WO2012169178A1 - Photoacoustic image generating device and method - Google Patents

Photoacoustic image generating device and method Download PDF

Info

Publication number
WO2012169178A1
WO2012169178A1 PCT/JP2012/003686 JP2012003686W WO2012169178A1 WO 2012169178 A1 WO2012169178 A1 WO 2012169178A1 JP 2012003686 W JP2012003686 W JP 2012003686W WO 2012169178 A1 WO2012169178 A1 WO 2012169178A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photoacoustic
photoacoustic image
light emitting
signal
Prior art date
Application number
PCT/JP2012/003686
Other languages
French (fr)
Japanese (ja)
Inventor
辻田 和宏
覚 入澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012169178A1 publication Critical patent/WO2012169178A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6848Needles

Definitions

  • the present invention relates to a photoacoustic image generation apparatus and method, and more specifically, photoacoustics that generate a photoacoustic image by irradiating a subject with laser light and detecting ultrasonic waves generated in the subject by the laser light irradiation.
  • the present invention relates to an image generation apparatus and method.
  • An ultrasonic inspection method is known as a kind of image inspection method capable of non-invasively examining the state inside a living body.
  • an ultrasonic probe capable of transmitting and receiving ultrasonic waves is used.
  • the ultrasonic waves travel inside the living body and are reflected at the tissue interface.
  • the internal state can be imaged.
  • photoacoustic imaging in which the inside of a living body is imaged using the photoacoustic effect.
  • a living body is irradiated with pulsed laser light such as a laser pulse. Inside the living body, the living tissue absorbs the energy of the pulsed laser light, and ultrasonic waves (photoacoustic signals) are generated by adiabatic expansion due to the energy.
  • ultrasonic waves photoacoustic signals
  • Patent Document 1 refers to a combination of biological information imaging using photoacoustics and treatment using a puncture needle.
  • a photoacoustic image is generated, and the image is observed to find an affected part such as a tumor or a part suspected of being affected.
  • a puncture needle such as an injection needle or a cytodiagnosis needle is used to collect cells or inject into the affected part.
  • puncture can be performed while observing an affected area using a photoacoustic image.
  • an object of the present invention is to provide a photoacoustic image generation apparatus and method that can confirm the position of a puncture needle on a photoacoustic image.
  • the present invention provides a light source that emits light, light irradiation means that irradiates light from the light source toward the subject, and a puncture needle that includes a light emitting unit that emits light from the light source. Based on the photoacoustic signal, an ultrasonic probe that detects a photoacoustic signal generated when the light absorber in the subject absorbs the light emitted from the light irradiation means and the light emitted from the light emitting unit.
  • a photoacoustic image generation apparatus comprising image generation means for generating a photoacoustic image.
  • the puncture needle has a light emitting portion at least at the tip thereof.
  • the light emitting part can be composed of a light guide member formed so that its thickness decreases toward the tip of the puncture needle.
  • the puncture needle may have a plurality of light emitting units arranged at positions separated from each other.
  • at least one of the plurality of light emitting units may be configured by a portion where the core is exposed at an intermediate point of the optical fiber that guides light from the light source.
  • the light irradiation from the light irradiation means and the light emission from the light emitting section are performed simultaneously, and the ultrasonic probe is emitted from the light emitting section and the photoacoustic signal resulting from the light emitted from the light irradiation means. It is good also as detecting simultaneously the photoacoustic signal resulting from light.
  • the light irradiation from the light irradiation means and the light emission from the light emitting unit are separately performed, and the image generation means performs the first based on the photoacoustic signal caused by the light irradiated from the light irradiation means.
  • the light source may emit light having a plurality of different wavelengths.
  • the image generation means may generate a photoacoustic image based on the magnitude relationship of the signal intensity of the photoacoustic signal detected when the light of each wavelength is irradiated.
  • the image generation means may have a deconvolution means for deconvolution of a differential waveform of light irradiated to the subject from the photoacoustic signal.
  • the present invention also includes a step of irradiating light from the light irradiation means toward the subject, a step of irradiating the subject from the light emitting portion of the puncture needle having the light emitting portion, and a light absorber in the subject. Detecting a photoacoustic signal generated by absorbing the light emitted from the light irradiating means and the light emitted from the light emitting unit, and generating a photoacoustic image based on the photoacoustic signal.
  • a photoacoustic image generation method characterized by the above is provided.
  • the step of irradiating light from the light irradiating unit and the step of irradiating light from the light emitting unit are performed simultaneously, and the step of detecting the photoacoustic signal is performed by the light irradiating unit You may detect simultaneously the photoacoustic signal resulting from light and the photoacoustic signal resulting from the light radiate
  • the light irradiating means is caused by the light irradiated from the light irradiating means.
  • the first step is based on the photoacoustic signal caused by the light emitted from the light irradiation unit.
  • a second photoacoustic image is generated based on a photoacoustic signal resulting from light emitted from the light emitting unit, and the first photoacoustic image and the second photoacoustic image are combined. May be.
  • a light emitting unit is provided on the puncture needle, and the subject is irradiated with light from the light emitting unit.
  • the light emitted from the light emitting unit is absorbed in the vicinity of the puncture needle, and a photoacoustic signal is generated in the vicinity of the puncture needle.
  • the side view which shows the external appearance of a probe.
  • the front view which shows the external appearance of a probe.
  • the figure which shows the structural example for obtaining the two light emission parts shown in FIG. The figure which shows the illumination range of the light irradiation part at the time of providing two light emission parts, and the illumination range of a light emission part.
  • FIG. 1 shows a photoacoustic image generation apparatus according to a first embodiment of the present invention.
  • a photoacoustic image generation apparatus (photoacoustic image diagnostic apparatus) 10 includes a probe (ultrasonic probe) 11, an ultrasonic unit 12, and a laser unit (light source) 13.
  • the laser unit 13 generates laser light that irradiates a subject such as a living tissue.
  • the wavelength of the laser light may be appropriately set according to the biological tissue to be observed.
  • the laser light emitted from the laser unit 13 is guided to the probe 11 and the puncture needle 15 using light guide means such as an optical fiber.
  • the probe 11 is configured as an ultrasonic probe for an endoscope, for example.
  • the probe 11 has light irradiation means for irradiating the subject with laser light guided to the probe 11.
  • the probe 11 detects a photoacoustic signal generated by absorbing the laser beam irradiated by the light absorber in the subject.
  • the probe 11 has, for example, a plurality of ultrasonic transducers arranged one-dimensionally.
  • the light irradiating means does not need to be provided on the probe 11 and may be irradiated with laser light from a place other than the probe 11.
  • the puncture needle 15 is a needle that is punctured into the subject.
  • the puncture needle 15 has a light emitting unit 16 that emits laser light.
  • the laser light emitted from the light emitting unit 16 is irradiated to a living tissue or the like in the subject.
  • the illumination range of the light emitting unit 16 is narrower than the illumination range (light irradiation range) of the light irradiation means provided in the probe 11.
  • the amount of light and power of the laser light emitted from the light emitting unit 16 is the laser light emitted from the light irradiation unit. It may be lower than the amount of light and power.
  • the ultrasonic unit 12 includes a receiving circuit 21, AD conversion means 22, image generation means 23, and control means 24.
  • the receiving circuit 21 receives photoacoustic signals detected by a plurality of ultrasonic transducers included in the probe 11.
  • the AD conversion means 22 converts the photoacoustic signal received by the receiving circuit 21 into a digital signal.
  • the AD converter 22 samples the photoacoustic signal at a predetermined sampling period based on, for example, a predetermined sampling clock signal input from the outside.
  • the image generation means 23 generates a photoacoustic image based on the photoacoustic signal detected by the probe 11.
  • the generation of the photoacoustic image includes, for example, image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like.
  • the image display unit 14 displays the photoacoustic image generated by the image generation unit 23 on a display monitor or the like.
  • the control unit 24 controls each part in the ultrasonic unit 12. For example, the control unit 24 sends a laser oscillation trigger signal to the laser unit 13 to emit laser light from the laser unit 13.
  • a sampling trigger signal is sent to the AD conversion means 22 in accordance with the laser light irradiation to control the sampling start timing of the photoacoustic signal.
  • FIG. 2A and 2B show the appearance of the probe 11.
  • FIG. FIG. 2A is a side view of the probe 11, and
  • FIG. 2B is a front view of the probe 11.
  • the probe 11 includes, for example, light irradiation means (light irradiation units) 32 on both sides of a plurality of one-dimensionally arranged ultrasonic transducers 33 when viewed from the front (FIG. 2B).
  • the light irradiation unit 32 irradiates the subject with laser light guided from the laser unit 13 using the optical fiber 31 (FIG. 2A).
  • the light irradiation part 32 is comprised as a surface light source, for example.
  • the light irradiation range (illumination range) of the light irradiation unit 32 corresponds to the generation range of the photoacoustic image.
  • a blood vessel or a lesioned part in the subject absorbs the laser beam emitted from the light irradiation unit 32 and generates a photoacoustic signal.
  • the probe 11 has a puncture guide 38 for guiding the puncture needle 15.
  • the puncture needle 15 is guided by the puncture guide 38 and punctured into the subject at a predetermined angle.
  • FIG. 2A shows a state where the puncture needle 15 is punctured within the illumination range 34.
  • the laser beam guided using the optical fiber 31 is also emitted from the light emitting portion 16 of the puncture needle 15.
  • the light emitted from the light emitting unit 16 is absorbed by, for example, a component such as blood contained in the biological tissue of the subject, and a photoacoustic signal is generated from that portion.
  • FIG. 3 shows a configuration example of the light emitting unit 16.
  • the light emitting unit 16 is configured as, for example, a linear light source.
  • the light emitting unit 16 is configured by a light guide member formed so that the thickness decreases toward the distal end direction (light traveling direction) of the puncture needle 15, for example.
  • it can be configured with a tapered fiber core whose thickness decreases toward the distal end of the puncture needle 15.
  • the tapered shape may be formed by polishing or the like.
  • the light emitting unit 16 does not need to illuminate a wide range because the light emitting unit 16 only needs to irradiate the living tissue near the puncture needle with the laser light from the light emitting unit 16.
  • FIG. 4 shows the illumination range of the light irradiation unit 32 (FIG. 1) and the illumination range of the light emitting unit 16 of the puncture needle 15.
  • the laser beam is irradiated.
  • the probe 11 detects a photoacoustic signal generated when the light absorber in the subject absorbs the laser light emitted from the light irradiation unit 32 and the laser light emitted from the light emitting unit 16 of the puncture needle 15.
  • the image generation unit 23 generates a photoacoustic image based on the detected photoacoustic signal.
  • the laser beam irradiation from the light irradiation unit 32 and the laser beam irradiation from the light emitting unit 16 of the puncture needle 15 are performed separately.
  • laser light irradiation is first performed from the light irradiation unit 32 to detect a photoacoustic signal, and then laser light irradiation is performed from the light emitting unit 16 of the puncture needle 15 to detect the photoacoustic signal.
  • the image generation unit 23 generates a first photoacoustic image based on the photoacoustic signal resulting from the laser light emitted from the light irradiation unit 32.
  • a 2nd photoacoustic image is produced
  • the lesion 36 and the blood vessel 37 in the illumination range 34 can be imaged by the generated first photoacoustic image. Further, since the light emitting unit 16 of the puncture needle 15 emits laser light only in the vicinity of the puncture needle 15, in the second photoacoustic image, a photoacoustic signal is linearly formed according to the position and direction of the puncture needle. The part to be detected appears. The user observes the synthesized photoacoustic image and searches for the boundary between the strong and weak portions of the photoacoustic signal appearing in a straight line, thereby specifying the position of the puncture needle 15 in the photoacoustic image. can do.
  • the light emission part 16 does not necessarily need to be provided over the whole puncture needle 15, At least the front-end
  • a laser beam may be guided to the tip of the puncture needle 15 using a thin optical fiber or the like, and a light emitting unit may be provided at the tip of the puncture needle 15.
  • the optical fiber that guides the laser beam to the needle tip may pass through the inside of the puncture needle 15 or may be arranged outside the puncture needle 15.
  • FIG. 5 shows an example in which the light emitting unit 16 is provided at the tip of the puncture needle 15.
  • FIG. 6 shows an illumination range 34 of the light irradiation unit 32 and an illumination range 35 of the light emitting unit 16 when the light emitting unit is provided at the tip of the puncture needle.
  • the length of the light emitting unit 16 is shortened in the length direction of the puncture needle 15, and the illumination range 35 is narrower than in the case of FIG.
  • the position of the tip of the puncture needle 15 can be specified in the photoacoustic image.
  • the light-emitting part 16 provided in the puncture needle 15 is not restricted to one, It is good also as providing the several light-emitting part 16 arrange
  • FIG. 7 shows an example in which two light emitting portions 16 are provided on the puncture needle 15.
  • the puncture needle 15 has a light emitting portion 16b at an intermediate portion in addition to the light emitting portion 16a at the tip portion.
  • FIG. 8 shows a configuration example for obtaining the two light emitting units 16a and 16b shown in FIG.
  • the light emitting portion 16b in the intermediate portion of the puncture needle 15 can be realized by partially peeling off the optical fiber cladding 42 to expose the core 41 and further polishing a part of the core 41.
  • the light emitting portion 16a at the tip can be realized by exposing the core 41.
  • FIG. 9 shows the illumination range of the light irradiation unit 32 and the illumination range of the light emitting unit 16 when two light emitting units are provided.
  • An illumination range 35a and an illumination range 35b are formed corresponding to the light emitting portions 16a and 16b of the puncture needle 15.
  • a photoacoustic signal is detected from the vicinity of the puncture needle 15 in each of the illumination range 35a and the illumination range 35b.
  • the position connecting the portions where the two photoacoustic signals are detected can be detected as the position of the puncture needle.
  • FIG. 10 shows the operation procedure.
  • the control means 24 of the ultrasonic unit 12 sends a laser oscillation trigger signal to the laser unit 13.
  • the laser unit 13 Upon receiving the laser oscillation trigger signal, the laser unit 13 starts laser oscillation and emits pulsed laser light.
  • the subject is irradiated with the pulse laser beam emitted from the laser unit 13 from the light irradiation unit 32 (FIG. 2A) of the probe 11 (step S1).
  • the probe 11 detects a photoacoustic signal generated in the subject by the laser beam irradiation from the light irradiation unit 32 (step S2).
  • the AD converter 22 receives the photoacoustic signal via the receiving circuit 21 and samples the photoacoustic signal.
  • the image generation means 23 generates a first photoacoustic image based on the sampled photoacoustic signal (step S3).
  • step S4 laser light irradiation is performed from the light emitting portion 16 of the puncture needle 15 (step S4).
  • the probe 11 detects a photoacoustic signal generated in the subject by the irradiation of the laser light from the light emitting unit 16.
  • Step S5 The AD converter 22 receives the photoacoustic signal via the receiving circuit 21 and samples the photoacoustic signal.
  • the image generation means 23 generates a second photoacoustic image based on the sampled photoacoustic signal (step S6).
  • the image generation means 23 synthesizes and outputs the generated first and second photoacoustic images.
  • the image display means 14 displays the synthesized photoacoustic image (step S7). Instead of performing image generation by the image generation unit 23, the image display unit 14 may display the first and second photoacoustic images in a superimposed manner.
  • the puncture needle 15 is provided with a light emitting unit 16 and laser light is emitted from the light emitting unit 16.
  • the laser light emitted from the light emitting unit 16 is absorbed in the vicinity of the puncture needle 15, and a photoacoustic signal is generated in the vicinity of the puncture needle 15.
  • a photoacoustic image By generating a photoacoustic image based on such a photoacoustic signal, the position of the puncture needle 15 and the like can be confirmed on the photoacoustic image.
  • a photoacoustic image (first photoacoustic image) generated by irradiating laser light from the light irradiation unit 32 and a photoacoustic image (second photon) generated by irradiating laser light from the light emitting unit 16 of the puncture needle 15.
  • first photoacoustic image generated by irradiating laser light from the light irradiation unit 32
  • second photon generated by irradiating laser light from the light emitting unit 16 of the puncture needle 15.
  • the subject is irradiated with light of a plurality of wavelengths, and a photoacoustic signal when the light of each wavelength is irradiated is detected.
  • functional imaging is performed by using the photoacoustic signal when light of a plurality of wavelengths is irradiated, and utilizing the fact that the light absorption characteristics of each light absorber differ depending on the wavelength.
  • the laser unit 13 (FIG. 1) is configured to be able to emit laser beams having a plurality of different wavelengths.
  • the pulsed laser light emitted from the laser unit 13 is guided to the probe 11 using light guide means such as an optical fiber, and is emitted from the probe 11 toward the subject. Further, the pulsed laser light emitted from the laser unit 13 is emitted from the light emitting portion 16 of the puncture needle 15 in the direction of the subject.
  • the laser unit 13 can emit a pulse laser beam having a first wavelength and a pulse laser beam having a second wavelength.
  • the molecular absorption coefficient at a wavelength of about 750 nm of oxygenated hemoglobin (oxy-Hb combined with oxygen) contained in a large amount of human arteries is lower than the molecular absorption coefficient at a wavelength of about 800 nm.
  • the molecular absorption coefficient at a wavelength of about 750 nm of deoxygenated hemoglobin (hemoglobin deoxy-Hb not bound to oxygen) contained in a large amount in veins is higher than the molecular absorption coefficient at a wavelength of about 800 nm.
  • a photoacoustic signal from a vein can be discriminated.
  • the receiving circuit 21 receives the photoacoustic signal detected by the probe 11.
  • the AD conversion means 22 samples the photoacoustic signal received by the receiving circuit 21.
  • the AD conversion means 22 samples a photoacoustic signal at a predetermined sampling period in synchronization with, for example, an AD clock signal.
  • the sampling of the photoacoustic signal is repeated for the number of wavelengths of light emitted from the laser unit 13. For example, first, the subject is irradiated with light of the first wavelength from the laser unit 13, and the photoacoustic signal detected by the probe 11 when the subject is irradiated with pulsed laser light of the first wavelength is sampled. Next, the subject is irradiated with light of the second wavelength from the laser unit 13, and the photoacoustic signal detected by the probe 11 when the pulse laser beam of the second wavelength is irradiated is sampled.
  • the image generation means 23 includes a photoacoustic signal (first photoacoustic signal) corresponding to light having the first wavelength and a photoacoustic signal (second photoacoustic signal) corresponding to light having the second wavelength.
  • first photoacoustic signal corresponding to light having the first wavelength
  • second photoacoustic signal corresponding to light having the second wavelength.
  • a photoacoustic signal that can distinguish between an artery and a vein is generated based on the relative magnitude of the relative signal intensity.
  • FIG. 11 shows the image generation means 23 in this embodiment.
  • the image generation unit 23 includes a two-wavelength data complex number conversion unit 231, a photoacoustic image reconstruction unit 232, a two-wavelength data calculation unit 233, an intensity information extraction unit 234, a detection / logarithm conversion unit 235, and a photoacoustic image construction unit 236.
  • the two-wavelength data complex numbering means 231 generates complex number data in which one of the first photoacoustic signal and the second photoacoustic signal is a real part and the other is an imaginary part. In the following description, it is assumed that the two-wavelength data complexization unit 231 generates complex data having the first photoacoustic signal as a real part and the second photoacoustic signal as an imaginary part.
  • the photoacoustic image reconstruction means 232 receives complex number data from the two-wavelength data complex numbering means 231 and reconstructs the photoacoustic signal.
  • the photoacoustic image reconstruction means 232 performs image reconstruction from the input complex number data by a Fourier transform method (FTA method).
  • FFA method Fourier transform method
  • For the image reconstruction by the Fourier transform method for example, a conventionally known method described in the document “Photoacoustic Image Reconstruction-A A Quantitative Analysis” Jonathan I Isperl I et al. SPIE-OSA Vol. it can.
  • the photoacoustic image reconstruction unit 232 inputs Fourier transform data indicating the reconstructed image to the intensity information extraction unit 234 and the two-wavelength data calculation unit 233.
  • the two-wavelength data calculation means 233 extracts the relative magnitude of the relative signal intensity between the photoacoustic data corresponding to each wavelength.
  • the two-wavelength data calculation unit 233 uses the reconstructed image reconstructed by the photoacoustic image reconstruction unit 232 as input data, and compares the real part and the imaginary part from the input data that is complex data.
  • the intensity information extraction unit 234 generates intensity information indicating the signal intensity based on the photoacoustic data corresponding to each wavelength.
  • the intensity information extraction unit 234 uses the reconstructed image reconstructed by the photoacoustic image reconstruction unit 232 as input data, and generates intensity information from the input data that is complex number data. For example, when the complex number data is represented by X + iY, the intensity information extraction unit 234 extracts (X2 + Y2) 1/2 as the intensity information.
  • the detection / logarithm conversion means 235 generates an envelope of data indicating the intensity information extracted by the intensity information extraction means 234, and then logarithmically converts the envelope to widen the dynamic range.
  • the photoacoustic image construction means 236 receives the phase information from the two-wavelength data calculation means 233 and the intensity information after the detection / logarithmic conversion processing from the detection / logarithmic conversion means 235.
  • the photoacoustic image construction unit 236 generates a photoacoustic image based on the input phase information and intensity information. For example, the photoacoustic image construction unit 236 determines the luminance (gradation value) of each pixel in the distribution image of the light absorber based on the input intensity information.
  • the photoacoustic image construction unit 236 determines the color (display color) of each pixel in the light absorber distribution image based on, for example, phase information.
  • the photoacoustic image construction unit 236 determines the color of each pixel based on the input phase information using, for example, a color map in which a phase range of 0 ° to 90 ° is associated with a predetermined color.
  • the range of the phase from 0 ° to 45 ° is a range in which the first photoacoustic signal is larger than the second photoacoustic signal
  • the source of the photoacoustic signal is more than the absorption with respect to light having a wavelength of 798 nm. It is considered that this is a vein through which blood mainly containing deoxygenated hemoglobin is less absorbed with respect to light having a wavelength of 756 nm.
  • the first 45 ° to 90 ° phase is a range in which the first photoacoustic data is smaller than the second photoacoustic data, the source of the photoacoustic signal has a wavelength larger than the absorption with respect to light having a wavelength of 798 nm. It is considered that this is an artery through which blood mainly containing oxygenated hemoglobin flows, which absorbs more light at 756 nm.
  • the phase gradually changes so that the phase is 0 ° in blue and the phase becomes colorless (white) as the phase approaches 45 °, and the phase 90 ° is red and the phase is 45.
  • the portion corresponding to the artery can be represented in red
  • the portion corresponding to the vein can be represented in blue.
  • the gradation value may be constant and only the color classification of the portion corresponding to the artery and the portion corresponding to the vein may be performed according to the phase information.
  • Generation of the photoacoustic image based on the photoacoustic signals corresponding to the light of the two wavelengths described above is performed by light irradiation from the light irradiation unit 32 (FIG. 2A) of the probe 11 and the light emission unit 16 (FIG. 1) of the puncture needle 15.
  • the light of the first wavelength and the light of the second wavelength are sequentially emitted from the light emitting unit 16 of the puncture needle 15 punctured in the subject, and a photoacoustic signal corresponding to each wavelength is detected to detect photoacoustics.
  • An image (second photoacoustic image) is generated.
  • combines a 1st photoacoustic image and a 2nd photoacoustic image may be the same as that of 1st Embodiment.
  • the light of the first wavelength and the light of the second wavelength are irradiated from the light irradiation from the light irradiation unit 32 of the probe 11 and the light irradiation from the light emitting unit 16 of the puncture needle 15, respectively.
  • light having a single wavelength may be emitted from the light emitting portion 16 of the puncture needle 15.
  • the complexization by the two-wavelength data complexing means 231 and the extraction of phase information by the two-wavelength data calculating means 233 are not necessary.
  • a photoacoustic image may be generated based on the intensity information extracted by the intensity information extraction unit 234.
  • the laser unit 13 irradiates the subject with laser beams having a plurality of different wavelengths.
  • a photoacoustic signal photoacoustic data
  • by irradiating light with a wavelength that makes it possible to distinguish between an artery and a vein it is possible to determine whether the blood vessel existing in the direction in which the puncture needle travels is an artery or a vein. You can do it more safely.
  • complex number data in which one of the first photoacoustic signal and the second photoacoustic signal obtained at two wavelengths is a real part and the other is an imaginary part is generated.
  • Two reconstructed images are generated from the complex number data by Fourier transform.
  • FIG. 11 shows image generation means 23a in the third embodiment of the present invention.
  • the image generation unit 23a includes a deconvolution unit 237 in addition to the configuration of the image generation unit 23 in the second embodiment shown in FIG.
  • the deconvolution means 237 generates a signal obtained by deconvolution of the photodifferential waveform, which is a differential waveform of the time waveform of the light intensity of the light applied to the subject, from the photoacoustic signal reconstructed by the photoacoustic image reconstruction means 232. Generate.
  • the deconvolution means 237 executes a process of deconvolution of the optical differential waveform with respect to each of the real part and the imaginary part in the complexized data.
  • the two-wavelength data calculation means 233 generates phase information from the photoacoustic signal obtained by deconvolution of the optical differential waveform.
  • the intensity information extraction means 234 extracts intensity information from the photoacoustic signal from which the optical differential waveform is deconvoluted.
  • the subsequent processing is the same as in the second embodiment. Note that irradiation with a plurality of wavelengths of light is not essential for deconvolution. That is, it is good also as irradiating a test object with the light of a single wavelength, and deconvolving an optical differential waveform from the detected photoacoustic signal.
  • the deconvolution means 237 converts the reconstructed photoacoustic signal from a time domain signal to a frequency domain signal, for example, by discrete Fourier transform. Further, the optical differential waveform is also converted from a time domain signal to a frequency domain signal by discrete Fourier transform.
  • the deconvolution means 237 obtains the inverse of the Fourier-transformed optical differential waveform as an inverse filter, and applies the inverse filter to the Fourier-transformed frequency domain photoacoustic signal. By applying the inverse filter, the optical differential waveform is deconvoluted in the frequency domain signal. Thereafter, the photoacoustic signal to which the inverse filter is applied is converted from a frequency domain signal to a time domain signal by inverse Fourier transform.
  • the pressure waveform pmicro (R, t) when the photoacoustic pressure wave generated from the micro-absorbing particle at the position r is observed at the position R with time t is [Phys. Rev. Lett. 86 (2001) From 3550.], the following spherical wave is obtained.
  • I (t) is a time waveform of the light intensity of the excitation light
  • the coefficient k is a conversion coefficient when the particle absorbs light and outputs an acoustic wave
  • vs is the sound velocity of the subject.
  • Positions r and R are vectors indicating positions in space.
  • the pressure generated from the microabsorbent particles is a spherical wave proportional to the optical pulse differential waveform, as shown in the above formula.
  • the pressure waveform actually obtained from the object to be imaged has a macroscopic absorber size, it is considered to be a waveform obtained by superimposing the above micro absorption waveforms (superposition principle).
  • the absorption distribution of particles emitting macroscopic photoacoustic waves is A (r ⁇ R)
  • the observation waveform of pressure from the macroscopic absorber is pmacro (R, t).
  • the observation waveform pmacro (R, t) is expressed by the following pressure waveform equation: Indicated by As can be seen from the above equation (1), the observed waveform shows a convolution type of optical pulse differentiation.
  • the absorber distribution can be obtained by deconvolution of the optical pulse differential waveform from the observed waveform.
  • the example of deconvolution of the photodifferential waveform from the photoacoustic signal after reconstruction is described, but instead, the photodifferential waveform is deconvoluted from the photoacoustic signal before reconstruction. Also good.
  • the differential waveform of the light irradiated to the subject is deconvoluted from the detected photoacoustic signal.
  • the distribution of the light absorber can be obtained, and an absorption distribution image can be generated.
  • an absorption distribution image blood vessels can be observed more clearly.
  • Other effects are the same as those of the second embodiment.
  • the laser light irradiation from the light irradiation unit 32 and the laser light irradiation from the light emitting unit 16 of the puncture needle 15 have been described as being performed separately, but the laser light irradiation from the light irradiation unit 32 and The laser light irradiation from the light emitting unit 16 of the puncture needle 15 may be performed simultaneously.
  • the probe 11 simultaneously receives a photoacoustic signal caused by the laser light emitted from the light emitting unit 32 and a photoacoustic signal caused by the laser light emitted from the light emitting unit 16 of the puncture needle 15 (at a time). )To detect.
  • the image display can be performed in a shorter time than when two photoacoustic images are generated and synthesized (superimposed) later.
  • the example in which the first photoacoustic signal and the second photoacoustic signal are complexized has been described.
  • the first photoacoustic signal and the second photoacoustic are not complexized.
  • the signal may be reconstructed separately.
  • the reconstruction method is not limited to the Fourier transform method.
  • the ratio between the first photoacoustic signal and the second photoacoustic signal is calculated using the complex information after being converted into a complex number, but the ratio is calculated from the intensity information of both. The same effect can be obtained.
  • the intensity information can be generated based on the signal intensity in the reconstructed image corresponding to one wavelength and the signal intensity in the reconstructed image corresponding to the other wavelength.
  • the number of wavelengths of the pulsed laser light applied to the subject is not limited to two, and the subject is irradiated with three or more pulsed laser lights, and photoacoustic data corresponding to each wavelength is generated.
  • a photoacoustic image may be generated based on this.
  • the two-wavelength data calculation unit 233 may generate a relative signal intensity magnitude relationship between the photoacoustic data corresponding to each wavelength as the phase information.
  • the intensity information extraction unit 234 may generate, as intensity information, a collection of signal intensities in photoacoustic data corresponding to each wavelength, for example.
  • the photoacoustic image generation apparatus of this invention is not limited only to the said embodiment, Various correction and change are possible from the structure of the said embodiment. Those subjected to are also included in the scope of the present invention.

Abstract

[Problem] To provide a photoacoustic image generating device with which the location of a puncture needle can be ascertained by photoacoustic imaging. [Solution] A laser (13) emits a laser beam. The laser beam is irradiated from a light-irradiating means towards a subject. A puncture needle (15) has a light-emitting unit (16), and laser beam irradiation is implemented via the light-emitting unit (16). A probe (11) detects the photoacoustic signal generated when a light absorber within the subject absorbs the laser beam irradiated from the light-irradiating means. The probe (11) also detects the photoacoustic signal generated when a light absorber within the subject absorbs a laser beam emitted from the light-emitting unit (16). An image generating means (23) generates a photoacoustic image on the basis of the photoacoustic signals.

Description

光音響画像生成装置及び方法Photoacoustic image generation apparatus and method
 本発明は、光音響画像生成装置及び方法に関し、更に詳しくは、被検体にレーザ光を照射し、レーザ光照射により被検体内で生じた超音波を検出して光音響画像を生成する光音響画像生成装置及び方法に関する。 The present invention relates to a photoacoustic image generation apparatus and method, and more specifically, photoacoustics that generate a photoacoustic image by irradiating a subject with laser light and detecting ultrasonic waves generated in the subject by the laser light irradiation. The present invention relates to an image generation apparatus and method.
 生体内部の状態を非侵襲で検査できる画像検査法の一種として、超音波検査法が知られている。超音波検査では、超音波の送信及び受信が可能な超音波探触子を用いる。超音波探触子から被検体(生体)に超音波を送信させると、その超音波は生体内部を進んでいき、組織界面で反射する。超音波探触子でその反射音波を受信し、反射超音波が超音波探触子に戻ってくるまでの時間に基づいて距離を計算することで、内部の様子を画像化することができる。 An ultrasonic inspection method is known as a kind of image inspection method capable of non-invasively examining the state inside a living body. In the ultrasonic inspection, an ultrasonic probe capable of transmitting and receiving ultrasonic waves is used. When ultrasonic waves are transmitted from the ultrasonic probe to the subject (living body), the ultrasonic waves travel inside the living body and are reflected at the tissue interface. By receiving the reflected sound wave with the ultrasonic probe and calculating the distance based on the time until the reflected ultrasonic wave returns to the ultrasonic probe, the internal state can be imaged.
 また、光音響効果を利用して生体の内部を画像化する光音響イメージングが知られている。一般に光音響イメージングでは、レーザパルスなどのパルスレーザ光を生体内に照射する。生体内部では、生体組織がパルスレーザ光のエネルギーを吸収し、そのエネルギーによる断熱膨張により超音波(光音響信号)が発生する。この光音響信号を超音波プローブなどで検出し、検出信号に基づいて光音響画像を構成することで、光音響信号に基づく生体内の可視化が可能である。 Also, photoacoustic imaging is known in which the inside of a living body is imaged using the photoacoustic effect. In general, in photoacoustic imaging, a living body is irradiated with pulsed laser light such as a laser pulse. Inside the living body, the living tissue absorbs the energy of the pulsed laser light, and ultrasonic waves (photoacoustic signals) are generated by adiabatic expansion due to the energy. By detecting this photoacoustic signal with an ultrasonic probe or the like and constructing a photoacoustic image based on the detection signal, in-vivo visualization based on the photoacoustic signal is possible.
 ここで、特許文献1には、光音響を用いた生体情報イメージングと穿刺針を用いた処置との組み合わせが言及されている。特許文献1では、光音響画像を生成し、その画像を観察することで、腫瘍などの患部や、患部の疑いがある部位などを見つける。そのような部位をより精密に検査するために、或いは患部に注射などを行うために、注射針や細胞診針等の穿刺針を用いて、細胞を採取や患部への注射などを行う。特許文献1では、光音響画像を用いて、患部を観察しながら穿刺を行うことができるとしている。 Here, Patent Document 1 refers to a combination of biological information imaging using photoacoustics and treatment using a puncture needle. In Patent Literature 1, a photoacoustic image is generated, and the image is observed to find an affected part such as a tumor or a part suspected of being affected. In order to inspect such a site more precisely or to inject an affected part, etc., a puncture needle such as an injection needle or a cytodiagnosis needle is used to collect cells or inject into the affected part. In Patent Document 1, it is assumed that puncture can be performed while observing an affected area using a photoacoustic image.
特開2009-31262号公報JP 2009-31262 A
 ところで、特許文献1において光音響画像を観察しながら穿刺針の穿刺を行う際、患部やその疑いがある部位がどこにあるかは光音響画像で確認できるものの、穿刺針がどの位置に刺されているかを光音響画像で確認することは難しい。光音響画像上で穿刺針の位置を確認することができないと、穿刺針、特にその先端と患部やその疑いがある部位との位置関係を把握することができず、光音響画像を観察しながら穿刺針を所望の位置に穿刺することが困難となる。 By the way, when performing puncture of a puncture needle while observing a photoacoustic image in Patent Document 1, it is possible to confirm where the affected part or a suspicious part is located by a photoacoustic image, but at which position the puncture needle is stuck. Is difficult to confirm with a photoacoustic image. If the position of the puncture needle cannot be confirmed on the photoacoustic image, it is impossible to grasp the positional relationship between the puncture needle, particularly the tip thereof, the affected part, or the suspected part, and while observing the photoacoustic image It becomes difficult to puncture the puncture needle at a desired position.
 本願発明は、上記に鑑み、光音響画像上で穿刺針の位置を確認することができる光音響画像生成装置及び方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a photoacoustic image generation apparatus and method that can confirm the position of a puncture needle on a photoacoustic image.
 上記目的を達成するために、本発明は、光を出射する光源と、光源からの光を被検体に向けて照射する光照射手段と、光源からの光を出射する発光部を有する穿刺針と、被検体内の光吸収体が、光照射手段から照射された光及び発光部から出射した光を吸収することで発生する光音響信号を検出する超音波探触子と、光音響信号に基づいて光音響画像を生成する画像生成手段とを備えたことを特徴とする光音響画像生成装置を提供する。 In order to achieve the above object, the present invention provides a light source that emits light, light irradiation means that irradiates light from the light source toward the subject, and a puncture needle that includes a light emitting unit that emits light from the light source. Based on the photoacoustic signal, an ultrasonic probe that detects a photoacoustic signal generated when the light absorber in the subject absorbs the light emitted from the light irradiation means and the light emitted from the light emitting unit. There is provided a photoacoustic image generation apparatus comprising image generation means for generating a photoacoustic image.
 本発明では、穿刺針が、少なくともその先端部分に発光部を有する構成とすることが好ましい。 In the present invention, it is preferable that the puncture needle has a light emitting portion at least at the tip thereof.
 発光部は、穿刺針の先端方向に向かって厚みが減少するように形成された導光部材で構成することができる。 The light emitting part can be composed of a light guide member formed so that its thickness decreases toward the tip of the puncture needle.
 穿刺針は、互いに離れた位置に配置される複数の発光部を有していてもよい。その場合、複数の発光部のうちの少なくとも1つは、光源からの光を導光する光ファイバの中間地点でコアを露出させた部分で構成してもよい。 The puncture needle may have a plurality of light emitting units arranged at positions separated from each other. In this case, at least one of the plurality of light emitting units may be configured by a portion where the core is exposed at an intermediate point of the optical fiber that guides light from the light source.
 本発明では、光照射手段からの光照射と発光部からの光出射とを同時に行い、超音波探触子が、光照射手段から照射された光に起因する光音響信号と発光部から出射した光に起因する光音響信号とを同時に検出することとしてもよい。 In the present invention, the light irradiation from the light irradiation means and the light emission from the light emitting section are performed simultaneously, and the ultrasonic probe is emitted from the light emitting section and the photoacoustic signal resulting from the light emitted from the light irradiation means. It is good also as detecting simultaneously the photoacoustic signal resulting from light.
 上記に代えて、光照射手段からの光照射と発光部からの光出射とを別々に行い、画像生成手段が、光照射手段から照射された光に起因する光音響信号に基づいて第1の光音響画像を生成し、発光部から出射した光に起因する光音響信号に基づいて第2の光音響画像を生成し、第1の光音響画像と第2の光音響画像とを合成することとしてもよい。 Instead of the above, the light irradiation from the light irradiation means and the light emission from the light emitting unit are separately performed, and the image generation means performs the first based on the photoacoustic signal caused by the light irradiated from the light irradiation means. Generating a photoacoustic image, generating a second photoacoustic image based on a photoacoustic signal resulting from light emitted from the light emitting unit, and synthesizing the first photoacoustic image and the second photoacoustic image It is good.
 光源は、相互に異なる複数の波長の光を出射してもよい。その場合、画像生成手段は、各波長の光が照射されたときに検出された光音響信号の信号強度の大小関係に基づいて光音響画像を生成してもよい。 The light source may emit light having a plurality of different wavelengths. In that case, the image generation means may generate a photoacoustic image based on the magnitude relationship of the signal intensity of the photoacoustic signal detected when the light of each wavelength is irradiated.
 画像生成手段は、光音響信号から、被検体に照射された光の微分波形をデコンボリューションするデコンボリューション手段を有していてもよい。 The image generation means may have a deconvolution means for deconvolution of a differential waveform of light irradiated to the subject from the photoacoustic signal.
 本発明は、また、光照射手段から被検体に向けて光を照射するステップと、発光部を有する穿刺針の発光部から被検体に光を照射するステップと、被検体内の光吸収体が、光照射手段から照射された光及び発光部から照射された光を吸収することで発生する光音響信号を検出するステップと、光音響信号に基づいて光音響画像を生成するステップとを有することを特徴とする光音響画像生成方法を提供する。 The present invention also includes a step of irradiating light from the light irradiation means toward the subject, a step of irradiating the subject from the light emitting portion of the puncture needle having the light emitting portion, and a light absorber in the subject. Detecting a photoacoustic signal generated by absorbing the light emitted from the light irradiating means and the light emitted from the light emitting unit, and generating a photoacoustic image based on the photoacoustic signal. A photoacoustic image generation method characterized by the above is provided.
 本発明の光音響画像生成方法では、光照射手段から光を照射するステップと、発光部から光を照射するステップとを同時に行い、光音響信号を検出するステップにおいて、光照射手段から照射された光に起因する光音響信号と発光部から出射した光に起因する光音響信号とを同時に検出してもよい。 In the photoacoustic image generation method of the present invention, the step of irradiating light from the light irradiating unit and the step of irradiating light from the light emitting unit are performed simultaneously, and the step of detecting the photoacoustic signal is performed by the light irradiating unit You may detect simultaneously the photoacoustic signal resulting from light and the photoacoustic signal resulting from the light radiate | emitted from the light emission part.
 上記に代えて、光照射手段から光を照射するステップと、発光部から光を照射するステップとを別々に行い、光音響信号を検出するステップにおいて、光照射手段から照射された光に起因する光音響信号と発光部から出射した光に起因する光音響信号とを別々に検出し、光音響画像を生成するステップにおいて、光照射手段から照射された光に起因する光音響信号に基づいて第1の光音響画像を生成し、発光部から出射した光に起因する光音響信号に基づいて第2の光音響画像を生成し、第1の光音響画像と第2の光音響画像とを合成してもよい。 Instead of the above, in the step of irradiating light from the light irradiating means and the step of irradiating light from the light emitting unit separately and detecting the photoacoustic signal, the light irradiating means is caused by the light irradiated from the light irradiating means. In the step of separately detecting the photoacoustic signal and the photoacoustic signal caused by the light emitted from the light emitting unit and generating the photoacoustic image, the first step is based on the photoacoustic signal caused by the light emitted from the light irradiation unit. 1 photoacoustic image is generated, a second photoacoustic image is generated based on a photoacoustic signal resulting from light emitted from the light emitting unit, and the first photoacoustic image and the second photoacoustic image are combined. May be.
 本発明の光音響画像生成装置及び方法では、穿刺針に発光部を設け、その発光部から被検体に対して光を照射する。発光部から照射された光は、穿刺針の近傍において吸収され、穿刺針の近傍において光音響信号が発生する。その光音響信号に基づいて光音響画像を生成することで、光音響画像上で、発光部から光が照射された場所を認識することができ、穿刺針が存在する位置を確認することができる。 In the photoacoustic image generation apparatus and method of the present invention, a light emitting unit is provided on the puncture needle, and the subject is irradiated with light from the light emitting unit. The light emitted from the light emitting unit is absorbed in the vicinity of the puncture needle, and a photoacoustic signal is generated in the vicinity of the puncture needle. By generating a photoacoustic image based on the photoacoustic signal, it is possible to recognize the location where light is emitted from the light emitting unit on the photoacoustic image, and to confirm the position where the puncture needle is present. .
本発明の第1実施形態の光音響画像生成装置を示すブロック図。The block diagram which shows the photoacoustic image generating apparatus of 1st Embodiment of this invention. プローブの外観を示す側面図。The side view which shows the external appearance of a probe. プローブの外観を示す正面図。The front view which shows the external appearance of a probe. 発光部の構成例を示す図。The figure which shows the structural example of a light emission part. 光照射部の照明範囲と発光部の照明範囲とを示す図。The figure which shows the illumination range of a light irradiation part, and the illumination range of a light emission part. 発光部を穿刺針の先端部分に設けた例を示す図。The figure which shows the example which provided the light emission part in the front-end | tip part of the puncture needle. 発光部を穿刺針の先端に設けた場合の光照射部の照明範囲と発光部の照明範囲とを示す図。The figure which shows the illumination range of the light irradiation part at the time of providing a light emission part in the front-end | tip of a puncture needle, and the illumination range of a light emission part. 穿刺針に2つの発光部を設けた例を示す図。The figure which shows the example which provided two light emission parts in the puncture needle. 図7に示す2つの発光部を得るための構成例を示す図。The figure which shows the structural example for obtaining the two light emission parts shown in FIG. 2つの発光部を設けた場合の光照射部の照明範囲と発光部の照明範囲とを示す図。The figure which shows the illumination range of the light irradiation part at the time of providing two light emission parts, and the illumination range of a light emission part. 動作手順を示すフローチャート。The flowchart which shows an operation | movement procedure. 本発明の第2実施形態の光音響画像生成装置における画像生成手段を示すブロック図。The block diagram which shows the image generation means in the photoacoustic image generation apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の光音響画像生成装置における画像生成手段を示すブロック図。The block diagram which shows the image generation means in the photoacoustic image generation apparatus of 3rd Embodiment of this invention.
 以下、図面を参照し、本発明の実施の形態を詳細に説明する。図1は、本発明の第1実施形態の光音響画像生成装置を示す。光音響画像生成装置(光音響画像診断装置)10は、プローブ(超音波探触子)11と、超音波ユニット12と、レーザユニット(光源)13とを含む。レーザユニット13は、生体組織などの被検体に照射するレーザ光を生成する。レーザ光の波長は、観察対象の生体組織などに応じて適宜設定すればよい。レーザユニット13から出射したレーザ光は、例えば光ファイバなどの導光手段を用いてプローブ11及び穿刺針15まで導光される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a photoacoustic image generation apparatus according to a first embodiment of the present invention. A photoacoustic image generation apparatus (photoacoustic image diagnostic apparatus) 10 includes a probe (ultrasonic probe) 11, an ultrasonic unit 12, and a laser unit (light source) 13. The laser unit 13 generates laser light that irradiates a subject such as a living tissue. The wavelength of the laser light may be appropriately set according to the biological tissue to be observed. The laser light emitted from the laser unit 13 is guided to the probe 11 and the puncture needle 15 using light guide means such as an optical fiber.
 プローブ11は、例えば内視鏡用の超音波プローブとして構成される。プローブ11は、プローブ11まで導光されたレーザ光を被検体に向けて照射する光照射手段を有する。また、プローブ11は、被検体内の光吸収体が照射されたレーザ光を吸収することで発生する光音響信号を検出する。プローブ11は、例えば一次元的に配列された複数の超音波振動子を有している。なお、光照射手段は、プローブ11に設けられている必要はなく、プローブ11以外の場所からレーザ光を照射することとしてもよい。 The probe 11 is configured as an ultrasonic probe for an endoscope, for example. The probe 11 has light irradiation means for irradiating the subject with laser light guided to the probe 11. The probe 11 detects a photoacoustic signal generated by absorbing the laser beam irradiated by the light absorber in the subject. The probe 11 has, for example, a plurality of ultrasonic transducers arranged one-dimensionally. The light irradiating means does not need to be provided on the probe 11 and may be irradiated with laser light from a place other than the probe 11.
 穿刺針15は、被検体内に穿刺される針である。穿刺針15は、レーザ光を出射する発光部16を有する。穿刺針15が被検体内に穿刺された状態のとき、発光部16から出射したレーザ光は被検体内の生体組織などに照射される。発光部16の照明範囲は、プローブ11に設けられた光照射手段の照明範囲(光照射範囲)よりも狭い。また、発光部16から出射した光は、穿刺針15の近傍の生体組織に照射されればよいため、発光部16から出射するレーザ光の光量やパワーは、光照射手段から照射されるレーザ光の光量やパワーよりも低くてよい。 The puncture needle 15 is a needle that is punctured into the subject. The puncture needle 15 has a light emitting unit 16 that emits laser light. When the puncture needle 15 is punctured into the subject, the laser light emitted from the light emitting unit 16 is irradiated to a living tissue or the like in the subject. The illumination range of the light emitting unit 16 is narrower than the illumination range (light irradiation range) of the light irradiation means provided in the probe 11. In addition, since the light emitted from the light emitting unit 16 may be applied to the living tissue in the vicinity of the puncture needle 15, the amount of light and power of the laser light emitted from the light emitting unit 16 is the laser light emitted from the light irradiation unit. It may be lower than the amount of light and power.
 超音波ユニット12は、受信回路21、AD変換手段22、画像生成手段23、及び制御手段24を有する。受信回路21は、プローブ11が有する複数の超音波振動子が検出した光音響信号を受信する。AD変換手段22は、受信回路21が受信した光音響信号をデジタル信号に変換する。AD変換手段22は、例えば外部から入力される所定のサンプリングクロック信号に基づいて、所定のサンプリング周期で光音響信号をサンプリングする。 The ultrasonic unit 12 includes a receiving circuit 21, AD conversion means 22, image generation means 23, and control means 24. The receiving circuit 21 receives photoacoustic signals detected by a plurality of ultrasonic transducers included in the probe 11. The AD conversion means 22 converts the photoacoustic signal received by the receiving circuit 21 into a digital signal. The AD converter 22 samples the photoacoustic signal at a predetermined sampling period based on, for example, a predetermined sampling clock signal input from the outside.
 画像生成手段23は、プローブ11が検出した光音響信号に基づいて光音響画像を生成する。光音響画像の生成は、例えば、位相整合加算などの画像再構成や、検波、対数変換などを含む。画像表示手段14は、画像生成手段23が生成した光音響画像を、表示モニタなどに表示する。制御手段24は、超音波ユニット12内の各部を制御する。制御手段24は、例えばレーザユニット13にレーザ発振トリガ信号を送り、レーザユニット13からレーザ光を出射させる。また、レーザ光の照射に合わせて、AD変換手段22にサンプリングトリガ信号を送り、光音響信号のサンプリング開始タイミングを制御する。 The image generation means 23 generates a photoacoustic image based on the photoacoustic signal detected by the probe 11. The generation of the photoacoustic image includes, for example, image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like. The image display unit 14 displays the photoacoustic image generated by the image generation unit 23 on a display monitor or the like. The control unit 24 controls each part in the ultrasonic unit 12. For example, the control unit 24 sends a laser oscillation trigger signal to the laser unit 13 to emit laser light from the laser unit 13. A sampling trigger signal is sent to the AD conversion means 22 in accordance with the laser light irradiation to control the sampling start timing of the photoacoustic signal.
 図2A及び図2Bは、プローブ11の外観を示す。図2Aはプローブ11の側面図であり、図2Bはプローブ11の正面図である。プローブ11は、正面方向から見て、例えば一次元配列された複数の超音波振動子33の両側に光照射手段(光照射部)32を有する(図2B)。光照射部32は、光ファイバ31(図2A)を用いてレーザユニット13から導光されたレーザ光を被検体に照射する。光照射部32は、例えば面光源として構成される。光照射部32の光照射範囲(照明範囲)は、光音響画像の生成範囲に対応している。被検体内の血管や病変部などは、光照射部32から照射されたレーザ光を吸収して光音響信号を発生する。 2A and 2B show the appearance of the probe 11. FIG. FIG. 2A is a side view of the probe 11, and FIG. 2B is a front view of the probe 11. The probe 11 includes, for example, light irradiation means (light irradiation units) 32 on both sides of a plurality of one-dimensionally arranged ultrasonic transducers 33 when viewed from the front (FIG. 2B). The light irradiation unit 32 irradiates the subject with laser light guided from the laser unit 13 using the optical fiber 31 (FIG. 2A). The light irradiation part 32 is comprised as a surface light source, for example. The light irradiation range (illumination range) of the light irradiation unit 32 corresponds to the generation range of the photoacoustic image. A blood vessel or a lesioned part in the subject absorbs the laser beam emitted from the light irradiation unit 32 and generates a photoacoustic signal.
 プローブ11は、穿刺針15をガイドする穿刺ガイド38を有している。穿刺針15は、穿刺ガイド38にガイドされて、所定の角度で被検体内に穿刺される。図2Aにおいては、穿刺針15が照明範囲34内の穿刺された状態を示している。図2Aでは図示を省略しているが、穿刺針15の発光部16からも、光ファイバ31を用いて導光されたレーザ光が照射される。発光部16から照射された光は、例えば被検体の生体組織中に含まれる血液等の成分で吸収され、その部分から光音響信号が発生する。 The probe 11 has a puncture guide 38 for guiding the puncture needle 15. The puncture needle 15 is guided by the puncture guide 38 and punctured into the subject at a predetermined angle. FIG. 2A shows a state where the puncture needle 15 is punctured within the illumination range 34. Although not shown in FIG. 2A, the laser beam guided using the optical fiber 31 is also emitted from the light emitting portion 16 of the puncture needle 15. The light emitted from the light emitting unit 16 is absorbed by, for example, a component such as blood contained in the biological tissue of the subject, and a photoacoustic signal is generated from that portion.
 図3は、発光部16の構成例を示す。発光部16は、例えば線状の光源として構成される。発光部16は、例えば穿刺針15の先端方向(光の進行方向)に向かって厚みが減少するように形成された導光部材で構成される。具体的には、穿刺針15の先端方向に向かって厚みが減少するようなテーパー形のファイバーコアで構成することができる。テーパー形状は研磨などによって形成されてもよい。発光部16は、発光部16からのレーザ光が穿刺針の近傍の生体組織に照射されればよいため、プローブ11の光照射部32とは異なり、広い範囲を照明する必要はない。 FIG. 3 shows a configuration example of the light emitting unit 16. The light emitting unit 16 is configured as, for example, a linear light source. The light emitting unit 16 is configured by a light guide member formed so that the thickness decreases toward the distal end direction (light traveling direction) of the puncture needle 15, for example. Specifically, it can be configured with a tapered fiber core whose thickness decreases toward the distal end of the puncture needle 15. The tapered shape may be formed by polishing or the like. Unlike the light irradiation unit 32 of the probe 11, the light emitting unit 16 does not need to illuminate a wide range because the light emitting unit 16 only needs to irradiate the living tissue near the puncture needle with the laser light from the light emitting unit 16.
 図4は、光照射部32(図1)の照明範囲と穿刺針15の発光部16の照明範囲とを示す。発光部16がプローブ11の光照射部32の照明範囲34の内側に入る場合、発光部16の照明範囲35では、光照射部32からのレーザ光に加えて、穿刺針15の発光部16からのレーザ光が照射される。プローブ11は、被検体内の光吸収体が、光照射部32から照射されたレーザ光及び穿刺針15の発光部16から出射したレーザ光を吸収することで発生する光音響信号を検出する。画像生成手段23は、検出された光音響信号に基づいて光音響画像を生成する。 FIG. 4 shows the illumination range of the light irradiation unit 32 (FIG. 1) and the illumination range of the light emitting unit 16 of the puncture needle 15. When the light emitting unit 16 enters the inside of the illumination range 34 of the light irradiation unit 32 of the probe 11, in the illumination range 35 of the light emitting unit 16, in addition to the laser light from the light irradiation unit 32, from the light emitting unit 16 of the puncture needle 15. The laser beam is irradiated. The probe 11 detects a photoacoustic signal generated when the light absorber in the subject absorbs the laser light emitted from the light irradiation unit 32 and the laser light emitted from the light emitting unit 16 of the puncture needle 15. The image generation unit 23 generates a photoacoustic image based on the detected photoacoustic signal.
 例えば、光照射部32からのレーザ光照射と、穿刺針15の発光部16からのレーザ光照射とを別々に行う。例えば、先に、光照射部32からレーザ光照射を行って光音響信号を検出し、その後、穿刺針15の発光部16からレーザ光照射を行って光音響信号を検出する。画像生成手段23は、光照射部32から照射されたレーザ光に起因する光音響信号に基づいて第1の光音響画像を生成する。また、穿刺針15の発光部16から照射されたレーザ光に起因する光音響信号に基づいて第2の光音響画像を生成して、生成した2つの画像を合成する。 For example, the laser beam irradiation from the light irradiation unit 32 and the laser beam irradiation from the light emitting unit 16 of the puncture needle 15 are performed separately. For example, laser light irradiation is first performed from the light irradiation unit 32 to detect a photoacoustic signal, and then laser light irradiation is performed from the light emitting unit 16 of the puncture needle 15 to detect the photoacoustic signal. The image generation unit 23 generates a first photoacoustic image based on the photoacoustic signal resulting from the laser light emitted from the light irradiation unit 32. Moreover, a 2nd photoacoustic image is produced | generated based on the photoacoustic signal resulting from the laser beam irradiated from the light emission part 16 of the puncture needle 15, and the produced | generated two images are synthesize | combined.
 上記生成された第1の光音響画像により、照明範囲34内の病変36や血管37などを画像化できる。また、穿刺針15の発光部16からは、穿刺針15の近傍にのみレーザ光が照射されるため、第2の光音響画像では、穿刺針の位置及び方向に従って、直線状に光音響信号が検出される部分が現れる。ユーザは、合成された光音響画像を観察し、直線状に現れる光音響信号が強い部分と弱い部分との境界を探すことで、穿刺針15が光音響画像中のどの位置にあるかを特定することができる。 The lesion 36 and the blood vessel 37 in the illumination range 34 can be imaged by the generated first photoacoustic image. Further, since the light emitting unit 16 of the puncture needle 15 emits laser light only in the vicinity of the puncture needle 15, in the second photoacoustic image, a photoacoustic signal is linearly formed according to the position and direction of the puncture needle. The part to be detected appears. The user observes the synthesized photoacoustic image and searches for the boundary between the strong and weak portions of the photoacoustic signal appearing in a straight line, thereby specifying the position of the puncture needle 15 in the photoacoustic image. can do.
 例えば図4において、光音響画像で画像化された病変36に穿刺針15を穿刺したいとする。このとき、穿刺針15の先端が誤って血管37を突き刺すことがないように注意が必要である。医師などのユーザは、光音響画像を観察しながら、穿刺針15の穿刺を行う。このとき、光音響画像では発光部16からのレーザ光が照射される部分が明るく描画されるため、ユーザは光音響画像中で穿刺針15の位置を確認できる。光音響画像中で穿刺針15の位置が確認できることで、誤って穿刺針15の先端が血管37を突き刺す事態を避けることができる。 For example, in FIG. 4, suppose that it is desired to puncture the puncture needle 15 into the lesion 36 imaged by the photoacoustic image. At this time, care must be taken so that the tip of the puncture needle 15 does not pierce the blood vessel 37 by mistake. A user such as a doctor punctures the puncture needle 15 while observing the photoacoustic image. At this time, in the photoacoustic image, since the portion irradiated with the laser light from the light emitting unit 16 is drawn brightly, the user can confirm the position of the puncture needle 15 in the photoacoustic image. Since the position of the puncture needle 15 can be confirmed in the photoacoustic image, it is possible to avoid a situation where the tip of the puncture needle 15 accidentally pierces the blood vessel 37.
 なお、図3では、発光部16が穿刺針15の全体に対応して設けられる例を説明したが、発光部16は、必ずしも穿刺針15の全体にわたって設けられている必要はなく、少なくともその先端部分に設けられていればよい。例えば細い光ファイバなどを用いて穿刺針15の先端までレーザ光を導光し、穿刺針15の先端部分に発光部を設けてもよい。針先までレーザ光を導光する光ファイバは、穿刺針15の内側を通してもよいし、穿刺針15の外側に配置してもよい。 In addition, although the example in which the light emission part 16 is provided corresponding to the whole puncture needle 15 was demonstrated in FIG. 3, the light emission part 16 does not necessarily need to be provided over the whole puncture needle 15, At least the front-end | tip What is necessary is just to be provided in the part. For example, a laser beam may be guided to the tip of the puncture needle 15 using a thin optical fiber or the like, and a light emitting unit may be provided at the tip of the puncture needle 15. The optical fiber that guides the laser beam to the needle tip may pass through the inside of the puncture needle 15 or may be arranged outside the puncture needle 15.
 図5は、発光部16を穿刺針15の先端部分に設けた例を示す。また、図6は、発光部を穿刺針の先端に設けた場合の光照射部32の照明範囲34と発光部16の照明範囲35とを示す。この例の場合、穿刺針15の長さ方向に関して発光部16の長さが短くなり、照明範囲35は図4の場合に比して狭くなる。しかしながら、このような構成とした場合でも、光音響画像中で穿刺針15の先端の位置を特定することができる。 FIG. 5 shows an example in which the light emitting unit 16 is provided at the tip of the puncture needle 15. FIG. 6 shows an illumination range 34 of the light irradiation unit 32 and an illumination range 35 of the light emitting unit 16 when the light emitting unit is provided at the tip of the puncture needle. In the case of this example, the length of the light emitting unit 16 is shortened in the length direction of the puncture needle 15, and the illumination range 35 is narrower than in the case of FIG. However, even with such a configuration, the position of the tip of the puncture needle 15 can be specified in the photoacoustic image.
 穿刺針15に設ける発光部16は1つには限られず、互いに離れた位置に配置される複数の発光部16を設けることとしてもよい。図7は、穿刺針15に2つの発光部16を設けた例を示す。穿刺針15は、その先端部分の発光部16aに加えて、中間部分にも発光部16bを有する。図8は、図7に示す2つの発光部16a、16bを得るための構成例を示す。例えば、穿刺針15の中間部分の発光部16bは、部分的に光ファイバのクラッド42をはぎ取ってコア41を露出させ、更にコア41の一部を研磨することで実現できる。先端部の発光部16aについては、コア41を露出させたもので実現できる。 The light-emitting part 16 provided in the puncture needle 15 is not restricted to one, It is good also as providing the several light-emitting part 16 arrange | positioned in the mutually distant position. FIG. 7 shows an example in which two light emitting portions 16 are provided on the puncture needle 15. The puncture needle 15 has a light emitting portion 16b at an intermediate portion in addition to the light emitting portion 16a at the tip portion. FIG. 8 shows a configuration example for obtaining the two light emitting units 16a and 16b shown in FIG. For example, the light emitting portion 16b in the intermediate portion of the puncture needle 15 can be realized by partially peeling off the optical fiber cladding 42 to expose the core 41 and further polishing a part of the core 41. The light emitting portion 16a at the tip can be realized by exposing the core 41.
 図9は、2つの発光部を設けた場合の光照射部32の照明範囲と発光部16の照明範囲とを示す。穿刺針15の発光部16a、16bに対応して、照明範囲35aと照明範囲35bとが形成される。この場合、照明範囲35aと照明範囲35bのそれぞれにおいて、穿刺針15の近傍から光音響信号が検出される。光音響画像では、2つの光音響信号が検出された部分を結んだ位置を、穿刺針の位置として検出できる。 FIG. 9 shows the illumination range of the light irradiation unit 32 and the illumination range of the light emitting unit 16 when two light emitting units are provided. An illumination range 35a and an illumination range 35b are formed corresponding to the light emitting portions 16a and 16b of the puncture needle 15. In this case, a photoacoustic signal is detected from the vicinity of the puncture needle 15 in each of the illumination range 35a and the illumination range 35b. In the photoacoustic image, the position connecting the portions where the two photoacoustic signals are detected can be detected as the position of the puncture needle.
 図10は、動作手順を示す。超音波ユニット12の制御手段24は、レーザユニット13にレーザ発振トリガ信号を送る。レーザユニット13は、レーザ発振トリガ信号を受けると、レーザ発振を開始し、パルスレーザ光を出射する。レーザユニット13から出射したパルスレーザ光は、プローブ11の光照射部32(図2A)から被検体に照射される(ステップS1)。 FIG. 10 shows the operation procedure. The control means 24 of the ultrasonic unit 12 sends a laser oscillation trigger signal to the laser unit 13. Upon receiving the laser oscillation trigger signal, the laser unit 13 starts laser oscillation and emits pulsed laser light. The subject is irradiated with the pulse laser beam emitted from the laser unit 13 from the light irradiation unit 32 (FIG. 2A) of the probe 11 (step S1).
 プローブ11は、光照射部32からのレーザ光の照射により被検体内で発生した光音響信号を検出する(ステップS2)。AD変換手段22は、受信回路21を介して光音響信号を受け取り、光音響信号をサンプリングする。画像生成手段23は、サンプリングされた光音響信号に基づいて第1の光音響画像を生成する(ステップS3)。 The probe 11 detects a photoacoustic signal generated in the subject by the laser beam irradiation from the light irradiation unit 32 (step S2). The AD converter 22 receives the photoacoustic signal via the receiving circuit 21 and samples the photoacoustic signal. The image generation means 23 generates a first photoacoustic image based on the sampled photoacoustic signal (step S3).
 続いて、穿刺針15の発光部16からレーザ光照射を行う(ステップS4)。プローブ11は、発光部16からのレーザ光の照射により被検体内で発生した光音響信号を検出する。(ステップS5)。AD変換手段22は、受信回路21を介して光音響信号を受け取り、光音響信号をサンプリングする。画像生成手段23は、サンプリングされた光音響信号に基づいて第2の光音響画像を生成する(ステップS6)。 Subsequently, laser light irradiation is performed from the light emitting portion 16 of the puncture needle 15 (step S4). The probe 11 detects a photoacoustic signal generated in the subject by the irradiation of the laser light from the light emitting unit 16. (Step S5). The AD converter 22 receives the photoacoustic signal via the receiving circuit 21 and samples the photoacoustic signal. The image generation means 23 generates a second photoacoustic image based on the sampled photoacoustic signal (step S6).
 画像生成手段23は、生成した第1及び第2の光音響画像を合成して出力する。画像表示手段14は、合成された光音響画像を表示する(ステップS7)。画像生成手段23にて画像生成を行うのに代えて、画像表示手段14が、第1及び第2の光音響画像を重ねて表示することとしてもよい。 The image generation means 23 synthesizes and outputs the generated first and second photoacoustic images. The image display means 14 displays the synthesized photoacoustic image (step S7). Instead of performing image generation by the image generation unit 23, the image display unit 14 may display the first and second photoacoustic images in a superimposed manner.
 本実施形態では、穿刺針15に発光部16を設け、発光部16からレーザ光の照射を行う。発光部16から照射されたレーザ光は穿刺針15の近傍において吸収され、穿刺針15の近傍において光音響信号が発生する。そのような光音響信号に基づいて光音響画像を生成することで、光音響画像上で、穿刺針15の位置などを確認することができる。特に、光照射部32からレーザ光照射を行って生成した光音響画像(第1の光音響画像)と、穿刺針15の発光部16からレーザ光照射を行って生成した光音響画像(第2の光音響画像)とを重ねて表示することで、表示された光音響画像を観察しつつ穿刺針15の穿刺を行う際に、光音響画像上で病変などの位置と穿刺針15の位置関係を把握することができる。 In the present embodiment, the puncture needle 15 is provided with a light emitting unit 16 and laser light is emitted from the light emitting unit 16. The laser light emitted from the light emitting unit 16 is absorbed in the vicinity of the puncture needle 15, and a photoacoustic signal is generated in the vicinity of the puncture needle 15. By generating a photoacoustic image based on such a photoacoustic signal, the position of the puncture needle 15 and the like can be confirmed on the photoacoustic image. In particular, a photoacoustic image (first photoacoustic image) generated by irradiating laser light from the light irradiation unit 32 and a photoacoustic image (second photon) generated by irradiating laser light from the light emitting unit 16 of the puncture needle 15. When the puncture needle 15 is punctured while observing the displayed photoacoustic image, the positional relationship between the position of the lesion and the like on the photoacoustic image and the puncture needle 15 is displayed. Can be grasped.
 続いて、本発明の第2実施形態を説明する。本実施形態では、被検体に対して複数の波長の光を照射し、各波長の光を照射したときの光音響信号を検出する。本実施形態では、複数の波長の光を照射したときの光音響信号を用い、各光吸収体の光吸収特性が波長に応じて異なることを利用した機能イメージングを行う。 Subsequently, a second embodiment of the present invention will be described. In the present embodiment, the subject is irradiated with light of a plurality of wavelengths, and a photoacoustic signal when the light of each wavelength is irradiated is detected. In the present embodiment, functional imaging is performed by using the photoacoustic signal when light of a plurality of wavelengths is irradiated, and utilizing the fact that the light absorption characteristics of each light absorber differ depending on the wavelength.
 本実施形態では、レーザユニット13(図1)は、相互に異なる複数の波長のレーザ光を出射可能に構成されている。レーザユニット13から出射したパルスレーザ光は、例えば光ファイバなどの導光手段を用いてプローブ11まで導光され、プローブ11から被検体方向に出射する。また、レーザユニット13から出射したパルスレーザ光は、穿刺針15の発光部16から、被検体方向に出射する。以下の説明においては、主に、レーザユニット13が、第1の波長のパルスレーザ光と第2の波長のパルスレーザ光とを出射可能であるものとして説明する。 In this embodiment, the laser unit 13 (FIG. 1) is configured to be able to emit laser beams having a plurality of different wavelengths. The pulsed laser light emitted from the laser unit 13 is guided to the probe 11 using light guide means such as an optical fiber, and is emitted from the probe 11 toward the subject. Further, the pulsed laser light emitted from the laser unit 13 is emitted from the light emitting portion 16 of the puncture needle 15 in the direction of the subject. In the following description, it is assumed that the laser unit 13 can emit a pulse laser beam having a first wavelength and a pulse laser beam having a second wavelength.
 例えば、第1の波長(中心波長)として約750nmを考え、第2の波長として約800nmを考える。ヒトの動脈に多く含まれる酸素化ヘモグロビン(酸素と結合したヘモグロビン:oxy-Hb)の波長約750nmにおける分子吸収係数は、波長約800nmにおける分子吸収係数よりも低い。一方、静脈に多く含まれる脱酸素化ヘモグロビン(酸素と結合していないヘモグロビンdeoxy-Hb)の波長約750nmにおける分子吸収係数は、波長約800nmにおける分子吸収係数よりも高い。この性質を利用し、波長約800nmで得られた光音響信号に対して、波長約750nmで得られた光音響信号が相対的に大きいのか小さいのかを調べることで、動脈からの光音響信号と静脈からの光音響信号とを判別することができる。 For example, consider about 750 nm as the first wavelength (center wavelength) and consider about 800 nm as the second wavelength. The molecular absorption coefficient at a wavelength of about 750 nm of oxygenated hemoglobin (oxy-Hb combined with oxygen) contained in a large amount of human arteries is lower than the molecular absorption coefficient at a wavelength of about 800 nm. On the other hand, the molecular absorption coefficient at a wavelength of about 750 nm of deoxygenated hemoglobin (hemoglobin deoxy-Hb not bound to oxygen) contained in a large amount in veins is higher than the molecular absorption coefficient at a wavelength of about 800 nm. By utilizing this property and examining whether the photoacoustic signal obtained at a wavelength of about 750 nm is relatively large or small with respect to the photoacoustic signal obtained at a wavelength of about 800 nm, A photoacoustic signal from a vein can be discriminated.
 受信回路21は、プローブ11が検出した光音響信号を受信する。AD変換手段22は、受信回路21が受信した光音響信号をサンプリングする。AD変換手段22は、例えばADクロック信号に同期して、所定のサンプリング周期で光音響信号のサンプリングを行う。 The receiving circuit 21 receives the photoacoustic signal detected by the probe 11. The AD conversion means 22 samples the photoacoustic signal received by the receiving circuit 21. The AD conversion means 22 samples a photoacoustic signal at a predetermined sampling period in synchronization with, for example, an AD clock signal.
 光音響信号のサンプリングは、レーザユニット13が出射する光の波長の数だけ繰り返し行う。例えばまずレーザユニット13から第1の波長の光を被検体に照射し、被検体に第1の波長のパルスレーザ光が照射されたときにプローブ11で検出された光音響信号サンプリングする。次いで、レーザユニット13から第2の波長の光を被検体に照射し、第2の波長のパルスレーザ光が照射されたときにプローブ11で検出された光音響信号をサンプリングする。画像生成手段23は、第1の波長の光に対応する光音響信号(第1の光音響信号)と、第2の波長の光に対応する光音響信号(第2の光音響信号)との相対的な信号強度の大小関係に基づいて、動脈と静脈とを区別可能な光音響信号を生成する。 The sampling of the photoacoustic signal is repeated for the number of wavelengths of light emitted from the laser unit 13. For example, first, the subject is irradiated with light of the first wavelength from the laser unit 13, and the photoacoustic signal detected by the probe 11 when the subject is irradiated with pulsed laser light of the first wavelength is sampled. Next, the subject is irradiated with light of the second wavelength from the laser unit 13, and the photoacoustic signal detected by the probe 11 when the pulse laser beam of the second wavelength is irradiated is sampled. The image generation means 23 includes a photoacoustic signal (first photoacoustic signal) corresponding to light having the first wavelength and a photoacoustic signal (second photoacoustic signal) corresponding to light having the second wavelength. A photoacoustic signal that can distinguish between an artery and a vein is generated based on the relative magnitude of the relative signal intensity.
 図11は、本実施形態における画像生成手段23を示す。画像生成手段23は、2波長データ複素数化手段231、光音響画像再構成手段232、2波長データ演算手段233、強度情報抽出手段234、検波・対数変換手段235、及び光音響画像構築手段236を有する。2波長データ複素数化手段231は、第1の光音響信号と第2の光音響信号のうちの何れか一方を実部、他方を虚部とした複素数データを生成する。以下では、2波長データ複素数化手段231が、第1の光音響信号を実部とし、第2の光音響信号を虚部とした複素数データを生成するものとして説明する。 FIG. 11 shows the image generation means 23 in this embodiment. The image generation unit 23 includes a two-wavelength data complex number conversion unit 231, a photoacoustic image reconstruction unit 232, a two-wavelength data calculation unit 233, an intensity information extraction unit 234, a detection / logarithm conversion unit 235, and a photoacoustic image construction unit 236. Have. The two-wavelength data complex numbering means 231 generates complex number data in which one of the first photoacoustic signal and the second photoacoustic signal is a real part and the other is an imaginary part. In the following description, it is assumed that the two-wavelength data complexization unit 231 generates complex data having the first photoacoustic signal as a real part and the second photoacoustic signal as an imaginary part.
 光音響画像再構成手段232は、2波長データ複素数化手段231から複素数データを入力し、光音響信号の再構成を行う。光音響画像再構成手段232は、入力された複素数データから、フーリエ変換法(FTA法)により画像再構成を行う。フーリエ変換法による画像再構成には、例えば文献”Photoacoustic Image Reconstruction-A Quantitative Analysis”Jonathan I.Sperl et al. SPIE-OSA Vol.6631 663103 等に記載されている従来公知の方法を適用することができる。光音響画像再構成手段232は、再構成画像を示すフーリエ変換のデータを強度情報抽出手段234と2波長データ演算手段233とに入力する。 The photoacoustic image reconstruction means 232 receives complex number data from the two-wavelength data complex numbering means 231 and reconstructs the photoacoustic signal. The photoacoustic image reconstruction means 232 performs image reconstruction from the input complex number data by a Fourier transform method (FTA method). For the image reconstruction by the Fourier transform method, for example, a conventionally known method described in the document “Photoacoustic Image Reconstruction-A A Quantitative Analysis” Jonathan I I Sperl I et al. SPIE-OSA Vol. it can. The photoacoustic image reconstruction unit 232 inputs Fourier transform data indicating the reconstructed image to the intensity information extraction unit 234 and the two-wavelength data calculation unit 233.
 2波長データ演算手段233は、各波長に対応した光音響データ間の相対的な信号強度の大小関係を抽出する。本実施形態では、2波長データ演算手段233は、光音響画像再構成手段232で再構成された再構成画像を入力データとし、複素数データである入力データから、実部と虚部とを比較したときに、相対的に、どちらがどれくらい大きいかを示す位相情報を抽出する。2波長データ演算手段233は、例えば複素数データがX+iYで表わされるとき、θ=tan-1(Y/X)を位相情報として生成する。なお、X=0の場合はθ=90°とする。実部を構成する第1の光音響データ(X)と虚部を構成する第2の光音響データ(Y)とが等しいとき、位相情報はθ=45°となる。位相情報は、相対的に第1の光音響データが大きいほどθ=0°に近づいていき、第2の光音響データが大きいほどθ=90°に近づいていく。 The two-wavelength data calculation means 233 extracts the relative magnitude of the relative signal intensity between the photoacoustic data corresponding to each wavelength. In this embodiment, the two-wavelength data calculation unit 233 uses the reconstructed image reconstructed by the photoacoustic image reconstruction unit 232 as input data, and compares the real part and the imaginary part from the input data that is complex data. Sometimes, phase information indicating which is relatively large is extracted. For example, when the complex number data is represented by X + iY, the two-wavelength data calculation unit 233 generates θ = tan−1 (Y / X) as the phase information. When X = 0, θ = 90 °. When the first photoacoustic data (X) constituting the real part and the second photoacoustic data (Y) constituting the imaginary part are equal, the phase information is θ = 45 °. The phase information approaches θ = 0 ° as the first photoacoustic data is relatively large, and approaches θ = 90 ° as the second photoacoustic data is relatively large.
 強度情報抽出手段234は、各波長に対応した光音響データに基づいて信号強度を示す強度情報を生成する。本実施形態では、強度情報抽出手段234は、光音響画像再構成手段232で再構成された再構成画像を入力データとし、複素数データである入力データから、強度情報を生成する。強度情報抽出手段234は、例えば複素数データがX+iYで表わされるとき、(X2+Y2)1/2を、強度情報として抽出する。検波・対数変換手段235は、強度情報抽出手段234で抽出された強度情報を示すデータの包絡線を生成し、次いでその包絡線を対数変換してダイナミックレンジを広げる。 The intensity information extraction unit 234 generates intensity information indicating the signal intensity based on the photoacoustic data corresponding to each wavelength. In the present embodiment, the intensity information extraction unit 234 uses the reconstructed image reconstructed by the photoacoustic image reconstruction unit 232 as input data, and generates intensity information from the input data that is complex number data. For example, when the complex number data is represented by X + iY, the intensity information extraction unit 234 extracts (X2 + Y2) 1/2 as the intensity information. The detection / logarithm conversion means 235 generates an envelope of data indicating the intensity information extracted by the intensity information extraction means 234, and then logarithmically converts the envelope to widen the dynamic range.
 光音響画像構築手段236は、2波長データ演算手段233から位相情報を入力し、検波・対数変換手段235から検波・対数変換処理後の強度情報を入力する。光音響画像構築手段236は、入力された位相情報と強度情報とに基づいて、光音響画像を生成する。光音響画像構築手段236は、例えば入力された強度情報に基づいて、光吸収体の分布画像における各画素の輝度(階調値)を決定する。また、光音響画像構築手段236は、例えば位相情報に基づいて、光吸収体の分布画像における各画素の色(表示色)を決定する。光音響画像構築手段236は、例えば例えば位相0°から90°の範囲を所定の色に対応させたカラーマップに用いて、入力された位相情報に基づいて各画素の色を決定する。 The photoacoustic image construction means 236 receives the phase information from the two-wavelength data calculation means 233 and the intensity information after the detection / logarithmic conversion processing from the detection / logarithmic conversion means 235. The photoacoustic image construction unit 236 generates a photoacoustic image based on the input phase information and intensity information. For example, the photoacoustic image construction unit 236 determines the luminance (gradation value) of each pixel in the distribution image of the light absorber based on the input intensity information. The photoacoustic image construction unit 236 determines the color (display color) of each pixel in the light absorber distribution image based on, for example, phase information. The photoacoustic image construction unit 236 determines the color of each pixel based on the input phase information using, for example, a color map in which a phase range of 0 ° to 90 ° is associated with a predetermined color.
 ここで、位相0°から45°の範囲は、第1の光音響信号が第2の光音響信号よりも大きい範囲であるため、光音響信号の発生源は、波長798nmの光に対する吸収よりも波長756nmの光に対する吸収の方が小さい脱酸素化ヘモグロビンを主に含む血液が流れている静脈であると考えられる。一方、位相45°から90°の範囲は、第1の光音響データが第2の光音響データよりも小さい範囲であるため、光音響信号の発生源は、波長798nmの光に対する吸収よりも波長756nmの光に対する吸収の方が大きい酸素化ヘモグロビンを主に含む血液が流れている動脈であると考えられる。 Here, since the range of the phase from 0 ° to 45 ° is a range in which the first photoacoustic signal is larger than the second photoacoustic signal, the source of the photoacoustic signal is more than the absorption with respect to light having a wavelength of 798 nm. It is considered that this is a vein through which blood mainly containing deoxygenated hemoglobin is less absorbed with respect to light having a wavelength of 756 nm. On the other hand, since the first 45 ° to 90 ° phase is a range in which the first photoacoustic data is smaller than the second photoacoustic data, the source of the photoacoustic signal has a wavelength larger than the absorption with respect to light having a wavelength of 798 nm. It is considered that this is an artery through which blood mainly containing oxygenated hemoglobin flows, which absorbs more light at 756 nm.
 そこで、カラーマップとして、例えば位相が0°が青色で、位相が45°に近づくに連れて無色(白色)になるように色が徐々に変化すると共に、位相90°が赤色で、位相が45°に近づくに連れて白色になるように色が徐々に変化するようなカラーマップを用いる。この場合、光音響画像上で、動脈に対応した部分を赤色で表わし、静脈に対応した部分を青色で表わすことができる。強度情報を用いずに、階調値は一定として、位相情報に従って動脈に対応した部分と静脈に対応した部分との色分けを行うだけでもよい。 Therefore, as a color map, for example, the phase gradually changes so that the phase is 0 ° in blue and the phase becomes colorless (white) as the phase approaches 45 °, and the phase 90 ° is red and the phase is 45. Use a color map that gradually changes its color to become white as it approaches °. In this case, on the photoacoustic image, the portion corresponding to the artery can be represented in red, and the portion corresponding to the vein can be represented in blue. Instead of using the intensity information, the gradation value may be constant and only the color classification of the portion corresponding to the artery and the portion corresponding to the vein may be performed according to the phase information.
 上記した2つの波長の光に対応した光音響信号に基づく光音響画像の生成は、プローブ11の光照射部32(図2A)からの光照射と、穿刺針15の発光部16(図1)からの光照射とのそれぞれに対して行う。例えば、被検体に向けてプローブ11の光照射部32から第1の波長の光と第2の波長の光とを順次に照射し、各波長に対応した光音響信号を検出して光音響画像(第1の光音響画像)を生成する。その後、被検体内に穿刺した穿刺針15の発光部16から第1の波長の光と第2の波長の光とを順次に出射し、各波長に対応した光音響信号を検出して光音響画像(第2の光音響画像)を生成する。第1の光音響画像と第2の光音響画像とを合成する点は、第1実施形態と同様でよい。 Generation of the photoacoustic image based on the photoacoustic signals corresponding to the light of the two wavelengths described above is performed by light irradiation from the light irradiation unit 32 (FIG. 2A) of the probe 11 and the light emission unit 16 (FIG. 1) of the puncture needle 15. To each of the light irradiation from. For example, light of a first wavelength and light of a second wavelength are sequentially emitted from the light irradiation unit 32 of the probe 11 toward the subject, and a photoacoustic signal corresponding to each wavelength is detected to detect a photoacoustic image. (First photoacoustic image) is generated. Thereafter, the light of the first wavelength and the light of the second wavelength are sequentially emitted from the light emitting unit 16 of the puncture needle 15 punctured in the subject, and a photoacoustic signal corresponding to each wavelength is detected to detect photoacoustics. An image (second photoacoustic image) is generated. The point which synthesize | combines a 1st photoacoustic image and a 2nd photoacoustic image may be the same as that of 1st Embodiment.
 上記では、プローブ11の光照射部32からの光照射と、穿刺針15の発光部16からの光照射とのそれぞれから、第1の波長の光及び第2の波長の光を照射するものとしたが、これに代えて、穿刺針15の発光部16からは、単一の波長の光が出射されるようにしてもよい。被検体に対して単一の波長の光のみが照射された場合は、2波長データ複素数化手段231による複素数化、及び、2波長データ演算手段233による位相情報の抽出は不要である。単一の波長の光のみが照射された場合は、強度情報抽出手段234によって抽出される強度情報に基づいて、光音響画像を生成すればよい。 In the above, the light of the first wavelength and the light of the second wavelength are irradiated from the light irradiation from the light irradiation unit 32 of the probe 11 and the light irradiation from the light emitting unit 16 of the puncture needle 15, respectively. However, instead of this, light having a single wavelength may be emitted from the light emitting portion 16 of the puncture needle 15. When only light of a single wavelength is irradiated to the subject, the complexization by the two-wavelength data complexing means 231 and the extraction of phase information by the two-wavelength data calculating means 233 are not necessary. When only light having a single wavelength is irradiated, a photoacoustic image may be generated based on the intensity information extracted by the intensity information extraction unit 234.
 本実施形態では、レーザユニット13から、相互に異なる複数の波長のレーザ光を被検体に照射する。複数の波長のパルスレーザ光を照射したときの光音響信号(光音響データ)を用いることで、各光吸収体の光吸収特性が波長に応じて異なることを利用した機能イメージングを行うことができる。例えば動脈と静脈の区別が可能になるような波長の光を照射することで、穿刺針が進行する方向に存在する血管が、動脈であるか静脈であるかの判別が可能になり、穿刺をより安全に行うことができるようになる。 In this embodiment, the laser unit 13 irradiates the subject with laser beams having a plurality of different wavelengths. By using a photoacoustic signal (photoacoustic data) when irradiated with pulsed laser beams of a plurality of wavelengths, it is possible to perform functional imaging using the fact that the light absorption characteristics of each light absorber differ depending on the wavelength. . For example, by irradiating light with a wavelength that makes it possible to distinguish between an artery and a vein, it is possible to determine whether the blood vessel existing in the direction in which the puncture needle travels is an artery or a vein. You can do it more safely.
 また、本実施形態では、2つの波長で得られた第1の光音響信号と、第2の光音響信号との何れか一方を実部、他方を虚部とした複素数データを生成し、その複素数データからフーリエ変換法により2つの再構成画像を生成している。このようにする場合、再構成は一度で済むため、第1の光音響信号と第2の光音響信号とを別々に再構成する場合に比して、再構成を効率的に行うことができる。 Further, in the present embodiment, complex number data in which one of the first photoacoustic signal and the second photoacoustic signal obtained at two wavelengths is a real part and the other is an imaginary part is generated. Two reconstructed images are generated from the complex number data by Fourier transform. In this case, since reconfiguration is only required once, reconfiguration can be performed more efficiently than when the first photoacoustic signal and the second photoacoustic signal are reconfigured separately. .
 続いて、本発明の第3実施形態を説明する。図11は、本発明の第3実施形態における画像生成手段23aを示す。画像生成手段23aは、図10に示す第2実施形態における画像生成手段23の構成に加えて、デコンボリューション手段237を有する。 Subsequently, a third embodiment of the present invention will be described. FIG. 11 shows image generation means 23a in the third embodiment of the present invention. The image generation unit 23a includes a deconvolution unit 237 in addition to the configuration of the image generation unit 23 in the second embodiment shown in FIG.
 デコンボリューション手段237は、光音響画像再構成手段232で再構成された光音響信号から、被検体に照射された光の光強度の時間波形の微分波形である光微分波形をデコンボリューションした信号を生成する。デコンボリューション手段237は、例えば複素数化されたデータにおける実部と虚部とのそれぞれに対して、光微分波形をデコンボリューションする処理を実行する。 The deconvolution means 237 generates a signal obtained by deconvolution of the photodifferential waveform, which is a differential waveform of the time waveform of the light intensity of the light applied to the subject, from the photoacoustic signal reconstructed by the photoacoustic image reconstruction means 232. Generate. For example, the deconvolution means 237 executes a process of deconvolution of the optical differential waveform with respect to each of the real part and the imaginary part in the complexized data.
 2波長データ演算手段233は、光微分波形がデコンボリューションされた光音響信号から位相情報を生成する。また、強度情報抽出手段234は、光微分波形がデコンボリューションされた光音響信号から強度情報を抽出する。以降の処理は第2実施形態と同様である。なお、デコンボリューションに際して複数波長の光の照射は必須ではない。すなわち、単一波長の光を被検体に照射し、検出された光音響信号から光微分波形をデコンボリューションすることとしてもよい。 The two-wavelength data calculation means 233 generates phase information from the photoacoustic signal obtained by deconvolution of the optical differential waveform. Moreover, the intensity information extraction means 234 extracts intensity information from the photoacoustic signal from which the optical differential waveform is deconvoluted. The subsequent processing is the same as in the second embodiment. Note that irradiation with a plurality of wavelengths of light is not essential for deconvolution. That is, it is good also as irradiating a test object with the light of a single wavelength, and deconvolving an optical differential waveform from the detected photoacoustic signal.
 デコンボリューション手段237は、例えば離散フーリエ変換により、再構成された光音響信号を時間領域の信号から周波数領域の信号へと変換する。また、光微分波形についても、離散フーリエ変換により時間領域の信号から周波数領域の信号へと変換する。デコンボリューション手段237は、フーリエ変換された光微分波形の逆数を逆フィルタとして求め、フーリエ変換された周波数領域の光音響信号に逆フィルタを適用する。逆フィルタが適用されることで、周波数領域の信号において、光微分波形がデコンボリューションされる。その後、フーリエ逆変換により、逆フィルタが適用された光音響信号を、周波数領域の信号から時間領域の信号へと変換する。 The deconvolution means 237 converts the reconstructed photoacoustic signal from a time domain signal to a frequency domain signal, for example, by discrete Fourier transform. Further, the optical differential waveform is also converted from a time domain signal to a frequency domain signal by discrete Fourier transform. The deconvolution means 237 obtains the inverse of the Fourier-transformed optical differential waveform as an inverse filter, and applies the inverse filter to the Fourier-transformed frequency domain photoacoustic signal. By applying the inverse filter, the optical differential waveform is deconvoluted in the frequency domain signal. Thereafter, the photoacoustic signal to which the inverse filter is applied is converted from a frequency domain signal to a time domain signal by inverse Fourier transform.
 光微分波形のデコンボリューションについて説明する。光吸収体であるミクロ吸収粒子を考え、このミクロ吸収粒子がパルスレーザ光を吸収して圧力波(光音響圧力波)が生じることを考える。時刻をtとして、位置rにあるあるミクロ吸収粒子から発生する光音響圧力波を、位置Rで観測した場合の圧力波形pmicro(R,t)は、[Phys. Rev. Lett. 86(2001)3550.]より、以下の球面波となる。
Figure JPOXMLDOC01-appb-M000001
 ここで、I(t)は励起光の光強度の時間波形であり、係数kは、粒子が光を吸収して音響波を出力する際の変換係数であり、vsは被検体の音速である。また、位置r、Rは、空間上の位置を示すベクトルである。ミクロ吸収粒子から発生する圧力は、上記式に示すように、光パルス微分波形に比例した球面波となる。
Deconvolution of the optical differential waveform will be described. Consider a micro-absorbing particle that is a light absorber, and consider that this micro-absorbing particle absorbs pulsed laser light to generate a pressure wave (photoacoustic pressure wave). The pressure waveform pmicro (R, t) when the photoacoustic pressure wave generated from the micro-absorbing particle at the position r is observed at the position R with time t is [Phys. Rev. Lett. 86 (2001) From 3550.], the following spherical wave is obtained.
Figure JPOXMLDOC01-appb-M000001
Here, I (t) is a time waveform of the light intensity of the excitation light, the coefficient k is a conversion coefficient when the particle absorbs light and outputs an acoustic wave, and vs is the sound velocity of the subject. . Positions r and R are vectors indicating positions in space. The pressure generated from the microabsorbent particles is a spherical wave proportional to the optical pulse differential waveform, as shown in the above formula.
 実際にイメージングする対象から得られる圧力波形は、よりマクロな吸収体のサイズを有しているため、上記のミクロ吸収波形を重ね合わせた波形になると考える(重ね合わせの原理)。ここで、マクロな光音響波を発する粒子の吸収分布をA(r-R)とし、そのマクロな吸収体からの圧力の観測波形をpmacro(R,t)とする。観測位置Rでは、各時刻において、観測位置Rから半径vstに位置する吸収粒子からの光音響波が観測されることになるため、観測波形pmacro(R,t)は、以下の圧力波形の式で示される。
Figure JPOXMLDOC01-appb-M000002
 上記式(1)からわかるように、観測波形は、光パルス微分のコンボリューション型を示す。観測波形から光パルス微分波形をデコンボリューションすることで、吸収体分布が得られる。なお、上記では再構成後の光音響信号から光微分波形をデコンボリューションする例について説明しているが、これに代えて、再構成前の光音響信号から光微分波形をデコンボリューションするようにしてもよい。
Since the pressure waveform actually obtained from the object to be imaged has a macroscopic absorber size, it is considered to be a waveform obtained by superimposing the above micro absorption waveforms (superposition principle). Here, the absorption distribution of particles emitting macroscopic photoacoustic waves is A (r−R), and the observation waveform of pressure from the macroscopic absorber is pmacro (R, t). At the observation position R, since the photoacoustic wave from the absorbing particles located at the radius vst from the observation position R is observed at each time, the observation waveform pmacro (R, t) is expressed by the following pressure waveform equation: Indicated by
Figure JPOXMLDOC01-appb-M000002
As can be seen from the above equation (1), the observed waveform shows a convolution type of optical pulse differentiation. The absorber distribution can be obtained by deconvolution of the optical pulse differential waveform from the observed waveform. In the above description, the example of deconvolution of the photodifferential waveform from the photoacoustic signal after reconstruction is described, but instead, the photodifferential waveform is deconvoluted from the photoacoustic signal before reconstruction. Also good.
 本実施形態では、検出された光音響信号から被検体に照射された光の微分波形をデコンボリューションする。光微分波形をデコンボリューションすることで、光吸収体の分布を得ることができ、吸収分布画像を生成することができる。吸収分布画像を生成することで、血管をより明瞭に観察することができるようになる。その他の効果は、第2実施形態と同様である。 In this embodiment, the differential waveform of the light irradiated to the subject is deconvoluted from the detected photoacoustic signal. By deconvolution of the optical differential waveform, the distribution of the light absorber can be obtained, and an absorption distribution image can be generated. By generating an absorption distribution image, blood vessels can be observed more clearly. Other effects are the same as those of the second embodiment.
 なお、上記各実施形態では光照射部32からのレーザ光照射と穿刺針15の発光部16からのレーザ光照射とを別々に行うこととして説明したが、光照射部32からのレーザ光照射と穿刺針15の発光部16からのレーザ光照射とを同時に行うこととしてもよい。その場合、プローブ11は、光照射部32から照射されたレーザ光に起因する光音響信号と、穿刺針15の発光部16から照射されたレーザ光に起因する光音響信号を、同時に(一度に)検出する。この場合、光音響画像の生成は1回で済むため、2つの光音響画像を生成して後で合成する(重ねる)場合に比して、短時間で画像表示を行うことができる。 In each of the above embodiments, the laser light irradiation from the light irradiation unit 32 and the laser light irradiation from the light emitting unit 16 of the puncture needle 15 have been described as being performed separately, but the laser light irradiation from the light irradiation unit 32 and The laser light irradiation from the light emitting unit 16 of the puncture needle 15 may be performed simultaneously. In that case, the probe 11 simultaneously receives a photoacoustic signal caused by the laser light emitted from the light emitting unit 32 and a photoacoustic signal caused by the laser light emitted from the light emitting unit 16 of the puncture needle 15 (at a time). )To detect. In this case, since the generation of the photoacoustic image is sufficient, the image display can be performed in a shorter time than when two photoacoustic images are generated and synthesized (superimposed) later.
 また、第2実施形態では、第1の光音響信号と第2の光音響信号とを複素数化する例について説明したが、複素数化せずに、第1の光音響信号と第2の光音響信号とを別々に再構成してもよい。また、再構成の手法は、フーリエ変換法には限定されない。さらに、上記第2実施形態においては、複素数化して位相情報を用いて第1の光音響信号と第2の光音響信号の比を計算しているが、両者の強度情報から比を計算しても同様の効果が得られる。また、強度情報は、一方の波長に対応した再構成画像における信号強度と、他方の波長に対応した再構成画像における信号強度とに基づいて生成できる。 In the second embodiment, the example in which the first photoacoustic signal and the second photoacoustic signal are complexized has been described. However, the first photoacoustic signal and the second photoacoustic are not complexized. The signal may be reconstructed separately. Further, the reconstruction method is not limited to the Fourier transform method. Further, in the second embodiment, the ratio between the first photoacoustic signal and the second photoacoustic signal is calculated using the complex information after being converted into a complex number, but the ratio is calculated from the intensity information of both. The same effect can be obtained. The intensity information can be generated based on the signal intensity in the reconstructed image corresponding to one wavelength and the signal intensity in the reconstructed image corresponding to the other wavelength.
 光音響画像の生成に際して、被検体に照射されるパルスレーザ光の波長の数は2つには限られず、3以上のパルスレーザ光を被検体に照射し、各波長に対応する光音響データに基づいて光音響画像を生成してもよい。その場合、例えば2波長データ演算手段233は、各波長に対応する光音響データ間での相対的な信号強度の大小関係を位相情報として生成すればよい。また、強度情報抽出手段234は、例えば各波長に対応する光音響データにおける信号強度を1つにまとめたものを強度情報として生成すればよい。 When generating a photoacoustic image, the number of wavelengths of the pulsed laser light applied to the subject is not limited to two, and the subject is irradiated with three or more pulsed laser lights, and photoacoustic data corresponding to each wavelength is generated. A photoacoustic image may be generated based on this. In this case, for example, the two-wavelength data calculation unit 233 may generate a relative signal intensity magnitude relationship between the photoacoustic data corresponding to each wavelength as the phase information. Further, the intensity information extraction unit 234 may generate, as intensity information, a collection of signal intensities in photoacoustic data corresponding to each wavelength, for example.
 以上、本発明をその好適な実施形態に基づいて説明したが、本発明の光音響画像生成装置は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。 As mentioned above, although this invention was demonstrated based on the suitable embodiment, the photoacoustic image generation apparatus of this invention is not limited only to the said embodiment, Various correction and change are possible from the structure of the said embodiment. Those subjected to are also included in the scope of the present invention.

Claims (18)

  1.  光を出射する光源と、
     前記光を被検体に向けて照射する光照射手段と、
     前記光を出射する発光部を有する穿刺針と、
     被検体内の光吸収体が、前記光照射手段から照射された光及び前記発光部から出射した光を吸収することで発生する光音響信号を検出する音響波探触子と、
     前記光音響信号に基づいて光音響画像を生成する画像生成手段とを備えたことを特徴とする光音響画像生成装置。
    A light source that emits light;
    A light irradiating means for irradiating the subject with the light;
    A puncture needle having a light emitting part for emitting the light;
    An acoustic wave probe for detecting a photoacoustic signal generated by a light absorber in a subject absorbing light emitted from the light irradiating means and light emitted from the light emitting unit;
    The photoacoustic image generation apparatus provided with the image generation means which produces | generates a photoacoustic image based on the said photoacoustic signal.
  2.  前記穿刺針が、少なくともその先端部分に発光部を有するものであることを特徴とする請求項1に記載の光音響画像生成装置。 The photoacoustic image generating apparatus according to claim 1, wherein the puncture needle has a light emitting portion at least at a tip portion thereof.
  3.  前記発光部が、前記穿刺針の先端方向に向かって厚みが減少するように形成された導光部材で構成されるものであることを特徴とする請求項1又は2に記載の光音響画像生成装置。 3. The photoacoustic image generation according to claim 1, wherein the light emitting unit is configured by a light guide member formed so that a thickness thereof decreases in a distal direction of the puncture needle. apparatus.
  4.  前記穿刺針が、互いに離れた位置に配置される複数の発光部を有することを特徴とする請求項1から3何れかに記載の光音響画像生成装置。 The photoacoustic image generating apparatus according to any one of claims 1 to 3, wherein the puncture needle has a plurality of light emitting units arranged at positions separated from each other.
  5.  前記複数の発光部のうちの少なくとも1つは、前記光を導光する光ファイバの中間地点でコアを露出させた部分で構成されることを特徴とする請求項4に記載の光音響画像生成装置。 5. The photoacoustic image generation according to claim 4, wherein at least one of the plurality of light emitting units includes a portion where a core is exposed at an intermediate point of the optical fiber that guides the light. apparatus.
  6.  前記光照射手段からの光照射と前記発光部からの光出射とを同時に行い、前記音響波探触子が、前記光照射手段から照射された光に起因する光音響信号と前記発光部から出射した光に起因する光音響信号とを同時に検出するものであることを特徴とする請求項1から5何れかに記載の光音響画像生成装置。 Light irradiation from the light irradiation means and light emission from the light emitting section are performed simultaneously, and the acoustic probe emits a photoacoustic signal resulting from the light emitted from the light irradiation means and the light emitting section. The photoacoustic image generating apparatus according to claim 1, wherein a photoacoustic signal caused by the emitted light is simultaneously detected.
  7.  前記光照射手段からの光照射と前記発光部からの光出射とを別々に行い、前記画像生成手段が、前記光照射手段から照射された光に起因する光音響信号に基づいて第1の光音響画像を生成し、前記発光部から出射した光に起因する光音響信号に基づいて第2の光音響画像を生成し、前記第1の光音響画像と前記第2の光音響画像とを合成するものであることを特徴とする請求項1から5何れかに記載の光音響画像生成装置。 The light irradiation from the light irradiation unit and the light emission from the light emitting unit are separately performed, and the image generation unit performs the first light based on the photoacoustic signal resulting from the light irradiated from the light irradiation unit. An acoustic image is generated, a second photoacoustic image is generated based on a photoacoustic signal resulting from the light emitted from the light emitting unit, and the first photoacoustic image and the second photoacoustic image are combined. The photoacoustic image generating apparatus according to claim 1, wherein
  8.  前記光源が、相互に異なる複数の波長の光を出射するものであることを特徴とする請求項1から7何れかに記載の光音響画像生成装置。 The photoacoustic image generating apparatus according to any one of claims 1 to 7, wherein the light source emits light having a plurality of different wavelengths.
  9.  前記画像生成手段が、各波長の光が照射されたときに検出された光音響信号の信号強度の大小関係に基づいて光音響画像を生成するものであることを特徴とする請求項8に記載の光音響画像生成装置。 The said image generation means produces | generates a photoacoustic image based on the magnitude relationship of the signal intensity of the photoacoustic signal detected when the light of each wavelength was irradiated. Photoacoustic image generation apparatus.
  10.  前記画像生成手段が、光音響信号から、被検体に照射された光の微分波形をデコンボリューションするデコンボリューション手段を有していることを特徴とする請求項1から9何れかに記載の光音響画像生成装置。 The photoacoustic according to any one of claims 1 to 9, wherein the image generation means includes deconvolution means for deconvolution of a differential waveform of light irradiated on the subject from a photoacoustic signal. Image generation device.
  11.  光照射手段から被検体に向けて光を照射するステップと、
     発光部を有する穿刺針の発光部から被検体に光を照射するステップと、
     被検体内の光吸収体が、前記光照射手段から照射された光及び前記発光部から照射された光を吸収することで発生する光音響信号を検出するステップと、
     前記光音響信号に基づいて光音響画像を生成するステップとを有することを特徴とする光音響画像生成方法。
    Irradiating light from the light irradiation means toward the subject;
    Irradiating the subject with light from the light emitting part of the puncture needle having the light emitting part;
    A step of detecting a photoacoustic signal generated by a light absorber in the subject absorbing light emitted from the light irradiating means and light emitted from the light emitting unit;
    And a photoacoustic image generation method based on the photoacoustic signal.
  12.  前記光照射手段から光を照射するステップと、前記発光部から光を照射するステップとを同時に行い、
     前記光音響信号を検出するステップにおいて、前記光照射手段から照射された光に起因する光音響信号と前記発光部から出射した光に起因する光音響信号とを同時に検出することを特徴とする請求項11に記載の光音響画像生成方法。
    Performing the step of irradiating light from the light irradiation means and the step of irradiating light from the light emitting unit,
    The step of detecting the photoacoustic signal simultaneously detects a photoacoustic signal caused by light emitted from the light irradiation means and a photoacoustic signal caused by light emitted from the light emitting unit. Item 12. The photoacoustic image generation method according to Item 11.
  13.  前記光照射手段から光を照射するステップと、前記発光部から光を照射するステップとを別々に行い、
     前記光音響信号を検出するステップにおいて、前記光照射手段から照射された光に起因する光音響信号と前記発光部から出射した光に起因する光音響信号とを別々に検出し、
     前記光音響画像を生成するステップにおいて、前記光照射手段から照射された光に起因する光音響信号に基づいて第1の光音響画像を生成し、前記発光部から出射した光に起因する光音響信号に基づいて第2の光音響画像を生成し、前記第1の光音響画像と前記第2の光音響画像とを合成することを特徴とする請求項11に記載の光音響画像生成方法。
    The step of irradiating light from the light irradiating means and the step of irradiating light from the light emitting unit are performed separately,
    In the step of detecting the photoacoustic signal, separately detecting a photoacoustic signal caused by light emitted from the light irradiating means and a photoacoustic signal caused by light emitted from the light emitting unit,
    In the step of generating the photoacoustic image, a first photoacoustic image is generated based on a photoacoustic signal resulting from the light emitted from the light irradiation means, and photoacoustic resulting from the light emitted from the light emitting unit. The photoacoustic image generation method according to claim 11, wherein a second photoacoustic image is generated based on a signal, and the first photoacoustic image and the second photoacoustic image are synthesized.
  14.  前記穿刺針が、少なくともその先端部分に発光部を有していることを特徴とする請求項11から13に記載の光音響画像生成方法。 The photoacoustic image generation method according to claim 11, wherein the puncture needle has a light emitting portion at least at a tip portion thereof.
  15.  前記穿刺針が、互いに離れた位置に配置される複数の発光部を有していることを特徴とする請求項11から14何れかに記載の光音響画像生成方法。 The photoacoustic image generation method according to any one of claims 11 to 14, wherein the puncture needle has a plurality of light emitting units arranged at positions separated from each other.
  16.  被検体に対し、相互に異なる複数の波長の光を出射することを特徴とする請求項11から15何れかに記載の光音響画像生成方法。 The photoacoustic image generating method according to claim 11, wherein light having a plurality of wavelengths different from each other is emitted to the subject.
  17.  前記光音響画像を生成するステップでは、各波長の光が照射されたときに検出された光音響信号の信号強度の大小関係に基づいて光音響画像を生成することを特徴とする請求項16に記載の光音響画像生成方法。 The photoacoustic image is generated based on the magnitude relationship of the signal intensity of the photoacoustic signal detected when the light of each wavelength is irradiated in the step of generating the photoacoustic image. The photoacoustic image generation method of description.
  18.  前記光音響画像を生成するステップが、前記光音響信号から、被検体に照射された光の微分波形をデコンボリューションするステップを含むことを特徴とする請求項11から17何れかに記載の光音響画像生成方法。 The photoacoustic image according to any one of claims 11 to 17, wherein the step of generating the photoacoustic image includes a step of deconvoluting a differential waveform of light irradiated on a subject from the photoacoustic signal. Image generation method.
PCT/JP2012/003686 2011-06-07 2012-06-06 Photoacoustic image generating device and method WO2012169178A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-127049 2011-06-07
JP2011127049 2011-06-07
JP2012-122751 2012-05-30
JP2012122751A JP5743957B2 (en) 2011-06-07 2012-05-30 Photoacoustic image generation apparatus and method

Publications (1)

Publication Number Publication Date
WO2012169178A1 true WO2012169178A1 (en) 2012-12-13

Family

ID=47295763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003686 WO2012169178A1 (en) 2011-06-07 2012-06-06 Photoacoustic image generating device and method

Country Status (2)

Country Link
JP (1) JP5743957B2 (en)
WO (1) WO2012169178A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015932A1 (en) * 2013-08-02 2015-02-05 富士フイルム株式会社 Photoacoustic image-generating apparatus and light source control method
WO2015111280A1 (en) * 2014-01-27 2015-07-30 富士フイルム株式会社 Photoacoustic signal-processing device, photoacoustic signal-processing system, and photoacoustic signal-processing method
CN104902823A (en) * 2013-01-09 2015-09-09 富士胶片株式会社 Photoacoustic image generating device and insertion object
WO2016158095A1 (en) * 2015-03-30 2016-10-06 富士フイルム株式会社 Biopsy needle and photoacoustic measurement device
WO2017002337A1 (en) * 2015-06-30 2017-01-05 富士フイルム株式会社 Photoacoustic image-generating apparatus and insertion object
WO2022202282A1 (en) * 2021-03-25 2022-09-29 テルモ株式会社 Delivery device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5952327B2 (en) * 2013-03-22 2016-07-13 富士フイルム株式会社 Photoacoustic measuring device and puncture needle
KR102149322B1 (en) * 2013-05-20 2020-08-28 삼성메디슨 주식회사 Photoacoustic bracket, photoacoustic probe assembly and photoacoustic image apparatus having the same
JP6371847B2 (en) * 2014-06-30 2018-08-08 富士フイルム株式会社 Photoacoustic image generation apparatus, signal processing apparatus, and photoacoustic image generation method
CN106489088B (en) 2014-06-30 2018-09-18 富士胶片株式会社 Optical cable and its manufacturing method, and have the light source module of the optical cable
WO2016042716A1 (en) * 2014-09-19 2016-03-24 富士フイルム株式会社 Photoacoustic image generation method and device
JP6374012B2 (en) 2014-09-25 2018-08-15 富士フイルム株式会社 Photoacoustic image generator
WO2016051764A1 (en) * 2014-09-29 2016-04-07 富士フイルム株式会社 Photoacoustic image generation device
EP3202328B8 (en) 2014-09-29 2021-05-26 FUJIFILM Corporation Photoacoustic imaging device
WO2017002338A1 (en) 2015-06-30 2017-01-05 富士フイルム株式会社 Photoacoustic image generation device and insertion
WO2017038037A1 (en) 2015-08-31 2017-03-09 富士フイルム株式会社 Photoacoustic image generation device and insertion object
EP3345551B1 (en) 2015-08-31 2020-02-26 FUJIFILM Corporation Photoacoustic image generating device and insertion object
WO2017090248A1 (en) * 2015-11-24 2017-06-01 富士フイルム株式会社 Optical fiber insertion length-adjusting mechanism, insert, and attachment member
JP6475367B2 (en) * 2016-01-25 2019-02-27 富士フイルム株式会社 Inserts and attachment members

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740632A (en) * 1980-08-26 1982-03-06 Olympus Optical Co Ltd Probe for photo-acoustic spectroscopic inspection
JPH0492647A (en) * 1990-08-09 1992-03-25 Yokogawa Medical Syst Ltd Piercing needle holding device for doppler imaging ultrasonic diagnostic device
WO2010009747A1 (en) * 2008-07-25 2010-01-28 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Quantitative multi-spectral opto-acoustic tomography (msot) of tissue biomarkers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754855Y2 (en) * 1989-06-16 1995-12-18 アロカ株式会社 Photoacoustic sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740632A (en) * 1980-08-26 1982-03-06 Olympus Optical Co Ltd Probe for photo-acoustic spectroscopic inspection
JPH0492647A (en) * 1990-08-09 1992-03-25 Yokogawa Medical Syst Ltd Piercing needle holding device for doppler imaging ultrasonic diagnostic device
WO2010009747A1 (en) * 2008-07-25 2010-01-28 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Quantitative multi-spectral opto-acoustic tomography (msot) of tissue biomarkers

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3329856A1 (en) * 2013-01-09 2018-06-06 FUJIFILM Corporation Photoacoustic image generating device and insertion object
CN104902823A (en) * 2013-01-09 2015-09-09 富士胶片株式会社 Photoacoustic image generating device and insertion object
US11510575B2 (en) 2013-01-09 2022-11-29 Fujifilm Corporation Photoacoustic image generating device and insertion object
EP2944264A4 (en) * 2013-01-09 2016-01-06 Fujifilm Corp Photoacoustic image generating device and insertion object
CN107252304A (en) * 2013-01-09 2017-10-17 富士胶片株式会社 Photoacoustic image generating means and insert
CN105451661A (en) * 2013-08-02 2016-03-30 富士胶片株式会社 Photoacoustic image-generating apparatus and light source control method
JP2015043969A (en) * 2013-08-02 2015-03-12 富士フイルム株式会社 Photoacoustic image generation apparatus and light source control method
WO2015015932A1 (en) * 2013-08-02 2015-02-05 富士フイルム株式会社 Photoacoustic image-generating apparatus and light source control method
JP2015139465A (en) * 2014-01-27 2015-08-03 富士フイルム株式会社 Apparatus, system, and method for photoacoustic signal processing
WO2015111280A1 (en) * 2014-01-27 2015-07-30 富士フイルム株式会社 Photoacoustic signal-processing device, photoacoustic signal-processing system, and photoacoustic signal-processing method
WO2016158095A1 (en) * 2015-03-30 2016-10-06 富士フイルム株式会社 Biopsy needle and photoacoustic measurement device
JPWO2016158095A1 (en) * 2015-03-30 2018-01-11 富士フイルム株式会社 Biopsy needle and photoacoustic measurement device
US10499887B2 (en) 2015-03-30 2019-12-10 Fujifilm Corporation Biopsy needle and photoacoustic measurement apparatus
JPWO2017002337A1 (en) * 2015-06-30 2018-01-11 富士フイルム株式会社 Photoacoustic image generating apparatus and insert
US10765324B2 (en) 2015-06-30 2020-09-08 Fujifilm Corporation Photoacoustic image generation apparatus and insert
WO2017002337A1 (en) * 2015-06-30 2017-01-05 富士フイルム株式会社 Photoacoustic image-generating apparatus and insertion object
WO2022202282A1 (en) * 2021-03-25 2022-09-29 テルモ株式会社 Delivery device

Also Published As

Publication number Publication date
JP2013013713A (en) 2013-01-24
JP5743957B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5743957B2 (en) Photoacoustic image generation apparatus and method
JP5340648B2 (en) Subject information calculation apparatus and subject information calculation method
JP5349839B2 (en) Biological information imaging device
CN102822661B (en) Opto-acoustic imaging devices and acousto-optic imaging method
US20090054763A1 (en) System and method for spectroscopic photoacoustic tomography
EP2016891B1 (en) Medical apparatus for obtaining information indicative of internal state of an object based on physical interaction between ultrasound wave and light
WO2013128846A1 (en) Photoacoustic image generation device and method
US20120302866A1 (en) Photoacoustic imaging apparatus and photoacoustic imaging method
JP5777394B2 (en) Photoacoustic imaging method and apparatus
WO2015162215A1 (en) Device and method for frequency-domain thermoacoustic sensing
JP2012135368A (en) Photoacoustic imaging apparatus
JP2015503392A (en) System and method for needle navigation using PA effect in US imaging
JP6000778B2 (en) SUBJECT INFORMATION ACQUISITION DEVICE AND METHOD FOR CONTROLLING SUBJECT INFORMATION ACQUISITION DEVICE
CN111481171A (en) Multi-mode monitoring system and method for brain surgery
US20180228377A1 (en) Object information acquiring apparatus and display method
JP6066230B2 (en) Photoacoustic image generation apparatus and operation method thereof
JP6664176B2 (en) Photoacoustic apparatus, information processing method, and program
CN108095689A (en) Photo-acoustic device, information processing method and the non-transitory storage medium for storing program
JP2017047056A (en) Subject information acquisition device
JP5946230B2 (en) Photoacoustic imaging method and apparatus
JP2019083887A (en) Information processing equipment and information processing method
JP6643108B2 (en) Subject information acquisition device and subject information acquisition method
JPWO2018061806A1 (en) Insert, photoacoustic measurement apparatus having the insert, and method of manufacturing insert
US20200060551A1 (en) System, image processing apparatus, measurement control method, and image processing method
Zhang et al. Advances in Photoacoustic Imaging for Interventional Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797244

Country of ref document: EP

Kind code of ref document: A1