WO2022202035A1 - 蛍光体プレート、及び発光装置 - Google Patents
蛍光体プレート、及び発光装置 Download PDFInfo
- Publication number
- WO2022202035A1 WO2022202035A1 PCT/JP2022/006930 JP2022006930W WO2022202035A1 WO 2022202035 A1 WO2022202035 A1 WO 2022202035A1 JP 2022006930 W JP2022006930 W JP 2022006930W WO 2022202035 A1 WO2022202035 A1 WO 2022202035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- phosphor plate
- less
- light
- plate
- Prior art date
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 162
- 239000000463 material Substances 0.000 claims abstract description 22
- 239000002131 composite material Substances 0.000 claims abstract description 14
- 239000011029 spinel Substances 0.000 claims description 13
- 229910052596 spinel Inorganic materials 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 10
- 238000005498 polishing Methods 0.000 description 38
- 239000000843 powder Substances 0.000 description 31
- 239000010432 diamond Substances 0.000 description 27
- 229910003460 diamond Inorganic materials 0.000 description 27
- 239000002994 raw material Substances 0.000 description 19
- 239000006061 abrasive grain Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 11
- 238000005245 sintering Methods 0.000 description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 10
- 150000004706 metal oxides Chemical class 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000010304 firing Methods 0.000 description 9
- 238000000227 grinding Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910007991 Si-N Inorganic materials 0.000 description 2
- 229910003564 SiAlON Inorganic materials 0.000 description 2
- 229910006294 Si—N Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- GNLJOAHHAPACCT-UHFFFAOYSA-N 4-diethoxyphosphorylmorpholine Chemical compound CCOP(=O)(OCC)N1CCOCC1 GNLJOAHHAPACCT-UHFFFAOYSA-N 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 102100032047 Alsin Human genes 0.000 description 1
- 101710187109 Alsin Proteins 0.000 description 1
- 229910018509 Al—N Inorganic materials 0.000 description 1
- 229910018516 Al—O Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 241001272720 Medialuna californiensis Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/64—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77348—Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/505—Wavelength conversion elements characterised by the shape, e.g. plate or foil
Definitions
- the present invention relates to phosphor plates and light emitting devices.
- Patent Document 1 describes a wavelength conversion member in which an inorganic phosphor is dispersed in a glass matrix (Claim 1 of Patent Document 1). According to the document, it is stated that the shape of the wavelength conversion member is not limited and may be plate-like (Paragraph 0054).
- the inventors of the present invention have found that the light emission characteristics can be improved by increasing the degree of smoothness of the excitation light entrance surface and exit surface of the phosphor plate.
- the maximum height Ry which means the interval between the highest peak top and the deepest peak bottom in the roughness curve representing the surface roughness profile as the degree of smoothness.
- the inventors have found that the emission characteristics of the phosphor plate can be improved by setting the maximum height Ry of the emission surface to a predetermined value or less, and have completed the present invention.
- a phosphor plate comprising a plate-shaped composite containing a base material and a phosphor dispersed in the base material, A phosphor plate is provided in which both Ry 1 and Ry 2 are 5.00 ⁇ m or less, where Ry 1 is the maximum height of the front surface of the phosphor plate and Ry 2 is the maximum height of the back surface of the phosphor plate. .
- a light emitting element a light emitting element; and the phosphor plate provided on one surface of the light emitting element.
- a phosphor plate with excellent light emission characteristics and a light emitting device using the same are provided.
- FIG. 1A is a cross-sectional view schematically showing the configuration of a flip-chip light-emitting device
- FIG. 1B is a cross-sectional view schematically showing the configuration of a wire-bonding light-emitting element.
- 1 is a schematic diagram of an apparatus for measuring luminescence properties of a phosphor plate
- the phosphor plate of this embodiment will be outlined.
- the phosphor plate of this embodiment includes a plate-like composite containing a base material and phosphors dispersed in the base material. This phosphor plate is configured so that both Ry1 and Ry2 are 5.00 ⁇ m or less , where Ry1 is the maximum height on the front surface and Ry2 is the maximum height on the back surface.
- the phosphor plate can function as a wavelength converter that converts the irradiated blue light into orange light and emits light.
- the back surface of the phosphor plate is the light entrance surface
- the front surface is the light exit surface.
- the emission characteristics can be stably evaluated by using the maximum height Ry on the front and back surfaces of the phosphor plate as an index. It has been found that the light emission characteristics can be improved by setting the height Ry to be equal to or less than the above upper limit.
- the upper limit of the maximum height Ry1 on the surface of the phosphor plate is 5.00 ⁇ m or less, preferably 3.00 ⁇ m or less, more preferably 2.00 ⁇ m or less. As a result, the emission characteristics of the phosphor plate can be improved.
- the lower limit of Ry1 is not particularly limited, but may be the detection limit, and may be 0.10 ⁇ m or more, preferably 0.30 ⁇ m or more, more preferably 0.50 ⁇ m or more. Thereby, the production stability of the phosphor plate can be improved.
- the upper limit of the maximum height Ry2 on the back surface of the phosphor plate is 5.00 ⁇ m or less, preferably 3.00 ⁇ m or less, more preferably 2.00 ⁇ m or less, and even more preferably 1.00 ⁇ m or less.
- the lower limit of Ry2 is not particularly limited, but may be the detection limit, and may be 0.10 ⁇ m or more, preferably 0.30 ⁇ m or more, more preferably 0.50 ⁇ m or more. Thereby, the production stability of the phosphor plate can be improved.
- At least one of Ry 1 and Ry 2 is 3.00 ⁇ m or less, preferably at least one of Ry 1 and Ry 2 is 3.00 ⁇ m or less and Ry 1 >Ry 2 , more preferably Ry 1 and Ry2 may be 2.80 ⁇ m or less.
- Another aspect of the phosphor plate may be configured to satisfy the following condition A1 and/or condition A2. Thereby, the leakage of excitation light can be further suppressed.
- - Condition A1 The absolute value of the difference between Ry1 and Ry2 is 1.10 ⁇ m or less .
- - Condition A2 At least one of Ry1 and Ry2 is 0.90 ⁇ m or less.
- Another aspect of the phosphor plate may be configured to satisfy the following condition B1 or condition B2. As a result, the emission characteristics of the phosphor plate can be further improved.
- - Condition B1 The absolute value of the difference between Ry1 and Ry2 is 1.60 ⁇ m or less.
- - Condition B2 The absolute value of the difference between Ry1 and Ry2 is greater than 1.60 ⁇ m and equal to or less than 1.90 ⁇ m, and Ry1 > Ry2.
- Ry 1 and Ry 2 it is possible to control Ry 1 and Ry 2 by appropriately selecting the type and amount of each component contained in the phosphor plate, the manufacturing method of the phosphor plate, and the like. be.
- the front and back surfaces of the phosphor plate can be ground and/or polished using a grindstone or abrasive grains of a predetermined grain size. It is listed as an element for setting a range.
- the peak wavelength of wavelength-converted light emitted from the phosphor plate is preferably 585 nm or more and 605 nm or less. Further, according to this, by combining a phosphor plate with a light emitting element that emits blue light, a light emitting device that emits orange light with high brightness can be obtained.
- the phosphor and the base material composed of the inorganic substance are mixed. Specifically, it may have a structure in which the phosphor is dispersed in the sintered compound of the inorganic base material.
- the phosphor may be in the form of particles and may be uniformly dispersed in the inorganic matrix.
- the base material may be the main component in the composite.
- the content of the base material may be, for example, 50 vol % or more, preferably 60 vol % or more in terms of volume in the composite.
- the base material is a sintered product of Al 2 O 3 , a sintered product of SiO 2 and a spinel compound M 2x Al 4-4x O 6-4x (where M is at least one of Mg, Mn and Zn, 0.2 ⁇ x ⁇ 0.6). These may be used alone or in combination of two or more. Among these, the base material may be composed of a sintered material containing alumina or a spinel compound from the viewpoint of thermal properties and transparency.
- the Al 2 O 3 sintered material absorbs less visible light, it can increase the emission intensity of the phosphor plate. Moreover, since the sintered material of Al 2 O 3 has high thermal conductivity, the heat resistance of the phosphor plate can be improved. Furthermore, since the sintered material of Al 2 O 3 is excellent in mechanical strength, the durability of the phosphor plate can be enhanced.
- a sinter of SiO 2 may consist of a glass matrix. Silica glass or the like is used as the glass matrix.
- a sintered product containing a spinel compound is usually obtained by mixing metal oxide powder represented by the general formula MO (M is at least one of Mg, Mn, and Zn) and Al 2 O 3 powder, Obtained by sintering.
- the spinel compound becomes a non-stoichiometric composition in which MO or Al 2 O 3 is excessively dissolved.
- a sintered body containing the spinel compound represented by the above general formula is relatively transparent. Therefore, excessive scattering of light within the phosphor plate is suppressed. Furthermore, from the viewpoint of transparency, it is preferable to use a spinel-based compound in which M is Mg in the above general formula.
- the phosphor contained in the complex may include, for example, one or more selected from the group consisting of Sialon phosphor, CASN phosphor, and SCASN phosphor.
- Examples of sialon phosphors include ⁇ -type sialon phosphors.
- ⁇ -sialon phosphor one containing an Eu element-containing ⁇ -sialon phosphor represented by the following general formula (1) is used.
- M represents one or more elements selected from the group consisting of Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce), p is the valence of the M element, 0 ⁇ x ⁇ 0.5, 1.5 ⁇ m ⁇ 4.0, 0 ⁇ n ⁇ 2.0.
- n may be 2.0 or less, 1.0 or less, or 0.8 or less.
- M is Ca is called a Ca- ⁇ type Sialon phosphor.
- the solid solution composition of ⁇ -type Sialon is such that m Si—N bonds in the ⁇ -type silicon nitride unit cell (Si 12 N 16 ) are converted to Al—N bonds, and n Si—N bonds are converted to Al—O bonds.
- m/p cations M, Eu
- M, Eu m/p cations
- ⁇ -sialon is stabilized in a wide composition range, and by substituting a part of it with Eu, it is excited by light in a wide wavelength range from ultraviolet to blue, and yellow to A phosphor is obtained which exhibits an orange visible emission.
- the solid-solution composition of ⁇ -sialon cannot be strictly defined because of the second crystal phase different from ⁇ -sialon and the inevitably existing amorphous phase.
- the ⁇ -sialon may contain other crystal phases such as ⁇ -sialon, aluminum nitride or its polytypoid, Ca 2 Si 5 N 8 , CaAlSiN 3 .
- an ⁇ -SiAlON phosphor there is a method of heating and reacting a mixed powder composed of silicon nitride, aluminum nitride, and a compound of an interstitial solid-solution element in a high-temperature nitrogen atmosphere. A part of the constituent components forms a liquid phase in the heating process, and a solid solution of ⁇ -sialon is produced by moving the substance to this liquid phase.
- a plurality of equiaxed primary particles are sintered to form massive secondary particles.
- the primary particles in the present embodiment refer to the smallest particles that have the same crystal orientation within the particles and can exist independently.
- CASN phosphor for example, a phosphor in which the Eu element is added to the host crystal of alkaline earth silicon nitride represented by CaAlSiN3 is used.
- SCASN phosphor for example, a phosphor obtained by activating the Eu element in a host crystal of alkaline earth silicon nitride represented by (Sr, Ca)AlSiN 3 is used.
- the lower limit of the average particle size of the phosphor is, for example, preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more. Thereby, the emission intensity can be increased.
- the upper limit of the average particle size of the phosphor is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
- the average particle size of the phosphor is the size of the secondary particles. By setting the average particle size to 5 ⁇ m or more, the transparency of the composite can be further enhanced. On the other hand, by setting the average particle size of the phosphor to 30 ⁇ m or less, it is possible to suppress the occurrence of chipping when the phosphor plate is cut with a dicer or the like.
- the average particle size of the phosphor refers to a volume-based particle size distribution obtained by measuring a laser diffraction scattering particle size distribution measurement method (manufactured by Beckman Coulter, LS13-320). It means the particle diameter D50 at 50% of the minute integration (accumulated passage fraction).
- the lower limit of the content of the phosphor is, for example, 5 vol% or more, preferably 10 vol% or more, more preferably 15 vol% or more in 100 vol% of the composite. As a result, the emission intensity of the thin phosphor plate can be increased. Also, the light conversion efficiency of the phosphor plate can be improved.
- the upper limit of the content of the phosphor is, for example, 60 vol% or less, preferably 50 vol% or less, more preferably 40 vol% or less in 100 vol% of the composite. As a result, deterioration in thermal conductivity of the phosphor plate can be suppressed.
- the upper limit of light transmittance for blue light of 450 nm is, for example, 10% or less, preferably 5% or less, and more preferably 1% or less. As a result, it is possible to suppress the blue light from passing through the phosphor plate, thereby increasing the emission luminance.
- the light transmittance for blue light of 450 nm can be reduced.
- the lower limit of the light transmittance for blue light of 450 nm is not particularly limited, it may be, for example, 0.01% or more. Thereby, the emission intensity can be further increased.
- the method for manufacturing a phosphor plate according to the present embodiment may include a step (1) of obtaining a mixture containing a metal oxide and a phosphor, and a step (2) of firing the obtained mixture.
- the metal oxide may be melted, and phosphor particles may be mixed in the resulting melt.
- the phosphor or metal oxide powder used as a raw material preferably has a purity as high as possible, and the impurities of elements other than the constituent elements are preferably 0.1% or less, and 0.01%. % or less.
- a variety of dry and wet methods can be used to mix the raw material powders, but it is preferable to use a method that minimizes the pulverization of the phosphor particles used as raw materials and minimizes the contamination of impurities from equipment during mixing.
- the metal oxide of the raw material for the phosphor one containing at least one of Al 2 O 3 powder, SiO 2 powder and spinel raw material powder may be used. These may be used alone or in combination of two or more.
- the metal oxide may be a fine powder, and its average particle size may be, for example, 1 ⁇ m or less.
- Alumina powder (Al 2 O 3 ) may be used as the raw metal oxide.
- the upper limit of the BET specific surface area of the alumina powder is, for example, 10.0 m 2 /g or less, preferably 9.0 m 2 /g or less, more preferably 8.0 m 2 /g or less, still more preferably 6.0 m 2 /g. It is below. As a result, blackening of the phosphor plate can be suppressed.
- the lower limit of the BET specific surface area of the alumina powder is, for example, 0.1 m 2 /g or more, preferably 0.5 m 2 /g or more, more preferably 1.0 m 2 /g or more, still more preferably 2.0 m 2 / g or more. As a result, the sinterability of the alumina powder is enhanced, and a dense composite can be formed.
- the mixture of alumina powder and phosphor powder may be fired at, for example, 1300° C. or higher and 1650° C. or lower.
- the heating temperature in the sintering step is more preferably 1500° C. or higher and 1600° C. or lower.
- the firing temperature is preferably high. However, if the firing temperature is too high, the phosphor and alumina react with each other to reduce the emission intensity of the phosphor plate. Further, when the firing temperature is in a high temperature range of about 1600° C. to 1650° C., the holding time for holding this temperature is, for example, 20 minutes or less, preferably 15 minutes or less. Thereby, the emission intensity of the phosphor plate can be increased.
- Glass powder may be used as the raw metal oxide.
- SiO2 powder silicon powder
- general glass raw materials can be used. These may be used alone or in combination of two or more.
- Spinel raw material powder may be used as the raw material metal oxide.
- the "spinel raw material powder” is, for example, (i) a powder containing a spinel compound represented by the general formula M 2x Al 4-4x O 6-4x and/or (ii) the general formula MO ( M is a mixture of metal oxide powder represented by (at least one of Mg, Mn, and Zn) and Al 2 O 3 powder.
- the spinel raw material powder may be fired at, for example, 1300° C. or higher and 1650° C. or lower.
- the heating temperature in the sintering step is more preferably 1500° C. or higher and 1600° C. or lower.
- the firing temperature is high.
- the holding time for holding this temperature is, for example, 20 minutes or less, preferably 15 minutes or less. Thereby, the emission intensity of the phosphor plate can be increased.
- the firing method may be normal pressure sintering or pressure sintering.
- Pressure sintering is preferred because it is easy to sinter.
- pressure sintering methods include hot press sintering, spark plasma sintering (SPS), and hot isostatic pressure sintering (HIP).
- SPS spark plasma sintering
- HIP hot isostatic pressure sintering
- the pressure is 10 MPa or higher, preferably 30 MPa or higher, and 100 MPa or lower, preferably 80 MPa or lower.
- the firing atmosphere is preferably a non-oxidizing inert gas such as nitrogen or argon, or a vacuum atmosphere for the purpose of preventing oxidation of the phosphor.
- the phosphor plate of the present embodiment is obtained.
- Appropriate surface treatments are applied to the front and back surfaces of the obtained phosphor plate. Examples of the surface treatment include grinding using a diamond whetstone or the like, lapping, polishing such as polishing, and the like.
- the light emitting device of this embodiment will be described.
- the light-emitting device of this embodiment includes a light-emitting element and the phosphor plate described above provided on one surface of the light-emitting element.
- a specific example of a light emitting device includes, for example, a Group III nitride semiconductor light emitting element (light emitting element 20) and the phosphor plate 10 provided on one surface of the Group III nitride semiconductor light emitting element. is.
- a III-nitride semiconductor light-emitting device includes, for example, an n-layer, a light-emitting layer, and a p-layer, which are composed of III-nitride semiconductors such as AlGaN, GaN, and InAlGaN-based materials.
- a blue LED that emits blue light can be used as the Group III nitride semiconductor light-emitting device.
- the phosphor plate 10 may be placed directly on one surface of the light emitting element 20, or may be placed via a light transmissive member or spacer.
- the disc-shaped phosphor plate 100 (phosphor wafer) shown in FIG. 1 may be used as the phosphor plate 10 arranged on the light emitting element 20. can be used.
- FIG. 1 is a schematic diagram showing an example of the configuration of a phosphor plate.
- the thickness of the phosphor plate 100 shown in FIG. 1 can be appropriately set according to the application.
- the lower limit of the thickness of the phosphor plate 100 shown in FIG. 1 is, for example, 0.050 mm or more, preferably 0.080 mm or more, and more preferably 0.100 mm or more.
- the upper limit of the thickness of the phosphor plate 100 is, for example, 1 mm or less, preferably 0.500 mm or less, more preferably 0.300 mm or less. By setting it within such a range, the light extraction efficiency can be improved, and the emission intensity can be improved.
- the disc-shaped phosphor plate 100 is less likely to be chipped or cracked at the corners, compared to the square-shaped phosphor plate, and is thus excellent in durability and transportability.
- FIGS. 2(a) and 2(b) An example of the above semiconductor device is shown in FIGS. 2(a) and 2(b).
- 2A is a cross-sectional view schematically showing the configuration of a flip chip type light emitting device 110
- FIG. 2B is a cross sectional view schematically showing the configuration of a wire bonding type light emitting device 120.
- FIG. 1A is a cross-sectional view schematically showing the configuration of a flip chip type light emitting device 110
- FIG. 2B is a cross sectional view schematically showing the configuration of a wire bonding type light emitting device 120.
- a light-emitting device 110 of FIG. 2A includes a substrate 30, a light-emitting element 20 electrically connected to the substrate 30 via solder 40 (die bonding material), and a phosphor provided on the light-emitting surface of the light-emitting element 20. a body plate 10;
- the flip-chip type light emitting device 110 may have either a face-up type structure or a face-down type structure.
- 2B includes a substrate 30, a light emitting element 20 electrically connected to the substrate 30 via a bonding wire 60 and an electrode 50, and a light emitting surface provided on the light emitting element 20. and a phosphor plate 10 .
- the light-emitting element 20 and the phosphor plate 10 are attached by a known method, and may be attached by a method such as a silicone-based adhesive or heat-sealing, for example. Moreover, the light emitting device 110 and the light emitting device 120 may be entirely sealed with a transparent sealing material.
- individualized phosphor plates 10 may be attached to the light emitting elements 20 mounted on the substrate 30 .
- a plurality of light-emitting elements 20 may be attached to a large-area phosphor plate 100 and then diced to separate the phosphor-plate 10-attached light-emitting elements 20 .
- a large-area phosphor plate 100 may be attached to a semiconductor wafer having a plurality of light-emitting elements 20 formed thereon, and then the semiconductor wafer and phosphor plate 100 may be singulated together.
- alumina powder (AA-03 (manufactured by Sumitomo Chemical Co., Ltd., BET specific surface area: 5.2 m 2 /g)
- Ca- ⁇ type SiAlON phosphor (Aron Bright YL-600B, Denka Co., Ltd. 15 ⁇ m D50) was used.
- the hot press jig filled with this raw material mixed powder was set in a multi-purpose high-temperature furnace (manufactured by Fuji Dempa Kogyo Co., Ltd., Hi-Multi 5000) of a carbon heater.
- the inside of the furnace was evacuated to 0.1 Pa or less, and the upper and lower punches were pressurized with a press pressure of 55 MPa while maintaining the reduced pressure state.
- the temperature was raised to 1600° C. at a rate of 5° C./min while maintaining the pressurized state. After reaching 1600° C., the heating was immediately stopped, the temperature was slowly cooled to room temperature, and the pressure was released (firing step). After that, a fired product having an outer diameter of 30 mm was recovered.
- the side surface of the recovered fired product is ground using a cylindrical grinder, and then ground using a surface grinder or polishing using a grinder under the following conditions. mm) and a diameter of 25 mm.
- Example 1 ⁇ Front and back surfaces: Grind with a diamond whetstone (#400) ⁇ Polish with 9 ⁇ m diamond abrasive grains (polishing disc rotation speed 150 rpm, polishing time: 6 minutes) ⁇ Polish with 3 ⁇ m diamond abrasive grains (polishing disc rotation speed 150 rpm, polishing time: 6 minutes) ⁇ Polishing with 1 ⁇ m diamond abrasive grains (polishing disk speed: 150 rpm, polishing time: 3 minutes).
- Example 3 ⁇ Surface: Grind with a diamond whetstone (#400) ⁇ Polish with 9 ⁇ m diamond abrasive grains (polishing disc rotation speed 150 rpm, polishing time: 6 minutes) ⁇ Polish with 3 ⁇ m diamond abrasive grains (polishing disc rotation speed 150 rpm, polishing time: 6 minutes) ) ⁇ Polishing with 1 ⁇ m diamond abrasive grains (polishing disk speed: 150 rpm, polishing time: 3 minutes).
- ⁇ Back surface Grinding with a diamond grindstone (# 400) [Example 5]
- ⁇ Front and back surfaces Grinding with a diamond grindstone (#400) [Example 7]
- ⁇ Surface Grinding with a diamond whetstone (#400) ⁇ Polishing with 9 ⁇ m diamond abrasive grains (polishing disk rotation speed: 150 rpm, polishing time: 6 minutes).
- ⁇ Back surface Grinding with a diamond grindstone (#400) [Example 9]
- ⁇ Surface Grinding with a diamond whetstone (#400) ⁇ Polishing with 9 ⁇ m diamond abrasive grains (polishing disk rotation speed: 150 rpm, polishing time: 6 minutes).
- Example 2 The phosphor plate of Example 1 was used upside down.
- Example 4 The phosphor plate of Example 3 was used upside down.
- Example 6 The phosphor plate of Example 5 was used upside down.
- Example 8 The phosphor plate of Example 7 was used upside down.
- Example 10 The phosphor plate of Example 9 was used upside down.
- Comparative Example 2 The phosphor plate of Comparative Example 1 was turned inside out and used.
- Comparative Example 4 The phosphor plate of Comparative Example 3 was turned inside out and used.
- the obtained phosphor plate was evaluated for the following evaluation items.
- FIG. 3 is a schematic diagram of an apparatus (LED package 130) for measuring the emission spectrum of the phosphor plate 100.
- the phosphor plate 100 of each example and each comparative example and an aluminum substrate (substrate 30) formed with recesses 70 were prepared.
- the diameter ⁇ of the bottom surface of the recess 70 was set to 13.5 mm, and the diameter ⁇ of the opening of the recess 70 was set to 16 mm.
- a blue LED (light emitting element 20 ) was mounted as a blue light source inside the concave portion 70 of the substrate 30 .
- a circular phosphor plate 100 is placed on top of the blue LED so as to block the opening of the recess 70 of the substrate 30, and the device shown in FIG. 3 (chip-on-board type (COB type) LED package 130) was made.
- the emission spectrum on the surface of the phosphor plate 100 was measured when the blue LED of the fabricated LED package 130 was turned on.
- the maximum value (W/nm) of the emission intensity of orange light (Orange) with a wavelength of 585 nm to 605 nm was obtained.
- Table 1 shows the relative values (%) of other examples and comparative examples when the maximum value of the emission intensity of orange light is standardized with Example 1 as 100%.
- the maximum value of the emission intensity of orange light (Orange) having a wavelength of 585 nm or more and 605 nm is T O
- the maximum value of the emission intensity of blue light (Blue) having a wavelength of 445 nm or more and 465 nm is T B.
- the amount of blue light transmitted from the blue LED (excitation light) was defined as T B /T O ⁇ 100 and calculated. Table 1 shows the results.
- Examples 1-10 showed excellent results in emission intensity as compared with Comparative Examples 1-4.
- Examples 1 to 6 and 9 to 10 show results in which the transmission of blue light, which is excitation light, is suppressed compared to Examples 7 and 8. The results show that the emission intensity is improved compared to Example 3. It was found that the phosphor plates of such Examples are excellent in light emission characteristics.
- Phosphor plate 20
- Light emitting element 30
- Substrate 40
- Solder 50
- Electrode 60
- Bonding wire 70
- Recess 100
- Phosphor plate 102 Front surface 104 Back surface
- Light emitting device 120
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Luminescent Compositions (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
母材と、前記母材中に分散した蛍光体とを含む板状の複合体を備える蛍光体プレートであって、
当該蛍光体プレートの表面における最大高さをRy1とし、裏面における最大高さをRy2としたとき、Ry1及びRy2のいずれも、5.00μm以下である、蛍光体プレートが提供される。
発光素子と、
前記発光素子の一面上に設けられた上記の蛍光体プレートと、を備える、発光装置が提供される。
本実施形態の蛍光体プレートは、母材と、母材中に分散した蛍光体とを含む板状の複合体を備える。
この蛍光体プレートは、表面における最大高さをRy1とし、裏面における最大高さをRy2としたとき、Ry1及びRy2のいずれも、5.00μm以下となるように構成される。
波長変換体として使用するとき、蛍光体プレートの裏面は光の入射面になり、その表面は光の出射面になる。
上記Ry1の下限は、特に限定されないが、検出限界でもよく、0.10μm以上でもよく、好ましくは0.30μm以上、より好ましくは0.50μm以上である。これにより、蛍光体プレートの製造安定性を向上できる。
上記Ry2の下限は、特に限定されないが、検出限界でもよく、0.10μm以上でもよく、好ましくは0.30μm以上、より好ましくは0.50μm以上である。これにより、蛍光体プレートの製造安定性を向上できる。
また、蛍光体プレートの別の一態様は、次の条件A1および/または条件A2を満たすように構成されてもよい。これにより、励起光抜けを一層抑制できる。
・条件A1:上記Ry1及びRy2の差分の絶対値が1.10μm以下であること。
・条件A2:上記Ry1及びRy2の少なくとも一方が0.90μm以下であること。
また、蛍光体プレートの別の一態様は、次の条件B1または条件B2を満たすように構成されてもよい。これにより、蛍光体プレートの発光特性を一層向上できる。
・条件B1:上記Ry1及びRy2の差分の絶対値が1.60μm以下であること。
・条件B2:上記Ry1及びRy2の差分の絶対値が1.60μm超え1.90μm以下であり、かつRy1>Ry2であること。
上記蛍光体プレートを構成する複合体中は、蛍光体と無機物で構成される母材とが混在した状態となる。具体的には、無機母材を構成する化合物の焼結物中に蛍光体が分散された構造を有してもよい。この蛍光体は、粒子状態で、無機母材中に均一に分散されていてもよい。
スピネルとは、化学量論的に、x=0.5(すなわち、一般式MAl2O4)で表される組成である。
ただし、原料のMOの量とAl2O3の量の比によっては、MO又はAl2O3が過剰に固溶した非化学量論組成のスピネル系化合物となる。
上記一般式で表されるスピネル系化合物を含む焼結体は、比較的透明である。よって、蛍光体プレート内での光の過剰散乱が抑制される。さらに、透明性の観点で、上記一般式におけるMがMgであるスピネル系化合物を用いることが好ましい。
複合体に含まれる蛍光体は、例えば、サイアロン蛍光体、CASN蛍光体、SCASN蛍光体からなる群から選ばれる一又は二以上を含んでもよい。サイアロン蛍光体としては、α型サイアロン蛍光体等が挙げられる。
(M)m(1-x)/p(Eu)mx/2(Si)12-(m+n)(Al)m+n(O)n(N)16-n ・・一般式(1)
一方、蛍光体の含有量の上限値は、複合体100vol%中、例えば、60vol%以下、好ましくは50vol%以下、より好ましくは40vol%以下である。これにより、蛍光体プレートの熱伝導性の低下を抑制できる。
なお、450nmの青色光における光線透過率の下限値は、特に限定されないが、例えば、0.01%以上としてもよい。これにより、発光強度をより高められる。
金属酸化物は、微粉末であればよく、その平均粒子径は、例えば1μm以下としてもよい。
また、焼成温度が約1600℃~1650℃の高温領域の場合、この温度を保持する保持時間は、例えば、20分以下、好ましくは15分以下である。これにより、蛍光体プレートの発光強度を高められる。
ガラス粉末としては、SiO2粉末(シリカ粉末)や、一般的なガラス原料を使用できる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
ここで、「スピネル原料粉末」は、例えば、(i)前述の一般式M2xAl4-4xO6-4xで表されるスピネル化合物を含む粉末、及び/又は、(ii)一般式MO(MはMg、Mn、Znの少なくともいずれか)で表される金属酸化物の粉末とAl2O3の粉末との混合物である。
また、焼成温度が約1600℃~1650℃の高温領域の場合、この温度を保持する保持時間は、例えば、20分以下、好ましくは15分以下である。これにより、蛍光体プレートの発光強度を高められる。
焼成雰囲気は蛍光体の酸化を防ぐ目的のため、窒素やアルゴン等の非酸化性の不活性ガス、もしくは真空雰囲気下が好ましい。
得られた蛍光体プレートの表面及び裏面に対して、適当な表面処理がなされる。
表面処理としては、例えば、ダイヤモンド砥石等を用いた研削、ラッピング、ポリッシング等の研磨等が挙げられる。
具体的な発光装置の一例は、例えば、III族窒化物半導体発光素子(発光素子20)と、III族窒化物半導体発光素子の一面上に設けられた上記の蛍光体プレート10と、を備えるものである。III族窒化物半導体発光素子は、例えば、AlGaN、GaN、InAlGaN系材料等のIII族窒化物半導体で構成される、n層、発光層、及びp層を備えるものである。III族窒化物半導体発光素子として、青色光を発光する青色LEDを用いることができる。
蛍光体プレート10は、発光素子20の一面上に直接配置されてもよいが、光透過性部材又はスペーサーを介して配置され得る。
また、図2(b)の発光装置120は、基板30と、ボンディングワイヤ60及び電極50を介して基板30と電気的に接続された発光素子20と、発光素子20の発光面上に設けられた蛍光体プレート10と、を備える。
図2中、発光素子20と蛍光体プレート10とは、公知の方法で貼り付けられており、例えば、シリコーン系接着剤や熱融着等の方法で貼り合わされてもよい。
また、発光装置110、発光装置120は、全体を透明封止材で封止されていてもよい。
蛍光体プレートの原料として、アルミナ粉末(AA-03(住友化学株式会社製、BET比表面積:5.2m2/g))、Ca-α型サイアロン蛍光体(アロンブライトYL-600B、デンカ株式会社製、D50が15μm)を用いた。
回収した焼成物に対して、円筒研削盤を用いて側面を研削し、下記の条件に従って、平面研削盤を用いての研削や、研磨機を用いての研磨加工を行い、表1の厚み(mm)及び直径25mmを有する円板状の蛍光体プレートを得た。
[実施例1]
・表面及び裏面:ダイヤモンド砥石(#400)で研削→9μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)→3μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)→1μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:3分)。
[実施例3]
・表面:ダイヤモンド砥石(#400)で研削→9μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)→3μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)→1μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:3分)。
・裏面:ダイヤモンド砥石(#400)で研削
[実施例5]
・表面及び裏面:ダイヤモンド砥石(#400)で研削
[実施例7]
・表面:ダイヤモンド砥石(#400)で研削→9μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)。
・裏面:ダイヤモンド砥石(#400)で研削
[実施例9]
・表面:ダイヤモンド砥石(#400)で研削→9μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)。
・裏面:ダイヤモンド砥石(#400)で研削→9μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)→3μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)→1μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:3分)。
[比較例1]
・表面:ダイヤモンド砥石(#400)で研削→9μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)→3μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:6分)→1μmダイヤモンド砥粒で研磨(研磨盤回転数150rpm、研磨時間:3分)。
・裏面:ダイヤモンド砥石(#200)で研削
[比較例3]
・表面:ダイヤモンド砥石(#400)で研削
・裏面:ダイヤモンド砥石(#200)で研削
実施例1の蛍光体プレートを、表裏逆にして使用した。
[実施例4]
実施例3の蛍光体プレートを、表裏逆にして使用した。
[実施例6]
実施例5の蛍光体プレートを、表裏逆にして使用した。
[実施例8]
実施例7の蛍光体プレートを、表裏逆にして使用した。
[実施例10]
実施例9の蛍光体プレートを、表裏逆にして使用した。
[比較例2]
比較例1の蛍光体プレートを、表裏逆にして使用した。
[比較例4]
比較例3の蛍光体プレートを、表裏逆にして使用した。
各実施例・各比較例で得られた蛍光体プレートについて、以下の手順に従って発光強度を測定した。
蛍光体プレートの光学特性は、チップオンボード型(COB型)のLEDパッケージ130を用いて測定した。図3は、蛍光体プレート100の発光スペクトルを測定するための装置(LEDパッケージ130)の概略図である。
まず、各実施例・各比較例の蛍光体プレート100、凹部70が形成されたアルミ基板(基板30)を用意した。凹部70の底面の径φを13.5mmとし、凹部70の開口部の径φを16mmとした。
次いで、基板30の凹部70の内部に、青色発光光源として青色LED(発光素子20)を実装した。
その後、基板30の凹部70の開口部を塞ぐように、青色LEDの上部に円形状の蛍光体プレート100を設置し、図3に示す装置(チップオンボード型(COB型)のLEDパッケージ130)を作製した。
なお、発光スペクトルにおいて、波長が585nm以上605nmである橙色光(Orange)の発光強度の最大値をTOとし、波長が445nm以上465nmである青色光(Blue)の発光強度の最大値をTBとしたとき、青色LEDからの青色光の透過量(励起光の抜け)をTB/TO×100と定義し、これを算出した。結果を表1に示す。
また、実施例1~6、9~10は、実施例7、8と比べて、励起光である青色光の透過が抑制される結果を示し、実施例1、2、4~10は、実施例3と比べて発光強度が向上する結果を示した。
このような実施例の蛍光体プレートは、発光特性に優れるものであることが分かった。
20 発光素子
30 基板
40 半田
50 電極
60 ボンディングワイヤ
70 凹部
100 蛍光体プレート
102 表面
104 裏面
100 発光装置
120 発光装置
130 LEDパッケージ
Claims (7)
- 母材と、前記母材中に分散した蛍光体とを含む板状の複合体を備える蛍光体プレートであって、
当該蛍光体プレートの表面における最大高さをRy1とし、裏面における最大高さをRy2としたとき、Ry1及びRy2のいずれも、5.00μm以下である、蛍光体プレート。 - 請求項1に記載の蛍光体プレートであって、
Ry1及びRy2の少なくとも一方が、3.00μm以下である、蛍光体プレート。 - 請求項1又は2に記載の蛍光体プレートであって、
前記母材が、アルミナ又はスピネル系化合物を含む、蛍光体プレート。 - 請求項1~3のいずれか一項に記載の蛍光体プレートであって、
前記蛍光体が、サイアロン蛍光体、CASN蛍光体、SCASN蛍光体からなる群から選ばれる一又は二以上を含む、蛍光体プレート。 - 請求項1~4のいずれか一項に記載の蛍光体プレートであって、
前記蛍光体の含有量は、前記複合体100vol%中、5vol%以上60vol%以下である、蛍光体プレート。 - 請求項1~5のいずれか一項に記載の蛍光体プレートであって、
プレート厚みが、0.050mm以上1mm以下である、蛍光体プレート。 - 発光素子と、
前記発光素子の一面上に設けられた請求項1~6のいずれか一項に記載の蛍光体プレートと、を備える、発光装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023508808A JPWO2022202035A1 (ja) | 2021-03-22 | 2022-02-21 | |
US18/280,418 US20240145640A1 (en) | 2021-03-22 | 2022-02-21 | Phosphor plate and light emitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-047097 | 2021-03-22 | ||
JP2021047097 | 2021-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022202035A1 true WO2022202035A1 (ja) | 2022-09-29 |
Family
ID=83397024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006930 WO2022202035A1 (ja) | 2021-03-22 | 2022-02-21 | 蛍光体プレート、及び発光装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240145640A1 (ja) |
JP (1) | JPWO2022202035A1 (ja) |
TW (1) | TW202243287A (ja) |
WO (1) | WO2022202035A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10241860A (ja) * | 1997-02-21 | 1998-09-11 | Idemitsu Kosan Co Ltd | 多色発光装置 |
WO2014083781A1 (ja) * | 2012-11-30 | 2014-06-05 | パナソニック株式会社 | 発光装置および照明用光源 |
KR20180068012A (ko) * | 2016-12-13 | 2018-06-21 | 엘지이노텍 주식회사 | 형광체 플레이트 및 이를 제조하는 방법 |
JP2019105846A (ja) * | 2016-06-16 | 2019-06-27 | 日本碍子株式会社 | 蛍光体素子および照明装置 |
JP2019186300A (ja) * | 2018-04-04 | 2019-10-24 | スタンレー電気株式会社 | 半導体発光装置及びその製造方法 |
JP2020052413A (ja) * | 2017-08-03 | 2020-04-02 | セイコーエプソン株式会社 | 波長変換素子、波長変換素子の製造方法、光源装置及びプロジェクター |
-
2022
- 2022-02-21 WO PCT/JP2022/006930 patent/WO2022202035A1/ja active Application Filing
- 2022-02-21 JP JP2023508808A patent/JPWO2022202035A1/ja active Pending
- 2022-02-21 US US18/280,418 patent/US20240145640A1/en active Pending
- 2022-03-01 TW TW111107260A patent/TW202243287A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10241860A (ja) * | 1997-02-21 | 1998-09-11 | Idemitsu Kosan Co Ltd | 多色発光装置 |
WO2014083781A1 (ja) * | 2012-11-30 | 2014-06-05 | パナソニック株式会社 | 発光装置および照明用光源 |
JP2019105846A (ja) * | 2016-06-16 | 2019-06-27 | 日本碍子株式会社 | 蛍光体素子および照明装置 |
KR20180068012A (ko) * | 2016-12-13 | 2018-06-21 | 엘지이노텍 주식회사 | 형광체 플레이트 및 이를 제조하는 방법 |
JP2020052413A (ja) * | 2017-08-03 | 2020-04-02 | セイコーエプソン株式会社 | 波長変換素子、波長変換素子の製造方法、光源装置及びプロジェクター |
JP2019186300A (ja) * | 2018-04-04 | 2019-10-24 | スタンレー電気株式会社 | 半導体発光装置及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240145640A1 (en) | 2024-05-02 |
JPWO2022202035A1 (ja) | 2022-09-29 |
TW202243287A (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI846967B (zh) | 螢光體板、發光裝置、以及螢光體板之製造方法 | |
JP2023162184A (ja) | 蛍光体プレートおよびそれを用いた発光装置 | |
JP7339788B2 (ja) | 蛍光体プレートの製造方法およびそれを用いた発光装置の製造方法 | |
WO2022202035A1 (ja) | 蛍光体プレート、及び発光装置 | |
JP7430183B2 (ja) | 蛍光体プレートおよびそれを用いた発光装置 | |
US11807791B2 (en) | Phosphor plate and light emitting device using the same | |
JP7538853B2 (ja) | 蛍光体プレート、及び発光装置 | |
TWI856117B (zh) | 螢光板及使用其之發光裝置 | |
US20230053528A1 (en) | Phosphor plate and light emitting device | |
JP7432705B2 (ja) | 蛍光体プレート、及び発光装置 | |
WO2024063115A1 (ja) | 波長変換部材および発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22774835 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023508808 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18280418 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237030889 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22774835 Country of ref document: EP Kind code of ref document: A1 |