WO2022202282A1 - Delivery device - Google Patents

Delivery device Download PDF

Info

Publication number
WO2022202282A1
WO2022202282A1 PCT/JP2022/009927 JP2022009927W WO2022202282A1 WO 2022202282 A1 WO2022202282 A1 WO 2022202282A1 JP 2022009927 W JP2022009927 W JP 2022009927W WO 2022202282 A1 WO2022202282 A1 WO 2022202282A1
Authority
WO
WIPO (PCT)
Prior art keywords
delivery device
needle
injection needle
irradiation
line light
Prior art date
Application number
PCT/JP2022/009927
Other languages
French (fr)
Japanese (ja)
Inventor
善紀 米田
大貴 有馬
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2022202282A1 publication Critical patent/WO2022202282A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons

Definitions

  • the present invention relates to a delivery device that delivers a delivery product such as a drug or medical device to an affected area in vivo.
  • a delivery device that delivers a drug is used to treat an affected area such as a tumor or a site suspected of being an affected area.
  • an ultrasonic image photoacoustic image
  • an ultrasonic signal obtained by transmitting and receiving ultrasonic waves (photoacoustic waves) to and from a needle.
  • the tip of the injection needle of the puncture device is curved outward from the axial direction, and the injection needle is rotated to change the puncture point to the tumor while injecting the drug.
  • Treatment methods are conceivable.
  • the injection needle can be rotated to direct the puncture end of the injection needle to different positions of the tumor, so that different positions of the tumor can be approached without changing the puncture site of the puncture device. Become.
  • the operator when inserting the injection needle into the tumor, in order to avoid the risk of damage to other tissues and blood vessels around the tumor, the operator should check the ultrasound image and check the tip of the injection needle and the tumor. It is necessary to grasp the positional relationship.
  • the ultrasonic waves transmitted from the ultrasonic probe In order to display the tip portion of the injection needle on the ultrasonic image, the ultrasonic waves transmitted from the ultrasonic probe must be irradiated so as to overlap a plane passing through the central axis of the injection needle.
  • the tip of the injection needle is curved and faces sideways, so depending on the bending direction of the injection needle, the puncture end may deviate from the ultrasonic irradiation area. .
  • the operator When the tip portion of the injection needle is not displayed on the ultrasound image, the operator tries to position the ultrasound probe in accordance with the bending direction of the injection needle, but the bending direction of the injection needle can be adjusted from outside the body. Correct placement of the ultrasound probe is difficult because there is no way to check.
  • a needle guide that holds the puncture device is typically attached to the ultrasound probe, and treatment is performed while simultaneously moving the ultrasound probe and the puncture device.
  • Patent Document 1 cannot easily grasp the correct arrangement position of the ultrasonic probe, and there is room for improvement.
  • At least one embodiment of the present invention has been made in view of the above circumstances. To provide a delivery device capable of ascertaining the correct arrangement position of an ultrasonic probe with respect to.
  • a delivery device is a delivery device that punctures from the surface of a living body to deliver a delivery product to an affected area in the living body, and has a first operation section and a lumen, and a distal end of the first operation section.
  • an outer cylinder extending along the longitudinal direction from the outer cylinder; a second operating part attached to the first operating part so as to be slidable in the longitudinal direction; , an injection needle extending along the longitudinal direction from the tip of the second operating portion; and a plane attached to at least one of the first operating portion and the second operating portion and passing through the central axis of the injection needle.
  • an irradiating unit that irradiates the surface of the living body with overlapping line lights.
  • the present invention it is possible to grasp the correct arrangement position of the ultrasonic probe with respect to the surface of the living body when confirming the behavior of the injection needle inserted into the living body and the position with respect to the affected part with the ultrasonic image. can.
  • FIG. 1 is a schematic side view of a delivery device according to this embodiment
  • FIG. FIG. 4 is a partial cross-sectional view showing a state before the injection needle is advanced in the delivery device according to the present embodiment
  • FIG. 4 is a partial cross-sectional view showing a state after the injection needle has advanced in the delivery device according to the present embodiment
  • FIG. 4 is a conceptual diagram of the delivery device according to the present embodiment, viewed from the side, in which line light is emitted from the irradiation unit.
  • FIG. 4 is a conceptual diagram of the delivery device according to the present embodiment, viewed from above, in which line light is emitted from the irradiation unit.
  • FIG. 10 is a partial cross-sectional view showing the configuration of the delivery device of Modification 1;
  • FIG. 11 is a partial cross-sectional view showing another form of the delivery device of Modification 1;
  • FIG. 11 is a partial cross-sectional view showing the configuration of the delivery device of Modification 2;
  • FIG. 11 is a schematic configuration diagram showing a usage example of the delivery device of Modification 2;
  • FIG. 11 is a schematic configuration diagram showing a usage example of the delivery device of Modification 2;
  • FIG. 11 is a schematic side view showing the configuration of the delivery device of Modification 3;
  • FIG. 11 is a partial cross-sectional view showing another form of the delivery device of Modification 3;
  • FIG. 20 is a schematic side view showing a state before rotation of the second operating portion in the delivery device of Modified Example 4;
  • FIG. 20 is a schematic side view showing a state after rotation of the second operating portion in the delivery device of Modification 4;
  • FIG. 12 is a conceptual diagram when the ultrasonic probe is arranged in the correct posture in the delivery device of Modification 5;
  • FIG. 12 is a conceptual diagram when the ultrasonic probe is arranged in a wrong posture in the delivery device of Modification 5;
  • FIG. 20 is a schematic side view showing a state before one injection needle is advanced in the delivery device of Modification 6;
  • FIG. 20 is a schematic side view showing a state after advancing one injection needle in the delivery device of Modification 6;
  • FIG. 11 is a schematic cross-sectional view of a delivery device of Modification 7;
  • the side where the delivery device 100 is inserted into the living body is defined as the "distal side", and the side opposite to the distal side (the side gripped by the operator) is defined as the “base end side”.
  • a portion including a certain range along the longitudinal direction (extending direction of the central axis Z of the delivery device 100) from the distal end (most proximal end) is referred to as a “distal portion”, and from the proximal end (most proximal end) in the longitudinal direction.
  • the part including the fixed range in be a "base end part.”
  • the delivery device 100 generally includes a first operating section 10, a second operating section 20, an outer cylinder 30, an injection needle 40, an irradiation section 50, Prepare.
  • the delivery device 100 is for delivering a predetermined delivery product (medicine or medical device) to an affected area in the living body through the injection needle 40 while being inserted into the living body.
  • the central axis A of the first operating section 10, the second operating section 20, the outer cylinder 30, and the central axis B of the injection needle 40 all coincide with the central axis Z of the delivery device 100 (see FIG. 2A).
  • the central axis Z coincides with the direction in which the delivery device 100 advances and retreats with respect to the biological surface S and the direction in which the second operation section 20 is pushed and pulled.
  • the central axis Z is also curved along the bending direction of the injection needle 40 (see FIG. 2B).
  • the first operating section 10 is composed of a hollow cylindrical member having a lumen 11, and an outer cylinder 30 is attached to the tip.
  • a lumen 11 of the first operating portion 10 communicates with a lumen 31 of the outer cylinder 30 .
  • a second operating portion 20 is housed inside the first operating portion 10 so as to be slidable along the longitudinal direction.
  • An irradiation unit 50 is arranged on the outer peripheral surface of the first operation unit 10 .
  • the second operation part 20 is composed of a hollow cylindrical member having a lumen 21, and an injection needle 40 is attached to the tip.
  • a lumen 21 of the second operating portion 20 communicates with a lumen 41 of the injection needle 40 .
  • the second operating portion 20 is housed in the lumen 11 of the first operating portion 10 so as to be slidable along the longitudinal direction. Therefore, the injection needle 40 can be advanced and retracted from the outer cylinder 30 along the long axis direction by pushing and pulling the second operation portion 20 .
  • the distance between the tip position of the second operation part 20 and the tip-side inner wall of the lumen 11 of the first operation part 10 is set according to the advance amount of the injection needle 40 . That is, as shown in FIG. 2A, in the state before the second operation part 20 slides, the distal end position of the second operation part 20 and the distal end side inner wall of the lumen 11 of the first operation part 10 are at least the advancing position. separated by an amount. Further, as shown in FIG. 2B , the second operating portion 20 slides toward the distal end side by the amount of advance after sliding, and the tip of the second operating portion 20 slides inside the first operating portion 10 . It will be in close proximity to the distal inner wall of the cavity 11 . In this state, the injection needle 40 advances from the outer cylinder 30 .
  • the second operating section 20 includes a push-pull section 22 and a hub section 23 on the proximal end side.
  • the push/pull part 22 is operated when performing a push/pull operation for advancing and retracting the injection needle 40 from the outer cylinder 30 .
  • the operator can advance the injection needle 40 from the outer tube 30 by pushing (sliding toward the distal end side) the push/pull portion 22 .
  • the operator can retract the injection needle 40 advanced from the outer tube 30 into the outer tube 30 by pulling the push/pull portion 22 (sliding toward the proximal side).
  • the hub portion 23 has a lumen that communicates with an opening formed on the proximal side.
  • the lumen of hub portion 23 communicates with lumen 41 of injection needle 40 via lumen 21 of second operation portion 20 . Therefore, lumen 41 of injection needle 40 can communicate with the outside via hub portion 23 .
  • Hub portion 23 functions as an introduction port for introducing a delivery product into injection needle 40 .
  • the hub portion 23 is used to attach, for example, a tip of a syringe or a tube for drug administration, or to insert a medical device.
  • the hub portion 23 is provided on the push/pull portion 22 on the base end side of the second operation portion 20 , but may be provided on the side surface side of the second operation portion 20 .
  • the outer peripheral surface of the second operation portion 20 may be provided with a marker portion that allows the bending direction of the injection needle 40 to be visually or tactilely confirmed. This allows the operator to insert the delivery device 100 into the living body while grasping the bending direction of the injection needle 40 in advance.
  • the second operation portion 20 has, on its outer peripheral surface, the extension length (puncture length) of the injection needle 40 from the outer cylinder 30 and the degree of curvature in the bending direction (the central axis of the needle body portion 42). It is preferable to provide a scale portion that allows the distance from B1 to the puncture end 43b to be visually or tactilely confirmed. This allows the operator to grasp the puncture length of the injection needle 40 with respect to the affected area and the degree of bending in the bending direction while the delivery device 100 is inserted into the living body.
  • the second operation unit 20 may be provided with a puncture length limiting mechanism (stopper) for limiting the puncture length of the injection needle 40 to a predetermined length.
  • stopper for limiting the puncture length of the injection needle 40 to a predetermined length.
  • the outer cylinder 30 is composed of a hollow tubular member having a lumen 31 that communicates from the distal end to the proximal end, and extends along the longitudinal direction from the distal end of the first operation section 10. .
  • a lumen 31 of the outer cylinder 30 communicates with a distal opening 32 on the distal side and communicates with a proximal opening 33 on the proximal side.
  • the proximal end opening 33 communicates with the lumen 11 of the first operating section 10 .
  • An injection needle 40 is housed in the lumen 31 of the outer cylinder 30 .
  • a non-invasive or minimally invasive material that can be used in the medical field can be applied. It is preferable to adopt a material with relatively high rigidity (stainless steel, titanium alloy, CoCr alloy, etc.).
  • the outer cylinder 30 is inserted along an introduction device such as a cannula that has been previously introduced into the living body.
  • an introduction device such as a cannula that has been previously introduced into the living body.
  • the outer cylinder 30 has a sharp needle-like tip, it can be inserted into the affected part by puncturing from the living body surface S without using an introduction device.
  • the outer cylinder 30 may be provided with a fixing member on its outer peripheral surface for position fixing on the living body surface S during the procedure. As a result, the operator can fix the position of the outer tube 30 during the procedure and accurately puncture the injection needle 40 into the target site of the affected area.
  • the injection needle 40 is composed of a hollow cylindrical member having a lumen 41, and extends from the tip of the second operating portion 20 along the longitudinal direction.
  • the injection needle 40 includes a needle body portion 42 , a needle tip portion 43 and a curved portion 44 .
  • the needle body portion 42 and the needle tip portion 43 communicate with each other through the lumen 41 .
  • the needle main body portion 42 is composed of a hollow tubular member, and the proximal end thereof is connected to the distal end of the second operating portion 20 . Therefore, lumen 41 of injection needle 40 communicates with lumen 21 of second operation section 20 . The distal end of the needle main body 42 is connected to the proximal end of the needle distal end portion 43 .
  • the needle tip 43 has a sharp puncture end 43b with an opening 43a at the tip. At least part of the needle tip portion 43 advances from the outer cylinder 30 into the living body as the second operation portion 20 slides. Further, the needle tip portion 43 has a curved portion 44 and is configured to be deformable into a shape in which at least a portion thereof is curved sideways.
  • the curved portion 44 constitutes at least a portion or substantially the entirety of the needle tip portion 43, and gradually extends from the tip of the needle body portion 42 toward the opening 43a of the needle tip portion 43 toward the central axis A ( It has a shape bent in a direction (radial direction with respect to the central axis A of the outer cylinder 30) away from the central axis B1) of the needle main body 42).
  • the curved portion 44 may be set in the same region as the needle tip portion 43, as shown in FIG. 2A.
  • the curved portion 44 maintains its curved shape when the needle tip portion 43 advances from the outer cylinder 30, as shown in FIG. 2B.
  • the bending portion 44 has a lower rigidity than the outer cylinder 30, when the needle tip portion 43 is accommodated in the outer cylinder 30, as shown in FIG. Thereby, the curved shape is corrected to a substantially straight state.
  • the curved portion 44 is configured to have a curved shape in advance, and is also a guide member that guides the needle distal end portion 43 extending from the distal end opening portion 32 of the outer cylinder 30 in an oblique direction (a direction away from the central axis B1 of the needle main body portion 42). Any configuration that bends the needle tip portion 43 when it advances from the outer tube 30 , such as a configuration that curves by a needle (not shown), may be used.
  • the injection needle 40 may have a configuration in which the opening 43a of the puncture end 43b is sealed and a plurality of holes are provided on the side surface of the needle tip portion 43. .
  • the material of the injection needle 40 is not particularly limited as long as it is a material that is applied to a puncture needle that is attached to a known syringe used in the medical field. Applicable.
  • the irradiation section 50 is attached to the outer peripheral surface of the first operation section 10 .
  • the irradiating unit 50 irradiates a linear beam of light having a predetermined wavelength (hereinafter referred to as “line light L”).
  • the irradiation unit 50 is not particularly limited as long as it is a light source that can irradiate the line light L. However, in order to be able to linearly irradiate the line light L onto the living body surface S having a three-dimensional gradient, it is possible to It is preferred to use a high laser light source. Further, since the line light L irradiates the living body surface S, it is preferable that the line light L has a greenish color tone as a complementary color.
  • the irradiation unit 50 passes through the central axis B of the injection needle 40 (more specifically, the central axis of the lumen 41 coincides with the central axis B1 of the needle main body 42 and the central axis B2 of the needle tip portion 43 of the injection needle 40).
  • Line light L is applied so as to overlap the plane.
  • the living body surface S is irradiated with the line light L emitted from the irradiation unit 50 .
  • the line light L is irradiated so as to overlap the plane passing through the central axis B of the injection needle 40, so that the needle tip portion 43 of the injection needle 40 inserted into the living body is curved. Illuminated from the direction side.
  • the operator arranges the wave transmission surface 210 of the ultrasonic probe 200 along the line light L, the operator can enter the irradiation area of the ultrasonic waves U emitted from the wave transmission surface 210 at least from the outer cylinder 30. Needle tip 43 of infusion needle 40 will be present. Therefore, the operator can deliver the delivery product to the target position of the affected area by viewing the ultrasonic image showing the entirety of the needle tip 43 advanced from the outer cylinder 30 .
  • the irradiation unit 50 may include a light guide member such as a diffusion plate or a reflection plate at the irradiation port so as to irradiate the line light L at a predetermined irradiation angle (preferably 30 degrees or more, more preferably 45 degrees or more). good.
  • a predetermined irradiation angle preferably 30 degrees or more, more preferably 45 degrees or more.
  • a treatment method using the delivery device 100 according to this embodiment will be described.
  • the following description shows an example of a treatment in which a drug (liquid drug) for treating a tumor in an affected area is administered to the tumor at three sites as a delivered product.
  • the operator prepares a drug to be administered to the tumor in the affected area, and primes the syringe and injection needle 40 for injecting the drug.
  • the operator operates the ultrasonic probe 200 to confirm the central position of the patient's tumor with the ultrasonic diagnostic apparatus, and determines the puncture route from the biological surface S to the tumor.
  • the operator After disinfecting the puncture site and applying local anesthesia, the operator inserts (punctures) the outer cylinder 30 of the delivery device 100 toward the tumor under echo guidance. At this time, the operator positions the ultrasonic probe 200 on the body surface so as to visualize the tumor, and extends the distal end of the outer cylinder 30 of the delivery device 100 to a position where it reaches the outer surface of the tumor. Insert barrel 30 . At this time, the living body surface S is irradiated with the line light L emitted from the irradiation unit 50 . By piercing the ultrasound probe 200 so that the line light L is irradiated in parallel with the ultrasound probe 200, the needle tip portion 43 of the injection needle 40 advanced from the outer cylinder 30 can be displayed on the ultrasound image. .
  • the operator punctures the injection needle 40, there are directions in which the tumor cannot be confirmed due to interference with the ultrasonic waves U by air in the bones and lungs and the viewing angle of the ultrasonic probe 200.
  • the direction of puncture into the tumor can also be oriented prior to puncturing 40 into the tumor. While positioning the ultrasonic probe 200 based on the line light L emitted from the irradiation unit 50, the operator determines a plurality of puncture directions that can be confirmed by echo, and marks the biological surface S. If you do, you can proceed with the procedure smoothly.
  • the operator pushes the push/pull unit 22 while checking the interface of the tumor, and moves the needle tip 43 of the injection needle 40 to the outer tube 30 . advance from and puncture the tumor.
  • the operator operates the syringe or syringe pump to administer the drug. As a result, the first administration is completed, and the drug, which is the product to be delivered, is delivered to the affected tumor.
  • the operator pulls the push/pull part 22 to retract the injection needle 40 into the outer cylinder 30 .
  • the operator removes the delivery device 100 from the needle guide, rotates the delivery device 100 in a predetermined direction, and moves the bending direction of the injection needle 40 to the second puncture site.
  • the line light L emitted from the irradiation unit 50 follows the rotation of the device and is emitted in a direction corresponding to the bending direction of the injection needle 40 . Therefore, the line light L is irradiated with a trajectory different from the orientation of the first puncture.
  • the operator positions the arrangement position of the ultrasonic probe 200 in the second puncture direction based on the line light L irradiated on the living body surface S.
  • the operator can roughly grasp the behavior of the injection needle 40 .
  • the operator tilts the injection needle 40 forward and backward with the wave transmission surface 210 of the ultrasound probe 200 along the line light L. It is also possible to find a posture in which the behavior can be grasped more precisely.
  • the drug which is the product to be delivered, is delivered to a site different from the first delivery to the affected tumor.
  • the operator pulls the push/pull part 22 to retract the injection needle 40 into the outer cylinder 30 .
  • an operation such as opening a three-way stopcock in the administration route may be performed in order to remove the pressure in the administration route increased by the administration.
  • the operator rotates delivery device 100 in a predetermined direction to move injection needle 40 in the curved direction to the third puncture site.
  • the line light L emitted from the irradiation unit 50 follows the rotation of the device and is emitted in a direction corresponding to the bending direction of the injection needle 40 . Therefore, the line light L is irradiated with a trajectory different from the directions of the first and second punctures.
  • the operator positions the arrangement position of the ultrasonic probe 200 with respect to the third puncture direction with reference to the line light L irradiated on the living body surface S.
  • the drug which is the product to be delivered, is delivered to a site different from the first and second delivery to the affected tumor.
  • the operator pulls the push/pull part 22 to retract the injection needle 40 into the outer cylinder 30 .
  • the delivery device 100 is removed from the living body to complete the procedure.
  • Modification 1 is a configuration in which the outer cylinder 30 is attached so as to be rotatable about the long axis of the first operating portion 10, as shown in FIGS. 4A and 4B.
  • the outer cylinder 30 is provided with a collar portion 34 along the entire circumference of the outer peripheral surface on the proximal end side of the outer cylinder 30 .
  • An annular support portion 12 that rotatably holds the collar portion 34 is provided at the tip of the first operation portion 10 .
  • the outer cylinder 30 extends from the base end side of the outer cylinder 30 along the outer peripheral surface of the first operating portion 10, and the distal end thereof is the first operating portion.
  • An extension 35 is provided that slidably engages an annular groove 13 formed in the outer peripheral surface of portion 10 .
  • the delivery device 100 of Modified Example 1 by rotatably attaching the outer cylinder 30 to the first operation section 10, when the injection needle 40 is rotated, the outer cylinder 30 does not rotate with the injection needle 40 and is inserted. The state (insertion posture) is maintained. Therefore, in Modification 1, damage due to friction with the surrounding living tissue that may occur due to rotation of the outer cylinder 30 is prevented.
  • Modification 2 has two irradiating units 50, and is characterized by its arrangement position.
  • the delivery device 100 of Modification 2 has a first irradiation position where the line light L1 can be irradiated along the central axis B of the injection needle 40 from the bending direction side of the needle tip portion 43, and the outer peripheral surface of the first operation portion 10.
  • a second irradiation position where the line light L2 can be irradiated along the central axis B of the injection needle 40 from the side opposite to the bending direction side of the needle tip portion 43, which is a position facing the first irradiation position in the radial direction. It is configured to be Both the first irradiation position and the second irradiation position are positions where the line light L can be irradiated so as to overlap the plane passing through the needle main body 42 and the needle tip 43 of the injection needle 40 .
  • the delivery device 100 of Modification 2 can irradiate the line light L1 and the line light L2 in two directions, ie, the bending direction of the needle distal end portion 43 of the injection needle 40 and the opposite side of the bending direction. Therefore, when inserting the delivery device 100 into the living body, the operator places the ultrasonic probe 200 on the living body surface S along the line light L1 emitted from the first irradiation position as shown in FIG. 6A. In addition, when the operator cannot confirm the needle tip portion 43 of the injection needle 40 at the position of the line light L1 irradiated from the first irradiation position due to obstacles such as bones in the living body and air in the lungs, as shown in FIG. As shown, the ultrasound probe 200 can be placed on the biological surface S along the line light L2 irradiated from the second irradiation position. Therefore, the operator has a higher degree of freedom in positioning the ultrasound probe 200, which facilitates treatment.
  • Modification 3 As shown in FIGS. 7A and 7B, the second operation unit 20 is rotatably attached to the first operation unit 10, and the irradiation unit 50 can follow the rotation operation of the second operation unit 20. It is a configuration that The delivery device 100 of Modification 3 is configured to rotate the second operation section 20 to change the puncture direction of the injection needle 40 with respect to the affected area.
  • the delivery device 100 of Modified Example 3 has a configuration in which the irradiation section 50 is attached to the outer peripheral surface of the second operation section 20 by joining it, as shown in FIG. 7A.
  • the delivery device 100 of Modification 3 is provided with a notch 14 on the outer peripheral surface of the first operation section 10 so that the irradiation section 50 can be rotated as the position of the irradiation section 50 is changed.
  • a part of the outer peripheral surfaces of the second operating part 20 and the injection needle 40 and the irradiation part 50 are exposed from the first operating part 10 .
  • the irradiation section 50 when the second operation section 20 is rotated to change the puncture direction of the injection needle 40 with respect to the affected area, the irradiation section 50 also rotates so as to follow the rotational movement.
  • the delivery device 100 of Modification 3 can adopt the form shown in FIG. 7B.
  • the delivery device 100 of Modification 3 has a configuration in which the irradiation section 50 is attached to the outer peripheral surface of the second operation section 20 by being joined thereto.
  • the irradiation unit 50 is arranged on the outer peripheral surface of the second operation unit 20 while being accommodated inside the first operation unit 10 .
  • the delivery device 100 of Modified Example 3 is provided with a window portion 15 through which the line light L emitted from the irradiation section 50 is transmitted as the arrangement position of the irradiation section 50 is changed.
  • the window part 15 is arranged at a position facing the irradiation port of the irradiation part 50 on the distal end side of the first operation part 10 .
  • the window part 15 is made of a colorless or colored transparent material (glass, acrylic, etc.) having translucency that does not obstruct the line light L as much as possible. Further, the refractive index of the window 15 may be adjusted so that the irradiation angle of the line light L is wide.
  • the delivery device 100 of Modified Example 3 when the injection needle 40 is rotated, the outer cylinder 30 is maintained in a state of being inserted into the living body (insertion posture). Therefore, the delivery device 100 of Modification 3 can prevent damage due to friction with the surrounding living tissue that may occur when the outer cylinder 30 rotates. In addition, since the irradiation unit 50 rotates along with the rotation operation of the second operation unit 20 , the line light L can be irradiated following the bending direction of the needle distal end portion 43 of the injection needle 40 .
  • the delivery device 100 of Modification 3 has a configuration in which the irradiation unit 50 can follow the rotational movement of the second operation unit 20 in a configuration in which the second operation unit 20 is rotated to change the orientation of the injection needle 40 with respect to the affected area.
  • the delivery device 100 is not limited to the configuration shown in FIGS. 7A and 7B. It is also possible to adopt a configuration in which it is attached so as to follow only rotational movement without following movement in the forward/backward direction (front-rear direction).
  • Modification 4 as shown in FIGS. 8A and 8B, includes two irradiation units 50, one irradiation unit 50 (first irradiation unit 51) is attached to the outer peripheral surface of the first operation unit 10, and the other It is configured such that the irradiation unit 50 (second irradiation unit 52 ) can follow the rotation operation of the second operation unit 20 on the outer peripheral surface of the second operation unit 20 .
  • the delivery device 100 of Modification 4 is configured to rotate the second operation part 20 to change the puncture direction of the injection needle 40 with respect to the affected area, as in the modification 3.
  • FIG. 8A and 8B includes two irradiation units 50, one irradiation unit 50 (first irradiation unit 51) is attached to the outer peripheral surface of the first operation unit 10, and the other It is configured such that the irradiation unit 50 (second irradiation unit 52 ) can follow the rotation operation of the second operation unit 20 on the outer peripheral surface of the second operation unit 20 .
  • the first irradiation unit 51 and the second irradiation unit 52 are irradiated from the first irradiation unit 51 in a state before the second operation unit 20 is rotated with respect to the first operation unit 10, as shown in FIG. 8A.
  • the line light L3 emitted from the second irradiation unit 52 and the line light L4 emitted from the second irradiation unit 52 are attached at positions where the line light L4 is superimposed on the living body surface S. Both the line light L3 and the line light L4 are irradiated so as to overlap a plane passing through the central axis B of the injection needle 40 .
  • the second irradiation unit 52 rotates following the rotation of the second operation unit 20, as shown in FIG. 8B.
  • the line light L ⁇ b>4 emitted from the second irradiation unit 52 is applied so as to overlap a plane passing through the central axis B of the injection needle 40 .
  • the line light L3 emitted from the first irradiation section 51 and the line light L4 emitted from the second irradiation section 52 are emitted. is superimposed. This allows the operator to arrange the ultrasound probe 200 along the two line lights. Further, when the bending direction of the injection needle 40 is changed by rotating the second operating section 20 , the second irradiation section 52 also rotates following the rotational movement of the second operating section 20 . Accordingly, after rotating the second operation unit 20 , the operator can arrange the ultrasound probe 200 along the line light L4 emitted from the second irradiation unit 52 .
  • the ultrasonic probe 200 can be accurately grasped.
  • the position where the injection needle was first punctured and then the injection needle It is possible to visually confirm how far apart the positions are.
  • the line light L3 emitted from the first irradiation unit 51 and the line light L4 emitted from the second irradiation unit 52 can be easily distinguished. Attributes (hue, lightness, saturation) and illumination width may be changed.
  • Modification 5 is a configuration in which two types of line light L emitted from the irradiation unit 50 are emitted, as shown in FIGS. 9A and 9B.
  • the irradiation unit 50 includes a first line light LA for alignment of the wave transmission surface 210 indicating the arrangement position of the ultrasonic probe 200 with respect to the biological surface S, and the first line light LA arranged on the biological surface S Second line light beams LB (LB1, LB2) for angle adjustment for correcting the inclination of the wave transmission surface 210 with respect to the biological surface S of the ultrasound probe 200 are emitted.
  • the second line beams LB1 and LB2 are emitted substantially parallel to the first line beam LA with a predetermined gap therebetween.
  • the interval of the second line light LB with respect to the first line light LA is set to the extent that the deviation of the tilt of the ultrasonic probe 200 can be confirmed.
  • the operator adjusts the inclination so that the ultrasound probe 200 is not covered with the second line light LB (LB1 or LB2). By doing so, the ultrasonic probe 200 can be positioned correctly.
  • the irradiation unit 50 may be configured to irradiate the second line light LB along both side edges of the first line light LA. That is, the first line light LA may be surrounded by the second line light LB.
  • Modification 6 provides a plurality of injection needles 40, and each of the injection needles 40 is configured to be independently advanceable and retractable.
  • the delivery device 100 of Modification 6 has an irradiation section 50 on the outer peripheral surface of the outer cylinder 30 corresponding to the bending direction of the plurality of injection needles 40 .
  • the bending directions of the three injection needles 40 are set at a predetermined angle (when viewed from the axial direction) in the circumferential direction of the second operation section 20.
  • the injection needle 40 is positioned at 0°, 120°, 240° clockwise, and the base end of the injection needle 40 is connected to each of the push-pull portions 22 divided into three. Further, the hub portion 23 is provided in each of the pushing/pulling portions 22 divided into three.
  • the injection needle 40 connected to the operated push-pull section 22 moves toward the outer cylinder 30 . Advance or retreat. Further, when the operator simultaneously pushes and pulls the three divided push-pull portions 22, the three injection needles 40 can be advanced and retracted at the same time.
  • the injection needle 40 can be punctured at different positions of the affected area without rotating the second operation section 20 or rotating the delivery device 100 itself.
  • the delivery device 100 of Modification 6 includes an irradiation unit 50 that irradiates each injection needle 40 with line light L so as to overlap a plane passing through the central axis B of the injection needle 40 . Therefore, when the operator pushes and pulls the injection needle 40 individually, the operator can arrange the ultrasonic probe 200 along the line light L emitted from the corresponding irradiation unit 50 .
  • a plurality of injection needles 40 may be provided at the distal end of one second operating portion 20, and may be configured to move forward and backward simultaneously when the second operating portion 20 is pushed and pulled.
  • the operator can confirm the advancing direction of each injection needle 40 by relying on each line light L in advance, and simultaneously puncture while looking at the needle closest to the edge of the tumor. Also, after puncturing, the operator can confirm that the other injection needles 40 are not protruding from the tissue based on each line light L.
  • Modification 7 is provided with reflecting portions 60 for increasing the difference in acoustic impedance with the surroundings on the outer peripheral surfaces of the distal end side of the outer cylinder 30 and the distal end side of the injection needle 40 (mainly in the vicinity of the needle distal end portion 43). Configuration.
  • the reflecting part 60 is provided on the outer peripheral surface of the outer cylinder 30 on the distal end side and the outer peripheral surface of the needle distal end portion 43 of the injection needle 40 .
  • the reflecting part 60 has the effect of improving the reflection efficiency of the ultrasonic waves U and improving the visibility on the ultrasonic image.
  • the reflecting part 60 has a shape that improves the reflection efficiency of the ultrasonic waves U.
  • the reflecting portion 60 is configured with a concave groove (concave shape), a ridge or a plurality of projections (convex shape), or an uneven shape such as a satin finish.
  • the reflecting part 60 is preferably provided on the outer peripheral surface corresponding to the bending direction so that the bending direction of the injection needle 40 can be confirmed on the ultrasonic image.
  • the visibility of the outer cylinder 30 and the injection needle 40 is improved for the operator on the ultrasonic image, so that it is easy for the operator to position the insertion position and the puncture site with respect to the affected area during insertion into the living body. becomes.
  • the delivery device 100 is a device that punctures the biological surface S to deliver a delivery product to an affected area in the living body, and has the first operation section 10 and the lumen 31. , an outer cylinder 30 extending along the longitudinal direction from the tip of the first operating part 10, a second operating part 20 attached to the first operating part 10 so as to be slidable in the longitudinal direction, and an outer cylinder Injection needle 40 which is housed in lumen 31 of 30 so as to be advanceable and retractable and extends along the longitudinal direction from the distal end of second operating section 20 , and at least one of first operating section 10 and second operating section 20 and an irradiating unit 50 that irradiates the living body surface S with line light L that is attached and overlaps a plane passing through the central axis B of the injection needle 40 .
  • the injection needle 40 also has a needle distal end portion 43 having an opening 43a at the distal end, and a hollow needle main body portion 42 extending from the proximal end of the needle distal end portion 43 along the longitudinal direction.
  • the needle distal end portion 43 has a bending portion 44 that bends at least a portion of the needle distal end portion 43 so as to gradually move away from the central axis A of the outer cylinder 30 as it goes from the distal end of the needle main body portion 42 toward the opening 43a.
  • the line light L emitted from the irradiation unit 50 is applied to the surface of the living body S so as to overlap the plane passing through the central axis B of the injection needle 40. is irradiated from the bending direction side of the needle distal end portion 43 of the injection needle 40 inserted into.
  • This allows the operator to grasp the correct placement position of the ultrasound probe 200 with respect to the biological surface S. Therefore, if the operator arranges the wave transmission surface 210 of the ultrasonic probe 200 along the line light L, the operator can enter the irradiation area of the ultrasonic waves U emitted from the wave transmission surface 210 at least from the outer cylinder 30.
  • a needle tip 43 of the infusion needle 40 may be present. Therefore, the operator can easily confirm the bending direction and behavior of the injection needle 40 on the ultrasonic image, and can deliver the delivery product to the target site of the affected area.
  • the irradiating unit 50 includes a laser light source that irradiates a laser beam having a color complementary to that of the living body surface S as the line light L, and the line light L is emitted at an angle of 30 degrees or more. may be configured to be able to irradiate at an irradiation angle of .
  • the delivery device 100 configured in this way, by irradiating a laser beam having a complementary color to the biological surface S, such as green, as the line light L, the biological surface S having a three-dimensional gradient is irradiated. It becomes possible to irradiate the surface S with the line light L linearly.
  • the line light L by irradiating the line light L at an irradiation angle of 30 degrees or more, when the ultrasonic probe 200 is arranged on the surface S of the living body, the line light L having a sufficient length for alignment is applied to the living body.
  • the surface S can be irradiated.
  • the outer cylinder 30 may be configured to be rotatably held about the long axis of the first operation section 10 .
  • the delivery device 100 configured in this way, by rotatably attaching the outer cylinder 30 to the first operation part 10, when the injection needle 40 is rotated, the outer cylinder 30 does not rotate together.
  • the inserted state (insertion posture) is maintained. Therefore, the delivery device 100 can prevent damage due to friction with the surrounding living tissue that may occur due to the rotation of the outer cylinder 30 .
  • the irradiation unit 50 is a first irradiation capable of irradiating the line light L1 so as to overlap the plane passing through the central axis B of the injection needle 40 from the bending direction side of the needle tip portion 43. and a plane that passes through the central axis B of the injection needle 40 from the side opposite to the bending direction side of the needle tip portion 43 and which is a position radially facing the first irradiation position on the outer peripheral surface of the first operation portion 10 . may be configured to be arranged at the second irradiation positions where they can be irradiated with the line light L2.
  • the delivery device 100 configured in this way, when the operator inserts the delivery device 100 into the living body, the line light L1 emitted from the first irradiation position and the line light L2 emitted from the second irradiation position
  • the ultrasound probe 200 can be placed on the biological surface S along the . Both the line light L1 irradiated from the first irradiation position and the line light L2 irradiated from the second irradiation position are irradiated so as to overlap the plane passing through the central axis B of the injection needle 40 . Therefore, the operator has a higher degree of freedom in positioning the ultrasound probe 200, which facilitates treatment.
  • the second operation section 20 is attached so as to be rotatable in the circumferential direction with respect to the first operation section 10, and the irradiating section 50 rotates relative to the second operation section 20. It is good also as a structure provided so that it can follow.
  • the delivery device 100 configured in this way, when the injection needle 40 is rotated, the outer cylinder 30 is maintained in a state of being inserted into the living body (insertion posture), so that the rotation of the outer cylinder 30 causes It is possible to prevent damage due to friction with the surrounding living tissue.
  • the irradiation unit 50 rotates along with the rotation operation of the second operation unit 20 , the line light L can be irradiated following the bending direction of the needle distal end portion 43 of the injection needle 40 .
  • the irradiation section 50 has a first irradiation section 51 attached to the first operation section 10 and a second irradiation section 52 attached to the second operation section 20.
  • the first irradiation unit 51 and the second irradiation unit 52 in a state before the second operation unit 20 is rotated with respect to the first operation unit 10, the line light L3 irradiated from the first irradiation unit 51, It may be configured such that the line lights L4 emitted from the second irradiation unit 52 are attached to positions where they overlap on the living body surface S, respectively.
  • the operator before rotating the second operation unit 20, the operator places the ultrasonic probe 200 along the two line lights L3 and L4, When the bending direction of the injection needle 40 is changed by rotating the second operation unit 20 , the ultrasound probe 200 can be arranged along the line light L ⁇ b>4 emitted from the second irradiation unit 52 . Therefore, even when the operator rotates the second operation unit 20 to change the bending direction of the injection needle 40 , the operator can accurately grasp the arrangement position of the ultrasonic probe 200 .
  • the irradiation unit 50 includes the first line light LA for aligning the wave transmission surface 210 of the ultrasound probe 200 with respect to the biological surface S, and the first line light LA second line light beams LB (LB1, LB2) for adjusting the angle of the wave transmission surface 210 with respect to the living body surface S and positioned outside the first line light beam LA along both side edges of the good too.
  • the operator can place the ultrasound probe 200 on the first line light LA of the biological surface S so as not to overlap the second line light LB. , the ultrasound probe 200 can be positioned correctly. Further, when the ultrasound probe 200 is covered with the second line light LB (LB1 or LB2), the operator adjusts the inclination so that the ultrasound probe 200 is not covered with the second line light LB. By doing so, the ultrasonic probe 200 can be positioned correctly.
  • the second line light LB LB1 or LB2
  • a plurality of injection needles 40 are provided for the second operation section 20 , and the irradiation section 50 is provided in the second operation section 20 corresponding to each of the plurality of injection needles 40 . It is good also as a structure which attached multiple to the outer peripheral surface of.
  • the injection needle 40 is punctured at different positions of the affected area without rotating the second operation part 20 or rotating the delivery device 100 itself. be able to.
  • the irradiation unit 50 is provided for irradiating each of the injection needles 40 with the line light L so as to overlap the plane passing through the central axis B of the injection needle 40, the operator presses the injection needle 40 individually.
  • the ultrasonic probe 200 can be arranged along the line light L emitted from the corresponding irradiation unit 50 .
  • the outer surface of the distal end portion of the outer cylinder 30 and the outer surface of the needle distal end portion 43 of the injection needle 40 have a reflecting portion 60 for increasing the acoustic impedance difference with the surroundings. It is good also as a structure which has.
  • the delivery device 100 configured in this way, the visibility of the outer tube 30 and the injection needle 40 is improved on the ultrasound image, so that the operator can position the insertion position and the puncture site with respect to the affected part during insertion into the living body. becomes easier.
  • first operation unit 10 first operation unit, 20 second operation unit, 30 outer cylinder, 31 lumen of the barrel, 40 injection needle, 42 needle body, 43 needle tip, 44 bend, 50 irradiation unit, 51 first irradiation unit, 52 second irradiation unit, 60 Reflector, 100 delivery device; 200 ultrasonic probe, 210 transmission surface, L (L1 to L4) line light, LA first line light, LB second line light, A central axis of the outer cylinder, B central axis of injection needle (B1 central axis of needle main body, B2 central axis of needle tip), S biological surface, U Ultrasonic, Z central axis of the delivery device;

Abstract

A delivery device 100, which is for delivering an object to be delivered to an affected part in a living body, is provided with: a first operation part 10; an outer tube 30 that has a lumen 31 and extends along the longitudinal axial direction from the tip of the first operation part 10; a second operation part 20 that is attached to the first operation part 10 in a slidable manner along the longitudinal axial direction; an injection needle 40 that is reciprocatably housed in the lumen 31 of the outer tube 30 and extends along the longitudinal axial direction from the tip of the second operation part 10; and an irradiation part 50 that is attached to the first operation part 10 and/or the second operation part 20 and irradiates line light L, said line light L overlapping a plane passing through the central axis of the injection needle 40, to the surface S of the living body.

Description

送達デバイスdelivery device
 本発明は、生体内の患部に対して薬剤や医療デバイスなどの送達物を送達する送達デバイスに関する。 The present invention relates to a delivery device that delivers a delivery product such as a drug or medical device to an affected area in vivo.
 特許文献1には、薬剤を送達する送達デバイス(穿刺デバイス)を用いて腫瘍などの患部や患部の疑いがある部位など処置するため、超音波探触子(プローブ)から観測対象となる生体組織に対して超音波(光音響波)を送受信して得られた超音波信号に基づく超音波画像(光音響画像)を用いて患部を観察しながら穿刺する技術が開示されている。 In Patent Document 1, a delivery device (puncture device) that delivers a drug is used to treat an affected area such as a tumor or a site suspected of being an affected area. There is disclosed a technique of performing puncture while observing an affected area using an ultrasonic image (photoacoustic image) based on an ultrasonic signal obtained by transmitting and receiving ultrasonic waves (photoacoustic waves) to and from a needle.
特開2009-31262号公報JP 2009-31262 A
 生体内に発生した腫瘍を治療する際、副作用の強い薬剤や選択性が少ない薬剤に対して全身性の副作用を抑えつつ、腫瘍への薬剤集積量を高める投与方法として、腫瘍に直接投与する処置方法がある。しかし、腫瘍組織内に薬剤を浸透・拡散させるには、1箇所から投与しても薬剤量は限られている。また、線維性の隔壁を有する腫瘍は、薬剤が浸透し難いため、1箇所から投与しても期待する効果が得られないこともある。そのため、術者は、穿刺デバイスを穿刺し直して複数箇所から腫瘍にアプローチして薬剤の投与を試みるが、出血リスクや播種リスクが高まるという課題がある。 When treating tumors that occur in vivo, it is a method of administering directly to the tumor as an administration method that increases the amount of drug accumulation in the tumor while suppressing systemic side effects of drugs with strong side effects or drugs with low selectivity. There is a way. However, in order to permeate and diffuse the drug into the tumor tissue, the amount of the drug is limited even if it is administered from one site. In addition, since it is difficult for drugs to permeate tumors having fibrous septa, expected effects may not be obtained even if the drugs are administered from one site. Therefore, the operator re-punctures the puncture device to approach the tumor from multiple locations and attempt to administer the drug, but there is a problem that the risk of bleeding and dissemination increases.
 そこで、上記課題に対する対応策として、穿刺デバイスの注入針の先端部を軸方向から外方に向けて湾曲させた構成とし、注入針を回転させて腫瘍への穿刺箇所を変えながら薬剤を投与する処置方法が考えられる。この処置方法によれば、注入針を回転させて注入針の穿刺端を腫瘍の異なる位置に向けることができるため、穿刺デバイスの穿刺箇所を変えず、腫瘍の異なる位置にアプローチすることが可能となる。 Therefore, as a countermeasure against the above problem, the tip of the injection needle of the puncture device is curved outward from the axial direction, and the injection needle is rotated to change the puncture point to the tumor while injecting the drug. Treatment methods are conceivable. According to this treatment method, the injection needle can be rotated to direct the puncture end of the injection needle to different positions of the tumor, so that different positions of the tumor can be approached without changing the puncture site of the puncture device. Become.
 ところで、腫瘍に注入針を穿刺する際に、腫瘍の周囲にある他組織や血管などの損傷リスクを回避するため、術者は、超音波画像を確認しながら注入針の先端部分と腫瘍との位置関係を把握する必要がある。注入針の先端部分を超音波画像上に映し出すには、超音波探触子から送信される超音波を、注入針の中心軸を通る平面と重なるように照射しなければならない。しかし、上記対応策となる処置方法を行う場合、注入針の先端は湾曲して側方を向いているため、注入針の湾曲方向によっては穿刺端が超音波の照射領域から外れる可能性がある。超音波画像上に注入針の先端部分が映し出されない場合、術者は、注入針の湾曲方向に合わせて超音波探触子を配置させようとするが、生体外から注入針の湾曲方向を確認する術がないため、超音波探触子を正しく配置するのは困難である。 By the way, when inserting the injection needle into the tumor, in order to avoid the risk of damage to other tissues and blood vessels around the tumor, the operator should check the ultrasound image and check the tip of the injection needle and the tumor. It is necessary to grasp the positional relationship. In order to display the tip portion of the injection needle on the ultrasonic image, the ultrasonic waves transmitted from the ultrasonic probe must be irradiated so as to overlap a plane passing through the central axis of the injection needle. However, when performing the treatment method as the above countermeasure, the tip of the injection needle is curved and faces sideways, so depending on the bending direction of the injection needle, the puncture end may deviate from the ultrasonic irradiation area. . When the tip portion of the injection needle is not displayed on the ultrasound image, the operator tries to position the ultrasound probe in accordance with the bending direction of the injection needle, but the bending direction of the injection needle can be adjusted from outside the body. Correct placement of the ultrasound probe is difficult because there is no way to check.
 また、上記対応策となる処置方法では、典型的に超音波探触子に穿刺デバイスを保持するニードルガイドを装着し、超音波探触子と穿刺デバイスを同時に移動させながら処置が行われる。しかし、腫瘍の位置によっては、ニードルガイドを使用せず、穿刺デバイスと超音波探触子を別々に動かして処置する方が好ましい場合もある。このような処置方法では、穿刺デバイスと超音波探触子を別々に動かすため、ニードルガイドを使用する処置方法と比べて、超音波探触子を正しく配置するのがより困難となる。 In addition, in the treatment method that serves as the above countermeasure, a needle guide that holds the puncture device is typically attached to the ultrasound probe, and treatment is performed while simultaneously moving the ultrasound probe and the puncture device. However, depending on the position of the tumor, it may be preferable to move the puncture device and the ultrasonic probe separately without using the needle guide. In such a treatment method, since the puncture device and the ultrasonic probe are moved separately, it is more difficult to position the ultrasonic probe correctly compared to the treatment method using a needle guide.
 以上のように、超音波探触子を用いて注入針の向きや挙動を確認しながら腫瘍へアプローチする処置方法を実施するには、超音波探触子の生体表面に対する正しい配置位置を把握することが重要となる。しかし、特許文献1の技術では、超音波探触子の正しい配置位置を容易に把握することができず改善の余地がある。 As described above, in order to perform a treatment method that approaches the tumor while confirming the direction and behavior of the injection needle using an ultrasound probe, it is necessary to grasp the correct placement position of the ultrasound probe on the biological surface. is important. However, the technique of Patent Document 1 cannot easily grasp the correct arrangement position of the ultrasonic probe, and there is room for improvement.
 本発明の少なくとも一実施形態は、上述の事情に鑑みてなされたものであり、具体的には、生体内に挿入した注入針の挙動や患部に対する位置を超音波画像で確認する際の生体表面に対する超音波探触子の正しい配置位置を把握することができる送達デバイスを提供することにある。 At least one embodiment of the present invention has been made in view of the above circumstances. To provide a delivery device capable of ascertaining the correct arrangement position of an ultrasonic probe with respect to.
 本実施形態に係る送達デバイスは、生体表面から穿刺して生体内の患部に送達物を送達する送達デバイスであって、第1操作部と、内腔を有し、前記第1操作部の先端から長軸方向に沿って延在する外筒と、前記第1操作部に対して長軸方向に摺動可能に取り付けられる第2操作部と、前記外筒の内腔に進退可能に収納され、前記第2操作部の先端から長軸方向に沿って延在する注入針と、前記第1操作部と前記第2操作部の少なくとも一方に取り付けられ、前記注入針の中心軸を通る平面と重なるライン光を前記生体表面に照射する照射部と、を備える。 A delivery device according to this embodiment is a delivery device that punctures from the surface of a living body to deliver a delivery product to an affected area in the living body, and has a first operation section and a lumen, and a distal end of the first operation section. an outer cylinder extending along the longitudinal direction from the outer cylinder; a second operating part attached to the first operating part so as to be slidable in the longitudinal direction; , an injection needle extending along the longitudinal direction from the tip of the second operating portion; and a plane attached to at least one of the first operating portion and the second operating portion and passing through the central axis of the injection needle. an irradiating unit that irradiates the surface of the living body with overlapping line lights.
 本発明の少なくとも一実施形態によれば、生体内に挿入した注入針の挙動や患部に対する位置を超音波画像で確認する際の生体表面に対する超音波探触子の正しい配置位置を把握することができる。 According to at least one embodiment of the present invention, it is possible to grasp the correct arrangement position of the ultrasonic probe with respect to the surface of the living body when confirming the behavior of the injection needle inserted into the living body and the position with respect to the affected part with the ultrasonic image. can.
本実施形態に係る送達デバイスの概略側面図である。1 is a schematic side view of a delivery device according to this embodiment; FIG. 本実施形態に係る送達デバイスにおいて注入針の進出前の状態を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing a state before the injection needle is advanced in the delivery device according to the present embodiment; 本実施形態に係る送達デバイスにおいて注入針の進出後の状態を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing a state after the injection needle has advanced in the delivery device according to the present embodiment; 本実施形態に係る送達デバイスにおいて照射部からライン光を照射した状態を側方から見た概念図である。FIG. 4 is a conceptual diagram of the delivery device according to the present embodiment, viewed from the side, in which line light is emitted from the irradiation unit. 本実施形態に係る送達デバイスにおいて照射部からライン光を照射した状態を上方から見た概念図である。FIG. 4 is a conceptual diagram of the delivery device according to the present embodiment, viewed from above, in which line light is emitted from the irradiation unit. 変形例1の送達デバイスの形態を示す部分断面図である。FIG. 10 is a partial cross-sectional view showing the configuration of the delivery device of Modification 1; 変形例1の送達デバイスの他の形態を示す部分断面図である。FIG. 11 is a partial cross-sectional view showing another form of the delivery device of Modification 1; 変形例2の送達デバイスの形態を示す部分断面図である。FIG. 11 is a partial cross-sectional view showing the configuration of the delivery device of Modification 2; 変形例2の送達デバイスの使用例を示す概略構成図である。FIG. 11 is a schematic configuration diagram showing a usage example of the delivery device of Modification 2; 変形例2の送達デバイスの使用例を示す概略構成図である。FIG. 11 is a schematic configuration diagram showing a usage example of the delivery device of Modification 2; 変形例3の送達デバイスの形態を示す概略側面図である。FIG. 11 is a schematic side view showing the configuration of the delivery device of Modification 3; 変形例3の送達デバイスの他の形態を示す部分断面図である。FIG. 11 is a partial cross-sectional view showing another form of the delivery device of Modification 3; 変形例4の送達デバイスにおいて第2操作部の回転前の状態を示す概略側面図である。FIG. 20 is a schematic side view showing a state before rotation of the second operating portion in the delivery device of Modified Example 4; 変形例4の送達デバイスにおいて第2操作部の回転後の状態を示す概略側面図である。FIG. 20 is a schematic side view showing a state after rotation of the second operating portion in the delivery device of Modification 4; 変形例5の送達デバイスにおいて超音波探触子を正しい姿勢で配置した際の概念図である。FIG. 12 is a conceptual diagram when the ultrasonic probe is arranged in the correct posture in the delivery device of Modification 5; 変形例5の送達デバイスにおいて超音波探触子を誤った姿勢で配置した際の概念図である。FIG. 12 is a conceptual diagram when the ultrasonic probe is arranged in a wrong posture in the delivery device of Modification 5; 変形例6の送達デバイスにおいて一の注入針を進出させる前の状態を示す概略側面図である。FIG. 20 is a schematic side view showing a state before one injection needle is advanced in the delivery device of Modification 6; 変形例6の送達デバイスにおいて一の注入針を進出させた後の状態を示す概略側面図である。FIG. 20 is a schematic side view showing a state after advancing one injection needle in the delivery device of Modification 6; 変形例7の送達デバイスの概略断面図である。FIG. 11 is a schematic cross-sectional view of a delivery device of Modification 7;
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。ここで示す実施形態は、本発明の技術的思想を具体化するために例示するものであって、本発明を限定するものではない。また、本発明の要旨を逸脱しない範囲で当業者などにより考え得る実施可能な他の形態、実施例および運用技術などは全て本発明の範囲、要旨に含まれると共に、請求の範囲に記載された発明とその均等の範囲に含まれる。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. The embodiment shown here is an example for embodying the technical idea of the present invention, and does not limit the present invention. In addition, other practicable modes, embodiments, operation techniques, etc. that can be conceived by those skilled in the art without departing from the gist of the present invention are all included in the scope and gist of the present invention, and are described in the scope of claims. Included within the scope of the invention and its equivalents.
 さらに、本明細書に添付する図面は、図示と理解のしやすさの便宜上、適宜縮尺、縦横の寸法比、形状などについて、実物から変更し模式的に表現される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Furthermore, the drawings attached to this specification may be represented schematically by appropriately changing the scale, length-to-width ratio, shape, etc. from the actual thing for the convenience of illustration and ease of understanding. and does not limit the interpretation of the present invention.
 また、送達デバイス100が生体内に挿入される側を「先端側」とし、先端側と反対側(術者が把持する側)を「基端側」とする。また、先端(最先端)から長軸方向(送達デバイス100の中心軸Zの延在方向)に沿う一定の範囲を含む部分を「先端部」とし、基端(最基端)から長軸方向における一定の範囲を含む部分を「基端部」とする。 In addition, the side where the delivery device 100 is inserted into the living body is defined as the "distal side", and the side opposite to the distal side (the side gripped by the operator) is defined as the "base end side". In addition, a portion including a certain range along the longitudinal direction (extending direction of the central axis Z of the delivery device 100) from the distal end (most proximal end) is referred to as a “distal portion”, and from the proximal end (most proximal end) in the longitudinal direction. Let the part including the fixed range in be a "base end part."
 なお、以下の説明において、「第1」、「第2」のような序数詞を付して説明する場合は、特に言及しない限り、便宜上用いるものであって何らかの順序を規定するものではない。 It should be noted that, in the following description, when describing with ordinal numbers such as "first" and "second", unless otherwise specified, it is used for convenience and does not prescribe any order.
 <構成>
 図1、図2A、図2Bに示すように、送達デバイス100は、概説すると、第1操作部10と、第2操作部20と、外筒30と、注入針40と、照射部50と、を備える。送達デバイス100は、生体に挿入した状態で注入針40を介して生体内の患部に所定の送達物(薬剤や医療デバイス)を送達するためのものである。
<Configuration>
As shown in FIGS. 1, 2A, and 2B, the delivery device 100 generally includes a first operating section 10, a second operating section 20, an outer cylinder 30, an injection needle 40, an irradiation section 50, Prepare. The delivery device 100 is for delivering a predetermined delivery product (medicine or medical device) to an affected area in the living body through the injection needle 40 while being inserted into the living body.
 第1操作部10、第2操作部20、外筒30の中心軸A、および注入針40の中心軸Bは、いずれも送達デバイス100の中心軸Zと一致する(図2Aを参照)。中心軸Zは、生体表面Sに対して送達デバイス100を進退させる方向、第2操作部20を押引き操作する方向と一致する。なお、注入針40は、外筒30から進出した際に後述する湾曲部44により湾曲形状に変形するため、中心軸Zも注入針40の湾曲方向に沿って湾曲する(図2Bを参照)。 The central axis A of the first operating section 10, the second operating section 20, the outer cylinder 30, and the central axis B of the injection needle 40 all coincide with the central axis Z of the delivery device 100 (see FIG. 2A). The central axis Z coincides with the direction in which the delivery device 100 advances and retreats with respect to the biological surface S and the direction in which the second operation section 20 is pushed and pulled. In addition, since the injection needle 40 is deformed into a curved shape by a bending portion 44 described later when it advances from the outer cylinder 30, the central axis Z is also curved along the bending direction of the injection needle 40 (see FIG. 2B).
 第1操作部10は、図2Aに示すように、内腔11を有する中空の筒状部材で構成され、先端に外筒30が取り付けられる。第1操作部10の内腔11は、外筒30の内腔31と連通する。第1操作部10の内部には、第2操作部20が長軸方向に沿って摺動可能に収納される。第1操作部10の外周面には、照射部50が配置される。 As shown in FIG. 2A, the first operating section 10 is composed of a hollow cylindrical member having a lumen 11, and an outer cylinder 30 is attached to the tip. A lumen 11 of the first operating portion 10 communicates with a lumen 31 of the outer cylinder 30 . A second operating portion 20 is housed inside the first operating portion 10 so as to be slidable along the longitudinal direction. An irradiation unit 50 is arranged on the outer peripheral surface of the first operation unit 10 .
 第2操作部20は、図2Aに示すように、内腔21を有する中空の筒状部材で構成され、先端に注入針40が取り付けられる。第2操作部20の内腔21は、注入針40の内腔41と連通する。第2操作部20は、第1操作部10の内腔11に、長軸方向に沿って摺動可能に収納される。そのため、注入針40は、第2操作部20の押引き操作により、長軸方向に沿って外筒30から進退することができる。 As shown in FIG. 2A, the second operation part 20 is composed of a hollow cylindrical member having a lumen 21, and an injection needle 40 is attached to the tip. A lumen 21 of the second operating portion 20 communicates with a lumen 41 of the injection needle 40 . The second operating portion 20 is housed in the lumen 11 of the first operating portion 10 so as to be slidable along the longitudinal direction. Therefore, the injection needle 40 can be advanced and retracted from the outer cylinder 30 along the long axis direction by pushing and pulling the second operation portion 20 .
 第2操作部20の先端位置と、第1操作部10の内腔11の先端側内壁との距離は、注入針40の進出量に応じて設定される。すなわち、第2操作部20は、図2Aに示すように、摺動前の状態では、第2操作部20の先端位置と第1操作部10の内腔11の先端側内壁とが少なくとも前記進出量の分だけ離隔している。また、第2操作部20は、図2Bに示すように、摺動後の状態では前記進出量の分だけ先端側へ摺動し、第2操作部20の先端が第1操作部10の内腔11の先端側内壁と近接した状態となる。この状態において、注入針40は、外筒30から進出する。 The distance between the tip position of the second operation part 20 and the tip-side inner wall of the lumen 11 of the first operation part 10 is set according to the advance amount of the injection needle 40 . That is, as shown in FIG. 2A, in the state before the second operation part 20 slides, the distal end position of the second operation part 20 and the distal end side inner wall of the lumen 11 of the first operation part 10 are at least the advancing position. separated by an amount. Further, as shown in FIG. 2B , the second operating portion 20 slides toward the distal end side by the amount of advance after sliding, and the tip of the second operating portion 20 slides inside the first operating portion 10 . It will be in close proximity to the distal inner wall of the cavity 11 . In this state, the injection needle 40 advances from the outer cylinder 30 .
 また、第2操作部20は、図2Aに示すように、基端側に押引部22と、ハブ部23と、を備える。 In addition, as shown in FIG. 2A, the second operating section 20 includes a push-pull section 22 and a hub section 23 on the proximal end side.
 押引部22は、外筒30から注入針40を進退させる押引き操作を行うときに操作される。術者は、押引部22を押し操作(先端側への摺動)することで、外筒30から注入針40を進出できる。また、術者は、押引部22を引き操作(基端側への摺動)することで、外筒30から進出した注入針40を外筒30内に収納できる。 The push/pull part 22 is operated when performing a push/pull operation for advancing and retracting the injection needle 40 from the outer cylinder 30 . The operator can advance the injection needle 40 from the outer tube 30 by pushing (sliding toward the distal end side) the push/pull portion 22 . In addition, the operator can retract the injection needle 40 advanced from the outer tube 30 into the outer tube 30 by pulling the push/pull portion 22 (sliding toward the proximal side).
 ハブ部23は、基端側に形成された開口部と連通する内腔を有する。ハブ部23の内腔は、第2操作部20の内腔21を介して注入針40の内腔41と連通する。そのため、注入針40の内腔41は、ハブ部23を介して外部と連通可能となる。ハブ部23は、注入針40に送達物を導入するための導入口として機能する。そのため、ハブ部23は、例えば薬剤投与のためのシリンジの筒先やチューブが装着されたり、医療デバイスが挿入されたりする。なお、本実施形態において、ハブ部23は、第2操作部20の基端側の押引部22に設けた構成であるが、第2操作部20の側面側に設けてもよい。 The hub portion 23 has a lumen that communicates with an opening formed on the proximal side. The lumen of hub portion 23 communicates with lumen 41 of injection needle 40 via lumen 21 of second operation portion 20 . Therefore, lumen 41 of injection needle 40 can communicate with the outside via hub portion 23 . Hub portion 23 functions as an introduction port for introducing a delivery product into injection needle 40 . For this reason, the hub portion 23 is used to attach, for example, a tip of a syringe or a tube for drug administration, or to insert a medical device. In this embodiment, the hub portion 23 is provided on the push/pull portion 22 on the base end side of the second operation portion 20 , but may be provided on the side surface side of the second operation portion 20 .
 なお、第2操作部20の外周面には、注入針40の湾曲方向が視覚または触覚などで確認可能なマーカー部を設けてもよい。これにより、術者は、事前に注入針40の湾曲方向を把握した状態で、送達デバイス100を生体内に挿入することができる。また、第2操作部20は、マーカー部に加えて、外周面に注入針40の外筒30からの進出長さ(穿刺長さ)や湾曲方向への湾曲度合い(針本体部42の中心軸B1から穿刺端43bまでの離隔距離)が視覚または触覚などで確認可能なスケール部を設けるのが好ましい。これにより、術者は、送達デバイス100を生体内に挿入した状態で注入針40の患部に対する穿刺長さや、湾曲方向への湾曲度合いを把握することができる。 Note that the outer peripheral surface of the second operation portion 20 may be provided with a marker portion that allows the bending direction of the injection needle 40 to be visually or tactilely confirmed. This allows the operator to insert the delivery device 100 into the living body while grasping the bending direction of the injection needle 40 in advance. In addition to the marker portion, the second operation portion 20 has, on its outer peripheral surface, the extension length (puncture length) of the injection needle 40 from the outer cylinder 30 and the degree of curvature in the bending direction (the central axis of the needle body portion 42). It is preferable to provide a scale portion that allows the distance from B1 to the puncture end 43b to be visually or tactilely confirmed. This allows the operator to grasp the puncture length of the injection needle 40 with respect to the affected area and the degree of bending in the bending direction while the delivery device 100 is inserted into the living body.
 また、第2操作部20は、注入針40の穿刺長を所定の長さに制限するための穿刺長制限機構(ストッパー)を設けてもよい。これにより、術者は、注入針40を患部に穿刺し過ぎることがなく、患部に対して適切な穿刺長で穿刺することができる。 Also, the second operation unit 20 may be provided with a puncture length limiting mechanism (stopper) for limiting the puncture length of the injection needle 40 to a predetermined length. As a result, the operator can puncture the affected area with an appropriate puncture length without excessively puncturing the affected area with the injection needle 40 .
 外筒30は、図2Aに示すように、先端から基端にかけて連通する内腔31を有する中空の筒状部材で構成され、第1操作部10の先端から長軸方向に沿って延在する。外筒30の内腔31は、先端側は先端開口部32と連通し、基端側は基端開口部33と連通する。基端開口部33は、第1操作部10の内腔11と連通する。外筒30の内腔31には、注入針40が収納される。 As shown in FIG. 2A, the outer cylinder 30 is composed of a hollow tubular member having a lumen 31 that communicates from the distal end to the proximal end, and extends along the longitudinal direction from the distal end of the first operation section 10. . A lumen 31 of the outer cylinder 30 communicates with a distal opening 32 on the distal side and communicates with a proximal opening 33 on the proximal side. The proximal end opening 33 communicates with the lumen 11 of the first operating section 10 . An injection needle 40 is housed in the lumen 31 of the outer cylinder 30 .
 外筒30の構成材料は、医療分野で使用可能な生体に非侵襲または低侵襲な材料(樹脂材料や金属材料など)が適用可能であるが、生体に挿入した際の撓みを抑制するため、比較的剛性の高い材料(ステンレス、チタン合金、CoCr合金など)を採用するのが好ましい。 As the constituent material of the outer cylinder 30, a non-invasive or minimally invasive material (resin material, metal material, etc.) that can be used in the medical field can be applied. It is preferable to adopt a material with relatively high rigidity (stainless steel, titanium alloy, CoCr alloy, etc.).
 外筒30は、先行して生体内に導入されたカニューレなどの導入デバイスに沿って挿入される。また、外筒30は、先端を鋭利な針形状とした場合、導入デバイスを使用せず、生体表面Sから穿刺して患部まで挿入することができる。 The outer cylinder 30 is inserted along an introduction device such as a cannula that has been previously introduced into the living body. In addition, when the outer cylinder 30 has a sharp needle-like tip, it can be inserted into the affected part by puncturing from the living body surface S without using an introduction device.
 なお、外筒30は、手技中に生体表面Sで位置固定するための固定部材を外周面に設けてもよい。これにより、術者は、手技中に外筒30が位置固定され、患部の目的とする箇所に対して注入針40を正確に穿刺することができる。 Note that the outer cylinder 30 may be provided with a fixing member on its outer peripheral surface for position fixing on the living body surface S during the procedure. As a result, the operator can fix the position of the outer tube 30 during the procedure and accurately puncture the injection needle 40 into the target site of the affected area.
 注入針40は、図2Aに示すように、内腔41を有する中空の筒状部材で構成され、第2操作部20の先端から長軸方向に沿って延在する。注入針40は、針本体部42と、針先端部43と、湾曲部44と、を備える。針本体部42、針先端部43は、内腔41を通じて連通する。 As shown in FIG. 2A, the injection needle 40 is composed of a hollow cylindrical member having a lumen 41, and extends from the tip of the second operating portion 20 along the longitudinal direction. The injection needle 40 includes a needle body portion 42 , a needle tip portion 43 and a curved portion 44 . The needle body portion 42 and the needle tip portion 43 communicate with each other through the lumen 41 .
 針本体部42は、中空の筒状部材で構成され、基端が第2操作部20の先端と連結している。そのため、注入針40の内腔41は、第2操作部20の内腔21と連通する。針本体部42の先端は、針先端部43の基端と連結している。 The needle main body portion 42 is composed of a hollow tubular member, and the proximal end thereof is connected to the distal end of the second operating portion 20 . Therefore, lumen 41 of injection needle 40 communicates with lumen 21 of second operation section 20 . The distal end of the needle main body 42 is connected to the proximal end of the needle distal end portion 43 .
 針先端部43は、先端に開口部43aを有する鋭利な穿刺端43bを有する。針先端部43の少なくとも一部は、第2操作部20の摺動に伴い、外筒30から生体内へと進出する。また、針先端部43は、湾曲部44を有し、少なくとも一部が側方に向かって湾曲した形状に変形可能に構成される。 The needle tip 43 has a sharp puncture end 43b with an opening 43a at the tip. At least part of the needle tip portion 43 advances from the outer cylinder 30 into the living body as the second operation portion 20 slides. Further, the needle tip portion 43 has a curved portion 44 and is configured to be deformable into a shape in which at least a portion thereof is curved sideways.
 湾曲部44は、針先端部43の少なくとも一部または略全体を構成し、針本体部42の先端から針先端部43の開口部43aに向かうに連れて徐々に外筒30の中心軸A(針本体部42の中心軸B1)から遠ざかる方向(外筒30の中心軸Aに対する放射方向)に曲がった形状を有する。湾曲部44は、図2Aに示すように、一例として針先端部43と同領域に設定されてもよい。 The curved portion 44 constitutes at least a portion or substantially the entirety of the needle tip portion 43, and gradually extends from the tip of the needle body portion 42 toward the opening 43a of the needle tip portion 43 toward the central axis A ( It has a shape bent in a direction (radial direction with respect to the central axis A of the outer cylinder 30) away from the central axis B1) of the needle main body 42). As an example, the curved portion 44 may be set in the same region as the needle tip portion 43, as shown in FIG. 2A.
 湾曲部44は、図2Bに示すように、針先端部43が外筒30から進出したときに湾曲形状が維持される。また、湾曲部44は、外筒30よりも剛性が低いため、針先端部43が外筒30に収納された状態では、図2Aに示すように、外筒30の内腔31と当接することにより、湾曲形状が略真直状態に矯正される。 The curved portion 44 maintains its curved shape when the needle tip portion 43 advances from the outer cylinder 30, as shown in FIG. 2B. In addition, since the bending portion 44 has a lower rigidity than the outer cylinder 30, when the needle tip portion 43 is accommodated in the outer cylinder 30, as shown in FIG. Thereby, the curved shape is corrected to a substantially straight state.
 湾曲部44は、予め湾曲形状をなす構成の他、外筒30の先端開口部32から進出する針先端部43を斜め方向(針本体部42の中心軸B1から遠ざかる方向)にガイドするガイド部材(図示せず)によって湾曲する構成など、外筒30から進出した際に針先端部43を湾曲する構成であればよい。 The curved portion 44 is configured to have a curved shape in advance, and is also a guide member that guides the needle distal end portion 43 extending from the distal end opening portion 32 of the outer cylinder 30 in an oblique direction (a direction away from the central axis B1 of the needle main body portion 42). Any configuration that bends the needle tip portion 43 when it advances from the outer tube 30 , such as a configuration that curves by a needle (not shown), may be used.
 なお、注入針40は、穿刺端43bに開口部43aを有する構成としたが、穿刺端43bの開口部43aを封止して針先端部43の側面に複数の孔を設けた構成としてもよい。 Although the injection needle 40 has the opening 43a at the puncture end 43b, the injection needle 40 may have a configuration in which the opening 43a of the puncture end 43b is sealed and a plurality of holes are provided on the side surface of the needle tip portion 43. .
 注入針40の構成材料としては、医療分野で使用される公知のシリンジに装着される穿刺針などに適用される材料であれば特に制限はなく、例えばステンレスやニチノールのような形状記憶合金などが適用可能である。 The material of the injection needle 40 is not particularly limited as long as it is a material that is applied to a puncture needle that is attached to a known syringe used in the medical field. Applicable.
 照射部50は、第1操作部10の外周面に取り付けられる。照射部50は、所定波長のライン状の光線(以下、「ライン光L」と称する)を照射する。照射部50は、ライン光Lが照射可能な光源であれば特に限定されないが、3次元的な勾配を有する生体表面Sに対してライン光Lを直線的に照射可能とするため、直進性の高いレーザ光源を用いるのが好ましい。また、ライン光Lは、生体表面Sに照射するため、補色となる緑系の色調を有するのが好ましい。 The irradiation section 50 is attached to the outer peripheral surface of the first operation section 10 . The irradiating unit 50 irradiates a linear beam of light having a predetermined wavelength (hereinafter referred to as “line light L”). The irradiation unit 50 is not particularly limited as long as it is a light source that can irradiate the line light L. However, in order to be able to linearly irradiate the line light L onto the living body surface S having a three-dimensional gradient, it is possible to It is preferred to use a high laser light source. Further, since the line light L irradiates the living body surface S, it is preferable that the line light L has a greenish color tone as a complementary color.
 照射部50は、注入針40の中心軸B(詳細には、注入針40の針本体部42の中心軸B1および針先端部43の中心軸B2と一致する内腔41の中心軸)を通る平面と重なるようにライン光Lを照射する。照射部50から照射されたライン光Lは、生体表面Sに照射される。ライン光Lは、図3A、図3Bに示すように、注入針40の中心軸Bを通る平面と重なるように照射されるため、生体内に挿入された注入針40の針先端部43の湾曲方向側から照射される。そのため、術者は、超音波探触子200の送波面210をライン光Lに沿って配置すれば、送波面210から照射される超音波Uの照射領域内に、少なくとも外筒30から進出した注入針40の針先端部43が存在することとなる。したがって、術者は、外筒30から進出した針先端部43の全容が映し出された超音波画像を視認することで、患部の目的とする位置に送達物を送達することができる。 The irradiation unit 50 passes through the central axis B of the injection needle 40 (more specifically, the central axis of the lumen 41 coincides with the central axis B1 of the needle main body 42 and the central axis B2 of the needle tip portion 43 of the injection needle 40). Line light L is applied so as to overlap the plane. The living body surface S is irradiated with the line light L emitted from the irradiation unit 50 . As shown in FIGS. 3A and 3B, the line light L is irradiated so as to overlap the plane passing through the central axis B of the injection needle 40, so that the needle tip portion 43 of the injection needle 40 inserted into the living body is curved. Illuminated from the direction side. Therefore, if the operator arranges the wave transmission surface 210 of the ultrasonic probe 200 along the line light L, the operator can enter the irradiation area of the ultrasonic waves U emitted from the wave transmission surface 210 at least from the outer cylinder 30. Needle tip 43 of infusion needle 40 will be present. Therefore, the operator can deliver the delivery product to the target position of the affected area by viewing the ultrasonic image showing the entirety of the needle tip 43 advanced from the outer cylinder 30 .
 照射部50は、ライン光Lを所定の照射角度(好ましくは30度以上、より好ましくは45度以上)で照射するように、照射口に拡散板や反射板などの導光部材を備えてもよい。これにより、照射部50は、超音波探触子200を生体表面Sに配置する際に、位置合わせを行うのに十分な長さのライン光Lを生体表面Sに照射することができる。 The irradiation unit 50 may include a light guide member such as a diffusion plate or a reflection plate at the irradiation port so as to irradiate the line light L at a predetermined irradiation angle (preferably 30 degrees or more, more preferably 45 degrees or more). good. As a result, the irradiating unit 50 can irradiate the surface of the living body S with the line light L having a length sufficient for alignment when the ultrasound probe 200 is arranged on the surface of the living body S.
 <処置方法>
 次に、本実施形態に係る送達デバイス100を用いた処置方法について説明する。以下の説明では、送達物として患部の腫瘍を治療するための薬剤(液剤)を腫瘍に対して3箇所投与する処置の一例を示す。
<Treatment method>
Next, a treatment method using the delivery device 100 according to this embodiment will be described. The following description shows an example of a treatment in which a drug (liquid drug) for treating a tumor in an affected area is administered to the tumor at three sites as a delivered product.
 術者は、患部の腫瘍に対して投与する薬剤を用意し、薬剤を注入するシリンジおよび注入針40をプライミングする。術者は、超音波探触子200を操作して超音波診断装置で患者の腫瘍の中心位置を確認して生体表面Sから腫瘍への穿刺経路を決定する。 The operator prepares a drug to be administered to the tumor in the affected area, and primes the syringe and injection needle 40 for injecting the drug. The operator operates the ultrasonic probe 200 to confirm the central position of the patient's tumor with the ultrasonic diagnostic apparatus, and determines the puncture route from the biological surface S to the tumor.
 術者は、穿刺部位の消毒と局部麻酔を行った後、エコーガイド下で送達デバイス100の外筒30を腫瘍に向けて挿入(穿刺)する。このとき、術者は、超音波探触子200を、腫瘍を描出するように体表面に位置させた状態で、送達デバイス100の外筒30の先端が腫瘍の外表面に到達する位置まで外筒30を挿入する。この際、照射部50から照射されたライン光Lは、生体表面Sに照射される。このライン光Lが超音波探触子200に平行に照射されるように穿刺していくことにより、外筒30から進出した注入針40の針先端部43を超音波画像上に映し出すことができる。 After disinfecting the puncture site and applying local anesthesia, the operator inserts (punctures) the outer cylinder 30 of the delivery device 100 toward the tumor under echo guidance. At this time, the operator positions the ultrasonic probe 200 on the body surface so as to visualize the tumor, and extends the distal end of the outer cylinder 30 of the delivery device 100 to a position where it reaches the outer surface of the tumor. Insert barrel 30 . At this time, the living body surface S is irradiated with the line light L emitted from the irradiation unit 50 . By piercing the ultrasound probe 200 so that the line light L is irradiated in parallel with the ultrasound probe 200, the needle tip portion 43 of the injection needle 40 advanced from the outer cylinder 30 can be displayed on the ultrasound image. .
 また、術者は、注入針40を穿刺する際、骨や肺の空気による超音波Uへの干渉や超音波探触子200の視野角の影響で腫瘍を確認できない方向があるため、注入針40を腫瘍に穿刺する前に、腫瘍内への穿刺方向をオリエンテーションすることもできる。術者は、照射部50から照射されたライン光Lを基準に超音波探触子200の配置しながら、エコーで確認可能な穿刺方向を複数ヶ所決定し、生体表面Sに印を付しておけば、手技をスムーズに進めることができる。 In addition, when the operator punctures the injection needle 40, there are directions in which the tumor cannot be confirmed due to interference with the ultrasonic waves U by air in the bones and lungs and the viewing angle of the ultrasonic probe 200. The direction of puncture into the tumor can also be oriented prior to puncturing 40 into the tumor. While positioning the ultrasonic probe 200 based on the line light L emitted from the irradiation unit 50, the operator determines a plurality of puncture directions that can be confirmed by echo, and marks the biological surface S. If you do, you can proceed with the procedure smoothly.
 術者は、外筒30の先端が腫瘍の外表面に達したことを確認すると、腫瘍の界面を確認しながら押引部22を押し操作し、注入針40の針先端部43を外筒30から進出させて腫瘍に穿刺する。術者は、腫瘍に注入針40を穿刺した後、シリンジまたはシリンジポンプを操作して薬剤を投与する。これにより、1回目の投与が終了し、送達物である薬剤は、患部となる腫瘍に送達される。 After confirming that the tip of the outer tube 30 has reached the outer surface of the tumor, the operator pushes the push/pull unit 22 while checking the interface of the tumor, and moves the needle tip 43 of the injection needle 40 to the outer tube 30 . advance from and puncture the tumor. After puncturing the tumor with the injection needle 40, the operator operates the syringe or syringe pump to administer the drug. As a result, the first administration is completed, and the drug, which is the product to be delivered, is delivered to the affected tumor.
 術者は、押引部22を引き操作して注入針40を外筒30内に退避させる。術者は、ニードルガイドから送達デバイス100を取り外し、送達デバイス100を所定方向に回転させ、注入針40の湾曲方向を2箇所目の穿刺箇所へ移動させる。この際、照射部50から照射されたライン光Lは、デバイスの回転に追従し、注入針40の湾曲方向と対応する方向に照射される。したがって、ライン光Lは、1箇所目の穿刺向きとは異なる軌跡で照射される。術者は、生体表面Sに照射されたライン光Lを基準に2箇所目の穿刺方向に対する超音波探触子200の配置位置を位置決めする。超音波探触子200をライン光Lに沿って配置することで、術者は、注入針40の大凡の挙動が把握可能となる。また、術者は、必要に応じてより正確な超音波画像を得るため、超音波探触子200の送波面210をライン光Lに沿わせた状態で前後方向に傾倒させながら注入針40の挙動がより精細に把握可能な姿勢を見つけることもできる。 The operator pulls the push/pull part 22 to retract the injection needle 40 into the outer cylinder 30 . The operator removes the delivery device 100 from the needle guide, rotates the delivery device 100 in a predetermined direction, and moves the bending direction of the injection needle 40 to the second puncture site. At this time, the line light L emitted from the irradiation unit 50 follows the rotation of the device and is emitted in a direction corresponding to the bending direction of the injection needle 40 . Therefore, the line light L is irradiated with a trajectory different from the orientation of the first puncture. The operator positions the arrangement position of the ultrasonic probe 200 in the second puncture direction based on the line light L irradiated on the living body surface S. FIG. By arranging the ultrasonic probe 200 along the line light L, the operator can roughly grasp the behavior of the injection needle 40 . In addition, in order to obtain a more accurate ultrasound image as necessary, the operator tilts the injection needle 40 forward and backward with the wave transmission surface 210 of the ultrasound probe 200 along the line light L. It is also possible to find a posture in which the behavior can be grasped more precisely.
 術者は、腫瘍の界面を確認しながら押引部22を押し操作し、注入針40の針先端部43を外筒30から進出させて腫瘍に穿刺する。術者は、腫瘍に注入針40を穿刺した後、シリンジまたはシリンジポンプを操作して薬剤を投与する。これにより、2回目の投与が終了する。送達物である薬剤は、患部となる腫瘍に対し1回目と異なる箇所に送達される。 The operator presses the push-pull part 22 while confirming the interface of the tumor, and advances the needle tip part 43 of the injection needle 40 from the outer cylinder 30 to puncture the tumor. After puncturing the tumor with the injection needle 40, the operator operates the syringe or syringe pump to administer the drug. This completes the second administration. The drug, which is the product to be delivered, is delivered to a site different from the first delivery to the affected tumor.
 術者は、押引部22を引き操作して注入針40を外筒30内に退避させる。この際、注入針40を退避させる前に、投与によって高まった投与経路内の圧力を除くため、投与経路中の三方活栓を開放するなどの操作を行ってもよい。術者は、2箇所目の穿刺と同様に、送達デバイス100を所定方向に回転させ、注入針40の湾曲方向を3箇所目の穿刺箇所へ移動させる。この際、照射部50から照射されたライン光Lは、デバイスの回転に追従し、注入針40の湾曲方向と対応する方向に照射される。したがって、ライン光Lは、1箇所目、2箇所目の穿刺向きとは異なる軌跡で照射される。術者は、生体表面Sに照射されたライン光Lを基準に3箇所目の穿刺方向に対する超音波探触子200の配置位置を位置決めする。 The operator pulls the push/pull part 22 to retract the injection needle 40 into the outer cylinder 30 . At this time, before withdrawing the injection needle 40, an operation such as opening a three-way stopcock in the administration route may be performed in order to remove the pressure in the administration route increased by the administration. As with the second puncture, the operator rotates delivery device 100 in a predetermined direction to move injection needle 40 in the curved direction to the third puncture site. At this time, the line light L emitted from the irradiation unit 50 follows the rotation of the device and is emitted in a direction corresponding to the bending direction of the injection needle 40 . Therefore, the line light L is irradiated with a trajectory different from the directions of the first and second punctures. The operator positions the arrangement position of the ultrasonic probe 200 with respect to the third puncture direction with reference to the line light L irradiated on the living body surface S.
 術者は、腫瘍の界面を確認しながら押引部22を押し操作し、注入針40の針先端部43を外筒30から進出させて腫瘍に穿刺する。術者は、腫瘍に注入針40を穿刺した後、シリンジまたはシリンジポンプを操作して薬剤を投与する。これにより、3回目の投与が終了する。送達物である薬剤は、患部となる腫瘍に対し1回目や2回目と異なる箇所に送達される。 The operator presses the push-pull part 22 while confirming the interface of the tumor, and advances the needle tip part 43 of the injection needle 40 from the outer cylinder 30 to puncture the tumor. After puncturing the tumor with the injection needle 40, the operator operates the syringe or syringe pump to administer the drug. This completes the third administration. The drug, which is the product to be delivered, is delivered to a site different from the first and second delivery to the affected tumor.
 その後、術者は、押引部22を引き操作して注入針40を外筒30内に退避させる。この後、送達デバイス100を生体から抜去して手技を終了する。 After that, the operator pulls the push/pull part 22 to retract the injection needle 40 into the outer cylinder 30 . After that, the delivery device 100 is removed from the living body to complete the procedure.
 [変形例]
 なお、本発明は上記実施形態に限定されるものではなく、例えば以下に示すように使用環境などに応じて適宜変更して実施することもできる。また、以下の変形例を本発明の要旨を逸脱しない範囲の中で任意に組み合わせて実施することもできる。以下に説明する変形例1~変形例7は、前述した実施形態と同一の機能を有する構成要件について同一の符号を付して詳細な説明を省略し、特に言及しない構成、部材、および使用方法などについては、前述した実施形態と同様のものとしてよい。
[Modification]
It should be noted that the present invention is not limited to the above-described embodiments, and can be implemented with appropriate modifications according to the usage environment and the like, for example, as shown below. Also, the following modifications can be arbitrarily combined within the scope of the present invention. In Modifications 1 to 7 described below, constituent elements having the same functions as those of the above-described embodiment are denoted by the same reference numerals, detailed descriptions are omitted, and configurations, members, and methods of use that are not particularly mentioned are omitted. etc. may be the same as in the above-described embodiment.
 <変形例1>
 変形例1は、図4A、図4Bに示すように、外筒30を第1操作部10の長軸を中心に回転可能に取り付ける構成である。
<Modification 1>
Modification 1 is a configuration in which the outer cylinder 30 is attached so as to be rotatable about the long axis of the first operating portion 10, as shown in FIGS. 4A and 4B.
 変形例1において、外筒30は、図4Aに示すように、外筒30の基端側の外周面の全周に亘って鍔部34が設けられる。第1操作部10の先端には、鍔部34を回転可能に保持する環状の支持部12が設けられる。 In Modification 1, as shown in FIG. 4A, the outer cylinder 30 is provided with a collar portion 34 along the entire circumference of the outer peripheral surface on the proximal end side of the outer cylinder 30 . An annular support portion 12 that rotatably holds the collar portion 34 is provided at the tip of the first operation portion 10 .
 変形例1の他の形態において、外筒30は、図4Bに示すように、外筒30の基端側から第1操作部10の外周面に沿って延在し、その先端が第1操作部10の外周面に形成された環状凹溝13と摺動可能に係合する延在部35が設けられる。 In another form of Modification 1, as shown in FIG. 4B, the outer cylinder 30 extends from the base end side of the outer cylinder 30 along the outer peripheral surface of the first operating portion 10, and the distal end thereof is the first operating portion. An extension 35 is provided that slidably engages an annular groove 13 formed in the outer peripheral surface of portion 10 .
 変形例1の送達デバイス100によれば、外筒30を第1操作部10に対して回転可能に取り付けることで、注入針40を回転させる際、外筒30は連れて回転せず、挿入した状態(挿入姿勢)が維持される。そのため、変形例1では、外筒30が回転することで生じ得る周囲の生体組織との摩擦による損傷が防止される。 According to the delivery device 100 of Modified Example 1, by rotatably attaching the outer cylinder 30 to the first operation section 10, when the injection needle 40 is rotated, the outer cylinder 30 does not rotate with the injection needle 40 and is inserted. The state (insertion posture) is maintained. Therefore, in Modification 1, damage due to friction with the surrounding living tissue that may occur due to rotation of the outer cylinder 30 is prevented.
 <変形例2>
 変形例2は、図5、図6A、図6Bに示すように、照射部50を2つ備えた構成であり、その配置位置に特徴を有する。
<Modification 2>
As shown in FIGS. 5, 6A, and 6B, Modification 2 has two irradiating units 50, and is characterized by its arrangement position.
 変形例2の送達デバイス100は、針先端部43の湾曲方向側から注入針40の中心軸Bに沿ってライン光L1を照射可能な第1照射位置と、第1操作部10の外周面において第1照射位置と径方向で対向する位置であって針先端部43の湾曲方向側と反対側から注入針40の中心軸Bに沿ってライン光L2を照射可能な第2照射位置にそれぞれ配置される構成となる。第1照射位置と、第2照射位置は、共に注入針40の針本体部42および針先端部43を通る平面と重なるようにライン光Lが照射可能な位置となる。 The delivery device 100 of Modification 2 has a first irradiation position where the line light L1 can be irradiated along the central axis B of the injection needle 40 from the bending direction side of the needle tip portion 43, and the outer peripheral surface of the first operation portion 10. Arranged at a second irradiation position where the line light L2 can be irradiated along the central axis B of the injection needle 40 from the side opposite to the bending direction side of the needle tip portion 43, which is a position facing the first irradiation position in the radial direction. It is configured to be Both the first irradiation position and the second irradiation position are positions where the line light L can be irradiated so as to overlap the plane passing through the needle main body 42 and the needle tip 43 of the injection needle 40 .
 変形例2の送達デバイス100は、注入針40の針先端部43の湾曲方向および湾曲方向の反対側の2方向へライン光L1およびライン光L2を照射することができる。そのため、術者は、送達デバイス100を生体内に挿入した際、図6Aに示すように第1照射位置から照射したライン光L1に沿って超音波探触子200を生体表面Sに配置する。また、術者は、生体内の骨や肺の空気などの障害物により、第1照射位置から照射したライン光L1の位置では、注入針40の針先端部43が確認できない場合、図6Bに示すように、第2照射位置から照射したライン光L2に沿って超音波探触子200を生体表面Sに配置することができる。したがって、術者は、超音波探触子200の配置位置の自由度が上がり、処置がし易くなる。 The delivery device 100 of Modification 2 can irradiate the line light L1 and the line light L2 in two directions, ie, the bending direction of the needle distal end portion 43 of the injection needle 40 and the opposite side of the bending direction. Therefore, when inserting the delivery device 100 into the living body, the operator places the ultrasonic probe 200 on the living body surface S along the line light L1 emitted from the first irradiation position as shown in FIG. 6A. In addition, when the operator cannot confirm the needle tip portion 43 of the injection needle 40 at the position of the line light L1 irradiated from the first irradiation position due to obstacles such as bones in the living body and air in the lungs, as shown in FIG. As shown, the ultrasound probe 200 can be placed on the biological surface S along the line light L2 irradiated from the second irradiation position. Therefore, the operator has a higher degree of freedom in positioning the ultrasound probe 200, which facilitates treatment.
 <変形例3>
 変形例3は、図7A、図7Bに示すように、第2操作部20を第1操作部10に対して回転可能に取り付け、照射部50を第2操作部20の回転操作に追従可能にした構成である。変形例3の送達デバイス100は、第2操作部20を回転させて患部に対する注入針40の穿刺向きを可変する構成である。
<Modification 3>
In Modification 3, as shown in FIGS. 7A and 7B, the second operation unit 20 is rotatably attached to the first operation unit 10, and the irradiation unit 50 can follow the rotation operation of the second operation unit 20. It is a configuration that The delivery device 100 of Modification 3 is configured to rotate the second operation section 20 to change the puncture direction of the injection needle 40 with respect to the affected area.
 変形例3の送達デバイス100は、図7Aに示すように、第2操作部20の外周面に照射部50を接合して取り付けた構成である。また、変形例3の送達デバイス100は、照射部50の配置位置の変更に伴い、照射部50が回転移動可能なように第1操作部10の外周面に切り欠き部14を設けている。これにより、第2操作部20および注入針40の外周面の一部と照射部50は、第1操作部10から露出する。変形例3の送達デバイス100は、第2操作部20を回転させて患部に対する注入針40の穿刺向きを可変した際、その回転移動に追従するように照射部50も回転する。 The delivery device 100 of Modified Example 3 has a configuration in which the irradiation section 50 is attached to the outer peripheral surface of the second operation section 20 by joining it, as shown in FIG. 7A. In addition, the delivery device 100 of Modification 3 is provided with a notch 14 on the outer peripheral surface of the first operation section 10 so that the irradiation section 50 can be rotated as the position of the irradiation section 50 is changed. As a result, a part of the outer peripheral surfaces of the second operating part 20 and the injection needle 40 and the irradiation part 50 are exposed from the first operating part 10 . In the delivery device 100 of Modification 3, when the second operation section 20 is rotated to change the puncture direction of the injection needle 40 with respect to the affected area, the irradiation section 50 also rotates so as to follow the rotational movement.
 また、変形例3の送達デバイス100は、図7Bに示す形態を採用することもできる。変形例3の送達デバイス100は、図7Bに示すように、第2操作部20の外周面に照射部50を接合して取り付けた構成である。照射部50は、第1操作部10の内部に収納された状態で第2操作部20の外周面に配置される。また、変形例3の送達デバイス100は、照射部50の配置位置の変更に伴い、照射部50から照射されるライン光Lを透過する窓部15を設けている。窓部15は、第1操作部10の先端側において、照射部50の照射口と対向する位置に配置される。窓部15は、ライン光Lを極力阻害しない透光性を有する無色または有色の透明材料(ガラス、アクリルなど)で構成される。また、窓部15は、ライン光Lの照射角度を広角にするように屈折率が調整されていてもよい。 Also, the delivery device 100 of Modification 3 can adopt the form shown in FIG. 7B. As shown in FIG. 7B, the delivery device 100 of Modification 3 has a configuration in which the irradiation section 50 is attached to the outer peripheral surface of the second operation section 20 by being joined thereto. The irradiation unit 50 is arranged on the outer peripheral surface of the second operation unit 20 while being accommodated inside the first operation unit 10 . In addition, the delivery device 100 of Modified Example 3 is provided with a window portion 15 through which the line light L emitted from the irradiation section 50 is transmitted as the arrangement position of the irradiation section 50 is changed. The window part 15 is arranged at a position facing the irradiation port of the irradiation part 50 on the distal end side of the first operation part 10 . The window part 15 is made of a colorless or colored transparent material (glass, acrylic, etc.) having translucency that does not obstruct the line light L as much as possible. Further, the refractive index of the window 15 may be adjusted so that the irradiation angle of the line light L is wide.
 変形例3の送達デバイス100によれば、注入針40を回転させた際、外筒30は生体に挿入した状態(挿入姿勢)が維持される。そのため、変形例3の送達デバイス100は、外筒30が回転することで生じ得る周囲の生体組織との摩擦による損傷を防止できる。また、第2操作部20の回転操作に伴い、照射部50も連れて回転するため、注入針40の針先端部43の湾曲方向に追従してライン光Lを照射することができる。 According to the delivery device 100 of Modified Example 3, when the injection needle 40 is rotated, the outer cylinder 30 is maintained in a state of being inserted into the living body (insertion posture). Therefore, the delivery device 100 of Modification 3 can prevent damage due to friction with the surrounding living tissue that may occur when the outer cylinder 30 rotates. In addition, since the irradiation unit 50 rotates along with the rotation operation of the second operation unit 20 , the line light L can be irradiated following the bending direction of the needle distal end portion 43 of the injection needle 40 .
 なお、変形例3の送達デバイス100は、第2操作部20を回転させて患部に対する注入針40の向きを可変する構成において、照射部50が第2操作部20の回転移動に追従可能な構成を有していればよい。そのため、送達デバイス100は、図7Aや図7Bに示した構成には限定されず、例えば第1操作部10の外周面に対し、第2操作部20の長軸方向に沿った注入針40の進退方向(前後方向)への移動には追従せず、回転移動にのみ追従可能に取り付けた構成としてもよい。 Note that the delivery device 100 of Modification 3 has a configuration in which the irradiation unit 50 can follow the rotational movement of the second operation unit 20 in a configuration in which the second operation unit 20 is rotated to change the orientation of the injection needle 40 with respect to the affected area. should have Therefore, the delivery device 100 is not limited to the configuration shown in FIGS. 7A and 7B. It is also possible to adopt a configuration in which it is attached so as to follow only rotational movement without following movement in the forward/backward direction (front-rear direction).
 <変形例4>
 変形例4は、図8A、図8Bに示すように、照射部50を2つ具備させ、一方の照射部50(第1照射部51)を第1操作部10の外周面に取り付け、他方の照射部50(第2照射部52)を第2操作部20の外周面に第2操作部20の回転操作に追従可能にした構成である。変形例4の送達デバイス100は、変形例3と同様、第2操作部20を回転させて患部に対する注入針40の穿刺向きを可変する構成である。
<Modification 4>
Modification 4, as shown in FIGS. 8A and 8B, includes two irradiation units 50, one irradiation unit 50 (first irradiation unit 51) is attached to the outer peripheral surface of the first operation unit 10, and the other It is configured such that the irradiation unit 50 (second irradiation unit 52 ) can follow the rotation operation of the second operation unit 20 on the outer peripheral surface of the second operation unit 20 . The delivery device 100 of Modification 4 is configured to rotate the second operation part 20 to change the puncture direction of the injection needle 40 with respect to the affected area, as in the modification 3. FIG.
 第1照射部51および第2照射部52は、図8Aに示すように、第2操作部20を第1操作部10に対して回転移動する前の状態において、第1照射部51から照射されるライン光L3と、第2照射部52から照射されるライン光L4が、生体表面Sで重畳する位置にそれぞれ取り付けられる。ライン光L3およびライン光L4は、いずれも注入針40の中心軸Bを通る平面と重なるように照射される。第2照射部52は、図8Bに示すように、第2操作部20の回転移動に追従して回転移動する。第2照射部52から照射されたライン光L4は、注入針40の中心軸Bを通る平面と重なるように照射される。 The first irradiation unit 51 and the second irradiation unit 52 are irradiated from the first irradiation unit 51 in a state before the second operation unit 20 is rotated with respect to the first operation unit 10, as shown in FIG. 8A. The line light L3 emitted from the second irradiation unit 52 and the line light L4 emitted from the second irradiation unit 52 are attached at positions where the line light L4 is superimposed on the living body surface S. Both the line light L3 and the line light L4 are irradiated so as to overlap a plane passing through the central axis B of the injection needle 40 . The second irradiation unit 52 rotates following the rotation of the second operation unit 20, as shown in FIG. 8B. The line light L<b>4 emitted from the second irradiation unit 52 is applied so as to overlap a plane passing through the central axis B of the injection needle 40 .
 変形例4の送達デバイス100によれば、第2操作部20を回転させる前の状態では、第1照射部51から照射されるライン光L3と、第2照射部52から照射されるライン光L4が重畳する。これにより、術者は、2つのライン光に沿って超音波探触子200を配置することができる。また、第2操作部20を回転させて注入針40の湾曲方向の向きを変えた場合、第2操作部20の回転移動に追従して第2照射部52も回転する。これにより、術者は、第2操作部20を回転した後は、第2照射部52から照射されたライン光L4に沿って超音波探触子200を配置することができる。このように、変形例4の送達デバイス100では、照射部50を2つ設けることによる、第2操作部20を回転させて注入針40の湾曲方向を可変した際にも、超音波探触子200の配置位置を正確に把握することができる。加えて、第1照射部51のライン光L3と第2照射部52からのライン光L4の差分を確認することで、初めに注入針を穿刺した位置と、次に注入針を穿刺しようとする位置がどの程度離れているかを視覚的に確認することができる。 According to the delivery device 100 of Modified Example 4, before the second operation section 20 is rotated, the line light L3 emitted from the first irradiation section 51 and the line light L4 emitted from the second irradiation section 52 are emitted. is superimposed. This allows the operator to arrange the ultrasound probe 200 along the two line lights. Further, when the bending direction of the injection needle 40 is changed by rotating the second operating section 20 , the second irradiation section 52 also rotates following the rotational movement of the second operating section 20 . Accordingly, after rotating the second operation unit 20 , the operator can arrange the ultrasound probe 200 along the line light L4 emitted from the second irradiation unit 52 . Thus, in the delivery device 100 of Modification 4, by providing two irradiation units 50, even when the bending direction of the injection needle 40 is changed by rotating the second operation unit 20, the ultrasonic probe 200 can be accurately grasped. In addition, by checking the difference between the line light L3 of the first irradiation unit 51 and the line light L4 from the second irradiation unit 52, the position where the injection needle was first punctured and then the injection needle It is possible to visually confirm how far apart the positions are.
 なお、変形例4の送達デバイス100において、第1照射部51から照射されるライン光L3と第2照射部52から照射されるライン光L4を容易に区別可能とするため、それぞれの光の三属性(色相、明度、彩度)や照射幅を変えてもよい。 In addition, in the delivery device 100 of Modified Example 4, the line light L3 emitted from the first irradiation unit 51 and the line light L4 emitted from the second irradiation unit 52 can be easily distinguished. Attributes (hue, lightness, saturation) and illumination width may be changed.
 <変形例5>
 
 変形例5は、図9A、図9Bに示すように、照射部50から照射されるライン光Lを2種類照射する構成である。変形例5の送達デバイス100において、照射部50は、生体表面Sに対する超音波探触子200の配置位置を示す送波面210の位置合わせ用の第1ライン光LAと、生体表面Sに配置した超音波探触子200の生体表面Sに対する送波面210の傾きを補正するための角度調整用の第2ライン光LB(LB1、LB2)を照射する。第2ライン光LB1、LB2は、第1ライン光LAと所定の間隔を空けて略平行に照射される。第1ライン光LAに対する第2ライン光LBの間隔は、超音波探触子200の傾きのずれが確認可能な程度の間隔とする。
<Modification 5>

Modification 5 is a configuration in which two types of line light L emitted from the irradiation unit 50 are emitted, as shown in FIGS. 9A and 9B. In the delivery device 100 of Modified Example 5, the irradiation unit 50 includes a first line light LA for alignment of the wave transmission surface 210 indicating the arrangement position of the ultrasonic probe 200 with respect to the biological surface S, and the first line light LA arranged on the biological surface S Second line light beams LB (LB1, LB2) for angle adjustment for correcting the inclination of the wave transmission surface 210 with respect to the biological surface S of the ultrasound probe 200 are emitted. The second line beams LB1 and LB2 are emitted substantially parallel to the first line beam LA with a predetermined gap therebetween. The interval of the second line light LB with respect to the first line light LA is set to the extent that the deviation of the tilt of the ultrasonic probe 200 can be confirmed.
 変形例5の送達デバイス100によれば、図9Aに示すように、術者は、超音波探触子200を正しい位置に配置した場合、超音波探触子200と第2ライン光LBが交差せずに被らない。これに対し、術者は、超音波探触子200の配置角度が正しくない場合、図9Bに示すように、第2ライン光LBが超音波探触子200と交差して被る。そのため、術者は、超音波探触子200を第2ライン光LBと被らないように生体表面Sの第1ライン光LA上に配置することで、超音波探触子200を正しく配置することができる。また、術者は、超音波探触子200に第2ライン光LBが被っていた場合、超音波探触子200に第2ライン光LB(LB1またはLB2)が被らないように傾きを調整することで、超音波探触子200を正しく配置することができる。 According to the delivery device 100 of Modified Example 5, as shown in FIG. 9A, when the operator places the ultrasonic probe 200 at the correct position, the ultrasonic probe 200 and the second line light LB intersect. I don't wear it without doing it. On the other hand, if the placement angle of the ultrasound probe 200 is not correct, the operator will be affected by the second line light LB intersecting with the ultrasound probe 200 as shown in FIG. 9B. Therefore, the operator correctly positions the ultrasonic probe 200 by placing it on the first line light LA of the biological surface S so as not to overlap the second line light LB. be able to. Further, when the ultrasound probe 200 is covered with the second line light LB, the operator adjusts the inclination so that the ultrasound probe 200 is not covered with the second line light LB (LB1 or LB2). By doing so, the ultrasonic probe 200 can be positioned correctly.
 なお、変形例5において、照射部50は、第2ライン光LBを、第1ライン光LAの両側端に沿って照射する構成としてもよい。すなわち、第1ライン光LAは、側方が第2ライン光LBに囲まれた状態となってもよい。 Note that in Modification 5, the irradiation unit 50 may be configured to irradiate the second line light LB along both side edges of the first line light LA. That is, the first line light LA may be surrounded by the second line light LB.
 <変形例6>
 変形例6は、注入針40を複数設け、注入針40のそれぞれは個々に独立して進退可能に構成される。また、変形例6の送達デバイス100は、複数の注入針40の湾曲方向に対応する外筒30の外周面に、照射部50を設けている。変形例6の送達デバイス100は、図10A、図10Bに示すように、一例として、3本の注入針40の湾曲方向を第2操作部20の周方向の所定角度(軸方向から見て、例えば時計回りに0°、120°、240°)に位置させ、これら注入針40の基端は3分割された押引部22のそれぞれに連結された構成である。また、ハブ部23は、3分割された押引部22にそれぞれ設けられる。
<Modification 6>
Modification 6 provides a plurality of injection needles 40, and each of the injection needles 40 is configured to be independently advanceable and retractable. In addition, the delivery device 100 of Modification 6 has an irradiation section 50 on the outer peripheral surface of the outer cylinder 30 corresponding to the bending direction of the plurality of injection needles 40 . As shown in FIGS. 10A and 10B , in the delivery device 100 of Modification 6, as an example, the bending directions of the three injection needles 40 are set at a predetermined angle (when viewed from the axial direction) in the circumferential direction of the second operation section 20. For example, the injection needle 40 is positioned at 0°, 120°, 240° clockwise, and the base end of the injection needle 40 is connected to each of the push-pull portions 22 divided into three. Further, the hub portion 23 is provided in each of the pushing/pulling portions 22 divided into three.
 術者は、図10Bに示すように、分割された押引部22のうちの一つを押引き操作すると、操作された押引部22と連結される注入針40は外筒30に対して進出または退避する。また、術者は、分割された押引部22を3つ同時に押引き操作すると、3本の注入針40を同時に進退操作することができる。 As shown in FIG. 10B , when the operator pushes and pulls one of the divided push-pull sections 22 , the injection needle 40 connected to the operated push-pull section 22 moves toward the outer cylinder 30 . Advance or retreat. Further, when the operator simultaneously pushes and pulls the three divided push-pull portions 22, the three injection needles 40 can be advanced and retracted at the same time.
 変形例6の送達デバイス100によれば、第2操作部20を回転させたり、送達デバイス100自体を回転させたりすることなく、患部に対して注入針40を患部の異なる位置に穿刺することができる。また、変形例6の送達デバイス100は、注入針40のそれぞれに対して注入針40の中心軸Bを通る平面と重なるようにライン光Lを照射する照射部50を備えている。そのため、術者は、注入針40を個別に押引き操作する際、対応する照射部50から照射されたライン光Lに沿って超音波探触子200を配置することができる。 According to the delivery device 100 of Modified Example 6, the injection needle 40 can be punctured at different positions of the affected area without rotating the second operation section 20 or rotating the delivery device 100 itself. can. Further, the delivery device 100 of Modification 6 includes an irradiation unit 50 that irradiates each injection needle 40 with line light L so as to overlap a plane passing through the central axis B of the injection needle 40 . Therefore, when the operator pushes and pulls the injection needle 40 individually, the operator can arrange the ultrasonic probe 200 along the line light L emitted from the corresponding irradiation unit 50 .
 なお、変形例6において、複数の注入針40は、一つの第2操作部20の先端に設け、第2操作部20の押引き操作の際に、同時に進退する構成としてもよい。このような形態として場合、術者は、事前に各ライン光Lを頼りに各注入針40が進出する方向を確認し、最も腫瘍の辺縁まで近い針を見ながら同時に穿刺することができる。また、穿刺後は、術者は、各ライン光Lを基準に他の注入針40が組織から出ていないことを確認することもできる。 Note that, in Modification 6, a plurality of injection needles 40 may be provided at the distal end of one second operating portion 20, and may be configured to move forward and backward simultaneously when the second operating portion 20 is pushed and pulled. In such a configuration, the operator can confirm the advancing direction of each injection needle 40 by relying on each line light L in advance, and simultaneously puncture while looking at the needle closest to the edge of the tumor. Also, after puncturing, the operator can confirm that the other injection needles 40 are not protruding from the tissue based on each line light L.
 <変形例7>
 変形例7は、外筒30の先端側および注入針40の先端側(主として針先端部43の近傍)の外周面に対し、周囲との音響インピーダンス差を大きくするための反射部60を設けた構成である。
<Modification 7>
Modification 7 is provided with reflecting portions 60 for increasing the difference in acoustic impedance with the surroundings on the outer peripheral surfaces of the distal end side of the outer cylinder 30 and the distal end side of the injection needle 40 (mainly in the vicinity of the needle distal end portion 43). Configuration.
 反射部60は、図11に示すように、外筒30の先端側の外周面および注入針40の針先端部43の外周面に設けられる。反射部60は、超音波Uの反射効率を向上させ、超音波画像上での視認性を向上させる効果を奏する。反射部60は、超音波Uの反射効率を向上させる形状を有する。反射部60は、一例として、凹溝(凹形状)、凸条や複数の突起(凸形状)、梨地加工のような凹凸形状で構成される。反射部60は、超音波画像上において注入針40の湾曲方向が確認可能なように、湾曲方向に対応する外周面に設けるのが好ましい。 As shown in FIG. 11, the reflecting part 60 is provided on the outer peripheral surface of the outer cylinder 30 on the distal end side and the outer peripheral surface of the needle distal end portion 43 of the injection needle 40 . The reflecting part 60 has the effect of improving the reflection efficiency of the ultrasonic waves U and improving the visibility on the ultrasonic image. The reflecting part 60 has a shape that improves the reflection efficiency of the ultrasonic waves U. As shown in FIG. As an example, the reflecting portion 60 is configured with a concave groove (concave shape), a ridge or a plurality of projections (convex shape), or an uneven shape such as a satin finish. The reflecting part 60 is preferably provided on the outer peripheral surface corresponding to the bending direction so that the bending direction of the injection needle 40 can be confirmed on the ultrasonic image.
 変形例7の送達デバイス100によれば、術者は、超音波画像上において外筒30や注入針40の視認性が向上するため、生体挿入時において患部に対する挿入位置や穿刺箇所の位置決めが容易となる。 According to the delivery device 100 of Modified Example 7, the visibility of the outer cylinder 30 and the injection needle 40 is improved for the operator on the ultrasonic image, so that it is easy for the operator to position the insertion position and the puncture site with respect to the affected area during insertion into the living body. becomes.
 [作用効果]
 以上説明したように、本実施形態に係る送達デバイス100は、生体表面Sから穿刺して生体内の患部に送達物を送達するデバイスであり、第1操作部10と、内腔31を有し、第1操作部10の先端から長軸方向に沿って延在する外筒30と、第1操作部10に対して長軸方向に摺動可能に取り付けられる第2操作部20と、外筒30の内腔31に進退可能に収納され、第操作部0の先端から長軸方向に沿って延在する注入針40と、第1操作部10と第2操作部20の少なくとも一方に取り付けられ、注入針40の中心軸Bを通る平面と重なるライン光Lを生体表面Sに照射する照射部50と、を備える。また、注入針40は、先端に開口部43aを有する針先端部43と、針先端部43の基端から長軸方向に沿って延在して設けられる中空の針本体部42と、を有し、針先端部43は、針本体部42の先端から開口部43aに向かうに連れて徐々に外筒30の中心軸Aから遠ざかるように針先端部43の少なくとも一部を湾曲する湾曲部44を有する。
[Effect]
As described above, the delivery device 100 according to the present embodiment is a device that punctures the biological surface S to deliver a delivery product to an affected area in the living body, and has the first operation section 10 and the lumen 31. , an outer cylinder 30 extending along the longitudinal direction from the tip of the first operating part 10, a second operating part 20 attached to the first operating part 10 so as to be slidable in the longitudinal direction, and an outer cylinder Injection needle 40 which is housed in lumen 31 of 30 so as to be advanceable and retractable and extends along the longitudinal direction from the distal end of second operating section 20 , and at least one of first operating section 10 and second operating section 20 and an irradiating unit 50 that irradiates the living body surface S with line light L that is attached and overlaps a plane passing through the central axis B of the injection needle 40 . The injection needle 40 also has a needle distal end portion 43 having an opening 43a at the distal end, and a hollow needle main body portion 42 extending from the proximal end of the needle distal end portion 43 along the longitudinal direction. The needle distal end portion 43 has a bending portion 44 that bends at least a portion of the needle distal end portion 43 so as to gradually move away from the central axis A of the outer cylinder 30 as it goes from the distal end of the needle main body portion 42 toward the opening 43a. have
 このように構成された送達デバイス100によれば、照射部50から照射されたライン光Lは、注入針40の中心軸Bを通る平面と重なるように生体表面Sに照射されるため、生体内に挿入された注入針40の針先端部43の湾曲方向側から照射される。これにより、術者は、生体表面Sに対する超音波探触子200の正しい配置位置を把握することができる。そのため、術者は、超音波探触子200の送波面210をライン光Lに沿って配置すれば、送波面210から照射される超音波Uの照射領域内に、少なくとも外筒30から進出した注入針40の針先端部43を存在させることができる。したがって、術者は、超音波画像上において、注入針40の湾曲方向や挙動などを容易に確認でき、患部の目的とする箇所に送達物を送達することができる。 According to the delivery device 100 configured in this manner, the line light L emitted from the irradiation unit 50 is applied to the surface of the living body S so as to overlap the plane passing through the central axis B of the injection needle 40. is irradiated from the bending direction side of the needle distal end portion 43 of the injection needle 40 inserted into. This allows the operator to grasp the correct placement position of the ultrasound probe 200 with respect to the biological surface S. Therefore, if the operator arranges the wave transmission surface 210 of the ultrasonic probe 200 along the line light L, the operator can enter the irradiation area of the ultrasonic waves U emitted from the wave transmission surface 210 at least from the outer cylinder 30. A needle tip 43 of the infusion needle 40 may be present. Therefore, the operator can easily confirm the bending direction and behavior of the injection needle 40 on the ultrasonic image, and can deliver the delivery product to the target site of the affected area.
 また、本実施形態に係る送達デバイス100において、照射部50は、生体表面Sと補色関係となる色味を呈するレーザ光をライン光Lとして照射するレーザ光源を備え、ライン光Lを30度以上の照射角度で照射可能に構成してもよい。 In addition, in the delivery device 100 according to the present embodiment, the irradiating unit 50 includes a laser light source that irradiates a laser beam having a color complementary to that of the living body surface S as the line light L, and the line light L is emitted at an angle of 30 degrees or more. may be configured to be able to irradiate at an irradiation angle of .
 このように構成された送達デバイス100によれば、緑系などの生体表面Sに対して補色となる色味を呈するレーザ光をライン光Lとして照射することで、3次元的な勾配を有する生体表面Sに対してライン光Lを直線的に照射可能となる。また、ライン光Lを30度以上の照射角度で照射することにより、超音波探触子200を生体表面Sに配置する際に、位置合わせを行うのに十分な長さのライン光Lを生体表面Sに照射することができる。 According to the delivery device 100 configured in this way, by irradiating a laser beam having a complementary color to the biological surface S, such as green, as the line light L, the biological surface S having a three-dimensional gradient is irradiated. It becomes possible to irradiate the surface S with the line light L linearly. In addition, by irradiating the line light L at an irradiation angle of 30 degrees or more, when the ultrasonic probe 200 is arranged on the surface S of the living body, the line light L having a sufficient length for alignment is applied to the living body. The surface S can be irradiated.
 また、本実施形態に係る送達デバイス100において、外筒30は、第1操作部10の長軸を中心に回転可能に保持されるように構成してもよい。 In addition, in the delivery device 100 according to this embodiment, the outer cylinder 30 may be configured to be rotatably held about the long axis of the first operation section 10 .
 このように構成された送達デバイス100によれば、外筒30を第1操作部10に対して回転可能に取り付けることで、注入針40を回転させる際、外筒30は連れて回転せず、挿入した状態(挿入姿勢)が維持される。そのため、送達デバイス100は、外筒30が回転することで生じ得る周囲の生体組織との摩擦による損傷を防止できる。 According to the delivery device 100 configured in this way, by rotatably attaching the outer cylinder 30 to the first operation part 10, when the injection needle 40 is rotated, the outer cylinder 30 does not rotate together. The inserted state (insertion posture) is maintained. Therefore, the delivery device 100 can prevent damage due to friction with the surrounding living tissue that may occur due to the rotation of the outer cylinder 30 .
 また、本実施形態に係る送達デバイス100において、照射部50は、針先端部43の湾曲方向側から注入針40の中心軸Bを通る平面と重なるようにライン光L1を照射可能な第1照射位置と、第1操作部10の外周面において第1照射位置と径方向で対向する位置であって針先端部43の湾曲方向側と反対側から注入針40の中心軸Bを通る平面と重なるようにライン光L2を照射可能な第2照射位置にそれぞれ配置されるように構成してもよい。 In addition, in the delivery device 100 according to the present embodiment, the irradiation unit 50 is a first irradiation capable of irradiating the line light L1 so as to overlap the plane passing through the central axis B of the injection needle 40 from the bending direction side of the needle tip portion 43. and a plane that passes through the central axis B of the injection needle 40 from the side opposite to the bending direction side of the needle tip portion 43 and which is a position radially facing the first irradiation position on the outer peripheral surface of the first operation portion 10 . may be configured to be arranged at the second irradiation positions where they can be irradiated with the line light L2.
 このように構成された送達デバイス100によれば、術者は、送達デバイス100を生体内に挿入した際、第1照射位置から照射したライン光L1と、第2照射位置から照射したライン光L2に沿って超音波探触子200を生体表面Sに配置することができる。第1照射位置から照射されたライン光L1と、第2照射位置から照射されたライン光L2は、いずれも注入針40の中心軸Bを通る平面と重なるように照射される。したがって、術者は、超音波探触子200の配置位置の自由度が上がり、処置がし易くなる。 According to the delivery device 100 configured in this way, when the operator inserts the delivery device 100 into the living body, the line light L1 emitted from the first irradiation position and the line light L2 emitted from the second irradiation position The ultrasound probe 200 can be placed on the biological surface S along the . Both the line light L1 irradiated from the first irradiation position and the line light L2 irradiated from the second irradiation position are irradiated so as to overlap the plane passing through the central axis B of the injection needle 40 . Therefore, the operator has a higher degree of freedom in positioning the ultrasound probe 200, which facilitates treatment.
 また、本実施形態に係る送達デバイス100において、第2操作部20は、第1操作部10に対して周方向に回転可能に取り付けられ、照射部50は、第2操作部20の回転移動に追従可能に設けた構成としてもよい。 In addition, in the delivery device 100 according to the present embodiment, the second operation section 20 is attached so as to be rotatable in the circumferential direction with respect to the first operation section 10, and the irradiating section 50 rotates relative to the second operation section 20. It is good also as a structure provided so that it can follow.
 このように構成された送達デバイス100によれば、注入針40を回転させた際、外筒30は生体に挿入した状態(挿入姿勢)が維持されるため、外筒30が回転することで生じ得る周囲の生体組織との摩擦による損傷を防止できる。また、第2操作部20の回転操作に伴い、照射部50も連れて回転するため、注入針40の針先端部43の湾曲方向に追従してライン光Lを照射することができる。 According to the delivery device 100 configured in this way, when the injection needle 40 is rotated, the outer cylinder 30 is maintained in a state of being inserted into the living body (insertion posture), so that the rotation of the outer cylinder 30 causes It is possible to prevent damage due to friction with the surrounding living tissue. In addition, since the irradiation unit 50 rotates along with the rotation operation of the second operation unit 20 , the line light L can be irradiated following the bending direction of the needle distal end portion 43 of the injection needle 40 .
 また、本実施形態に係る送達デバイス100において、照射部50は、第1操作部10に取り付けられる第1照射部51と、第2操作部20に取り付けられる第2照射部52と、を有し、第1照射部51および第2照射部52は、第2操作部20を第1操作部10に対して回転移動する前の状態において、第1照射部51から照射されるライン光L3と、第2照射部52から照射されるライン光L4が、生体表面Sで重畳する位置にそれぞれ取り付けられるように構成してもよい。 Further, in the delivery device 100 according to this embodiment, the irradiation section 50 has a first irradiation section 51 attached to the first operation section 10 and a second irradiation section 52 attached to the second operation section 20. , the first irradiation unit 51 and the second irradiation unit 52, in a state before the second operation unit 20 is rotated with respect to the first operation unit 10, the line light L3 irradiated from the first irradiation unit 51, It may be configured such that the line lights L4 emitted from the second irradiation unit 52 are attached to positions where they overlap on the living body surface S, respectively.
 このように構成された送達デバイス100によれば、第2操作部20を回転させる前の状態では、術者は、2つのライン光L3、L4に沿って超音波探触子200を配置し、第2操作部20を回転させて注入針40の湾曲方向の向きを変えた場合、第2照射部52から照射されたライン光L4に沿って超音波探触子200を配置することができる。したがって、術者は、第2操作部20を回転させて注入針40の湾曲方向を可変した際にも、超音波探触子200の配置位置を正確に把握することができる。 According to the delivery device 100 configured in this way, before rotating the second operation unit 20, the operator places the ultrasonic probe 200 along the two line lights L3 and L4, When the bending direction of the injection needle 40 is changed by rotating the second operation unit 20 , the ultrasound probe 200 can be arranged along the line light L<b>4 emitted from the second irradiation unit 52 . Therefore, even when the operator rotates the second operation unit 20 to change the bending direction of the injection needle 40 , the operator can accurately grasp the arrangement position of the ultrasonic probe 200 .
 また、本実施形態に係る送達デバイス100において、照射部50は、生体表面Sに対する超音波探触子200の送波面210の位置合わせを行うための第1ライン光LAと、第1ライン光LAの両側縁に沿って第1ライン光LAの外側に位置し生体表面Sに対する送波面210の角度調整を行うための第2ライン光LB(LB1、LB2)と、を照射するように構成してもよい。 Further, in the delivery device 100 according to the present embodiment, the irradiation unit 50 includes the first line light LA for aligning the wave transmission surface 210 of the ultrasound probe 200 with respect to the biological surface S, and the first line light LA second line light beams LB (LB1, LB2) for adjusting the angle of the wave transmission surface 210 with respect to the living body surface S and positioned outside the first line light beam LA along both side edges of the good too.
 このように構成された送達デバイス100によれば、術者は、超音波探触子200を第2ライン光LBと被らないように生体表面Sの第1ライン光LA上に配置することで、超音波探触子200を正しく配置することができる。また、術者は、超音波探触子200に第2ライン光LB(LB1またはLB2)が被っていた場合、超音波探触子200に第2ライン光LBが被らないように傾きを調整することで、超音波探触子200を正しく配置することができる。 According to the delivery device 100 configured in this way, the operator can place the ultrasound probe 200 on the first line light LA of the biological surface S so as not to overlap the second line light LB. , the ultrasound probe 200 can be positioned correctly. Further, when the ultrasound probe 200 is covered with the second line light LB (LB1 or LB2), the operator adjusts the inclination so that the ultrasound probe 200 is not covered with the second line light LB. By doing so, the ultrasonic probe 200 can be positioned correctly.
 また、本実施形態に係る送達デバイス100において、注入針40は、第2操作部20に対して複数設けられ、照射部50は、複数の注入針40のそれぞれに対応して第2操作部20の外周面に複数取り付けた構成としてもよい。 In addition, in the delivery device 100 according to the present embodiment, a plurality of injection needles 40 are provided for the second operation section 20 , and the irradiation section 50 is provided in the second operation section 20 corresponding to each of the plurality of injection needles 40 . It is good also as a structure which attached multiple to the outer peripheral surface of.
 このように構成された送達デバイス100によれば、第2操作部20を回転させたり、送達デバイス100自体を回転させたりすることなく、患部に対して注入針40を患部の異なる位置に穿刺することができる。また、注入針40のそれぞれに対して注入針40の中心軸Bを通る平面と重なるようにライン光Lを照射する照射部50を備えているため、術者は、注入針40を個別に押引き操作する際、対応する照射部50から照射されたライン光Lに沿って超音波探触子200を配置することができる。 According to the delivery device 100 configured in this way, the injection needle 40 is punctured at different positions of the affected area without rotating the second operation part 20 or rotating the delivery device 100 itself. be able to. In addition, since the irradiation unit 50 is provided for irradiating each of the injection needles 40 with the line light L so as to overlap the plane passing through the central axis B of the injection needle 40, the operator presses the injection needle 40 individually. When performing the pulling operation, the ultrasonic probe 200 can be arranged along the line light L emitted from the corresponding irradiation unit 50 .
 また、本実施形態に係る送達デバイス100において、外筒30の先端部の外表面および注入針40の針先端部43の外表面は、周囲との音響インピーダンス差を大きくするための反射部60を有する構成としてもよい。 In addition, in the delivery device 100 according to the present embodiment, the outer surface of the distal end portion of the outer cylinder 30 and the outer surface of the needle distal end portion 43 of the injection needle 40 have a reflecting portion 60 for increasing the acoustic impedance difference with the surroundings. It is good also as a structure which has.
 このように構成された送達デバイス100によれば、術者は、超音波画像上において外筒30や注入針40の視認性が向上するため、生体挿入時において患部に対する挿入位置や穿刺箇所の位置決めが容易となる。 According to the delivery device 100 configured in this way, the visibility of the outer tube 30 and the injection needle 40 is improved on the ultrasound image, so that the operator can position the insertion position and the puncture site with respect to the affected part during insertion into the living body. becomes easier.
 本出願は、2021年3月25日に出願された日本国特許出願第2021-051369号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2021-051369 filed on March 25, 2021, the disclosure of which is incorporated by reference in its entirety.
  10 第1操作部、
  20 第2操作部、
  30 外筒、
  31 外筒の内腔、
  40 注入針、
  42 針本体部、
  43 針先端部、
  44 湾曲部、
  50 照射部、
  51 第1照射部、
  52 第2照射部、
  60 反射部、
 100 送達デバイス、
 200 超音波探触子、
 210 送波面、
 L(L1~L4) ライン光、
  LA 第1ライン光、
  LB 第2ライン光、
   A 外筒の中心軸、
   B 注入針の中心軸(B1 針本体部の中心軸、B2 針先端部の中心軸)、
   S 生体表面、
   U 超音波、
   Z 送達デバイスの中心軸。
10 first operation unit,
20 second operation unit,
30 outer cylinder,
31 lumen of the barrel,
40 injection needle,
42 needle body,
43 needle tip,
44 bend,
50 irradiation unit,
51 first irradiation unit,
52 second irradiation unit,
60 Reflector,
100 delivery device;
200 ultrasonic probe,
210 transmission surface,
L (L1 to L4) line light,
LA first line light,
LB second line light,
A central axis of the outer cylinder,
B central axis of injection needle (B1 central axis of needle main body, B2 central axis of needle tip),
S biological surface,
U Ultrasonic,
Z central axis of the delivery device;

Claims (10)

  1.  生体表面から穿刺して生体内の患部に送達物を送達する送達デバイスであって、
     第1操作部と、
     内腔を有し、前記第1操作部の先端から長軸方向に沿って延在する外筒と、
     前記第1操作部に対して長軸方向に摺動可能に取り付けられる第2操作部と、
     前記外筒の内腔に進退可能に収納され、前記第2操作部の先端から長軸方向に沿って延在する注入針と、
     前記第1操作部と前記第2操作部の少なくとも一方に取り付けられ、前記注入針の中心軸を通る平面と重なるライン光を前記生体表面に照射する照射部と、
     を備える、送達デバイス。
    A delivery device that punctures from the surface of a living body to deliver a delivery product to an affected area in the living body,
    a first operation unit;
    an outer cylinder having a lumen and extending along the longitudinal direction from the tip of the first operation portion;
    a second operating portion attached slidably in the longitudinal direction with respect to the first operating portion;
    an injection needle housed in the lumen of the outer cylinder so as to be advanceable and retractable and extending along the longitudinal direction from the tip of the second operation portion;
    an irradiation unit that is attached to at least one of the first operation unit and the second operation unit and that irradiates the surface of the living body with line light that overlaps a plane passing through the central axis of the injection needle;
    A delivery device, comprising:
  2.  前記注入針は、先端に開口部を有する針先端部と、前記針先端部の基端から長軸方向に沿って延在して設けられる中空の針本体部と、を有し、
     前記針先端部は、前記針本体部の先端から前記開口部に向かうに連れて徐々に前記外筒の中心軸から遠ざかるように前記針先端部の少なくとも一部を湾曲する湾曲部を有する、請求項1に記載の送達デバイス。
    The injection needle has a needle distal end portion having an opening at the distal end thereof, and a hollow needle main body portion extending along the longitudinal direction from the base end of the needle distal end portion,
    The needle tip portion has a curved portion that curves at least a part of the needle tip portion so as to gradually move away from the central axis of the outer cylinder as it goes from the tip of the needle body toward the opening. The delivery device of paragraph 1.
  3.  前記照射部は、前記生体表面と補色関係となる色味を呈するレーザ光を前記ライン光として照射するレーザ光源を備え、前記ライン光を30度以上の照射角度で照射可能に構成される、請求項2に記載の送達デバイス。 The irradiating unit includes a laser light source that irradiates the line light with a laser beam exhibiting a color complementary to that of the surface of the living body, and is configured to be capable of irradiating the line light at an irradiation angle of 30 degrees or more. 3. The delivery device of paragraph 2.
  4.  前記外筒は、前記第1操作部の長軸を中心に回転可能に保持される、請求項3に記載の送達デバイス。 The delivery device according to claim 3, wherein the outer cylinder is rotatably held about the longitudinal axis of the first operating portion.
  5.  前記照射部は、前記針先端部の湾曲方向側から前記注入針の中心軸を通る平面と重なるように前記ライン光を照射可能な第1照射位置と、前記第1操作部の外周面において前記第1照射位置と径方向で対向する位置であって前記針先端部の湾曲方向側と反対側から前記注入針の中心軸を通る平面と重なるように前記ライン光を照射可能な第2照射位置にそれぞれ配置される、請求項3または4に記載の送達デバイス。 The irradiation unit has a first irradiation position capable of irradiating the line light so as to overlap a plane passing through the central axis of the injection needle from the bending direction side of the needle tip portion, and the outer peripheral surface of the first operation unit. A second irradiation position that is radially opposite to the first irradiation position and that can irradiate the line light so as to overlap a plane passing through the central axis of the injection needle from the side opposite to the bending direction side of the needle tip portion. 5. A delivery device according to claim 3 or 4, arranged in each of the .
  6.  前記第2操作部は、前記第1操作部に対して周方向に回転可能に取り付けられ、
     前記照射部は、前記第2操作部の回転移動に追従可能に設けられる、請求項3または4に記載の送達デバイス。
    The second operating portion is attached to the first operating portion so as to be rotatable in a circumferential direction,
    The delivery device according to claim 3 or 4, wherein the irradiation section is provided so as to be able to follow the rotational movement of the second operation section.
  7.  前記照射部は、前記第1操作部に取り付けられる第1照射部と、前記第2操作部に取り付けられる第2照射部と、を有し、
     前記第1照射部および前記第2照射部は、前記第2操作部を前記第1操作部に対して回転移動する前の状態において、前記第1照射部から照射されるライン光と、前記第2照射部から照射されるライン光が、前記生体表面で重畳する位置にそれぞれ取り付けられる、請求項3または4に記載の送達デバイス。
    The irradiation unit has a first irradiation unit attached to the first operation unit and a second irradiation unit attached to the second operation unit,
    The first irradiation section and the second irradiation section, in a state before the second operation section is rotationally moved with respect to the first operation section, emit line light from the first irradiation section and the second irradiation section. 5. The delivery device according to claim 3 or 4, wherein the line lights emitted from the two irradiation units are attached at positions where they overlap each other on the surface of the living body.
  8.  前記照射部は、前記生体表面に対する超音波探触子の送波面の位置合わせを行うための第1ライン光と、前記第1ライン光の両側縁に沿って前記第1ライン光の外側に位置し前記生体表面に対する前記送波面の角度調整を行うための第2ライン光と、を照射する、請求項3または4に記載の送達デバイス。 The irradiating unit includes a first line of light for aligning the transmission surface of the ultrasonic probe with respect to the biological surface, and is positioned outside the first line of light along both side edges of the first line of light. and a second line of light for adjusting the angle of the transmitting surface with respect to the biological surface.
  9.  前記注入針は、前記第2操作部に対して複数設けられ、
     前記照射部は、複数の前記注入針のそれぞれに対応して前記第2操作部の外周面に複数取り付けられる、請求項3または4に記載の送達デバイス。
    A plurality of the injection needles are provided with respect to the second operation section,
    5. The delivery device according to claim 3, wherein a plurality of said irradiating sections are attached to the outer peripheral surface of said second operating section corresponding to each of said plurality of injection needles.
  10.  前記外筒の先端側の外表面および前記注入針の先端側の外表面は、周囲との音響インピーダンス差を大きくするための反射部を有する、請求項1~9のいずれか1項に記載の送達デバイス。 The outer surface of the outer cylinder on the distal side and the outer surface of the injection needle on the distal side according to any one of claims 1 to 9, having a reflecting portion for increasing an acoustic impedance difference with the surroundings. delivery device.
PCT/JP2022/009927 2021-03-25 2022-03-08 Delivery device WO2022202282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021051369 2021-03-25
JP2021-051369 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022202282A1 true WO2022202282A1 (en) 2022-09-29

Family

ID=83397082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009927 WO2022202282A1 (en) 2021-03-25 2022-03-08 Delivery device

Country Status (1)

Country Link
WO (1) WO2022202282A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503291A (en) * 2000-06-13 2004-02-05 エスディージーアイ・ホールディングス・インコーポレーテッド Percutaneous needle positioning system
JP2010115246A (en) * 2008-11-11 2010-05-27 Hitachi Medical Corp Ultrasonic probe, and ultrasonic diagnostic apparatus using the ultrasonic probe
WO2012169178A1 (en) * 2011-06-07 2012-12-13 富士フイルム株式会社 Photoacoustic image generating device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503291A (en) * 2000-06-13 2004-02-05 エスディージーアイ・ホールディングス・インコーポレーテッド Percutaneous needle positioning system
JP2010115246A (en) * 2008-11-11 2010-05-27 Hitachi Medical Corp Ultrasonic probe, and ultrasonic diagnostic apparatus using the ultrasonic probe
WO2012169178A1 (en) * 2011-06-07 2012-12-13 富士フイルム株式会社 Photoacoustic image generating device and method

Similar Documents

Publication Publication Date Title
EP1351646B1 (en) Myocardial revascularization system
JP3939360B2 (en) Energy guidance device and guidance method
US8657749B2 (en) Ultrasonic puncture needle
US20060241342A1 (en) Optically guided penetration catheters and their methods of use
US20090131790A1 (en) Systems and methods for deploying echogenic components in ultrasonic imaging fields
EP1269931A1 (en) Medical energy irradiation apparatus
CN107072591A (en) The cutting tissue for doctor&#39;s control that treatment mapping with target organ image is combined
US10779807B2 (en) Steerable sheath tube and method for occluding atrial septal defect
CA2863977C (en) Laser ablation system for tissue ablation
US6425871B1 (en) Puncturing device for tomography
WO2022202282A1 (en) Delivery device
JP7440527B2 (en) Needle guide for angled intraluminal transducers
CN210472242U (en) Positioning needle, positioning device and positioning equipment
CN111936091A (en) Ophthalmic microsurgical instrument
US20210379395A1 (en) Treatment Method and Treatment System
JP2022149298A (en) Medical appliance
CN115363709A (en) Bending-adjustable intravascular ultrasound-guided puncture method
JP2022149295A (en) delivery device
US10814128B2 (en) Electroporation catheter
CN110169814A (en) Pilot pin, positioning device, positioning device and localization method
JP2003190179A (en) Ultrasonic puncture needle
JP2016202645A (en) Puncture adapter for puncture technique under ultrasonic guide and ultrasonic diagnostic device
WO2023106172A1 (en) Puncture needle
WO2023120082A1 (en) Puncture needle
JP6239810B1 (en) Puncture adapter and ultrasonic diagnostic apparatus for ultrasonic guided puncture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775076

Country of ref document: EP

Kind code of ref document: A1