WO2022202422A1 - Electric pump - Google Patents

Electric pump Download PDF

Info

Publication number
WO2022202422A1
WO2022202422A1 PCT/JP2022/011110 JP2022011110W WO2022202422A1 WO 2022202422 A1 WO2022202422 A1 WO 2022202422A1 JP 2022011110 W JP2022011110 W JP 2022011110W WO 2022202422 A1 WO2022202422 A1 WO 2022202422A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
holder
pump
check valve
discharge pipe
Prior art date
Application number
PCT/JP2022/011110
Other languages
French (fr)
Japanese (ja)
Inventor
直嗣 北山
正浩 川合
慎太朗 石川
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021050568A external-priority patent/JP2022148760A/en
Priority claimed from JP2021050567A external-priority patent/JP2022148759A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022202422A1 publication Critical patent/WO2022202422A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to an electric pump.
  • vehicles such as automobiles may use an electric oil pump to supply oil to each part of the vehicle.
  • a vehicle equipped with an idling stop mechanism (a mechanism for automatically stopping the engine when the vehicle is stopped) or a hybrid vehicle is provided with an electric oil pump that supplies hydraulic pressure to the transmission while the engine is stopped.
  • Patent Literature 1 discloses a configuration that prevents backflow of oil by providing a check valve in the oil passage of the transmission.
  • the first object of the present invention is to prevent damage to the electric pump due to backflow of the liquid (oil, etc.) to be pumped without increasing the man-hours for designing the parts to be attached (for example, the transmission).
  • a check valve mechanism 170 is provided in a discharge pipe line 161 formed in a housing 150 of the electric oil pump.
  • the check valve mechanism 170 has a ball 171, a spring 172, a holding portion 173 that holds them on the inner periphery, and a seal surface 174.
  • a sealing surface 174 is formed on the housing 150 of the electric oil pump.
  • the discharge pipe line 161 has a small-diameter portion 161a and a large-diameter portion 161b, and a seal surface 174 is formed at the inner diameter end of the stepped portion 161c connecting them.
  • the holding part 173 has a holder 175 and a retaining member 176 .
  • a ball 171 and a spring 172 are arranged on the inner periphery of the holder 175 , and a retainer member 176 is press-fitted into the large-diameter portion 161 b of the discharge pipe 161 .
  • the urging force of the spring 172 presses the ball 171 against the seal surface 174, thereby closing the discharge line 161.
  • the ball 171 is pushed down by the oil pressure and separated from the seal surface 174 (see the dotted line in FIG. 19).
  • the oil wraps around the outer periphery of the ball 171 and is discharged from the oil discharge port 165 provided at the lower end of the discharge pipe line 161 (see dotted arrow A).
  • the second object of the present invention is to improve the ease of assembly of a check valve mechanism to an electric oil pump or the like, and to simplify assembly equipment and reduce costs.
  • the first invention of the present application comprises a motor section, a pump section driven by the motor section, a housing that accommodates the motor section and the pump section, and a surface of the housing. a suction port and a discharge port that are formed; a suction conduit that communicates the suction port and the pump section; a discharge conduit that communicates the discharge port and the pump section; Provided is an electric pump equipped with a check valve mechanism.
  • the above check valve mechanism can include a ball, a sealing surface, a biasing member that presses the ball against the sealing surface, and a retaining portion that retains the ball and the biasing member on the inner periphery.
  • the discharge pipe 103 can be closed by bringing a ball 101 into contact with a sealing surface 102 (corner) formed on the discharge pipe 103 .
  • the contact angle ⁇ between the ball 101 and the seal surface 102 (the angle formed by the tangent line of the outer peripheral surface of the ball 101 at the contact portion between the ball 101 and the seal surface 102 in the cross section passing through the center line L′ of the discharge pipe 103 ) is small, the ball 101 may get caught in the sealing surface 102 and become difficult to separate from the sealing surface 102, which may hinder the discharge of the liquid. Therefore, it is preferable that the contact angle ⁇ between the ball and the seal surface is increased to some extent, specifically, 20° or more.
  • the holding portion of the check valve mechanism if the holding portion of the check valve mechanism is retracted to the upstream side of the discharge port of the housing, the holding portion is completely housed inside the housing, thereby preventing interference with other members. .
  • the protruding portion can be used as a positioning reference when attaching the electric pump to another component (eg, transmission case). Therefore, if the holding portion can be arranged either at a position protruding from the discharge port of the housing or at a position retracted upstream of the discharge port of the housing, the functions described above can be selectively provided. can do.
  • the holding part of the check valve mechanism can have a holder and a retaining member.
  • a ball and a biasing member are arranged on the inner periphery of the holder.
  • the holder can be easily inserted into the discharge pipeline by inserting the holder into the inner periphery of the discharge pipeline through a gap.
  • the retaining member is fixed to the discharge pipeline. By bringing this retaining member into contact with the holder from the downstream side, it is possible to prevent the holder from coming off from the discharge pipe.
  • the holder When the holder is arranged on the inner circumference of the discharge pipe with a gap therebetween as described above, the holder can rotate inside the discharge pipe. Holding of the member may become unstable. Further, when the holder rotates, the holder slides against the retainer member and the housing, so there is a risk that the holder will wear out due to long-term use. Therefore, it is preferable to engage the holder and the retaining member in the circumferential direction of the discharge pipe to restrict the rotation of the holder.
  • the housing body When the housing is integrally formed as one piece and includes a housing body that accommodates the motor section and the pump section, the housing body can be formed with a discharge line.
  • the holding portion of the check valve mechanism can be arranged in the large-diameter portion of the discharge pipeline. If the large-diameter portion of the discharge pipe is not provided with a check valve mechanism, the reverse flow of the liquid cannot be prevented, but the discharge pipe functions without any problem. Therefore, the common housing can be used whether or not the check valve mechanism is provided, so that the manufacturing cost can be reduced.
  • the sealing surface of the check valve mechanism can be formed, for example, on the housing body.
  • the discharge pipe may be provided with a stepped portion connecting the inner peripheral surface of the small diameter portion and the inner peripheral surface of the large diameter portion, and the sealing surface may be formed on the stepped portion.
  • the sealing surface When forming the sealing surface on the housing body, the sealing surface can be formed by pressing a ball or a jig having a molding surface of the same shape against the housing.
  • the sealing surface is a plastically worked surface having the same shape as the outer peripheral surface of the ball.
  • the electric pump can be made compact by arranging the discharge pipe in the area between the motor part and the pump part in the axial direction.
  • a rotary pump for example, a trochoid pump that pumps liquid by rotating
  • a rotary pump for example, a trochoid pump
  • the second invention of the present application comprises a seal surface, a ball, a biasing member that biases the ball upstream and presses it against the seal surface, the ball and the seal surface.
  • a check valve mechanism comprising a holder that holds an urging member on the inner circumference, wherein the holder is capable of engaging with a support portion that supports the urging member from the downstream side and the ball from the upstream side.
  • a check valve mechanism having a locking portion is provided.
  • the locking portions can be provided, for example, at a plurality of locations spaced apart in the circumferential direction of the holder.
  • the engaging portion can be elastically displaced radially to a position that allows passage of the ball.
  • the ball can be easily incorporated into the inner periphery of the holding portion by pushing the ball into the inner periphery of the locking portion and passing the ball while elastically displacing the locking portion toward the outer diameter side. .
  • the locking portion By making the inner diameter of the locking portion smaller than the diameter of the ball, the locking portion can be engaged with the ball. Further, by making the inner diameter of the locking portion larger than the outer diameter of the biasing member, the biasing member can be inserted into the inner circumference of the holding portion from the side of the locking portion (upstream side).
  • the holder can be configured to have a plurality of guide portions extending along the direction of the flow path.
  • a locking portion can be provided at the tip of each guide portion.
  • the check valve mechanism described above can be configured such that the locking portion and the ball are separated from each other while the ball is in contact with the sealing surface. In this case, since the ball abuts against the sealing surface before contacting the locking portion, the locking portion does not come into contact with the ball. That is, the locking portion functions to prevent the ball from jumping out of the holding portion before the check valve mechanism is incorporated into the target component.
  • the above check valve mechanism is incorporated into an electric oil pump, for example.
  • the electric oil pump includes a motor portion, a pump portion driven by the motor portion, a housing that accommodates the motor portion and the pump portion, and an oil suction port and an oil discharge port that are formed on the surface of the housing. a suction pipe communicating between the oil suction port and the pump portion; a discharge pipe communicating between the oil discharge port and the pump portion; and the check valve mechanism provided in the discharge pipe.
  • the sealing surface of the check valve mechanism can be formed on the housing.
  • the retaining portion of the check valve mechanism with a locking portion that prevents the ball from jumping out, the ease of assembly of the check valve mechanism to an electric oil pump or the like is improved. Equipment can be simplified and costs can be reduced.
  • FIG. 1 is an axial cross-sectional view of an electric oil pump according to an embodiment of the first invention of the present application
  • FIG. FIG. 2 is a cross-sectional view in the direction perpendicular to the axis taken along line II-II of FIG. 1; It is a perspective view of the said electric oil pump.
  • FIG. 4 is a cross-sectional view of a check valve mechanism provided in the electric oil pump; 4 is a perspective view of components of the check valve mechanism;
  • FIG. 4 is an enlarged cross-sectional view of the ball and seal surface of the check valve mechanism;
  • FIG. FIG. 4 is a cross-sectional view showing a method of forming a sealing surface of the check valve mechanism;
  • FIG. 5 is a cross-sectional view of a check valve mechanism according to another embodiment
  • FIG. 8 is a cross-sectional view of a check valve mechanism according to still another embodiment
  • FIG. 4 is a cross-sectional view of a ball and a seal surface according to a reference example
  • FIG. 8 is a cross-sectional view of a check valve mechanism according to an embodiment of the second invention of the present application
  • FIG. 12 is a perspective view of a component unit that constitutes the check valve mechanism of FIG. 11
  • 13 is an enlarged cross-sectional view of the component unit of FIG. 12
  • FIG. FIG. 12 is an enlarged cross-sectional view of the ball and seal surface of the check valve mechanism of FIG. 11
  • FIG. 11 is an enlarged cross-sectional view of a ball and a seal surface of a check valve mechanism according to another example
  • FIG. 15 is a cross-sectional view showing a method of molding the sealing surface of the check valve mechanism of FIG. 14
  • FIG. 5 is a cross-sectional view of a check valve component unit according to another embodiment
  • FIG. 18 is a perspective view of the check valve component unit of FIG. 17
  • FIG. 4 is a cross-sectional view of a check valve mechanism according to a reference example
  • FIG. 20 is a perspective view of a component unit that constitutes the check valve mechanism of FIG. 19;
  • the electric pump of this embodiment is an electric oil pump that mainly supplies hydraulic pressure to the transmission while the engine is stopped.
  • An electric oil pump draws oil from an oil reservoir at the bottom of the transmission case, discharges the oil, and pumps the oil into the transmission, thereby ensuring the necessary oil pressure and amount of lubricating oil in the transmission.
  • the electric oil pump 1 of this embodiment includes a pump section 2 for generating hydraulic pressure, a motor section 3 for driving the pump section 2, and a controller provided with a control circuit for controlling the motor section 3. 4 (main board), and a housing 5 that accommodates the pump section 2 , the motor section 3 and the controller 4 .
  • a pump section 2 for generating hydraulic pressure
  • a motor section 3 for driving the pump section 2
  • a controller provided with a control circuit for controlling the motor section 3. 4 (main board)
  • a housing 5 that accommodates the pump section 2 , the motor section 3 and the controller 4 .
  • the direction parallel to the axis O of the motor portion 3 is called the “axial direction”
  • the radial direction of a circle centered on the axis O is called the “radial direction”
  • inner diameter direction and “Outer diameter” also means the inner and outer diameters of the circle.
  • the circumferential direction of a circle centered on the axis O is called the “circumferential direction”.
  • the pump section 2 of this embodiment is a rotary pump that pumps oil by rotating.
  • the pump unit 2 includes an inner rotor 21 having a plurality of external teeth, an outer rotor 22 having a plurality of internal teeth, and a pump case 23 as a stationary member housing the inner rotor 21 and the outer rotor 22.
  • a trocolloid pump with The inner rotor 21 is arranged on the inner diameter side of the outer rotor 22 .
  • the outer rotor 22 is located eccentrically with respect to the inner rotor 21 . Some of the teeth of the outer rotor 22 mesh with some of the teeth of the inner rotor 21 .
  • Both the outer peripheral surface of the outer rotor 22 and the inner peripheral surface of the pump case 23 are cylindrical surfaces that can be fitted to each other.
  • the outer rotor 22 is rotatably arranged on the inner circumference of the pump case 23 so as to be driven to rotate with the rotation of the inner rotor 21 .
  • the motor section 3 is arranged side by side with the pump section 2 in the axial direction.
  • a three-phase brushless DC motor for example, is used as the motor unit 3 .
  • the motor section 3 has a stator 30 having a plurality of coils 30 a , a rotor 31 arranged inside the stator 30 with a gap therebetween, and an output shaft 32 coupled to the rotor 31 .
  • the stator 30 is formed with coils 30a corresponding to three phases of U-phase, V-phase and W-phase.
  • the output shaft 32 is rotatably supported with respect to the housing 5 via bearings 33 and 34.
  • the inner rotor 21 of the pump section 2 is attached to the end of the output shaft 32 on the pump section 2 side.
  • No speed reducer is arranged between the output shaft 32 and the pump section 2, and the inner rotor 21 is fitted to the output shaft 32 of the motor section 3 so that power can be transmitted by, for example, the width across flats.
  • a seal 35 having a seal lip in sliding contact with the outer peripheral surface of the output shaft 32 is arranged between the bearing 33 located on the axial pump portion 2 side and the inner rotor 21 . This seal 35 prevents oil from leaking from the pump section 2 to the motor section 3 .
  • An axially compressed elastic member 36 is arranged between the bearing 33 and the seal 35 on the axial pump portion 2 side to apply preload to the bearings 33 and 34 .
  • a detector 37 is provided between the rotating side and the stationary side of the motor section 3 in order to detect the rotation angle of the rotor 31 in the motor section 3 .
  • the detection unit 37 of this embodiment includes a sensor magnet 37a (for example, a neodymium bond magnet) attached via a bracket 38 to the shaft end of the output shaft 32 on the side opposite to the pump unit, and a housing 5 on the stationary side. It can be configured with a magnetic sensor 37b such as an MR element.
  • the magnetic sensor 37 b is attached to a sub-board 39 that faces the shaft end of the output shaft 32 opposite to the pump and that is arranged in a direction perpendicular to the output shaft 32 .
  • a detected value of the magnetic sensor 37b is input to a control circuit of the controller 4 (main substrate), which will be described later.
  • a Hall element can also be used as the magnetic sensor 37b.
  • an optical encoder, resolver, or the like can also be used as the detection unit 37 . It should be noted that the motor section 3 can also be driven sensorless.
  • the controller 4 of this embodiment is arranged parallel to the output shaft 32 of the motor section 3 .
  • a plurality of electronic components 41 are mounted on the controller 4 .
  • These electronic components 41 constitute a control circuit for controlling the driving of the motor section 3 .
  • the controller 4 is arranged with a surface (mounting surface) 40 on which electronic components 41 are mounted facing the pump section 2 and the motor section 3 . Power is supplied to the controller 4 from an external power supply through a connector 42 .
  • the housing 5 includes a cylindrical housing body 50 with both ends open, a first lid portion 51 that closes the opening of the housing body 50 on the side of the pump in the axial direction, and an opening of the housing body 50 on the side opposite to the pump in the axial direction. and a second lid portion 52 that closes.
  • the first lid portion 51 and the second lid portion 52 are fixed to the housing body 50 using a plurality of fastening bolts B1 and B2, respectively.
  • the second lid portion 52 has a cylindrical bearing case 52a that supports the bearing 34 on the anti-pump side, and a cover 52b that closes the opening of the bearing case 52a on the anti-pump side.
  • a sub-board 39 is arranged on the inner diameter side of the bearing case 52a.
  • the cover 52b is attached to the bearing case 52a using a fastening member (not shown).
  • the housing body 50 has a pump accommodating portion 53 that accommodates the pump portion 2, a motor accommodating portion 54 that accommodates the motor portion 3, and a controller accommodating portion 55 that accommodates the controller 4, and is integrally formed in the form of a single component. be.
  • the housing body 50 is formed, for example, by casting, cutting, or a combination thereof.
  • the housing main body 50, the first lid portion 51, and the second lid portion 52 are made of a metal material that is a conductor and has good thermal conductivity, such as an aluminum alloy.
  • one or more of the housing main body 50, the first lid portion 51, and the second lid portion 52 may be made of other metal material (for example, ferrous metal) or resin.
  • the pump accommodating portion 53 of the housing 5 has a substantially cylindrical shape including the pump case 23 of the pump portion 2 .
  • the suction port 62 and the discharge port 64 are both provided adjacent to the motor section 3 side (the left side in FIG. 1) of the pump chamber 66 and open to the meshing portion of the inner rotor 21 and the outer rotor 22 .
  • the suction port 62 and the discharge port 64 are both arc-shaped extending in the circumferential direction of the output shaft 32 and are provided at positions opposed to each other by 180° in the circumferential direction.
  • the motor accommodating portion 54 of the housing 5 is formed in a cylindrical shape.
  • a stator 30 of the motor portion 3 is press-fitted or adhesively fixed to the cylindrical inner peripheral surface of the motor accommodating portion 54 .
  • the controller accommodating portion 55 of the housing 5 is open on the radially outer diameter side (lower side in FIG. 1), and after the controller 4 is accommodated in the inner circumference, the opening is closed by the cover 57 .
  • the cover 57 is attached to the housing body 50 using the fastening member B3.
  • flange-like mounting portions 58 and 59 for mounting the electric oil pump 1 to a mounting target are integrally formed on both sides in the axial direction of the housing body 50. It is formed.
  • Two fastening holes 58a are formed in the mounting portion 58 on the pump portion 2 side, and two fastening holes 59a are formed in the mounting portion 59 on the anti-pump portion side.
  • the housing body 50 has a suction pipe 60 through which oil supplied to the pump portion 2 flows, and a discharge pipe 61 through which oil discharged from the pump portion 2 flows. be provided.
  • both the suction pipe 60 and the discharge pipe 61 are formed linearly.
  • the suction pipe line 60 and the discharge pipe line 61 are configured by, for example, through holes formed in the housing body 50 by machining using a drill or the like. In this case, the inner peripheral surfaces of the suction pipe 60 and the discharge pipe 61 are formed directly on the housing body 50 .
  • suction pipe line 60 One end of the suction pipe line 60 is connected to the suction port 62 , and one end of the discharge pipe line 61 is connected to the discharge port 64 .
  • the other end of the suction conduit 60 opens to the surface of the housing body 50, and this opening serves as a suction port 63 (see FIG. 3).
  • the other end of the discharge pipe line 61 opens to the surface of the housing body 50 , and this opening serves as a discharge port 65 .
  • the suction port 63 and the discharge port 65 are provided on the surface of the housing 5 that faces the mounting target.
  • the discharge pipeline 61 has a small diameter portion 61a and a large diameter portion 61b provided downstream of the small diameter portion 61a.
  • An upstream end of the small diameter portion 61 a communicates with the discharge port 64 .
  • a downstream end portion of the large diameter portion 61 b opens to the surface of the housing body 50 , and this opening serves as a discharge port 65 .
  • the inner peripheral surface of the small diameter portion 61a and the inner peripheral surface of the large diameter portion 61b of the discharge pipe line 61 are connected at a stepped portion 61c.
  • the stepped portion 61c has a flat surface 61d perpendicular to the direction of the center line L of the discharge pipe 61 (hereinafter referred to as "flow path direction").
  • a check valve mechanism 70 is provided in the discharge pipeline 61 .
  • the check valve mechanism 70 has a ball 71, a spring 72 as a biasing member, a holding portion 73 holding the ball 71 and the spring 72, and a seal surface 74, as shown in FIGS.
  • a sealing surface 74 is formed on the housing body 50 .
  • a seal surface 74 is formed at the inner diameter end of the stepped portion 61 c of the discharge pipe line 61 .
  • a chamfered portion is formed on the inner diameter end of the stepped portion 61 c and this chamfered portion functions as a sealing surface 74 .
  • the sealing surface 74 is formed of a spherical surface having the same shape as the outer peripheral surface of the ball 71 .
  • the sealing surface 74 may be configured by a tapered surface having a linear cross section.
  • the chamfered portion may not be formed on the inner diameter end of the stepped portion 61c, and the corner portion formed on this portion may be used as the sealing surface 74.
  • the holding portion 73 of this embodiment has a holder 75 and a retaining member 76 .
  • the holder 75 has a guide portion 75a that guides movement of the balls 71 in the direction of the flow path.
  • a plurality of (for example, four) guide portions 75a extending in the flow path direction are provided at regular intervals in the circumferential direction.
  • the upstream ends of the plurality of guide portions 75a are connected by a cylindrical portion 75b.
  • a bottom portion 75c is provided near the downstream end of the plurality of guide portions 75a.
  • a through hole is formed in the axial center of the bottom portion 75c.
  • a ball 71 and a spring 72 are arranged on the inner circumference of a plurality of guide portions 75a, and these are held by the guide portion 75a from the outer circumference.
  • the holder 75 is inserted into the inner periphery of the large-diameter portion 61b of the discharge pipe 61 with a gap therebetween.
  • the upstream end of the holder 75 is in contact with the stepped portion 61 c of the discharge pipe line 61 .
  • the ball 71 contacts the seal surface 74 (inner diameter end of the stepped portion 61c), and the spring 72 is arranged between the ball 71 and the bottom portion 75c of the holder 75 in a compressed state.
  • the retaining member 76 has a ring shape and is fixed to the large-diameter portion 61b of the discharge pipe 61 by appropriate means such as press-fitting or screwing.
  • the holder 75 is fixed to the housing body 50 by sandwiching the holder 75 from both sides in the direction of the flow path between the retainer member 76 and the stepped portion 61c of the discharge pipe line 61 .
  • the retaining member 76 is fixed at a position retracted upstream of the surface 50 a of the housing body 50 .
  • the check valve mechanism 70 is completely accommodated inside the housing main body 50, so interference with other members can be avoided.
  • the retaining member 76 may be a retaining ring. In this case, an annular groove is formed in the inner peripheral surface of the large-diameter portion 61b of the discharge pipe line 61, and a retaining ring (retaining member) is attached to the annular groove (not shown).
  • the ball 71 is made of a material harder than the sealing surface 74 (housing body 50), such as a ferrous metal, specifically carbon steel, especially stainless steel.
  • the spring 72 is made of ferrous metal such as stainless steel.
  • the holder 75 is preferably made of resin from the viewpoint of formability, but may be made of iron-based or aluminum-based metal.
  • the retaining member 76 is made of iron-based or aluminum-based metal. When the retainer member 76 is used as a positioning reference, which will be described later, it is preferable to use an iron-based material from the viewpoint of strength.
  • the retainer member 76 is press-fitted into the housing body 50 , the retainer member 76 is preferably made of the same metal material as the housing body 50 . As a result, the coefficients of linear expansion of both are close to each other or have the same value, so that the retaining member 76 can be prevented from coming off from the housing main body 50 due to temperature changes.
  • the ball 71 of the check valve mechanism 70 is pushed downstream while compressing the spring 72 by the hydraulic pressure of the discharge pipe 61, and the ball 71 separates from the sealing surface 74 to discharge.
  • Line 61 is opened.
  • the oil flows around the outer periphery of the ball 71 (the space between the plurality of guide portions 75a) and the outer periphery of the bottom portion 75c of the holder 75, passes through the through hole of the retaining member 76, and is discharged from the discharge port 65 (dotted line arrow A), is supplied to the transmission.
  • the through hole in the bottom portion 75c may be omitted if it is not particularly necessary.
  • the contact angle ⁇ between the ball 71 and the seal surface 74 it is preferable to set the contact angle ⁇ between the ball 71 and the seal surface 74 to 20° or more. This is because if the contact angle ⁇ is too small, the ball 71 may get caught in the seal surface 74 and become difficult to separate from the seal surface 74 (see FIG. 10). Also, the contact angle ⁇ between the ball 71 and the seal surface 74 is preferably set to 120° or less. This is because if the contact angle ⁇ is too large, the sealing performance becomes poor.
  • the contact angle ⁇ is the angle formed by the tangential line of the outer peripheral surface of the ball 71 at the contact portion between the ball 71 and the seal surface 74 in the section including the center line L of the discharge pipe 61 (see FIG. 6).
  • the angle formed by the tangent line of the outer peripheral surface of the ball 71 at the center of the contact portion of the arc-shaped cross section between the ball 71 and the seal surface 74 is the contact angle ⁇ .
  • the ball 71, the spring 72, and the holder 75 are inserted from the discharge port 65 into the large diameter portion 61b of the discharge pipe line 61 in this order.
  • the outer diameter of the holder 75 is slightly smaller than the inner diameter of the large diameter portion 61b, so the holder 75 can be easily inserted into the inner circumference of the large diameter portion 61b through a gap.
  • the retaining member 76 is fixed to the opening (discharge port 65) of the discharge pipe line 61 by press-fitting, screwing, or the like.
  • the retaining member 76 fixed to the discharge pipe line 61 contacts the holder 75 from the downstream side, thereby restricting the holder 75 from coming off the discharge pipe line 61 .
  • the ball 71 contacts the seal surface 74, and the spring 72 is held between the ball 71 and the bottom portion 75c of the holder 75 in a compressed state. That is, the ball 71 is pressed against the sealing surface 74 by the elastic force of the spring 72 .
  • the holder 75 and the retaining member 76 are engaged in the circumferential direction of the discharge pipe line 61.
  • a concave portion 76a is formed in the end face on the upstream side of the retaining member 76, and the engaging portion 75d of the holder 75 (the lower end of the guide portion 75a in the illustrated example) is fitted into this concave portion 76a.
  • Circumferential engagement between the recess 76a and the engaging portion 75d restricts the rotation of the holder 75 in the discharge pipe 61, so that the ball 71 and the spring 72 can be stably held and the holder Wear of 75 can be prevented.
  • the sealing surface 74 is formed, for example, by the following procedure.
  • the housing body 50 is machined (eg, turned) to form a discharge pipe line 61 having a small-diameter portion 61a, a large-diameter portion 61b, and a step portion 61c.
  • a flat surface 61d is formed over the entire area of the stepped portion 61c, and a right-angled corner portion 61e is formed at the inner diameter end of the stepped portion 61c.
  • a ball 71 is brought into contact with the corner portion 61e from the downstream side and pushed upstream as indicated by the dotted line to plastically deform the corner portion 61e.
  • the ball 71 it is preferable to press the ball 71 against the corner portion 61e with a pressure (load) higher than the pressure generated by the backflow of oil from the transmission side.
  • a pressure load
  • the load F pressing the ball 71 satisfies F>S.P.c. should be set to
  • the sealing surface 74 formed by the ball 71 in this way is a plastically worked surface consisting of a spherical surface having the same shape as the ball 71 .
  • the sealing surface 74 can be formed by pressing a jig having a spherical molding surface of the same shape as the ball 71 against the corner 61e of the discharge pipe line 61.
  • the sealing surface 74 may be formed by machining such as cutting.
  • the sealing surface 74 is not limited to a spherical surface, and may be of any shape such as a tapered surface.
  • the discharge pipe line 61 is provided with the large-diameter portion 61b for disposing the holding portion 73 of the check valve mechanism 70 .
  • the large-diameter portion 61 b of the discharge pipe 61 does not hinder the function of the electric oil pump 1 . Therefore, the common housing main body 50 can be used regardless of whether the check valve mechanism 70 is provided or not, thereby reducing costs.
  • the suction port 63 and the discharge port 65 are provided on the surface of the housing body 50 .
  • a suction line 60 connecting the suction port 63 and the pump section 2 and a discharge line 61 connecting the discharge port 65 and the pump section 2 are both provided in the housing body 50 . Therefore, the housing main body 50 can be cooled by the oil flowing through the suction pipe 60 and the discharge pipe 61 . This cooling effect can accelerate the cooling of the motor unit 3 and the controller 4 that serve as heat sources, and the reliability of the electric oil pump 1 can be enhanced.
  • the size of the electric oil pump 1 can be reduced as compared with the case where the suction pipe 60 and the discharge pipe 61 are provided in a member separate from the housing main body 50 .
  • the suction pipe line 60 and the discharge pipe line 61 are arranged in the region between the pump section 2 and the motor section 3 in the axial direction. More specifically, as shown in FIG. 1 , the suction line 60 and the discharge line 61 are arranged in the region between the pump portion 2 and the seal 35 in the axial direction. Therefore, the installation space for the suction pipe 60 and the discharge pipe 61 can be secured without interfering with the parts housed inside the housing 5 .
  • suction line 60 as the discharge line and the discharge line 61 as the suction line without changing the configurations of the suction line 60 and the discharge line 61 .
  • Both the suction pipe 60 and the discharge pipe 61 are arranged in the region between the pump section 2 and the motor section 3 in the axial direction. ) can also be placed in
  • the present invention is not limited to the above embodiments. Other embodiments of the present invention will be described below, but overlapping descriptions of the same points as those of the above-described embodiments will be omitted.
  • the embodiment shown in FIG. 8 differs from the above embodiment in that the downstream end of the holding portion 73 of the check valve mechanism 70 protrudes from the discharge port 65 of the housing body 50 . Specifically, part of the retaining member 76 of the holding portion 73 protrudes from the surface 50 a of the housing body 50 .
  • This projecting portion Q can be used, for example, as a positioning reference when mounting the housing 5 to the transmission case.
  • a gap G is formed between the upstream end of the holding portion 73 and the stepped portion 61c of the discharge pipe line 61 in the flow direction. Therefore, by pushing the holding portion 73 (the holder 75 and the retaining member 76) further upstream, the holding portion 73 can be completely accommodated inside the housing body 50 (inside the discharge pipe line 61). Specifically, the size ⁇ 2 of the gap G between the upstream end of the holding portion 73 and the step portion 61c of the discharge pipe line 61 is larger than the projection amount ⁇ 1 of the projecting portion Q of the holding portion 73 .
  • the holding portion 73 can be disposed either at a position protruding from the discharge port 65 of the housing body 50 or at a position retracted upstream of the surface 50 a of the housing body 50 .
  • a protruding portion Q can be provided selectively.
  • the embodiment shown in FIG. 9 differs from the above embodiment in that a seal surface 74 is provided on a holder 75 .
  • the upstream end of the holder 75 is provided with an inner-diameter protruding portion 75e, and the sealing surface 74 is formed on the protruding portion 75e.
  • the bottom portion 75c of the holder 75 is formed separately from the guide portion 75a.
  • a concave portion 75f is formed on the inner peripheral surface of the guide portion 75a, and a ring-shaped or C-shaped bottom portion 75c is fitted in the concave portion 75f.
  • the check valve mechanism 70 is assembled by inserting the ball 71 and the spring 72 from the opening at the downstream end of the holder 75 and then mounting the bottom portion 75c in the recess 75f of the guide portion 75a.
  • the outer peripheral surface of the holder 75 and the large diameter portion 61b of the discharge pipe line 61 are fitted with a gap, but the outer peripheral surface of the holder 75 and the large diameter portion 61b of the discharge pipe line 61 are fitted together with a gap therebetween.
  • the present invention is applicable not only to electric oil pumps that pump oil, but also to electric pumps that pump liquids other than oil.
  • FIGS. 1-10 Since the basic configuration of the electric oil pump is the same as that described above, FIGS.
  • a check valve mechanism 70 according to an embodiment of the second invention of the present application is provided in the discharge pipeline 61 as shown in FIGS.
  • the check valve mechanism 70 has a ball 71 , a spring 72 as a biasing member, a holding portion 73 that holds the ball 71 and the spring 72 , and a seal surface 74 .
  • a sealing surface 74 is formed on the housing body 50 .
  • a seal surface 74 is formed at the inner diameter end of the stepped portion 61 c of the discharge pipe line 61 .
  • a chamfered portion is formed on the inner diameter end of the stepped portion 61 c and this chamfered portion functions as a sealing surface 74 .
  • the sealing surface 74 is formed of a spherical surface having the same shape as the outer peripheral surface of the ball 71 .
  • the sealing surface 74 may be configured by a tapered surface having a linear cross section.
  • the chamfered portion may not be formed on the inner diameter end of the stepped portion 61c, and the corner portion formed on this portion may be used as the sealing surface 74.
  • the holding portion 73 of this embodiment has a holder 75 and a retaining member 76 .
  • the holder 75 has a guide portion 75a that guides movement of the balls 71 in the direction of the flow path.
  • a plurality of (for example, four) guide portions 75a extending in the flow path direction are provided at regular intervals in the circumferential direction.
  • the upstream ends of the plurality of guide portions 75a are connected by a cylindrical portion 75b.
  • the upstream end of the guide portion 75a protrudes further upstream than the cylindrical portion 75b.
  • a circumferential interval between the adjacent guide portions 75 a is smaller than the diameter D 2 of the ball 71 and the outer diameter D 3 of the spring 72 .
  • each guide portion 75a is inclined so as to be slightly displaced toward the outer diameter side toward the upstream side. That is, the distance between the guide portions 75a that face each other in the diametrical direction of the discharge pipe 61 increases toward the upstream side.
  • the holder 75 has a bottom portion 75c as a support portion that supports the spring 72 from the downstream side.
  • the bottom portion 75c is provided near the downstream ends of the plurality of guide portions 75a.
  • the bottom portion 75c has a substantially disc shape, and a through hole is formed in the center of the bottom portion 75c.
  • a ball 71 and a spring 72 are arranged on the inner circumference of a plurality of guide portions 75a, and these are held by the guide portion 75a from the outer circumference.
  • the holder 75 is inserted into the inner periphery of the large-diameter portion 61b of the discharge pipe 61 with a gap therebetween.
  • the upstream end of the holder 75 is in contact with the stepped portion 61 c of the discharge pipe line 61 . In this state, the ball 71 contacts the seal surface 74 (inner diameter end of the stepped portion 61c), and the spring 72 is arranged between the ball 71 and the bottom portion 75c of the holder 75 in a compressed
  • the holding portion 73 is provided with a locking portion that restricts the ball 71 from jumping out.
  • an engaging portion 77 projecting radially inward is provided at the upstream end of the holder 75 .
  • the locking portion 77 is provided at the upstream end of each guide portion 75a of the holder 75, and as a result, the locking portion 77 is provided at a plurality of locations (four locations in the illustrated example) spaced apart in the circumferential direction.
  • the inner diameter D1 of the engaging portion 77 (the diameter of the circle passing through the inner diameter end of each engaging portion 77) is slightly smaller than the diameter D2 of the ball 71 and slightly larger than the outer diameter D3 of the spring 72.
  • the locking portion 77 is integrally injection molded with the holder 75 from resin. At this time, the engaging portion 77 becomes an undercut, but it can be formed by so-called “forcible extraction” in which the molded product (near the engaging portion 77) is released from the mold while being elastically deformed.
  • the retaining member 76 has a ring shape and is fixed to the large-diameter portion 61b of the discharge pipe 61 by appropriate means such as press-fitting or screwing (see FIG. 4).
  • the holder 75 is fixed to the housing body 50 by sandwiching the holder 75 from both sides in the direction of the flow path between the retainer member 76 and the stepped portion 61c of the discharge pipe line 61 .
  • the retaining member 76 is fixed at a position retracted upstream of the surface 50 a of the housing body 50 .
  • the check valve mechanism 70 is completely accommodated inside the housing main body 50, so interference with other members can be avoided.
  • the retaining member 76 may be a retaining ring. In this case, an annular groove is formed in the inner peripheral surface of the large-diameter portion 61b of the discharge pipe line 61, and a retaining ring (retaining member) is attached to the annular groove (not shown).
  • the ball 71 is made of a material harder than the sealing surface 74 (housing body 50), such as a ferrous metal, specifically carbon steel, especially stainless steel.
  • the spring 72 is made of ferrous metal such as stainless steel.
  • the holder 75 is preferably made of resin from the viewpoint of formability, but may be made of iron-based or aluminum-based metal.
  • the retaining member 76 is made of iron-based or aluminum-based metal. When the retainer member 76 is used as a positioning reference, which will be described later, it is preferable to use an iron-based material from the viewpoint of strength.
  • the retainer member 76 is press-fitted into the housing body 50 , the retainer member 76 is preferably made of the same metal material as the housing body 50 . As a result, the coefficients of linear expansion of both are close to each other or have the same value, so that the retaining member 76 can be prevented from coming off from the housing main body 50 due to temperature changes.
  • the ball 71 of the check valve mechanism 70 is pushed downstream while compressing the spring 72 by the hydraulic pressure of the discharge pipe 61, and the ball 71 separates from the sealing surface 74 to discharge.
  • Line 61 is opened.
  • the oil flows around the outer periphery of the ball 71 (the space between the plurality of guide portions 75a) and the outer periphery of the bottom portion 75c of the holder 75, passes through the through hole of the retaining member 76, and is discharged from the discharge port 65 (dotted line arrow A), is supplied to the transmission.
  • the through hole in the bottom portion 75c may be omitted if it is not particularly necessary.
  • the contact angle ⁇ between the ball 71 and the seal surface 74 it is preferable to set the contact angle ⁇ between the ball 71 and the seal surface 74 to 20° or more. This is because if the contact angle ⁇ is too small as shown in FIG. Also, the contact angle ⁇ between the ball 71 and the seal surface 74 is preferably set to 120° or less. This is because if the contact angle ⁇ is too large, the sealing performance becomes poor.
  • the contact angle ⁇ is the angle formed by the tangential line of the outer peripheral surface of the ball 71 at the contact portion between the ball 71 and the seal surface 74 in the cross section (see 14) including the center line L of the discharge pipe 61 . When the ball 71 and the seal surface 74 are in contact with each other as shown in FIG. Let the angle be ⁇ .
  • the spring 72 and the ball 71 are accommodated in the inner periphery of the holder 75 of the holding portion 73. As shown in FIG. Specifically, first, the spring 72 is inserted from the opening on the upstream side of the holder 75 . At this time, the opening diameter of the holder 75 on the upstream side, that is, the inner diameter D1 of the locking portion 77 is slightly larger than the outer diameter D3 of the spring 72 (see FIG. 13), so that the spring 72 interferes with the locking portion 77. can be inserted into the inner periphery of the holder 75 without
  • the ball 71 is inserted through the opening on the upstream side of the holder 75 .
  • the diameter of the opening of the holder 75 that is, the inner diameter D1 of the locking portion 77 is slightly smaller than the diameter D2 of the ball 71
  • the locking portion 77 prevents the ball 71 from being inserted into the inner circumference of the holder 75. be done. Therefore, by pushing the ball 71 into the inner periphery of the locking portion 77, the periphery of the locking portion 77 (specifically, the portion of the guide portion 75a that protrudes upward from the cylindrical portion 75b) is moved to the outer diameter side.
  • the inner diameter of the engaging portion 77 is widened by elastic deformation.
  • the locking portions 77 are not annular, but are provided at a plurality of locations spaced apart in the circumferential direction, so that they can be easily displaced radially by the pressing force of the balls 71 .
  • the ball 71 can pass downstream beyond the locking portion 77 , and the ball 71 is arranged on the inner circumference of the holder 75 .
  • a check valve component unit 78 is formed in which the ball 71 and the spring 72 are arranged on the inner periphery of the holder 75 (see FIG. 12).
  • the locking portion 77 is engaged with the ball 71 from the upstream side, thereby restricting the ball 71 from jumping out of the opening of the holder 75 on the upstream side.
  • the spring 72 is supported by the bottom portion 75 c of the holder 75 . As described above, the ball 71 and the spring 72 are prevented from falling off from the inner periphery of the holder 75 , so that the check valve component unit 78 in which these are integrated can be easily assembled to the housing body 50 .
  • the engaging portion 77 is adjusted so that the force (ball removal resistance) that restricts the movement of the ball 71 to the upstream side by the engaging portion 77 is greater than the force that presses the ball 71 against the engaging portion 77 by the spring 72 .
  • An inner diameter D1 of 77 (that is, an engagement margin between locking portion 77 and ball 71) is set.
  • the inner diameter D1 of the locking portion 77 is set to, for example, 90% or more and 98% or less of the diameter D2 of the ball 71 .
  • the check valve component unit 78 is inserted into the large diameter portion 61b of the discharge pipe line 61 from the discharge port 65 .
  • the outer diameter of the holder 75 is slightly smaller than the inner diameter of the large diameter portion 61b, so the holder 75 can be easily inserted into the inner circumference of the large diameter portion 61b through a gap.
  • the retaining member 76 is fixed to the opening (discharge port 65) of the discharge pipe line 61 by press-fitting, screwing, or the like. The retaining member 76 fixed to the discharge pipe line 61 contacts the holder 75 from the downstream side, thereby restricting the holder 75 from coming off the discharge pipe line 61 .
  • the ball 71 contacts the seal surface 74, and the spring 72 is held between the ball 71 and the bottom portion 75c of the holder 75 in a compressed state. That is, the ball 71 is pressed against the sealing surface 74 by the elastic force of the spring 72 . At this time, the ball 71 and the engaging portion 77 are separated from each other in the flow path direction. Thus, after the check valve component unit 78 is incorporated into the discharge pipe line 61 , the ball 71 is locked by the sealing surface 74 , so the ball 71 does not come off the holder 75 .
  • the holder 75 and the retaining member 76 are engaged in the circumferential direction of the discharge pipe line 61.
  • a concave portion 76a is formed in the end face on the upstream side of the retaining member 76, and the engaging portion 75d of the holder 75 (the lower end of the guide portion 75a in the illustrated example) is fitted into this concave portion 76a.
  • Circumferential engagement between the recess 76a and the engaging portion 75d restricts the rotation of the holder 75 in the discharge pipe 61, so that the ball 71 and the spring 72 can be stably held and the holder Wear of 75 can be prevented.
  • the sealing surface 74 is formed, for example, by the following procedure.
  • the housing body 50 is machined (eg, turned) to form a discharge pipe line 61 having a small-diameter portion 61a, a large-diameter portion 61b, and a stepped portion 61c.
  • a flat surface 61d is formed over the entire area of the stepped portion 61c, and a right-angled corner portion 61e is formed at the inner diameter end of the stepped portion 61c.
  • a ball 71 is brought into contact with the corner portion 61e from the downstream side and pushed upstream as indicated by the dotted line to plastically deform the corner portion 61e.
  • the ball 71 it is preferable to press the ball 71 against the corner portion 61e with a pressure (load) higher than the pressure generated by the backflow of oil from the transmission side.
  • a pressure load
  • the load F pressing the ball 71 satisfies F>S.P.c. should be set to
  • the sealing surface 74 formed by the ball 71 in this way is a plastically worked surface consisting of a spherical surface having the same shape as the ball 71 .
  • the sealing surface 74 can be formed by pressing a jig having a spherical molding surface of the same shape as the ball 71 against the corner 61e of the discharge pipe line 61.
  • the sealing surface 74 may be formed by machining such as cutting.
  • the sealing surface 74 is not limited to a spherical surface, and may be of any shape such as a tapered surface.
  • the discharge pipe line 61 is provided with the large-diameter portion 61b for disposing the holding portion 73 of the check valve mechanism 70 .
  • the large-diameter portion 61 b of the discharge pipe 61 does not hinder the function of the electric oil pump 1 . Therefore, the common housing main body 50 can be used regardless of whether the check valve mechanism 70 is provided or not, thereby reducing costs.
  • the suction port 63 and the discharge port 65 are provided on the surface of the housing body 50 .
  • a suction line 60 connecting the suction port 63 and the pump section 2 and a discharge line 61 connecting the discharge port 65 and the pump section 2 are both provided in the housing body 50 . Therefore, the housing main body 50 can be cooled by the oil flowing through the suction pipe 60 and the discharge pipe 61 . This cooling effect can accelerate the cooling of the motor unit 3 and the controller 4 that serve as heat sources, and the reliability of the electric oil pump 1 can be enhanced.
  • the size of the electric oil pump 1 can be reduced as compared with the case where the suction pipe 60 and the discharge pipe 61 are provided in a member separate from the housing main body 50 .
  • the suction pipe line 60 and the discharge pipe line 61 are arranged in the region between the pump section 2 and the motor section 3 in the axial direction. More specifically, as shown in FIG. 1 , the suction line 60 and the discharge line 61 are arranged in the region between the pump portion 2 and the seal 35 in the axial direction. Therefore, the installation space for the suction pipe 60 and the discharge pipe 61 can be secured without interfering with the parts housed inside the housing 5 .
  • suction line 60 as the discharge line and the discharge line 61 as the suction line without changing the configurations of the suction line 60 and the discharge line 61 .
  • Both the suction pipe 60 and the discharge pipe 61 are arranged in the region between the pump section 2 and the motor section 3 in the axial direction. ) can also be placed in
  • the present invention is not limited to the above embodiments. Other embodiments of the present invention will be described below, but overlapping descriptions of the same points as those of the above-described embodiments will be omitted.
  • a retaining member 76 is fixed to a holder 75, and a ball 71, a spring 72, a holder 75, and a retaining member 76 constitute a check valve component unit 78.
  • a concave portion is provided in the outer peripheral surface of the protruding portion 75f that protrudes downstream from the bottom portion 75c, and the annular retaining member 76 is fixed to this concave portion.
  • an engaging claw 75g protruding radially outward is provided at the downstream end of the outer peripheral surface of the projecting portion 75f.
  • An engagement concave portion 76 b is provided at the downstream end of the inner peripheral surface of the retainer member 76 .
  • the projecting portion 75f of the downstream end of the holder 75 is elastically deformed to the inner diameter side, and the outer diameter of the engaging claw 75g (the engaging claw 75g diameter of a circle passing through the outer diameter end of
  • the engaging claws 75g are not annular but are provided at a plurality of locations spaced apart in the circumferential direction, they are easily elastically deformed by the pushing force of the retaining member 76 .
  • the retaining member 76 is attached to the holder 75 by elastically restoring the engaging claw 75g.
  • the check valve component unit 78 By holding the check valve component unit 78, inserting the holder 75 into the large diameter portion 61b of the discharge pipe 61, and fixing (pressing) the retaining member 76 into the large diameter portion 61b, the check valve component unit 78 is held. A valve component unit 78 is attached to the housing body 50 .
  • the retaining member 76 since the retaining member 76 is fixed to the outer periphery of the holder 75 , the outer peripheral surface of the retaining member 76 can be press-fitted into the inner peripheral surface of the large diameter portion 61 b of the discharge pipe 61 .
  • the check valve mechanism 70 is provided in the housing body 50 by one operation of inserting and fixing the check valve part unit 78 into the large diameter portion 61b of the discharge pipe 61. be able to.
  • the holder 75 is provided with a contact portion 79 that defines the downstream end position of the ball 71 .
  • the contact portion 79 has a columnar shape extending upstream from the bottom portion 75 c of the holder 75 .
  • the contact portion 79 is inserted into the inner circumference of the spring 72 .

Abstract

This electric pump is provided with a motor unit 3, a pump unit 2, a housing 5 which houses the motor unit 3 and the pump unit 2, an intake port 63 and a discharge port 65 which are formed in the surface of the housing 5, an intake pipeline 60 which allows communication between the intake port 63 and the pump unit 2, a discharge pipeline 61 which allows communication between the discharge port 65 and the pump unit 2, and a check valve mechanism 70 which is provided in the discharge pipeline 61.

Description

電動ポンプelectric pump
 本発明は、電動ポンプに関する。 The present invention relates to an electric pump.
 近年の自動車等の車両では、車両各部へのオイルの供給を電動オイルポンプを用いて行う場合がある。例えばアイドリングストップ機構(停車時にエンジンを自動停止する機構)を備えた車両やハイブリッド車両では、エンジン停止中にトランスミッションに油圧を供給する電動オイルポンプが設けられる。 In recent years, vehicles such as automobiles may use an electric oil pump to supply oil to each part of the vehicle. For example, a vehicle equipped with an idling stop mechanism (a mechanism for automatically stopping the engine when the vehicle is stopped) or a hybrid vehicle is provided with an electric oil pump that supplies hydraulic pressure to the transmission while the engine is stopped.
 この場合、何らかの原因でトランスミッションの油路のオイルが逆流すると、電動オイルポンプの吐出側からオイルが流入し、この油圧によってポンプが逆回転して、主にポンプを駆動するモータ部やコントローラが損傷するおそれがある。 In this case, if the oil in the oil passage of the transmission reverses for some reason, the oil will flow from the discharge side of the electric oil pump, and this hydraulic pressure will cause the pump to rotate in the reverse direction, damaging the motor and controller that mainly drive the pump. There is a risk of
 例えば、下記の特許文献1には、トランスミッションの油路に逆止弁を設けることで、オイルの逆流を防止する構成が示されている。 For example, Patent Literature 1 below discloses a configuration that prevents backflow of oil by providing a check valve in the oil passage of the transmission.
特許第6224521号公報Japanese Patent No. 6224521
 上記のように、トランスミッションの油路に逆止弁を設ける場合、逆止弁を設けるためにトランスミッションの油路の設計を変更する必要があるため、設計工数がかかってしまう。 As described above, when a check valve is installed in the oil passage of the transmission, it is necessary to change the design of the oil passage of the transmission in order to install the check valve, so design man-hours are required.
 上記のような問題は、電動オイルポンプに限らず、オイル以外の液体を圧送する電動ポンプにおいても生じ得る。 The problems described above can occur not only in electric oil pumps, but also in electric pumps that pump liquids other than oil.
 そこで、本発明は、取付対象部品(例えばトランスミッション)の設計工数を増やすことなく、圧送する液体(オイル等)の逆流による電動ポンプの損傷を防止することを第1の目的とする。 Therefore, the first object of the present invention is to prevent damage to the electric pump due to backflow of the liquid (oil, etc.) to be pumped without increasing the man-hours for designing the parts to be attached (for example, the transmission).
 また、本発明者らは、トランスミッションではなく、電動オイルポンプに逆止弁を設けることを検討した。具体的には、図19に示すように、電動オイルポンプのハウジング150に形成された吐出管路161に逆止弁機構170を設けた。この逆止弁機構170は、図19および図20に示すように、ボール171と、スプリング172と、これらを内周に保持する保持部173と、シール面174とを有する。シール面174は、電動オイルポンプのハウジング150に形成される。図示例では、吐出管路161が、小径部161aと大径部161bを有し、これらを接続する段差部161cの内径端にシール面174が形成される。 In addition, the inventors considered providing a check valve in the electric oil pump instead of the transmission. Specifically, as shown in FIG. 19, a check valve mechanism 170 is provided in a discharge pipe line 161 formed in a housing 150 of the electric oil pump. As shown in FIGS. 19 and 20, the check valve mechanism 170 has a ball 171, a spring 172, a holding portion 173 that holds them on the inner periphery, and a seal surface 174. As shown in FIG. A sealing surface 174 is formed on the housing 150 of the electric oil pump. In the illustrated example, the discharge pipe line 161 has a small-diameter portion 161a and a large-diameter portion 161b, and a seal surface 174 is formed at the inner diameter end of the stepped portion 161c connecting them.
 保持部173は、ホルダ175と抜け止め部材176とを有する。ホルダ175の内周にボール171及びスプリング172が配され、抜け止め部材176が吐出管路161の大径部161bに圧入固定される。スプリング172の付勢力により、ボール171がシール面174に押し付けられ、これにより吐出管路161が閉塞される。電動オイルポンプを駆動して吐出管路161にオイルが吐出されると、その油圧によりボール171が押し下げられてシール面174から離反する(図19の点線参照)。これにより、オイルがボール171の外周を回り込んで、吐出管路161の下端に設けられたオイル吐出口165から吐出される(点線矢印A参照)。 The holding part 173 has a holder 175 and a retaining member 176 . A ball 171 and a spring 172 are arranged on the inner periphery of the holder 175 , and a retainer member 176 is press-fitted into the large-diameter portion 161 b of the discharge pipe 161 . The urging force of the spring 172 presses the ball 171 against the seal surface 174, thereby closing the discharge line 161. As shown in FIG. When the electric oil pump is driven and oil is discharged to the discharge pipe line 161, the ball 171 is pushed down by the oil pressure and separated from the seal surface 174 (see the dotted line in FIG. 19). As a result, the oil wraps around the outer periphery of the ball 171 and is discharged from the oil discharge port 165 provided at the lower end of the discharge pipe line 161 (see dotted arrow A).
 上記の逆止弁機構170をハウジング150に組み付ける際には、オイル吐出口165から吐出管路161に、ボール171、スプリング172、ホルダ175が順に挿入される。しかし、このように、各部品を一つずつ吐出管路161に挿入して組み付ける作業は手間がかかるため、組立設備が複雑かつ高コストになる。 When assembling the check valve mechanism 170 to the housing 150, the ball 171, the spring 172, and the holder 175 are inserted from the oil outlet 165 into the discharge pipe 161 in this order. However, since it takes time and effort to insert each part into the discharge pipe 161 one by one and assemble it, the assembly equipment becomes complicated and expensive.
 そこで、本発明は、電動オイルポンプ等への逆止弁機構の組み付け性を向上させ、組立設備の簡素化および低コスト化を図ることを第2の目的とする。 Therefore, the second object of the present invention is to improve the ease of assembly of a check valve mechanism to an electric oil pump or the like, and to simplify assembly equipment and reduce costs.
 前記第1の目的を達成するために、本願第1発明は、モータ部と、前記モータ部で駆動されるポンプ部と、前記モータ部及び前記ポンプ部を収容するハウジングと、前記ハウジングの表面に形成された吸入口及び吐出口と、前記吸入口と前記ポンプ部とを連通する吸入管路と、前記吐出口と前記ポンプ部とを連通する吐出管路と、前記吐出管路に設けられた逆止弁機構とを備えた電動ポンプを提供する。 In order to achieve the first object, the first invention of the present application comprises a motor section, a pump section driven by the motor section, a housing that accommodates the motor section and the pump section, and a surface of the housing. a suction port and a discharge port that are formed; a suction conduit that communicates the suction port and the pump section; a discharge conduit that communicates the discharge port and the pump section; Provided is an electric pump equipped with a check valve mechanism.
 このように、電動ポンプの吐出管路に逆止弁機構を設けることにより、トランスミッションの油路の設計を変更することなくポンプ部への液体(例えばオイル)の逆流を防止して、液体の逆流に伴うモータ部の故障を防止できる。 In this way, by providing a check valve mechanism in the discharge pipe of the electric pump, it is possible to prevent backflow of liquid (for example, oil) to the pump section without changing the design of the oil passage of the transmission. It is possible to prevent the failure of the motor part associated with this.
 上記の逆止弁機構は、ボールと、シール面と、前記ボールを前記シール面に押し付ける付勢部材と、前記ボール及び前記付勢部材を内周に保持する保持部とを備えることができる。このように、保持部によりボールおよび付勢部材を外周から保持することで、ボールおよび付勢部材の位置や姿勢を安定させることができる。 The above check valve mechanism can include a ball, a sealing surface, a biasing member that presses the ball against the sealing surface, and a retaining portion that retains the ball and the biasing member on the inner periphery. Thus, by holding the ball and the biasing member from the outer periphery by the holding portion, the positions and postures of the ball and the biasing member can be stabilized.
 例えば図10に示すように、吐出管路103に形成されたシール面102(角部)にボール101を当接させることで、吐出管路103を閉塞することができる。この場合、ボール101とシール面102との接触角度α(吐出管路103の中心線L’を通る断面において、ボール101とシール面102との接触部におけるボール101の外周面の接線のなす角度)が小さいと、ボール101がシール面102に噛み込んでシール面102から離反しにくくなり、液体の吐出に支障をきたすおそれがある。このため、ボールとシール面との接触角度αはある程度大きくすることが好ましく、具体的には20°以上とすることが好ましい。 For example, as shown in FIG. 10, the discharge pipe 103 can be closed by bringing a ball 101 into contact with a sealing surface 102 (corner) formed on the discharge pipe 103 . In this case, the contact angle α between the ball 101 and the seal surface 102 (the angle formed by the tangent line of the outer peripheral surface of the ball 101 at the contact portion between the ball 101 and the seal surface 102 in the cross section passing through the center line L′ of the discharge pipe 103 ) is small, the ball 101 may get caught in the sealing surface 102 and become difficult to separate from the sealing surface 102, which may hinder the discharge of the liquid. Therefore, it is preferable that the contact angle α between the ball and the seal surface is increased to some extent, specifically, 20° or more.
 上記の電動ポンプにおいて、逆止弁機構の保持部をハウジングの吐出口よりも上流側に後退させれば、保持部がハウジングの内部に完全に収容されるため、他部材との干渉を防止できる。一方、逆止弁機構の保持部をハウジングの吐出口から突出させれば、この突出部分を、例えば電動ポンプを他部品(例えば、トランスミッションケース)に取り付ける際の位置決め基準として用いることができる。そこで、保持部を、ハウジングの吐出口から突出させた位置と、ハウジングの吐出口よりも上流側に後退させた位置の何れにも配置可能とすれば、上記のような機能を選択的に付与することができる。 In the above electric pump, if the holding portion of the check valve mechanism is retracted to the upstream side of the discharge port of the housing, the holding portion is completely housed inside the housing, thereby preventing interference with other members. . On the other hand, if the holding portion of the check valve mechanism protrudes from the discharge port of the housing, the protruding portion can be used as a positioning reference when attaching the electric pump to another component (eg, transmission case). Therefore, if the holding portion can be arranged either at a position protruding from the discharge port of the housing or at a position retracted upstream of the discharge port of the housing, the functions described above can be selectively provided. can do.
 逆止弁機構の保持部は、ホルダおよび抜け止め部材を有することができる。ホルダの内周には、ボール及び付勢部材が配される。このホルダを、吐出管路の内周に隙間を介して挿入することにより、ホルダを吐出管路に簡単に挿入することができる。抜け止め部材は、吐出管路に固定される。この抜け止め部材をホルダに下流側から当接させることで、ホルダの吐出管路からの抜けを規制できる。 The holding part of the check valve mechanism can have a holder and a retaining member. A ball and a biasing member are arranged on the inner periphery of the holder. The holder can be easily inserted into the discharge pipeline by inserting the holder into the inner periphery of the discharge pipeline through a gap. The retaining member is fixed to the discharge pipeline. By bringing this retaining member into contact with the holder from the downstream side, it is possible to prevent the holder from coming off from the discharge pipe.
 上記のように吐出管路の内周に隙間を介してホルダを配すると、吐出管路の内部でホルダが回転可能となるため、吐出管路を流れる液体によりホルダが回転してボールや付勢部材の保持が不安定になるおそれがある。また、ホルダが回転すると、ホルダが抜け止め部材やハウジングと摺動するため、長期の使用によりホルダが摩耗するおそれがある。そこで、ホルダと抜け止め部材とを吐出管路の周方向で係合させ、ホルダの回転を規制することが好ましい。 When the holder is arranged on the inner circumference of the discharge pipe with a gap therebetween as described above, the holder can rotate inside the discharge pipe. Holding of the member may become unstable. Further, when the holder rotates, the holder slides against the retainer member and the housing, so there is a risk that the holder will wear out due to long-term use. Therefore, it is preferable to engage the holder and the retaining member in the circumferential direction of the discharge pipe to restrict the rotation of the holder.
 ハウジングが、一部品として一体に形成され、前記モータ部及び前記ポンプ部を収容するハウジング本体を備える場合、このハウジング本体に吐出管路を形成することができる。この場合、吐出管路の大径部に、逆止弁機構の保持部を配することができる。吐出管路の大径部に逆止弁機構を設けない場合、液体の逆流を防止することはできないが、吐出管路としては問題なく機能する。従って、逆止弁機構を設ける場合でも設けない場合でも共通のハウジングを用いることができるため、製造コストを低減できる。 When the housing is integrally formed as one piece and includes a housing body that accommodates the motor section and the pump section, the housing body can be formed with a discharge line. In this case, the holding portion of the check valve mechanism can be arranged in the large-diameter portion of the discharge pipeline. If the large-diameter portion of the discharge pipe is not provided with a check valve mechanism, the reverse flow of the liquid cannot be prevented, but the discharge pipe functions without any problem. Therefore, the common housing can be used whether or not the check valve mechanism is provided, so that the manufacturing cost can be reduced.
 逆止弁機構のシール面は、例えばハウジング本体に形成することができる。例えば、吐出管路に、小径部の内周面と大経部の内周面とを接続する段差部を設け、この段差部にシール面を形成することができる。 The sealing surface of the check valve mechanism can be formed, for example, on the housing body. For example, the discharge pipe may be provided with a stepped portion connecting the inner peripheral surface of the small diameter portion and the inner peripheral surface of the large diameter portion, and the sealing surface may be formed on the stepped portion.
 シール面をハウジング本体に形成する場合、ボール、あるいはこれと同形状の成形面を有する治具をハウジングに押し付けることでシール面を成形することができる。この場合、シール面が、ボールの外周面と同形状の塑性加工面となる。このように、シール面をボールと同形状とすることで、ボールとシール面との密着性を高めてシール性が高められる。 When forming the sealing surface on the housing body, the sealing surface can be formed by pressing a ball or a jig having a molding surface of the same shape against the housing. In this case, the sealing surface is a plastically worked surface having the same shape as the outer peripheral surface of the ball. By forming the sealing surface into the same shape as the ball in this way, the adhesion between the ball and the sealing surface is enhanced, and the sealing performance is enhanced.
 吐出管路をモータ部とポンプ部との軸方向間領域に配すれば、電動ポンプのコンパクト化が図られる。  The electric pump can be made compact by arranging the discharge pipe in the area between the motor part and the pump part in the axial direction.
 ポンプ部としては、例えば、回転することで液体を圧送する回転式ポンプ(例えば、トロコイドポンプ)を使用することができる。 As the pump unit, for example, a rotary pump (for example, a trochoid pump) that pumps liquid by rotating can be used.
 また、前記第2の目的を達成するために、本願第2発明は、シール面と、ボールと、前記ボールを上流側に付勢して前記シール面に押し付ける付勢部材と、前記ボール及び前記付勢部材を内周に保持するホルダとを備えた逆止弁機構であって、前記ホルダが、前記付勢部材を下流側から支持する支持部と、前記ボールに上流側から係合可能な係止部とを有する逆止弁機構を提供する。 In order to achieve the second object, the second invention of the present application comprises a seal surface, a ball, a biasing member that biases the ball upstream and presses it against the seal surface, the ball and the seal surface. A check valve mechanism comprising a holder that holds an urging member on the inner circumference, wherein the holder is capable of engaging with a support portion that supports the urging member from the downstream side and the ball from the upstream side. A check valve mechanism having a locking portion is provided.
 このように、保持部に支持部および係止部を設けることで、保持部の内周からのボールおよび付勢部材の脱落を防止できるため、保持部、ボール、および付勢部材を、逆止弁部品ユニットとして一体的に取り扱うことができる。こうして一体化した逆止弁部品ユニットを電動オイルポンプのハウジング等に組み付けることで、各部品を一つずつ組み付ける場合と比べて、組み付け性が向上する。 In this way, by providing the support portion and the locking portion to the holding portion, it is possible to prevent the ball and the biasing member from falling off from the inner circumference of the holding portion. It can be handled integrally as a valve part unit. By assembling the integrated check valve component unit to the housing or the like of the electric oil pump, the assembling efficiency is improved as compared with the case where each component is assembled one by one.
 係止部は、例えばホルダの周方向に離間した複数箇所に設けることができる。 The locking portions can be provided, for example, at a plurality of locations spaced apart in the circumferential direction of the holder.
 係止部は、ボールの通過を許容可能な位置まで外径側に弾性的に変位可能であることが好ましい。これにより、係止部の内周にボールを押し込んで、係止部を外径側に弾性的に変位させながらボールを通過させることで、保持部の内周にボールを簡単に組み込むことができる。 It is preferable that the engaging portion can be elastically displaced radially to a position that allows passage of the ball. As a result, the ball can be easily incorporated into the inner periphery of the holding portion by pushing the ball into the inner periphery of the locking portion and passing the ball while elastically displacing the locking portion toward the outer diameter side. .
 係止部の内径をボールの直径よりも小さくすることで、係止部をボールと係合させることができる。また、係止部の内径を付勢部材の外径よりも大きくすることで、付勢部材を、係止部側(上流側)から保持部の内周に挿入することができる。 By making the inner diameter of the locking portion smaller than the diameter of the ball, the locking portion can be engaged with the ball. Further, by making the inner diameter of the locking portion larger than the outer diameter of the biasing member, the biasing member can be inserted into the inner circumference of the holding portion from the side of the locking portion (upstream side).
 ホルダは、流路方向に沿って延びる複数のガイド部を有する構成とすることができる。この場合、各ガイド部の先端に係止部を設けることができる。 The holder can be configured to have a plurality of guide portions extending along the direction of the flow path. In this case, a locking portion can be provided at the tip of each guide portion.
 上記の逆止弁機構は、シール面にボールが当接した状態で、係止部とボールとが離間した構成とすることができる。この場合、ボールは、係止部と接触する前にシール面に当接するため、係止部はボールと接触することがない。すなわち、係止部は、逆止弁機構を対象部品に組み込む前の状態で、保持部からのボールの飛び出しを防止する機能を果たす。 The check valve mechanism described above can be configured such that the locking portion and the ball are separated from each other while the ball is in contact with the sealing surface. In this case, since the ball abuts against the sealing surface before contacting the locking portion, the locking portion does not come into contact with the ball. That is, the locking portion functions to prevent the ball from jumping out of the holding portion before the check valve mechanism is incorporated into the target component.
 上記の逆止弁機構は、例えば電動オイルポンプに組み込まれる。この電動オイルポンプは、モータ部と、前記モータ部で駆動されるポンプ部と、前記モータ部及び前記ポンプ部を収容するハウジングと、前記ハウジングの表面に形成されたオイル吸入口及びオイル吐出口と、前記オイル吸入口と前記ポンプ部とを連通する吸入管路と、前記オイル吐出口と前記ポンプ部とを連通する吐出管路と、前記吐出管路に設けられた上記逆止弁機構とを備える。この場合、逆止弁機構のシール面は、ハウジングに形成することができる。 The above check valve mechanism is incorporated into an electric oil pump, for example. The electric oil pump includes a motor portion, a pump portion driven by the motor portion, a housing that accommodates the motor portion and the pump portion, and an oil suction port and an oil discharge port that are formed on the surface of the housing. a suction pipe communicating between the oil suction port and the pump portion; a discharge pipe communicating between the oil discharge port and the pump portion; and the check valve mechanism provided in the discharge pipe. Prepare. In this case, the sealing surface of the check valve mechanism can be formed on the housing.
 以上のように、本願第1発明では、吐出管路に逆止弁機構を設けることにより、取付対象部品の設計工数を増やすことなく、液体の逆流による電動ポンプの損傷を防止することができる。 As described above, in the first invention of the present application, by providing the check valve mechanism in the discharge pipe, it is possible to prevent damage to the electric pump due to backflow of liquid without increasing the number of man-hours for designing the parts to be attached.
 また、本願第2発明のように、逆止弁機構の保持部にボールの飛び出しを防止する係止部を設けることで、逆止弁機構の電動オイルポンプ等への組み付け性が向上し、組立設備の簡素化および低コスト化を図ることができる。 In addition, as in the second invention of the present application, by providing the retaining portion of the check valve mechanism with a locking portion that prevents the ball from jumping out, the ease of assembly of the check valve mechanism to an electric oil pump or the like is improved. Equipment can be simplified and costs can be reduced.
本願第1発明の一実施形態に係る電動オイルポンプの軸方向断面図である。1 is an axial cross-sectional view of an electric oil pump according to an embodiment of the first invention of the present application; FIG. 図1のII-II線における軸直交方向断面図である。FIG. 2 is a cross-sectional view in the direction perpendicular to the axis taken along line II-II of FIG. 1; 上記電動オイルポンプの斜視図である。It is a perspective view of the said electric oil pump. 上記電動オイルポンプに設けられる逆止弁機構の断面図である。FIG. 4 is a cross-sectional view of a check valve mechanism provided in the electric oil pump; 上記逆止弁機構の構成部品の斜視図である。4 is a perspective view of components of the check valve mechanism; FIG. 上記逆止弁機構のボール及びシール面の拡大断面図である。4 is an enlarged cross-sectional view of the ball and seal surface of the check valve mechanism; FIG. 上記逆止弁機構のシール面の成形方法を示す断面図である。FIG. 4 is a cross-sectional view showing a method of forming a sealing surface of the check valve mechanism; 他の実施形態に係る逆止弁機構の断面図である。FIG. 5 is a cross-sectional view of a check valve mechanism according to another embodiment; さらに他の実施形態に係る逆止弁機構の断面図である。FIG. 8 is a cross-sectional view of a check valve mechanism according to still another embodiment; 参考例に係るボール及びシール面の断面図である。FIG. 4 is a cross-sectional view of a ball and a seal surface according to a reference example; 本願第2発明の一実施形態に係る逆止弁機構の断面図である。FIG. 8 is a cross-sectional view of a check valve mechanism according to an embodiment of the second invention of the present application; 図11の逆止弁機構を構成する部品ユニットの斜視図である。FIG. 12 is a perspective view of a component unit that constitutes the check valve mechanism of FIG. 11; 図12の部品ユニットの拡大断面図である。13 is an enlarged cross-sectional view of the component unit of FIG. 12; FIG. 図11の逆止弁機構のボール及びシール面の拡大断面図である。FIG. 12 is an enlarged cross-sectional view of the ball and seal surface of the check valve mechanism of FIG. 11; 他の例に係る逆止弁機構のボール及びシール面の拡大断面図である。FIG. 11 is an enlarged cross-sectional view of a ball and a seal surface of a check valve mechanism according to another example; 図14の逆止弁機構のシール面の成形方法を示す断面図である。FIG. 15 is a cross-sectional view showing a method of molding the sealing surface of the check valve mechanism of FIG. 14; 他の実施形態に係る逆止弁部品ユニットの断面図である。FIG. 5 is a cross-sectional view of a check valve component unit according to another embodiment; 図17の逆止弁部品ユニットの斜視図である。FIG. 18 is a perspective view of the check valve component unit of FIG. 17; 参考例に係る逆止弁機構の断面図である。FIG. 4 is a cross-sectional view of a check valve mechanism according to a reference example; 図19の逆止弁機構を構成する部品ユニットの斜視図である。FIG. 20 is a perspective view of a component unit that constitutes the check valve mechanism of FIG. 19;
 以下、本願第1発明の実施形態を図1~10に基づいて説明する。 An embodiment of the first invention of the present application will be described below with reference to FIGS.
 本実施形態の電動ポンプは、主にエンジンの停止中にトランスミッションに油圧を供給する電動オイルポンプである。電動オイルポンプが、トランスミッションケース底部のオイル溜りからオイルを吸引し、このオイルを吐出してトランスミッション内にオイルを圧送することにより、トランスミッション内で必要な油圧や潤滑油量が確保される。 The electric pump of this embodiment is an electric oil pump that mainly supplies hydraulic pressure to the transmission while the engine is stopped. An electric oil pump draws oil from an oil reservoir at the bottom of the transmission case, discharges the oil, and pumps the oil into the transmission, thereby ensuring the necessary oil pressure and amount of lubricating oil in the transmission.
 図1に示すように、本実施形態の電動オイルポンプ1は、油圧を発生させるポンプ部2と、ポンプ部2を駆動するモータ部3と、モータ部3を制御する制御回路が設けられたコントローラ4(メイン基板)と、ポンプ部2、モータ部3、およびコントローラ4を収容するハウジング5とを有する。以下、それぞれの部材または要素を詳細に説明する。 As shown in FIG. 1, the electric oil pump 1 of this embodiment includes a pump section 2 for generating hydraulic pressure, a motor section 3 for driving the pump section 2, and a controller provided with a control circuit for controlling the motor section 3. 4 (main board), and a housing 5 that accommodates the pump section 2 , the motor section 3 and the controller 4 . Each member or element will be described in detail below.
 なお、以下の説明において、モータ部3の軸心Oと平行な方向を「軸方向」と呼び、軸心Oを中心とする円の半径方向を「半径方向」と呼ぶ(「内径方向」および「外径方向」も当該円の内径方向および外径方向を意味する)。また、軸心Oを中心とする円の円周方向を「周方向」と呼ぶ。 In the following description, the direction parallel to the axis O of the motor portion 3 is called the "axial direction", and the radial direction of a circle centered on the axis O is called the "radial direction" ("inner diameter direction" and "Outer diameter" also means the inner and outer diameters of the circle). Also, the circumferential direction of a circle centered on the axis O is called the “circumferential direction”.
 図1及び図2に示すように、本実施形態のポンプ部2は、回転することでオイルを圧送する回転式ポンプである。具体的に、ポンプ部2は、複数の外歯が形成されたインナロータ21と、複数の内歯が形成されたアウタロータ22と、インナロータ21およびアウタロータ22を収容する静止部材としてのポンプケース23とを有するトロコロイドポンプである。アウタロータ22の内径側にインナロータ21が配置されている。アウタロータ22は、インナロータ21に対して偏心した位置にある。アウタロータ22の一部の歯部がインナロータ21の一部の歯部と噛み合っている。なお、インナロータ21の歯数をnとすると、アウタロータ22の歯数は(n+1)である。アウタロータ22の外周面およびポンプケース23の内周面は何れも互いに嵌合可能な円筒面である。アウタロータ22は、インナロータ21の回転に伴って従動回転するように、ポンプケース23の内周に回転可能に配置される。 As shown in FIGS. 1 and 2, the pump section 2 of this embodiment is a rotary pump that pumps oil by rotating. Specifically, the pump unit 2 includes an inner rotor 21 having a plurality of external teeth, an outer rotor 22 having a plurality of internal teeth, and a pump case 23 as a stationary member housing the inner rotor 21 and the outer rotor 22. A trocolloid pump with The inner rotor 21 is arranged on the inner diameter side of the outer rotor 22 . The outer rotor 22 is located eccentrically with respect to the inner rotor 21 . Some of the teeth of the outer rotor 22 mesh with some of the teeth of the inner rotor 21 . If the number of teeth of the inner rotor 21 is n, the number of teeth of the outer rotor 22 is (n+1). Both the outer peripheral surface of the outer rotor 22 and the inner peripheral surface of the pump case 23 are cylindrical surfaces that can be fitted to each other. The outer rotor 22 is rotatably arranged on the inner circumference of the pump case 23 so as to be driven to rotate with the rotation of the inner rotor 21 .
 図1に示すように、モータ部3はポンプ部2と軸方向に並べて配置される。モータ部3として、例えば3相ブラシレスDCモータが使用される。モータ部3は、複数のコイル30aを有するステータ30と、ステータ30の内側に隙間をもって配置されたロータ31と、ロータ31に結合された出力軸32とを有する。ステータ30には、U相、V相、W相の三相に対応したコイル30aが形成されている。 As shown in FIG. 1, the motor section 3 is arranged side by side with the pump section 2 in the axial direction. A three-phase brushless DC motor, for example, is used as the motor unit 3 . The motor section 3 has a stator 30 having a plurality of coils 30 a , a rotor 31 arranged inside the stator 30 with a gap therebetween, and an output shaft 32 coupled to the rotor 31 . The stator 30 is formed with coils 30a corresponding to three phases of U-phase, V-phase and W-phase.
 出力軸32は、軸受33,34を介してハウジング5に対して回転可能に支持されている。出力軸32のポンプ部2側の端部には、ポンプ部2のインナロータ21が装着されている。出力軸32とポンプ部2の間に減速機は配置されておらず、インナロータ21はモータ部3の出力軸32に嵌合されており、例えば二面幅によって動力伝達可能とされている。軸方向ポンプ部2側に位置する軸受33とインナロータ21との間に、出力軸32の外周面に摺接するシールリップを備えたシール35が配置される。このシール35によって、ポンプ部2からモータ部3へのオイルの漏洩が防止されている。軸方向ポンプ部2側の軸受33とシール35との間には、軸方向に圧縮された弾性部材36が配置され、軸受33、34に対し予圧を与えている。 The output shaft 32 is rotatably supported with respect to the housing 5 via bearings 33 and 34. The inner rotor 21 of the pump section 2 is attached to the end of the output shaft 32 on the pump section 2 side. No speed reducer is arranged between the output shaft 32 and the pump section 2, and the inner rotor 21 is fitted to the output shaft 32 of the motor section 3 so that power can be transmitted by, for example, the width across flats. A seal 35 having a seal lip in sliding contact with the outer peripheral surface of the output shaft 32 is arranged between the bearing 33 located on the axial pump portion 2 side and the inner rotor 21 . This seal 35 prevents oil from leaking from the pump section 2 to the motor section 3 . An axially compressed elastic member 36 is arranged between the bearing 33 and the seal 35 on the axial pump portion 2 side to apply preload to the bearings 33 and 34 .
 モータ部3におけるロータ31の回転角を検出するため、モータ部3の回転側と静止側の間に検出部37が設けられる。本実施形態の検出部37は、出力軸32の反ポンプ部側の軸端にブラケット38を介して取り付けられたセンサマグネット37a(例えばネオジウムボンド磁石)と、静止側となるハウジング5に設けられたMR素子等の磁気センサ37bとで構成することができる。磁気センサ37bは、出力軸32の反ポンプ側の軸端と対向して配置され、かつ出力軸32と直交する方向に配置されたサブ基板39に取り付けられる。磁気センサ37bの検出値は、後述するコントローラ4(メイン基板)の制御回路に入力される。 A detector 37 is provided between the rotating side and the stationary side of the motor section 3 in order to detect the rotation angle of the rotor 31 in the motor section 3 . The detection unit 37 of this embodiment includes a sensor magnet 37a (for example, a neodymium bond magnet) attached via a bracket 38 to the shaft end of the output shaft 32 on the side opposite to the pump unit, and a housing 5 on the stationary side. It can be configured with a magnetic sensor 37b such as an MR element. The magnetic sensor 37 b is attached to a sub-board 39 that faces the shaft end of the output shaft 32 opposite to the pump and that is arranged in a direction perpendicular to the output shaft 32 . A detected value of the magnetic sensor 37b is input to a control circuit of the controller 4 (main substrate), which will be described later.
 なお、磁気センサ37bとして、ホール素子を使用することもできる。また、検出部37としては、磁気センサの他、光学式エンコーダやレゾルバ等を用いることもできる。なお、センサレスでモータ部3を駆動することもできる。 A Hall element can also be used as the magnetic sensor 37b. In addition to the magnetic sensor, an optical encoder, resolver, or the like can also be used as the detection unit 37 . It should be noted that the motor section 3 can also be driven sensorless.
 本実施形態のコントローラ4は、モータ部3の出力軸32と平行に配置される。コントローラ4には、複数の電子部品41が実装されている。これらの電子部品41でモータ部3の駆動を制御する制御回路が構成される。図示例では、コントローラ4が、電子部品41を実装した面(実装面)40をポンプ部2およびモータ部3と対向させて配置される。コントローラ4には、外部電源からコネクタ42を介して電力が供給される。 The controller 4 of this embodiment is arranged parallel to the output shaft 32 of the motor section 3 . A plurality of electronic components 41 are mounted on the controller 4 . These electronic components 41 constitute a control circuit for controlling the driving of the motor section 3 . In the illustrated example, the controller 4 is arranged with a surface (mounting surface) 40 on which electronic components 41 are mounted facing the pump section 2 and the motor section 3 . Power is supplied to the controller 4 from an external power supply through a connector 42 .
 ハウジング5は、両端を開口した筒状のハウジング本体50と、ハウジング本体50の軸方向ポンプ側の開口部を閉鎖する第一蓋部51と、ハウジング本体50の軸方向反ポンプ側の開口部を閉鎖する第二蓋部52とを有する。第一蓋部51および第二蓋部52はそれぞれ複数の締結用ボルトB1、B2を用いてハウジング本体50に固定される。 The housing 5 includes a cylindrical housing body 50 with both ends open, a first lid portion 51 that closes the opening of the housing body 50 on the side of the pump in the axial direction, and an opening of the housing body 50 on the side opposite to the pump in the axial direction. and a second lid portion 52 that closes. The first lid portion 51 and the second lid portion 52 are fixed to the housing body 50 using a plurality of fastening bolts B1 and B2, respectively.
 第二蓋部52は、反ポンプ部側の軸受34を支持する円筒形状のベアリングケース52aと、ベアリングケース52aの反ポンプ部側開口部を閉鎖するカバー52bとを有する。ベアリングケース52aの内径側にサブ基板39が配置される。カバー52bは、ベアリングケース52aに図示しない締結部材を用いて取り付けられる。 The second lid portion 52 has a cylindrical bearing case 52a that supports the bearing 34 on the anti-pump side, and a cover 52b that closes the opening of the bearing case 52a on the anti-pump side. A sub-board 39 is arranged on the inner diameter side of the bearing case 52a. The cover 52b is attached to the bearing case 52a using a fastening member (not shown).
 ハウジング本体50は、ポンプ部2を収容するポンプ収容部53、モータ部3を収容するモータ収容部54、およびコントローラ4を収容するコントローラ収容部55を有し、一部品の形で一体に形成される。ハウジング本体50は、例えば鋳造や切削あるいはこれらの組み合わせにより形成される。ハウジング本体50、第一蓋部51、および第二蓋部52は導体でかつ熱伝導性が良好な金属材料、例えばアルミニウム合金で形成される。この他、ハウジング本体50、第一蓋部51、および第2蓋部52のうちの一つ又は複数を他の金属材料(例えば、鉄系金属)や樹脂で形成してもよい。 The housing body 50 has a pump accommodating portion 53 that accommodates the pump portion 2, a motor accommodating portion 54 that accommodates the motor portion 3, and a controller accommodating portion 55 that accommodates the controller 4, and is integrally formed in the form of a single component. be. The housing body 50 is formed, for example, by casting, cutting, or a combination thereof. The housing main body 50, the first lid portion 51, and the second lid portion 52 are made of a metal material that is a conductor and has good thermal conductivity, such as an aluminum alloy. Alternatively, one or more of the housing main body 50, the first lid portion 51, and the second lid portion 52 may be made of other metal material (for example, ferrous metal) or resin.
 ハウジング5のポンプ収容部53は、ポンプ部2のポンプケース23を含む概略円筒状の形態を有する。ポンプ収容部53には、インナロータ21及びアウタロータ22が収容されるポンプ室66と、吸入ポート62および吐出ポート64とが形成される。吸入ポート62および吐出ポート64は、何れもポンプ室66のモータ部3側(図1の左側)に隣接して設けられ、インナロータ21とアウタロータ22の噛み合い部に開口している。吸入ポート62と吐出ポート64は、図2に示すように、何れも出力軸32の円周方向に延びる円弧状をなし、円周方向で180°対向する位置に設けられる。 The pump accommodating portion 53 of the housing 5 has a substantially cylindrical shape including the pump case 23 of the pump portion 2 . A pump chamber 66 in which the inner rotor 21 and the outer rotor 22 are accommodated, a suction port 62 and a discharge port 64 are formed in the pump accommodating portion 53 . The suction port 62 and the discharge port 64 are both provided adjacent to the motor section 3 side (the left side in FIG. 1) of the pump chamber 66 and open to the meshing portion of the inner rotor 21 and the outer rotor 22 . As shown in FIG. 2, the suction port 62 and the discharge port 64 are both arc-shaped extending in the circumferential direction of the output shaft 32 and are provided at positions opposed to each other by 180° in the circumferential direction.
 ハウジング5のモータ収容部54は円筒状に形成される。モータ収容部54の円筒状内周面に、モータ部3のステータ30が圧入もしくは接着固定されている。ハウジング5のコントローラ収容部55は、半径方向の外径側(図1の下側)が開口しており、内周にコントローラ4を収容した後、開口部がカバー57により閉鎖される。カバー57は締結部材B3を用いてハウジング本体50に取り付けられる。 The motor accommodating portion 54 of the housing 5 is formed in a cylindrical shape. A stator 30 of the motor portion 3 is press-fitted or adhesively fixed to the cylindrical inner peripheral surface of the motor accommodating portion 54 . The controller accommodating portion 55 of the housing 5 is open on the radially outer diameter side (lower side in FIG. 1), and after the controller 4 is accommodated in the inner circumference, the opening is closed by the cover 57 . The cover 57 is attached to the housing body 50 using the fastening member B3.
 図1および図3に示すように、ハウジング本体50の軸方向両側には、電動オイルポンプ1を取り付け対象(本実施形態ではトランスミッションケース)に取り付けるためのフランジ状の取り付け部58、59が一体に形成される。ポンプ部2側の取り付け部58に二つの締結用孔58aが形成され、反ポンプ部側の取り付け部59に二つの締結用孔59aが形成されている。これら締結用孔58a、59aに図示しない締結部材を挿入し、当該締結部材を取り付け対象にねじ込むことで、電動オイルポンプ1が取り付け対象に取り付けられる。 As shown in FIGS. 1 and 3, flange- like mounting portions 58 and 59 for mounting the electric oil pump 1 to a mounting target (transmission case in this embodiment) are integrally formed on both sides in the axial direction of the housing body 50. It is formed. Two fastening holes 58a are formed in the mounting portion 58 on the pump portion 2 side, and two fastening holes 59a are formed in the mounting portion 59 on the anti-pump portion side. By inserting a fastening member (not shown) into these fastening holes 58a and 59a and screwing the fastening member into the attachment target, the electric oil pump 1 is attached to the attachment target.
 図1及び図2に示すように、ハウジング本体50には、ポンプ部2に供給されるオイルが流通する吸入管路60と、ポンプ部2から吐出されたオイルが流通する吐出管路61とが設けられる。本実施形態では、吸入管路60および吐出管路61が、何れも直線状に形成される。吸入管路60および吐出管路61は、例えば、ハウジング本体50にドリル等による機械加工で形成された貫通孔で構成される。この場合、吸入管路60および吐出管路61の内周面は、ハウジング本体50に直接形成される。 As shown in FIGS. 1 and 2, the housing body 50 has a suction pipe 60 through which oil supplied to the pump portion 2 flows, and a discharge pipe 61 through which oil discharged from the pump portion 2 flows. be provided. In this embodiment, both the suction pipe 60 and the discharge pipe 61 are formed linearly. The suction pipe line 60 and the discharge pipe line 61 are configured by, for example, through holes formed in the housing body 50 by machining using a drill or the like. In this case, the inner peripheral surfaces of the suction pipe 60 and the discharge pipe 61 are formed directly on the housing body 50 .
 吸入管路60の一端は吸入ポート62に接続され、吐出管路61の一端は吐出ポート64に接続される。吸入管路60の他端はハウジング本体50の表面に開口し、この開口部が吸入口63となる(図3参照)。吐出管路61の他端はハウジング本体50の表面に開口し、この開口部が吐出口65となる。吸入口63および吐出口65は、ハウジング5のうち、取り付け対象と対向する面に設けられる。これにより、電動オイルポンプ1の周囲にオイル用配管を引き回す必要がなくなり、電動オイルポンプ1の周辺構造を簡略化することができる。 One end of the suction pipe line 60 is connected to the suction port 62 , and one end of the discharge pipe line 61 is connected to the discharge port 64 . The other end of the suction conduit 60 opens to the surface of the housing body 50, and this opening serves as a suction port 63 (see FIG. 3). The other end of the discharge pipe line 61 opens to the surface of the housing body 50 , and this opening serves as a discharge port 65 . The suction port 63 and the discharge port 65 are provided on the surface of the housing 5 that faces the mounting target. As a result, there is no need to route an oil pipe around the electric oil pump 1, and the peripheral structure of the electric oil pump 1 can be simplified.
 本実施形態では、図4に示すように、吐出管路61が、小径部61aと、小径部61aの下流側に設けられた大径部61bとを有する。小径部61aの上流側端部は、吐出ポート64に連通している。大径部61bの下流側端部は、ハウジング本体50の表面に開口し、この開口部が吐出口65となる。吐出管路61の小径部61aの内周面と大径部61bの内周面とは段差部61cで接続される。図示例では、段差部61cが、吐出管路61の中心線L方向(以下、「流路方向」という)と直交する平坦面61dを有する。 In this embodiment, as shown in FIG. 4, the discharge pipeline 61 has a small diameter portion 61a and a large diameter portion 61b provided downstream of the small diameter portion 61a. An upstream end of the small diameter portion 61 a communicates with the discharge port 64 . A downstream end portion of the large diameter portion 61 b opens to the surface of the housing body 50 , and this opening serves as a discharge port 65 . The inner peripheral surface of the small diameter portion 61a and the inner peripheral surface of the large diameter portion 61b of the discharge pipe line 61 are connected at a stepped portion 61c. In the illustrated example, the stepped portion 61c has a flat surface 61d perpendicular to the direction of the center line L of the discharge pipe 61 (hereinafter referred to as "flow path direction").
 吐出管路61には逆止弁機構70が設けられる。逆止弁機構70は、図4および図5に示すように、ボール71と、付勢部材としてのスプリング72と、ボール71及びスプリング72を保持する保持部73と、シール面74とを有する。図示例では、シール面74がハウジング本体50に形成される。詳しくは、吐出管路61の段差部61cの内径端に、シール面74が形成される。本実施形態では、段差部61cの内径端に面取り部が形成され、この面取り部がシール面74として機能する。図示例では、シール面74が、ボール71の外周面と同形状の球面で構成される。この他、シール面74を、断面直線状のテーパ面で構成してもよい。また、段差部61cの内径端に面取り部を形成せず、この部分に形成される角部をシール面74としてもよい。 A check valve mechanism 70 is provided in the discharge pipeline 61 . The check valve mechanism 70 has a ball 71, a spring 72 as a biasing member, a holding portion 73 holding the ball 71 and the spring 72, and a seal surface 74, as shown in FIGS. In the illustrated example, a sealing surface 74 is formed on the housing body 50 . Specifically, a seal surface 74 is formed at the inner diameter end of the stepped portion 61 c of the discharge pipe line 61 . In the present embodiment, a chamfered portion is formed on the inner diameter end of the stepped portion 61 c and this chamfered portion functions as a sealing surface 74 . In the illustrated example, the sealing surface 74 is formed of a spherical surface having the same shape as the outer peripheral surface of the ball 71 . In addition, the sealing surface 74 may be configured by a tapered surface having a linear cross section. Further, the chamfered portion may not be formed on the inner diameter end of the stepped portion 61c, and the corner portion formed on this portion may be used as the sealing surface 74. FIG.
 本実施形態の保持部73は、ホルダ75と抜け止め部材76とを有する。ホルダ75は、ボール71の流路方向の移動を案内するガイド部75aを有する。図示例では、流路方向に延びる複数(例えば4本)のガイド部75aが周方向等間隔に設けられる。複数のガイド部75aの上流端は、円筒部75bで連結される。複数のガイド部75aの下流端付近には、底部75cが設けられる。底部75cの軸心には貫通孔が形成される。複数のガイド部75aの内周に、ボール71及びスプリング72が内周に配され、これらがガイド部75aで外周から保持される。ホルダ75は、吐出管路61の大径部61bの内周に隙間を介して挿入される。ホルダ75の上流端は、吐出管路61の段差部61cに当接している。この状態で、ボール71はシール面74(段差部61cの内径端)に当接し、このボール71とホルダ75の底部75cとの間にスプリング72が圧縮状態で配される。 The holding portion 73 of this embodiment has a holder 75 and a retaining member 76 . The holder 75 has a guide portion 75a that guides movement of the balls 71 in the direction of the flow path. In the illustrated example, a plurality of (for example, four) guide portions 75a extending in the flow path direction are provided at regular intervals in the circumferential direction. The upstream ends of the plurality of guide portions 75a are connected by a cylindrical portion 75b. A bottom portion 75c is provided near the downstream end of the plurality of guide portions 75a. A through hole is formed in the axial center of the bottom portion 75c. A ball 71 and a spring 72 are arranged on the inner circumference of a plurality of guide portions 75a, and these are held by the guide portion 75a from the outer circumference. The holder 75 is inserted into the inner periphery of the large-diameter portion 61b of the discharge pipe 61 with a gap therebetween. The upstream end of the holder 75 is in contact with the stepped portion 61 c of the discharge pipe line 61 . In this state, the ball 71 contacts the seal surface 74 (inner diameter end of the stepped portion 61c), and the spring 72 is arranged between the ball 71 and the bottom portion 75c of the holder 75 in a compressed state.
 抜け止め部材76は、リング状をなし、吐出管路61の大径部61bに圧入やねじ止め等の適宜の手段により固定される。抜け止め部材76と吐出管路61の段差部61cとでホルダ75を流路方向両側から挟持することにより、ホルダ75がハウジング本体50に固定される。図示例では、抜け止め部材76が、ハウジング本体50の表面50aよりも上流側に後退させた位置に固定される。これにより、逆止弁機構70がハウジング本体50の内部に完全に収容されるため、他部材との干渉を回避できる。なお、抜け止め部材76は、止め輪であってもよい。この場合、吐出管路61の大径部61bの内周面に環状溝を形成し、この環状溝に止め輪(抜け止め部材)を装着する(図示省略)。 The retaining member 76 has a ring shape and is fixed to the large-diameter portion 61b of the discharge pipe 61 by appropriate means such as press-fitting or screwing. The holder 75 is fixed to the housing body 50 by sandwiching the holder 75 from both sides in the direction of the flow path between the retainer member 76 and the stepped portion 61c of the discharge pipe line 61 . In the illustrated example, the retaining member 76 is fixed at a position retracted upstream of the surface 50 a of the housing body 50 . As a result, the check valve mechanism 70 is completely accommodated inside the housing main body 50, so interference with other members can be avoided. Note that the retaining member 76 may be a retaining ring. In this case, an annular groove is formed in the inner peripheral surface of the large-diameter portion 61b of the discharge pipe line 61, and a retaining ring (retaining member) is attached to the annular groove (not shown).
 ボール71は、シール面74(ハウジング本体50)よりも硬い材質で形成され、例えば鉄系金属、具体的には炭素鋼、特にステンレス鋼で形成される。スプリング72は、鉄系金属、例えばステンレス鋼で形成される。ホルダ75は、成形性の観点から樹脂で形成することが好ましいが、鉄系やアルミ系の金属で形成してもよい。抜け止め部材76は、鉄系やアルミ系の金属で形成される。抜け止め部材76を、後述する位置決め基準として用いる場合は、強度の観点から鉄系材料で形成することが好ましい。抜け止め部材76をハウジング本体50に圧入固定する場合は、抜け止め部材76をハウジング本体50と同系の金属材料で形成することが好ましい。これにより、両者の線膨張係数が近いか同じ値になるため、温度変化に伴う抜け止め部材76のハウジング本体50からの抜けを防止できる。 The ball 71 is made of a material harder than the sealing surface 74 (housing body 50), such as a ferrous metal, specifically carbon steel, especially stainless steel. The spring 72 is made of ferrous metal such as stainless steel. The holder 75 is preferably made of resin from the viewpoint of formability, but may be made of iron-based or aluminum-based metal. The retaining member 76 is made of iron-based or aluminum-based metal. When the retainer member 76 is used as a positioning reference, which will be described later, it is preferable to use an iron-based material from the viewpoint of strength. When the retainer member 76 is press-fitted into the housing body 50 , the retainer member 76 is preferably made of the same metal material as the housing body 50 . As a result, the coefficients of linear expansion of both are close to each other or have the same value, so that the retaining member 76 can be prevented from coming off from the housing main body 50 due to temperature changes.
 以上の構成を有する電動オイルポンプ1において、モータ部3の停止時には、スプリング72の付勢力によりボール71がシール面74に押し付けられ、吐出管路61が閉塞される。この状態で、トランスミッション側からオイルが逆流した場合、ボール71がシール面74にさらに押し付けられるため、吐出管路61が閉塞された状態が維持される。これにより、逆流したオイルのポンプ部2への流入が規制され、ポンプ部2の逆回転によるモータ部3やコントローラ4の故障を防止できる。 In the electric oil pump 1 having the above configuration, when the motor portion 3 is stopped, the ball 71 is pressed against the seal surface 74 by the biasing force of the spring 72, and the discharge pipe line 61 is closed. In this state, if the oil flows back from the transmission side, the ball 71 is further pressed against the seal surface 74, so that the discharge line 61 is kept closed. As a result, the inflow of reversed oil into the pump section 2 is restricted, and failure of the motor section 3 and the controller 4 due to the reverse rotation of the pump section 2 can be prevented.
 そして、モータ部3を駆動すると、インナロータ21が回転し、これに噛み合ったアウタロータ22が従動回転することにより、両者の歯部の間に形成される空間が回転に伴って拡大および縮小する。これにより、トランスミッションケース内の油溜りに溜まったオイルが吸入管路60を介してポンプ部2に吸入され、このオイルがポンプ部2で圧縮されて吐出管路61に吐出される。 When the motor portion 3 is driven, the inner rotor 21 rotates, and the outer rotor 22 meshing with it rotates, so that the space formed between the teeth of both expands and contracts along with the rotation. As a result, the oil accumulated in the oil sump inside the transmission case is sucked into the pump portion 2 through the suction pipe line 60 , compressed by the pump portion 2 and discharged to the discharge pipe line 61 .
 そして、図4に点線で示すように、吐出管路61の油圧で逆止弁機構70のボール71がスプリング72を圧縮しながら下流側に押し込まれ、ボール71がシール面74から離反して吐出管路61が開放される。これにより、オイルがボール71の外周(複数のガイド部75aの間の空間)およびホルダ75の底部75cの外周を回り込み、抜け止め部材76の貫通孔を通過して吐出口65から吐出され(点線矢印A参照)、トランスミッションに供給される。なお、吐出管路61を流れるオイルの大部分は、ホルダ75の底部75cの外周を回り込むため、底部75cの軸心に設けられた貫通孔を通過するオイルは少ない。従って、特に必要がなければ底部75cの貫通孔を省略してもよい。 4, the ball 71 of the check valve mechanism 70 is pushed downstream while compressing the spring 72 by the hydraulic pressure of the discharge pipe 61, and the ball 71 separates from the sealing surface 74 to discharge. Line 61 is opened. As a result, the oil flows around the outer periphery of the ball 71 (the space between the plurality of guide portions 75a) and the outer periphery of the bottom portion 75c of the holder 75, passes through the through hole of the retaining member 76, and is discharged from the discharge port 65 (dotted line arrow A), is supplied to the transmission. Since most of the oil flowing through the discharge pipe line 61 wraps around the outer circumference of the bottom portion 75c of the holder 75, little oil passes through the through hole provided in the axial center of the bottom portion 75c. Therefore, the through hole in the bottom portion 75c may be omitted if it is not particularly necessary.
 上記の逆止弁機構70では、図6に示すように、ボール71とシール面74との接触角度αを20°以上に設定することが好ましい。接触角度αが小さすぎると、ボール71がシール面74に噛み込んでしまい、シール面74から離反しにくくなるおそれがあるからである(図10参照)。また、ボール71とシール面74との接触角度αは、120°以下に設定することが好ましい。接触角度αが大きすぎると、シール性が乏しくなるからである。なお、接触角度αは、吐出管路61の中心線Lを含む断面(図6参照)において、ボール71とシール面74との接触部におけるボール71の外周面の接線がなす角度である。本実施形態のように、ボール71とシール面74とが球面同士で接触する場合は、ボール71とシール面74との断面円弧状の接触部の中央におけるボール71の外周面の接線がなす角度を接触角度αとする。 In the check valve mechanism 70 described above, as shown in FIG. 6, it is preferable to set the contact angle α between the ball 71 and the seal surface 74 to 20° or more. This is because if the contact angle α is too small, the ball 71 may get caught in the seal surface 74 and become difficult to separate from the seal surface 74 (see FIG. 10). Also, the contact angle α between the ball 71 and the seal surface 74 is preferably set to 120° or less. This is because if the contact angle α is too large, the sealing performance becomes poor. The contact angle α is the angle formed by the tangential line of the outer peripheral surface of the ball 71 at the contact portion between the ball 71 and the seal surface 74 in the section including the center line L of the discharge pipe 61 (see FIG. 6). When the ball 71 and the seal surface 74 are in contact with each other as in the present embodiment, the angle formed by the tangent line of the outer peripheral surface of the ball 71 at the center of the contact portion of the arc-shaped cross section between the ball 71 and the seal surface 74 is is the contact angle α.
 上記の逆止弁機構70をハウジング本体50に組み付ける際には、吐出管路61の大径部61bに吐出口65からボール71、スプリング72、およびホルダ75を順に挿入する。本実施形態では、ホルダ75の外径が大径部61bの内径よりも僅かに小さいため、ホルダ75を大径部61bの内周に隙間を介して容易に挿入することができる。その後、抜け止め部材76を、吐出管路61の開口部(吐出口65)に圧入やねじ止め等により固定する。こうして吐出管路61に固定された抜け止め部材76がホルダ75に下流側から当接することで、ホルダ75の吐出管路61からの抜けが規制される。この状態で、ボール71はシール面74に当接し、このボール71とホルダ75の底部75cとの間にスプリング72が圧縮状態で保持される。すなわち、ボール71は、スプリング72の弾性力によりシール面74に押し付けられている。 When assembling the check valve mechanism 70 to the housing main body 50, the ball 71, the spring 72, and the holder 75 are inserted from the discharge port 65 into the large diameter portion 61b of the discharge pipe line 61 in this order. In this embodiment, the outer diameter of the holder 75 is slightly smaller than the inner diameter of the large diameter portion 61b, so the holder 75 can be easily inserted into the inner circumference of the large diameter portion 61b through a gap. After that, the retaining member 76 is fixed to the opening (discharge port 65) of the discharge pipe line 61 by press-fitting, screwing, or the like. The retaining member 76 fixed to the discharge pipe line 61 contacts the holder 75 from the downstream side, thereby restricting the holder 75 from coming off the discharge pipe line 61 . In this state, the ball 71 contacts the seal surface 74, and the spring 72 is held between the ball 71 and the bottom portion 75c of the holder 75 in a compressed state. That is, the ball 71 is pressed against the sealing surface 74 by the elastic force of the spring 72 .
 本実施形態では、図5に示すように、ホルダ75と抜け止め部材76とが、吐出管路61の周方向で係合している。具体的には、抜け止め部材76の上流側の端面に凹部76aを形成し、この凹部76aにホルダ75の係合部75d(図示例では、ガイド部75aの下端)を嵌合させている。この凹部76aと係合部75dとが周方向で係合することにより、吐出管路61内でのホルダ75の回転が規制されるため、ボール71およびスプリング72を安定的に保持できると共に、ホルダ75の摩耗を防止できる。 In this embodiment, as shown in FIG. 5, the holder 75 and the retaining member 76 are engaged in the circumferential direction of the discharge pipe line 61. Specifically, a concave portion 76a is formed in the end face on the upstream side of the retaining member 76, and the engaging portion 75d of the holder 75 (the lower end of the guide portion 75a in the illustrated example) is fitted into this concave portion 76a. Circumferential engagement between the recess 76a and the engaging portion 75d restricts the rotation of the holder 75 in the discharge pipe 61, so that the ball 71 and the spring 72 can be stably held and the holder Wear of 75 can be prevented.
 シール面74は、例えば以下の手順で形成される。まず、図7に示すように、ハウジング本体50に、機械加工(例えば旋削加工)により、小径部61a、大径部61b、および段差部61cを有する吐出管路61を形成する。このとき、段差部61cの全域に平坦面61dが形成され、段差部61cの内径端には直角の角部61eが形成される。そして、この角部61eに下流側からボール71を当接させて、点線で示すように上流側に押し込んで角部61eを塑性変形させる。この場合、トランスミッション側からのオイルの逆流により発生する圧力よりも高い圧力(荷重)で、ボール71を角部61eに押し付けることが好ましい。具体的に、ボール71の流路方向の投影面積をS、オイル逆流時の圧力をP、安全率をcとしたとき、ボール71を押し付ける荷重Fは、F>S・P・cを満たすように設定することが望ましい。 The sealing surface 74 is formed, for example, by the following procedure. First, as shown in FIG. 7, the housing body 50 is machined (eg, turned) to form a discharge pipe line 61 having a small-diameter portion 61a, a large-diameter portion 61b, and a step portion 61c. At this time, a flat surface 61d is formed over the entire area of the stepped portion 61c, and a right-angled corner portion 61e is formed at the inner diameter end of the stepped portion 61c. Then, a ball 71 is brought into contact with the corner portion 61e from the downstream side and pushed upstream as indicated by the dotted line to plastically deform the corner portion 61e. In this case, it is preferable to press the ball 71 against the corner portion 61e with a pressure (load) higher than the pressure generated by the backflow of oil from the transmission side. Specifically, when the projected area of the ball 71 in the flow direction is S, the pressure at the time of oil backflow is P, and the safety factor is c, the load F pressing the ball 71 satisfies F>S.P.c. should be set to
 こうしてボール71で成形されたシール面74は、ボール71と同形状の球面からなる塑性加工面となる。これにより、シール面74とボール71との密着性が高められ、シール性が向上する。なお、ボール71ではなく、ボール71と同形の球面状の成形面を有する治具を吐出管路61の角部61eに押し付けることで、シール面74を形成することもできる。あるいは、シール面74を切削等の機械加工で形成してもよい。この場合、シール面74は、球面に限らず、テーパ面等の任意の形状にすることができる。なお、トランスミッションから逆流してくるオイルの圧力が低い場合は、吐出管路61の角部61eを残して、この角部61eをシール面として機能させてもよい。 The sealing surface 74 formed by the ball 71 in this way is a plastically worked surface consisting of a spherical surface having the same shape as the ball 71 . As a result, the adhesion between the seal surface 74 and the ball 71 is enhanced, and the sealing performance is improved. Instead of the ball 71, the sealing surface 74 can be formed by pressing a jig having a spherical molding surface of the same shape as the ball 71 against the corner 61e of the discharge pipe line 61. FIG. Alternatively, the sealing surface 74 may be formed by machining such as cutting. In this case, the sealing surface 74 is not limited to a spherical surface, and may be of any shape such as a tapered surface. When the pressure of the oil flowing back from the transmission is low, the corner 61e of the discharge pipe line 61 may be left and the corner 61e may function as a sealing surface.
 本実施形態では、上述のように、吐出管路61に、逆止弁機構70の保持部73を配するための大径部61bを設けている。この場合、仮に、吐出管路61に逆止弁機構70を設けない場合でも、吐出管路61の大径部61bが電動オイルポンプ1の機能を阻害することはない。従って、逆止弁機構70を設ける場合でも設けない場合でも、共通のハウジング本体50を使用することができるため、低コスト化が図られる。 In this embodiment, as described above, the discharge pipe line 61 is provided with the large-diameter portion 61b for disposing the holding portion 73 of the check valve mechanism 70 . In this case, even if the discharge pipe 61 is not provided with the check valve mechanism 70 , the large-diameter portion 61 b of the discharge pipe 61 does not hinder the function of the electric oil pump 1 . Therefore, the common housing main body 50 can be used regardless of whether the check valve mechanism 70 is provided or not, thereby reducing costs.
 上記の電動オイルポンプ1では、吸入口63および吐出口65はハウジング本体50の表面に設けられている。加えて、吸入口63とポンプ部2とを接続する吸入管路60と、吐出口65とポンプ部2とを接続する吐出管路61とが何れもハウジング本体50に設けられている。そのため、吸入管路60および吐出管路61を流れるオイルでハウジング本体50の冷却を行うことができる。この冷却効果により、熱源となるモータ部3およびコントローラ4の冷却を促進することができ、電動オイルポンプ1の信頼性を高めることができる。また、吸入管路60と吐出管路61をハウジング本体50とは別の部材に設ける場合に比べ、電動オイルポンプ1の小型化を図ることができる。 In the electric oil pump 1 described above, the suction port 63 and the discharge port 65 are provided on the surface of the housing body 50 . In addition, a suction line 60 connecting the suction port 63 and the pump section 2 and a discharge line 61 connecting the discharge port 65 and the pump section 2 are both provided in the housing body 50 . Therefore, the housing main body 50 can be cooled by the oil flowing through the suction pipe 60 and the discharge pipe 61 . This cooling effect can accelerate the cooling of the motor unit 3 and the controller 4 that serve as heat sources, and the reliability of the electric oil pump 1 can be enhanced. In addition, the size of the electric oil pump 1 can be reduced as compared with the case where the suction pipe 60 and the discharge pipe 61 are provided in a member separate from the housing main body 50 .
 本実施形態では、吸入管路60および吐出管路61をポンプ部2とモータ部3の軸方向間領域に配置している。詳細には、図1に示すように、吸入管路60および吐出管路61を、ポンプ部2とシール35の軸方向間領域に配置している。そのため、吸入管路60および吐出管路61の設置スペースは、ハウジング5内部に収容された部品と干渉することなく確保することができる。 In this embodiment, the suction pipe line 60 and the discharge pipe line 61 are arranged in the region between the pump section 2 and the motor section 3 in the axial direction. More specifically, as shown in FIG. 1 , the suction line 60 and the discharge line 61 are arranged in the region between the pump portion 2 and the seal 35 in the axial direction. Therefore, the installation space for the suction pipe 60 and the discharge pipe 61 can be secured without interfering with the parts housed inside the housing 5 .
 なお、吸入管路60および吐出管路61の構成を変えることなく、吸入管路60を吐出管路として、かつ吐出管路61を吸入管路として使用することもできる。また、吸入管路60および吐出管路61の双方をポンプ部2とモータ部3の軸方向間領域に配置する他、どちらか一方を、これ以外の領域(例えばモータ部3の外径側領域)に配置することもできる。 It is also possible to use the suction line 60 as the discharge line and the discharge line 61 as the suction line without changing the configurations of the suction line 60 and the discharge line 61 . Both the suction pipe 60 and the discharge pipe 61 are arranged in the region between the pump section 2 and the motor section 3 in the axial direction. ) can also be placed in
 本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の点については重複説明を省略する。 The present invention is not limited to the above embodiments. Other embodiments of the present invention will be described below, but overlapping descriptions of the same points as those of the above-described embodiments will be omitted.
 図8に示す実施形態は、逆止弁機構70の保持部73の下流端を、ハウジング本体50の吐出口65から突出させた点で、上記の実施形態と異なる。具体的には、保持部73の抜け止め部材76の一部が、ハウジング本体50の表面50aから突出している。この突出部分Qは、例えば、ハウジング5をトランスミッションケースに取り付ける際の位置決め基準として使用することができる。 The embodiment shown in FIG. 8 differs from the above embodiment in that the downstream end of the holding portion 73 of the check valve mechanism 70 protrudes from the discharge port 65 of the housing body 50 . Specifically, part of the retaining member 76 of the holding portion 73 protrudes from the surface 50 a of the housing body 50 . This projecting portion Q can be used, for example, as a positioning reference when mounting the housing 5 to the transmission case.
 この実施形態では、保持部73の上流端と吐出管路61の段差部61cとの間に流路方向の隙間Gが形成されている。従って、保持部73(ホルダ75および抜け止め部材76)をさらに上流側に押し込むことで、保持部73をハウジング本体50の内部(吐出管路61内)に完全に収容することができる。具体的には、保持部73の上流端と吐出管路61の段差部61cとの間の隙間Gの大きさδ2が、保持部73の突出部分Qの突出量δ1よりも大きい。この構成によれば、保持部73を、ハウジング本体50の吐出口65から突出させた位置と、ハウジング本体50の表面50aよりも上流側に後退させた位置の何れにも配置することができるため、突出部分Qを選択的に設けることができる。 In this embodiment, a gap G is formed between the upstream end of the holding portion 73 and the stepped portion 61c of the discharge pipe line 61 in the flow direction. Therefore, by pushing the holding portion 73 (the holder 75 and the retaining member 76) further upstream, the holding portion 73 can be completely accommodated inside the housing body 50 (inside the discharge pipe line 61). Specifically, the size δ2 of the gap G between the upstream end of the holding portion 73 and the step portion 61c of the discharge pipe line 61 is larger than the projection amount δ1 of the projecting portion Q of the holding portion 73 . According to this configuration, the holding portion 73 can be disposed either at a position protruding from the discharge port 65 of the housing body 50 or at a position retracted upstream of the surface 50 a of the housing body 50 . , a protruding portion Q can be provided selectively.
 図9に示す実施形態では、シール面74をホルダ75に設けている点で上記の実施形態と異なる。具体的に、ホルダ75の上流端に、内径向きの突出部75eを設け、この突出部75eにシール面74を形成している。この場合、ホルダ75の底部75cがガイド部75aとは別体に形成される。具体的に、ガイド部75aの内周面に凹部75fを形成し、この凹部75fに、リング状あるいはC形の底部75cが嵌合している。この場合、ホルダ75の下流端の開口部からボール71及びスプリング72を挿入した後、ガイド部75aの凹部75fに底部75cを装着することで、逆止弁機構70が組み立てられる。尚、図示例では、ホルダ75の外周面と吐出管路61の大径部61bとが隙間を介して嵌合しているが、ホルダ75の外周面と吐出管路61の大径部61bとを圧入嵌合とし、ホルダ75の上流側の端面を吐出管路61の段差部61cに全周で密着させることで、ホルダ75と段差部61cとの間からの油漏れを確実に防ぐようにしてもよい。 The embodiment shown in FIG. 9 differs from the above embodiment in that a seal surface 74 is provided on a holder 75 . Specifically, the upstream end of the holder 75 is provided with an inner-diameter protruding portion 75e, and the sealing surface 74 is formed on the protruding portion 75e. In this case, the bottom portion 75c of the holder 75 is formed separately from the guide portion 75a. Specifically, a concave portion 75f is formed on the inner peripheral surface of the guide portion 75a, and a ring-shaped or C-shaped bottom portion 75c is fitted in the concave portion 75f. In this case, the check valve mechanism 70 is assembled by inserting the ball 71 and the spring 72 from the opening at the downstream end of the holder 75 and then mounting the bottom portion 75c in the recess 75f of the guide portion 75a. In the illustrated example, the outer peripheral surface of the holder 75 and the large diameter portion 61b of the discharge pipe line 61 are fitted with a gap, but the outer peripheral surface of the holder 75 and the large diameter portion 61b of the discharge pipe line 61 are fitted together with a gap therebetween. is press-fitted, and the upstream end face of the holder 75 is brought into close contact with the stepped portion 61c of the discharge pipe line 61 along the entire periphery, thereby reliably preventing oil leakage from between the holder 75 and the stepped portion 61c. may
 本発明は、オイルを圧送する電動オイルポンプに限らず、オイル以外の液体を圧送する電動ポンプにも適用することができる。 The present invention is applicable not only to electric oil pumps that pump oil, but also to electric pumps that pump liquids other than oil.
 次に、本願第2発明の実施形態を、図11~18に基づいて説明する。尚、電動オイルポンプの基本的構成は上記と同様であるため、図1~3を援用し、詳細な説明は省略する。 Next, an embodiment of the second invention of the present application will be described based on FIGS. Since the basic configuration of the electric oil pump is the same as that described above, FIGS.
 本願第2発明の一実施形態に係る逆止弁機構70は、図11および図12に示すように、吐出管路61に設けられる。逆止弁機構70は、ボール71と、付勢部材としてのスプリング72と、ボール71及びスプリング72を保持する保持部73と、シール面74とを有する。図示例では、シール面74がハウジング本体50に形成される。詳しくは、吐出管路61の段差部61cの内径端に、シール面74が形成される。本実施形態では、段差部61cの内径端に面取り部が形成され、この面取り部がシール面74として機能する。図示例では、シール面74が、ボール71の外周面と同形状の球面で構成される。この他、シール面74を、断面直線状のテーパ面で構成してもよい。また、段差部61cの内径端に面取り部を形成せず、この部分に形成される角部をシール面74としてもよい。 A check valve mechanism 70 according to an embodiment of the second invention of the present application is provided in the discharge pipeline 61 as shown in FIGS. The check valve mechanism 70 has a ball 71 , a spring 72 as a biasing member, a holding portion 73 that holds the ball 71 and the spring 72 , and a seal surface 74 . In the illustrated example, a sealing surface 74 is formed on the housing body 50 . Specifically, a seal surface 74 is formed at the inner diameter end of the stepped portion 61 c of the discharge pipe line 61 . In the present embodiment, a chamfered portion is formed on the inner diameter end of the stepped portion 61 c and this chamfered portion functions as a sealing surface 74 . In the illustrated example, the sealing surface 74 is formed of a spherical surface having the same shape as the outer peripheral surface of the ball 71 . In addition, the sealing surface 74 may be configured by a tapered surface having a linear cross section. Further, the chamfered portion may not be formed on the inner diameter end of the stepped portion 61c, and the corner portion formed on this portion may be used as the sealing surface 74. FIG.
 本実施形態の保持部73は、ホルダ75と抜け止め部材76とを有する。ホルダ75は、ボール71の流路方向の移動を案内するガイド部75aを有する。図示例では、流路方向に延びる複数(例えば4本)のガイド部75aが周方向等間隔に設けられる。複数のガイド部75aの上流端は、円筒部75bで連結される。図示例では、ガイド部75aの上流端が、円筒部75bよりも上流側に突出している。隣り合うガイド部75aの周方向間隔は、ボール71の直径D2やスプリング72の外径D3よりも小さい。各ガイド部75aの内径面は、上流側に行くにつれて、若干外径側に変位するように傾斜している。すなわち、吐出管路61の直径方向で対向するガイド部75aの間隔が、上流側に行くほど広がっている。 The holding portion 73 of this embodiment has a holder 75 and a retaining member 76 . The holder 75 has a guide portion 75a that guides movement of the balls 71 in the direction of the flow path. In the illustrated example, a plurality of (for example, four) guide portions 75a extending in the flow path direction are provided at regular intervals in the circumferential direction. The upstream ends of the plurality of guide portions 75a are connected by a cylindrical portion 75b. In the illustrated example, the upstream end of the guide portion 75a protrudes further upstream than the cylindrical portion 75b. A circumferential interval between the adjacent guide portions 75 a is smaller than the diameter D 2 of the ball 71 and the outer diameter D 3 of the spring 72 . The inner diameter surface of each guide portion 75a is inclined so as to be slightly displaced toward the outer diameter side toward the upstream side. That is, the distance between the guide portions 75a that face each other in the diametrical direction of the discharge pipe 61 increases toward the upstream side.
 ホルダ75は、スプリング72を下流側から支持する支持部としての底部75cを有する。底部75cは、複数のガイド部75aの下流端付近に設けられる。底部75cは略円盤状を成し、その軸心には貫通孔が形成される。複数のガイド部75aの内周に、ボール71及びスプリング72が内周に配され、これらがガイド部75aで外周から保持される。ホルダ75は、吐出管路61の大径部61bの内周に隙間を介して挿入される。ホルダ75の上流端は、吐出管路61の段差部61cに当接している。この状態で、ボール71はシール面74(段差部61cの内径端)に当接し、このボール71とホルダ75の底部75cとの間にスプリング72が圧縮状態で配される。 The holder 75 has a bottom portion 75c as a support portion that supports the spring 72 from the downstream side. The bottom portion 75c is provided near the downstream ends of the plurality of guide portions 75a. The bottom portion 75c has a substantially disc shape, and a through hole is formed in the center of the bottom portion 75c. A ball 71 and a spring 72 are arranged on the inner circumference of a plurality of guide portions 75a, and these are held by the guide portion 75a from the outer circumference. The holder 75 is inserted into the inner periphery of the large-diameter portion 61b of the discharge pipe 61 with a gap therebetween. The upstream end of the holder 75 is in contact with the stepped portion 61 c of the discharge pipe line 61 . In this state, the ball 71 contacts the seal surface 74 (inner diameter end of the stepped portion 61c), and the spring 72 is arranged between the ball 71 and the bottom portion 75c of the holder 75 in a compressed state.
 保持部73には、ボール71の飛び出しを規制する係止部が設けられる。本実施形態では、図13に拡大して示すように、ホルダ75の上流端に、内径向きに突出した係止部77が設けられる。係止部77は、ホルダ75の各ガイド部75aの上流端に設けられ、その結果、係止部77が周方向に離間した複数箇所(図示例では4か所)に設けられる。係止部77の内径D1(各係止部77の内径端を通る円の直径)は、ボール71の直径D2よりも僅かに小さく、且つ、スプリング72の外径D3よりも僅かに大きい。係止部77は、ホルダ75と一体に樹脂で射出成形される。このとき、係止部77はアンダーカットとなるが、成形品(係止部77付近)を弾性変形させながら離型する、いわゆる「無理抜き」により形成することができる。 The holding portion 73 is provided with a locking portion that restricts the ball 71 from jumping out. In this embodiment, as shown in an enlarged view in FIG. 13, an engaging portion 77 projecting radially inward is provided at the upstream end of the holder 75 . The locking portion 77 is provided at the upstream end of each guide portion 75a of the holder 75, and as a result, the locking portion 77 is provided at a plurality of locations (four locations in the illustrated example) spaced apart in the circumferential direction. The inner diameter D1 of the engaging portion 77 (the diameter of the circle passing through the inner diameter end of each engaging portion 77) is slightly smaller than the diameter D2 of the ball 71 and slightly larger than the outer diameter D3 of the spring 72. The locking portion 77 is integrally injection molded with the holder 75 from resin. At this time, the engaging portion 77 becomes an undercut, but it can be formed by so-called "forcible extraction" in which the molded product (near the engaging portion 77) is released from the mold while being elastically deformed.
 抜け止め部材76は、リング状をなし、吐出管路61の大径部61bに圧入やねじ止め等の適宜の手段により固定される(図4参照)。抜け止め部材76と吐出管路61の段差部61cとでホルダ75を流路方向両側から挟持することにより、ホルダ75がハウジング本体50に固定される。図示例では、抜け止め部材76が、ハウジング本体50の表面50aよりも上流側に後退させた位置に固定される。これにより、逆止弁機構70がハウジング本体50の内部に完全に収容されるため、他部材との干渉を回避できる。なお、抜け止め部材76は、止め輪であってもよい。この場合、吐出管路61の大径部61bの内周面に環状溝を形成し、この環状溝に止め輪(抜け止め部材)を装着する(図示省略)。 The retaining member 76 has a ring shape and is fixed to the large-diameter portion 61b of the discharge pipe 61 by appropriate means such as press-fitting or screwing (see FIG. 4). The holder 75 is fixed to the housing body 50 by sandwiching the holder 75 from both sides in the direction of the flow path between the retainer member 76 and the stepped portion 61c of the discharge pipe line 61 . In the illustrated example, the retaining member 76 is fixed at a position retracted upstream of the surface 50 a of the housing body 50 . As a result, the check valve mechanism 70 is completely accommodated inside the housing main body 50, so interference with other members can be avoided. Note that the retaining member 76 may be a retaining ring. In this case, an annular groove is formed in the inner peripheral surface of the large-diameter portion 61b of the discharge pipe line 61, and a retaining ring (retaining member) is attached to the annular groove (not shown).
 ボール71は、シール面74(ハウジング本体50)よりも硬い材質で形成され、例えば鉄系金属、具体的には炭素鋼、特にステンレス鋼で形成される。スプリング72は、鉄系金属、例えばステンレス鋼で形成される。ホルダ75は、成形性の観点から樹脂で形成することが好ましいが、鉄系やアルミ系の金属で形成してもよい。抜け止め部材76は、鉄系やアルミ系の金属で形成される。抜け止め部材76を、後述する位置決め基準として用いる場合は、強度の観点から鉄系材料で形成することが好ましい。抜け止め部材76をハウジング本体50に圧入固定する場合は、抜け止め部材76をハウジング本体50と同系の金属材料で形成することが好ましい。これにより、両者の線膨張係数が近いか同じ値になるため、温度変化に伴う抜け止め部材76のハウジング本体50からの抜けを防止できる。 The ball 71 is made of a material harder than the sealing surface 74 (housing body 50), such as a ferrous metal, specifically carbon steel, especially stainless steel. The spring 72 is made of ferrous metal such as stainless steel. The holder 75 is preferably made of resin from the viewpoint of formability, but may be made of iron-based or aluminum-based metal. The retaining member 76 is made of iron-based or aluminum-based metal. When the retainer member 76 is used as a positioning reference, which will be described later, it is preferable to use an iron-based material from the viewpoint of strength. When the retainer member 76 is press-fitted into the housing body 50 , the retainer member 76 is preferably made of the same metal material as the housing body 50 . As a result, the coefficients of linear expansion of both are close to each other or have the same value, so that the retaining member 76 can be prevented from coming off from the housing main body 50 due to temperature changes.
 以上の構成を有する電動オイルポンプ1において、モータ部3の停止時には、スプリング72の付勢力によりボール71がシール面74に押し付けられ、吐出管路61が閉塞される。この状態で、トランスミッション側からオイルが逆流した場合、ボール71がシール面74にさらに押し付けられるため、吐出管路61が閉塞された状態が維持される。これにより、逆流したオイルのポンプ部2への流入が規制され、ポンプ部2の逆回転によるモータ部3の故障を防止できる。 In the electric oil pump 1 having the above configuration, when the motor portion 3 is stopped, the ball 71 is pressed against the seal surface 74 by the biasing force of the spring 72, and the discharge pipe line 61 is closed. In this state, if the oil flows back from the transmission side, the ball 71 is further pressed against the seal surface 74, so that the discharge line 61 is kept closed. As a result, the inflow of reversed oil into the pump portion 2 is restricted, and failure of the motor portion 3 due to the reverse rotation of the pump portion 2 can be prevented.
 そして、モータ部3を駆動すると、インナロータ21が回転し、これに噛み合ったアウタロータ22が従動回転することにより、両者の歯部の間に形成される空間が回転に伴って拡大および縮小する。これにより、トランスミッションケース内の油溜りに溜まったオイルが吸入管路60を介してポンプ部2に吸入され、このオイルがポンプ部2で圧縮されて吐出管路61に吐出される。 When the motor portion 3 is driven, the inner rotor 21 rotates, and the outer rotor 22 meshing with it rotates, so that the space formed between the teeth of both expands and contracts along with the rotation. As a result, the oil accumulated in the oil sump inside the transmission case is sucked into the pump portion 2 through the suction pipe line 60 , compressed by the pump portion 2 and discharged to the discharge pipe line 61 .
 そして、図11に点線で示すように、吐出管路61の油圧で逆止弁機構70のボール71がスプリング72を圧縮しながら下流側に押し込まれ、ボール71がシール面74から離反して吐出管路61が開放される。これにより、オイルがボール71の外周(複数のガイド部75aの間の空間)およびホルダ75の底部75cの外周を回り込み、抜け止め部材76の貫通孔を通過して吐出口65から吐出され(点線矢印A参照)、トランスミッションに供給される。なお、吐出管路61を流れるオイルの大部分は、ホルダ75の底部75cの外周を回り込むため、底部75cの軸心に設けられた貫通孔を通過するオイルは少ない。従って、特に必要がなければ底部75cの貫通孔を省略してもよい。 11, the ball 71 of the check valve mechanism 70 is pushed downstream while compressing the spring 72 by the hydraulic pressure of the discharge pipe 61, and the ball 71 separates from the sealing surface 74 to discharge. Line 61 is opened. As a result, the oil flows around the outer periphery of the ball 71 (the space between the plurality of guide portions 75a) and the outer periphery of the bottom portion 75c of the holder 75, passes through the through hole of the retaining member 76, and is discharged from the discharge port 65 (dotted line arrow A), is supplied to the transmission. Since most of the oil flowing through the discharge pipe line 61 wraps around the outer circumference of the bottom portion 75c of the holder 75, little oil passes through the through hole provided in the axial center of the bottom portion 75c. Therefore, the through hole in the bottom portion 75c may be omitted if it is not particularly necessary.
 上記の逆止弁機構70では、図14に示すように、ボール71とシール面74との接触角度αを20°以上に設定することが好ましい。図15に示すように接触角度αが小さすぎると、ボール71がシール面74に噛み込んでしまい、シール面74から離反しにくくなるおそれがあるからである。また、ボール71とシール面74との接触角度αは、120°以下に設定することが好ましい。接触角度αが大きすぎると、シール性が乏しくなるからである。なお、接触角度αは、吐出管路61の中心線Lを含む断面(14参照)において、ボール71とシール面74との接触部におけるボール71の外周面の接線がなす角度である。図14のようにボール71とシール面74とが球面同士で接触する場合は、ボール71とシール面74との断面円弧状の接触部の中央におけるボール71の外周面の接線がなす角度を接触角度αとする。 In the check valve mechanism 70 described above, as shown in FIG. 14, it is preferable to set the contact angle α between the ball 71 and the seal surface 74 to 20° or more. This is because if the contact angle α is too small as shown in FIG. Also, the contact angle α between the ball 71 and the seal surface 74 is preferably set to 120° or less. This is because if the contact angle α is too large, the sealing performance becomes poor. The contact angle α is the angle formed by the tangential line of the outer peripheral surface of the ball 71 at the contact portion between the ball 71 and the seal surface 74 in the cross section (see 14) including the center line L of the discharge pipe 61 . When the ball 71 and the seal surface 74 are in contact with each other as shown in FIG. Let the angle be α.
 上記の逆止弁機構70をハウジング本体50に組み付ける際には、まず、保持部73のホルダ75の内周にスプリング72及びボール71を収容する。具体的には、まず、ホルダ75の上流側の開口部からスプリング72を挿入する。このとき、ホルダ75の上流側の開口径、すなわち、係止部77の内径D1がスプリング72の外径D3よりも僅かに大きいため(図13参照)、スプリング72を、係止部77と干渉することなくホルダ75の内周に挿入することができる。 When assembling the check valve mechanism 70 to the housing body 50, first, the spring 72 and the ball 71 are accommodated in the inner periphery of the holder 75 of the holding portion 73. As shown in FIG. Specifically, first, the spring 72 is inserted from the opening on the upstream side of the holder 75 . At this time, the opening diameter of the holder 75 on the upstream side, that is, the inner diameter D1 of the locking portion 77 is slightly larger than the outer diameter D3 of the spring 72 (see FIG. 13), so that the spring 72 interferes with the locking portion 77. can be inserted into the inner periphery of the holder 75 without
 その後、ホルダ75の上流側の開口部からボール71を挿入する。このとき、ホルダ75の開口部の径、すなわち、係止部77の内径D1がボール71の直径D2よりも僅かに小さいため、係止部77によりボール71のホルダ75内周への挿入が阻害される。そこで、ボール71を係止部77の内周に押し込むことで、係止部77周辺(具体的には、ガイド部75aのうち、円筒部75bよりも上方に突出した部分)を外径側に弾性変形させて、係止部77の内径を広げる。本実施形態では、係止部77が、環状ではなく、周方向に離間した複数箇所に設けられているため、ボール71の押し込み力により外径側に変位させやすくなっている。これにより、ボール71を係止部77を越えて下流側に通過させることができ、ホルダ75の内周にボール71が配される。こうして、ホルダ75の内周にボール71およびスプリング72が配された逆止弁部品ユニット78が形成される(図12参照)。 After that, the ball 71 is inserted through the opening on the upstream side of the holder 75 . At this time, since the diameter of the opening of the holder 75, that is, the inner diameter D1 of the locking portion 77 is slightly smaller than the diameter D2 of the ball 71, the locking portion 77 prevents the ball 71 from being inserted into the inner circumference of the holder 75. be done. Therefore, by pushing the ball 71 into the inner periphery of the locking portion 77, the periphery of the locking portion 77 (specifically, the portion of the guide portion 75a that protrudes upward from the cylindrical portion 75b) is moved to the outer diameter side. The inner diameter of the engaging portion 77 is widened by elastic deformation. In the present embodiment, the locking portions 77 are not annular, but are provided at a plurality of locations spaced apart in the circumferential direction, so that they can be easily displaced radially by the pressing force of the balls 71 . As a result, the ball 71 can pass downstream beyond the locking portion 77 , and the ball 71 is arranged on the inner circumference of the holder 75 . Thus, a check valve component unit 78 is formed in which the ball 71 and the spring 72 are arranged on the inner periphery of the holder 75 (see FIG. 12).
 この逆止弁部品ユニット78では、ボール71に係止部77が上流側から係合することにより、ホルダ75の上流側の開口部からのボール71の飛び出しが規制される。また、スプリング72は、ホルダ75の底部75cで支持されている。以上により、ホルダ75の内周からのボール71及びスプリング72の脱落が防止されるため、これらが一体化された逆止弁部品ユニット78をハウジング本体50に組み付けやすくなる。 In the check valve component unit 78, the locking portion 77 is engaged with the ball 71 from the upstream side, thereby restricting the ball 71 from jumping out of the opening of the holder 75 on the upstream side. Also, the spring 72 is supported by the bottom portion 75 c of the holder 75 . As described above, the ball 71 and the spring 72 are prevented from falling off from the inner periphery of the holder 75 , so that the check valve component unit 78 in which these are integrated can be easily assembled to the housing body 50 .
 このとき、係止部77によりボール71の上流側への移動を規制する力(ボール抜け耐力)が、スプリング72によりボール71を係止部77に押し付ける力よりも大きくなるように、係止部77の内径D1(すなわち、係止部77とボール71との係合代)が設定される。一方、係止部77の内径D1が小さすぎると(すなわち、係止部77とボール71との係合代が大きすぎると)、ホルダ75を弾性変形させてボール71を押し込むことができない。以上より、係止部77の内径D1は、例えばボール71の直径D2の90%以上98%以下に設定される。 At this time, the engaging portion 77 is adjusted so that the force (ball removal resistance) that restricts the movement of the ball 71 to the upstream side by the engaging portion 77 is greater than the force that presses the ball 71 against the engaging portion 77 by the spring 72 . An inner diameter D1 of 77 (that is, an engagement margin between locking portion 77 and ball 71) is set. On the other hand, if the inner diameter D1 of the locking portion 77 is too small (that is, if the engagement margin between the locking portion 77 and the ball 71 is too large), the holder 75 cannot be elastically deformed and the ball 71 cannot be pushed. As described above, the inner diameter D1 of the locking portion 77 is set to, for example, 90% or more and 98% or less of the diameter D2 of the ball 71 .
 そして、逆止弁部品ユニット78を吐出管路61の大径部61bに吐出口65から挿入する。本実施形態では、ホルダ75の外径が大径部61bの内径よりも僅かに小さいため、ホルダ75を大径部61bの内周に隙間を介して容易に挿入することができる。その後、抜け止め部材76を、吐出管路61の開口部(吐出口65)に圧入やねじ止め等により固定する。こうして吐出管路61に固定された抜け止め部材76がホルダ75に下流側から当接することで、ホルダ75の吐出管路61からの抜けが規制される。この状態で、ボール71はシール面74に当接し、このボール71とホルダ75の底部75cとの間にスプリング72が圧縮状態で保持される。すなわち、ボール71は、スプリング72の弾性力によりシール面74に押し付けられている。このとき、ボール71と係止部77とは流路方向で離間している。こうして、逆止弁部品ユニット78が吐出管路61に組み込まれた後は、ボール71はシール面74で係止されるため、ボール71がホルダ75から抜けることはない。 Then, the check valve component unit 78 is inserted into the large diameter portion 61b of the discharge pipe line 61 from the discharge port 65 . In this embodiment, the outer diameter of the holder 75 is slightly smaller than the inner diameter of the large diameter portion 61b, so the holder 75 can be easily inserted into the inner circumference of the large diameter portion 61b through a gap. After that, the retaining member 76 is fixed to the opening (discharge port 65) of the discharge pipe line 61 by press-fitting, screwing, or the like. The retaining member 76 fixed to the discharge pipe line 61 contacts the holder 75 from the downstream side, thereby restricting the holder 75 from coming off the discharge pipe line 61 . In this state, the ball 71 contacts the seal surface 74, and the spring 72 is held between the ball 71 and the bottom portion 75c of the holder 75 in a compressed state. That is, the ball 71 is pressed against the sealing surface 74 by the elastic force of the spring 72 . At this time, the ball 71 and the engaging portion 77 are separated from each other in the flow path direction. Thus, after the check valve component unit 78 is incorporated into the discharge pipe line 61 , the ball 71 is locked by the sealing surface 74 , so the ball 71 does not come off the holder 75 .
 本実施形態では、図11に示すように、ホルダ75と抜け止め部材76とを、吐出管路61の周方向で係合している。具体的には、抜け止め部材76の上流側の端面に凹部76aを形成し、この凹部76aにホルダ75の係合部75d(図示例では、ガイド部75aの下端)を嵌合させている。この凹部76aと係合部75dとが周方向で係合することにより、吐出管路61内でのホルダ75の回転が規制されるため、ボール71およびスプリング72を安定的に保持できると共に、ホルダ75の摩耗を防止できる。 In this embodiment, as shown in FIG. 11, the holder 75 and the retaining member 76 are engaged in the circumferential direction of the discharge pipe line 61. Specifically, a concave portion 76a is formed in the end face on the upstream side of the retaining member 76, and the engaging portion 75d of the holder 75 (the lower end of the guide portion 75a in the illustrated example) is fitted into this concave portion 76a. Circumferential engagement between the recess 76a and the engaging portion 75d restricts the rotation of the holder 75 in the discharge pipe 61, so that the ball 71 and the spring 72 can be stably held and the holder Wear of 75 can be prevented.
 シール面74は、例えば以下の手順で形成される。まず、図16に示すように、ハウジング本体50に、機械加工(例えば旋削加工)により、小径部61a、大径部61b、および段差部61cを有する吐出管路61を形成する。このとき、段差部61cの全域に平坦面61dが形成され、段差部61cの内径端には直角の角部61eが形成される。そして、この角部61eに下流側からボール71を当接させて、点線で示すように上流側に押し込んで角部61eを塑性変形させる。この場合、トランスミッション側からのオイルの逆流により発生する圧力よりも高い圧力(荷重)で、ボール71を角部61eに押し付けることが好ましい。具体的に、ボール71の流路方向の投影面積をS、オイル逆流時の圧力をP、安全率をcとしたとき、ボール71を押し付ける荷重Fは、F>S・P・cを満たすように設定することが望ましい。 The sealing surface 74 is formed, for example, by the following procedure. First, as shown in FIG. 16, the housing body 50 is machined (eg, turned) to form a discharge pipe line 61 having a small-diameter portion 61a, a large-diameter portion 61b, and a stepped portion 61c. At this time, a flat surface 61d is formed over the entire area of the stepped portion 61c, and a right-angled corner portion 61e is formed at the inner diameter end of the stepped portion 61c. Then, a ball 71 is brought into contact with the corner portion 61e from the downstream side and pushed upstream as indicated by the dotted line to plastically deform the corner portion 61e. In this case, it is preferable to press the ball 71 against the corner portion 61e with a pressure (load) higher than the pressure generated by the backflow of oil from the transmission side. Specifically, when the projected area of the ball 71 in the flow direction is S, the pressure at the time of oil backflow is P, and the safety factor is c, the load F pressing the ball 71 satisfies F>S.P.c. should be set to
 こうしてボール71で成形されたシール面74は、ボール71と同形状の球面からなる塑性加工面となる。これにより、シール面74とボール71との密着性が高められ、シール性が向上する。なお、ボール71ではなく、ボール71と同形の球面状の成形面を有する治具を吐出管路61の角部61eに押し付けることで、シール面74を形成することもできる。あるいは、シール面74を切削等の機械加工で形成してもよい。この場合、シール面74は、球面に限らず、テーパ面等の任意の形状にすることができる。なお、トランスミッションから逆流してくるオイルの圧力が低い場合は、吐出管路61の角部61eを残して、この角部61eをシール面として機能させてもよい。 The sealing surface 74 formed by the ball 71 in this way is a plastically worked surface consisting of a spherical surface having the same shape as the ball 71 . As a result, the adhesion between the seal surface 74 and the ball 71 is enhanced, and the sealing performance is improved. Instead of the ball 71, the sealing surface 74 can be formed by pressing a jig having a spherical molding surface of the same shape as the ball 71 against the corner 61e of the discharge pipe line 61. FIG. Alternatively, the sealing surface 74 may be formed by machining such as cutting. In this case, the sealing surface 74 is not limited to a spherical surface, and may be of any shape such as a tapered surface. When the pressure of the oil flowing back from the transmission is low, the corner 61e of the discharge pipe line 61 may be left and the corner 61e may function as a sealing surface.
 本実施形態では、上述のように、吐出管路61に、逆止弁機構70の保持部73を配するための大径部61bを設けている。この場合、仮に、吐出管路61に逆止弁機構70を設けない場合でも、吐出管路61の大径部61bが電動オイルポンプ1の機能を阻害することはない。従って、逆止弁機構70を設ける場合でも設けない場合でも、共通のハウジング本体50を使用することができるため、低コスト化が図られる。 In this embodiment, as described above, the discharge pipe line 61 is provided with the large-diameter portion 61b for disposing the holding portion 73 of the check valve mechanism 70 . In this case, even if the discharge pipe 61 is not provided with the check valve mechanism 70 , the large-diameter portion 61 b of the discharge pipe 61 does not hinder the function of the electric oil pump 1 . Therefore, the common housing main body 50 can be used regardless of whether the check valve mechanism 70 is provided or not, thereby reducing costs.
 上記の電動オイルポンプ1では、吸入口63および吐出口65はハウジング本体50の表面に設けられている。加えて、吸入口63とポンプ部2とを接続する吸入管路60と、吐出口65とポンプ部2とを接続する吐出管路61とが何れもハウジング本体50に設けられている。そのため、吸入管路60および吐出管路61を流れるオイルでハウジング本体50の冷却を行うことができる。この冷却効果により、熱源となるモータ部3およびコントローラ4の冷却を促進することができ、電動オイルポンプ1の信頼性を高めることができる。また、吸入管路60と吐出管路61をハウジング本体50とは別の部材に設ける場合に比べ、電動オイルポンプ1の小型化を図ることができる。 In the electric oil pump 1 described above, the suction port 63 and the discharge port 65 are provided on the surface of the housing body 50 . In addition, a suction line 60 connecting the suction port 63 and the pump section 2 and a discharge line 61 connecting the discharge port 65 and the pump section 2 are both provided in the housing body 50 . Therefore, the housing main body 50 can be cooled by the oil flowing through the suction pipe 60 and the discharge pipe 61 . This cooling effect can accelerate the cooling of the motor unit 3 and the controller 4 that serve as heat sources, and the reliability of the electric oil pump 1 can be enhanced. In addition, the size of the electric oil pump 1 can be reduced as compared with the case where the suction pipe 60 and the discharge pipe 61 are provided in a member separate from the housing main body 50 .
 本実施形態では、吸入管路60および吐出管路61をポンプ部2とモータ部3の軸方向間領域に配置している。詳細には、図1に示すように、吸入管路60および吐出管路61を、ポンプ部2とシール35の軸方向間領域に配置している。そのため、吸入管路60および吐出管路61の設置スペースは、ハウジング5内部に収容された部品と干渉することなく確保することができる。 In this embodiment, the suction pipe line 60 and the discharge pipe line 61 are arranged in the region between the pump section 2 and the motor section 3 in the axial direction. More specifically, as shown in FIG. 1 , the suction line 60 and the discharge line 61 are arranged in the region between the pump portion 2 and the seal 35 in the axial direction. Therefore, the installation space for the suction pipe 60 and the discharge pipe 61 can be secured without interfering with the parts housed inside the housing 5 .
 なお、吸入管路60および吐出管路61の構成を変えることなく、吸入管路60を吐出管路として、かつ吐出管路61を吸入管路として使用することもできる。また、吸入管路60および吐出管路61の双方をポンプ部2とモータ部3の軸方向間領域に配置する他、どちらか一方を、これ以外の領域(例えばモータ部3の外径側領域)に配置することもできる。 It is also possible to use the suction line 60 as the discharge line and the discharge line 61 as the suction line without changing the configurations of the suction line 60 and the discharge line 61 . Both the suction pipe 60 and the discharge pipe 61 are arranged in the region between the pump section 2 and the motor section 3 in the axial direction. ) can also be placed in
 本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の点については重複説明を省略する。 The present invention is not limited to the above embodiments. Other embodiments of the present invention will be described below, but overlapping descriptions of the same points as those of the above-described embodiments will be omitted.
 図17および図18に示す実施形態は、抜け止め部材76がホルダ75に固定され、ボール71、スプリング72、ホルダ75、および抜け止め部材76で逆止弁部品ユニット78が構成される。具体的に、ホルダ75のガイド部75aのうち、底部75cよりも下流側に突出した突出部分75fの外周面に凹部が設けられ、この凹部に環状の抜け止め部材76が固定される。図示例では、突出部分75fの外周面の下流端に、外径側に突出した係合爪75gが設けられる。抜け止め部材76の内周面の下流端に、係合凹部76bが設けられる。ホルダ75の係合爪75gが抜け止め部材76の係合凹部76bに嵌合することで、係合爪75gが抜け止め部材76に下流側から係合し、これにより抜け止め部材76のホルダ75からの抜けが規制される。 In the embodiment shown in FIGS. 17 and 18, a retaining member 76 is fixed to a holder 75, and a ball 71, a spring 72, a holder 75, and a retaining member 76 constitute a check valve component unit 78. Specifically, in the guide portion 75a of the holder 75, a concave portion is provided in the outer peripheral surface of the protruding portion 75f that protrudes downstream from the bottom portion 75c, and the annular retaining member 76 is fixed to this concave portion. In the illustrated example, an engaging claw 75g protruding radially outward is provided at the downstream end of the outer peripheral surface of the projecting portion 75f. An engagement concave portion 76 b is provided at the downstream end of the inner peripheral surface of the retainer member 76 . By fitting the engaging claws 75g of the holder 75 into the engaging recesses 76b of the retaining member 76, the engaging claws 75g engage with the retaining member 76 from the downstream side. Exit from is restricted.
 この実施形態では、抜け止め部材76をホルダ75の下流側から押し込むことにより、ホルダ75の下流端の突出部分75fを内径側に弾性変形させて、係合爪75gの外径(係合爪75gの外径端を通る円の直径)を狭める。このとき、係合爪75gが、環状ではなく、周方向に離間した複数箇所に設けられているため、抜け止め部材76の押し込み力により弾性変形させやすくなっている。そして、係合爪75gと抜け止め部材76の係合凹部76bとが嵌合したら、係合爪75gを弾性復元させることにより、抜け止め部材76がホルダ75に装着される。 In this embodiment, by pushing the retaining member 76 from the downstream side of the holder 75, the projecting portion 75f of the downstream end of the holder 75 is elastically deformed to the inner diameter side, and the outer diameter of the engaging claw 75g (the engaging claw 75g diameter of a circle passing through the outer diameter end of At this time, since the engaging claws 75g are not annular but are provided at a plurality of locations spaced apart in the circumferential direction, they are easily elastically deformed by the pushing force of the retaining member 76 . After the engaging claw 75g and the engaging recess 76b of the retaining member 76 are fitted, the retaining member 76 is attached to the holder 75 by elastically restoring the engaging claw 75g.
 上記の逆止弁部品ユニット78を保持して、ホルダ75を吐出管路61の大径部61bに挿入すると共に、抜け止め部材76を大径部61bに固定(圧入)することにより、逆止弁部品ユニット78がハウジング本体50に装着される。図示例では、抜け止め部材76がホルダ75の外周に固定されているため、抜け止め部材76の外周面を吐出管路61の大径部61bの内周面に圧入することができる。このように、本実施形態の構成によれば、逆止弁部品ユニット78を吐出管路61の大径部61bに挿入・固定する一つの動作で、ハウジング本体50に逆止弁機構70を設けることができる。 By holding the check valve component unit 78, inserting the holder 75 into the large diameter portion 61b of the discharge pipe 61, and fixing (pressing) the retaining member 76 into the large diameter portion 61b, the check valve component unit 78 is held. A valve component unit 78 is attached to the housing body 50 . In the illustrated example, since the retaining member 76 is fixed to the outer periphery of the holder 75 , the outer peripheral surface of the retaining member 76 can be press-fitted into the inner peripheral surface of the large diameter portion 61 b of the discharge pipe 61 . As described above, according to the configuration of this embodiment, the check valve mechanism 70 is provided in the housing body 50 by one operation of inserting and fixing the check valve part unit 78 into the large diameter portion 61b of the discharge pipe 61. be able to.
 また、この実施形態では、ホルダ75に、ボール71の下流端位置を規定する当接部79が設けられる。図示例では、当接部79が、ホルダ75の底部75cから上流に延びる柱状をなしている。当接部79は、スプリング72の内周に挿入される。電動オイルポンプ1が駆動され、吐出管路61の圧力によりボール71が押し下げられたとき、ボール71が当接部79に当接する。これにより、ボール71が必要以上に下流側に移動することが規制されるため、ボール71を安定的に保持することができる。 Further, in this embodiment, the holder 75 is provided with a contact portion 79 that defines the downstream end position of the ball 71 . In the illustrated example, the contact portion 79 has a columnar shape extending upstream from the bottom portion 75 c of the holder 75 . The contact portion 79 is inserted into the inner circumference of the spring 72 . When the electric oil pump 1 is driven and the ball 71 is pushed down by the pressure of the discharge pipe 61 , the ball 71 comes into contact with the contact portion 79 . This restricts the movement of the ball 71 to the downstream side more than necessary, so that the ball 71 can be stably held.
1     電動オイルポンプ(電動ポンプ)
2     ポンプ部
3     モータ部
4     コントローラ
5     ハウジング
50   ハウジング本体
60   吸入管路
61   吐出管路
61a 小径部
61b 大径部
61c 段差部
61d 平坦面
62   吸入ポート
63   吸入口
64   吐出ポート
65   吐出口
66   ポンプ室
70   逆止弁機構
71   ボール
72   スプリング(付勢部材)
73   保持部
74   シール面
75   ホルダ
76   抜け止め部材
1 electric oil pump (electric pump)
2 pump section 3 motor section 4 controller 5 housing 50 housing main body 60 suction pipe line 61 discharge pipe line 61 a small diameter portion 61 b large diameter portion 61 c stepped portion 61 d flat surface 62 suction port 63 suction port 64 discharge port 65 discharge port 66 pump chamber 70 Check valve mechanism 71 Ball 72 Spring (biasing member)
73 holding portion 74 sealing surface 75 holder 76 retaining member

Claims (15)

  1.  モータ部と、前記モータ部で駆動されるポンプ部と、前記モータ部及び前記ポンプ部を収容するハウジングと、前記ハウジングの表面に形成された吸入口及び吐出口と、前記吸入口と前記ポンプ部とを連通する吸入管路と、前記吐出口と前記ポンプ部とを連通する吐出管路と、前記吐出管路に設けられた逆止弁機構とを備えた電動ポンプ。 a motor portion, a pump portion driven by the motor portion, a housing that accommodates the motor portion and the pump portion, an intake port and a discharge port formed on a surface of the housing, the intake port and the pump portion an electric pump, comprising: a suction line communicating with the discharge port; a discharge line connecting the discharge port and the pump section; and a check valve mechanism provided in the discharge line.
  2.  前記逆止弁機構が、ボールと、シール面と、前記ボールを前記シール面に押し付ける付勢部材と、前記ボール及び前記付勢部材を内周に保持する保持部とを備えた請求項1に記載の電動ポンプ。 2. The method according to claim 1, wherein the check valve mechanism comprises a ball, a sealing surface, a biasing member that presses the ball against the sealing surface, and a retaining portion that retains the ball and the biasing member on an inner circumference. Electric pump as described.
  3.  前記ボールと前記シール面との接触角度が20°以上である請求項2に記載の電動ポンプ。 The electric pump according to claim 2, wherein the contact angle between the ball and the seal surface is 20° or more.
  4.  前記保持部を、前記ハウジングの吐出口から一部を突出させた位置と、前記ハウジングの表面よりも上流側に後退させた位置の何れにも配置可能とした請求項1~3の何れか1項に記載の電動ポンプ。 4. The holding portion can be disposed either at a position where a portion of the holding portion protrudes from the discharge port of the housing or at a position where the holding portion is retracted upstream from the surface of the housing. Electric pump as described in paragraph.
  5.  前記保持部が、ホルダおよび抜け止め部材を有し、
     前記ホルダは、前記ボール及び前記付勢部材が内周に配され、前記吐出管路の内周に隙間を介して挿入され、
     前記抜け止め部材は、前記吐出管路に固定され、前記ホルダに下流側から当接する請求項2に記載の電動ポンプ。
    the holding part has a holder and a retaining member,
    The holder has the ball and the biasing member arranged on the inner circumference thereof, and is inserted into the inner circumference of the discharge pipe with a gap therebetween,
    3. The electric pump according to claim 2, wherein the retaining member is fixed to the discharge pipe and abuts the holder from the downstream side.
  6.  前記ホルダと前記抜け止め部とが、前記吐出管路の周方向で係合した請求項5に記載の電動ポンプ。 The electric pump according to claim 5, wherein the holder and the retainer are engaged in the circumferential direction of the discharge pipe.
  7.  前記ハウジングが、一部品として一体に形成され、前記モータ部及び前記ポンプ部を収容するハウジング本体を備え、
     前記ハウジング本体に前記吐出管路が形成された請求項1~6の何れか1項に記載の電動ポンプ。
    wherein the housing comprises a housing body integrally formed as one piece and housing the motor section and the pump section;
    The electric pump according to any one of claims 1 to 6, wherein the housing body is formed with the discharge conduit.
  8.  前記吐出管路が小径部および大経部を有し、
     前記大径部に前記保持部が配された請求項7に記載の電動ポンプ。
    the discharge conduit has a small diameter portion and a large diameter portion;
    The electric pump according to claim 7, wherein the holding portion is arranged on the large diameter portion.
  9.  前記シール面が前記ハウジング本体に形成された請求項7に記載の電動ポンプ。 The electric pump according to claim 7, wherein the sealing surface is formed on the housing body.
  10.  前記吐出管路が、小径部と、大径部と、前記小径部の内周面と前記大経部の内周面とを接続する段差部とを有し、
     前記段差部に前記シール面が形成された請求項9に記載の電動ポンプ。
    The discharge pipeline has a small diameter portion, a large diameter portion, and a stepped portion connecting the inner peripheral surface of the small diameter portion and the inner peripheral surface of the large diameter portion,
    10. The electric pump according to claim 9, wherein the sealing surface is formed on the stepped portion.
  11.  前記シール面が、前記ボールの外周面と同形状の塑性加工面である請求項9又は10に記載の電動ポンプ。 The electric pump according to claim 9 or 10, wherein the sealing surface is a plastically worked surface having the same shape as the outer peripheral surface of the ball.
  12.  前記吐出管路が、前記モータ部と前記ポンプ部との軸方向間領域に配された請求項1~11の何れか1項に記載の電動ポンプ。 The electric pump according to any one of claims 1 to 11, wherein the discharge pipe line is arranged in an axially inter-regional region between the motor section and the pump section.
  13.  前記ポンプ部が、回転することで液体を圧送する回転式ポンプである請求項1~12の何れか1項に記載の電動ポンプ。 The electric pump according to any one of claims 1 to 12, wherein the pump section is a rotary pump that pumps liquid by rotating.
  14.  シール面と、ボールと、前記ボールを上流側に付勢して前記シール面に押し付ける付勢部材と、前記ボール及び前記付勢部材を内周に保持するホルダとを備えた逆止弁機構であって、
     前記ホルダが、前記付勢部材を下流側から支持する支持部と、前記ボールに上流側から係合可能な係止部とを有する逆止弁機構。
    A check valve mechanism comprising a seal surface, a ball, a biasing member that biases the ball upstream and presses it against the seal surface, and a holder that holds the ball and the biasing member on the inner circumference There is
    A check valve mechanism in which the holder has a support portion that supports the biasing member from the downstream side and a locking portion that can be engaged with the ball from the upstream side.
  15.  ボールと、前記ボールを上流側に付勢する付勢部材と、前記ボール及び前記付勢部材を内周に保持するホルダとを備えた逆止弁部品ユニットであって、
     前記ホルダが、前記付勢部材を下流側から支持する支持部と、前記ボールに上流側から係合可能な係止部とを有する逆止弁部品ユニット。
    A check valve part unit comprising a ball, a biasing member that biases the ball upstream, and a holder that holds the ball and the biasing member on an inner circumference,
    The check valve part unit, wherein the holder has a support portion that supports the biasing member from the downstream side and a locking portion that can be engaged with the ball from the upstream side.
PCT/JP2022/011110 2021-03-24 2022-03-11 Electric pump WO2022202422A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-050567 2021-03-24
JP2021050568A JP2022148760A (en) 2021-03-24 2021-03-24 Check valve mechanism, electric oil pump, and check valve component unit
JP2021050567A JP2022148759A (en) 2021-03-24 2021-03-24 electric pump
JP2021-050568 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202422A1 true WO2022202422A1 (en) 2022-09-29

Family

ID=83397164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011110 WO2022202422A1 (en) 2021-03-24 2022-03-11 Electric pump

Country Status (1)

Country Link
WO (1) WO2022202422A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147401U (en) * 1981-03-12 1982-09-16
JP2005201303A (en) * 2004-01-13 2005-07-28 Toyota Industries Corp Valve device manufacturing method
JP2008223997A (en) * 2007-03-15 2008-09-25 Asahi Organic Chem Ind Co Ltd Ball check valve
JP2014047807A (en) * 2012-08-29 2014-03-17 Aisin Seiki Co Ltd Valve and fluid pump employing the valve
JP2014122629A (en) * 2012-12-21 2014-07-03 Lg Innotek Co Ltd Electric pump
JP2015059562A (en) * 2013-09-20 2015-03-30 アイシン精機株式会社 Electric oil pump
JP2015105601A (en) * 2013-11-29 2015-06-08 株式会社ミツバ Electric pump
JP2020507721A (en) * 2017-02-14 2020-03-12 ハッチンソンHutchinson Belt tensioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147401U (en) * 1981-03-12 1982-09-16
JP2005201303A (en) * 2004-01-13 2005-07-28 Toyota Industries Corp Valve device manufacturing method
JP2008223997A (en) * 2007-03-15 2008-09-25 Asahi Organic Chem Ind Co Ltd Ball check valve
JP2014047807A (en) * 2012-08-29 2014-03-17 Aisin Seiki Co Ltd Valve and fluid pump employing the valve
JP2014122629A (en) * 2012-12-21 2014-07-03 Lg Innotek Co Ltd Electric pump
JP2015059562A (en) * 2013-09-20 2015-03-30 アイシン精機株式会社 Electric oil pump
JP2015105601A (en) * 2013-11-29 2015-06-08 株式会社ミツバ Electric pump
JP2020507721A (en) * 2017-02-14 2020-03-12 ハッチンソンHutchinson Belt tensioner

Similar Documents

Publication Publication Date Title
US9567894B2 (en) Rotary valve
US20110033320A1 (en) Pump rotor for a canned motor pump
US11339781B2 (en) Screw spindle pump, fuel pump assembly, and fuel pump unit
US20130052058A1 (en) Electric pump unit
US10473110B2 (en) Centrifugal compressor having equalizing vent to prevent grease from being pushed out of a bearing
US20220333597A1 (en) Integrated screw-spindle coolant pump
JP5511770B2 (en) Electric pump and electric pump manufacturing method
EP2857723A1 (en) Rotary valve
KR20070100790A (en) Motor-integrated internal gear pump, method of producing the gear pump, and electronic apparatus
US20030070879A1 (en) Submerged electric fluid pump
US20200340462A1 (en) Electromotive oil pump comprising a non-return valve
WO2022202422A1 (en) Electric pump
US20110164995A1 (en) Fluid pump
US20090155100A1 (en) Fluid pump
JP2022148760A (en) Check valve mechanism, electric oil pump, and check valve component unit
JP2022148759A (en) electric pump
US6200109B1 (en) Electromotor/pump assembly
WO2022202423A1 (en) Electric pump
US10539146B2 (en) Centrifugal pump
RU2419948C1 (en) Improved design of screened electric pump (versions)
JP6270382B2 (en) Exhaust gas turbocharger
JP6060488B2 (en) Electric pump unit
CN115013136B (en) Pump mounted to crankshaft
CN115030897B (en) Compressor mounted to crankshaft
CN113389721B (en) Pump insert and pump device having such a pump insert

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775214

Country of ref document: EP

Kind code of ref document: A1