10 . The air conditioning unit 23 has a dehumidification/humidification function and a temperature control function for the air passing through the air conduit 21 .
 また、ボンベ24及び25が補給管路26を経由して空気管路21と接続されている。ボンベ24は、その内部に蓄積している二酸化炭素(CO)を必要に応じて補給管路26に供給できる。ボンベ25は、その内部に蓄積している酸素(O)を必要に応じて補給管路26に供給できる。各ボンベ24、25には、各ボンベ24、25から補給管路26への二酸化炭素及び酸素の供給のオンオフ又は供給量を制御するための電磁弁がそれぞれ備わっている。電磁弁は、一例として、制御部50により制御される。 Cylinders 24 and 25 are also connected to the air line 21 via a supply line 26 . Cylinder 24 can supply carbon dioxide (CO 2 ) accumulated therein to supply line 26 as needed. The cylinder 25 can supply the oxygen (O 2 ) accumulated therein to the supply line 26 as needed. Each cylinder 24 , 25 is provided with a solenoid valve for controlling the supply of carbon dioxide and oxygen from each cylinder 24 , 25 to the supply line 26 , or the amount of supply. A solenoid valve is controlled by the control part 50 as an example.
 また、植物栽培装置100には、閉鎖空間13内の空気環境の計測を可能にするために複数のセンサ31及び32が備わっている。センサ31は二酸化炭素の濃度を計測する機能を有し、センサ32は酸素の濃度を計測する機能を有している。 In addition, the plant cultivation device 100 is equipped with a plurality of sensors 31 and 32 to enable measurement of the air environment within the closed space 13. The sensor 31 has a function of measuring the concentration of carbon dioxide, and the sensor 32 has a function of measuring the concentration of oxygen.
 図1に示した植物栽培装置100においては、センサ31及び32のそれぞれは、空気環境測定点33及び34、並びに、補給空気測定点35の各箇所で、計測可能に構成されている。なお、センサ31及び32を予め複数組用意して、空気環境測定点33及び34と、補給空気測定点35とのそれぞれの箇所の近傍に独立したセンサ31及び32を個別に設置してもよいし、複数の測定点での計測が可能なセンサを用いても、すなわちセンサを兼用してもよい。また、閉鎖空間13の内部環境における温度、湿度、二酸化炭素濃度などを検知するためのセンサを更に追加してもよい。さらに、閉鎖空間13内の空気環境の計測を可能にするためのセンサを、空気環境測定点33及び34、並びに、補給空気測定点35以外の箇所、すなわち空気管路21外に設置してもよい。一例として、栽培室10の天井に、閉鎖空間13内の空気の出口及び入口を設け、これらの出口と入口とを接続する空気管路内のいずれかの箇所に、二酸化炭素濃度又は酸素濃度を検知するためのセンサを設置してもよい。このセンサによって、栽培室10内の植物15による光合成の影響を受けた後の二酸化炭素濃度又は酸素濃度を測定できる。 In the plant cultivation apparatus 100 shown in FIG. 1, the sensors 31 and 32 are configured to be capable of measuring at the air environment measurement points 33 and 34 and the supplementary air measurement point 35, respectively. A plurality of sets of sensors 31 and 32 may be prepared in advance, and independent sensors 31 and 32 may be individually installed near the air environment measurement points 33 and 34 and the supply air measurement point 35, respectively. Alternatively, a sensor capable of measuring at a plurality of measurement points may be used, that is, the sensor may be used in common. Further, sensors for detecting the temperature, humidity, carbon dioxide concentration, etc. in the internal environment of the closed space 13 may be added. Furthermore, sensors for enabling measurement of the air environment in the closed space 13 may be installed at locations other than the air environment measurement points 33 and 34 and the supplementary air measurement point 35, i.e., outside the air pipeline 21. good. As an example, the ceiling of the cultivation room 10 is provided with an outlet and an inlet for the air in the closed space 13, and the carbon dioxide concentration or the oxygen concentration is added to any point in the air pipeline connecting these outlets and inlets. A sensor may be installed for detection. With this sensor, the carbon dioxide concentration or oxygen concentration after being affected by photosynthesis by the plants 15 in the cultivation room 10 can be measured.
 エアポンプ22を駆動することにより、栽培室10内で空気入口10aから空気出口10bに向かう方向の空気の流れを形成できる。特に、図1の例では栽培室10内の幅、すなわち図1中の左右方向の寸法、や、奥行き、すなわち図1中の紙面に垂直な方向の寸法、に比べて底部から天井部までの高さが比較的小さいので、栽培室10内で水平方向に向かう安定した空気の流れを形成できる。 By driving the air pump 22, an air flow can be formed in the cultivation chamber 10 in the direction from the air inlet 10a to the air outlet 10b. In particular, in the example of FIG. 1, the width in the cultivation room 10, that is, the dimension in the left-right direction in FIG. 1, and the depth, that is, the dimension in the direction perpendicular to the paper surface in FIG. Since the height is relatively small, a stable horizontal air flow can be formed in the cultivation chamber 10 .
 植物15を栽培する際には、植物15による光合成に伴って二酸化炭素や、酸素が吸収または排出され、水分(HO)が排出される。そのため、二酸化炭素濃度の変化や、酸素濃度の変化を把握できれば、それに基づいて光合成を評価し、植物15の実際の生育状況を推定することが可能になる。 When the plant 15 is cultivated, carbon dioxide and oxygen are absorbed or discharged, and water (H 2 O) is discharged as the plant 15 performs photosynthesis. Therefore, if changes in carbon dioxide concentration and changes in oxygen concentration can be grasped, photosynthesis can be evaluated based thereon, and the actual growth state of the plant 15 can be estimated.
 図1に示した植物栽培装置100においては、空気環境測定点33が空気入口10a近傍の空気管路21上にあるので、栽培室10内の植物15による光合成の影響を受ける前の二酸化炭素濃度、及び酸素濃度を空気環境測定点33で安定した状態で計測できる。また、空気環境測定点34が空気出口10b近傍の空気管路21上にあるので、栽培室10内の植物15による光合成の影響を受けた後の二酸化炭素濃度、及び酸素濃度を空気環境測定点34で安定した状態で計測できる。 In the plant cultivation apparatus 100 shown in FIG. 1, the air environment measurement point 33 is on the air pipeline 21 near the air inlet 10a, so the carbon dioxide concentration before being affected by photosynthesis by the plants 15 in the cultivation room 10 , and oxygen concentration can be stably measured at the air environment measuring point 33 . In addition, since the air environment measurement point 34 is on the air pipeline 21 near the air outlet 10b, the carbon dioxide concentration and oxygen concentration after being affected by photosynthesis by the plants 15 in the cultivation room 10 are measured at the air environment measurement point 34 can be measured in a stable state.
 したがって、例えば、照明装置14による光の照射中において、空気環境測定点33で計測した二酸化炭素濃度と、空気環境測定点34で計測した二酸化炭素濃度との差分に基づいて、栽培室10内の植物15全体による光合成を評価し、生育状況を推定することが可能である。また、同様に、例えば空気環境測定点33で計測した酸素濃度と、空気環境測定点34で計測した酸素濃度との差分に基づいて、栽培室10内の植物15全体による光合成を評価し、生育状況を推定することも可能である。 Therefore, for example, during the irradiation of light by the lighting device 14, based on the difference between the carbon dioxide concentration measured at the air environment measurement point 33 and the carbon dioxide concentration measured at the air environment measurement point 34, the inside of the cultivation room 10 It is possible to evaluate photosynthesis by the entire plant 15 and estimate the growth status. Similarly, for example, based on the difference between the oxygen concentration measured at the air environment measurement point 33 and the oxygen concentration measured at the air environment measurement point 34, photosynthesis by the entire plant 15 in the cultivation room 10 is evaluated. It is also possible to extrapolate the situation.
 また、植物15の光合成により、栽培室10の空気中の二酸化炭素が消費されて二酸化炭素濃度が低下する。しかし、空気管路21上の空気補給点21cにボンベ24から二酸化炭素を補給することで、植物15の生育に適した二酸化炭素濃度を維持するように制御できる。また、植物15の呼吸により、栽培室10の空気中の酸素濃度が低下する場合には、空気管路21上の空気補給点21cにボンベ25から酸素を補給することで、植物15の生育に適した酸素濃度を維持するように制御できる。 In addition, carbon dioxide in the air in the cultivation room 10 is consumed by photosynthesis of the plants 15, and the carbon dioxide concentration decreases. However, by supplying carbon dioxide from the cylinder 24 to the air supply point 21c on the air pipe 21, it is possible to control the concentration of carbon dioxide suitable for the growth of the plant 15 to be maintained. In addition, when the oxygen concentration in the air in the cultivation room 10 decreases due to the respiration of the plants 15, by supplying oxygen from the cylinder 25 to the air supply point 21c on the air pipe 21, the growth of the plants 15 is improved. It can be controlled to maintain a suitable oxygen concentration.
 すなわち、空気補給点21cに近い位置の補給空気測定点35で二酸化炭素濃度及び酸素濃度を測定できるので、その測定結果に基づいて二酸化炭素濃度が低下した場合にはボンベ24から二酸化炭素を補給し、酸素濃度が低下した場合にはボンベ25から酸素を補給できる。 That is, since the carbon dioxide concentration and the oxygen concentration can be measured at the supply air measurement point 35 located near the air supply point 21c, carbon dioxide is supplied from the cylinder 24 when the carbon dioxide concentration decreases based on the measurement results. Oxygen can be replenished from the cylinder 25 when the oxygen concentration is low.
 図1に示すように栽培室10と隣接する場所には、養液タンク41が設置されている。また、養液供給管42は一端が養液タンク41と接続され、他端が栽培室10の養液入口10cを経由して栽培容器12と接続されている。また、廃液管43は一端が栽培室10の廃液出口10dを経由して栽培容器12と接続され、他端が養液タンク41と接続されている。 A nutrient solution tank 41 is installed adjacent to the cultivation room 10 as shown in FIG. One end of the nutrient solution supply pipe 42 is connected to the nutrient solution tank 41 , and the other end is connected to the cultivation container 12 via the nutrient solution inlet 10 c of the cultivation chamber 10 . One end of the waste liquid pipe 43 is connected to the cultivation container 12 via the waste liquid outlet 10 d of the cultivation chamber 10 , and the other end is connected to the nutrient solution tank 41 .
 また、肥料供給源45が肥料供給部46と接続され、肥料供給源45が肥料供給管47を経由して養液タンク41と接続されている。肥料供給部46は、栽培室10内の植物15の生育促進に必要な肥料を、必要に応じて肥料供給源45から取り込んで養液タンク41に供給することができる。そして、例えば養液タンク41内のpH(水素イオン濃度指数)やEC(電気伝導度、導電率)が目標値になるように制御される。 Also, the fertilizer supply source 45 is connected to the fertilizer supply section 46 and the fertilizer supply source 45 is connected to the nutrient solution tank 41 via the fertilizer supply pipe 47 . The fertilizer supply unit 46 can take in fertilizer necessary for promoting the growth of the plants 15 in the cultivation chamber 10 from the fertilizer supply source 45 and supply the fertilizer to the nutrient solution tank 41 as necessary. Then, for example, pH (hydrogen ion concentration index) and EC (electrical conductivity) in the nutrient solution tank 41 are controlled to be target values.
 養液タンク41内の養液41aは、ポンプ44の駆動により養液供給管42を経由して栽培容器12の内部に必要な量だけ供給される。また、栽培容器12から出た廃液は、廃液管43を経由して養液タンク41に回収される。 The nutrient solution 41 a in the nutrient solution tank 41 is driven by the pump 44 to supply the required amount to the inside of the cultivation container 12 via the nutrient solution supply pipe 42 . Moreover, the waste liquid discharged from the cultivation container 12 is collected in the nutrient solution tank 41 via the waste liquid pipe 43 .
 一方、植物栽培装置100を制御する機能を有する制御部50が、植物栽培装置100と通信可能な状態で接続されている。この制御部50については、植物工場である植物栽培装置100の近傍に設置したパソコンなどで構成することも可能であるし、インターネット上に接続したサーバを利用したクラウドのアプリケーションソフトウェアにより実現することもできる。更に、それらを組み合わせて構成することも考えられる。 On the other hand, a control unit 50 having a function of controlling the plant cultivation device 100 is connected to the plant cultivation device 100 in a communicable state. The control unit 50 can be configured by a personal computer installed near the plant cultivation apparatus 100, which is a plant factory, or by cloud application software using a server connected to the Internet. can. Furthermore, it is conceivable to configure them by combining them.
 図1に示した植物栽培システムにおいては、植物栽培装置100上のセンサ31及び32の計測値を含む様々な情報が、測定結果SG1として制御部50に送信される。制御部50は、測定結果SG1に基づいて植物栽培装置100における植物15の栽培環境、すなわち閉鎖空間13の空気中の二酸化炭素濃度、酸素濃度、温度、湿度、照射している光の強度などを把握する。また、制御部50は、二酸化炭素濃度の変化などに基づき植物15の光合成を評価して植物15の実際の生育状況を推定する。そして、制御部50は、最適な状態で植物15の栽培を行うために必要な制御パラメータSG2の情報を生成し出力する。 In the plant cultivation system shown in FIG. 1, various information including measured values of the sensors 31 and 32 on the plant cultivation device 100 are sent to the control unit 50 as the measurement result SG1. Based on the measurement result SG1, the control unit 50 determines the cultivation environment of the plant 15 in the plant cultivation apparatus 100, that is, the carbon dioxide concentration, oxygen concentration, temperature, humidity, and intensity of the light emitted in the air in the closed space 13. grasp. In addition, the control unit 50 estimates the actual growth state of the plant 15 by evaluating the photosynthesis of the plant 15 based on changes in the carbon dioxide concentration. And the control part 50 produces|generates and outputs the information of control parameter SG2 required in order to cultivate the plant 15 in an optimal state.
 例えば、栽培室10内で実際に栽培している植物15の品種に合わせて、最適な収穫期に植物15を収穫するために必要な栽培条件を制御部50が算出して、制御パラメータSG2に反映する。つまり、植物15を最適な状態で栽培するために必要な、閉鎖空間13内の環境を表す二酸化炭素濃度、酸素濃度、温度、湿度、照射している光の強度などが制御パラメータSG2として出力される。 For example, the control unit 50 calculates the cultivation conditions necessary for harvesting the plants 15 at the optimum harvesting period according to the varieties of the plants 15 actually cultivated in the cultivation chamber 10, and sets the control parameters SG2. reflect. That is, the carbon dioxide concentration, the oxygen concentration, the temperature, the humidity, the intensity of the irradiated light, etc. representing the environment in the closed space 13 necessary for cultivating the plant 15 in an optimal state are output as the control parameter SG2. be.
 植物栽培装置100の近傍でその状態を管理しているローカル制御部(図示せず)は、制御部50から入力される制御パラメータSG2に従って、植物栽培装置100の各部を制御する。すなわち、空調部23の温度調節量、湿度調節量、エアポンプ22の流量、ボンベ24、25からの二酸化炭素及び酸素の供給量、照明装置14の発光強度などが制御パラメータSG2に応じて調整される。なお、肥料供給部46から養液タンク41への肥料供給量や、養液タンク41から栽培容器12内への養液41a供給量についても、制御部50から入力される制御パラメータSG2に応じて調整され得る。 A local control unit (not shown) that manages the state near the plant cultivation apparatus 100 controls each part of the plant cultivation apparatus 100 according to the control parameter SG2 input from the control unit 50. That is, the temperature adjustment amount and humidity adjustment amount of the air conditioning unit 23, the flow rate of the air pump 22, the supply amount of carbon dioxide and oxygen from the cylinders 24 and 25, the light emission intensity of the lighting device 14, etc. are adjusted according to the control parameter SG2. . The amount of fertilizer supplied from the fertilizer supply unit 46 to the nutrient solution tank 41 and the amount of nutrient solution 41a supplied from the nutrient solution tank 41 to the cultivation container 12 are also controlled according to the control parameter SG2 input from the control unit 50. can be adjusted.
<照明装置の主要部の構成>
 図1の植物栽培装置100に装着した照明装置14の一部分の断面構造を図2に示す。
 図2に示した例では、ヒートシンク14cの開口した箇所の略中央に薄板状の光源基板14bが固定してあり、この光源基板14b上にLED光源部14aが設置されている。光源基板14bは、電気絶縁性の樹脂板上に銅箔などの回路パターンが形成されたものである。実際のLED光源部14aは、光源基板14b上に一列に並べて配置された多数のLED素子で構成されている。各LED素子は、青色又は白色、もしくは紫外の光をX軸方向に向けて出射するように発光できる。
<Structure of Main Part of Lighting Device>
FIG. 2 shows a partial cross-sectional structure of the illumination device 14 attached to the plant cultivation apparatus 100 of FIG.
In the example shown in FIG. 2, a thin light source board 14b is fixed substantially in the center of the opening of the heat sink 14c, and the LED light source section 14a is installed on the light source board 14b. The light source substrate 14b is an electrically insulating resin plate on which a circuit pattern such as copper foil is formed. The actual LED light source section 14a is composed of a large number of LED elements arranged in a line on the light source substrate 14b. Each LED element can emit blue, white, or ultraviolet light in the X-axis direction.
 図2に示すように、導光板18はその側端面18aが間隔を空けてLED光源部14aの光出射面と対向する状態で、上下をヒートシンク14cで挟まれ固定されている。導光板18は全体に亘ってZ軸方向の厚みが均一であり、厚み方向寸法は例えば数mm~10mm程度である。 As shown in FIG. 2, the light guide plate 18 is sandwiched and fixed between the heat sinks 14c at the top and bottom, with the side end face 18a facing the light emitting surface of the LED light source part 14a with a gap. The light guide plate 18 has a uniform thickness in the Z-axis direction over its entirety, and the dimension in the thickness direction is, for example, several mm to 10 mm.
 また、LED光源部14aと導光板18の側端面18aとの間に波長変換フィルム14dが配置されている。この波長変換フィルム14dは、LED光源部14aが出射する青色又は白色、もしくは紫外の光を、植物15の生育に適したスペクトルの光に波長変換する機能を有している。なお、波長変換フィルム14dを着脱したり、フィルムの種類を交換することで植物15に照射する光のスペクトルを切り替えることが可能である。 Also, a wavelength conversion film 14d is arranged between the LED light source section 14a and the side end surface 18a of the light guide plate 18 . This wavelength conversion film 14 d has a function of converting the wavelength of blue, white, or ultraviolet light emitted from the LED light source section 14 a into light of a spectrum suitable for the growth of the plant 15 . It is possible to switch the spectrum of the light with which the plant 15 is irradiated by attaching and detaching the wavelength conversion film 14d or by exchanging the type of film.
 LED光源部14aが出射した光は、波長変換フィルム14dで波長変換された後、導光板18の側端面18aからその内部に入射し、反射を繰り返しながら伝搬し、導光板18下方に形成された拡散面18bから下方に向けて出射され、植物15に照射される。導光板18の上側の面は反射面18cになっている。 The light emitted from the LED light source section 14a is wavelength-converted by the wavelength conversion film 14d, enters the light guide plate 18 from the side end face 18a, propagates while being repeatedly reflected, and is formed below the light guide plate 18. The light is emitted downward from the diffusion surface 18b, and the plant 15 is irradiated with the light. The upper surface of the light guide plate 18 is a reflecting surface 18c.
 一方、LED光源部14aは、発光時に大きな発熱を生じるため、ヒートシンク14cで外気に放熱し温度上昇を抑制する必要がある。また、仮にLED光源部14aの発熱が栽培室10内の温度に影響する場合には、栽培室10内を植物15の栽培に適した温度に維持する空調のために比較的大きいエネルギーが必要になる。しかし、図2に示したように照明装置14のLED光源部14aは栽培室10の外側の空間に配置されているので、LED光源部14aの発熱が栽培室10内の温度に影響を与えるのを避けることができる。したがって、図1の植物栽培装置100においては植物15を栽培する際の空調部23におけるエネルギー消費を減らすことができ、この植物工場のランニングコストを下げることができる。 On the other hand, since the LED light source section 14a generates a large amount of heat when emitting light, it is necessary to dissipate the heat to the outside air with the heat sink 14c and suppress the temperature rise. Also, if the heat generated by the LED light source unit 14a affects the temperature in the cultivation chamber 10, a relatively large amount of energy is required for air conditioning to maintain the temperature in the cultivation chamber 10 at a temperature suitable for cultivating the plants 15. Become. However, as shown in FIG. 2, the LED light source section 14a of the lighting device 14 is arranged in the space outside the cultivation room 10, so the heat generated by the LED light source section 14a does not affect the temperature inside the cultivation room 10. can be avoided. Therefore, in the plant cultivation apparatus 100 of FIG. 1, the energy consumption in the air conditioning unit 23 when cultivating the plants 15 can be reduced, and the running cost of this plant factory can be reduced.
<植物栽培システムの動作例>
 図1の植物栽培システムにおける主要な動作例を図3に示す。図3に示した動作は主に制御部50における処理の内容に相当する。
<Operation example of the plant cultivation system>
FIG. 3 shows an example of main operations in the plant cultivation system of FIG. The operations shown in FIG. 3 mainly correspond to the contents of processing in the control unit 50 .
 ステップS11では、センサ31が空気環境測定点33で測定して得られた栽培室入口における二酸化炭素濃度の情報V1inを測定結果SG1の一部分として制御部50が取得する。また、次のステップS12では、センサ31が空気環境測定点34で測定して得られた栽培室出口における二酸化炭素濃度の情報V1outを測定結果SG1の一部分として制御部50が取得する。 In step S11, the control unit 50 acquires the carbon dioxide concentration information V1in at the entrance of the cultivation room obtained by the sensor 31 measuring at the air environment measuring point 33 as part of the measurement result SG1. In the next step S12, the control unit 50 acquires the carbon dioxide concentration information V1out at the exit of the cultivation room obtained by the sensor 31 measuring at the air environment measuring point 34 as part of the measurement result SG1.
 ステップS13では、センサ32が空気環境測定点33で測定して得られた栽培室入口における酸素濃度の情報V2inを測定結果SG1の一部分として制御部50が取得する。また、次のステップS14では、センサ32が空気環境測定点34で測定して得られた栽培室出口における酸素濃度の情報V2outを測定結果SG1の一部分として制御部50が取得する。 In step S13, the control unit 50 acquires the oxygen concentration information V2in at the entrance of the cultivation room obtained by the sensor 32 measuring at the air environment measuring point 33 as part of the measurement result SG1. In the next step S14, the control unit 50 acquires the oxygen concentration information V2out at the exit of the cultivation room obtained by the sensor 32 measuring at the air environment measuring point 34 as part of the measurement result SG1.
 ステップS15では、ステップS11~S14で取得した測定結果の情報に基づいて、制御部50が、栽培室10内の植物15における光合成速度の評価値を算出する。
 光を照射された植物15は、栽培環境の空気中で光合成を行いながら成長する。したがって、植物15の生育速度に寄与しているのは光合成の影響が大きい。また、この光合成に伴って空気中の二酸化炭素が吸収され、水分が排出される。そのため、例えば二酸化炭素の消費量を測定した結果に基づいて、公知の技術により、光合成速度を推定値として評価することが可能である。尚、ステップS13、S14における酸素濃度の情報V2in、V2outの取得は必須ではない。
In step S15, the control unit 50 calculates an evaluation value of the photosynthetic rate of the plants 15 in the cultivation room 10 based on the information of the measurement results obtained in steps S11 to S14.
The plant 15 irradiated with light grows while performing photosynthesis in the air of the cultivation environment. Therefore, it is photosynthesis that greatly contributes to the growth rate of the plant 15 . During photosynthesis, carbon dioxide in the air is absorbed and moisture is discharged. Therefore, for example, it is possible to evaluate the photosynthetic rate as an estimated value by a known technique based on the result of measuring the consumption of carbon dioxide. Acquisition of the oxygen concentration information V2in and V2out in steps S13 and S14 is not essential.
 具体的には、制御部50は、栽培室入口における二酸化炭素濃度の情報V1inと、栽培室出口における二酸化炭素濃度の情報V1outとの差分と、空気環境測定点33近傍で栽培室10に供給する空気の流速などに基づいて、二酸化炭素の単位時間あたりの消費量を正確に算出する。この消費量を、光合成速度の評価値に関連付けることができる。尚、二酸化炭素の消費量を算出する際、風量センサによる検知結果を用いてもよい。例えば、栽培室入口及び栽培室出口に風量センサを設置して、栽培室入口及び栽培室出口における各風量を算出する。算出した各風量と二酸化炭素濃度センサで検知した二酸化炭素濃度とにより、二酸化炭素の流入量及び排出量を求め、流入量と排出量との差分として、二酸化炭素の消費量を算出し、光合成速度を評価することができる。 Specifically, the control unit 50 supplies the difference between the carbon dioxide concentration information V1in at the cultivation room entrance and the carbon dioxide concentration information V1out at the cultivation room exit to the cultivation room 10 near the air environment measurement point 33 . Accurately calculate the amount of carbon dioxide consumed per unit time based on air flow velocity and other factors. This consumption can be related to a photosynthetic rate estimate. Incidentally, when calculating the consumption of carbon dioxide, the result of detection by an air volume sensor may be used. For example, an air volume sensor is installed at the cultivation room entrance and the cultivation room exit, and each air volume at the cultivation room entrance and the cultivation room exit is calculated. Calculate the inflow and emission of carbon dioxide from each calculated air volume and the carbon dioxide concentration detected by the carbon dioxide concentration sensor, calculate the consumption of carbon dioxide as the difference between the inflow and emission, and calculate the photosynthetic rate can be evaluated.
 制御部50は、ステップS15で算出した光合成速度の評価値V3を、その基準値V3rと比較する(ステップS16~S18)。この基準値V3rは、例えば予定している最適な収穫期に、植物15をその大きさなどの品質が所定の規格内に入る状態で収穫できるようにするための目標とすべき栽培環境に合わせて、制御部50が逐次決定する。 The control unit 50 compares the photosynthetic rate evaluation value V3 calculated in step S15 with the reference value V3r (steps S16 to S18). This reference value V3r is set in accordance with the target cultivation environment for harvesting the plant 15 in a state in which the quality such as the size of the plant 15 falls within a predetermined standard, for example, at the planned optimal harvesting period. Then, the control unit 50 sequentially determines.
 「評価値V3<基準値V3r」の状態であれば、現在の光合成速度が不足している状態であるので、制御部50はステップS17からステップS19の処理に進む。そして、光合成速度を早める方向に栽培室環境の各種制御パラメータを制御部50が自動的に調整する。例えば、「照明装置14が照射する光の光量を増やす」、「空気管路21から空気入口10aに供給する空気中の二酸化炭素濃度を上げる」、「空気管路21から空気入口10aに供給する空気の流速を上げる」などの調整を可能にするために、制御部50は各種制御パラメータを変更する。 If the state is "evaluation value V3<reference value V3r", the current photosynthetic rate is insufficient, so the control unit 50 proceeds from step S17 to step S19. Then, the control unit 50 automatically adjusts various control parameters of the cultivation room environment so as to increase the photosynthetic rate. For example, "increase the amount of light emitted by the lighting device 14", "increase the concentration of carbon dioxide in the air supplied from the air conduit 21 to the air inlet 10a", and "supply from the air conduit 21 to the air inlet 10a". The controller 50 changes various control parameters in order to enable adjustments such as "increase air flow velocity".
 また、「評価値V3>基準値V3r」の状態であれば、現在の光合成速度が過大な状態であるので、制御部50はステップS18からステップS20の処理に進む。そして、光合成速度を抑制する方向に栽培室環境の各種制御パラメータを制御部50が自動的に調整する。例えば、「照明装置14が照射する光の光量を減らす」、「空気管路21から空気入口10aに供給する空気中の二酸化炭素濃度を下げる」、「空気管路21から空気入口10aに供給する空気の流速を下げる」などの調整を可能にするために、制御部50は各種制御パラメータを変更する。 Also, if "evaluation value V3>reference value V3r", the current photosynthetic rate is excessive, so the control unit 50 proceeds from step S18 to step S20. Then, the control unit 50 automatically adjusts various control parameters of the cultivation room environment so as to suppress the photosynthetic rate. For example, “reduce the amount of light emitted by the lighting device 14”, “reduce the concentration of carbon dioxide in the air supplied from the air conduit 21 to the air inlet 10a”, and “supply from the air conduit 21 to the air inlet 10a The controller 50 changes various control parameters in order to enable adjustment such as "lowering the flow velocity of the air".
 制御部50は、ステップS19、S20における調整の結果が実際の植物栽培装置100の栽培環境に反映されるように制御する。すなわち、変更した制御パラメータSG2を制御部50が次のステップS21で植物栽培装置100に与え、植物栽培装置100は制御部50から入力された制御パラメータSG2に従い、栽培室10の空気環境や照明装置14の光量を制御する。 The control unit 50 performs control so that the adjustment results in steps S19 and S20 are reflected in the actual cultivation environment of the plant cultivation apparatus 100. That is, the control unit 50 gives the changed control parameter SG2 to the plant cultivation device 100 in the next step S21, and the plant cultivation device 100 follows the control parameter SG2 input from the control unit 50 to change the air environment of the cultivation room 10 and the lighting device. 14 to control the amount of light.
 なお、本実施の形態では光合成評価の結果に基づいて各種制御パラメータを変更する場合について説明するが、これに限られるものではない。すなわち、例えば、光合成評価の結果を収穫時期の調整にのみ用いることもできる。 Although the present embodiment describes a case where various control parameters are changed based on the results of photosynthesis evaluation, the present invention is not limited to this. That is, for example, the results of photosynthetic evaluation can be used only for adjusting the harvest time.
<変形例-1の植物栽培システム>
 変形例-1の植物栽培システムの構成を図4に示す。図4の構成においては植物栽培装置100にセンサ37が追加されているが、それ以外の構成は図1と同様である。
<Variation-1 Plant Cultivation System>
FIG. 4 shows the configuration of the plant cultivation system of modification-1. In the configuration of FIG. 4, a sensor 37 is added to the plant cultivation device 100, but the configuration other than that is the same as that of FIG.
 追加されたセンサ37は、水分(HO)を検出する機能を有しており、図4の例では空気環境測定点33、34、及び補給空気測定点35のそれぞれの箇所で湿度を測定することができる。 The added sensor 37 has a function of detecting moisture (H 2 O), and in the example of FIG. can do.
 図4に示した制御部50は、センサ37の測定により得られた湿度の情報に基づいて、植物15の栽培環境が適正な湿度になるように空調部23を制御する。 The control unit 50 shown in FIG. 4 controls the air conditioning unit 23 based on the humidity information obtained by the measurement of the sensor 37 so that the cultivation environment of the plant 15 has an appropriate humidity.
 植物15の光合成に伴って、植物15の葉の気孔から水分が排出され、水分の蒸散が発生する。そのため、閉鎖空間13である栽培室10内では空気環境の湿度が上昇する。一方、湿度が低すぎる環境では植物15の気孔が閉じる状態になる。また、湿度が高すぎる環境では植物15の気孔から水分が排出されず、それと同時に気孔が空気中の二酸化炭素を吸収できない状態になる。つまり、湿度が適正でない場合は植物15の光合成が阻害され、植物15の生育に悪影響を及ぼす。 Accompanying the photosynthesis of the plant 15, water is discharged from the stomata of the leaves of the plant 15, and transpiration of water occurs. Therefore, the humidity of the air environment increases in the cultivation room 10 which is the closed space 13 . On the other hand, in an environment where the humidity is too low, the stomata of the plant 15 are closed. In addition, in an environment with too high humidity, moisture cannot be discharged from the stomata of the plant 15, and at the same time, the stomata cannot absorb carbon dioxide in the air. That is, when the humidity is not appropriate, the photosynthesis of the plant 15 is inhibited, and the growth of the plant 15 is adversely affected.
 図4の植物栽培システムにおいては、センサ37の測定結果を利用して植物15の栽培環境における湿度を適正に維持できるので、望ましい空気環境で植物15を栽培することが容易になる。 In the plant cultivation system of FIG. 4, the humidity in the cultivation environment of the plants 15 can be appropriately maintained using the measurement results of the sensor 37, so it becomes easy to cultivate the plants 15 in a desirable air environment.
 また、空気環境測定点33、34の2箇所で測定した湿度の差分を利用して、栽培室10内の植物15の光合成に伴う水分量の変化も検出できるので、その情報を光合成速度の推定に役立てることも可能である。 In addition, since the difference in humidity measured at the two air environment measurement points 33 and 34 can be used to detect changes in the amount of moisture associated with photosynthesis of the plants 15 in the cultivation room 10, the information can be used to estimate the photosynthetic rate. It is also possible to help
<変形例-2の植物栽培システム>
 変形例-2の植物栽培システムの構成を図5に示す。
 図5に示した植物栽培システムは、図1又は図4に示した植物栽培装置100を予め複数用意して、これらを同時に稼働させる場合を想定して構成されている。また、図5に示した複数環境制御部51は、互いに独立している環境の複数の植物栽培装置100を1つの複数環境制御部51で集中的に制御するものである。複数環境制御部51は、図1の制御部50の場合と同様に、植物栽培装置100の近傍に設置したパソコンなどの装置を用いて実現することも可能であるし、インターネット上のクラウドとしてその機能を実現することも可能である。
<Variation-2 Plant Cultivation System>
FIG. 5 shows the configuration of the plant cultivation system of modification-2.
The plant cultivation system shown in FIG. 5 is configured on the assumption that a plurality of the plant cultivation apparatuses 100 shown in FIG. 1 or 4 are prepared in advance and these are operated simultaneously. The multiple-environment control unit 51 shown in FIG. 5 centrally controls a plurality of plant cultivation apparatuses 100 in mutually independent environments by one multiple-environment control unit 51 . The multiple-environment control unit 51 can be realized using a device such as a personal computer installed near the plant cultivation device 100, as in the case of the control unit 50 in FIG. It is also possible to implement functions.
 図5に示した複数の植物栽培装置100A、100B、100C、及び100Dは、それぞれが図1又は図4の植物栽培装置100に相当する。つまり、複数の植物栽培装置100A~100Dは、それぞれが独立した閉鎖空間13の栽培室10を有している。また、複数の植物栽培装置100A~100Dは、各閉鎖空間13における空気環境や、照明装置14が照射する光の強度や、栽培容器12内の環境もそれぞれ互いに独立している。 A plurality of plant cultivation apparatuses 100A, 100B, 100C, and 100D shown in FIG. 5 each correspond to the plant cultivation apparatus 100 of FIG. 1 or FIG. In other words, the plurality of plant cultivation apparatuses 100A to 100D each have an independent closed space 13 cultivation room 10 . Moreover, the plurality of plant cultivation apparatuses 100A to 100D are independent of each other in terms of the air environment in each closed space 13, the intensity of the light emitted by the lighting device 14, and the environment inside the cultivation container 12, respectively.
 したがって、図5の植物栽培システムを利用する場合には、複数の植物栽培装置100A~100Dの各栽培室10において、例えば互いに収穫期が異なる同じ品種の植物15を複数グループに区分して同時に栽培することもできるし、互いに品種が異なる複数種類の植物15を複数グループに区分して同時に栽培することもできる。 Therefore, when the plant cultivation system of FIG. 5 is used, in each cultivation chamber 10 of the plurality of plant cultivation apparatuses 100A to 100D, for example, plants 15 of the same variety with different harvest periods are divided into a plurality of groups and cultivated simultaneously. Alternatively, a plurality of different types of plants 15 can be divided into a plurality of groups and cultivated at the same time.
 図5の植物栽培システムにおいて、Aグループに属する植物栽培装置100Aは、その内部でセンサ31、32等が測定した情報を測定結果SG1-Aとして複数環境制御部51に送信する。複数環境制御部51は、植物栽培装置100Aから入力された測定結果SG1-Aに基づいてAグループの光合成を評価する。また、複数環境制御部51は、評価結果を反映してAグループの植物15の生育状況を、収穫期などの目標条件に近づけるための制御パラメータSG2を生成して植物栽培装置100Aに与える。更に、複数環境制御部51は、Aグループの植物15の生育状況や栽培環境の情報を蓄積して将来の制御に反映する。 In the plant cultivation system of FIG. 5, the plant cultivation device 100A belonging to the A group transmits the information measured by the sensors 31, 32, etc. inside it to the multiple environment control unit 51 as the measurement result SG1-A. The multiple environment control unit 51 evaluates the photosynthesis of the A group based on the measurement result SG1-A input from the plant cultivation apparatus 100A. In addition, the multi-environment control unit 51 reflects the evaluation result to generate a control parameter SG2 for bringing the growth status of the plants 15 of the A group closer to the target conditions such as the harvest period, and provides the control parameter SG2 to the plant cultivation apparatus 100A. Furthermore, the multi-environment control unit 51 accumulates information on the growth status and cultivation environment of the plants 15 in the A group, and reflects the information in future control.
 上記と同様に、Bグループに属する植物栽培装置100Bは、その内部でセンサ31、32等が測定した情報を測定結果SG1-Bとして複数環境制御部51に送信する。複数環境制御部51は、植物栽培装置100Bから入力された測定結果SG1-Bに基づいてBグループの光合成を評価する。また、複数環境制御部51は、評価結果を反映してBグループの植物15の生育状況をその目標条件に近づけるための制御パラメータSG2を生成して植物栽培装置100Bに与える。更に、複数環境制御部51は、Bグループの植物15の生育状況や栽培環境の情報を蓄積して将来の制御に反映する。 Similarly to the above, the plant cultivation device 100B belonging to the B group transmits the information measured by the sensors 31, 32, etc. inside it to the multiple environment control unit 51 as the measurement result SG1-B. The multiple environment control unit 51 evaluates the photosynthesis of the B group based on the measurement result SG1-B input from the plant cultivation apparatus 100B. In addition, the multi-environment control unit 51 reflects the evaluation result to generate a control parameter SG2 for bringing the growth state of the plant 15 of the B group closer to the target condition, and provides the control parameter SG2 to the plant cultivation apparatus 100B. Furthermore, the multi-environment control unit 51 accumulates information on the growth status and cultivation environment of the plants 15 of the B group, and reflects the information in future control.
 Cグループに属する植物栽培装置100Cは、その内部でセンサ31、32等が測定した情報を測定結果SG1-Cとして複数環境制御部51に送信する。複数環境制御部51は、植物栽培装置100Cから入力された測定結果SG1-Cに基づいてCグループの光合成を評価する。また、複数環境制御部51は、評価結果を反映してCグループの植物15の生育状況をその目標条件に近づけるための制御パラメータSG2を生成して植物栽培装置100Cに与える。更に、複数環境制御部51は、Cグループの植物15の生育状況や栽培環境の情報を蓄積して将来の制御に反映する。 The plant cultivation device 100C belonging to the C group transmits the information measured by the sensors 31, 32, etc. inside it to the multiple environment control unit 51 as the measurement result SG1-C. The multi-environment control unit 51 evaluates the photosynthesis of the C group based on the measurement result SG1-C input from the plant cultivation device 100C. In addition, the multi-environment control unit 51 reflects the evaluation result to generate a control parameter SG2 for bringing the growth state of the plant 15 of the C group closer to the target condition, and provides the control parameter SG2 to the plant cultivation apparatus 100C. Furthermore, the multi-environment control unit 51 accumulates information on the growth status and cultivation environment of the plants 15 of the C group, and reflects the information in future control.
 Dグループに属する植物栽培装置100Dは、その内部でセンサ31、32等が測定した情報を測定結果SG1-Dとして複数環境制御部51に送信する。複数環境制御部51は、植物栽培装置100Dから入力された測定結果SG1-Dに基づいてDグループの光合成を評価する。また、複数環境制御部51は、評価結果を反映してBグループの植物15の生育状況をその目標条件に近づけるための制御パラメータSG2を生成して植物栽培装置100Dに与える。更に、複数環境制御部51は、Dグループの植物15の生育状況や栽培環境の情報を蓄積して将来の制御に反映する。 The plant cultivation device 100D belonging to the D group transmits the information measured by the sensors 31, 32, etc. inside it to the multiple environment control unit 51 as the measurement result SG1-D. The multiple environment control unit 51 evaluates the photosynthesis of the D group based on the measurement result SG1-D input from the plant cultivation device 100D. In addition, the multi-environment control unit 51 reflects the evaluation result to generate a control parameter SG2 for bringing the growth state of the plant 15 of the B group closer to the target condition, and provides the control parameter SG2 to the plant cultivation device 100D. Furthermore, the multi-environment control unit 51 accumulates information on the growth status and cultivation environment of the plants 15 in the D group, and reflects the information in future control.
 図5に示した植物栽培システムを利用する場合には、例えばAグループ~Dグループの植物15について、グループ毎に栽培環境を分けて個別に最適化した環境で栽培を行うことができる。したがって、グループ毎に植物15の生育量を統一したり、グループ毎に植物15の出荷規格に合わせて植物サイズなどの品質を安定化したり、グループ毎に収穫時期を調整することが容易になる。更に、適正な栽培条件が互いに異なる複数品種の植物15を同時に最適な環境で栽培することも可能になる。また、1つの複数環境制御部51で複数グループの植物栽培装置100A~100Dを集中的に管理することにより、管理コストの低減が可能になり、グループ間で栽培条件のバランスを調整することも可能になる。 When using the plant cultivation system shown in FIG. 5, for example, the plants 15 of groups A to D can be cultivated in individually optimized environments by dividing the cultivation environment for each group. Therefore, it becomes easy to unify the amount of growth of the plants 15 for each group, stabilize the quality such as the plant size in accordance with the shipping standards of the plants 15 for each group, and adjust the harvest time for each group. Furthermore, it also becomes possible to simultaneously cultivate a plurality of varieties of plants 15 having different appropriate cultivation conditions in an optimum environment. In addition, by centrally managing the plant cultivation apparatuses 100A to 100D of a plurality of groups with one multiple environment control unit 51, it is possible to reduce the management cost and adjust the balance of the cultivation conditions among the groups. become.
 また、複数の植物栽培装置100A~100Dの各栽培室10はそれぞれ独立した閉鎖空間13を形成しそれらの環境が独立に制御されるので、配置形態の影響を受けることはない。したがって、例えば複数の植物栽培装置100A~100Dの各栽培室10を上下方向に積み重ねた状態で配置することもできる。 In addition, since each cultivation chamber 10 of the plurality of plant cultivation apparatuses 100A to 100D forms an independent closed space 13 and their environments are independently controlled, they are not affected by the layout. Therefore, for example, each cultivation chamber 10 of a plurality of plant cultivation apparatuses 100A to 100D can be arranged in a vertically stacked state.
 一般的な植物工場の場合には、例えば複数の栽培容器を上下方向に並べた棚を複数設けて植物を栽培すると、栽培容器毎又は棚毎に、高さや場所の違いの影響で栽培環境が異なってしまうので、全体を均一な栽培条件にすることができない。しかし、図5の植物栽培システムの場合には、複数グループの植物栽培装置100A~100Dの各栽培室10の環境が高さや場所の違いの影響を受けない。このため、図5の植物栽培システムの場合、全体として均一な環境にすることもできるし、あるいは互いに意図的に変化させた環境を同時に形成することもできる。 In the case of a general plant factory, for example, if plants are cultivated on a plurality of shelves in which a plurality of cultivation containers are arranged in a vertical direction, the cultivation environment may change depending on the height and location of each cultivation container or each shelf. Because of this, uniform cultivation conditions cannot be achieved throughout. However, in the case of the plant cultivation system of FIG. 5, the environment of each cultivation room 10 of the plurality of groups of plant cultivation apparatuses 100A to 100D is not affected by differences in height and location. For this reason, in the case of the plant cultivation system of FIG. 5, it is possible to create a uniform environment as a whole, or to simultaneously create environments that are intentionally different from each other.
<変形例-3の植物栽培システム>
 変形例-3の植物栽培システムの構成を図6に示す。
 図6に示した植物栽培装置200においては、空調部23Aの空気流路が空気管路21A及び21Bを介して栽培室10内の閉鎖空間13と接続されている。空調部23Aは、除湿及び温度調節の機能を有している。
<Variation-3 Plant Cultivation System>
FIG. 6 shows the configuration of the plant cultivation system of modification-3.
In the plant cultivation device 200 shown in FIG. 6, the air flow path of the air conditioning unit 23A is connected to the closed space 13 inside the cultivation room 10 via air pipes 21A and 21B. The air conditioning unit 23A has dehumidification and temperature control functions.
 すなわち、閉鎖空間13の空気は空気管路21Aを通って空調部23Aに導入され、温度及び湿度が適切に調整された後の空気が空調部23Aから空気管路21Bを経由して栽培室10の閉鎖空間13内に戻り、植物15の栽培環境を調節する。 That is, the air in the closed space 13 is introduced into the air conditioning section 23A through the air conduit 21A, and the air after the temperature and humidity have been appropriately adjusted flows from the air conditioning section 23A through the air conduit 21B into the cultivation room 10. to adjust the environment for cultivating the plant 15.
 また、二酸化炭素を補給するためのボンベ24が所定の配管を経由して空調部23Aと接続されている。したがって、空気管路21Aを通って空調部23Aに導入される空気中の二酸化炭素濃度が低下している場合には、ボンベ24から二酸化炭素を補給する。これにより、二酸化炭素濃度を上げた空気を空調部23Aから空気管路21Bを経由して栽培室10に供給することができる。 Also, a cylinder 24 for replenishing carbon dioxide is connected to the air conditioning section 23A via a predetermined pipe. Therefore, when the concentration of carbon dioxide in the air introduced into the air conditioning section 23A through the air conduit 21A is low, carbon dioxide is replenished from the cylinder 24. FIG. Thereby, the air with increased carbon dioxide concentration can be supplied from the air conditioning unit 23A to the cultivation room 10 via the air conduit 21B.
 図6の植物栽培装置200においては、補給空気測定点35Aが空気管路21Bの出口近傍の栽培室10内に配置されている。補給空気測定点35Aにおける空気の温度、湿度、及び二酸化炭素濃度は、例えば図4に示した各センサ31、32、37を用いて測定できる。 In the plant cultivation apparatus 200 of FIG. 6, the supplementary air measurement point 35A is arranged inside the cultivation room 10 near the outlet of the air pipe 21B. The temperature, humidity, and carbon dioxide concentration of the air at the make-up air measurement point 35A can be measured using the sensors 31, 32, and 37 shown in FIG. 4, for example.
 図6の例では、栽培室10内で補給空気測定点35Aと反対側の位置に、センサ30が設置してある。このセンサ30は、空気の温度、湿度、及び二酸化炭素濃度を測定する機能を有し、更に、測定した結果のデータを、無線通信を利用して栽培室10の外側に送信する機能も有している。 In the example of FIG. 6, the sensor 30 is installed in the cultivation room 10 at a position opposite to the supply air measurement point 35A. This sensor 30 has the function of measuring the temperature, humidity, and carbon dioxide concentration of the air, and further has the function of transmitting the data of the measurement results to the outside of the cultivation room 10 using wireless communication. ing.
 また、養液タンク41内にセンサ30Aが設置されている。このセンサ30Aは、養液タンク41内の養液41a中の水素イオン濃度指数(pH)及び電気伝導度(EC)を測定する機能を有し、更に測定結果のデータを、無線通信を利用して養液タンク41の外側に送信する機能も有している。 A sensor 30A is installed in the nutrient solution tank 41. This sensor 30A has a function of measuring the hydrogen ion concentration index (pH) and electrical conductivity (EC) in the nutrient solution 41a in the nutrient solution tank 41, and furthermore, the data of the measurement results are transmitted using wireless communication. It also has a function of transmitting to the outside of the nutrient solution tank 41 .
 図6に示した植物栽培装置200の場合には、例えばセンサ30が栽培室10内の1箇所、又は複数箇所で検出した二酸化炭素濃度の時系列変化に基づいて、植物15の光合成に伴う二酸化炭素濃度の変化を制御部50が把握する。センサ30が検出した二酸化炭素濃度の時系列変化の一例として、同日の光合成開始時刻、すなわち照明装置14を点灯開始する時刻、から、光合成終了時刻、すなわち照明装置14を消灯する時刻、までの間の二酸化炭素濃度変化が挙げられる。 In the case of the plant cultivation apparatus 200 shown in FIG. 6, for example, based on the time-series change in the carbon dioxide concentration detected by the sensor 30 at one or a plurality of locations in the cultivation chamber 10, the carbon dioxide accompanying photosynthesis of the plant 15 The control unit 50 grasps the change in carbon concentration. As an example of a time-series change in the carbon dioxide concentration detected by the sensor 30, the time from the photosynthesis start time on the same day, that is, the time at which the lighting device 14 is turned on, to the photosynthesis end time, that is, the time at which the lighting device 14 is turned off. of carbon dioxide concentration changes.
 無線通信により各センサ30、30Aが送信する測定データは、例えば図1に示した制御部50に直接、又は所定の通信中継装置を経由して送信される。したがって、図6の植物栽培装置200についても、植物15の栽培環境を表す栽培室10内の空気環境や、養液41aの環境状態を、制御部50が把握することができる。そして、制御部50は、植物栽培装置200における栽培室10内の植物15の光合成を二酸化炭素濃度の変化に基づいて評価して、植物15の生育状況を把握し、その結果を栽培室10の栽培環境に反映するように制御する。 The measurement data transmitted by each sensor 30, 30A by wireless communication is transmitted, for example, directly to the control unit 50 shown in FIG. 1 or via a predetermined communication relay device. Therefore, in the plant cultivation apparatus 200 of FIG. 6 as well, the control unit 50 can grasp the air environment in the cultivation room 10 representing the cultivation environment of the plant 15 and the environmental state of the nutrient solution 41a. Then, the control unit 50 evaluates the photosynthesis of the plants 15 in the cultivation chamber 10 in the plant cultivation apparatus 200 based on the change in the carbon dioxide concentration, grasps the growth state of the plants 15, and outputs the result of the cultivation chamber 10. Control to reflect the cultivation environment.
<変形例-4の植物栽培システム>
 変形例-4の植物栽培システムの構成を図7に示す。図7の構成においては植物栽培装置100にセンサ31が設けられず、センサ32のみが設けられているが、それ以外の構成は図1と同様である。
<Variation-4 Plant Cultivation System>
FIG. 7 shows the configuration of the plant cultivation system of modification-4. In the configuration of FIG. 7, the sensor 31 is not provided in the plant cultivation apparatus 100, but only the sensor 32 is provided, but the other configuration is the same as that of FIG.
 図7に示した植物栽培装置100においては、センサ32は、空気環境測定点33及び34、並びに、補給空気測定点35の各箇所で、酸素の濃度を計測可能に構成されている。すなわち、センサ32は、酸素の濃度を計測する機能を有しており、図7で示す植物栽培装置100では、二酸化炭素の濃度を計測するセンサは設けられていない。このように、少なくとも酸素の濃度を計測するセンサ32を設けることで、酸素濃度の変化を把握し、それに基づいて光合成を評価することができる。 In the plant cultivation apparatus 100 shown in FIG. 7, the sensor 32 is configured to be able to measure the concentration of oxygen at each of the air environment measurement points 33 and 34 and the supplementary air measurement point 35. That is, the sensor 32 has a function of measuring the concentration of oxygen, and the plant cultivation apparatus 100 shown in FIG. 7 is not provided with a sensor that measures the concentration of carbon dioxide. By providing the sensor 32 for measuring at least the concentration of oxygen in this manner, changes in the oxygen concentration can be grasped, and photosynthesis can be evaluated based thereon.
 上述したように、植物15を栽培する際には、植物15による光合成に伴って二酸化炭素や、酸素が吸収または排出され、水分(H2O)が排出される。したがって、例えば、照明装置14による光の照射中において、空気環境測定点33で計測した酸素濃度と、空気環境測定点34で計測した酸素濃度との差分に基づいて、栽培室10内の植物15全体による光合成を評価し、生育状況を推定することが可能である。 As described above, when cultivating the plants 15, carbon dioxide and oxygen are absorbed or discharged and water (H2O) is discharged as the plants 15 perform photosynthesis. Therefore, for example, during light irradiation by the lighting device 14, based on the difference between the oxygen concentration measured at the air environment measurement point 33 and the oxygen concentration measured at the air environment measurement point 34, the plant 15 in the cultivation room 10 It is possible to assess overall photosynthesis and estimate growth status.
 より具体的には、図7に示した植物栽培装置100において、制御部50は、図3を用いて説明した動作例において、二酸化炭素濃度の情報V1in及びV1outを取得せず、酸素濃度の情報V2in及びV2outを取得する。制御部50は、これらの情報に基づき、同様に酸素の排出量を算出し、光合成速度を評価することができる。 More specifically, in the plant cultivation apparatus 100 shown in FIG. 7, the control unit 50 does not acquire the carbon dioxide concentration information V1in and V1out in the operation example described with reference to FIG. Get V2in and V2out. Based on these pieces of information, the control unit 50 can similarly calculate the oxygen discharge amount and evaluate the photosynthetic rate.
 なお、変形例-4の植物栽培システムとしては、センサ32のみが設けられる場合について説明したが、これに限られるものではない。すなわち、植物栽培装置100は、少なくとも、二酸化炭素の濃度を計測可能に構成されたセンサ31、酸素の濃度を測定可能に構成されたセンサ32、又は水分(H2O)を検出する機能を有するセンサ37のいずれかを有していればよい。言い換えれば、植物栽培装置100は、上述したセンサ31、センサ32、及びセンサ37のうちの少なくともいずれか1つのセンサを有していればよく、これらのうちの2以上の異なるセンサを有していてもよい。 Although the plant cultivation system of modification-4 has been described as having only the sensor 32, it is not limited to this. That is, the plant cultivation apparatus 100 includes at least a sensor 31 configured to measure the concentration of carbon dioxide, a sensor 32 configured to measure the concentration of oxygen, or a sensor 37 having a function of detecting moisture (H2O). Any one of In other words, the plant cultivation apparatus 100 may have at least one of the sensors 31, 32, and 37 described above, and may have two or more different sensors among them. may
 植物栽培装置100が、水分(H2O)を検出する機能を有するセンサ37のみを有する場合は、例えば、照明装置14による光の照射中において、空気環境測定点33で計測した湿度と、空気環境測定点34で計測した湿度との差分に基づいて、栽培室10内の植物15全体による光合成を評価し、生育状況を推定することが可能である。より具体的には、図3を用いて説明した動作例において、二酸化炭素濃度の情報V1in、V1out、及び酸素濃度の情報V2in、V2outを取得せず、代わりに湿度の情報を取得する。そして、制御部50は、これらの情報に基づき、同様に水分の排出量を算出し、光合成速度を評価することができる。 When the plant cultivation apparatus 100 has only the sensor 37 having the function of detecting moisture (H2O), for example, during the irradiation of light by the lighting device 14, the humidity measured at the air environment measurement point 33 and the air environment measurement Based on the difference from the humidity measured at the point 34, it is possible to evaluate the photosynthesis by the entire plant 15 in the cultivation room 10 and estimate the growth condition. More specifically, in the operation example described with reference to FIG. 3, the information on the carbon dioxide concentration V1in, V1out and the information on the oxygen concentration V2in, V2out are not acquired, and the humidity information is acquired instead. Based on these pieces of information, the controller 50 can similarly calculate the water discharge amount and evaluate the photosynthetic rate.
<植物栽培システムの利点>
 図1、図4、図6、及び図7に示した各植物栽培システムによれば、栽培室10内で多数の植物15を適正な栽培環境で栽培しつつ、栽培室10内の植物15における実際の光合成状況を検出したデータに基づいて評価し、その結果を栽培時期や栽培環境の調整に反映することができる。したがって、例えば栽培中の植物15の収量、品質、収穫時期が最適となるような栽培環境が形成されるように自動的に調整したり、様々な品種の植物15を品種毎に最適な条件で栽培するように自動的に調整することが容易になる。
 特に、上記植物栽培システムでは、栽培室10内に、導光板18を含む照明装置14)が設けられていることから、栽培時の光条件と同じ光条件で、光合成評価のための測定ができるため、正確な測定が可能となる。仮に、本実施形態の植物栽培システムを用いない場合には、栽培中の植物の一部を、測定用のチャンバー等で覆って測定することが考えられる。この場合において、照明装置がチャンバー等の外部に配置されていると、照明装置から出射された光の一部がチャンバー等に反射されるため、栽培時の光条件と、測定時の光条件とが一致せず、測定結果には、実際の生育状況が正しく反映されないこととなる。しかし、本実施形態の植物栽培システムによれば、上述した通り、栽培時の光条件で正確な測定ができるため、植物の実際の生育状況を把握可能となる。
<Advantages of Plant Cultivation System>
According to the plant cultivation systems shown in FIGS. 1, 4, 6, and 7, while cultivating a large number of plants 15 in the cultivation chamber 10 in an appropriate cultivation environment, the plants 15 in the cultivation chamber 10 The actual photosynthetic state can be evaluated based on the detected data, and the results can be reflected in the adjustment of the cultivation season and the cultivation environment. Therefore, for example, it is possible to automatically adjust the cultivation environment so that the yield, quality, and harvest time of the plants 15 being cultivated are optimal, and to control various varieties of plants 15 under optimum conditions for each variety. It becomes easy to adjust automatically to cultivate.
In particular, in the above plant cultivation system, since the lighting device 14 including the light guide plate 18 is provided in the cultivation room 10, measurements for evaluating photosynthesis can be performed under the same light conditions as those used during cultivation. Therefore, accurate measurement is possible. If the plant cultivation system of this embodiment is not used, it is conceivable to cover part of the plant being cultivated with a measurement chamber or the like for measurement. In this case, if the lighting device is placed outside the chamber or the like, part of the light emitted from the lighting device is reflected by the chamber or the like, so the light conditions during cultivation and the light conditions during measurement are different. do not match, and the actual growth conditions are not reflected correctly in the measurement results. However, according to the plant cultivation system of the present embodiment, as described above, accurate measurement can be performed under the light conditions during cultivation, so it is possible to grasp the actual growth status of the plant.
<補足説明>
 ここで、上述した本発明に係る植物栽培システムの実施形態の特徴をそれぞれ以下[1]~[14]に簡潔に纏めて列記する。
[1] 外気から隔離された閉鎖空間(13)を内部に形成する栽培室(10)と、前記閉鎖空間内に配置され、植物(15)の栽培に利用可能な栽培容器(12)と、を有する植物栽培システムであって、
 前記閉鎖空間内に前記植物の栽培に必要な栽培環境を形成し、かつ、前記栽培環境における前記植物の光合成を評価するための測定を行う栽培環境制御部(制御部50)、を備えた植物栽培システム。
<Supplementary explanation>
Here, the features of the embodiment of the plant cultivation system according to the present invention described above are summarized and listed briefly in [1] to [14] below.
[1] A cultivation chamber (10) inside which forms a closed space (13) isolated from the outside air, a cultivation container (12) which is arranged in the closed space and which can be used for cultivating a plant (15), A plant cultivation system comprising
A plant comprising a cultivation environment control unit (control unit 50) that forms a cultivation environment necessary for cultivating the plant in the closed space and performs measurements for evaluating photosynthesis of the plant in the cultivation environment. cultivation system.
[2] 一端が前記栽培室の空気出口(10b)と接続され、他端が前記栽培室の空気入口(10a)と接続された空気循環のための空気管路(21)と、
 前記空気管路と接続され、前記閉鎖空間内における前記植物の生育に必要な空気環境を調整する空気環境調整部(空調部23)と、を更に備え、
 前記栽培環境制御部は、前記空気管路における少なくとも2箇所で検出した空気環境状態に基づいて、前記閉鎖空間内の前記植物における光合成を評価する光合成評価部(制御部50)を有する、
 上記[1]に記載の植物栽培システム。
[2] an air conduit (21) for air circulation, one end of which is connected to the air outlet (10b) of the cultivation chamber and the other end of which is connected to the air inlet (10a) of the cultivation chamber;
An air environment adjustment unit (air conditioning unit 23) that is connected to the air duct and adjusts the air environment necessary for the growth of the plant in the closed space,
The cultivation environment control unit includes a photosynthesis evaluation unit (control unit 50) that evaluates photosynthesis in the plant in the closed space based on the air environment state detected at at least two locations in the air duct.
The plant cultivation system according to [1] above.
[3] 前記栽培環境制御部は、前記光合成評価部の評価結果を前記閉鎖空間内の前記植物に対する前記栽培環境の調整に反映するように、少なくとも前記空気環境調整部を制御する(S15~S21)、
 上記[2]に記載の植物栽培システム。
[3] The cultivation environment control unit controls at least the air environment adjustment unit so that the evaluation result of the photosynthesis evaluation unit is reflected in the adjustment of the cultivation environment for the plant in the closed space (S15 to S21 ),
The plant cultivation system according to [2] above.
[4] 前記空気環境調整部は、前記空気管路に対して二酸化炭素を供給可能な二酸化炭素供給源(ボンベ24)、及び前記空気管路に対して酸素を供給可能な酸素供給源(ボンベ25)を有する、
 上記[2]又は[3]に記載の植物栽培システム。
[4] The air environment adjustment unit includes a carbon dioxide supply source (cylinder 24) capable of supplying carbon dioxide to the air pipeline, and an oxygen supply source (cylinder 24) capable of supplying oxygen to the air pipeline. 25),
The plant cultivation system according to [2] or [3] above.
[5] 前記光合成評価部は、前記空気環境状態として、二酸化炭素濃度、酸素濃度及び湿度の少なくともいずれかを検出する、
 上記[2]乃至[4]のいずれかに記載の植物栽培システム。
[5] The photosynthesis evaluation unit detects at least one of carbon dioxide concentration, oxygen concentration and humidity as the air environmental conditions.
The plant cultivation system according to any one of [2] to [4] above.
[6] 前記光合成評価部は、前記栽培室の前記空気入口の近傍位置における二酸化炭素濃度を第1の二酸化炭素濃度として検出する(S11)と共に、前記栽培室の前記空気出口の近傍位置における二酸化炭素濃度を第2の二酸化炭素濃度として検出する(S12)二酸化炭素検出部(センサ31)を有する、
 上記[2]乃至[5]のいずれかに記載の植物栽培システム。
[6] The photosynthesis evaluation unit detects the carbon dioxide concentration at a position near the air inlet of the cultivation room as a first carbon dioxide concentration (S11), and the carbon dioxide at a position near the air outlet of the cultivation room. Having a carbon dioxide detection unit (sensor 31) that detects the carbon concentration as a second carbon dioxide concentration (S12),
The plant cultivation system according to any one of [2] to [5] above.
[7] 前記光合成評価部は、前記栽培室の前記空気入口の近傍位置における酸素濃度を第1の酸素濃度として検出し(S13)、かつ、前記栽培室の前記空気出口の近傍位置における酸素濃度を第2の酸素濃度として検出する(S14)酸素検出部(センサ32)を有する、
 上記[2]乃至[6]のいずれかに記載の植物栽培システム。
[7] The photosynthesis evaluation unit detects the oxygen concentration in the vicinity of the air inlet of the cultivation chamber as a first oxygen concentration (S13), and the oxygen concentration in the vicinity of the air outlet of the cultivation chamber. as a second oxygen concentration (S14) having an oxygen detection unit (sensor 32),
The plant cultivation system according to any one of [2] to [6] above.
[8] 前記空気環境調整部は、前記空気管路を通過する空気に対して温度及び湿度の調整を行う空調機構(空調部23)を有する、
 上記[2]乃至[7]のいずれかに記載の植物栽培システム。
[8] The air environment adjustment unit has an air conditioning mechanism (air conditioning unit 23) that adjusts the temperature and humidity of the air passing through the air pipeline.
The plant cultivation system according to any one of [2] to [7] above.
[9] 前記光合成評価部は、前記栽培室の空気入口近傍の第1位置(管路出口21a)における二酸化炭素濃度を第1の二酸化炭素濃度として検出し、かつ、前記栽培室の空気出口近傍の第2位置(管路入口21b)における二酸化炭素濃度を第2の二酸化炭素濃度として検出する二酸化炭素検出部(センサ31)を有し、
 前記空気環境調整部は、前記空気管路上の前記第1位置と前記第2位置との間にある第3位置(空気補給点21c)に二酸化炭素を供給可能な二酸化炭素供給源(ボンベ24)、前記第3位置に酸素を供給可能な酸素供給源(ボンベ25)、及び前記第3位置の近傍で少なくとも二酸化炭素濃度を検出可能な補給側二酸化炭素検出部(センサ31)を有する、
 上記[2]乃至[8]のいずれかに記載の植物栽培システム。
[9] The photosynthesis evaluation unit detects a carbon dioxide concentration at a first position (duct outlet 21a) near the air inlet of the cultivation room as the first carbon dioxide concentration, and near the air outlet of the cultivation room. has a carbon dioxide detection unit (sensor 31) that detects the carbon dioxide concentration at the second position (pipe inlet 21b) as the second carbon dioxide concentration,
The air environment adjustment unit includes a carbon dioxide supply source (cylinder 24) capable of supplying carbon dioxide to a third position (air supply point 21c) located between the first position and the second position on the air pipeline. , an oxygen supply source (cylinder 25) capable of supplying oxygen to the third position, and a supply-side carbon dioxide detector (sensor 31) capable of detecting at least carbon dioxide concentration near the third position,
The plant cultivation system according to any one of [2] to [8] above.
[10] 前記光合成評価部は、少なくとも前記第1の二酸化炭素濃度、及び前記第2の二酸化炭素濃度の計測値から算出される時間あたりの二酸化炭素減少量に基づいて前記閉鎖空間内の前記植物における光合成を評価する(S15)、
 上記[6]に記載の植物栽培システム。
[10] The photosynthesis evaluation unit, the plant in the closed space based on the amount of carbon dioxide reduction per hour calculated from the measured values of at least the first carbon dioxide concentration and the second carbon dioxide concentration Evaluate photosynthesis in (S15),
The plant cultivation system according to [6] above.
[11] 前記植物の生育に必要な光を前記閉鎖空間内に照射する照明ユニット(照明装置14)と、
 所定の液体通路を経由して前記栽培容器と接続された養液タンク(41)と、を有する、
 上記[1]乃至[10]のいずれかに記載の植物栽培システム。
[11] A lighting unit (lighting device 14) that irradiates the closed space with light necessary for growing the plant;
a nutrient solution tank (41) connected to the cultivation container via a predetermined liquid passage,
The plant cultivation system according to any one of [1] to [10] above.
[12] 前記照明ユニットは、前記閉鎖空間の外側に配置された光源本体(LED光源部14a)と、前記光源本体の出射した光を前記閉鎖空間の内側に導き前記閉鎖空間内の前記植物に照射する導光機構(導光板18)とを有する、
 上記[11]に記載の植物栽培システム。
[12] The lighting unit includes a light source body (LED light source section 14a) arranged outside the closed space, and guides the light emitted from the light source body to the inside of the closed space and directs it to the plant in the closed space. Having a light guide mechanism (light guide plate 18) for irradiation,
The plant cultivation system according to [11] above.
[13] それぞれが独立した前記閉鎖空間を形成する複数の前記栽培室(植物栽培装置100A~100D)を有し、
 前記栽培環境制御部(複数環境制御部51)は、複数の前記栽培室における植物栽培環境を個別に測定及び評価して制御に反映する、
 上記[1]乃至[12]のいずれかに記載の植物栽培システム。
[13] having a plurality of cultivation chambers (plant cultivation apparatuses 100A to 100D) each forming an independent closed space;
The cultivation environment control unit (multi-environment control unit 51) individually measures and evaluates the plant cultivation environments in the plurality of cultivation rooms and reflects them in control.
The plant cultivation system according to any one of [1] to [12] above.
[14] 前記栽培環境制御部(制御部50)は、前記植物の光合成を評価した結果に基づいて、前記植物の生育を均一化するように前記栽培室における植物栽培環境を制御する(S15~S21)、
 上記[1]乃至[13]のいずれかに記載の植物栽培システム。
[14] The cultivation environment control unit (control unit 50) controls the plant cultivation environment in the cultivation chamber so as to uniform the growth of the plant based on the results of evaluating the photosynthesis of the plant (S15 to S21),
The plant cultivation system according to any one of [1] to [13] above.
 本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。なお、本出願は、2021年3月26日出願の日本特許出願(特願2021-053775)に基づくものであり、その内容は本出願の中に参照として援用される。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2021-053775) filed on March 26, 2021, the content of which is incorporated herein by reference.
 10 栽培室
 10a 空気入口
 10b 空気出口
 10c 養液入口
 10d 廃液出口
 11 箱状筐体
 12 栽培容器
 13 閉鎖空間
 14 照明装置
 14a LED光源部
 14b 光源基板
 14c ヒートシンク
 14d 波長変換フィルム
 15 植物
 18 導光板
 18a 側端面
 18b 拡散面
 18c 反射面
 21,21A,21B 空気管路
 21a 管路出口
 21b 管路入口
 21c 空気補給点
 22 エアポンプ
 23,23A 空調部
 24,25 ボンベ
 26 補給管路
 30,30A,31,32,37 センサ
 33,34 空気環境測定点
 35,35A 補給空気測定点
 41 養液タンク
 41a 養液
 42 養液供給管
 43 廃液管
 44 ポンプ
 45 肥料供給源
 46 肥料供給部
 47 肥料供給管
 50 制御部
 51 複数環境制御部
 100,100A,100B,100C,100D,200 植物栽培装置
 SG1 測定結果
 SG2 制御パラメータ
REFERENCE SIGNS LIST 10 cultivation chamber 10a air inlet 10b air outlet 10c nutrient solution inlet 10d waste liquid outlet 11 box-like housing 12 cultivation container 13 closed space 14 lighting device 14a LED light source section 14b light source substrate 14c heat sink 14d wavelength conversion film 15 plant 18 light guide plate 18a side End surface 18b Diffusion surface 18c Reflective surface 21, 21A, 21B Air pipe 21a Pipe outlet 21b Pipe inlet 21c Air supply point 22 Air pump 23, 23A Air conditioning unit 24, 25 Cylinder 26 Supply pipe 30, 30A, 31, 32, 37 sensor 33, 34 air environment measurement point 35, 35A supply air measurement point 41 nutrient solution tank 41a nutrient solution 42 nutrient solution supply pipe 43 waste solution pipe 44 pump 45 fertilizer supply source 46 fertilizer supply unit 47 fertilizer supply pipe 50 controller 51 plural Environment control unit 100, 100A, 100B, 100C, 100D, 200 Plant cultivation device SG1 Measurement result SG2 Control parameter

Claims (14)

  1.  外気から隔離された閉鎖空間を内部に形成する栽培室と、前記閉鎖空間内に配置され、植物の栽培に利用可能な栽培容器とを有する植物栽培システムであって、
     前記閉鎖空間内に前記植物の栽培に必要な栽培環境を形成し、かつ、前記栽培環境における前記植物の光合成を評価するための測定を行う栽培環境制御部、を備えた植物栽培システム。
    A plant cultivation system having a cultivation chamber inside which forms a closed space isolated from the outside air, and a cultivation container that is arranged in the closed space and can be used for cultivating plants,
    A plant cultivation system comprising: a cultivation environment control unit that forms a cultivation environment necessary for cultivating the plant in the closed space and performs measurements for evaluating photosynthesis of the plant in the cultivation environment.
  2.  一端が前記栽培室の空気出口と接続され、他端が前記栽培室の空気入口と接続された空気循環のための空気管路と、
     前記空気管路と接続され、前記閉鎖空間内における前記植物の生育に必要な空気環境を調整する空気環境調整部と、を更に備え、
     前記栽培環境制御部は、前記空気管路における少なくとも2箇所で検出した空気環境状態に基づいて、前記閉鎖空間内の前記植物における光合成を評価する光合成評価部を有する、
     請求項1に記載の植物栽培システム。
    an air conduit for air circulation, one end of which is connected to the air outlet of the cultivation chamber and the other end of which is connected to the air inlet of the cultivation chamber;
    an air environment adjustment unit connected to the air duct and adjusting an air environment necessary for the growth of the plant in the closed space;
    The cultivation environment control unit has a photosynthesis evaluation unit that evaluates photosynthesis in the plant in the closed space based on the air environment state detected in at least two locations in the air duct,
    The plant cultivation system according to claim 1.
  3.  前記栽培環境制御部は、前記光合成評価部の評価結果を前記閉鎖空間内の前記植物に対する前記栽培環境の調整に反映するように、少なくとも前記空気環境調整部を制御する、
     請求項2に記載の植物栽培システム。
    The cultivation environment control unit controls at least the air environment adjustment unit so that the evaluation result of the photosynthesis evaluation unit is reflected in the adjustment of the cultivation environment for the plant in the closed space.
    The plant cultivation system according to claim 2.
  4.  前記空気環境調整部は、前記空気管路に対して二酸化炭素を供給可能な二酸化炭素供給源、及び前記空気管路に対して酸素を供給可能な酸素供給源を有する、
     請求項2又は請求項3に記載の植物栽培システム。
    The air environment adjustment unit has a carbon dioxide supply source capable of supplying carbon dioxide to the air pipeline and an oxygen supply source capable of supplying oxygen to the air pipeline.
    The plant cultivation system according to claim 2 or 3.
  5.  前記光合成評価部は、前記空気環境状態として、二酸化炭素濃度、酸素濃度及び湿度の少なくともいずれか一を検出する、
     請求項2乃至請求項4のいずれか1項に記載の植物栽培システム。
    The photosynthesis evaluation unit detects at least one of carbon dioxide concentration, oxygen concentration and humidity as the air environmental condition,
    The plant cultivation system according to any one of claims 2 to 4.
  6.  前記光合成評価部は、前記栽培室の前記空気入口の近傍位置における二酸化炭素濃度を第1の二酸化炭素濃度として検出すると共に、前記栽培室の前記空気出口の近傍位置における二酸化炭素濃度を第2の二酸化炭素濃度として検出する二酸化炭素検出部を有する、
     請求項2乃至請求項5のいずれか1項に記載の植物栽培システム。
    The photosynthesis evaluation unit detects the carbon dioxide concentration at a position near the air inlet of the cultivation room as a first carbon dioxide concentration, and detects the carbon dioxide concentration at a position near the air outlet of the cultivation room as a second carbon dioxide concentration. Having a carbon dioxide detection unit that detects as carbon dioxide concentration,
    The plant cultivation system according to any one of claims 2 to 5.
  7.  前記光合成評価部は、前記栽培室の前記空気入口の近傍位置における酸素濃度を第1の酸素濃度として検出し、かつ、前記栽培室の前記空気出口の近傍位置における酸素濃度を第2の酸素濃度として検出する酸素検出部を有する、
     請求項2乃至請求項6のいずれか1項に記載の植物栽培システム。
    The photosynthesis evaluation unit detects the oxygen concentration at a position near the air inlet of the cultivation room as a first oxygen concentration, and detects the oxygen concentration at a position near the air outlet of the cultivation room as a second oxygen concentration. Having an oxygen detection unit that detects as
    The plant cultivation system according to any one of claims 2 to 6.
  8.  前記空気環境調整部は、前記空気管路を通過する空気に対して温度及び湿度の調整を行う空調機構を有する、
     請求項2乃至請求項7のいずれか1項に記載の植物栽培システム。
    The air environment adjustment unit has an air conditioning mechanism that adjusts the temperature and humidity of the air passing through the air conduit.
    The plant cultivation system according to any one of claims 2 to 7.
  9.  前記光合成評価部は、前記栽培室の空気入口近傍の第1位置における二酸化炭素濃度を第1の二酸化炭素濃度として検出し、かつ、前記栽培室の空気出口近傍の第2位置における二酸化炭素濃度を第2の二酸化炭素濃度として検出する二酸化炭素検出部を有し、
     前記空気環境調整部は、前記空気管路上の前記第1位置と前記第2位置との間にある第3位置に二酸化炭素を供給可能な二酸化炭素供給源、前記第3位置に酸素を供給可能な酸素供給源、及び前記第3位置の近傍で少なくとも二酸化炭素濃度を検出可能な補給側二酸化炭素検出部を有する、
     請求項2乃至請求項8のいずれか1項に記載の植物栽培システム。
    The photosynthesis evaluation unit detects the carbon dioxide concentration at a first position near the air inlet of the cultivation room as a first carbon dioxide concentration, and detects the carbon dioxide concentration at a second position near the air outlet of the cultivation room. Having a carbon dioxide detection unit that detects as a second carbon dioxide concentration,
    The air environment adjustment unit includes a carbon dioxide supply source capable of supplying carbon dioxide to a third location between the first location and the second location on the air conduit, and capable of supplying oxygen to the third location. an oxygen supply source, and a supply-side carbon dioxide detection unit capable of detecting at least carbon dioxide concentration in the vicinity of the third position,
    The plant cultivation system according to any one of claims 2 to 8.
  10.  前記光合成評価部は、少なくとも前記第1の二酸化炭素濃度、及び前記第2の二酸化炭素濃度の計測値から算出される時間あたりの二酸化炭素減少量に基づいて前記閉鎖空間内の前記植物における光合成を評価する、
     請求項6に記載の植物栽培システム。
    The photosynthesis evaluation unit performs photosynthesis in the plant in the closed space based on the amount of carbon dioxide reduction per hour calculated from at least the first carbon dioxide concentration and the second carbon dioxide concentration measured value evaluate,
    The plant cultivation system according to claim 6.
  11.  前記植物の生育に必要な光を前記閉鎖空間内に照射する照明ユニットと、
     所定の液体通路を経由して前記栽培容器と接続された養液タンクと、を有する、
     請求項1乃至請求項10のいずれか1項に記載の植物栽培システム。
    a lighting unit that irradiates the closed space with light necessary for growing the plant;
    a nutrient solution tank connected to the cultivation container via a predetermined liquid passage,
    The plant cultivation system according to any one of claims 1 to 10.
  12.  前記照明ユニットは、前記閉鎖空間の外側に配置された光源本体と、前記光源本体の出射した光を前記閉鎖空間の内側に導き前記閉鎖空間内の前記植物に照射する導光機構とを有する、
     請求項11に記載の植物栽培システム。
    The lighting unit has a light source body arranged outside the closed space, and a light guide mechanism for guiding the light emitted from the light source body to the inside of the closed space and irradiating the plant in the closed space.
    The plant cultivation system according to claim 11.
  13.  それぞれが独立した前記閉鎖空間を形成する複数の前記栽培室を有し、
     前記栽培環境制御部は、複数の前記栽培室における植物栽培環境を個別に測定及び評価して制御に反映する、
     請求項1乃至請求項12のいずれか1項に記載の植物栽培システム。
    Having a plurality of the cultivation chambers each forming the independent closed space,
    The cultivation environment control unit measures and evaluates the plant cultivation environments in the plurality of cultivation rooms individually and reflects them in the control.
    The plant cultivation system according to any one of claims 1 to 12.
  14.  前記栽培環境制御部は、前記植物の光合成を評価した結果に基づいて、前記植物の生育を均一化するように前記栽培室における植物栽培環境を制御する、
     請求項1乃至請求項13のいずれか1項に記載の植物栽培システム。
    The cultivation environment control unit controls the plant cultivation environment in the cultivation room so as to uniform the growth of the plant based on the results of evaluating the photosynthesis of the plant.
    The plant cultivation system according to any one of claims 1 to 13.
PCT/JP2022/011985 2021-03-26 2022-03-16 Plant cultivation system WO2022202561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053775 2021-03-26
JP2021053775 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202561A1 true WO2022202561A1 (en) 2022-09-29

Family

ID=83397238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011985 WO2022202561A1 (en) 2021-03-26 2022-03-16 Plant cultivation system

Country Status (1)

Country Link
WO (1) WO2022202561A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428489U (en) * 1977-07-27 1979-02-24
JPS57133351A (en) * 1981-02-10 1982-08-18 Shimadzu Corp Measuring device for botanical physiological action
JPS58186466U (en) * 1982-06-05 1983-12-10 小糸工業株式会社 Plant photosynthesis measuring device
JP2007071758A (en) * 2005-09-08 2007-03-22 Horiba Ltd Evaluation device of photosynthesis or evaluation method of photosynthesis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428489U (en) * 1977-07-27 1979-02-24
JPS57133351A (en) * 1981-02-10 1982-08-18 Shimadzu Corp Measuring device for botanical physiological action
JPS58186466U (en) * 1982-06-05 1983-12-10 小糸工業株式会社 Plant photosynthesis measuring device
JP2007071758A (en) * 2005-09-08 2007-03-22 Horiba Ltd Evaluation device of photosynthesis or evaluation method of photosynthesis

Similar Documents

Publication Publication Date Title
KR100883691B1 (en) Plant cultivator and control system therefor
CN207083572U (en) Ultraviolet plant illumination system and the planter comprising the system
CN105159257B (en) A kind of plant factor&#39;s integrated control system and method
CA2529096C (en) Apparatus for producing seedlings and method of producing seedlings
WO2018020935A1 (en) Hydroponic apparatus and hydroponic method
KR101633751B1 (en) System for controling environment of artificial climate room for plant growth
KR20170115987A (en) A Chamber for Glowing Plants Based on LED Light and a Method for Controlling the Same
KR101919836B1 (en) Mushroom cultivating system and method
KR20120110493A (en) Container type plant factory
WO2022202561A1 (en) Plant cultivation system
JP2007071758A (en) Evaluation device of photosynthesis or evaluation method of photosynthesis
JP5415908B2 (en) Cooling device, lighting device using the cooling device, plant growing device and cooling method using the lighting device
CN102231067A (en) Method, system and device for remotely controlling plant factory based on online game
KR200475073Y1 (en) Thermo-hygristat for Mushroom Culture
JP6807169B2 (en) Plant cultivation equipment and plant cultivation method
CN112470790A (en) Plant growth environment monitoring and adjusting device and method
KR20140005036A (en) Module type plant factory
JP2016182092A (en) Plant cultivating apparatus
WO2019117008A1 (en) Plant cultivation system and plant cultivation method
KR20200053833A (en) Plant cultivating apparatus
KR102664610B1 (en) Energy saving smart plant factory system
JP6150166B2 (en) Hydroponic cultivation method and cultivation support system
JP2023040690A (en) plant cultivation system
JP2016029936A (en) Complete artificial light type plant cultivation equipment
KR20210007314A (en) System air environmental control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775349

Country of ref document: EP

Kind code of ref document: A1