WO2022202149A1 - Agent for adsorbing malodorous gas, method for producing same, and deodorizing product - Google Patents

Agent for adsorbing malodorous gas, method for producing same, and deodorizing product Download PDF

Info

Publication number
WO2022202149A1
WO2022202149A1 PCT/JP2022/008639 JP2022008639W WO2022202149A1 WO 2022202149 A1 WO2022202149 A1 WO 2022202149A1 JP 2022008639 W JP2022008639 W JP 2022008639W WO 2022202149 A1 WO2022202149 A1 WO 2022202149A1
Authority
WO
WIPO (PCT)
Prior art keywords
malodorous gas
gas adsorbent
porous
malodorous
organometallic complex
Prior art date
Application number
PCT/JP2022/008639
Other languages
French (fr)
Japanese (ja)
Inventor
早川 真由 花井
喜直 山田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021050149A external-priority patent/JP2022148458A/en
Priority claimed from JP2022013507A external-priority patent/JP2022151610A/en
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to CN202280021511.4A priority Critical patent/CN116981512A/en
Priority to KR1020237034891A priority patent/KR20230159838A/en
Publication of WO2022202149A1 publication Critical patent/WO2022202149A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating

Definitions

  • the present disclosure relates to a malodorous gas adsorbent, a method for producing the same, and a deodorant product.
  • JP-A-2019-088499 discloses that a porous metal complex having 1,3,5-benzenetricarboxylic acid or an ester thereof as a ligand is used as a deodorant for daily life odors.
  • Japanese Patent Application Laid-Open No. 2011-126775 discloses a hybrid porous material that is chemically bonded to each other and includes at least two kinds of porous material portions of different material types.
  • gas adsorbents are required to adsorb malodorous gases (eg, acid gases).
  • one embodiment of the present invention provides a malodorous gas adsorbent and a deodorizing product that have a higher ability to adsorb malodorous gases than conventional ones.
  • a malodorous gas adsorbent containing a porous organometallic complex containing a metal and a ligand containing a nitrogen atom ⁇ 2> The malodorous gas adsorbent according to ⁇ 1>, wherein the metal is at least one selected from the group consisting of Zn, Zr, Ti, Al, and Co.
  • the ligand containing a nitrogen atom has an aromatic ring or a heterocyclic ring.
  • ⁇ 4> The malodorous gas adsorbent according to any one of ⁇ 1> to ⁇ 3>, wherein the metal is Zn and the ligand is an imidazole compound.
  • ⁇ 5> The malodorous gas adsorbent according to any one of ⁇ 1> to ⁇ 4>, which is used for adsorbing acidic gases.
  • ⁇ 6> The malodorous gas adsorbent according to any one of ⁇ 1> to ⁇ 5>, wherein the porous organometallic complex is a particle having a primary particle size of 0.05 ⁇ m to 3.0 ⁇ m.
  • ⁇ 7> The malodorous gas adsorbent according to any one of ⁇ 1> to ⁇ 6>, which has a gas adsorption capacity of 50 mL/g or more.
  • ⁇ 8> The malodorous gas adsorbent according to any one of ⁇ 1> to ⁇ 7>, further comprising a porous material.
  • ⁇ 9> The malodorous gas adsorbent according to ⁇ 8>, wherein the porous organometallic complex is supported on a porous material.
  • the porous material includes at least one selected from the group consisting of porous metal oxides, zeolite, and activated carbon.
  • ⁇ 11> 20 mg of malodorous gas adsorbent does not deliquesce in 3 liters of acetic acid gas with a concentration of 600 ppm prepared in air with a humidity of 40% in an environment of 25 ° C. for 24 hours, ⁇ 8> to ⁇ 10>
  • the malodorous gas adsorbent according to any one of . ⁇ 12> 40 mg of the malodorous gas adsorbent was exposed to 300 mL of acetic acid gas with a concentration of 15,000 ppm prepared in air with a humidity of 40% in an environment of 40°C for 24 hours.
  • a deodorant product containing the malodorous gas adsorbent according to any one of ⁇ 1> to ⁇ 12>.
  • ⁇ 14> A step of mixing a solution containing a metal salt with a solution containing a porous material and a ligand containing a nitrogen atom; and a method for producing a malodorous gas adsorbent.
  • a malodorous gas adsorbent and a deodorizing product that have a higher ability to adsorb malodorous gases than conventional ones.
  • FIG. 1 is an X-ray diffraction pattern of powder X-ray diffraction measurement of the porous organometallic complex obtained in Example 1.
  • FIG. 2 is an X-ray diffraction pattern of powder X-ray diffraction measurement of the porous organometallic complex obtained in Example 2.
  • FIG. 3 is a SEM photograph of the malodorous gas adsorbent obtained in Example 3.
  • FIG. 4 is a SEM photograph of the malodorous gas adsorbent obtained in Example 4.
  • FIG. 5 is a SEM photograph of the malodorous gas adsorbent obtained in Example 5.
  • FIG. 6 is a SEM photograph of the malodorous gas adsorbent obtained in Example 6.
  • the gas adsorbent of the present disclosure the method for producing the same, and the deodorant product will be described in detail below.
  • the numerical range indicated using “to” means a range including the numerical values before and after "to” as the minimum and maximum values, respectively.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means Moreover, in the present specification, a combination of two or more preferred aspects is a more preferred aspect. Moreover, in this specification, the term “deliquescence resistance” refers to the property of not deliquescing or hardly deliquescing. “Deliquescence” refers to a phenomenon in which, for example, when a malodorous gas adsorbent is exposed to a malodorous gas, it absorbs components of the malodorous gas and changes its shape.
  • a malodorous gas adsorbent that is one embodiment of the present invention contains a porous organometallic complex containing a metal and a ligand containing a nitrogen atom.
  • the ligands contained in the porous organometallic complex contain nitrogen atoms, so components in the gas react with the nitrogen atoms and chemisorb. Also, components in the gas are physically adsorbed into the pores of the porous metal complex.
  • the malodorous gas adsorbent which is one embodiment of the present invention, has a large specific surface area and has a higher adsorption capacity for malodorous gases than conventional ones due to the effects of both chemisorption and physical adsorption.
  • malodorous gas refers to gas that makes people feel uncomfortable.
  • a gas that people feel uncomfortable generally refers to a gas that is evaluated on the negative side in the 9-level pleasure/discomfort display method in the gas sensory test.
  • Porous organometallic complex contains a metal and a ligand containing a nitrogen atom. "Porous” refers to a structure having a plurality of pores, and the plurality of pores may or may not communicate with each other.
  • the number of metals contained in the porous organometallic complex may be one, or two or more.
  • the metal contained in the porous organometallic complex is not particularly limited, and examples include Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re , Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb , and Bi.
  • the metal is preferably at least one selected from the group consisting of Zn, Zr, Ti, Al, and Co, and more preferably Zn.
  • the number of ligands contained in the porous organometallic complex may be one, or two or more. When two or more ligands are contained in the porous organometallic complex, at least one ligand containing a nitrogen atom may be contained, and a ligand containing no nitrogen atom may be contained. good too.
  • Examples of ligands containing nitrogen atoms include amine compounds and nitrogen-containing heterocyclic compounds.
  • Amine compounds include, for example, monoamines, diamines, and triamines.
  • the amine compound may be any of primary amine, secondary amine, tertiary amine and quaternary ammonium.
  • amine compounds include aromatic amines such as aniline, 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, 1,3,5-triaminobenzene, and 2-aminoterephthalic acid. is mentioned.
  • Nitrogen-containing heterocyclic compounds include pyridine, pyrrolidine, pyrroline, piperidine, pyrimidine, indole, azaindole, carbazole, indazole, norharman, harman, imidazole, oxazole, thiazole, pyrazole, pyrrole, benzimidazole, benzotriazole, benzoxazole, benzothiazole, benzothiadiazole, isoxazole, isothiazole, oxadiazole, thiadiazole, triazine, benzisoxazole, pyrazine, quinoline, benzoquinoline, acridine, thiazoline, quinuclidine, imidazoline, oxazoline, thiazoline, and isoquinoline, and , and derivatives thereof.
  • the ligand preferably has an aromatic ring or a heterocyclic ring from the viewpoint of improving the ability to adsorb malodorous gases.
  • aromatic rings include benzene ring, naphthalene ring, fluorene ring, anthracene ring, indene ring, and indane ring.
  • Heterocyclic rings include imidazole, oxazole, thiazole, pyridine, pyrazine, pyrrole, furan, thiophene, pyrazole, isoxazole, isothiazole, pyridazine, and pyrimidine rings.
  • the ligand preferably has a heterocyclic ring, more preferably a nitrogen-containing heterocyclic ring.
  • the ligand more preferably has a nitrogen-containing heterocycle, and is preferably an imidazole compound.
  • Imidazole compounds include imidazole and imidazole derivatives.
  • imidazole compounds include imidazole, 1-methylimidazole, 2-methylimidazole, 4-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, and benzimidazole.
  • the porous organometallic complex contained in the malodorous gas adsorbent preferably has Zn as the metal and an imidazole compound as the ligand. Also, the porous organometallic complex is preferably a zeolite-like imidazolate structure (ZIF).
  • One type of porous organometallic complex may be contained alone, or two or more types may be contained.
  • the content of the porous organometallic complex in the malodorous gas adsorbent is preferably 10% by mass or more, more preferably 50% by mass or more, relative to the total amount of the malodorous gas adsorbent.
  • the upper limit of the content of the porous organometallic complex is not particularly limited, and is, for example, 100% by mass. That is, the malodorous gas adsorbent may consist only of the porous organometallic complex.
  • the content of the porous organometallic complex in the malodorous gas adsorbent is 10% by mass to 90% by mass with respect to the total amount of the malodorous gas adsorbent. preferably 20% by mass to 80% by mass, even more preferably 30% by mass to 70% by mass.
  • the porous organometallic complex preferably has a maximum pore size of 0.2 nm to 2.0 nm, more preferably 0.4 nm to 1.5 nm.
  • the maximum pore size means the maximum diameter of pores formed in the porous organometallic complex.
  • the pore size means the diameter of the entrance of the pore formed in the porous organometallic complex.
  • the maximum pore diameter is measured using a nitrogen adsorption measuring device, for example, model number "AUTOSORB-1" (manufactured by Quantachrome Instruments).
  • the porous organometallic complex is preferably particles, and the primary particle size of the particles is preferably 0.05 ⁇ m to 3.0 ⁇ m, more preferably 0.1 ⁇ m to 2.0 ⁇ m, and more preferably 0.2 ⁇ m. More preferably, it is ⁇ 1.5 ⁇ m.
  • a primary particle size is measured by the following method. First, the porous organometallic complex is observed at an appropriate magnification using a semi-in-lens scanning electron microscope (product name “S-4800”, manufactured by Hitachi High-Technologies Corporation). Particles are identified based on the obtained SEM image. Measure the diameter of the longest part of the particle in the SEM image at a magnification where a single particle can be observed. 100 particles are measured, and the average value is taken as the primary particle size.
  • the malodorous gas sorbent comprises a porous material.
  • the "porous" of a porous material refers to a structure having a plurality of pores.
  • porous materials include porous metal oxides, zeolites, activated carbon, porous polymers, porous resins, porous fibers, and porous natural products.
  • porous metal oxides porous metal oxides
  • zeolites activated carbon
  • porous polymers porous polymers
  • porous resins porous resins
  • porous fibers porous fibers
  • porous natural products from the viewpoint of improving deliquescence resistance, at least one selected from the group consisting of porous metal oxides, zeolite, and activated carbon is preferable.
  • a porous metal oxide may be a compound in which the metal oxide itself has a plurality of pores, or may be one in which particles of the metal oxide aggregate (eg, aggregate) to form a porous structure.
  • Porous metal oxides include silica, aluminum silicate, magnesium silicate, and copper silicate. Among them, the porous metal oxide is preferably silica.
  • the type of silica is not particularly limited, and known silica gel and porous silica can be used.
  • the particle size of silica is not particularly limited, but the median size (D50) is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1.0 ⁇ m to 10 ⁇ m. Particle size can be measured, for example, using a laser diffraction scattering method.
  • the specific surface area of silica is not particularly limited, it is preferably 200 m 2 /g to 900 m 2 /g, more preferably 300 m 2 /g to 800 m 2 /g. The specific surface area can be determined, for example, by the BET method.
  • the type of zeolite is not particularly limited, and may be synthetic zeolite or natural zeolite.
  • the particle size of the zeolite is not particularly limited, but the median size (D50) is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1.0 ⁇ m to 10 ⁇ m. Particle size can be measured, for example, using a laser diffraction scattering method.
  • the specific surface area of zeolite is not particularly limited, it is preferably 200 m 2 /g to 900 m 2 /g, more preferably 300 m 2 /g to 800 m 2 /g. The specific surface area can be determined, for example, by the BET method.
  • One type of porous material may be contained alone, or two or more types may be contained.
  • the content of the porous material in the malodorous gas adsorbent is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, relative to the total amount of the malodorous gas adsorbent. , 30% by mass to 70% by mass.
  • the malodorous gas adsorbent may contain components other than the porous organometallic complex and the porous material.
  • Other components are not particularly limited, and examples include known acid gas deodorants, basic gas deodorants, sulfur-based gas deodorants, aldehyde-based gas deodorants, ketone-based gas deodorants, and the like.
  • Other deodorants antibacterial agents, antifungal agents, antiviral processing agents, antiallergen agents, antifoaming agents, coloring agents, preservatives, viscosity modifiers, fragrances, surfactants, water, solvents, preservatives, moisturizing agents agents, thickeners, pH adjusters, bleaches, chelating agents, water-soluble salts, and oils.
  • the form of the malodorous gas adsorbent which is one embodiment of the present invention, is not particularly limited as long as it contains a porous organometallic complex and a porous material.
  • the malodorous gas adsorbent may be in the form of a mixture of the porous organometallic complex and the porous material, or may be in the form of supporting the porous organometallic complex on the porous material.
  • the porous organometallic complex is preferably supported on a porous material.
  • a porous organometallic complex is supported on a porous material means that the porous organometallic complex is held in a state of adhering to the porous material.
  • the attached state is not particularly limited, and examples thereof include chemically and/or physically interacting states between the porous organometallic complex and the porous material.
  • Whether or not the porous organometallic complex is supported on the porous material can be determined, for example, by observing the state in which the porous organometallic complex adheres to the porous material with a scanning electron microscope (SEM). can. Further, for example, by performing elemental mapping by X-ray microanalyzer (hereinafter referred to as “XMA”) analysis during SEM observation, the supported porous organometallic complex can be identified.
  • SEM scanning electron microscope
  • the particles of the porous organometallic complex may be stacked on the porous material in several stages, or may be attached in a single layer. Moreover, the porous organometallic complex particles may adhere only to a part of the porous material, or may adhere uniformly to the entire porous material.
  • the particles of the porous organometallic complex adhere to the porous material in a single layer, and that they adhere uniformly as a whole.
  • the porous organometallic complex is preferably deposited onto the porous material by reacting the raw materials of the porous organometallic complex in the presence of the porous material.
  • the particle size distribution of the particles of the porous organometallic complex on the porous material is not particularly limited, it is preferably narrower.
  • the mass ratio can be obtained, for example, from the mixing ratio of the mass of the raw porous material and the mass of the porous organometallic complex.
  • the mass ratio can be determined, for example, by dissolving a malodorous gas adsorbent containing a porous material and a porous organometallic complex in a strong acid and performing high-frequency inductively coupled plasma (hereinafter referred to as "ICP") emission spectrometry.
  • ICP high-frequency inductively coupled plasma
  • analysis means such as CHN elemental analysis and differential thermal/thermogravimetric simultaneous analysis can be used in combination.
  • the porous material is preferably larger than the porous organometallic complex.
  • the ratio of primary particle sizes can be determined, for example, from SEM images of malodorous gas adsorbents comprising porous materials and porous organometallic complexes.
  • the coverage of the porous organometallic complex on the porous material is calculated based on the area covered by the porous organometallic complex in the porous material relative to the surface area of the porous material.
  • the coverage is preferably 10% or more, more preferably 30% or more, and even more preferably 50% or more.
  • the area covered by the porous organometallic complex in the porous material can be measured from SEM images.
  • the malodorous gas adsorbent which is one embodiment of the present invention, is preferably used for adsorbing acid gases.
  • An acid gas is a molecular gas that has free protons and exhibits volatility.
  • acidic gases include carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid and isovaleric acid; hydrogen halides such as hydrogen chloride and hydrogen bromide; inorganic acids such as carbonic acid, nitric acid and sulfuric acid; Acidic gases such as hydrogen sulfide are included.
  • the malodorous gas adsorbent which is one embodiment of the present invention is more preferably used for adsorbing carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid and isovaleric acid, and hydrogen sulfide. .
  • the malodorous gas adsorbent which is one embodiment of the present invention, is used for adsorbing acetic acid gas. That is, the malodorous gas adsorbent of one embodiment of the present invention is preferably an acidic gas adsorbent, and more preferably an acetic acid gas adsorbent.
  • the gas adsorption capacity of the malodorous gas adsorbent is not particularly limited, but is preferably 50 mL/g or more, more preferably 100 mL/g or more, and even more preferably 150 mL/g or more.
  • the upper limit of the gas adsorption capacity is not particularly limited.
  • the acid gas adsorption capacity of the malodorous gas adsorbent is preferably 50 mL/g or more, more preferably 100 mL/g or more, and even more preferably 150 mL/g or more.
  • adsorption capacity means the maximum amount of a specific gas that can be adsorbed by a malodorous gas adsorbent, and means the adsorption capacity adsorbed by both physical adsorption and chemical adsorption mechanisms.
  • the gas adsorption capacity is measured by the following method.
  • the malodorous gas adsorbent comprising a porous material which is one embodiment of the present invention, is prepared by dissolving 20 mg of the malodorous gas adsorbent in 3 liters of acetic acid gas with a concentration of 600 ppm prepared in air with a humidity of 40% under an environment of 25 ° C. It is preferred that it does not deliquesce under the conditions of 24 hours of exposure at .
  • a malodorous gas adsorbent comprising a porous material which is one embodiment of the present invention, is exposed to 40 mg of malodorous gas adsorbent in 300 mL of acetic acid gas with a concentration of 15000 ppm prepared in air with a humidity of 40% at 40 ° C. for 24 hours. It is preferable that the amount of increase per 1 g of the malodorous gas adsorbent after 24 hours is 0.35 g or less, more preferably 0.25 g or less.
  • Weight gain due to deliquescence is measured by the following method.
  • a vinyl alcohol polymer film is cut into a size of 2 cm x 2 cm.
  • the malodorous gas adsorbent that is one embodiment of the present invention can be used for various purposes as a deodorant.
  • the malodorous gas adsorbent which is one embodiment of the present invention, can be blended with fibers, resins, liquids (eg, water, organic solvents, etc.) and used as raw materials for producing deodorant products.
  • deodorant products include, for example, deodorant processing liquids, deodorant fibers, deodorant resin compositions, deodorant fabrics and deodorant filter media.
  • a deodorizing product which is one embodiment of the present invention, contains the above malodorous gas adsorbent.
  • -Deodorant resin composition Since the malodorous gas adsorbent has a higher adsorption capacity for acidic gases than conventional ones, it can be applied to deodorant resin compositions.
  • a deodorant resin composition which is one embodiment of the present invention, contains the above-mentioned malodorous gas adsorbent and resin.
  • the method for producing the deodorant resin composition is not particularly limited, and examples include a method of mixing the malodorous gas adsorbent and the resin and then molding it, and a method of preparing a pellet-shaped resin containing a high concentration of the malodorous gas adsorbent.
  • a method in which a pellet-shaped resin is mixed with another resin and then molded is exemplified. Molding methods include injection molding, extrusion molding, inflation molding, and vacuum molding.
  • the resin constituting the deodorant resin composition is not particularly limited, and examples include polyester, polyurethane, polyolefin, polyamide, polyether, acrylic resin, acrylonitrile-butadiene-styrene (ABS resin), nylon, polystyrene, polycarbonate and vinyl chloride. resin.
  • the content of the malodorous gas adsorbent in the deodorant resin composition is preferably 0.1% by mass to 35% by mass, more preferably 0.2% by mass to 30% by mass, relative to the total amount of the deodorant resin composition. %, more preferably 0.5% by mass to 25% by mass.
  • the deodorizing resin composition contains pigments, dyes, antioxidants, light stabilizers, antistatic agents, foaming agents, impact-resistant reinforcing agents, glass fibers, moisture-proof agents, thickeners, acidic gas deodorants, basic Other known deodorants such as gas deodorants, sulfur-based gas deodorants, aldehyde-based gas deodorants, ketone-based gas deodorants; , antifoaming agents, coloring agents, preservatives, viscosity modifiers, fragrances, surfactants, preservatives, moisturizing agents, water-soluble salts, oil agents, and other additives.
  • the deodorant resin composition which is one embodiment of the present invention, can be applied to various products that require deodorant properties, such as home electric appliances such as air purifiers, refrigerators, and air conditioners; , general household goods such as sponges; various nursing care products such as portable toilets, wallpaper, toilet bowls, toilet seats, kitchen counters, ventilation fan filters, paints and other residential building materials; vehicle interiors, pet products, and daily necessities.
  • home electric appliances such as air purifiers, refrigerators, and air conditioners
  • general household goods such as sponges
  • various nursing care products such as portable toilets, wallpaper, toilet bowls, toilet seats, kitchen counters, ventilation fan filters, paints and other residential building materials
  • vehicle interiors, pet products, and daily necessities such as home electric appliances such as air purifiers, refrigerators, and air conditioners
  • general household goods such as sponges
  • nursing care products such as portable toilets, wallpaper, toilet bowls, toilet seats, kitchen counters, ventilation fan filters, paints and other residential building materials
  • the malodorous gas adsorbent Since the malodorous gas adsorbent has a higher adsorption capacity for acidic gases than conventional ones, it can be applied to the deodorant processing liquid.
  • the deodorant processing liquid contains the above-mentioned malodorous gas adsorbent, and preferably contains a dispersion medium, a dispersant, and an adhesive in addition to the malodorous gas adsorbent.
  • dispersion media examples include organic solvents such as alcohols, ketones, esters, and hydrocarbons, and water.
  • examples of dispersants include polycarboxylic acid-based dispersants, naphthalenesulfonic acid formalin condensation-based dispersants, polyethylene glycol, alkylsulfonic acid-based dispersants, quaternary ammonium-based dispersants, Examples include higher alcohol alkylene oxide dispersants and polyphosphoric acid dispersants.
  • the dispersant includes, for example, a polycarboxylic acid alkyl ester dispersant, a polyether dispersant, a polyalkylamine dispersant, a polyhydric alcohol ester dispersant, and Alkylpolyamine-based dispersants may be mentioned.
  • adhesives examples include novolak-type or resol-type phenolic resins, alkyd resins, aminoalkyd resins, acrylic resins, vinyl chloride resins, vinylidene chloride resins, silicone resins, fluorine resins, epoxy resins, urethane resins, saturated polyester resins, and melamine resins.
  • the content of the malodorous gas adsorbent in the deodorant processing liquid is preferably 0.1% by mass to 50% by mass, more preferably 0.2% by mass to 30% by mass, relative to the total amount of the deodorant processing liquid. more preferably 0.3% by mass to 20% by mass.
  • the malodorous gas adsorbent has high malodorous gas adsorption performance and a small primary particle size of 0.05 to 3.0 ⁇ m, so that it can be spun without yarn breakage. Therefore, it can be applied to deodorant fibers.
  • the method of producing the deodorant fiber is not particularly limited, and examples include a method of kneading the malodorous gas adsorbent into a fiber raw material and then spinning it, and a method of adding the malodorous gas adsorbent to spun fibers such as chemical fibers and natural fibers.
  • Fibers constituting deodorant fibers are not particularly limited, and examples include chemical fibers such as polyester, polyurethane, nylon, rayon, acrylic, vinylon, polypropylene, and polyethylene; natural fibers such as cotton, hemp, silk, and wool; and glass.
  • Inorganic fibers such as fibers, carbon fibers, alumina fibers, and metal fibers can be used. These fibers may be used singly or in combination of two or more.
  • the content of the malodorous gas adsorbent in the deodorant fiber is preferably 0.1% by mass to 5.0% by mass, more preferably 0.2% by mass to 3.0% by mass, relative to the total amount of the deodorant fiber. %, more preferably 0.5 mass % to 2.0 mass %.
  • the deodorizing fiber that is one embodiment of the present invention can be applied to various textile products, such as underwear, stockings, socks, masks, futons, duvet covers, floor cushions, blankets, carpets, curtains, sofas, and car seats. , air filters, air purifier filters, air conditioner filters and nursing care clothing.
  • the fabric may be woven, nonwoven, or a combination thereof.
  • the method of producing the deodorant fabric is not particularly limited, and examples include a method of weaving using the deodorant fiber, a method of producing a nonwoven fabric by a known method using the deodorant fiber, and a method of adsorbing the malodorous gas on the fabric.
  • a method of applying a deodorant processing liquid containing an agent and drying it can be mentioned.
  • the content of the malodorous gas adsorbent in the deodorant fabric is preferably 0.1 to 5.0 g, more preferably 0.2 to 4.0 g, per 1 m 2 of the area of the deodorant fabric. It is preferably 0.3 to 3.0 g, more preferably 0.3 to 3.0 g.
  • the malodorous gas adsorbent Since the malodorous gas adsorbent has a higher adsorption capacity for acidic gases than conventional ones, it can be applied to a deodorizing filter medium.
  • the method for producing the deodorizing filter medium is not particularly limited, and for example, a method of applying a deodorizing processing liquid containing the above-mentioned malodorous gas adsorbent to a base material and drying it, and a method of using the above-mentioned deodorizing fiber or cloth. and a method of producing a deodorizing filter medium.
  • the base material is not particularly limited as long as it has pores so that it can be filtered, and examples include fibers, ceramics and metals.
  • the content of the malodorous gas adsorbent in the deodorizing filter medium is preferably 0.1 g to 40 g, more preferably 0.5 g to 35 g, and 1.0 g per 1 m 2 of substrate area. More preferably ⁇ 30g.
  • the deodorant filter medium which is one embodiment of the present invention, can be applied to various products, such as air filters, air purifier filters, air conditioner filters, drainers and water purifiers.
  • the malodorous gas adsorbent that is one embodiment of the present invention may be produced by a known method, for example, the steps of obtaining a porous organometallic complex and mixing the porous organometallic complex with a porous material. and may be manufactured by a method including:
  • the porous organometallic complex can be produced by, for example, a step of mixing a solution containing a metal salt and a solution containing a ligand, a step of solid-liquid separation of the mixed solution obtained by mixing to obtain a solid, and a step of separating the solid. It can be produced by a method including a step of drying and, if necessary, a step of pulverizing the dried solid.
  • the solid-liquid separation method in the process of obtaining solids, for example, filtration methods such as natural filtration, suction filtration, vacuum filtration, and pressure filtration; Separation methods that do not use Among them, the solid-liquid separation method is preferably a filtration method.
  • the malodorous gas adsorbent that is one embodiment of the present invention is preferably produced by the following production method.
  • a method for producing a malodorous gas adsorbent comprises a step of mixing a solution containing a metal salt, a solution containing a porous material, and a ligand containing a nitrogen atom; and a step of solid-liquid separation to obtain a solid matter from the mixed liquid obtained by the above.
  • the method for producing the malodorous gas adsorbent which is one embodiment of the present invention, preferably further includes a step of drying the solid matter and a step of pulverizing the dried solid matter.
  • the malodorous gas adsorbent produced by such a production method contains a porous organometallic complex containing a metal and a ligand containing a nitrogen atom, and a porous material. Also, the porous organometallic complex is obtained in a state of being supported on a porous material.
  • the metal salt is not particularly limited, and examples thereof include acid salts such as metal nitrates, hydrochlorides, sulfates, carbonates and acetates, and halides such as chlorides, bromides and iodides.
  • Metals constituting the metal salt are not particularly limited, and examples include Mg, Ca, Sr, Ba, Sc+, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe , Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, and Bi can be mentioned.
  • the metal is preferably at least one selected from the group consisting of Zn, Zr, Ti, Al, and Co, and more preferably Zn.
  • the type of solvent is not particularly limited, and examples include water and organic solvents.
  • porous material is the same as the porous material described in the section on the malodorous gas adsorbent.
  • preferred aspects of the ligand are the same as those described in the column of the malodorous gas adsorbent.
  • the type of solvent is not particularly limited, and examples include water and organic solvents.
  • the porous material may be added to the solution containing the metal salt, or the solution containing the metal salt may be added to the porous material.
  • the solution containing the ligand may be added to the dispersion containing the metal salt and the porous material and stirred, or the dispersion may be added to the solution containing the ligand.
  • the porous material may be added to the solution containing the ligand, or the solution containing the ligand may be added to the porous material.
  • the solution containing the metal salt may be added to the dispersion containing the ligand and the porous material, or the dispersion may be added to the solution containing the metal salt.
  • a mixture of a solution containing a metal salt and a solution containing a ligand may be mixed with a porous material.
  • the porous material may be mixed as it is, or may be dispersed in a solvent in advance and then mixed.
  • the solution containing the metal salt is mixed with the porous material and then the solution containing the ligand is added, or the solution containing the ligand and the porous material are mixed and then the solution containing the metal salt is added. is preferred.
  • a solid is produced.
  • a mixture containing the porous material and the porous organometallic complex and/or a composite in which the porous organometallic complex is supported on the porous material is solid. obtained as a product.
  • the solid matter thus obtained is separated by solid-liquid separation.
  • the solid-liquid separation method in the process of obtaining solids, for example, filtration methods such as natural filtration, suction filtration, vacuum filtration, and pressure filtration; Separation methods that do not use Among them, the solid-liquid separation method is preferably a filtration method.
  • a solvent used for washing is, for example, water.
  • a malodorous gas adsorbent which is a composite of a porous organometallic complex supported on a porous material.
  • the drying method is not particularly limited, and a commonly known method can be used.
  • the drying temperature is, for example, 60°C to 200°C.
  • the drying time is, for example, 0.5 hours to 24 hours.
  • the pulverization method is not particularly limited, and examples thereof include a method of pulverizing using a pulverizer such as a mortar, ball mill, jet mill, hammer mill, pin mill, and bead mill.
  • a pulverizer such as a mortar, ball mill, jet mill, hammer mill, pin mill, and bead mill.
  • Example 1 35 mL of pure water and 10 g of 2-methylimidazole were added to a beaker and stirred at 25° C. for 10 minutes to prepare an aqueous 2-methylimidazole solution. Next, 6 mL of pure water and 0.9 g of zinc nitrate were mixed and stirred at 25° C. for 10 minutes to prepare an aqueous zinc nitrate solution. Furthermore, the 2-methylimidazole aqueous solution and the zinc nitrate aqueous solution were mixed and stirred at 25° C. for 10 minutes. The obtained reaction solution was filtered, and the filtered solid was washed with pure water. The washed solid was dried overnight at 80° C.
  • FIG. 1 shows the results of powder X-ray diffraction measurement. Powder X-ray diffraction measurement was performed using a powder X-ray diffractometer (product name “D8 ADVANCE”, manufactured by Bruker Japan) at a diffraction angle of 3° to 50°.
  • Example 2 40 mL of N,N-dimethylformamide (DMF), 0.62 g of 2-aminoterephthalic acid, and 0.87 g of ZrCl 4 were added to a Teflon (registered trademark) container and dissolved by ultrasonic stirring. Next, 0.375 mL of 35% by mass concentrated hydrochloric acid was added to the Teflon container, and the Teflon container was placed in a stainless steel jacket, sealed, and heated in an oven at 120° C. for 24 hours while standing still. After 24 hours, it was allowed to cool to room temperature.
  • DMF N,N-dimethylformamide
  • 2-aminoterephthalic acid 2-aminoterephthalic acid
  • ZrCl 4 ZrCl 4
  • the contents of the Teflon container were transferred to a 50 mL centrifuge tube and separated into a precipitate and a supernatant by centrifugation.
  • the supernatant was removed by decantation, and the precipitate was suspended in 50 mL of DMF.
  • the remaining precipitate was suspended in 50 mL of methanol.
  • Centrifugation was performed again and the supernatant was removed.
  • the resulting precipitate was transferred to a 100 mL beaker, suspended in 80 mL of methanol, and stirred overnight at 25°C. The suspension was subjected to suction filtration, and the filtered solid was washed with methanol.
  • the washed solid was dried overnight at 80° C. to obtain a porous organometallic complex (UiO-66-NH 2 ).
  • the resulting porous organometallic complex (UiO-66-NH 2 ) was used as a malodorous gas adsorbent.
  • the obtained porous organometallic complex was identified by powder X-ray diffraction measurement, and was found to be a crystalline substance in which organic ligands were coordinated to metal ions.
  • FIG. 2 shows the powder X-ray diffraction measurement results.
  • Benzene-1,3,5-tricarboxylic acid copper (product name “Basolite C300”, manufactured by BASF) was used as a malodorous gas adsorbent.
  • Y-type zeolite was used as the malodorous gas adsorbent.
  • a zirconium hydroxide was obtained by preparing an aqueous solution in which a soluble zirconium salt and a soluble hafnium salt were dissolved in water, adding a base thereto to generate a hydroxide, and then separating and recovering the hydroxide. The resulting zirconium hydroxide was used as a malodorous gas adsorbent.
  • Table 1 shows the malodorous gas adsorbents of Examples and Comparative Examples.
  • the porous metal complex was used as the malodorous gas adsorbent, the maximum pore size and primary particle size of the porous metal complex were measured.
  • the measuring method is as follows. Table 1 shows the measurement results.
  • the porous organometallic complex was observed at an appropriate magnification using a semi-in-lens scanning electron microscope (product name “S-4800”, manufactured by Hitachi High-Technologies Corporation). Particles were identified based on the obtained SEM image. The diameter of the longest part of the particle was measured on the SEM image at a magnification at which a single particle was observable. 100 particles were measured, and the average value was taken as the primary particle size.
  • S-4800 semi-in-lens scanning electron microscope
  • the acetic acid gas adsorption capacity was calculated.
  • the calculation method is as follows. Table 2 shows the results. Incidentally, if the acetic acid gas adsorption capacity is 50 mL/g or more, it is at a practically acceptable level.
  • the malodorous gas adsorbent was sealed in a vinyl alcohol polymer film bag, and the bag was filled with air to a volume of 3 liters.
  • the specific gas was put into this bag so that the concentration of the specific gas was 30 ppm.
  • the concentration of the specific gas remaining in the bag was measured with a gas detector tube, and then 30 ppm of the specific gas was added to the bag.
  • the concentration of the specific gas remaining in the bag was measured with a gas detector tube.
  • the malodorous gas adsorbents of Examples 1 and 2 have a higher adsorption capacity for acetic acid gas and a higher adsorption capacity for acidic gases than the malodorous gas adsorbent of Comparative Example 1. Do you get it.
  • the malodorous gas adsorbents of Examples 1 and 2 have a higher deodorizing rate and an acidic gas adsorption capacity than the malodorous gas adsorbents of Comparative Examples 1 to 4. It turned out to be expensive.
  • the deodorant rate was calculated using the deodorant resin compositions containing the malodorous gas adsorbents of Examples and Comparative Examples.
  • the calculation method is as follows. The results are shown in Tables 4 and 5.
  • polyester product name "MA2101M", manufactured by Unitika
  • a bad smell gas adsorbent kneaded and molded into a plate shape at 280°C.
  • a deodorizing resin composition was obtained by adjusting the amount of the malodorous gas adsorbent added to 3 parts by mass per 100 parts by mass of the polyester.
  • polyester product name "MA2101M", manufactured by Unitika
  • a bad smell gas adsorbent kneaded and molded into a plate shape at 280°C.
  • a deodorizing resin composition A was obtained by adjusting the amount of the malodorous gas adsorbent to be added to 2 parts by mass with respect to 100 parts by mass of the polyester resin.
  • a deodorant resin composition B was obtained by adjusting the amount of the malodorous gas adsorbent added to 2 parts by mass with respect to 100 parts by mass of the polypropylene resin.
  • a deodorant resin composition C was obtained by adjusting the amount of the malodorous gas adsorbent added to 2 parts by mass per 100 parts by mass of the polyethylene resin.
  • a deodorizing resin composition D was obtained by adjusting the amount of the malodorous gas adsorbent to be added to 2 parts by mass with respect to 100 parts by mass of the acrylic resin.
  • the deodorant resin compositions A to D obtained by molding were cut into pieces of 5 mm x 5 mm. 2.0 g of the cut sample was placed in a vinyl alcohol polymer film bag and sealed. The bag was inflated to a volume of 3L. Acetic acid gas was put into the bag so that the concentration of acetic acid gas was 30 ppm, and the bag was allowed to stand. After 2 hours and 24 hours from the injection of acetic acid gas, the residual acetic acid gas concentration in the bag was measured with a gas detector tube. The deodorant rate of the deodorant resin compositions A to D containing the malodorous gas adsorbent was calculated in the same manner as in the method for calculating the deodorant rate. Table 5 shows the results.
  • the MFR of the deodorant resin composition B was measured using a melt indexer (product name “Melt Indexer G-02", manufactured by Toyo Seiki Co., Ltd.) at 230 ° C. and a load of 2.16 kg in accordance with JIS K 7210-1: 2014. measured in As a blank sample, a polypropylene (product name: “Prime Polypro J707G", manufactured by Prime Polymer) was molded into a plate at 220°C by an injection molding machine.
  • melt indexer G-02 manufactured by Toyo Seiki Co., Ltd.
  • JIS K 7210-1:2014 As a blank sample, polyethylene (product name: "Hi-Zex 2100J", manufactured by Prime Polymer) was molded into a plate shape at 220°C by an injection molding machine. Table 6 shows the evaluation results.
  • the deodorant resin composition containing the malodorous gas adsorbent of Example 1 showed no significant change in MFR compared to the blank sample containing no malodorous gas, indicating excellent stability. Do you get it.
  • Example 3 A porous organometallic complex (ZIF-8) was obtained in the same manner as in Example 1. Next, 1.0 g of a porous organometallic complex (ZIF-8) and 1.0 g of porous silica (median diameter: 2.8 ⁇ m, specific surface area: 500 m 2 /g), which is a porous material, are placed in a vial and mixed. and shaken well to obtain a malodorous gas adsorbent which is a mixture of porous organometallic complex (ZIF-8) and porous silica in a mass ratio of 1:1.
  • FIG. 3 shows a scanning electron microscope (SEM) photograph of the obtained malodorous gas adsorbent.
  • Example 4 0.9 g of zinc nitrate was added to 20 mL of pure water to prepare an aqueous zinc nitrate solution. After that, 0.9 g of porous silica (median diameter: 2.8 ⁇ m, specific surface area: 500 m 2 /g), which is a porous material, is added to the zinc nitrate aqueous solution and stirred to uniformly distribute the porous silica in the zinc nitrate aqueous solution. dispersed. Next, 10 g of 2-methylimidazole as a ligand was added to 35 mL of pure water to prepare an aqueous 2-methylimidazole solution.
  • the 2-methylimidazole aqueous solution was added to the zinc nitrate aqueous solution in which the porous silica was dispersed, and the mixture was stirred at 25° C. for 10 minutes.
  • the obtained reaction solution was filtered, and the filtered solid matter was washed with pure water.
  • the washed solid was dried overnight at 80° C. and then pulverized in a mortar to obtain a composite of porous organometallic complex (ZIF-8) and porous silica.
  • ZIF-8 porous organometallic complex
  • the surface coverage of the porous silica was 80% or more, and the porous metal complex (ZIF-8) was supported on the porous silica.
  • This complex was dissolved in a strong acid and subjected to ICP emission spectroscopic analysis to determine the ratio of Zn and Si.
  • the mass ratio of the porous organometallic complex (ZIF-8) and porous silica was 1:1. rice field.
  • This composite was used as a malodorous gas adsorbent.
  • FIG. 4 shows an SEM photograph of the obtained malodorous gas adsorbent.
  • a product name "S-4800" manufactured by Hitachi High-Technologies Corporation was used.
  • the magnification of the photograph was 50000 times, and the SEM photograph was obtained using a voltage of 1.0 KV. From FIG. 4, it was found that the primary particle size of ZIF-8 was mainly around 0.2 ⁇ m.
  • XMA analysis was performed in SEM observation, and the coated particles were identified as ZIF-8.
  • JSM-7900E manufactured by JEOL Ltd.
  • Ultim Max100 manufactured by Oxford Instruments
  • Example 5 A porous organometallic complex (ZIF-8) was obtained in the same manner as in Example 1. Next, 1.0 g of a porous organometallic complex (ZIF-8) and 1.0 g of ZSM-5 type zeolite (median 4.0 ⁇ m, specific surface area 390 m 2 /g), which is a porous material, were placed in a vial. They were mixed and shaken well to obtain a malodorous gas adsorbent which was a mixture of porous metal complex (ZIF-8) and ZSM-5 type zeolite at a mass ratio of 1:1.
  • FIG. 5 shows an SEM photograph of the obtained malodorous gas adsorbent.
  • Example 6 First, 0.9 g of zinc nitrate was added to 20 mL of pure water to prepare a zinc nitrate aqueous solution. After that, 0.9 g of ZSM-5 type zeolite (median diameter 4.0 ⁇ m, specific surface area 390 m 2 /g), which is a porous material, is added to the zinc nitrate aqueous solution and stirred, and ZSM-5 type zeolite is added to the zinc nitrate aqueous solution. The zeolite was evenly dispersed. Next, 10 g of 2-methylimidazole was added to 35 mL of pure water to prepare an aqueous 2-methylimidazole solution.
  • ZSM-5 type zeolite medium diameter 4.0 ⁇ m, specific surface area 390 m 2 /g
  • the 2-methylimidazole aqueous solution was added to the zinc nitrate aqueous solution in which the ZSM-5 type zeolite was dispersed, and the mixture was stirred at 25° C. for 10 minutes.
  • the obtained reaction solution was filtered, and the filtered solid matter was washed with pure water.
  • the washed solid was dried overnight at 80° C. and then pulverized in a mortar to obtain a composite of porous organometallic complex (ZIF-8) and ZSM-5 type zeolite.
  • ZIF-8 porous organometallic complex
  • FIG. 6 shows an SEM photograph of the obtained malodorous gas adsorbent.
  • a product name "S-4800” manufactured by Hitachi High-Technologies Corporation was used as a scanning electron microscope. The magnification of the photograph was 10000 times, and the SEM photograph was obtained using a voltage of 1.0 KV. From FIG. 6, it was found that the primary particle size of ZIF-8 was mainly around 0.2 ⁇ m. 3 to 6, 1 indicates silica, 2 indicates ZIF-8, and 3 indicates zeolite.
  • the acetic acid gas adsorption capacity and deodorization rate were calculated.
  • the method for calculating the acetic acid gas adsorption capacity is as described above.
  • the method for calculating the deodorant rate is as follows. Deliquescence resistance was also evaluated using the malodorous gas adsorbents of Examples and Comparative Examples. The evaluation method is as follows. Table 7 shows the results.
  • Weight Gain Weight gain due to deliquescence was measured by the following method. 1) A vinyl alcohol polymer film was cut into a size of 2 cm x 2 cm. (2) The cut film was placed on an aluminum cup, and the malodorous gas adsorbent was spread thinly and placed thereon. (3) Before and after placing the malodorous gas adsorbent, the total weight of each was measured. (4) (2) was placed in a vinyl alcohol polymer film bag. (5) 100 mL of air (40% humidity) and acetic acid gas were injected with a syringe so that the concentration of acetic acid gas was 15000 ppm. (6) Allowed to stand for 24 hours in a constant temperature machine at 40°C.
  • Examples 3 and 5 exhibit excellent adsorption capacity and deodorizing rate for acetic acid gas, and also exhibit extremely excellent deliquescence resistance.
  • Examples 4 and 6 which are composites in which a porous organometallic complex is supported on a porous material, are composites in which a corresponding porous organometallic complex and a porous material are mixed, respectively. As compared with Example 5, all of them were found to be superior in deliquescence resistance and more practical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention provides: an agent for adsorbing malodorous gas comprising a porous organic metal complex that includes a metal and a ligand which includes a nitrogen atom; and an application thereof.

Description

悪臭ガス吸着剤及びその製造方法、並びに、消臭製品Malodorous gas adsorbent, method for producing the same, and deodorizing product
 本開示は、悪臭ガス吸着剤及びその製造方法、並びに、消臭製品に関する。 The present disclosure relates to a malodorous gas adsorbent, a method for producing the same, and a deodorant product.
 従来、活性炭及びゼオライトをはじめ、さまざまな材料を用いたガス吸着剤が開発されてきた。 Conventionally, gas adsorbents using various materials, including activated carbon and zeolite, have been developed.
 例えば、特開2019-088499号公報には、1,3,5-ベンゼントリカルボン酸又はそのエステルを配位子とする多孔性金属錯体を、生活臭用の消臭剤として用いることが開示されている。特開2011-126775号公報には、互いに化学的に結合され、物質種の互いに異なる少なくとも2種の多孔性物質部を含むハイブリッド多孔性物質が開示されている。 For example, JP-A-2019-088499 discloses that a porous metal complex having 1,3,5-benzenetricarboxylic acid or an ester thereof as a ligand is used as a deodorant for daily life odors. there is Japanese Patent Application Laid-Open No. 2011-126775 discloses a hybrid porous material that is chemically bonded to each other and includes at least two kinds of porous material portions of different material types.
 ガス吸着剤において、悪臭ガス(例えば、酸性ガス)の吸着が求められる場合がある。 In some cases, gas adsorbents are required to adsorb malodorous gases (eg, acid gases).
 上記事情に鑑み、本発明の一実施形態によれば、従来よりも悪臭ガスに対する吸着能が高い悪臭ガス吸着剤、及び消臭製品が提供される。 In view of the above circumstances, one embodiment of the present invention provides a malodorous gas adsorbent and a deodorizing product that have a higher ability to adsorb malodorous gases than conventional ones.
<1>金属と、窒素原子を含む配位子と、を含む多孔性有機金属錯体を含有する、悪臭ガス吸着剤。
<2>金属は、Zn、Zr、Ti、Al、及びCoからなる群より選択される少なくとも1種である、<1>に記載の悪臭ガス吸着剤。
<3>窒素原子を含む配位子は、芳香環又は複素環を有する、<1>又は<2>に記載の悪臭ガス吸着剤。
<4>金属がZnであり、配位子がイミダゾール系化合物である、<1>~<3>のいずれか1つに記載の悪臭ガス吸着剤。
<5>酸性ガスを吸着するために用いられる、<1>~<4>のいずれか1つに記載の悪臭ガス吸着剤。
<6>多孔性有機金属錯体は粒子であり、粒子の一次粒径が0.05μm~3.0μmである、<1>~<5>のいずれか1つに記載の悪臭ガス吸着剤。
<7>ガスの吸着容量が50mL/g以上である、<1>~<6>のいずれか1つに記載の悪臭ガス吸着剤。
<8>
 さらに多孔性材料を含有する、<1>~<7>のいずれか1つに記載の悪臭ガス吸着剤。
<9>多孔性有機金属錯体は、多孔性材料に担持されている、<8>に記載の悪臭ガス吸着剤。
<10>多孔性材料は、多孔性金属酸化物、ゼオライト、及び活性炭からなる群より選択される少なくとも1種を含む、<8>又は<9>に記載の悪臭ガス吸着剤。
<11>20mgの悪臭ガス吸着剤を、湿度40%の空気で調製した濃度600ppmの酢酸ガス3リットル中、25℃の環境下で24時間暴露させる条件において潮解しない、<8>~<10>のいずれか1つに記載の悪臭ガス吸着剤。
<12>40mgの悪臭ガス吸着剤を、湿度40%の空気で調製した濃度15000ppmの酢酸ガス300mL中、40℃の環境下で24時間暴露させる条件において、24時間後の、悪臭ガス吸着剤1gあたりの増加量が0.35g以下である、<8>~<11>のいずれか1つに記載の悪臭ガス吸着剤。
<13><1>~<12>のいずれか1つに記載の悪臭ガス吸着剤を含む消臭製品。
<14>金属塩を含む溶液と、多孔性材料、及び窒素原子を含む配位子を含有する溶液と、を混合する工程と、混合して得られた混合液から固液分離して固形物を得る工程と、を含む悪臭ガス吸着剤の製造方法。
<1> A malodorous gas adsorbent containing a porous organometallic complex containing a metal and a ligand containing a nitrogen atom.
<2> The malodorous gas adsorbent according to <1>, wherein the metal is at least one selected from the group consisting of Zn, Zr, Ti, Al, and Co.
<3> The malodorous gas adsorbent according to <1> or <2>, wherein the ligand containing a nitrogen atom has an aromatic ring or a heterocyclic ring.
<4> The malodorous gas adsorbent according to any one of <1> to <3>, wherein the metal is Zn and the ligand is an imidazole compound.
<5> The malodorous gas adsorbent according to any one of <1> to <4>, which is used for adsorbing acidic gases.
<6> The malodorous gas adsorbent according to any one of <1> to <5>, wherein the porous organometallic complex is a particle having a primary particle size of 0.05 μm to 3.0 μm.
<7> The malodorous gas adsorbent according to any one of <1> to <6>, which has a gas adsorption capacity of 50 mL/g or more.
<8>
The malodorous gas adsorbent according to any one of <1> to <7>, further comprising a porous material.
<9> The malodorous gas adsorbent according to <8>, wherein the porous organometallic complex is supported on a porous material.
<10> The malodorous gas adsorbent according to <8> or <9>, wherein the porous material includes at least one selected from the group consisting of porous metal oxides, zeolite, and activated carbon.
<11> 20 mg of malodorous gas adsorbent does not deliquesce in 3 liters of acetic acid gas with a concentration of 600 ppm prepared in air with a humidity of 40% in an environment of 25 ° C. for 24 hours, <8> to <10> The malodorous gas adsorbent according to any one of .
<12> 40 mg of the malodorous gas adsorbent was exposed to 300 mL of acetic acid gas with a concentration of 15,000 ppm prepared in air with a humidity of 40% in an environment of 40°C for 24 hours. The malodorous gas adsorbent according to any one of <8> to <11>, wherein the increase per unit is 0.35 g or less.
<13> A deodorant product containing the malodorous gas adsorbent according to any one of <1> to <12>.
<14> A step of mixing a solution containing a metal salt with a solution containing a porous material and a ligand containing a nitrogen atom; and a method for producing a malodorous gas adsorbent.
 本発明の一実施形態によれば、従来よりも悪臭ガスに対する吸着能が高い悪臭ガス吸着剤、及び消臭製品を提供することができる。 According to one embodiment of the present invention, it is possible to provide a malodorous gas adsorbent and a deodorizing product that have a higher ability to adsorb malodorous gases than conventional ones.
図1は、実施例1で得られた多孔性有機金属錯体の粉末X線回折測定のX線回折パターンである。1 is an X-ray diffraction pattern of powder X-ray diffraction measurement of the porous organometallic complex obtained in Example 1. FIG. 図2は、実施例2で得られた多孔性有機金属錯体の粉末X線回折測定のX線回折パターンである。2 is an X-ray diffraction pattern of powder X-ray diffraction measurement of the porous organometallic complex obtained in Example 2. FIG. 図3は、実施例3で得られた悪臭ガス吸着剤のSEM写真である。3 is a SEM photograph of the malodorous gas adsorbent obtained in Example 3. FIG. 図4は、実施例4で得られた悪臭ガス吸着剤のSEM写真である。4 is a SEM photograph of the malodorous gas adsorbent obtained in Example 4. FIG. 図5は、実施例5で得られた悪臭ガス吸着剤のSEM写真である。5 is a SEM photograph of the malodorous gas adsorbent obtained in Example 5. FIG. 図6は、実施例6で得られた悪臭ガス吸着剤のSEM写真である。6 is a SEM photograph of the malodorous gas adsorbent obtained in Example 6. FIG.
 以下、本開示のガス吸着剤及びその製造方法、並びに、消臭製品について詳細に説明する。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 また、本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 また、本明細書において、「耐潮解性」とは、潮解しないか、又は潮解しにくい性質をいう。「潮解」とは、悪臭ガス吸着剤が、例えば、悪臭ガスに暴露された際に、悪臭ガスの成分を吸収して、形状が変化する現象をいう。
The gas adsorbent of the present disclosure, the method for producing the same, and the deodorant product will be described in detail below.
In this specification, the numerical range indicated using "to" means a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
As used herein, the amount of each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means
Moreover, in the present specification, a combination of two or more preferred aspects is a more preferred aspect.
Moreover, in this specification, the term "deliquescence resistance" refers to the property of not deliquescing or hardly deliquescing. “Deliquescence” refers to a phenomenon in which, for example, when a malodorous gas adsorbent is exposed to a malodorous gas, it absorbs components of the malodorous gas and changes its shape.
<悪臭ガス吸着剤>
 本発明の一実施形態である悪臭ガス吸着剤は、金属と、窒素原子を含む配位子と、を含む多孔性有機金属錯体を含有する。本発明の一実施形態である悪臭ガス吸着剤は、多孔性有機金属錯体に含まれる配位子が窒素原子を含むため、ガス中の成分が窒素原子と反応して化学吸着する。また、ガス中の成分が多孔性金属錯体の細孔内へ物理吸着する。本発明の一実施形態である悪臭ガス吸着剤は、比表面積が大きい上、化学吸着と物理吸着の両方の作用により、従来よりも悪臭ガスに対する吸着能が高い。
<Foul-smelling gas adsorbent>
A malodorous gas adsorbent that is one embodiment of the present invention contains a porous organometallic complex containing a metal and a ligand containing a nitrogen atom. In the malodorous gas adsorbent, which is one embodiment of the present invention, the ligands contained in the porous organometallic complex contain nitrogen atoms, so components in the gas react with the nitrogen atoms and chemisorb. Also, components in the gas are physically adsorbed into the pores of the porous metal complex. The malodorous gas adsorbent, which is one embodiment of the present invention, has a large specific surface area and has a higher adsorption capacity for malodorous gases than conventional ones due to the effects of both chemisorption and physical adsorption.
 なお、本開示において、「悪臭ガス」とは、人が不快に感じるガスをいう。人が不快に感じるガスとは、一般的に、ガスの官能試験における9段階快・不快度表示法においてマイナス側に評価されるガスのことを指す。 In the present disclosure, "malodorous gas" refers to gas that makes people feel uncomfortable. A gas that people feel uncomfortable generally refers to a gas that is evaluated on the negative side in the 9-level pleasure/discomfort display method in the gas sensory test.
(多孔性有機金属錯体)
 多孔性有機金属錯体は、金属と、窒素原子を含む配位子と、を含む。「多孔性」とは、複数の孔を有する構造であることを指し、複数の孔は互いに連通してもよく、連通していなくてもよい。
(Porous organometallic complex)
A porous organometallic complex contains a metal and a ligand containing a nitrogen atom. "Porous" refers to a structure having a plurality of pores, and the plurality of pores may or may not communicate with each other.
-金属-
 多孔性有機金属錯体に含まれる金属は、1種のみであってもよく、2種以上であってもよい。
-metal-
The number of metals contained in the porous organometallic complex may be one, or two or more.
 多孔性有機金属錯体に含まれる金属は特に限定されず、例えば、Mg、Ca、Sr、Ba、Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、Tl、Si、Ge、Sn、Pb、As、Sb、及びBiが挙げられる。中でも、ガス吸着能を向上させる観点から、金属は、Zn、Zr、Ti、Al、及びCoからなる群より選択される少なくとも1種であることが好ましく、Znであることがより好ましい。 The metal contained in the porous organometallic complex is not particularly limited, and examples include Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re , Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb , and Bi. Among them, from the viewpoint of improving gas adsorption capacity, the metal is preferably at least one selected from the group consisting of Zn, Zr, Ti, Al, and Co, and more preferably Zn.
-配位子-
 多孔性有機金属錯体に含まれる配位子は、1種のみであってもよく、2種以上であってもよい。多孔性有機金属錯体に含まれる配位子が2種以上である場合、窒素原子を含む配位子が少なくとも1種含まれていればよく、窒素原子を含まない配位子が含まれていてもよい。
-ligand-
The number of ligands contained in the porous organometallic complex may be one, or two or more. When two or more ligands are contained in the porous organometallic complex, at least one ligand containing a nitrogen atom may be contained, and a ligand containing no nitrogen atom may be contained. good too.
 窒素原子を含む配位子としては、例えば、アミン化合物及び含窒素複素環式化合物が挙げられる。 Examples of ligands containing nitrogen atoms include amine compounds and nitrogen-containing heterocyclic compounds.
 アミン化合物としては、例えば、モノアミン、ジアミン、及びトリアミンが挙げられる。アミン化合物は、第1級アミン、第2級アミン、第3級アミン及び第4級アンモニウムのいずれであってもよい。 Amine compounds include, for example, monoamines, diamines, and triamines. The amine compound may be any of primary amine, secondary amine, tertiary amine and quaternary ammonium.
 アミン化合物としては、例えば、アニリン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、1,3,5-トリアミノベンゼン、2-アミノテレフタル酸等の芳香族アミンが挙げられる。 Examples of amine compounds include aromatic amines such as aniline, 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, 1,3,5-triaminobenzene, and 2-aminoterephthalic acid. is mentioned.
 また、含窒素複素環式化合物としては、ピリジン、ピロリジン、ピロリン、ピペリジン、ピリミジン、インドール、アザインドール、カルバゾール、インダゾール、ノルハルマン、ハルマン、イミダゾール、オキサゾール、チアゾール、ピラゾール、ピロール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、ベンゾチアジアゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、トリアジン、ベンズイソオキサゾール、ピラジン、キノリン、ベンゾキノリン、アクリジン、チアゾリン、キヌクリジン、イミダゾリン、オキサゾリン、チアゾリン、及びイソキノリン、並びに、これらの誘導体が挙げられる。 Nitrogen-containing heterocyclic compounds include pyridine, pyrrolidine, pyrroline, piperidine, pyrimidine, indole, azaindole, carbazole, indazole, norharman, harman, imidazole, oxazole, thiazole, pyrazole, pyrrole, benzimidazole, benzotriazole, benzoxazole, benzothiazole, benzothiadiazole, isoxazole, isothiazole, oxadiazole, thiadiazole, triazine, benzisoxazole, pyrazine, quinoline, benzoquinoline, acridine, thiazoline, quinuclidine, imidazoline, oxazoline, thiazoline, and isoquinoline, and , and derivatives thereof.
 中でも、悪臭ガスの吸着能を向上させる観点から、配位子は、芳香環又は複素環を有することが好ましい。芳香環としては、例えばベンゼン環、ナフタレン環、フルオレン環、アントラセン環、インデン環、及びインダン環が挙げられる。複素環としては、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピロール環、フラン環、チオフェン環、ピラゾール環、イソオキサゾール環、イソチアゾール環、ピリダジン環、及びピリミジン環が挙げられる。中でも、配位子は、複素環を有することが好ましく、含窒素複素環を有することがより好ましい。 Above all, the ligand preferably has an aromatic ring or a heterocyclic ring from the viewpoint of improving the ability to adsorb malodorous gases. Examples of aromatic rings include benzene ring, naphthalene ring, fluorene ring, anthracene ring, indene ring, and indane ring. Heterocyclic rings include imidazole, oxazole, thiazole, pyridine, pyrazine, pyrrole, furan, thiophene, pyrazole, isoxazole, isothiazole, pyridazine, and pyrimidine rings. Among them, the ligand preferably has a heterocyclic ring, more preferably a nitrogen-containing heterocyclic ring.
 特に、悪臭ガスの吸着能をより向上させる観点から、配位子は、含窒素複素環を有することがより好ましく、イミダゾール系化合物であることが好ましい。イミダゾール系化合物には、イミダゾールと、イミダゾールの誘導体と、が包含される。 In particular, from the viewpoint of further improving the ability to adsorb malodorous gases, the ligand more preferably has a nitrogen-containing heterocycle, and is preferably an imidazole compound. Imidazole compounds include imidazole and imidazole derivatives.
 イミダゾール系化合物としては、例えば、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、4-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、及びベンズイミダゾールが挙げられる。 Examples of imidazole compounds include imidazole, 1-methylimidazole, 2-methylimidazole, 4-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, and benzimidazole.
 悪臭ガス吸着剤に含まれる多孔性有機金属錯体は、金属がZnであり、配位子がイミダゾール系化合物であることが好ましい。また、多孔性有機金属錯体は、ゼオライト様イミダゾレート構造体(ZIF)であることが好ましい。 The porous organometallic complex contained in the malodorous gas adsorbent preferably has Zn as the metal and an imidazole compound as the ligand. Also, the porous organometallic complex is preferably a zeolite-like imidazolate structure (ZIF).
 多孔性有機金属錯体は、1種単独で含まれてもよいし、2種以上含まれてもよい。
 悪臭ガス吸着剤中、多孔性有機金属錯体の含有量は、悪臭ガス吸着剤の全量に対して、10質量%以上であることが好ましく、50質量%以上であることがより好ましい。多孔性有機金属錯体の含有量の上限値は特に限定されず、例えば、100質量%である。すなわち、悪臭ガス吸着剤は、多孔性有機金属錯体のみからなっていてもよい。
One type of porous organometallic complex may be contained alone, or two or more types may be contained.
The content of the porous organometallic complex in the malodorous gas adsorbent is preferably 10% by mass or more, more preferably 50% by mass or more, relative to the total amount of the malodorous gas adsorbent. The upper limit of the content of the porous organometallic complex is not particularly limited, and is, for example, 100% by mass. That is, the malodorous gas adsorbent may consist only of the porous organometallic complex.
 悪臭ガス吸着剤が後述する多孔性材料を含む場合には、悪臭ガス吸着剤中、多孔性有機金属錯体の含有量は、悪臭ガス吸着剤の全量に対して、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~70質量%であることがさらに好ましい。 When the malodorous gas adsorbent contains a porous material described later, the content of the porous organometallic complex in the malodorous gas adsorbent is 10% by mass to 90% by mass with respect to the total amount of the malodorous gas adsorbent. preferably 20% by mass to 80% by mass, even more preferably 30% by mass to 70% by mass.
-物性-
 多孔性有機金属錯体は、最大細孔径が0.2nm~2.0nmであることが好ましく、0.4nm~1.5nmであることがより好ましい。
-Physical properties-
The porous organometallic complex preferably has a maximum pore size of 0.2 nm to 2.0 nm, more preferably 0.4 nm to 1.5 nm.
 最大細孔径とは、多孔性有機金属錯体に形成されている細孔における最大直径を意味する。細孔口径とは、多孔性有機金属錯体に形成されている細孔の入口の直径を意味する。
最大細孔径は、窒素吸着測定装置を用いて測定され、例えば、型番「AUTOSORB-1」(カンタクローム インスツルメンツ社製)を用いて測定される。
The maximum pore size means the maximum diameter of pores formed in the porous organometallic complex. The pore size means the diameter of the entrance of the pore formed in the porous organometallic complex.
The maximum pore diameter is measured using a nitrogen adsorption measuring device, for example, model number "AUTOSORB-1" (manufactured by Quantachrome Instruments).
 多孔性有機金属錯体は、粒子であることが好ましく、粒子の一次粒径が0.05μm~3.0μmであることが好ましく、0.1μm~2.0μmであることがより好ましく、0.2μm~1.5μmであることがさらに好ましい。 The porous organometallic complex is preferably particles, and the primary particle size of the particles is preferably 0.05 μm to 3.0 μm, more preferably 0.1 μm to 2.0 μm, and more preferably 0.2 μm. More preferably, it is ~1.5 μm.
 一次粒径は、以下の方法で測定される。
 まず、多孔性有機金属錯体を、セミインレンズ式走査型電子顕微鏡(製品名「S-4800」、日立ハイテクノロジーズ社製)を用いて適切な倍率で観察する。得られたSEM画像をもとに、粒子を特定する。単一の粒子が観察可能な倍率におけるSEM画像で、粒子の最も長い部分の径を測定する。100個の粒子について測定を行い、平均値を一次粒径とする。
A primary particle size is measured by the following method.
First, the porous organometallic complex is observed at an appropriate magnification using a semi-in-lens scanning electron microscope (product name “S-4800”, manufactured by Hitachi High-Technologies Corporation). Particles are identified based on the obtained SEM image. Measure the diameter of the longest part of the particle in the SEM image at a magnification where a single particle can be observed. 100 particles are measured, and the average value is taken as the primary particle size.
(多孔性材料)
 悪臭ガス吸着剤は、多孔性材料を含む。多孔性材料の「多孔性」とは、複数の孔を有する構造であることをいう。
(porous material)
The malodorous gas sorbent comprises a porous material. The "porous" of a porous material refers to a structure having a plurality of pores.
 多孔性材料としては、例えば、多孔性金属酸化物、ゼオライト、活性炭、多孔性高分子、多孔性樹脂、多孔性繊維、及び多孔性天然物が挙げられる。中でも、耐潮解性を向上させる観点から、多孔性金属酸化物、ゼオライト、及び活性炭からなる群より選択される少なくとも1種であることが好ましい。 Examples of porous materials include porous metal oxides, zeolites, activated carbon, porous polymers, porous resins, porous fibers, and porous natural products. Among them, from the viewpoint of improving deliquescence resistance, at least one selected from the group consisting of porous metal oxides, zeolite, and activated carbon is preferable.
 多孔性金属酸化物とは、金属酸化物自体が複数の孔を有する化合物であってもよく、金属酸化物の粒子が集合(例えば、凝集)して多孔構造を形成するものでもよい。多孔性金属酸化物としては、シリカ、ケイ酸アルミニウム、ケイ酸マグネシウム、及びケイ酸銅が挙げられる。中でも、多孔性金属酸化物は、シリカであることが好ましい。 A porous metal oxide may be a compound in which the metal oxide itself has a plurality of pores, or may be one in which particles of the metal oxide aggregate (eg, aggregate) to form a porous structure. Porous metal oxides include silica, aluminum silicate, magnesium silicate, and copper silicate. Among them, the porous metal oxide is preferably silica.
 シリカの種類は特に限定されず、公知のシリカゲル及び多孔性シリカを用いることができる。シリカの粒子径は特に限定されないが、メジアン径(D50)が0.5μm~20μmであることが好ましく、1.0μm~10μmであることがより好ましい。粒子径は、例えば、レーザー回折散乱法を用いて測定することができる。シリカの比表面積は特に限定されないが、200m/g~900m/gであることが好ましく、300m/g~800m/gであることがより好ましい。比表面積は、例えば、BET法により求めることができる。 The type of silica is not particularly limited, and known silica gel and porous silica can be used. The particle size of silica is not particularly limited, but the median size (D50) is preferably 0.5 μm to 20 μm, more preferably 1.0 μm to 10 μm. Particle size can be measured, for example, using a laser diffraction scattering method. Although the specific surface area of silica is not particularly limited, it is preferably 200 m 2 /g to 900 m 2 /g, more preferably 300 m 2 /g to 800 m 2 /g. The specific surface area can be determined, for example, by the BET method.
 ゼオライトの種類は特に限定されず、合成ゼオライトであってもよく、天然ゼオライトであってもよい。ゼオライトの粒子径は特に限定されないが、メジアン径(D50)が0.5μm~20μmであることが好ましく、1.0μm~10μmであることがより好ましい。粒子径は、例えば、レーザー回折散乱法を用いて測定することができる。ゼオライトの比表面積は特に限定されないが、200m/g~900m/gであることが好ましく、300m/g~800m/gであることがより好ましい。比表面積は、例えば、BET法により求めることができる。 The type of zeolite is not particularly limited, and may be synthetic zeolite or natural zeolite. The particle size of the zeolite is not particularly limited, but the median size (D50) is preferably 0.5 μm to 20 μm, more preferably 1.0 μm to 10 μm. Particle size can be measured, for example, using a laser diffraction scattering method. Although the specific surface area of zeolite is not particularly limited, it is preferably 200 m 2 /g to 900 m 2 /g, more preferably 300 m 2 /g to 800 m 2 /g. The specific surface area can be determined, for example, by the BET method.
 多孔性材料は、1種単独で含まれてもよいし、2種以上含まれてもよい。
 悪臭ガス吸着剤中、多孔性材料の含有量は、悪臭ガス吸着剤の全量に対して、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~70質量%であることがさらに好ましい。
One type of porous material may be contained alone, or two or more types may be contained.
The content of the porous material in the malodorous gas adsorbent is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, relative to the total amount of the malodorous gas adsorbent. , 30% by mass to 70% by mass.
 悪臭ガス吸着剤は、多孔性有機金属錯体及び多孔性材料以外の他の成分を含有していてもよい。他の成分としては、特に制限はなく、例えば、酸性ガス消臭剤、塩基性ガス消臭剤、硫黄系ガス消臭剤、アルデヒド系ガス消臭剤、ケトン系ガス消臭剤等の公知のその他の消臭剤;抗菌剤、防カビ剤、抗ウイルス加工剤、抗アレルゲン剤、消泡剤、着色剤、防腐剤、粘度調整剤、香料、界面活性剤、水、溶剤、保存料、保湿剤、増粘剤、pH調整剤、漂白剤、キレート剤、水溶性塩類、及び油剤が挙げられる。 The malodorous gas adsorbent may contain components other than the porous organometallic complex and the porous material. Other components are not particularly limited, and examples include known acid gas deodorants, basic gas deodorants, sulfur-based gas deodorants, aldehyde-based gas deodorants, ketone-based gas deodorants, and the like. Other deodorants; antibacterial agents, antifungal agents, antiviral processing agents, antiallergen agents, antifoaming agents, coloring agents, preservatives, viscosity modifiers, fragrances, surfactants, water, solvents, preservatives, moisturizing agents agents, thickeners, pH adjusters, bleaches, chelating agents, water-soluble salts, and oils.
(形態)
 本発明の一実施形態である悪臭ガス吸着剤は、多孔性有機金属錯体と、多孔性材料と、を含有していれば、その形態は特に限定されない。例えば、悪臭ガス吸着剤は、多孔性有機金属錯体と多孔性材料とが混合された形態であってもよく、多孔性有機金属錯体が多孔性材料に担持されている形態であってもよい。
(form)
The form of the malodorous gas adsorbent, which is one embodiment of the present invention, is not particularly limited as long as it contains a porous organometallic complex and a porous material. For example, the malodorous gas adsorbent may be in the form of a mixture of the porous organometallic complex and the porous material, or may be in the form of supporting the porous organometallic complex on the porous material.
 耐潮解性をより向上させる観点から、多孔性有機金属錯体は、多孔性材料に担持されていることが好ましい。本開示において、「多孔性有機金属錯体が多孔性材料に担持されている」とは、多孔性材料の上に多孔性有機金属錯体が付着した状態で保持されていることを意味する。付着した状態に特に制限はなく、例えば、化学的及び/又は物理的に多孔性有機金属錯体と多孔性材料とが相互作用した状態が挙げられる。多孔性有機金属錯体が多孔性材料に担持されているか否かは、例えば、走査電子顕微鏡(SEM)で多孔性材料上に多孔性有機金属錯体が付着した状況を観察することにより判定することができる。また、例えば、SEM観察時にX線マイクロアナライザ(以下、「XMA」という。)分析による元素マッピングを行うことにより、担持された多孔性有機金属錯体を同定することができる。 From the viewpoint of further improving deliquescence resistance, the porous organometallic complex is preferably supported on a porous material. In the present disclosure, "a porous organometallic complex is supported on a porous material" means that the porous organometallic complex is held in a state of adhering to the porous material. The attached state is not particularly limited, and examples thereof include chemically and/or physically interacting states between the porous organometallic complex and the porous material. Whether or not the porous organometallic complex is supported on the porous material can be determined, for example, by observing the state in which the porous organometallic complex adheres to the porous material with a scanning electron microscope (SEM). can. Further, for example, by performing elemental mapping by X-ray microanalyzer (hereinafter referred to as “XMA”) analysis during SEM observation, the supported porous organometallic complex can be identified.
 多孔性有機金属錯体の粒子は、多孔性材料上に数段に亘って積み重なって付着していてもよく、単層で付着していてもよい。また、多孔性有機金属錯体粒子は、多孔性材料の一部にのみ付着してもよく、全体的に均一に付着していてもよい。 The particles of the porous organometallic complex may be stacked on the porous material in several stages, or may be attached in a single layer. Moreover, the porous organometallic complex particles may adhere only to a part of the porous material, or may adhere uniformly to the entire porous material.
 多孔性有機金属錯体の粒子は多孔性材料に単層で付着していることが好ましく、全体的に均一に付着していることが好ましい。多孔性材料の存在下、多孔性有機金属錯体の原料を反応させることにより、多孔性有機金属錯体を多孔性材料の上に付着させることが好ましい。多孔性材料上の多孔性有機金属錯体の粒子の粒径分布は特に限定されないが、狭い方が好ましい。 It is preferable that the particles of the porous organometallic complex adhere to the porous material in a single layer, and that they adhere uniformly as a whole. The porous organometallic complex is preferably deposited onto the porous material by reacting the raw materials of the porous organometallic complex in the presence of the porous material. Although the particle size distribution of the particles of the porous organometallic complex on the porous material is not particularly limited, it is preferably narrower.
(多孔性材料と、多孔性有機金属錯体との質量比)
 多孔性材料と、多孔性有機金属錯体との質量比は、多孔性材料:多孔性有機金属錯体=9:1~1:9であることが好ましく、8:2~2:8であることがより好ましく、3:7~7:3であることがさらに好ましい。質量比は、例えば、原料である多孔性材料の質量と多孔性有機金属錯体の質量の混合比から求めることができる。質量比は、例えば、多孔性材料と多孔性有機金属錯体とを含む悪臭ガス吸着剤を強酸に溶解させ、高周波誘導結合プラズマ(以下、「ICP」という。)発光分光分析法により求めることができる。さらに、CHN元素分析、示差熱・熱重量同時分析等の分析手段を併用することもできる。
(Mass ratio of porous material to porous organometallic complex)
The mass ratio of the porous material to the porous organometallic complex is preferably porous material:porous organometallic complex=9:1 to 1:9, more preferably 8:2 to 2:8. More preferably, the ratio is from 3:7 to 7:3. The mass ratio can be obtained, for example, from the mixing ratio of the mass of the raw porous material and the mass of the porous organometallic complex. The mass ratio can be determined, for example, by dissolving a malodorous gas adsorbent containing a porous material and a porous organometallic complex in a strong acid and performing high-frequency inductively coupled plasma (hereinafter referred to as "ICP") emission spectrometry. . Furthermore, analysis means such as CHN elemental analysis and differential thermal/thermogravimetric simultaneous analysis can be used in combination.
(多孔性材料と、多孔性有機金属錯体との粒径比)
 多孔性材料は、多孔性有機金属錯体よりも大きいことが好ましい。多孔性材料の一次粒径:多孔性有機金属錯体の一次粒径=1000:1~1:1であることが好ましく、500:1~2:1であることがより好ましく、100:1~5:1であることがさらに好ましい。一次粒径の比は、例えば、多孔性材料と多孔性有機金属錯体とを含む悪臭ガス吸着剤のSEM画像から測定することができる。
(Particle size ratio between porous material and porous organometallic complex)
The porous material is preferably larger than the porous organometallic complex. Primary particle size of porous material: primary particle size of porous organometallic complex = preferably 1000:1 to 1:1, more preferably 500:1 to 2:1, 100:1 to 5 :1 is more preferable. The ratio of primary particle sizes can be determined, for example, from SEM images of malodorous gas adsorbents comprising porous materials and porous organometallic complexes.
<多孔性材料に対する多孔性有機金属錯体の被覆率>
 多孔性材料に対する多孔性有機金属錯体の被覆率は、多孔性材料の表面積に対する、多孔性材料における多孔性有機金属錯体によって被覆されている面積に基づいて算出される。被覆率は10%以上であることが好ましく、30%以上であることがより好ましく、50%以上であることがさらに好ましい。多孔性材料における多孔性有機金属錯体によって被覆されている面積は、SEM画像から測定することができる。
<Coverage of the porous organometallic complex with respect to the porous material>
The coverage of the porous organometallic complex on the porous material is calculated based on the area covered by the porous organometallic complex in the porous material relative to the surface area of the porous material. The coverage is preferably 10% or more, more preferably 30% or more, and even more preferably 50% or more. The area covered by the porous organometallic complex in the porous material can be measured from SEM images.
(用途)
 本発明の一実施形態である悪臭ガス吸着剤は、酸性ガスを吸着するために用いられることが好ましい。酸性ガスとは、遊離性のプロトンを持ち、揮発性を示す分子のガスのことである。酸性ガスとしては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、イソ吉草酸等のカルボン酸類;塩化水素、臭化水素等のハロゲン化水素類;炭酸、硝酸、硫酸等の無機酸類;硫化水素等の酸性のガスが挙げられる。中でも、本発明の一実施形態である悪臭ガス吸着剤は、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、イソ吉草酸等のカルボン酸類、及び硫化水素を吸着するために用いられることがより好ましい。また、本発明の一実施形態である悪臭ガス吸着剤は、酢酸ガスを吸着するために用いられることが特に好ましい。すなわち、本発明の一実施形態である悪臭ガス吸着剤は、酸性ガス用吸着剤であることが好ましく、酢酸ガス用吸着剤であることがより好ましい。
(Application)
The malodorous gas adsorbent, which is one embodiment of the present invention, is preferably used for adsorbing acid gases. An acid gas is a molecular gas that has free protons and exhibits volatility. Examples of acidic gases include carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid and isovaleric acid; hydrogen halides such as hydrogen chloride and hydrogen bromide; inorganic acids such as carbonic acid, nitric acid and sulfuric acid; Acidic gases such as hydrogen sulfide are included. Among them, the malodorous gas adsorbent which is one embodiment of the present invention is more preferably used for adsorbing carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid and isovaleric acid, and hydrogen sulfide. . Moreover, it is particularly preferable that the malodorous gas adsorbent, which is one embodiment of the present invention, is used for adsorbing acetic acid gas. That is, the malodorous gas adsorbent of one embodiment of the present invention is preferably an acidic gas adsorbent, and more preferably an acetic acid gas adsorbent.
 悪臭ガス吸着剤におけるガスの吸着容量は特に限定されないが、50mL/g以上であることが好ましく、100mL/g以上であることがより好ましく、150mL/g以上あることがさらに好ましい。ガスの吸着容量の上限値は、特に限定されない。また、悪臭ガス吸着剤における酸性ガスの吸着容量は50mL/g以上であることが好ましく、100mL/g以上であることがより好ましく、150mL/g以上であることがさらに好ましい。 The gas adsorption capacity of the malodorous gas adsorbent is not particularly limited, but is preferably 50 mL/g or more, more preferably 100 mL/g or more, and even more preferably 150 mL/g or more. The upper limit of the gas adsorption capacity is not particularly limited. The acid gas adsorption capacity of the malodorous gas adsorbent is preferably 50 mL/g or more, more preferably 100 mL/g or more, and even more preferably 150 mL/g or more.
 本開示において、「吸着容量」とは、悪臭ガス吸着剤が吸着できる特定ガスの最大量を意味し、物理吸着と化学吸着の両吸着機構で吸着した吸着容量を意味する。 In the present disclosure, "adsorption capacity" means the maximum amount of a specific gas that can be adsorbed by a malodorous gas adsorbent, and means the adsorption capacity adsorbed by both physical adsorption and chemical adsorption mechanisms.
 本開示において、ガスの吸着容量は、以下の方法で測定される。 In the present disclosure, the gas adsorption capacity is measured by the following method.
 (1)悪臭ガス吸着剤を、ビニルアルコール系ポリマーフィルム製の袋に入れて密封し、容量が3Lになるように、袋の中に空気を入れる。
 (2)この袋に、特定ガスの濃度が30ppmとなるように特定ガスを入れる。
 (3)30分後に、袋内に残存する特定ガスの濃度をガス検知管で測定し、その後、この袋に、30ppm分の特定ガスを追加する。
 (4)さらに30分後に、袋内に残存する特定ガスの濃度をガス検知管で測定する。
 (5)袋内の特定ガスの濃度が低下しなくなるまで(すなわち、30分後に、残存する特定ガスの濃度が、直前の測定で得られた特定ガスの濃度よりも30ppm多いことが確認されるまで)上記(2)及び(3)の操作を繰り返す。
 (6)ガス濃度が低下しなくなった時点を、悪臭ガス吸着剤が吸着できる特定ガス量の限界点(すなわち、試験終了点)として、特定ガスを入れる操作を停止する。
 下記式に基づいて、悪臭ガス吸着剤の酢酸ガス吸着容量を算出する。
ガス吸着容量(mL/g)=[{試験終了点までのガス注入回数×30(ppm)-試験終了時の残存ガス量(ppm)}×3000(mL)×1/1000000]/測定に用いた悪臭ガス吸着剤の量(g)
(1) Place the malodorous gas adsorbent in a bag made of a vinyl alcohol polymer film, seal the bag, and fill the bag with air so that the volume becomes 3 liters.
(2) Fill the bag with the specific gas so that the concentration of the specific gas is 30 ppm.
(3) After 30 minutes, the concentration of the specific gas remaining in the bag is measured with a gas detector tube, and then 30 ppm of the specific gas is added to the bag.
(4) After another 30 minutes, the concentration of the specific gas remaining in the bag is measured with a gas detector tube.
(5) Until the concentration of the specific gas in the bag does not decrease (that is, after 30 minutes, it is confirmed that the concentration of the remaining specific gas is 30 ppm higher than the concentration of the specific gas obtained in the immediately preceding measurement. ) Repeat the above operations (2) and (3).
(6) The point at which the gas concentration stops decreasing is regarded as the limit point of the amount of specific gas that can be adsorbed by the malodorous gas adsorbent (that is, the end point of the test), and the operation of supplying the specific gas is stopped.
The acetic acid gas adsorption capacity of the malodorous gas adsorbent is calculated based on the following formula.
Gas adsorption capacity (mL/g) = [{Number of gas injections up to the test end point x 30 (ppm) - residual gas amount (ppm) at the end of the test} x 3000 (mL) x 1/1000000] / used for measurement Amount of bad smell gas adsorbent (g)
 本発明の一実施形態である、多孔性材料を含む悪臭ガス吸着剤は、20mgの悪臭ガス吸着剤を、湿度40%の空気で調製した濃度600ppmの酢酸ガス3リットル中で25℃の環境下で24時間暴露させる条件において潮解しないことが好ましい。 The malodorous gas adsorbent comprising a porous material, which is one embodiment of the present invention, is prepared by dissolving 20 mg of the malodorous gas adsorbent in 3 liters of acetic acid gas with a concentration of 600 ppm prepared in air with a humidity of 40% under an environment of 25 ° C. It is preferred that it does not deliquesce under the conditions of 24 hours of exposure at .
 潮解しているか否かについては、以下の方法を用いて判定される。 Whether or not it is deliquescent is determined using the following method.
 20mgの悪臭ガス吸着剤を、湿度40%の空気で調製した濃度600ppmの酢酸ガス3リットル中で25℃の環境下で24時間暴露させた後、悪臭ガス吸着剤の外観を目視で確認する。以下のA~Cのいずれに該当するかを判定し、A又はBの場合には、潮解していないと判定する。
 A:24時間後の悪臭ガス吸着剤の外観に潮解した変化がなく、固体である悪臭ガス吸着剤がさらさらした状態を保っている。
 B:24時間後の悪臭ガス吸着剤の外観が滑らかになるような大きな変化はなく、表面は粘着性を有していないが、表面が吸湿したような変化は認められる。
 C:24時間後の悪臭ガス吸着剤が潮解して外観が滑らかとなり、固体の状態を保っておらず、表面が粘着性を有した状態である。
After exposing 20 mg of the malodorous gas adsorbent to 3 liters of acetic acid gas with a concentration of 600 ppm prepared in air with a humidity of 40% in an environment of 25°C for 24 hours, the appearance of the malodorous gas adsorbent is visually confirmed. It is determined which of the following A to C corresponds, and in the case of A or B, it is determined that there is no deliquescence.
A: The appearance of the malodorous gas adsorbent after 24 hours does not deliquesce, and the solid malodorous gas adsorbent remains free-flowing.
B: After 24 hours, the appearance of the malodorous gas adsorbent did not change significantly, and the surface did not have stickiness, but a change as if the surface had absorbed moisture was observed.
C: After 24 hours, the malodorous gas adsorbent was deliquesced and had a smooth appearance, did not maintain a solid state, and had a sticky surface.
 本発明の一実施形態である、多孔性材料を含む悪臭ガス吸着剤は、40mgの悪臭ガス吸着剤を、湿度40%の空気で調製した濃度15000ppmの酢酸ガス300mL中で40℃、24時間暴露させる条件において、24時間後の、悪臭ガス吸着剤1gあたりの増加量が0.35g以下であることが好ましく、0.25g以下であることがより好ましい。 A malodorous gas adsorbent comprising a porous material, which is one embodiment of the present invention, is exposed to 40 mg of malodorous gas adsorbent in 300 mL of acetic acid gas with a concentration of 15000 ppm prepared in air with a humidity of 40% at 40 ° C. for 24 hours. It is preferable that the amount of increase per 1 g of the malodorous gas adsorbent after 24 hours is 0.35 g or less, more preferably 0.25 g or less.
 潮解による重量増加は、以下の方法で測定される。
(1)ビニルアルコール系ポリマーフィルムを2cm×2cmの大きさに切り取る。
(2)アルミカップの上に、切り取ったフィルムを載せ、その上に悪臭ガス吸着剤を薄く広げて載せる。
(3)悪臭ガス吸着剤を載せる前後で、それぞれの総重量を測定する。
(4)ビニルアルコール系ポリマーフィルム製の袋に、(2)を入れる。
(5)空気(湿度40%)100mLと酢酸ガスを、酢酸ガスの濃度が15000ppmとなるようにシリンジで注入する。
(6)40℃の恒温機中で24時間静置する。
(7)24時間後、アルミカップを取り出し、総重量を測定する。下記の式に基づいて、試験前後の重量変化を求める。
 悪臭ガス吸着剤1gあたりの増加量(g)={(酢酸ガス注入24時間後の悪臭ガス吸着剤の重量(g))-(酢酸ガス注入前の悪臭ガス吸着剤の重量(g))}÷(酢酸ガス注入前の悪臭ガス吸着剤の重量(g))
Weight gain due to deliquescence is measured by the following method.
(1) A vinyl alcohol polymer film is cut into a size of 2 cm x 2 cm.
(2) Place the cut film on the aluminum cup, and spread the malodorous gas adsorbent thinly on it.
(3) Measure the total weight before and after placing the malodorous gas adsorbent.
(4) Place (2) in a vinyl alcohol polymer film bag.
(5) 100 mL of air (40% humidity) and acetic acid gas are injected with a syringe so that the concentration of acetic acid gas becomes 15000 ppm.
(6) Allow to stand for 24 hours in a constant temperature machine at 40°C.
(7) After 24 hours, take out the aluminum cup and measure the total weight. Calculate the weight change before and after the test based on the following formula.
Increased amount (g) per gram of malodorous gas adsorbent = {(Weight of malodorous gas adsorbent after 24 hours of acetic acid gas injection (g)) - (Weight of malodorous gas adsorbent before acetic acid gas injection (g))} ÷ (weight (g) of malodorous gas adsorbent before injection of acetic acid gas)
 本発明の一実施形態である悪臭ガス吸着剤は、消臭剤として種々の用途に使用することができる。本発明の一実施形態である悪臭ガス吸着剤は、繊維、樹脂、液体(例えば、水、有機溶剤等)等に配合し、消臭製品を製造するための原料として利用できる。 The malodorous gas adsorbent that is one embodiment of the present invention can be used for various purposes as a deodorant. The malodorous gas adsorbent, which is one embodiment of the present invention, can be blended with fibers, resins, liquids (eg, water, organic solvents, etc.) and used as raw materials for producing deodorant products.
 消臭製品の用途としては、例えば、消臭加工液、消臭繊維、消臭樹脂組成物、消臭布帛及び消臭濾材が挙げられる。 Uses of deodorant products include, for example, deodorant processing liquids, deodorant fibers, deodorant resin compositions, deodorant fabrics and deodorant filter media.
<消臭製品>
 本発明の一実施形態である消臭製品は、上記悪臭ガス吸着剤を含む。
-消臭樹脂組成物-
 上記悪臭ガス吸着剤は、従来よりも酸性ガスに対する吸着能が高いため、消臭樹脂組成物に適用することができる。
<Deodorant products>
A deodorizing product, which is one embodiment of the present invention, contains the above malodorous gas adsorbent.
-Deodorant resin composition-
Since the malodorous gas adsorbent has a higher adsorption capacity for acidic gases than conventional ones, it can be applied to deodorant resin compositions.
 本発明の一実施形態である消臭樹脂組成物は、上記悪臭ガス吸着剤及び樹脂を含む。 A deodorant resin composition, which is one embodiment of the present invention, contains the above-mentioned malodorous gas adsorbent and resin.
 消臭樹脂組成物を製造する方法は特に限定されず、例えば、上記悪臭ガス吸着剤と樹脂とを混合した後に成型する方法、及び、高濃度の悪臭ガス吸着剤を含有するペレット状の樹脂をあらかじめ調製し、ペレット状の樹脂と他の樹脂とを混合した後に成型する方法が挙げられる。成型方法としては、射出成型、押出成型、インフレーション成型、及び真空成型が挙げられる。 The method for producing the deodorant resin composition is not particularly limited, and examples include a method of mixing the malodorous gas adsorbent and the resin and then molding it, and a method of preparing a pellet-shaped resin containing a high concentration of the malodorous gas adsorbent. A method in which a pellet-shaped resin is mixed with another resin and then molded is exemplified. Molding methods include injection molding, extrusion molding, inflation molding, and vacuum molding.
 消臭樹脂組成物を構成する樹脂は特に限定されず、例えば、ポリエステル、ポリウレタン、ポリオレフィン、ポリアミド、ポリエーテル、アクリル樹脂、アクリロニトリル・ブタジエン・スチレン(ABS樹脂)、ナイロン、ポリスチレン、及びポリカーボネート及び塩化ビニル樹脂が挙げられる。 The resin constituting the deodorant resin composition is not particularly limited, and examples include polyester, polyurethane, polyolefin, polyamide, polyether, acrylic resin, acrylonitrile-butadiene-styrene (ABS resin), nylon, polystyrene, polycarbonate and vinyl chloride. resin.
 消臭樹脂組成物中、悪臭ガス吸着剤の含有量は、消臭樹脂組成物の全量に対して、0.1質量%~35質量%であることが好ましく、0.2質量%~30質量%であることがより好ましく、0.5質量%~25質量%であることがさらに好ましい。 The content of the malodorous gas adsorbent in the deodorant resin composition is preferably 0.1% by mass to 35% by mass, more preferably 0.2% by mass to 30% by mass, relative to the total amount of the deodorant resin composition. %, more preferably 0.5% by mass to 25% by mass.
 消臭樹脂組成物には、顔料、染料、酸化防止剤、耐光安定剤、帯電防止剤、発泡剤、耐衝撃強化剤、ガラス繊維、防湿剤、増粘剤、酸性ガス消臭剤、塩基性ガス消臭剤、硫黄系ガス消臭剤、アルデヒド系ガス消臭剤、ケトン系ガス消臭剤等の公知のその他の消臭剤;抗菌剤、防カビ剤、抗ウイルス加工剤、抗アレルゲン剤、消泡剤、着色剤、防腐剤、粘度調整剤、香料、界面活性剤、保存料、保湿剤、水溶性塩類、油剤等の添加剤が含まれていてもよい。 The deodorizing resin composition contains pigments, dyes, antioxidants, light stabilizers, antistatic agents, foaming agents, impact-resistant reinforcing agents, glass fibers, moisture-proof agents, thickeners, acidic gas deodorants, basic Other known deodorants such as gas deodorants, sulfur-based gas deodorants, aldehyde-based gas deodorants, ketone-based gas deodorants; , antifoaming agents, coloring agents, preservatives, viscosity modifiers, fragrances, surfactants, preservatives, moisturizing agents, water-soluble salts, oil agents, and other additives.
 本発明の一実施形態である消臭樹脂組成物は、消臭性を必要とするさまざまな製品に適用可能であり、例えば、空気清浄器、冷蔵庫、エアコン等の家電製品;ゴミ箱、水切り、ラップ、スポンジ等の一般家庭用品;ポータブルトイレ等の各種介護用品、壁紙、便器、便座、キッチンカウンター、換気扇フィルター、塗料等の住宅建材製;車両内装、ペット製品、及び日用品が挙げられる。 The deodorant resin composition, which is one embodiment of the present invention, can be applied to various products that require deodorant properties, such as home electric appliances such as air purifiers, refrigerators, and air conditioners; , general household goods such as sponges; various nursing care products such as portable toilets, wallpaper, toilet bowls, toilet seats, kitchen counters, ventilation fan filters, paints and other residential building materials; vehicle interiors, pet products, and daily necessities.
-消臭加工液-
 上記悪臭ガス吸着剤は、従来よりも酸性ガスに対する吸着能が高いため、消臭加工液に適用することができる。
-Deodorizing liquid-
Since the malodorous gas adsorbent has a higher adsorption capacity for acidic gases than conventional ones, it can be applied to the deodorant processing liquid.
 消臭加工液は、上記悪臭ガス吸着剤を含み、悪臭ガス吸着剤以外に、分散媒、分散剤、及び接着剤を含むことが好ましい。 The deodorant processing liquid contains the above-mentioned malodorous gas adsorbent, and preferably contains a dispersion medium, a dispersant, and an adhesive in addition to the malodorous gas adsorbent.
 分散媒としては、例えば、アルコール、ケトン、エステル、炭化水素等の有機溶剤、及び、水が挙げられる。 Examples of dispersion media include organic solvents such as alcohols, ketones, esters, and hydrocarbons, and water.
 分散媒が水である場合に、分散剤としては、例えば、ポリカルボン酸系分散剤、ナフタレンスルホン酸ホルマリン縮合系分散剤、ポリエチレングリコール、アルキルスルホン酸系分散剤、第4級アンモニウム系分散剤、高級アルコールアルキレンオキサイド系分散剤、及びポリリン酸系分散剤が挙げられる。また、分散媒が有機溶剤である場合に、分散剤としては、例えば、ポリカルボン酸アルキルエステル系分散剤、ポリエーテル系分散剤、ポリアルキルアミン系分散剤、多価アルコールエステル系分散剤、及びアルキルポリアミン系分散剤が挙げられる。 When the dispersion medium is water, examples of dispersants include polycarboxylic acid-based dispersants, naphthalenesulfonic acid formalin condensation-based dispersants, polyethylene glycol, alkylsulfonic acid-based dispersants, quaternary ammonium-based dispersants, Examples include higher alcohol alkylene oxide dispersants and polyphosphoric acid dispersants. Further, when the dispersion medium is an organic solvent, the dispersant includes, for example, a polycarboxylic acid alkyl ester dispersant, a polyether dispersant, a polyalkylamine dispersant, a polyhydric alcohol ester dispersant, and Alkylpolyamine-based dispersants may be mentioned.
 接着剤としては、例えば、ノボラック型又はレゾール型のフェノール樹脂、アルキド樹脂、アミノアルキド樹脂、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ウレタン樹脂、飽和ポリエステル樹脂、及びメラミン樹脂が挙げられる。 Examples of adhesives include novolak-type or resol-type phenolic resins, alkyd resins, aminoalkyd resins, acrylic resins, vinyl chloride resins, vinylidene chloride resins, silicone resins, fluorine resins, epoxy resins, urethane resins, saturated polyester resins, and melamine resins.
 消臭加工液中、悪臭ガス吸着剤の含有量は、消臭加工液の全量に対して、0.1質量%~50質量%であることが好ましく、0.2質量%~30質量%であることがより好ましく、0.3質量%~20質量%であることがさらに好ましい。 The content of the malodorous gas adsorbent in the deodorant processing liquid is preferably 0.1% by mass to 50% by mass, more preferably 0.2% by mass to 30% by mass, relative to the total amount of the deodorant processing liquid. more preferably 0.3% by mass to 20% by mass.
-消臭繊維-
 上記悪臭ガス吸着剤は、悪臭ガス吸着性能が高く、かつ、一次粒径が0.05~3.0μmと小さいため、糸切れすることなく紡糸することが可能である。そのため、消臭繊維に適用することができる。
-Deodorant fiber-
The malodorous gas adsorbent has high malodorous gas adsorption performance and a small primary particle size of 0.05 to 3.0 μm, so that it can be spun without yarn breakage. Therefore, it can be applied to deodorant fibers.
 消臭繊維を製造する方法は特に限定されず、例えば、上記悪臭ガス吸着剤を繊維原料に練り込んだ後に紡糸する方法、及び、紡糸した化学繊維、天然繊維等の繊維に上記悪臭ガス吸着剤を含む消臭加工液を塗工し、乾燥させる方法等が挙げられる。 The method of producing the deodorant fiber is not particularly limited, and examples include a method of kneading the malodorous gas adsorbent into a fiber raw material and then spinning it, and a method of adding the malodorous gas adsorbent to spun fibers such as chemical fibers and natural fibers. A method of applying and drying a deodorant processing liquid containing.
 消臭繊維を構成する繊維は特に限定されず、例えば、ポリエステル、ポリウレタン、ナイロン、レーヨン、アクリル、ビニロン、ポリプロピレン、ポリエチレン等の化学繊維;綿、麻、絹、羊毛等の天然繊維;及び、ガラス繊維、炭素繊繊維、アルミナ繊維、金属繊維等の無機繊維が挙げられる。これらの繊維を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Fibers constituting deodorant fibers are not particularly limited, and examples include chemical fibers such as polyester, polyurethane, nylon, rayon, acrylic, vinylon, polypropylene, and polyethylene; natural fibers such as cotton, hemp, silk, and wool; and glass. Inorganic fibers such as fibers, carbon fibers, alumina fibers, and metal fibers can be used. These fibers may be used singly or in combination of two or more.
 消臭繊維中、悪臭ガス吸着剤の含有量は、消臭繊維の全量に対して、0.1質量%~5.0質量%であることが好ましく、0.2質量%~3.0質量%であることがより好ましく、0.5質量%~2.0質量%であることがさらに好ましい。 The content of the malodorous gas adsorbent in the deodorant fiber is preferably 0.1% by mass to 5.0% by mass, more preferably 0.2% by mass to 3.0% by mass, relative to the total amount of the deodorant fiber. %, more preferably 0.5 mass % to 2.0 mass %.
 本発明の一実施形態である消臭繊維は、さまざまな繊維製品に適用可能であり、例えば、肌着、ストッキング、靴下、マスク、布団、布団カバー、座布団、毛布、じゅうたん、カーテン、ソファー、カーシート、エアーフィルター、空気清浄機フィルター、エアコンフィルター及び介護用衣類に適用可能である。 The deodorizing fiber that is one embodiment of the present invention can be applied to various textile products, such as underwear, stockings, socks, masks, futons, duvet covers, floor cushions, blankets, carpets, curtains, sofas, and car seats. , air filters, air purifier filters, air conditioner filters and nursing care clothing.
-消臭布帛-
 上記悪臭ガス吸着剤は、従来よりも酸性ガスに対する吸着能が高いため、消臭布帛に適用することができる。布帛は、織布であってもよく、不織布であってもよく、これらを組み合わせたものであってもよい。
-Deodorant fabric-
Since the malodorous gas adsorbent has a higher adsorption capacity for acidic gases than conventional ones, it can be applied to deodorant fabrics. The fabric may be woven, nonwoven, or a combination thereof.
 消臭布帛を製造する方法は特に限定されず、例えば、上記消臭繊維を用いて織る方法、上記消臭繊維を用いて公知の方法で不織布を作製する方法、及び、布帛に上記悪臭ガス吸着剤を含む消臭加工液を塗工し、乾燥させる方法が挙げられる。 The method of producing the deodorant fabric is not particularly limited, and examples include a method of weaving using the deodorant fiber, a method of producing a nonwoven fabric by a known method using the deodorant fiber, and a method of adsorbing the malodorous gas on the fabric. A method of applying a deodorant processing liquid containing an agent and drying it can be mentioned.
 消臭布帛中の悪臭ガス吸着剤の含有量は、消臭布帛の面積1mに対して、0.1~5.0gであることが好ましく、0.2~4.0gであることがより好ましく、0.3~3.0gであることがさらに好ましい。 The content of the malodorous gas adsorbent in the deodorant fabric is preferably 0.1 to 5.0 g, more preferably 0.2 to 4.0 g, per 1 m 2 of the area of the deodorant fabric. It is preferably 0.3 to 3.0 g, more preferably 0.3 to 3.0 g.
-消臭濾材-
 上記悪臭ガス吸着剤は、従来よりも酸性ガスに対する吸着能が高いため、消臭濾材に適用することができる。
- Deodorizing filter material -
Since the malodorous gas adsorbent has a higher adsorption capacity for acidic gases than conventional ones, it can be applied to a deodorizing filter medium.
 消臭濾材を製造する方法は特に限定されず、例えば、基材に上記悪臭ガス吸着剤を含む消臭加工液を塗工し、乾燥させる方法、及び、上記消臭繊維又は消臭布帛を用いて消臭濾材を作製する方法が挙げられる。 The method for producing the deodorizing filter medium is not particularly limited, and for example, a method of applying a deodorizing processing liquid containing the above-mentioned malodorous gas adsorbent to a base material and drying it, and a method of using the above-mentioned deodorizing fiber or cloth. and a method of producing a deodorizing filter medium.
 基材は、ろ過可能なように孔を有していれば特に限定されず、例えば、繊維、セラミック及び金属が挙げられる。 The base material is not particularly limited as long as it has pores so that it can be filtered, and examples include fibers, ceramics and metals.
 消臭濾材中、悪臭ガス吸着剤の含有量は、基材の面積1mに対して、0.1g~40gであることが好ましく、0.5g~35gであることがより好ましく、1.0g~30gであることがさらに好ましい。 The content of the malodorous gas adsorbent in the deodorizing filter medium is preferably 0.1 g to 40 g, more preferably 0.5 g to 35 g, and 1.0 g per 1 m 2 of substrate area. More preferably ~30g.
 本発明の一実施形態である消臭濾材は、さまざまな製品に適用可能であり、例えば、エアーフィルター、空気清浄機フィルター、エアコンフィルター、水切り及び浄水器に適用可能である。 The deodorant filter medium, which is one embodiment of the present invention, can be applied to various products, such as air filters, air purifier filters, air conditioner filters, drainers and water purifiers.
<悪臭ガス吸着剤の製造方法>
 本発明の一実施形態である悪臭ガス吸着剤は、公知の方法で製造されてもよく、例えば、多孔性有機金属錯体を得る工程と、多孔性有機金属錯体と多孔性材料とを混合する工程と、を含む方法で製造されてもよい。多孔性有機金属錯体は、例えば、金属塩を含む溶液と配位子を含む溶液とを混合する工程、混合して得られた混合液を固液分離して固形物を得る工程、固形物を乾燥させる工程、及び必要に応じて乾燥した固形物を粉砕する工程を含む方法で製造することができる。
<Method for producing malodorous gas adsorbent>
The malodorous gas adsorbent that is one embodiment of the present invention may be produced by a known method, for example, the steps of obtaining a porous organometallic complex and mixing the porous organometallic complex with a porous material. and may be manufactured by a method including: The porous organometallic complex can be produced by, for example, a step of mixing a solution containing a metal salt and a solution containing a ligand, a step of solid-liquid separation of the mixed solution obtained by mixing to obtain a solid, and a step of separating the solid. It can be produced by a method including a step of drying and, if necessary, a step of pulverizing the dried solid.
 固形物を得る工程における固液分離方法としては特に制限はなく、例えば、自然ろ過、吸引ろ過、減圧ろ過、加圧ろ過等のろ過法;沈降分離、遠心分離、浮上分離、圧搾分離等のろ材を用いない分離法が挙げられる。中でも、固液分離方法は、ろ過法が好ましい。 There are no particular restrictions on the solid-liquid separation method in the process of obtaining solids, for example, filtration methods such as natural filtration, suction filtration, vacuum filtration, and pressure filtration; Separation methods that do not use Among them, the solid-liquid separation method is preferably a filtration method.
 中でも、本発明の一実施形態である悪臭ガス吸着剤は、以下の製造方法により製造されることが好ましい。 Above all, the malodorous gas adsorbent that is one embodiment of the present invention is preferably produced by the following production method.
 本発明の一実施形態である悪臭ガス吸着剤の製造方法は、金属塩を含む溶液と、多孔性材料、及び窒素原子を含む配位子を含有する溶液と、を混合する工程と、混合して得られた混合液から固液分離して固形物を得る工程と、を含む。本発明の一実施形態である悪臭ガス吸着剤の製造方法は、さらに、固形物を乾燥させる工程と、乾燥した固形物を粉砕する工程と、を含むことが好ましい。このような製造方法で製造される悪臭ガス吸着剤は、金属と、窒素原子を含む配位子と、を含む多孔性有機金属錯体、及び多孔性材料を含有する。また、多孔性有機金属錯体は、多孔性材料に担持された状態で得られる。 A method for producing a malodorous gas adsorbent, which is an embodiment of the present invention, comprises a step of mixing a solution containing a metal salt, a solution containing a porous material, and a ligand containing a nitrogen atom; and a step of solid-liquid separation to obtain a solid matter from the mixed liquid obtained by the above. The method for producing the malodorous gas adsorbent, which is one embodiment of the present invention, preferably further includes a step of drying the solid matter and a step of pulverizing the dried solid matter. The malodorous gas adsorbent produced by such a production method contains a porous organometallic complex containing a metal and a ligand containing a nitrogen atom, and a porous material. Also, the porous organometallic complex is obtained in a state of being supported on a porous material.
-金属塩を含む溶液と、多孔性材料、及び窒素原子を含む配位子を含有する溶液と、を混合する工程-
 金属塩は特に限定されず、例えば、金属の硝酸塩、塩酸塩、硫酸塩、炭酸塩、酢酸塩等の酸塩、及び、塩化物、臭化物、ヨウ化物等のハロゲン化物が挙げられる。
- A step of mixing a solution containing a metal salt with a solution containing a porous material and a ligand containing a nitrogen atom -
The metal salt is not particularly limited, and examples thereof include acid salts such as metal nitrates, hydrochlorides, sulfates, carbonates and acetates, and halides such as chlorides, bromides and iodides.
 金属塩を構成する金属は特に限定されず、例えば、Mg、Ca、Sr、Ba、Sc+、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、Tl、Si、Ge、Sn、Pb、As、Sb、及びBiが挙げられる。中でも、ガス吸着能を向上させる観点から、金属は、Zn、Zr、Ti、Al、及びCoからなる群より選択される少なくとも1種であることが好ましく、Znであることがより好ましい。 Metals constituting the metal salt are not particularly limited, and examples include Mg, Ca, Sr, Ba, Sc+, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe , Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, and Bi can be mentioned. Among them, from the viewpoint of improving gas adsorption capacity, the metal is preferably at least one selected from the group consisting of Zn, Zr, Ti, Al, and Co, and more preferably Zn.
 金属塩を含む溶液において、溶媒の種類は特に限定されず、例えば、水及び有機溶剤が挙げられる。 In the solution containing the metal salt, the type of solvent is not particularly limited, and examples include water and organic solvents.
 多孔性材料の好ましい態様は、悪臭ガス吸着剤の欄で説明した多孔性材料と同様である。また、配位子の好ましい態様は、悪臭ガス吸着剤の欄で説明した配位子と同様である。 A preferred embodiment of the porous material is the same as the porous material described in the section on the malodorous gas adsorbent. Moreover, preferred aspects of the ligand are the same as those described in the column of the malodorous gas adsorbent.
 窒素原子を含む配位子を含有する溶液において、溶媒の種類は特に限定されず、例えば、水及び有機溶剤が挙げられる。 In the solution containing ligands containing nitrogen atoms, the type of solvent is not particularly limited, and examples include water and organic solvents.
 混合方法は特に限定されず、例えば、金属塩を含む溶液に多孔性材料を加えてもよく、多孔性材料に金属塩を含む溶液を加えてもよい。金属塩と多孔性材料とを含む分散液に、配位子を含む溶液を加えて撹拌してもよく、上記分散液を、配位子を含む溶液に加えてもよい。また、配位子を含む溶液に多孔性材料を加えてもよく、多孔性材料に配位子を含む溶液を加えてもよい。配位子と多孔性材料とを含む分散液に、金属塩を含む溶液を加えてもよく、上記分散液を、金属塩を含む溶液に加えてもよい。 The mixing method is not particularly limited. For example, the porous material may be added to the solution containing the metal salt, or the solution containing the metal salt may be added to the porous material. The solution containing the ligand may be added to the dispersion containing the metal salt and the porous material and stirred, or the dispersion may be added to the solution containing the ligand. Alternatively, the porous material may be added to the solution containing the ligand, or the solution containing the ligand may be added to the porous material. The solution containing the metal salt may be added to the dispersion containing the ligand and the porous material, or the dispersion may be added to the solution containing the metal salt.
 また、金属塩を含む溶液と配位子を含む溶液を混合した混合液と、多孔性材料とを混合してもよい。多孔性材料はそのまま混合してもよく、あらかじめ溶剤に分散した分散液としてから混合してもよい。 Alternatively, a mixture of a solution containing a metal salt and a solution containing a ligand may be mixed with a porous material. The porous material may be mixed as it is, or may be dispersed in a solvent in advance and then mixed.
 中でも、金属塩を含む溶液と多孔性材料とを混合した後、配位子を含む溶液を加えるか、又は、配位子を含む溶液と多孔性材料とを混合した後、金属塩を含む溶液を加える方法が好ましい。 Among them, the solution containing the metal salt is mixed with the porous material and then the solution containing the ligand is added, or the solution containing the ligand and the porous material are mixed and then the solution containing the metal salt is added. is preferred.
-混合して得られた混合液から固液分離によって固形物を得る工程-
 上記工程で、金属塩を含む溶液と、窒素原子を含む配位子を含有する溶液とを混合すると固形物が生じる。具体的には、多孔性材料の存在下においては、多孔性材料と多孔性有機金属錯体を含む混合物、及び/又は、多孔性材料の上に多孔性有機金属錯体が担持された複合体が固形物として得られる。本工程では、このようにして得られた固形物を固液分離によって分離する。
- A step of obtaining a solid by solid-liquid separation from the mixed liquid obtained by mixing -
In the above process, when the solution containing the metal salt and the solution containing the ligand containing nitrogen atoms are mixed, a solid is produced. Specifically, in the presence of the porous material, a mixture containing the porous material and the porous organometallic complex and/or a composite in which the porous organometallic complex is supported on the porous material is solid. obtained as a product. In this step, the solid matter thus obtained is separated by solid-liquid separation.
 固形物を得る工程における固液分離方法としては特に制限はなく、例えば、自然ろ過、吸引ろ過、減圧ろ過、加圧ろ過等のろ過法;沈降分離、遠心分離、浮上分離、圧搾分離等のろ材を用いない分離法が挙げられる。中でも、固液分離方法は、ろ過法が好ましい。 There are no particular restrictions on the solid-liquid separation method in the process of obtaining solids, for example, filtration methods such as natural filtration, suction filtration, vacuum filtration, and pressure filtration; Separation methods that do not use Among them, the solid-liquid separation method is preferably a filtration method.
 固液分離操作の後には、固形物を洗浄することが好ましい。洗浄に用いる溶媒は、例えば、水である。 It is preferable to wash the solid matter after the solid-liquid separation operation. A solvent used for washing is, for example, water.
-固形物を乾燥させる工程-
 固形物の乾燥により、多孔性有機金属錯体が多孔性材料に担持された複合体である悪臭ガス吸着剤が得られる。
 乾燥方法は特に限定されず、通常公知の方法で行うことができる。乾燥温度は、例えば、60℃~200℃である。乾燥時間は、例えば、0.5時間~24時間である。
-The process of drying the solid matter-
By drying the solid, a malodorous gas adsorbent, which is a composite of a porous organometallic complex supported on a porous material, is obtained.
The drying method is not particularly limited, and a commonly known method can be used. The drying temperature is, for example, 60°C to 200°C. The drying time is, for example, 0.5 hours to 24 hours.
-乾燥した沈殿物を粉砕する工程-
 粉砕方法は特に限定されず、例えば、乳鉢、ボールミル、ジェットミル、ハンマーミル、ピンミル、ビーズミル等の粉砕機を用いて粉砕する方法が挙げられる。
- Step of pulverizing the dried precipitate -
The pulverization method is not particularly limited, and examples thereof include a method of pulverizing using a pulverizer such as a mortar, ball mill, jet mill, hammer mill, pin mill, and bead mill.
 以下、本開示を実施例によりさらに具体的に説明するが、本開示はその主旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with reference to examples, but the present disclosure is not limited to the following examples as long as it does not exceed the gist thereof.
<実施例1>
 ビーカーに純水35mLと2-メチルイミダゾール10gを加え、25℃で10分間撹拌し、2-メチルイミダゾール水溶液を調製した。次に、純水6mLと、硝酸亜鉛0.9gとを混合し、25℃で10分間撹拌し、硝酸亜鉛水溶液を調製した。さらに、2-メチルイミダゾール水溶液と硝酸亜鉛水溶液とを混合し、25℃で10分間撹拌した。得られた反応溶液をろ過し、ろ取した固体を純水で洗浄した。洗浄後の固体を80℃で一晩乾燥させてから乳鉢で粉砕することにより、多孔性有機金属錯体(ZIF-8)を得た。得られた多孔性有機金属錯体(ZIF-8)を悪臭ガス吸着剤とした。
 なお、得られた多孔性有機金属錯体について、粉末X線回折測定により同定した結果、金属イオンに有機配位子が配位した結晶性物質であることが分かった。粉末X線回折測定結果を図1に示す。粉末X線回折測定は、粉末X線回折装置(製品名「D8 ADVANCE」、ブルカージャパン製)を用いて、回折角3°~50°の範囲で行った。
<Example 1>
35 mL of pure water and 10 g of 2-methylimidazole were added to a beaker and stirred at 25° C. for 10 minutes to prepare an aqueous 2-methylimidazole solution. Next, 6 mL of pure water and 0.9 g of zinc nitrate were mixed and stirred at 25° C. for 10 minutes to prepare an aqueous zinc nitrate solution. Furthermore, the 2-methylimidazole aqueous solution and the zinc nitrate aqueous solution were mixed and stirred at 25° C. for 10 minutes. The obtained reaction solution was filtered, and the filtered solid was washed with pure water. The washed solid was dried overnight at 80° C. and then pulverized in a mortar to obtain a porous organometallic complex (ZIF-8). The resulting porous organometallic complex (ZIF-8) was used as a malodorous gas adsorbent.
The obtained porous organometallic complex was identified by powder X-ray diffraction measurement, and was found to be a crystalline substance in which organic ligands were coordinated to metal ions. FIG. 1 shows the results of powder X-ray diffraction measurement. Powder X-ray diffraction measurement was performed using a powder X-ray diffractometer (product name “D8 ADVANCE”, manufactured by Bruker Japan) at a diffraction angle of 3° to 50°.
<実施例2>
 テフロン(登録商標)容器にN,N-ジメチルホルムアミド(DMF)40mL、2-アミノテレフタル酸0.62g、及びZrCl0.87gを加え、超音波撹拌により溶解させた。次に、テフロン容器に35質量%濃塩酸を0.375mL加え、テフロン容器をステンレスジャケットに入れて密閉し、静置した状態で120℃のオーブンで24時間加熱した。24時間後、室温まで放冷した。その後、テフロン容器の中身を50mL遠沈管に移し、遠心分離により沈殿物と上澄み液に分離した。デカンテーションにより上澄み液を除去し、沈殿物をDMF50mLに懸濁させた。再度、遠心分離を行い、上澄み液の除去を行った後、残った沈殿物をメタノール50mLに懸濁させた。再度、遠心分離を行い、上澄み液の除去を行った。その後、得られた沈殿物を100mLビーカーに移し、メタノール80mLに懸濁させ、25℃で一晩撹拌した。懸濁液を吸引ろ過し、ろ取した固体をメタノールで洗浄した。洗浄後の固体を、80℃で一晩乾燥し、多孔性有機金属錯体(UiO-66-NH)を得た。得られた多孔性有機金属錯体(UiO-66-NH)を悪臭ガス吸着剤とした。
 なお、得られた多孔性有機金属錯体について、粉末X線回折測定により同定した結果、金属イオンに有機配位子が配位した結晶性物質であることが分かった。粉末X線回折測定結果を図2に示す。
<Example 2>
40 mL of N,N-dimethylformamide (DMF), 0.62 g of 2-aminoterephthalic acid, and 0.87 g of ZrCl 4 were added to a Teflon (registered trademark) container and dissolved by ultrasonic stirring. Next, 0.375 mL of 35% by mass concentrated hydrochloric acid was added to the Teflon container, and the Teflon container was placed in a stainless steel jacket, sealed, and heated in an oven at 120° C. for 24 hours while standing still. After 24 hours, it was allowed to cool to room temperature. After that, the contents of the Teflon container were transferred to a 50 mL centrifuge tube and separated into a precipitate and a supernatant by centrifugation. The supernatant was removed by decantation, and the precipitate was suspended in 50 mL of DMF. After centrifugation was performed again and the supernatant was removed, the remaining precipitate was suspended in 50 mL of methanol. Centrifugation was performed again and the supernatant was removed. After that, the resulting precipitate was transferred to a 100 mL beaker, suspended in 80 mL of methanol, and stirred overnight at 25°C. The suspension was subjected to suction filtration, and the filtered solid was washed with methanol. The washed solid was dried overnight at 80° C. to obtain a porous organometallic complex (UiO-66-NH 2 ). The resulting porous organometallic complex (UiO-66-NH 2 ) was used as a malodorous gas adsorbent.
The obtained porous organometallic complex was identified by powder X-ray diffraction measurement, and was found to be a crystalline substance in which organic ligands were coordinated to metal ions. FIG. 2 shows the powder X-ray diffraction measurement results.
<比較例1>
 ベンゼン-1,3,5-トリカルボン酸銅(製品名「Basolite C300」、BASF社製)を悪臭ガス吸着剤とした。
<Comparative Example 1>
Benzene-1,3,5-tricarboxylic acid copper (product name “Basolite C300”, manufactured by BASF) was used as a malodorous gas adsorbent.
<比較例2>
 Y型ゼオライトを悪臭ガス吸着剤とした。
<Comparative Example 2>
Y-type zeolite was used as the malodorous gas adsorbent.
<比較例3>
 ZSM-5型ゼオライトを悪臭ガス吸着剤とした。
<Comparative Example 3>
ZSM-5 type zeolite was used as a malodorous gas adsorbent.
<比較例4>
 可溶性ジルコニウム塩及び可溶性ハフニウム塩を水に溶解した水溶液を調製し、ここに塩基を加えて水酸化物を生成させた後、水酸化物を分離回収することにより、水酸化ジルコニウムを得た。得られた水酸化ジルコニウムを悪臭ガス吸着剤とした。
<Comparative Example 4>
A zirconium hydroxide was obtained by preparing an aqueous solution in which a soluble zirconium salt and a soluble hafnium salt were dissolved in water, adding a base thereto to generate a hydroxide, and then separating and recovering the hydroxide. The resulting zirconium hydroxide was used as a malodorous gas adsorbent.
 実施例及び比較例の悪臭ガス吸着剤を表1に示す。多孔性金属錯体を悪臭ガス吸着剤とした場合には、多孔性金属錯体の最大細孔径及び一次粒径を測定した。測定方法は、以下のとおりである。測定結果を表1に示す。 Table 1 shows the malodorous gas adsorbents of Examples and Comparative Examples. When the porous metal complex was used as the malodorous gas adsorbent, the maximum pore size and primary particle size of the porous metal complex were measured. The measuring method is as follows. Table 1 shows the measurement results.
(最大細孔径)
 型番「AUTOSORB-1」(カンタクローム インスツルメンツ社製)を用いて測定した。
(maximum pore diameter)
It was measured using model number "AUTOSORB-1" (manufactured by Quantachrome Instruments).
(一次粒径)
 多孔性有機金属錯体を、セミインレンズ式走査型電子顕微鏡(製品名「S-4800」、日立ハイテクノロジーズ社製)を用いて適切な倍率で観察した。得られたSEM画像をもとに、粒子を特定した。単一の粒子が観察可能な倍率におけるSEM画像で、粒子の最も長い部分の径を測定した。100個の粒子について測定を行い、平均値を一次粒径とした。
(Primary particle size)
The porous organometallic complex was observed at an appropriate magnification using a semi-in-lens scanning electron microscope (product name “S-4800”, manufactured by Hitachi High-Technologies Corporation). Particles were identified based on the obtained SEM image. The diameter of the longest part of the particle was measured on the SEM image at a magnification at which a single particle was observable. 100 particles were measured, and the average value was taken as the primary particle size.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例の悪臭ガス吸着剤を用いて、酢酸ガス吸着容量を算出した。算出方法は以下のとおりである。結果を表2に示す。なお、酢酸ガス吸着容量は50mL/g以上であれば、実用上問題ないレベルである。 Using the malodorous gas adsorbents of Examples and Comparative Examples, the acetic acid gas adsorption capacity was calculated. The calculation method is as follows. Table 2 shows the results. Incidentally, if the acetic acid gas adsorption capacity is 50 mL/g or more, it is at a practically acceptable level.
 (1)悪臭ガス吸着剤を、ビニルアルコール系ポリマーフィルム製の袋に入れて密封し、容量が3Lになるように、袋の中に空気を入れた。
 (2)この袋に、特定ガスの濃度が30ppmとなるように特定ガスを入れた。
 (3)30分後に、袋内に残存する特定ガスの濃度をガス検知管で測定し、その後、この袋に、30ppm分の特定ガスを追加した。
 (4)さらに30分後に、袋内に残存する特定ガスの濃度をガス検知管で測定した。
 (5)袋内の特定ガスの濃度が低下しなくなるまで(すなわち、30分後に、残存する特定ガスの濃度が、直前の測定で得られた特定ガスの濃度よりも30ppm多いことが確認されるまで)上記(2)及び(3)の操作を繰り返した。
 (6)ガス濃度が低下しなくなった時点を、悪臭ガス吸着剤が吸着できる特定ガス量の限界点(すなわち、試験終了点)として、特定ガスを入れる操作を停止した。
 下記式に基づいて、悪臭ガス吸着剤の酢酸ガス吸着容量を算出した。
ガス吸着容量(mL/g)=[{試験終了点までのガス注入回数×30(ppm)-試験終了時の残存ガス量(ppm)}×3000(mL)×1/1000000]/測定に用いた悪臭ガス吸着剤の量(g)
(1) The malodorous gas adsorbent was sealed in a vinyl alcohol polymer film bag, and the bag was filled with air to a volume of 3 liters.
(2) The specific gas was put into this bag so that the concentration of the specific gas was 30 ppm.
(3) After 30 minutes, the concentration of the specific gas remaining in the bag was measured with a gas detector tube, and then 30 ppm of the specific gas was added to the bag.
(4) After another 30 minutes, the concentration of the specific gas remaining in the bag was measured with a gas detector tube.
(5) Until the concentration of the specific gas in the bag does not decrease (that is, after 30 minutes, it is confirmed that the concentration of the remaining specific gas is 30 ppm higher than the concentration of the specific gas obtained in the immediately preceding measurement. until) the above operations (2) and (3) were repeated.
(6) The point at which the gas concentration stopped decreasing was regarded as the limit point of the amount of specific gas that could be adsorbed by the malodorous gas adsorbent (that is, the end point of the test), and the operation of supplying the specific gas was stopped.
The acetic acid gas adsorption capacity of the malodorous gas adsorbent was calculated based on the following formula.
Gas adsorption capacity (mL/g) = [{Number of gas injections up to the test end point x 30 (ppm) - residual gas amount (ppm) at the end of the test} x 3000 (mL) x 1/1000000] / used for measurement Amount of bad smell gas adsorbent (g)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1及び実施例2の悪臭ガス吸着剤では、比較例1の悪臭ガス吸着剤と比較して、酢酸ガス吸着容量が多く、酸性ガスに対する吸着能が高いことが分かった。 As shown in Table 2, the malodorous gas adsorbents of Examples 1 and 2 have a higher adsorption capacity for acetic acid gas and a higher adsorption capacity for acidic gases than the malodorous gas adsorbent of Comparative Example 1. Do you get it.
 次に、実施例及び比較例の悪臭ガス吸着剤を用いて、消臭率を算出した。算出方法は以下のとおりである。結果を表3に示す。 Next, using the malodorous gas adsorbents of Examples and Comparative Examples, the deodorizing rate was calculated. The calculation method is as follows. Table 3 shows the results.
 悪臭ガス吸着剤20mgを、ビニルアルコール系ポリマーフィルム製の袋に入れて密封した。容量が3Lになるように、袋の中に空気を入れた。この袋に、酢酸ガス濃度が500ppmとなるように酢酸ガスを入れ、24時間静置した。酢酸ガスを注入してから2時間後に、袋内の残存酢酸ガス濃度をガス検知管で測定した。下記式に基づいて、悪臭ガス吸着剤の消臭率を算出した。
 消臭率(%)=[{500-(残存酢酸ガス濃度)}(ppm)/(500ppm)]×100
20 mg of the malodorous gas adsorbent was placed in a vinyl alcohol polymer film bag and sealed. The bag was inflated to a volume of 3L. Acetic acid gas was put into this bag so that the acetic acid gas concentration was 500 ppm, and the bag was allowed to stand for 24 hours. Two hours after the injection of acetic acid gas, the residual acetic acid gas concentration in the bag was measured with a gas detector tube. Based on the following formula, the deodorizing rate of the malodorous gas adsorbent was calculated.
Deodorant rate (%) = [{500-(residual acetic acid gas concentration)} (ppm) / (500 ppm)] × 100
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1及び実施例2の悪臭ガス吸着剤では、比較例1~比較例4の悪臭ガス吸着剤と比較して、消臭率が高く、酸性ガスに対する吸着能が高いことが分かった。 As shown in Table 3, the malodorous gas adsorbents of Examples 1 and 2 have a higher deodorizing rate and an acidic gas adsorption capacity than the malodorous gas adsorbents of Comparative Examples 1 to 4. It turned out to be expensive.
 次に、実施例及び比較例の悪臭ガス吸着剤を含む消臭樹脂組成物を用いて、消臭率を算出した。算出方法は以下のとおりである。結果を表4及び表5に示す。 Next, the deodorant rate was calculated using the deodorant resin compositions containing the malodorous gas adsorbents of Examples and Comparative Examples. The calculation method is as follows. The results are shown in Tables 4 and 5.
 射出成型機で、ポリエステル(製品名「MA2101M」、ユニチカ社製)と悪臭ガス吸着剤とを練り込み、280℃でプレート状に成型加工した。ポリエステル100質量部に対する悪臭ガス吸着剤の添加量が3質量部となるように調整し、消臭樹脂組成物を得た。 Using an injection molding machine, polyester (product name "MA2101M", manufactured by Unitika) and a bad smell gas adsorbent were kneaded and molded into a plate shape at 280°C. A deodorizing resin composition was obtained by adjusting the amount of the malodorous gas adsorbent added to 3 parts by mass per 100 parts by mass of the polyester.
 成型加工して得られた消臭樹脂組成物をブレンダーで粉砕した。粉砕物1.0gを、ビニルアルコール系ポリマーフィルム製の袋に入れて密封した。容量が3Lになるように、袋の中に空気を入れた。この袋に、酢酸ガス濃度が30ppmとなるように酢酸ガスを入れ、静置した。酢酸ガスを注入してから2時間後に、袋内の残存酢酸ガス濃度をガス検知管で測定した。下記式に基づいて、悪臭ガス吸着剤を含む消臭樹脂組成物の消臭率を算出した。
 消臭率(%)=[{30-(残存酢酸ガス濃度)}(ppm)/(30ppm)]×100
The deodorant resin composition obtained by molding was pulverized with a blender. 1.0 g of the pulverized product was placed in a vinyl alcohol polymer film bag and sealed. The bag was inflated to a volume of 3L. Acetic acid gas was put into the bag so that the concentration of acetic acid gas was 30 ppm, and the bag was allowed to stand. Two hours after the injection of acetic acid gas, the residual acetic acid gas concentration in the bag was measured with a gas detector tube. Based on the following formula, the deodorant rate of the deodorant resin composition containing the malodorous gas adsorbent was calculated.
Deodorant rate (%) = [{30-(residual acetic acid gas concentration)} (ppm) / (30 ppm)] × 100
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 射出成型機で、ポリエステル(製品名「MA2101M」、ユニチカ社製)と悪臭ガス吸着剤とを練り込み、280℃でプレート状に成型加工した。ポリエステル樹脂100質量部に対する悪臭ガス吸着剤の添加量が2質量部となるように調整し、消臭樹脂組成物Aを得た。 Using an injection molding machine, polyester (product name "MA2101M", manufactured by Unitika) and a bad smell gas adsorbent were kneaded and molded into a plate shape at 280°C. A deodorizing resin composition A was obtained by adjusting the amount of the malodorous gas adsorbent to be added to 2 parts by mass with respect to 100 parts by mass of the polyester resin.
 射出成型機で、ポリプロピレン(製品名「プライムポリプロ J707G」、プライムポリマー製)と悪臭ガス吸着剤とを練り込み、220℃でプレート状に成型加工した。ポリプロピレン樹脂100質量部に対する悪臭ガス吸着剤の添加量が2質量部となるように調整し、消臭樹脂組成物Bを得た。 Using an injection molding machine, polypropylene (product name "Prime Polypro J707G", manufactured by Prime Polymer) and a bad smell gas adsorbent were kneaded and molded into a plate shape at 220°C. A deodorant resin composition B was obtained by adjusting the amount of the malodorous gas adsorbent added to 2 parts by mass with respect to 100 parts by mass of the polypropylene resin.
 射出成型機で、ポリエチレン(製品名「Hi-Zex 2100J」、プライムポリマー製)と悪臭ガス吸着剤とを練り込み、220℃でプレート状に成型加工した。ポリエチレン樹脂100質量部に対する悪臭ガス吸着剤の添加量が2質量部となるように調整し、消臭樹脂組成物Cを得た。 Using an injection molding machine, polyethylene (product name "Hi-Zex 2100J", manufactured by Prime Polymer) and a bad smell gas adsorbent were kneaded and molded into a plate shape at 220°C. A deodorant resin composition C was obtained by adjusting the amount of the malodorous gas adsorbent added to 2 parts by mass per 100 parts by mass of the polyethylene resin.
 射出成型機で、アクリル樹脂(製品名「アクリペットVHS」、三菱ケミカル製)と悪臭ガス吸着剤とを練り込み、240℃でプレート状に成型加工した。アクリル樹脂100質量部に対する悪臭ガス吸着剤の添加量が2質量部となるように調整し、消臭樹脂組成物Dを得た。 An injection molding machine kneaded acrylic resin (product name "Acrypet VHS", manufactured by Mitsubishi Chemical) and a bad smell gas adsorbent, and molded it into a plate shape at 240°C. A deodorizing resin composition D was obtained by adjusting the amount of the malodorous gas adsorbent to be added to 2 parts by mass with respect to 100 parts by mass of the acrylic resin.
 成型加工して得られた消臭樹脂組成物A~Dを5mm×5mmの大きさにカットした。カットしたサンプル2.0gを、ビニルアルコール系ポリマーフィルム製の袋に入れて密封した。容量が3Lになるように、袋の中に空気を入れた。この袋に、酢酸ガス濃度が30ppmとなるように酢酸ガスを入れ、静置した。酢酸ガスを注入してから2時間後及び24時間後に、袋内の残存酢酸ガス濃度をガス検知管で測定した。上記消臭率の算出方法と同様に、悪臭ガス吸着剤を含む消臭樹脂組成物A~Dの消臭率を算出した。結果を表5に示す。 The deodorant resin compositions A to D obtained by molding were cut into pieces of 5 mm x 5 mm. 2.0 g of the cut sample was placed in a vinyl alcohol polymer film bag and sealed. The bag was inflated to a volume of 3L. Acetic acid gas was put into the bag so that the concentration of acetic acid gas was 30 ppm, and the bag was allowed to stand. After 2 hours and 24 hours from the injection of acetic acid gas, the residual acetic acid gas concentration in the bag was measured with a gas detector tube. The deodorant rate of the deodorant resin compositions A to D containing the malodorous gas adsorbent was calculated in the same manner as in the method for calculating the deodorant rate. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4及び表5に示すように、実施例1の悪臭ガス吸着剤を含む消臭樹脂組成物では、比較例4の悪臭ガス吸着剤を含む消臭樹脂組成物と比較して、消臭率が高く、酸性ガスに対する吸着能が高いことが分かった。 As shown in Tables 4 and 5, in the deodorant resin composition containing the malodorous gas adsorbent of Example 1, compared with the deodorant resin composition containing the malodorous gas adsorbent of Comparative Example 4, the deodorizing rate was It was found that the adsorption capacity for acidic gases is high.
 次に、実施例1の悪臭ガス吸着剤を含む消臭樹脂組成物B及び消臭樹脂組成物Cを用いて、MFR(メルトフローレイト)を測定した。MFRに基づいて、悪臭ガス吸着剤を含む樹脂組成物の安定性を評価した。評価方法は以下のとおりである。 Next, using deodorant resin composition B and deodorant resin composition C containing the bad smell gas adsorbent of Example 1, MFR (melt flow rate) was measured. The stability of the resin composition containing the malodorous gas adsorbent was evaluated based on MFR. The evaluation method is as follows.
 消臭樹脂組成物BのMFRを、メルトインデクサ(製品名「メルトインデクサG-02」、東洋精機社製)を用いて、JIS K 7210-1:2014に準拠して230℃、2.16kg荷重で測定した。ブランクサンプルとして、射出成型機で、ポリプロピレン(製品名「プライムポリプロ J707G」、プライムポリマー製)を220℃でプレート状に成型加工したものを用いた。 The MFR of the deodorant resin composition B was measured using a melt indexer (product name "Melt Indexer G-02", manufactured by Toyo Seiki Co., Ltd.) at 230 ° C. and a load of 2.16 kg in accordance with JIS K 7210-1: 2014. measured in As a blank sample, a polypropylene (product name: "Prime Polypro J707G", manufactured by Prime Polymer) was molded into a plate at 220°C by an injection molding machine.
 メルトインデクサ(製品名「メルトインデクサG-02」、東洋精機社製)を用いて、JIS K 7210-1:2014に準拠して190℃、2.16kg荷重で測定した。ブランクサンプルとして、射出成型機で、ポリエチレン(製品名「Hi-Zex 2100J」、プライムポリマー製)を220℃でプレート上状に成型加工したものを用いた。評価結果を表6に示す。 Using a melt indexer (product name "Melt Indexer G-02", manufactured by Toyo Seiki Co., Ltd.), it was measured at 190°C and a load of 2.16 kg in accordance with JIS K 7210-1:2014. As a blank sample, polyethylene (product name: "Hi-Zex 2100J", manufactured by Prime Polymer) was molded into a plate shape at 220°C by an injection molding machine. Table 6 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例1の悪臭ガス吸着剤を含む消臭樹脂組成物では、悪臭ガスを含まないブランクサンプルと比較して、MFRの顕著な変化はなく、安定性に優れることが分かった。 As shown in Table 6, the deodorant resin composition containing the malodorous gas adsorbent of Example 1 showed no significant change in MFR compared to the blank sample containing no malodorous gas, indicating excellent stability. Do you get it.
<実施例3>
 実施例1と同様の方法で、多孔性有機金属錯体(ZIF-8)を得た。次に、多孔性有機金属錯体(ZIF-8)1.0gと、多孔性材料である多孔性シリカ(メジアン径2.8μm、比表面積500m/g)1.0gとをバイアルに入れて混合し、よく振とうして、多孔性有機金属錯体(ZIF-8)と多孔性シリカとの質量比が1:1の混合物である悪臭ガス吸着剤を得た。
 図3に、得られた悪臭ガス吸着剤の走査型電子顕微鏡(SEM)写真を示す。走査型電子顕微鏡として、日立ハイテクノロジーズ社の製品名「S-4800」を使用した。写真の倍率は50000倍であり、1.0KVの電圧を利用してSEM写真を得た。図3より、ZIF-8の一次粒径は、主に0.1μm前後であることが分かった。
<Example 3>
A porous organometallic complex (ZIF-8) was obtained in the same manner as in Example 1. Next, 1.0 g of a porous organometallic complex (ZIF-8) and 1.0 g of porous silica (median diameter: 2.8 μm, specific surface area: 500 m 2 /g), which is a porous material, are placed in a vial and mixed. and shaken well to obtain a malodorous gas adsorbent which is a mixture of porous organometallic complex (ZIF-8) and porous silica in a mass ratio of 1:1.
FIG. 3 shows a scanning electron microscope (SEM) photograph of the obtained malodorous gas adsorbent. As a scanning electron microscope, a product name "S-4800" manufactured by Hitachi High-Technologies Corporation was used. The magnification of the photograph was 50000 times, and the SEM photograph was obtained using a voltage of 1.0 KV. From FIG. 3, it was found that the primary particle size of ZIF-8 was mainly around 0.1 μm.
<実施例4>
 純水20mLに硝酸亜鉛0.9gを加え、硝酸亜鉛水溶液を調製した。その後、硝酸亜鉛水溶液に、多孔性材料である多孔性シリカ(メジアン径2.8μm、比表面積500m/g)0.9gを添加して撹拌し、硝酸亜鉛水溶液中に多孔性シリカを均一に分散させた。次に、純水35mLに、配位子として2-メチルイミダゾール10gを加え、2-メチルイミダゾール水溶液を調製した。多孔性シリカを分散させた硝酸亜鉛水溶液に、2-メチルイミダゾール水溶液を加え、25℃で10分間撹拌した。得られた反応液をろ過し、ろ取した固形物を純水で洗浄した。洗浄後の固形物を80℃で一晩乾燥させてから乳鉢で粉砕することにより、多孔性有機金属錯体(ZIF-8)と多孔性シリカとの複合体を得た。複合体のSEM観察において、多孔性有機金属錯体(ZIF-8)が多孔性シリカの表面を被覆していることが観察された。多孔性シリカの表面が被覆される割合は80%以上であり、多孔性金属錯体(ZIF-8)は、多孔性シリカに担持されていた。この複合体を強酸に溶解してICP発光分光分析を行い、ZnとSiの比を求めた結果、多孔性有機金属錯体(ZIF-8)と多孔性シリカとの質量比は1:1であった。この複合体を悪臭ガス吸着剤とした。
 図4に、得られた悪臭ガス吸着剤のSEM写真を示す。走査型電子顕微鏡として、日立ハイテクノロジーズ社の製品名「S-4800」を使用した。写真の倍率は50000倍であり、1.0KVの電圧を利用してSEM写真を得た。図4より、ZIF-8の一次粒径は、主に0.2μm前後であることが分かった。
 なお、SEM観察においてXMA分析を行い、被覆している粒子がZIF-8であると同定した。XMA分析では、JSM-7900E(日本電子社製)及びUltim Max100(オックスフォード・インストゥルメンツ社製)を使用し、加速電圧2.5KVで、複合体の元素マッピングを行った。
<Example 4>
0.9 g of zinc nitrate was added to 20 mL of pure water to prepare an aqueous zinc nitrate solution. After that, 0.9 g of porous silica (median diameter: 2.8 μm, specific surface area: 500 m 2 /g), which is a porous material, is added to the zinc nitrate aqueous solution and stirred to uniformly distribute the porous silica in the zinc nitrate aqueous solution. dispersed. Next, 10 g of 2-methylimidazole as a ligand was added to 35 mL of pure water to prepare an aqueous 2-methylimidazole solution. The 2-methylimidazole aqueous solution was added to the zinc nitrate aqueous solution in which the porous silica was dispersed, and the mixture was stirred at 25° C. for 10 minutes. The obtained reaction solution was filtered, and the filtered solid matter was washed with pure water. The washed solid was dried overnight at 80° C. and then pulverized in a mortar to obtain a composite of porous organometallic complex (ZIF-8) and porous silica. In SEM observation of the composite, it was observed that the porous organometallic complex (ZIF-8) coated the surface of the porous silica. The surface coverage of the porous silica was 80% or more, and the porous metal complex (ZIF-8) was supported on the porous silica. This complex was dissolved in a strong acid and subjected to ICP emission spectroscopic analysis to determine the ratio of Zn and Si. As a result, the mass ratio of the porous organometallic complex (ZIF-8) and porous silica was 1:1. rice field. This composite was used as a malodorous gas adsorbent.
FIG. 4 shows an SEM photograph of the obtained malodorous gas adsorbent. As a scanning electron microscope, a product name "S-4800" manufactured by Hitachi High-Technologies Corporation was used. The magnification of the photograph was 50000 times, and the SEM photograph was obtained using a voltage of 1.0 KV. From FIG. 4, it was found that the primary particle size of ZIF-8 was mainly around 0.2 μm.
XMA analysis was performed in SEM observation, and the coated particles were identified as ZIF-8. In the XMA analysis, JSM-7900E (manufactured by JEOL Ltd.) and Ultim Max100 (manufactured by Oxford Instruments) were used to perform elemental mapping of the complex at an acceleration voltage of 2.5 KV.
<実施例5>
 実施例1と同様の方法で、多孔性有機金属錯体(ZIF-8)を得た。次に、多孔性有機金属錯体(ZIF-8)1.0gと、多孔性材料であるZSM-5型ゼオライト(メジアン4.0μm、比表面積390m/g)1.0gとをバイアルに入れて混合し、よく振とうして、多孔性金属錯体(ZIF-8)とZSM-5型ゼオライトとの質量比が1:1の混合物である悪臭ガス吸着剤を得た。
 図5に、得られた悪臭ガス吸着剤のSEM写真を示す。走査型電子顕微鏡として、日立ハイテクノロジーズ社の製品名「S-4800」を使用した。写真の倍率は10000倍であり、1.0KVの電圧を利用してSEM写真を得た。図5より、ZIF-8の一次粒径は、主に0.2μm前後であることが分かった。
<Example 5>
A porous organometallic complex (ZIF-8) was obtained in the same manner as in Example 1. Next, 1.0 g of a porous organometallic complex (ZIF-8) and 1.0 g of ZSM-5 type zeolite (median 4.0 μm, specific surface area 390 m 2 /g), which is a porous material, were placed in a vial. They were mixed and shaken well to obtain a malodorous gas adsorbent which was a mixture of porous metal complex (ZIF-8) and ZSM-5 type zeolite at a mass ratio of 1:1.
FIG. 5 shows an SEM photograph of the obtained malodorous gas adsorbent. As a scanning electron microscope, a product name "S-4800" manufactured by Hitachi High-Technologies Corporation was used. The magnification of the photograph was 10000 times, and the SEM photograph was obtained using a voltage of 1.0 KV. From FIG. 5, it was found that the primary particle size of ZIF-8 was mainly around 0.2 μm.
<実施例6>
 まず、純水20mLに硝酸亜鉛0.9gを加え、硝酸亜鉛水溶液を調製した。その後、硝酸亜鉛水溶液に、多孔性材料であるZSM-5型ゼオライト(メジアン径4.0μm、比表面積390m/g)0.9gを添加して撹拌し、硝酸亜鉛水溶液中にZSM-5型ゼオライトを均一に分散させた。次に、純水35mLに2-メチルイミダゾール10gを加え、2-メチルイミダゾール水溶液を調製した。ZSM-5型ゼオライトを分散させた硝酸亜鉛水溶液に、2-メチルイミダゾール水溶液を加え、25℃で10分間撹拌した。得られた反応液をろ過し、ろ取した固形物を純水で洗浄した。洗浄後の固形物を80℃で一晩乾燥させてから乳鉢で粉砕することにより、多孔性有機金属錯体(ZIF-8)とZSM-5型ゼオライトとの複合体を得た。複合体のSEM観察において、多孔性有機金属錯体(ZIF-8)がゼオライトの表面を被覆していることが観察された。ZSM-5型ゼオライトの表面が被覆される割合は90%以上であり、多孔性有機金属錯体(ZIF-8)は、ZSM-5型ゼオライトに担持されていた。この複合体を悪臭ガス吸着剤とした。
 図6に、得られた悪臭ガス吸着剤のSEM写真を示す。走査型電子顕微鏡として、日立ハイテクノロジーズ社の製品名「S-4800」を使用した。写真の倍率は10000倍であり、1.0KVの電圧を利用してSEM写真を得た。図6より、ZIF-8の一次粒径は、主に0.2μm前後であることが分かった。
 図3~図6において、1はシリカを示し、2はZIF-8を示し、3はゼオライトを示す。
<Example 6>
First, 0.9 g of zinc nitrate was added to 20 mL of pure water to prepare a zinc nitrate aqueous solution. After that, 0.9 g of ZSM-5 type zeolite (median diameter 4.0 μm, specific surface area 390 m 2 /g), which is a porous material, is added to the zinc nitrate aqueous solution and stirred, and ZSM-5 type zeolite is added to the zinc nitrate aqueous solution. The zeolite was evenly dispersed. Next, 10 g of 2-methylimidazole was added to 35 mL of pure water to prepare an aqueous 2-methylimidazole solution. The 2-methylimidazole aqueous solution was added to the zinc nitrate aqueous solution in which the ZSM-5 type zeolite was dispersed, and the mixture was stirred at 25° C. for 10 minutes. The obtained reaction solution was filtered, and the filtered solid matter was washed with pure water. The washed solid was dried overnight at 80° C. and then pulverized in a mortar to obtain a composite of porous organometallic complex (ZIF-8) and ZSM-5 type zeolite. In SEM observation of the composite, it was observed that the porous organometallic complex (ZIF-8) coated the surface of the zeolite. The surface coverage of the ZSM-5 zeolite was 90% or more, and the porous organometallic complex (ZIF-8) was supported on the ZSM-5 zeolite. This composite was used as a malodorous gas adsorbent.
FIG. 6 shows an SEM photograph of the obtained malodorous gas adsorbent. As a scanning electron microscope, a product name "S-4800" manufactured by Hitachi High-Technologies Corporation was used. The magnification of the photograph was 10000 times, and the SEM photograph was obtained using a voltage of 1.0 KV. From FIG. 6, it was found that the primary particle size of ZIF-8 was mainly around 0.2 μm.
3 to 6, 1 indicates silica, 2 indicates ZIF-8, and 3 indicates zeolite.
 実施例1、3~6及び比較例3、5の悪臭ガス吸着剤を用いて、酢酸ガス吸着容量及び消臭率を算出した。酢酸ガス吸着容量の算出方法は、上記のとおりである。消臭率の算出方法は以下のとおりである。また、実施例及び比較例の悪臭ガス吸着剤を用いて、耐潮解性の評価を行った。評価方法は以下のとおりである。結果を表7に示す。 Using the malodorous gas adsorbents of Examples 1, 3 to 6 and Comparative Examples 3 and 5, the acetic acid gas adsorption capacity and deodorization rate were calculated. The method for calculating the acetic acid gas adsorption capacity is as described above. The method for calculating the deodorant rate is as follows. Deliquescence resistance was also evaluated using the malodorous gas adsorbents of Examples and Comparative Examples. The evaluation method is as follows. Table 7 shows the results.
(消臭率)
 悪臭ガス吸着剤20mgを、ビニルアルコール系ポリマーフィルム製の袋に入れて密封した。容量が3Lになるように、袋の中に空気を入れた。この袋に、酢酸ガス濃度が600ppmとなるように酢酸ガスを入れ、24時間静置した。酢酸ガスを注入してから2時間後に、袋内の残存酢酸ガス濃度をガス検知管で測定した。下記式に基づいて、各ガス吸着剤の消臭率を算出した。
 消臭率(%)={600-(残存酢酸ガス濃度)}(ppm)/(600ppm)×100
(Deodorant rate)
20 mg of the malodorous gas adsorbent was placed in a vinyl alcohol polymer film bag and sealed. The bag was inflated to a volume of 3L. Acetic acid gas was put into this bag so that the acetic acid gas concentration was 600 ppm, and the bag was allowed to stand for 24 hours. Two hours after the injection of acetic acid gas, the residual acetic acid gas concentration in the bag was measured with a gas detector tube. The deodorizing rate of each gas adsorbent was calculated based on the following formula.
Deodorant rate (%) = {600-(residual acetic acid gas concentration)} (ppm) / (600 ppm) x 100
(耐潮解性)
1.外観変化
 悪臭ガス吸着剤20mgを、ビニルアルコール系ポリマーフィルム製の袋に入れて密封した。容量が3Lになるように、袋の中に湿度40%の空気を入れた。この袋に、酢酸ガス濃度が600ppmとなるように酢酸ガスを入れ、25℃の環境下で24時間静置した。24時間後、目視で外観を検査し、以下の指標で評価した。
 A:24時間後の悪臭ガス吸着剤の外観に潮解した変化がなく、固体である悪臭ガス吸着剤がさらさらした状態を保っている。
 B:24時間後の悪臭ガス吸着剤の外観が滑らかになるような大きな変化はなく、表面は粘着性を有していないが、表面が吸湿したような変化は認められる。
 C:24時間後の悪臭ガス吸着剤が潮解して外観が滑らかとなり、固体の状態を保っておらず、表面が粘着性を有した状態である。
(Deliquescence resistance)
1. Change in Appearance 20 mg of the malodorous gas adsorbent was placed in a vinyl alcohol polymer film bag and sealed. Air with a humidity of 40% was put into the bag so that the volume was 3 L. Acetic acid gas was put into this bag so that the acetic acid gas concentration was 600 ppm, and the bag was allowed to stand in an environment of 25° C. for 24 hours. After 24 hours, the appearance was visually inspected and evaluated according to the following indices.
A: The appearance of the malodorous gas adsorbent after 24 hours does not deliquesce, and the solid malodorous gas adsorbent remains free-flowing.
B: After 24 hours, the appearance of the malodorous gas adsorbent did not change significantly, and the surface did not have stickiness, but a change as if the surface had absorbed moisture was observed.
C: After 24 hours, the malodorous gas adsorbent was deliquesced and had a smooth appearance, did not maintain a solid state, and had a sticky surface.
2.重量増加
 潮解による重量増加は、以下の方法で測定した。
1)ビニルアルコール系ポリマーフィルムを2cm×2cmの大きさに切り取った。
(2)アルミカップの上に、切り取ったフィルムを載せ、その上に悪臭ガス吸着剤を薄く広げて載せた。
(3)悪臭ガス吸着剤を載せる前後で、それぞれの総重量を測定した。
(4)ビニルアルコール系ポリマーフィルム製の袋に、(2)を入れた。
(5)空気(湿度40%)100mLと酢酸ガスを、酢酸ガスの濃度が15000ppmとなるようにシリンジで注入した。
(6)40℃の恒温機中で24時間静置した。
(7)24時間後、アルミカップを取り出し、総重量を測定した。下記の式に基づいて、試験前後の重量変化を求めた。
 悪臭ガス吸着剤1gあたりの増加量(g)={(酢酸ガス注入24時間後の悪臭ガス吸着剤の重量(g))-(酢酸ガス注入前の悪臭ガス吸着剤の重量(g))}÷(酢酸ガス注入前の悪臭ガス吸着剤の重量(g))
2. Weight Gain Weight gain due to deliquescence was measured by the following method.
1) A vinyl alcohol polymer film was cut into a size of 2 cm x 2 cm.
(2) The cut film was placed on an aluminum cup, and the malodorous gas adsorbent was spread thinly and placed thereon.
(3) Before and after placing the malodorous gas adsorbent, the total weight of each was measured.
(4) (2) was placed in a vinyl alcohol polymer film bag.
(5) 100 mL of air (40% humidity) and acetic acid gas were injected with a syringe so that the concentration of acetic acid gas was 15000 ppm.
(6) Allowed to stand for 24 hours in a constant temperature machine at 40°C.
(7) After 24 hours, the aluminum cup was taken out and the total weight was measured. The weight change before and after the test was obtained based on the following formula.
Increased amount (g) per gram of malodorous gas adsorbent = {(Weight of malodorous gas adsorbent after 24 hours of acetic acid gas injection (g)) - (Weight of malodorous gas adsorbent before acetic acid gas injection (g))} ÷ (weight (g) of malodorous gas adsorbent before injection of acetic acid gas)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、実施例3及び実施例5の悪臭ガス吸着剤では、酢酸ガスに対する優れた吸着容量及び消臭率を示すとともに、非常に優れた耐潮解性も示すことが分かった。さらに、多孔性有機金属錯体を多孔性材料に担持した複合体である実施例4及び実施例6は、それぞれ対応する多孔性有機金属錯体と多孔性材料を混合した複合体である実施例3及び実施例5と比較して、いずれも耐潮解性に優れ、より実用性が高いことが分かった。 As shown in Table 7, it was found that the malodorous gas adsorbents of Examples 3 and 5 exhibit excellent adsorption capacity and deodorizing rate for acetic acid gas, and also exhibit extremely excellent deliquescence resistance. Furthermore, Examples 4 and 6, which are composites in which a porous organometallic complex is supported on a porous material, are composites in which a corresponding porous organometallic complex and a porous material are mixed, respectively. As compared with Example 5, all of them were found to be superior in deliquescence resistance and more practical.
 なお、2021年3月24日に出願された日本国特許出願2021-050148号、2021年3月24日に出願された日本国特許出願2021-050149号、及び、2022年1月31日に出願された日本国特許出願2022-013507号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 In addition, Japanese Patent Application No. 2021-050148 filed on March 24, 2021, Japanese Patent Application No. 2021-050149 filed on March 24, 2021, and filed on January 31, 2022 The disclosure of Japanese Patent Application No. 2022-013507 filed is incorporated herein by reference in its entirety. In addition, all publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. , incorporated herein by reference.

Claims (14)

  1.  金属と、窒素原子を含む配位子と、を含む多孔性有機金属錯体を含有する、悪臭ガス吸着剤。 A malodorous gas adsorbent containing a porous organometallic complex containing a metal and a ligand containing a nitrogen atom.
  2.  前記金属は、Zn、Zr、Ti、Al、及びCoからなる群より選択される少なくとも1種である、請求項1に記載の悪臭ガス吸着剤。 The malodorous gas adsorbent according to claim 1, wherein the metal is at least one selected from the group consisting of Zn, Zr, Ti, Al, and Co.
  3.  前記窒素原子を含む配位子は、芳香環又は複素環を有する、請求項1又は請求項2に記載の悪臭ガス吸着剤。 The malodorous gas adsorbent according to claim 1 or claim 2, wherein the ligand containing a nitrogen atom has an aromatic ring or a heterocyclic ring.
  4.  前記金属がZnであり、前記配位子がイミダゾール系化合物である、請求項1~請求項3のいずれか1項に記載の悪臭ガス吸着剤。 The malodorous gas adsorbent according to any one of claims 1 to 3, wherein the metal is Zn and the ligand is an imidazole compound.
  5.  酸性ガスを吸着するために用いられる、請求項1~請求項4のいずれか1項に記載の悪臭ガス吸着剤。 The malodorous gas adsorbent according to any one of claims 1 to 4, which is used for adsorbing acid gases.
  6.  前記多孔性有機金属錯体は粒子であり、粒子の一次粒径が0.05μm~3.0μmである、請求項1~請求項5のいずれか1項に記載の悪臭ガス吸着剤。 The malodorous gas adsorbent according to any one of claims 1 to 5, wherein the porous organometallic complex is a particle having a primary particle size of 0.05 µm to 3.0 µm.
  7.  ガスの吸着容量が50mL/g以上である、請求項1~請求項6のいずれか1項に記載の悪臭ガス吸着剤。 The malodorous gas adsorbent according to any one of claims 1 to 6, which has a gas adsorption capacity of 50 mL/g or more.
  8.  さらに多孔性材料を含有する、請求項1~請求項7のいずれか1項に記載の悪臭ガス吸着剤。 The malodorous gas adsorbent according to any one of claims 1 to 7, further comprising a porous material.
  9.  前記多孔性有機金属錯体は、前記多孔性材料に担持されている、請求項8に記載の悪臭ガス吸着剤。 The malodorous gas adsorbent according to claim 8, wherein the porous organometallic complex is supported on the porous material.
  10.  前記多孔性材料は、多孔性金属酸化物、ゼオライト、及び活性炭からなる群より選択される少なくとも1種を含む、請求項8又は請求項9に記載の悪臭ガス吸着剤。 The malodorous gas adsorbent according to claim 8 or claim 9, wherein the porous material contains at least one selected from the group consisting of porous metal oxides, zeolites, and activated carbon.
  11.  20mgの悪臭ガス吸着剤を、湿度40%の空気で調製した濃度600ppmの酢酸ガス3リットル中、25℃の環境下で24時間暴露させる条件において潮解しない、請求項8~請求項10のいずれか1項に記載の悪臭ガス吸着剤。 20 mg of the malodorous gas adsorbent does not deliquesce in 3 liters of acetic acid gas with a concentration of 600 ppm prepared in air with a humidity of 40% in an environment of 25° C. for 24 hours. 2. The malodorous gas adsorbent according to item 1.
  12.  40mgの悪臭ガス吸着剤を、湿度40%の空気で調製した濃度15000ppmの酢酸ガス300mL中、40℃の環境下で24時間暴露させる条件において、
     24時間後の、悪臭ガス吸着剤1gあたりの増加量が0.35g以下である、請求項8~請求項11のいずれか1項に記載の悪臭ガス吸着剤。
    40 mg of the malodorous gas adsorbent was exposed to 300 mL of acetic acid gas with a concentration of 15000 ppm prepared in air with a humidity of 40% for 24 hours in an environment of 40°C.
    The malodorous gas adsorbent according to any one of claims 8 to 11, wherein the amount of increase per 1g of the malodorous gas adsorbent after 24 hours is 0.35 g or less.
  13.  請求項1~請求項12のいずれか1項に記載の悪臭ガス吸着剤を含む消臭製品。 A deodorant product containing the malodorous gas adsorbent according to any one of claims 1 to 12.
  14.  金属塩を含む溶液と、多孔性材料、及び窒素原子を含む配位子を含有する溶液と、を混合する工程と、
     混合して得られた混合液から固液分離して固形物を得る工程と、を含む悪臭ガス吸着剤の製造方法。
    mixing a solution containing a metal salt with a solution containing a porous material and a ligand containing nitrogen atoms;
    and a step of solid-liquid separation from the mixed liquid obtained by mixing to obtain a solid matter.
PCT/JP2022/008639 2021-03-24 2022-03-01 Agent for adsorbing malodorous gas, method for producing same, and deodorizing product WO2022202149A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280021511.4A CN116981512A (en) 2021-03-24 2022-03-01 Malodorous gas adsorbent, preparation method thereof and deodorizing product
KR1020237034891A KR20230159838A (en) 2021-03-24 2022-03-01 Odor gas adsorbent, manufacturing method thereof, and deodorizing product

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021050149A JP2022148458A (en) 2021-03-24 2021-03-24 Malodorous gas adsorbent and method for producing the same, and deodorant product
JP2021050148 2021-03-24
JP2021-050149 2021-03-24
JP2021-050148 2021-03-24
JP2022-013507 2022-01-31
JP2022013507A JP2022151610A (en) 2021-03-24 2022-01-31 Agent for adsorbing malodorous gas, and deodorizing product

Publications (1)

Publication Number Publication Date
WO2022202149A1 true WO2022202149A1 (en) 2022-09-29

Family

ID=83395565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008639 WO2022202149A1 (en) 2021-03-24 2022-03-01 Agent for adsorbing malodorous gas, method for producing same, and deodorizing product

Country Status (3)

Country Link
KR (1) KR20230159838A (en)
TW (1) TW202243734A (en)
WO (1) WO2022202149A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092914A (en) * 2009-11-02 2011-05-12 Toyota Boshoku Corp Adsorbent and interior skin material for vehicle containing the same
JP2013154301A (en) * 2012-01-30 2013-08-15 Toyobo Co Ltd Adsorption sheet and adsorption element using the same
US20160038924A1 (en) * 2013-04-06 2016-02-11 Blucher Gmbh Activated carbon with a special finishing, production and use thereof
JP2019088499A (en) * 2017-11-15 2019-06-13 大原パラヂウム化学株式会社 Deodorant for life smell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092914A (en) * 2009-11-02 2011-05-12 Toyota Boshoku Corp Adsorbent and interior skin material for vehicle containing the same
JP2013154301A (en) * 2012-01-30 2013-08-15 Toyobo Co Ltd Adsorption sheet and adsorption element using the same
US20160038924A1 (en) * 2013-04-06 2016-02-11 Blucher Gmbh Activated carbon with a special finishing, production and use thereof
JP2019088499A (en) * 2017-11-15 2019-06-13 大原パラヂウム化学株式会社 Deodorant for life smell

Also Published As

Publication number Publication date
TW202243734A (en) 2022-11-16
KR20230159838A (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US9566575B2 (en) Activated carbon with a special finishing, production and use thereof
CN106459590B (en) Perforated membrane comprising metal-organic framework materials
JP6451743B2 (en) Deodorant for volatile organic substances, deodorant processed product using the same, and method for producing deodorant for volatile organic substance and deodorized processed article
JP2019088499A (en) Deodorant for life smell
JPWO2004058311A1 (en) Deodorant with excellent water resistance
JP2017132687A (en) Porous silica, and deodorant
WO2022202149A1 (en) Agent for adsorbing malodorous gas, method for producing same, and deodorizing product
JP6923839B2 (en) Acid gas adsorbents and deodorant processed products
JP2022148458A (en) Malodorous gas adsorbent and method for producing the same, and deodorant product
TWI670308B (en) Deodorant composition and deodorant product
JP2022151610A (en) Agent for adsorbing malodorous gas, and deodorizing product
JP2004024330A (en) Deodorant
CN116981512A (en) Malodorous gas adsorbent, preparation method thereof and deodorizing product
JP3654704B2 (en) Deodorizing substrate
KR102642693B1 (en) Adsorptive removal of quinolone based antibiotics by zirconium porphyrinic metal-organic framework
TWI765923B (en) Adsorbent and deodorizing processed product
JP4181249B2 (en) Method for producing aldehyde gas absorbent
KR20190061326A (en) a separation adsorbent with olefins sorption selectivity and manufacturing method of the same
WO2017212724A1 (en) Deodorant dispersion, deodorant-containing processing solution, and method for producing deodorant product
JP2017119015A (en) Deodorant using layered double hydroxide and method for producing the same, and deodorant resin, deodorant fiber, deodorant garment, deodorant filter, and deodorant mask using layered double hydroxide
JP2001025660A (en) Granular aldehyde gas absorbent and production of the same
JP2020110765A (en) Gas adsorbent
KR20180012053A (en) Filter material, filter and device including the filter material, and manufacturing method of the filter material
CN107427598A (en) Deodorant, deodorant compositions and deodorization processed goods
WO2019202654A1 (en) Acidic gas adsorbent, deodorant, and deodorized product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280021511.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237034891

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034891

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774946

Country of ref document: EP

Kind code of ref document: A1