WO2022202034A1 - Ultrasonic probe - Google Patents

Ultrasonic probe Download PDF

Info

Publication number
WO2022202034A1
WO2022202034A1 PCT/JP2022/006899 JP2022006899W WO2022202034A1 WO 2022202034 A1 WO2022202034 A1 WO 2022202034A1 JP 2022006899 W JP2022006899 W JP 2022006899W WO 2022202034 A1 WO2022202034 A1 WO 2022202034A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic matching
ultrasonic probe
acoustic
matching layer
width
Prior art date
Application number
PCT/JP2022/006899
Other languages
French (fr)
Japanese (ja)
Inventor
敦 大澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023508807A priority Critical patent/JPWO2022202034A1/ja
Priority to EP22774834.0A priority patent/EP4319196A1/en
Publication of WO2022202034A1 publication Critical patent/WO2022202034A1/en
Priority to US18/465,661 priority patent/US20230414200A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental

Definitions

  • the present invention relates to an ultrasonic probe used for ultrasonic examination of a subject.
  • ultrasonic examination in which a subject is examined by confirming an ultrasonic image representing an image of the inside of the subject.
  • Ultrasound images are obtained by transmitting ultrasound beams into the subject using an ultrasound probe that includes a transducer array in which a plurality of piezoelectric elements are arranged, and capturing ultrasonic echoes propagating from within the subject with the ultrasound probe. to obtain an electrical signal and electrically process the electrical signal.
  • POC Point of Care
  • Patent Literature 1 when a plurality of acoustic matching layers are arranged in an ultrasonic probe, there is a need to easily transmit ultrasonic waves between the piezoelectric element and the subject.
  • the acoustic matching layer placed near the piezoelectric element is required to have a sufficiently high acoustic impedance.
  • the acoustic impedance of the acoustic matching layer can be increased by forming the acoustic matching layer from a material with a high sound velocity.
  • the frequency approaches the resonance frequency in the thickness direction of the piezoelectric element, and the image quality of the generated ultrasonic image deteriorates.
  • the present invention has been made in order to solve such conventional problems.
  • the object is to provide a probe.
  • an ultrasonic probe according to the present invention is an ultrasonic probe in which a plurality of piezoelectric elements are arranged on a backing material along an arrangement direction, and each piezoelectric element a plurality of acoustic matching layers laminated on the It is characterized by
  • At least one acoustic matching layer is preferably the acoustic matching layer closest to the piezoelectric element among the plurality of acoustic matching layers.
  • the plurality of acoustic matching layers can be composed of four or more acoustic matching layers in which the acoustic impedance decreases stepwise as the distance from the piezoelectric element increases.
  • the resonance frequency in the width direction of the acoustic matching piece is preferably higher than the frequency on the high frequency side in the frequency band having at least half the amplitude value of the resonance frequency in the thickness direction of the piezoelectric element. Further, it is more preferable that the resonance frequency in the width direction of the acoustic matching piece is higher than the frequency on the high frequency side in the frequency band having a value of 1/10 of the amplitude value of the resonance frequency in the thickness direction of the piezoelectric element.
  • At least one acoustic matching layer preferably comprises a plurality of acoustic matching pieces arranged in the arrangement direction.
  • At least one acoustic matching layer can be composed of a plurality of acoustic matching pieces arranged in the arrangement direction and in a direction orthogonal to the arrangement direction.
  • the acoustic matching piece can have any one of a polygonal prism, a cylinder, a polygonal pyramid and a conical shape extending in the stacking direction of the plurality of acoustic matching layers.
  • a filler made of resin can be arranged between the plurality of acoustic matching pieces.
  • an ultrasonic probe includes a plurality of acoustic matching layers laminated on respective piezoelectric elements, and at least one acoustic matching layer among the plurality of acoustic matching layers comprises an array of piezoelectric elements Since it is composed of at least one acoustic matching piece having a width narrower than the width in the direction, it is possible to obtain a high-quality ultrasound image while broadening the frequency band of the ultrasound used to generate the ultrasound image.
  • FIG. 1 is a cross-sectional view of an ultrasonic probe according to an embodiment of the present invention
  • FIG. 1 is a perspective view of a first acoustic matching layer according to an embodiment of the invention
  • FIG. 4 is a diagram schematically showing a frequency band including a resonance frequency caused by the frequency band of the piezoelectric element and the width of the acoustic matching piece of the first acoustic matching layer in the embodiment of the present invention
  • 1 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus having an ultrasonic probe according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the internal configuration of a transmission/reception circuit according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing the internal configuration of an image generator in the embodiment of the present invention
  • FIG. FIG. 4 is a perspective view of a first acoustic matching layer in a first modified example of the embodiment of the invention
  • FIG. 11 is a perspective view of a first acoustic matching layer in a second modified example of the embodiment of the invention
  • It is a top view of the 1st acoustic matching layer in the 3rd modification of an embodiment of the invention.
  • It is a top view of the 1st acoustic matching layer in the 4th modification of embodiment of this invention.
  • It is a top view of the 1st acoustic matching layer in the 5th modification of an embodiment of the invention.
  • an ultrasonic probe 1 includes a backing material 2 and a plurality of piezoelectric elements 3 arranged on the backing material 2 for emitting ultrasonic waves. , a first acoustic matching layer 4 arranged on each of the plurality of piezoelectric elements 3, a second acoustic matching layer 5 arranged on the first acoustic matching layer 4, and a second acoustic matching A third acoustic matching layer 6 disposed on the layer 5, a fourth acoustic matching layer 7 disposed on the third acoustic matching layer 6, and a plurality of fourth acoustic matching layers 7 and an acoustic lens 8 formed by
  • a separation portion filled with a filler SP made of resin such as epoxy resin is formed between 7 .
  • the first acoustic matching layer 4 has two acoustic matching pieces 4A and 4B each having a width narrower than the width of the piezoelectric elements 3 in the arrangement direction of the piezoelectric elements 3 .
  • the arrangement direction (azimuth direction) of the piezoelectric elements 3 is called the Y direction
  • the depth direction (elevation direction) of the piezoelectric elements 3 is called the X direction
  • the backing material 2 and the piezoelectric The stacking direction of the element 3, the first acoustic matching layer 4, the second acoustic matching layer 5, the third acoustic matching layer 6, the fourth acoustic matching layer 7 and the acoustic lens 8 is called the Z direction.
  • Lead electrodes are connected to the plurality of piezoelectric elements 3, respectively, and a flexible printed circuit board (not shown) connected to the lead electrodes is arranged on the side surface of the backing material 2 or the like, but is omitted for the sake of explanation. It is
  • the piezoelectric element 3 generates ultrasonic waves according to drive signals supplied from a pulser or the like (not shown) connected to the ultrasonic probe 1, receives ultrasonic echoes, and outputs signals based on the ultrasonic echoes. It is a thing.
  • the piezoelectric element 3 is, for example, a piezoelectric ceramic typified by PZT (Lead Zirconate Titanate), a polymeric piezoelectric element typified by PVDF (Poly Vinylidene Di Fluoride), and PMN-PT ( Lead Magnesium Niobate-Lead Titanate: a solid solution of lead magnesium niobate-lead titanate). Moreover, the piezoelectric element 3 has a width of about 100 ⁇ m to 200 ⁇ m in the Y direction.
  • the backing material 2 supports the plurality of piezoelectric elements 3 and absorbs the ultrasonic waves emitted from the plurality of piezoelectric elements 3 and propagated backward.
  • the backing material 2 is made of, for example, a rubber material such as ferrite rubber.
  • the acoustic lens 8 is in contact with the body surface of the subject during ultrasonic diagnosis and serves to converge the ultrasonic waves emitted from the plurality of piezoelectric elements 3, and is made of epoxy resin, acrylic resin, or polymethylpentene resin. It is formed from a resin material such as a rubber material such as silicone rubber.
  • the first acoustic matching layer 4 to the fourth acoustic matching layer 7 respectively match stepwise the acoustic impedance between the subject with which the ultrasonic probe 1 is in contact and the piezoelectric element 3, and the subject This is for making it easier for ultrasonic waves to enter inside.
  • the first acoustic matching layer 4 to the fourth acoustic matching layer 7 are made of resin material such as epoxy resin or urethane resin.
  • the acoustic matching pieces 4A and 4B of the first acoustic matching layer 4 have a plate shape parallel to the XZ plane, and are arranged adjacent to each other and spaced apart in the Y direction. It is
  • the acoustic matching piece 4A has a width L1 in the Y direction
  • the acoustic matching piece 4B has a width L2 in the Y direction.
  • the width L1 of the acoustic matching piece 4A and the width L2 of the acoustic matching piece 4B are each narrower than the width of the piezoelectric element 3 in the Y direction.
  • the acoustic matching pieces 4A and 4B of the first acoustic matching layer 4 are composed of the material forming the second acoustic matching layer 5, the material forming the third acoustic matching layer 6, and the fourth acoustic matching layer 7. It is made of a material having a higher acoustic impedance than the constituent material and a lower acoustic impedance than the piezoelectric element 3 .
  • the acoustic impedance of a medium is represented by the product of the density of the medium and the speed of sound in the medium.
  • Materials with relatively high acoustic impedances refer to materials with relatively low sound velocities.
  • the second acoustic matching layer 5 has a higher acoustic impedance than the material forming the third acoustic matching layer 6 and the material forming the fourth acoustic matching layer 7, and are made of a material having an acoustic impedance lower than that of the material forming the acoustic matching pieces 4A and 4B.
  • the third acoustic matching layer 6 is made of a material having a higher acoustic impedance than the material forming the fourth acoustic matching layer 7 and a lower acoustic impedance than the second acoustic matching layer 5.
  • the fourth acoustic matching layer 7 is made of a material having an acoustic impedance higher than that of the subject and lower than that of the third acoustic matching layer 6 .
  • the acoustic impedance is lowered stepwise in the order of the piezoelectric element 3, the first acoustic matching layer 4, the second acoustic matching layer 5, the third acoustic matching layer 6 and the fourth acoustic matching layer 7. That is, the first acoustic matching layer 4 to the fourth acoustic matching layer 7 are designed so that the acoustic impedance decreases stepwise as the distance from the piezoelectric element 3 increases.
  • the acoustic lens 8 is in contact with the body surface of the subject, and ultrasonic waves generated from the plurality of piezoelectric elements 3 by a driving voltage from a pulser or the like (not shown) are applied to the subject.
  • a driving voltage from a pulser or the like not shown
  • Ultrasonic waves generated by the piezoelectric element 3 pass through the first acoustic matching layer 4, the second acoustic matching layer 5, the third acoustic matching layer 6, the fourth acoustic matching layer 7, and the acoustic lens 8 to the subject. sent within. Further, ultrasonic echoes propagated from inside the subject toward the ultrasonic probe 1 pass through the acoustic lens 8, the fourth acoustic matching layer 7, the third acoustic matching layer 6, and the second acoustic matching layer 5. and the first acoustic matching layer 4 to enter the piezoelectric element 3 , and the incident ultrasonic echo is converted into an electric signal by the piezoelectric element 3 .
  • the four acoustic matching layers of the first acoustic matching layer 4 to the fourth acoustic matching layer 7 are arranged so that the acoustic impedance gradually decreases from the piezoelectric element 3 side to the acoustic lens 8 side. Since the layers are arranged, for example, even if the frequency of the ultrasonic waves emitted from the piezoelectric element 3 is sufficiently high, the ultrasonic waves are likely to pass through between the piezoelectric element 3 and the acoustic lens 8, resulting in an ultrasonic image.
  • the frequency band of ultrasonic waves used for formation can be broadened.
  • the frequency band of ultrasonic waves used for generating an ultrasonic image includes a resonance frequency caused by the thickness of the piezoelectric element 3 in the Z direction. It changes like band A1.
  • the acoustic matching layer arranged near the piezoelectric element 3 must be made of a material with high acoustic impedance.
  • the acoustic matching layer made of a material having a high acoustic impedance consists of one acoustic matching piece and that its Y-direction width is substantially the same as the Y-direction width of the piezoelectric element 3, as shown in FIG.
  • the frequency band A2 including the resonance frequency caused by the width of the acoustic matching layer in the Y direction may overlap with the frequency band A1 of the piezoelectric element 3 .
  • a sensitivity of, for example, ⁇ 20 dB is often used when generating high-definition ultrasound images for observing fine structures such as muscle structures and nerve bundles of a subject. If the frequency band A1 of No. 3 overlaps with the frequency band A2 resulting from the width of the acoustic matching layer in the Y direction, the image quality of the generated ultrasonic image deteriorates due to the frequency band A2.
  • the resonance frequency due to the width L1 of the acoustic matching piece 4A is It is higher than the resonance frequency when it is assumed that the width of the element 3 is the same as the width in the Y direction. Therefore, by adjusting the width L1 of the acoustic matching piece 4A, the resonance frequency caused by the width L1 of the acoustic matching piece 4A can be adjusted to the sensitivity of ⁇ 20 dB or the like used for generating a high-definition ultrasonic image.
  • a frequency band A3 that does not overlap with the frequency band A1 can be obtained by setting the frequency higher than the frequency on the high frequency side in the frequency band A1.
  • the acoustic matching piece 4B arranged adjacent to the acoustic matching piece 4A in the Y direction has a width L2 narrower than the width of the piezoelectric element 3 in the Y direction.
  • the resonance frequency is higher than the resonance frequency when it is assumed that the acoustic matching piece 4B has the same width as the piezoelectric element 3 in the Y direction. Therefore, by adjusting the width L2 of the acoustic matching piece 4B in the same manner as the acoustic matching piece 4A, the width L1 of the acoustic matching piece 4B can be adjusted to the sensitivity of ⁇ 20 dB or the like used for generating a high-definition ultrasonic image. It is possible to obtain a frequency band that does not overlap with the frequency band A1 by making the resulting resonance frequency higher than the frequency on the high frequency side in the frequency band A1 of the piezoelectric element 3 .
  • the first acoustic matching layer 4 includes an acoustic matching piece 4A having a width L1 narrower than the width of the piezoelectric element 3 in the Y direction and an acoustic matching piece 4A having a width L2 narrower than the width of the piezoelectric element 3 in the Y direction. Even if the acoustic matching pieces 4A and 4B are made of a material with a sufficiently high acoustic impedance, the frequency band of the piezoelectric element 3 is limited by the sensitivity used to generate the ultrasonic image.
  • A1 and the frequency band A3 caused by the width L1 of the acoustic matching piece 4A can be separated from each other, and the frequency band A1 of the piezoelectric element 3 and the frequency band caused by the width L2 of the acoustic matching piece 4B can be separated from each other.
  • the ultrasonic probe 1 of the embodiment has a plurality of acoustic matching layers of the first acoustic matching layer 4 to the fourth acoustic matching layer 7, and the first acoustic matching layer 4 is , the acoustic matching piece 4A having a width L1 narrower than the width of the piezoelectric element 3 in the Y direction and the acoustic matching piece 4B having a width L2 narrower than the width of the piezoelectric element 3 in the Y direction. It is possible to obtain a high-quality ultrasound image while widening the frequency band A1 used to generate .
  • an ultrasonic diagnostic apparatus 11 having the ultrasonic probe 1 according to the embodiment of the invention will be described.
  • a transmitting/receiving section 12 an image generating section 13, a display control section 14 and a monitor 15 are connected to an ultrasonic probe 1 in this order.
  • a device control unit 16 is connected to the transmission/reception unit 12 , the image generation unit 13 and the display control unit 14 .
  • An input device 17 is also connected to the device control section 16 .
  • a memory (not shown) is connected to the device controller 16 .
  • the ultrasonic diagnostic apparatus 11 also includes an ultrasonic probe 21 including the ultrasonic probe 1 .
  • a processor 22 for the ultrasonic diagnostic apparatus 11 is configured by the transmitting/receiving section 12 , the image generating section 13 , the display control section 14 and the device control section 16 .
  • the transmission/reception unit 12 transmits ultrasonic waves from the ultrasound probe 1 and generates sound ray signals based on the reception signals acquired by the ultrasound probe 1.
  • the transmitting/receiving section 12 includes a pulser 31 connected to the ultrasonic probe 1, an amplifier section 32 sequentially connected in series from the ultrasonic probe 1, and an AD (Analog Digital) conversion section. 33 and a beamformer 34 .
  • the pulsar 31 includes, for example, a plurality of pulse generators, and based on a transmission delay pattern selected according to a control signal from the device control unit 16, from the plurality of piezoelectric elements 3 of the ultrasonic probe 1
  • Each drive signal is supplied to the plurality of piezoelectric elements 3 after adjusting the delay amount so that the ultrasonic waves to be transmitted form ultrasonic beams.
  • a pulse-like or continuous-wave voltage is applied to the electrodes of the piezoelectric elements 3
  • the piezoelectric elements 3 expand and contract, and pulse-like or continuous-wave ultrasonic waves are generated from the respective piezoelectric elements 3.
  • An ultrasonic beam is formed from the composite wave of ultrasonic waves.
  • the transmitted ultrasonic beams are reflected, for example, by tissues within the subject, and propagate toward the ultrasonic probe 1 of the ultrasonic probe 21 .
  • Each piezoelectric element 3 of the ultrasonic probe 1 expands and contracts by receiving the ultrasonic echoes propagating toward the ultrasonic probe 1 in this way, and generates a reception signal which is an electric signal. , and outputs these received signals to the amplifier 32 .
  • the amplification section 32 amplifies the signal input from each piezoelectric element 3 of the ultrasound probe 1 and transmits the amplified signal to the AD conversion section 33 .
  • the AD converter 33 converts the signal transmitted from the amplifier 24 into digital received data and transmits the received data to the beamformer 34 .
  • the beamformer 34 converts each reception data converted into digital data by the AD converter 33 according to the sound velocity or the distribution of the sound velocity set based on the reception delay pattern selected according to the control signal from the device controller 16.
  • a so-called reception focus process is performed by giving respective delays and adding them. By this reception focusing process, each reception data converted by the AD conversion unit 33 is phased and added, and an acoustic ray signal in which the focus of the ultrasonic echo is narrowed down is acquired.
  • the image generator 13 has a configuration in which a signal processor 35, a DSC (Digital Scan Converter) 36, and an image processor 37 are connected in series.
  • the signal processing unit 35 performs envelope detection processing on the acoustic ray signal generated by the beamformer 34 of the transmitting/receiving unit 12 after performing attenuation correction due to distance according to the depth of the reflection position of the ultrasonic wave. generates a B-mode image signal, which is tomographic image information regarding tissues in the subject.
  • the DSC 36 converts (raster-converts) the B-mode image signal generated by the signal processing unit 35 into an image signal conforming to the normal television signal scanning method.
  • the image processing unit 37 performs various necessary image processing such as gradation processing on the B-mode image signal input from the DSC 36 , and then outputs the B-mode image signal to the display control unit 14 .
  • the B-mode image signal subjected to image processing by the image processing unit 37 is simply referred to as an ultrasound image.
  • the display control unit 14 Under the control of the device control unit 16 , the display control unit 14 performs predetermined processing on the ultrasonic image generated by the image generation unit 13 and displays the ultrasonic image on the monitor 15 .
  • the monitor 15 displays the ultrasonic image generated by the image generation unit 13 under the control of the display control unit 14.
  • the monitor 15 displays an LCD (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display). ) and other display devices.
  • the apparatus control section 16 controls each section of the ultrasonic diagnostic apparatus 11 based on a pre-stored control program or the like.
  • the input device 17 is for a user to perform an input operation, and can be configured by including a keyboard, mouse, trackball, touch pad, touch panel, and the like.
  • the memory connected to the device control unit 16 stores the control program of the ultrasonic diagnostic device 11 and the like.
  • Solid State Drive Solid State Drive
  • FD Flexible Disc
  • MO disc Magnetic-Optical disc
  • MT Magnetic Tape
  • RAM Random Access Memory
  • CD Compact Disc
  • DVD Digital Versatile Disc
  • SD card Secure Digital card
  • USB memory Universal Serial Bus memory
  • the processor 22 having the transmission/reception unit 12, the image generation unit 13, the display control unit 14, and the device control unit 16 is a CPU (Central Processing Unit), and controls for causing the CPU to perform various processes.
  • Program consists of FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), GPU (Graphics Processing Unit) : graphics processing unit), other ICs (Integrated Circuits), or may be configured by combining them.
  • the transmitting/receiving section 12, the image generating section 13, the display control section 14, and the device control section 16 of the processor 22 can be partially or wholly integrated into one CPU or the like.
  • the transmitting/receiving unit 12 transmits from the ultrasonic probe 1 to the subject. While broadening the frequency band of the ultrasonic waves received by the ultrasonic probe 1 and the frequency band of the ultrasonic waves received by the ultrasonic probe 1, a high-quality ultrasonic image can be obtained.
  • the space between the acoustic matching piece 4A and the acoustic matching piece 4B arranged adjacent to each other in the first acoustic matching layer 4 can be filled with a filler similar to the filler SP. This prevents the acoustic matching piece 4A and the acoustic matching piece 4B from coming into contact with each other for some reason, so that the acoustic matching pieces 4A and 4B can be arranged more stably.
  • the materials constituting the first acoustic matching layer 4 to the fourth acoustic matching layer 7 are not particularly limited.
  • a material obtained by kneading oxide fine particles or ceramic fine particles with a vacuum defoaming mixer such as Avatori Mixer ARV-310P manufactured by THINKY or a planetary mixer can be used.
  • the speed of sound in the finished material can be adjusted by adjusting the total number of fine particles kneaded into the resin material.
  • the fine particles preferably have a diameter of 0.01 ⁇ m or more and 100.00 ⁇ m or less, and 0.10 ⁇ m or more. More preferably, it has a diameter of 10.00 ⁇ m or less.
  • the resonance frequency in the width direction of the acoustic matching piece 4A that is, the resonance frequency caused by the width L1 is set at the high frequency side of the frequency band A1 of the piezoelectric element 3 at a sensitivity of ⁇ 20 dB in order to obtain a high-definition ultrasonic image, for example.
  • the high frequency can be obtained without degrading the image quality. A fine ultrasound image can be obtained.
  • the resonance frequency caused by the width L1 of the acoustic matching piece 4A is higher than the frequency on the high frequency side in the frequency band having a value of 1/10 of the amplitude of the resonance frequency in the thickness direction of the piezoelectric element 3. It is more preferable from the viewpoint of obtaining a high-definition ultrasonic image without lowering the .
  • the resonance frequency caused by the width L2 of the acoustic matching piece 4B is also in a frequency band that takes at least half the amplitude value of the resonance frequency in the thickness direction of the piezoelectric element 3, similarly to the resonance frequency caused by the width L1 of the acoustic matching piece 4A. is preferably higher than the frequency on the high frequency side in the thickness direction of the piezoelectric element 3, and more preferably higher than the frequency on the high frequency side in the frequency band having a value of 1/10 of the amplitude of the resonance frequency in the thickness direction of the piezoelectric element 3.
  • the resonance frequency caused by the width L1 of the piece 4A and the resonance frequency caused by the width L2 of the acoustic matching piece 4B are preferably higher than the frequency on the high frequency side of the frequency band A1 in the thickness direction of the piezoelectric element 3 .
  • the width L1 of the acoustic matching piece 4A and the width L2 of the acoustic matching piece 4B of the first acoustic matching layer 4 can have the same length, but can also have different lengths. Even in this case, the width L1 of the acoustic matching piece 4A and the width L2 of the acoustic matching piece 4B are narrower than the width of the piezoelectric element 3 in the Y direction.
  • the resonance frequency caused by the width L2 of 4B can be made higher than the frequency on the high frequency side of the frequency band A1 of the piezoelectric element 3 .
  • the first acoustic matching layer 4 is composed of two acoustic matching pieces 4A and 4B
  • the first acoustic matching layer 4 includes three or more pieces arranged side by side in the Y direction. of acoustic matching pieces.
  • the resonance frequency caused by the width of each acoustic matching piece in the Y direction can be made higher than the frequency on the high frequency side of the frequency band A1 of the piezoelectric element 3. can.
  • the first acoustic matching layer 4 can be composed of a plurality of acoustic matching pieces arranged in the Y direction and the X direction, respectively, as shown in FIG. 7, for example.
  • the first acoustic matching layer 41 has a plurality of square prism-shaped acoustic matching pieces 41A.
  • a plurality of acoustic matching pieces 41A are arranged with gaps in the X direction and the Y direction.
  • gaps between the plurality of acoustic matching pieces 41A can be filled with a filler similar to the filler SP.
  • the first acoustic matching layer 42 may be composed of a plurality of cylindrical acoustic matching pieces 42A.
  • the shapes of the acoustic matching pieces 41A and 42A are exemplified by a square prism shape and a cylindrical shape. Any cone-shaped acoustic matching piece, such as a regular polygonal pyramid or a cone, may be used. An acoustic matching piece having such a shape can be formed by a technique such as etching, for example.
  • the number of acoustic matching pieces constituting the first acoustic matching layers 4, 41 and 42 is particularly limited if the width of the acoustic matching pieces in the Y direction is narrower than the width of the piezoelectric element 3 in the Y direction. not a thing
  • the plurality of acoustic matching pieces of the first acoustic matching layers 4, 41 and 42 may be arranged to have patterns as shown in FIGS. 9 to 11 when viewed from the +Z direction. good.
  • a plurality of square prism-shaped acoustic matching pieces 51 are arranged in a staggered manner in the X direction.
  • a plurality of equilateral triangular prism-shaped acoustic matching pieces 52 are arranged so as to be closely packed in the XY plane.
  • a plurality of regular hexagonal prismatic acoustic matching pieces 53 are arranged so as to be closely packed in the XY plane, forming a so-called honeycomb pattern.
  • each of the first acoustic matching layers 4, 41 or 42 has a plurality of acoustic matching layers. It can be designed to vary the sum of the Y-direction widths of the strips. Thereby, the speed of sound of the ultrasonic waves emitted from the ultrasonic probe 1 can be locally adjusted in the Y direction. As a result, the ultrasonic probe 1 can be acoustically designed in a wide variety of ways.
  • the first acoustic matching layers 4, 41, and 42 located in the center of the X direction of the ultrasonic probe 1 have a plurality of acoustic matching pieces arranged relatively densely in the X direction, and the ultrasonic probe A plurality of acoustic matching pieces can be arranged relatively sparsely in the X direction in the first acoustic matching layers 4, 41 and 42 positioned at both ends of the X direction.
  • apodization method the emission of the ultrasonic beams emitted from both ends of the ultrasonic probe 1 in the X direction is suppressed, the ultrasonic beams are narrowed, and the X direction of the ultrasonic probe 1 is suppressed. It is possible to reduce so-called side lobes in which ultrasonic beams are emitted in directions deviating from the center of the .
  • first acoustic matching layer 4 among the first acoustic matching layer 4 to the fourth acoustic matching layer 7 is composed of a plurality of acoustic matching pieces. At least one of the matching layer 4 to the fourth acoustic matching layer 7 may be composed of a plurality of acoustic matching pieces.
  • the first acoustic matching layer 4 located closest to the piezoelectric element 3 is made of a material having a higher acoustic impedance than the second acoustic matching layer 5 to the fourth acoustic matching layer 7, the first From the viewpoint of obtaining a high-quality ultrasound image, it is most preferable that the acoustic matching layer 4 is composed of a plurality of acoustic matching pieces.
  • the ultrasonic probe 1 has been described as having four acoustic matching layers, the first acoustic matching layer 4 to the fourth acoustic matching layer 7, it has five or more acoustic matching layers. can also The more acoustic matching layers the ultrasonic probe 1 has, the more the acoustic matching layers placed closer to the piezoelectric element 3 need to be made of a material with a higher acoustic impedance. It is considered that the resonance frequency caused by the width of the acoustic matching piece in the Y direction tends to approach the frequency band A1 of the piezoelectric element 3 when the matching piece is used.
  • the width of the acoustic matching piece in the Y direction is narrower than the width of the piezoelectric element 3 in the Y direction.
  • the transmitter/receiver 12 is described as being included in the processor 22, it can also be configured by an electric circuit. Also, the transmitter/receiver 12 may be included in the ultrasonic probe 21 . As described above, regardless of whether the transmitting/receiving unit 12 is configured by an electric circuit or is included in the ultrasonic probe 21, the ultrasonic diagnostic apparatus 11 according to the embodiment of the present invention Since the ultrasonic probe 1 is provided, the frequency band of ultrasonic waves transmitted from the ultrasonic probe 1 to the subject by the transmitting/receiving unit 12 and the frequency of the ultrasonic waves received by the ultrasonic probe 1 A high-quality ultrasound image can be obtained while widening the band.

Abstract

An ultrasonic probe 1 in which a plurality of piezoelectric elements (3) are arrayed on a backing material along an array direction. The ultrasonic probe (1) comprises a plurality of acoustic matching layers (4, 5, 6, 7) stacked on respective ones of the piezoelectric elements (3), wherein at least one acoustic matching layer (4) among the plurality of acoustic matching layers (4, 5, 6, 7) is composed of at least one acoustic matching piece (4A, 4B) having a width narrower than the width of the piezoelectric elements (3) in the array direction.

Description

超音波探触子ultrasonic probe
 本発明は、被検体の超音波検査に使用される超音波探触子に関する。 The present invention relates to an ultrasonic probe used for ultrasonic examination of a subject.
 従来から、被検体の内部の画像を表す超音波画像を確認することにより被検体の検査を行う超音波検査が知られている。超音波画像は、複数の圧電素子が配列された振動子アレイを含む超音波探触子により被検体内に超音波ビームを送信し、被検体内から伝搬する超音波エコーを超音波探触子により受信して電気信号を得、その電気信号を電気的に処理することによって生成される。  Conventionally, ultrasonic examination is known in which a subject is examined by confirming an ultrasonic image representing an image of the inside of the subject. Ultrasound images are obtained by transmitting ultrasound beams into the subject using an ultrasound probe that includes a transducer array in which a plurality of piezoelectric elements are arranged, and capturing ultrasonic echoes propagating from within the subject with the ultrasound probe. to obtain an electrical signal and electrically process the electrical signal.
 近年では、いわゆるPOC(Point of care:ポイントオブケア)と呼ばれる、被検体の治療を支援するための超音波検査が行われることが多い。POCでは、被検体の筋構造および神経束等の微細な組織の観察が望まれている。このような要望から、例えば、特許文献1に開示されているように、超音波画像の形成に用いる超音波の周波数を広帯域化して、高精細な超音波画像を得るために、複数の音響整合層を有する超音波探触子が開発されている。 In recent years, so-called POC (Point of Care) ultrasound examinations are often performed to support the treatment of subjects. In POC, it is desired to observe fine structures such as muscle structures and nerve bundles of a subject. In response to such demands, for example, as disclosed in Patent Document 1, in order to obtain a high-definition ultrasonic image by broadening the frequency band of ultrasonic waves used for forming an ultrasonic image, a plurality of acoustic matching Ultrasound probes with layers have been developed.
特開2016-192666号公報JP 2016-192666 A
 ところで、特許文献1に開示されているように、超音波探触子において複数の音響整合層が配置されている場合には、圧電素子と被検体との間で超音波を透過させやすくするために、特に、圧電素子の近傍に配置される音響整合層は、十分に高い音響インピーダンスが求められる。 By the way, as disclosed in Patent Literature 1, when a plurality of acoustic matching layers are arranged in an ultrasonic probe, there is a need to easily transmit ultrasonic waves between the piezoelectric element and the subject. In particular, the acoustic matching layer placed near the piezoelectric element is required to have a sufficiently high acoustic impedance.
 例えば、音速の高い材料で音響整合層を構成することによって、音響整合層の音響インピーダンスを高くすることができるが、音速が高くなると、圧電素子の配列方向における音響整合層の幅に起因する共振周波数が、圧電素子の厚み方向の共振周波数に近づいてしまい、生成される超音波画像の画質が低下してしまうという問題があった。 For example, the acoustic impedance of the acoustic matching layer can be increased by forming the acoustic matching layer from a material with a high sound velocity. There is a problem that the frequency approaches the resonance frequency in the thickness direction of the piezoelectric element, and the image quality of the generated ultrasonic image deteriorates.
 本発明は、このような従来の問題点を解決するためになされたものであり、超音波画像の生成に用いる超音波の周波数を広帯域化しつつ高画質な超音波画像を得ることができる超音波探触子を提供することを目的とする。 The present invention has been made in order to solve such conventional problems. The object is to provide a probe.
 上記目的を達成するために、本発明に係る超音波探触子は、複数の圧電素子がバッキング材の上に配列方向に沿って配列された超音波探触子であって、それぞれの圧電素子の上に積層された複数の音響整合層を備え、複数の音響整合層のうち少なくとも1つの音響整合層は、圧電素子の配列方向の幅よりも狭い幅を有する少なくとも1つの音響整合片からなることを特徴とする。 To achieve the above object, an ultrasonic probe according to the present invention is an ultrasonic probe in which a plurality of piezoelectric elements are arranged on a backing material along an arrangement direction, and each piezoelectric element a plurality of acoustic matching layers laminated on the It is characterized by
 少なくとも1つの音響整合層は、複数の音響整合層のうち圧電素子に最も近接する音響整合層であることが好ましい。
 複数の音響整合層は、圧電素子から離れるほど段階的に音響インピーダンスが低くなる、4層以上の音響整合層からなることができる。
At least one acoustic matching layer is preferably the acoustic matching layer closest to the piezoelectric element among the plurality of acoustic matching layers.
The plurality of acoustic matching layers can be composed of four or more acoustic matching layers in which the acoustic impedance decreases stepwise as the distance from the piezoelectric element increases.
 音響整合片の幅方向の共振周波数は、圧電素子の厚み方向の共振周波数の振幅値の少なくとも半値をとる周波数帯域における高周波数側の周波数より高いことが好ましい。
 また、音響整合片の幅方向の共振周波数は、圧電素子の厚み方向の共振周波数の振幅値の1/10の値をとる周波数帯域における高周波数側の周波数より高いことがより好ましい。
The resonance frequency in the width direction of the acoustic matching piece is preferably higher than the frequency on the high frequency side in the frequency band having at least half the amplitude value of the resonance frequency in the thickness direction of the piezoelectric element.
Further, it is more preferable that the resonance frequency in the width direction of the acoustic matching piece is higher than the frequency on the high frequency side in the frequency band having a value of 1/10 of the amplitude value of the resonance frequency in the thickness direction of the piezoelectric element.
 少なくとも1つの音響整合層は、配列方向に配列された複数の音響整合片からなることが好ましい。
 少なくとも1つの音響整合層は、配列方向および配列方向に直交する方向にそれぞれ配列された複数の音響整合片からなることができる。
 また、音響整合片は、複数の音響整合層の積層方向に延びる多角柱、円柱、多角錐および円錐のいずれかの形状を有することができる。
 また、複数の音響整合片の間に樹脂からなる充填剤が配置されることができる。
At least one acoustic matching layer preferably comprises a plurality of acoustic matching pieces arranged in the arrangement direction.
At least one acoustic matching layer can be composed of a plurality of acoustic matching pieces arranged in the arrangement direction and in a direction orthogonal to the arrangement direction.
Also, the acoustic matching piece can have any one of a polygonal prism, a cylinder, a polygonal pyramid and a conical shape extending in the stacking direction of the plurality of acoustic matching layers.
Also, a filler made of resin can be arranged between the plurality of acoustic matching pieces.
 本発明によれば、超音波探触子が、それぞれの圧電素子の上に積層された複数の音響整合層を備え、複数の音響整合層のうち少なくとも1つの音響整合層は、圧電素子の配列方向の幅よりも狭い幅を有する少なくとも1つの音響整合片からなるため、超音波画像の生成に用いる超音波の周波数を広帯域化しつつ高画質な超音波画像を得ることができる。 According to the present invention, an ultrasonic probe includes a plurality of acoustic matching layers laminated on respective piezoelectric elements, and at least one acoustic matching layer among the plurality of acoustic matching layers comprises an array of piezoelectric elements Since it is composed of at least one acoustic matching piece having a width narrower than the width in the direction, it is possible to obtain a high-quality ultrasound image while broadening the frequency band of the ultrasound used to generate the ultrasound image.
本発明の実施の形態に係る超音波探触子の断面図である。1 is a cross-sectional view of an ultrasonic probe according to an embodiment of the present invention; FIG. 本発明の実施の形態における第1の音響整合層の斜視図である。1 is a perspective view of a first acoustic matching layer according to an embodiment of the invention; FIG. 本発明の実施の形態における圧電素子の周波数帯域と第1の音響整合層の音響整合片の幅に起因する共振周波数を含む周波数帯域を模式的に表す図である。FIG. 4 is a diagram schematically showing a frequency band including a resonance frequency caused by the frequency band of the piezoelectric element and the width of the acoustic matching piece of the first acoustic matching layer in the embodiment of the present invention; 本発明の実施の形態に係る超音波探触子を有する超音波診断装置の構成を示すブロック図である。1 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus having an ultrasonic probe according to an embodiment of the present invention; FIG. 本発明の実施の形態における送受信回路の内部構成を示すブロック図である。2 is a block diagram showing the internal configuration of a transmission/reception circuit according to an embodiment of the present invention; FIG. 本発明の実施の形態における画像生成部の内部構成を示すブロック図である。3 is a block diagram showing the internal configuration of an image generator in the embodiment of the present invention; FIG. 本発明の実施の形態の第1の変形例における第1の音響整合層の斜視図である。FIG. 4 is a perspective view of a first acoustic matching layer in a first modified example of the embodiment of the invention; 本発明の実施の形態の第2の変形例における第1の音響整合層の斜視図である。FIG. 11 is a perspective view of a first acoustic matching layer in a second modified example of the embodiment of the invention; 本発明の実施の形態の第3の変形例における第1の音響整合層の上面図である。It is a top view of the 1st acoustic matching layer in the 3rd modification of an embodiment of the invention. 本発明の実施の形態の第4の変形例における第1の音響整合層の上面図である。It is a top view of the 1st acoustic matching layer in the 4th modification of embodiment of this invention. 本発明の実施の形態の第5の変形例における第1の音響整合層の上面図である。It is a top view of the 1st acoustic matching layer in the 5th modification of an embodiment of the invention.
 以下、この発明の実施の形態を添付図面に基づいて説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「同一」、「同じ」は、技術分野で一般的に許容される誤差範囲を含むものとする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The description of the constituent elements described below is based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
As used herein, the terms "same" and "same" shall include the margin of error generally accepted in the technical field.
実施の形態
 図1に示すように、本発明の実施の形態に係る超音波探触子1は、バッキング材2と、バッキング材2上に配列され且つ超音波を発するための複数の圧電素子3と、複数の圧電素子3のそれぞれの上に配置された第1の音響整合層4と、第1の音響整合層4上に配置された第2の音響整合層5と、第2の音響整合層5上に配置された第3の音響整合層6と、第3の音響整合層6上に配置された第4の音響整合層7と、複数の第4の音響整合層7にまたがって配置された音響レンズ8とを備えている。
Embodiment As shown in FIG. 1, an ultrasonic probe 1 according to an embodiment of the present invention includes a backing material 2 and a plurality of piezoelectric elements 3 arranged on the backing material 2 for emitting ultrasonic waves. , a first acoustic matching layer 4 arranged on each of the plurality of piezoelectric elements 3, a second acoustic matching layer 5 arranged on the first acoustic matching layer 4, and a second acoustic matching A third acoustic matching layer 6 disposed on the layer 5, a fourth acoustic matching layer 7 disposed on the third acoustic matching layer 6, and a plurality of fourth acoustic matching layers 7 and an acoustic lens 8 formed by
 また、隣り合う圧電素子3間、隣り合う第1の音響整合層4間、隣り合う第2の音響整合層5間、隣り合う第3の音響整合層6間および隣り合う第4の音響整合層7間に、エポキシ樹脂等の樹脂からなる充填剤SPが充填された分離部が形成されている。 Between adjacent piezoelectric elements 3, between adjacent first acoustic matching layers 4, between adjacent second acoustic matching layers 5, between adjacent third acoustic matching layers 6, and between adjacent fourth acoustic matching layers A separation portion filled with a filler SP made of resin such as epoxy resin is formed between 7 .
 また、第1の音響整合層4は、圧電素子3の配列方向において、圧電素子3の幅よりも狭い幅を有する2つの音響整合片4Aおよび4Bを有している。 Also, the first acoustic matching layer 4 has two acoustic matching pieces 4A and 4B each having a width narrower than the width of the piezoelectric elements 3 in the arrangement direction of the piezoelectric elements 3 .
 ここで、説明を明確にするために、圧電素子3の配列方向(アジマス方向)をY方向と呼び、圧電素子3の奥向き方向(エレベーション方向)をX方向と呼び、バッキング材2、圧電素子3、第1の音響整合層4、第2の音響整合層5、第3の音響整合層6、第4の音響整合層7および音響レンズ8の積層方向をZ方向と呼ぶ。 Here, for clarity of explanation, the arrangement direction (azimuth direction) of the piezoelectric elements 3 is called the Y direction, the depth direction (elevation direction) of the piezoelectric elements 3 is called the X direction, and the backing material 2 and the piezoelectric The stacking direction of the element 3, the first acoustic matching layer 4, the second acoustic matching layer 5, the third acoustic matching layer 6, the fourth acoustic matching layer 7 and the acoustic lens 8 is called the Z direction.
 また、複数の圧電素子3に、図示しない引出し電極がそれぞれ接続され、バッキング材2の側面等に、複数の引出し電極に接続された図示しないフレキシブルプリント基板が配置されるが、説明のために省略されている。 Lead electrodes (not shown) are connected to the plurality of piezoelectric elements 3, respectively, and a flexible printed circuit board (not shown) connected to the lead electrodes is arranged on the side surface of the backing material 2 or the like, but is omitted for the sake of explanation. It is
 圧電素子3は、超音波探触子1に接続された図示しないパルサ等から供給される駆動信号に従って超音波を発生すると共に、超音波エコーを受信して、超音波エコーに基づく信号を出力するものである。圧電素子3は、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子およびPMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成することにより構成される。また、圧電素子3は、Y方向において約100μm~200μmの幅を有している。 The piezoelectric element 3 generates ultrasonic waves according to drive signals supplied from a pulser or the like (not shown) connected to the ultrasonic probe 1, receives ultrasonic echoes, and outputs signals based on the ultrasonic echoes. It is a thing. The piezoelectric element 3 is, for example, a piezoelectric ceramic typified by PZT (Lead Zirconate Titanate), a polymeric piezoelectric element typified by PVDF (Poly Vinylidene Di Fluoride), and PMN-PT ( Lead Magnesium Niobate-Lead Titanate: a solid solution of lead magnesium niobate-lead titanate). Moreover, the piezoelectric element 3 has a width of about 100 μm to 200 μm in the Y direction.
 バッキング材2は、複数の圧電素子3を支持すると共に、複数の圧電素子3から発せられて後方に伝搬した超音波を吸収するものである。バッキング材2は、例えば、フェライトゴム等のゴム材料により形成される。 The backing material 2 supports the plurality of piezoelectric elements 3 and absorbs the ultrasonic waves emitted from the plurality of piezoelectric elements 3 and propagated backward. The backing material 2 is made of, for example, a rubber material such as ferrite rubber.
 音響レンズ8は、超音波診断の際に被検体の体表に接触し、複数の圧電素子3から発せられた超音波を収束するためのものであり、エポキシ樹脂、アクリル樹脂およびポリメチルペンテン樹脂等の樹脂材料およびシリコンゴム等のゴム材料等から形成される。 The acoustic lens 8 is in contact with the body surface of the subject during ultrasonic diagnosis and serves to converge the ultrasonic waves emitted from the plurality of piezoelectric elements 3, and is made of epoxy resin, acrylic resin, or polymethylpentene resin. It is formed from a resin material such as a rubber material such as silicone rubber.
 第1の音響整合層4~第4の音響整合層7は、それぞれ、超音波探触子1が接触する被検体と圧電素子3との間の音響インピーダンスを段階的に整合して、被検体内に超音波を入射させやすくするためのものである。第1の音響整合層4~第4の音響整合層7は、例えば、エポキシ樹脂またはウレタン樹脂等の樹脂材料により構成される。 The first acoustic matching layer 4 to the fourth acoustic matching layer 7 respectively match stepwise the acoustic impedance between the subject with which the ultrasonic probe 1 is in contact and the piezoelectric element 3, and the subject This is for making it easier for ultrasonic waves to enter inside. The first acoustic matching layer 4 to the fourth acoustic matching layer 7 are made of resin material such as epoxy resin or urethane resin.
 図2に示すように、第1の音響整合層4の音響整合片4Aおよび4Bは、XZ面に平行な板形状を有しており、Y方向において互いに隣り合うように且つ間隔を隔てて配置されている。また、音響整合片4AはY方向の幅L1を有し、音響整合片4BはY方向の幅L2を有している。音響整合片4Aの幅L1と音響整合片4Bの幅L2は、それぞれ、圧電素子3のY方向の幅よりも狭い。 As shown in FIG. 2, the acoustic matching pieces 4A and 4B of the first acoustic matching layer 4 have a plate shape parallel to the XZ plane, and are arranged adjacent to each other and spaced apart in the Y direction. It is The acoustic matching piece 4A has a width L1 in the Y direction, and the acoustic matching piece 4B has a width L2 in the Y direction. The width L1 of the acoustic matching piece 4A and the width L2 of the acoustic matching piece 4B are each narrower than the width of the piezoelectric element 3 in the Y direction.
 また、第1の音響整合層4の音響整合片4Aおよび4Bは、第2の音響整合層5を構成する材料、第3の音響整合層6を構成する材料および第4の音響整合層7を構成する材料よりも音響インピーダンスが高く、且つ、圧電素子3よりも音響インピーダンスが低い材料で構成されている。 Also, the acoustic matching pieces 4A and 4B of the first acoustic matching layer 4 are composed of the material forming the second acoustic matching layer 5, the material forming the third acoustic matching layer 6, and the fourth acoustic matching layer 7. It is made of a material having a higher acoustic impedance than the constituent material and a lower acoustic impedance than the piezoelectric element 3 .
 ここで、一般的に、媒質の音響インピーダンスは、媒質の密度と媒質中の音速との積で表されることが知られているが、音響インピーダンスが比較的に高い材料とは、音速が比較的に高い材料のことを指し、音響インピーダンスが比較的に低い材料とは、音速が比較的に低い材料のことを指す。 Here, it is generally known that the acoustic impedance of a medium is represented by the product of the density of the medium and the speed of sound in the medium. Materials with relatively high acoustic impedances refer to materials with relatively low sound velocities.
 また、第2の音響整合層5は、第3の音響整合層6を構成する材料および第4の音響整合層7を構成する材料よりも音響インピーダンスが高く、且つ、第1の音響整合層4の音響整合片4Aおよび4Bを構成する材料よりも音響インピーダンスが低い材料で構成されている。 In addition, the second acoustic matching layer 5 has a higher acoustic impedance than the material forming the third acoustic matching layer 6 and the material forming the fourth acoustic matching layer 7, and are made of a material having an acoustic impedance lower than that of the material forming the acoustic matching pieces 4A and 4B.
 また、第3の音響整合層6は、第4の音響整合層7を構成する材料よりも音響インピーダンスが高く、且つ、第2の音響整合層5よりも音響インピーダンスが低い材料で構成されている。
 また、第4の音響整合層7は、被検体の音響インピーダンスよりも高く且つ第3の音響整合層6を構成する材料よりも音響インピーダンスが低い材料で構成されている。
The third acoustic matching layer 6 is made of a material having a higher acoustic impedance than the material forming the fourth acoustic matching layer 7 and a lower acoustic impedance than the second acoustic matching layer 5. .
The fourth acoustic matching layer 7 is made of a material having an acoustic impedance higher than that of the subject and lower than that of the third acoustic matching layer 6 .
 このように、圧電素子3、第1の音響整合層4、第2の音響整合層5、第3の音響整合層6および第4の音響整合層7の順で、音響インピーダンスが段階的に低くなる、すなわち、第1の音響整合層4~第4の音響整合層7は、圧電素子3から離れるほど段階的に音響インピーダンスが低くなるように設計されている。 In this way, the acoustic impedance is lowered stepwise in the order of the piezoelectric element 3, the first acoustic matching layer 4, the second acoustic matching layer 5, the third acoustic matching layer 6 and the fourth acoustic matching layer 7. That is, the first acoustic matching layer 4 to the fourth acoustic matching layer 7 are designed so that the acoustic impedance decreases stepwise as the distance from the piezoelectric element 3 increases.
 実施の形態の超音波探触子1は、音響レンズ8を被検体の体表に接触させた状態で、図示しないパルサ等からの駆動電圧により複数の圧電素子3から発生した超音波を被検体内に送信し、被検体内の組織等で反射された超音波エコーを複数の圧電素子3で電気信号に変換し、得られた電気信号を外部の装置を用いて電気的に処理することによって超音波画像を生成するために使用される。 In the ultrasonic probe 1 of the embodiment, the acoustic lens 8 is in contact with the body surface of the subject, and ultrasonic waves generated from the plurality of piezoelectric elements 3 by a driving voltage from a pulser or the like (not shown) are applied to the subject. By converting the ultrasonic echoes reflected by the tissues in the subject into electrical signals with a plurality of piezoelectric elements 3 and electrically processing the obtained electrical signals using an external device Used to generate ultrasound images.
 圧電素子3で発生した超音波は、第1の音響整合層4、第2の音響整合層5、第3の音響整合層6、第4の音響整合層7および音響レンズ8を通って被検体内に送信される。また、被検体内から超音波探触子1に向かって伝搬される超音波エコーは、音響レンズ8、第4の音響整合層7、第3の音響整合層6、第2の音響整合層5および第1の音響整合層4を通って圧電素子3に入射し、入射された超音波エコーは圧電素子3で電気信号に変換される。 Ultrasonic waves generated by the piezoelectric element 3 pass through the first acoustic matching layer 4, the second acoustic matching layer 5, the third acoustic matching layer 6, the fourth acoustic matching layer 7, and the acoustic lens 8 to the subject. sent within. Further, ultrasonic echoes propagated from inside the subject toward the ultrasonic probe 1 pass through the acoustic lens 8, the fourth acoustic matching layer 7, the third acoustic matching layer 6, and the second acoustic matching layer 5. and the first acoustic matching layer 4 to enter the piezoelectric element 3 , and the incident ultrasonic echo is converted into an electric signal by the piezoelectric element 3 .
 超音波探触子1では、圧電素子3側から音響レンズ8側に向かって音響インピーダンスが徐々に低くなるように第1の音響整合層4~第4の音響整合層7の4層の音響整合層が配置されているため、例えば、圧電素子3から発せられる超音波の周波数が十分に高くなったとしても圧電素子3と音響レンズ8との間を超音波が透過しやすく、超音波画像の形成に用いられる超音波の周波数を広帯域化できる。 In the ultrasonic probe 1, the four acoustic matching layers of the first acoustic matching layer 4 to the fourth acoustic matching layer 7 are arranged so that the acoustic impedance gradually decreases from the piezoelectric element 3 side to the acoustic lens 8 side. Since the layers are arranged, for example, even if the frequency of the ultrasonic waves emitted from the piezoelectric element 3 is sufficiently high, the ultrasonic waves are likely to pass through between the piezoelectric element 3 and the acoustic lens 8, resulting in an ultrasonic image. The frequency band of ultrasonic waves used for formation can be broadened.
 ここで、超音波画像の生成に用いられる超音波の周波数帯域は、圧電素子3のZ方向の厚みに起因する共振周波数を含んでおり、例えば図3に模式的に示すように、感度によって周波数帯域A1のように変化する。 Here, the frequency band of ultrasonic waves used for generating an ultrasonic image includes a resonance frequency caused by the thickness of the piezoelectric element 3 in the Z direction. It changes like band A1.
 通常、周波数帯域A1を広帯域化するために、複数の層の音響整合層を配置しようとすると、超音波探触子1が接触する被検体と圧電素子3との間の音響インピーダンスを整合させるために、特に圧電素子3の近傍に配置される音響整合層を、音響インピーダンスの高い材料で構成する必要がある。音響インピーダンスの高い材料で構成された音響整合層が1つの音響整合片で構成され、そのY方向の幅が圧電素子3のY方向の幅とほぼ同一であると仮定すると、図3に示すように、音響整合層のY方向の幅に起因する共振周波数を含む周波数帯域A2が圧電素子3の周波数帯域A1と重なり合ってしまうことがある。 Usually, when trying to arrange a plurality of acoustic matching layers in order to broaden the frequency band A1, the acoustic impedance between the subject with which the ultrasonic probe 1 is in contact and the piezoelectric element 3 is matched. In particular, the acoustic matching layer arranged near the piezoelectric element 3 must be made of a material with high acoustic impedance. Assuming that the acoustic matching layer made of a material having a high acoustic impedance consists of one acoustic matching piece and that its Y-direction width is substantially the same as the Y-direction width of the piezoelectric element 3, as shown in FIG. Moreover, the frequency band A2 including the resonance frequency caused by the width of the acoustic matching layer in the Y direction may overlap with the frequency band A1 of the piezoelectric element 3 .
 被検体の筋構造および神経束等の微細な組織を観察するために高精細な超音波画像を生成する場合には、例えば-20dBの感度が使用されることが多いが、この感度において圧電素子3の周波数帯域A1と、音響整合層のY方向の幅に起因する周波数帯域A2とが重なり合うと、生成される超音波画像の画質が周波数帯域A2に起因して悪化してしまう。 A sensitivity of, for example, −20 dB is often used when generating high-definition ultrasound images for observing fine structures such as muscle structures and nerve bundles of a subject. If the frequency band A1 of No. 3 overlaps with the frequency band A2 resulting from the width of the acoustic matching layer in the Y direction, the image quality of the generated ultrasonic image deteriorates due to the frequency band A2.
 本実施の形態における音響整合片4Aは圧電素子3のY方向の幅よりも狭い幅L1を有しているため、音響整合片4Aの幅L1に起因する共振周波数は、音響整合片4Aが圧電素子3のY方向の幅と同一の幅を有すると仮定した場合の共振周波数よりも高い。そのため、音響整合片4Aの幅L1を調整することにより、-20dB等の高精細な超音波画像の生成に使用される感度において、音響整合片4Aの幅L1に起因する共振周波数を圧電素子3の周波数帯域A1における高周波数側の周波数よりも高くして、周波数帯域A1に重ならない周波数帯域A3を得ることができる。 Since the acoustic matching piece 4A in the present embodiment has a width L1 that is narrower than the width of the piezoelectric element 3 in the Y direction, the resonance frequency due to the width L1 of the acoustic matching piece 4A is It is higher than the resonance frequency when it is assumed that the width of the element 3 is the same as the width in the Y direction. Therefore, by adjusting the width L1 of the acoustic matching piece 4A, the resonance frequency caused by the width L1 of the acoustic matching piece 4A can be adjusted to the sensitivity of −20 dB or the like used for generating a high-definition ultrasonic image. A frequency band A3 that does not overlap with the frequency band A1 can be obtained by setting the frequency higher than the frequency on the high frequency side in the frequency band A1.
 また、Y方向において音響整合片4Aと隣接して配置された音響整合片4Bは、圧電素子3のY方向の幅よりも狭い幅L2を有しており、音響整合片4Bの幅L2に起因する共振周波数は、音響整合片4Bが圧電素子3のY方向の幅と同一の幅を有すると仮定した場合の共振周波数よりも高い。そのため、音響整合片4Aと同様に、音響整合片4Bの幅L2を調整することにより、-20dB等の高精細な超音波画像の生成に使用される感度において、音響整合片4Bの幅L1に起因する共振周波数を圧電素子3の周波数帯域A1における高周波数側の周波数よりも高くして、周波数帯域A1に重ならない周波数帯域を得ることができる。 Also, the acoustic matching piece 4B arranged adjacent to the acoustic matching piece 4A in the Y direction has a width L2 narrower than the width of the piezoelectric element 3 in the Y direction. The resonance frequency is higher than the resonance frequency when it is assumed that the acoustic matching piece 4B has the same width as the piezoelectric element 3 in the Y direction. Therefore, by adjusting the width L2 of the acoustic matching piece 4B in the same manner as the acoustic matching piece 4A, the width L1 of the acoustic matching piece 4B can be adjusted to the sensitivity of −20 dB or the like used for generating a high-definition ultrasonic image. It is possible to obtain a frequency band that does not overlap with the frequency band A1 by making the resulting resonance frequency higher than the frequency on the high frequency side in the frequency band A1 of the piezoelectric element 3 .
 このように、第1の音響整合層4は、圧電素子3のY方向の幅よりも狭い幅L1を有する音響整合片4Aと、圧電素子3のY方向の幅よりも狭い幅L2を有する音響整合片4Bにより構成されているため、音響インピーダンスが十分に高い材料により音響整合片4Aおよび4Bが構成されていたとしても、超音波画像の生成に使用される感度において、圧電素子3の周波数帯域A1と音響整合片4Aの幅L1に起因する周波数帯域A3とを互いに離し、圧電素子3の周波数帯域A1と音響整合片4Bの幅L2に起因する周波数帯域とを互いに離すことができる。 In this way, the first acoustic matching layer 4 includes an acoustic matching piece 4A having a width L1 narrower than the width of the piezoelectric element 3 in the Y direction and an acoustic matching piece 4A having a width L2 narrower than the width of the piezoelectric element 3 in the Y direction. Even if the acoustic matching pieces 4A and 4B are made of a material with a sufficiently high acoustic impedance, the frequency band of the piezoelectric element 3 is limited by the sensitivity used to generate the ultrasonic image. A1 and the frequency band A3 caused by the width L1 of the acoustic matching piece 4A can be separated from each other, and the frequency band A1 of the piezoelectric element 3 and the frequency band caused by the width L2 of the acoustic matching piece 4B can be separated from each other.
 以上から、実施の形態の超音波探触子1によれば、第1の音響整合層4~第4の音響整合層7の複数の音響整合層を有し、第1の音響整合層4が、圧電素子3のY方向の幅よりも狭い幅L1を有する音響整合片4Aと圧電素子3のY方向の幅よりも狭い幅L2を有する音響整合片4Bにより構成されているため、超音波画像の生成に用いられる周波数帯域A1を広帯域化しつつ、高画質な超音波画像を得ることができる。 From the above, according to the ultrasonic probe 1 of the embodiment, it has a plurality of acoustic matching layers of the first acoustic matching layer 4 to the fourth acoustic matching layer 7, and the first acoustic matching layer 4 is , the acoustic matching piece 4A having a width L1 narrower than the width of the piezoelectric element 3 in the Y direction and the acoustic matching piece 4B having a width L2 narrower than the width of the piezoelectric element 3 in the Y direction. It is possible to obtain a high-quality ultrasound image while widening the frequency band A1 used to generate .
 次に、本発明の実施の形態に係る超音波探触子1を有する超音波診断装置11について説明する。図4に示すように、超音波診断装置11において、超音波探触子1に、送受信部12、画像生成部13、表示制御部14およびモニタ15が順次接続されている。また、送受信部12、画像生成部13および表示制御部14に、装置制御部16が接続されている。また、装置制御部16に、入力装置17が接続されている。また、装置制御部16に、図示しないメモリが接続されている。
 また、超音波診断装置11は、超音波探触子1を含む超音波プローブ21を備えている。また、送受信部12、画像生成部13、表示制御部14および装置制御部16により超音波診断装置11用のプロセッサ22が構成されている。
Next, the ultrasonic diagnostic apparatus 11 having the ultrasonic probe 1 according to the embodiment of the invention will be described. As shown in FIG. 4, in an ultrasonic diagnostic apparatus 11, a transmitting/receiving section 12, an image generating section 13, a display control section 14 and a monitor 15 are connected to an ultrasonic probe 1 in this order. A device control unit 16 is connected to the transmission/reception unit 12 , the image generation unit 13 and the display control unit 14 . An input device 17 is also connected to the device control section 16 . A memory (not shown) is connected to the device controller 16 .
The ultrasonic diagnostic apparatus 11 also includes an ultrasonic probe 21 including the ultrasonic probe 1 . A processor 22 for the ultrasonic diagnostic apparatus 11 is configured by the transmitting/receiving section 12 , the image generating section 13 , the display control section 14 and the device control section 16 .
 送受信部12は、装置制御部16による制御の下で、超音波探触子1から超音波を送信し且つ超音波探触子1により取得された受信信号に基づいて音線信号を生成する。送受信部12は、図5に示すように、超音波探触子1に接続されるパルサ31と、超音波探触子1から順次直列に接続される増幅部32、AD(Analog Digital)変換部33、および、ビームフォーマ34を有している。 Under the control of the device control unit 16, the transmission/reception unit 12 transmits ultrasonic waves from the ultrasound probe 1 and generates sound ray signals based on the reception signals acquired by the ultrasound probe 1. As shown in FIG. 5, the transmitting/receiving section 12 includes a pulser 31 connected to the ultrasonic probe 1, an amplifier section 32 sequentially connected in series from the ultrasonic probe 1, and an AD (Analog Digital) conversion section. 33 and a beamformer 34 .
 パルサ31は、例えば、複数のパルス発生器を含んでおり、装置制御部16からの制御信号に応じて選択された送信遅延パターンに基づいて、超音波探触子1の複数の圧電素子3から送信される超音波が超音波ビームを形成するようにそれぞれの駆動信号を、遅延量を調節して複数の圧電素子3に供給する。このように、圧電素子3の電極にパルス状または連続波状の電圧が印加されると、圧電素子3が伸縮し、それぞれの圧電素子3からパルス状または連続波状の超音波が発生して、それらの超音波の合成波から、超音波ビームが形成される。 The pulsar 31 includes, for example, a plurality of pulse generators, and based on a transmission delay pattern selected according to a control signal from the device control unit 16, from the plurality of piezoelectric elements 3 of the ultrasonic probe 1 Each drive signal is supplied to the plurality of piezoelectric elements 3 after adjusting the delay amount so that the ultrasonic waves to be transmitted form ultrasonic beams. Thus, when a pulse-like or continuous-wave voltage is applied to the electrodes of the piezoelectric elements 3, the piezoelectric elements 3 expand and contract, and pulse-like or continuous-wave ultrasonic waves are generated from the respective piezoelectric elements 3. An ultrasonic beam is formed from the composite wave of ultrasonic waves.
 送信された超音波ビームは、例えば、被検体内の組織等において反射され、超音波プローブ21の超音波探触子1に向かって伝搬する。超音波探触子1のそれぞれの圧電素子3は、このようにして超音波探触子1に向かって伝搬する超音波エコーを受信することにより伸縮して、電気信号である受信信号を発生させ、これらの受信信号を増幅部32に出力する。 The transmitted ultrasonic beams are reflected, for example, by tissues within the subject, and propagate toward the ultrasonic probe 1 of the ultrasonic probe 21 . Each piezoelectric element 3 of the ultrasonic probe 1 expands and contracts by receiving the ultrasonic echoes propagating toward the ultrasonic probe 1 in this way, and generates a reception signal which is an electric signal. , and outputs these received signals to the amplifier 32 .
 増幅部32は、超音波探触子1のそれぞれの圧電素子3から入力された信号を増幅し、増幅した信号をAD変換部33に送信する。AD変換部33は、増幅部24から送信された信号をデジタルの受信データに変換し、これらの受信データをビームフォーマ34に送信する。ビームフォーマ34は、装置制御部16からの制御信号に応じて選択された受信遅延パターンに基づいて設定される音速または音速の分布に従い、AD変換部33によりデジタルデータに変換された各受信データに対してそれぞれの遅延を与えて加算することにより、いわゆる受信フォーカス処理を行う。この受信フォーカス処理により、AD変換部33で変換された各受信データが整相加算され且つ超音波エコーの焦点が絞り込まれた音線信号が取得される。 The amplification section 32 amplifies the signal input from each piezoelectric element 3 of the ultrasound probe 1 and transmits the amplified signal to the AD conversion section 33 . The AD converter 33 converts the signal transmitted from the amplifier 24 into digital received data and transmits the received data to the beamformer 34 . The beamformer 34 converts each reception data converted into digital data by the AD converter 33 according to the sound velocity or the distribution of the sound velocity set based on the reception delay pattern selected according to the control signal from the device controller 16. A so-called reception focus process is performed by giving respective delays and adding them. By this reception focusing process, each reception data converted by the AD conversion unit 33 is phased and added, and an acoustic ray signal in which the focus of the ultrasonic echo is narrowed down is acquired.
 画像生成部13は、図6に示されるように、信号処理部35、DSC(Digital Scan Converter:デジタルスキャンコンバータ)36および画像処理部37が順次直列に接続された構成を有している。
 信号処理部35は、送受信部12のビームフォーマ34により生成された音線信号に対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像信号を生成する。
As shown in FIG. 6, the image generator 13 has a configuration in which a signal processor 35, a DSC (Digital Scan Converter) 36, and an image processor 37 are connected in series.
The signal processing unit 35 performs envelope detection processing on the acoustic ray signal generated by the beamformer 34 of the transmitting/receiving unit 12 after performing attenuation correction due to distance according to the depth of the reflection position of the ultrasonic wave. generates a B-mode image signal, which is tomographic image information regarding tissues in the subject.
 DSC36は、信号処理部35で生成されたBモード画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)する。
 画像処理部37は、DSC36から入力されるBモード画像信号に階調処理等の各種の必要な画像処理を施した後、Bモード画像信号を表示制御部14に出力する。本発明では、画像処理部37により画像処理が施されたBモード画像信号を、単に、超音波画像と呼ぶ。
The DSC 36 converts (raster-converts) the B-mode image signal generated by the signal processing unit 35 into an image signal conforming to the normal television signal scanning method.
The image processing unit 37 performs various necessary image processing such as gradation processing on the B-mode image signal input from the DSC 36 , and then outputs the B-mode image signal to the display control unit 14 . In the present invention, the B-mode image signal subjected to image processing by the image processing unit 37 is simply referred to as an ultrasound image.
 表示制御部14は、装置制御部16の制御の下、画像生成部13により生成された超音波画像に所定の処理を施して、超音波画像をモニタ15に表示する。
 モニタ15は、表示制御部14による制御の下、画像生成部13により生成された超音波画像を表示するものであり、例えば、LCD(Liquid Crystal Display:液晶ディスプレイ)、有機ELディスプレイ(Organic Electroluminescence Display)等のディスプレイ装置を含む。
Under the control of the device control unit 16 , the display control unit 14 performs predetermined processing on the ultrasonic image generated by the image generation unit 13 and displays the ultrasonic image on the monitor 15 .
The monitor 15 displays the ultrasonic image generated by the image generation unit 13 under the control of the display control unit 14. For example, the monitor 15 displays an LCD (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display). ) and other display devices.
 装置制御部16は、予め記憶している制御プログラム等に基づいて、超音波診断装置11の各部の制御を行う。
 入力装置17は、ユーザが入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパッドおよびタッチパネル等を備えて構成することができる。
The apparatus control section 16 controls each section of the ultrasonic diagnostic apparatus 11 based on a pre-stored control program or the like.
The input device 17 is for a user to perform an input operation, and can be configured by including a keyboard, mouse, trackball, touch pad, touch panel, and the like.
 図示しないが、装置制御部16に接続されるメモリは、超音波診断装置11の制御プログラム等を記憶するものであり、メモリとしては、フラッシュメモリ、HDD(Hard Disc Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、FD(Flexible Disc:フレキシブルディスク)、MOディスク(Magneto-Optical disc:光磁気ディスク)、MT(Magnetic Tape:磁気テープ)、RAM(Random Access Memory:ランダムアクセスメモリ)、CD(Compact Disc:コンパクトディスク)、DVD(Digital Versatile Disc:デジタルバーサタイルディスク)、SDカード(Secure Digital card:セキュアデジタルカード)、USBメモリ(Universal Serial Bus memory:ユニバーサルシリアルバスメモリ)等の記録メディア、またはサーバ等を用いることができる。 Although not shown, the memory connected to the device control unit 16 stores the control program of the ultrasonic diagnostic device 11 and the like. Solid State Drive), FD (Flexible Disc), MO disc (Magneto-Optical disc), MT (Magnetic Tape), RAM (Random Access Memory) , CD (Compact Disc), DVD (Digital Versatile Disc), SD card (Secure Digital card), USB memory (Universal Serial Bus memory), etc. , or a server or the like can be used.
 なお、送受信部12、画像生成部13、表示制御部14および装置制御部16を有するプロセッサ22は、CPU(Central Processing Unit:中央処理装置)、および、CPUに各種の処理を行わせるための制御プログラムから構成されるが、FPGA(Field Programmable Gate Array:フィードプログラマブルゲートアレイ)、DSP(Digital Signal Processor:デジタルシグナルプロセッサ)、ASIC(Application Specific Integrated Circuit:アプリケーションスペシフィックインテグレイテッドサーキット)、GPU(Graphics Processing Unit:グラフィックスプロセッシングユニット)、その他のIC(Integrated Circuit:集積回路)を用いて構成されてもよく、もしくはそれらを組み合わせて構成されてもよい。 In addition, the processor 22 having the transmission/reception unit 12, the image generation unit 13, the display control unit 14, and the device control unit 16 is a CPU (Central Processing Unit), and controls for causing the CPU to perform various processes. Program consists of FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), GPU (Graphics Processing Unit) : graphics processing unit), other ICs (Integrated Circuits), or may be configured by combining them.
 また、プロセッサ22の送受信部12、画像生成部13、表示制御部14および装置制御部16は、部分的にあるいは全体的に1つのCPU等に統合させて構成されることもできる。 Also, the transmitting/receiving section 12, the image generating section 13, the display control section 14, and the device control section 16 of the processor 22 can be partially or wholly integrated into one CPU or the like.
 本発明の実施の形態における超音波診断装置11は、本発明の実施の形態に係る超音波探触子1を備えているため、送受信部12により超音波探触子1から被検体に送信される超音波の周波数帯域と、超音波探触子1で受信される超音波の周波数帯域を広帯域化しつつ、高画質な超音波画像を得ることができる。 Since the ultrasonic diagnostic apparatus 11 according to the embodiment of the present invention includes the ultrasonic probe 1 according to the embodiment of the present invention, the transmitting/receiving unit 12 transmits from the ultrasonic probe 1 to the subject. While broadening the frequency band of the ultrasonic waves received by the ultrasonic probe 1 and the frequency band of the ultrasonic waves received by the ultrasonic probe 1, a high-quality ultrasonic image can be obtained.
 なお、図1に示すように、隣り合う圧電素子3間、隣り合う第1の音響整合層4間、隣り合う第2の音響整合層5間、隣り合う第3の音響整合層6間および隣り合う第4の音響整合層7間に充填される充填剤SPとして、例えば、モメンティブ社製RTV630等のシリコン樹脂、エポキシテクノロジー社製EpoteK310M等のエポキシ樹脂、ウレタン樹脂等が使用され得る。 As shown in FIG. 1, between adjacent piezoelectric elements 3, between adjacent first acoustic matching layers 4, between adjacent second acoustic matching layers 5, between adjacent third acoustic matching layers 6, and between adjacent As the filler SP filled between the matching fourth acoustic matching layers 7, for example, silicon resin such as RTV630 manufactured by Momentive, epoxy resin such as EpoteK310M manufactured by Epoxy Technology, urethane resin, or the like can be used.
 また、第1の音響整合層4において互いに隣接して配置された音響整合片4Aと音響整合片4Bとの間は、充填剤SPと同様の充填剤で充填され得る。これにより、何らかの原因により音響整合片4Aと音響整合片4Bが接触してしまうこと等が防止され、より安定して音響整合片4Aおよび4Bが配置され得る。 Also, the space between the acoustic matching piece 4A and the acoustic matching piece 4B arranged adjacent to each other in the first acoustic matching layer 4 can be filled with a filler similar to the filler SP. This prevents the acoustic matching piece 4A and the acoustic matching piece 4B from coming into contact with each other for some reason, so that the acoustic matching pieces 4A and 4B can be arranged more stably.
 また、第1の音響整合層4~第4の音響整合層7を構成する材料は、特に限定されるものではないが、例えば、エポキシ樹脂またはウレタン樹脂等の樹脂材料に、金属の微粒子、金属酸化物の微粒子またはセラミックの微粒子を、THINKY社製泡取り練太郎ARV-310P等の真空脱泡ミキサまたは遊星式のミキサ等で混錬した材料が用いられ得る。この場合に、樹脂材料に混錬される微粒子の総数を調整することで、完成した材料中の音速を調整できる。 The materials constituting the first acoustic matching layer 4 to the fourth acoustic matching layer 7 are not particularly limited. A material obtained by kneading oxide fine particles or ceramic fine particles with a vacuum defoaming mixer such as Avatori Mixer ARV-310P manufactured by THINKY or a planetary mixer can be used. In this case, the speed of sound in the finished material can be adjusted by adjusting the total number of fine particles kneaded into the resin material.
 微粒子の材料としては、例えば、鉄、タングステン、アルミナ、ジルコニアまたはシリカ等が用いられ得る。微粒子は、第1の音響整合層4~第4の音響整合層7中の超音波の減衰を低減するために、0.01μm以上100.00μm以下の直径を有することが好ましく、0.10μm以上10.00μm以下の直径を有することがより好ましい。 For example, iron, tungsten, alumina, zirconia, silica, or the like can be used as the material of the fine particles. In order to reduce the attenuation of ultrasonic waves in the first acoustic matching layer 4 to the fourth acoustic matching layer 7, the fine particles preferably have a diameter of 0.01 μm or more and 100.00 μm or less, and 0.10 μm or more. More preferably, it has a diameter of 10.00 μm or less.
 また、音響整合片4Aの幅方向の共振周波数すなわち幅L1に起因する共振周波数は、例えば高精細な超音波画像を得るために、-20dBの感度において圧電素子3の周波数帯域A1の高周波数側の周波数よりも高いことが説明されているが、圧電素子3の厚み方向の共振周波数の振幅値の少なくとも半値をとる周波数帯域における高周波数側の周波数よりも高ければ、画質を低下させることなく高精細な超音波画像を得ることができる。また、音響整合片4Aの幅L1に起因する共振周波数が、圧電素子3の厚み方向の共振周波数の振幅の1/10の値をとる周波数帯域における高周波数側の周波数よりも高いことが、画質を低下させることなく高精細な超音波画像を得る観点において、より好ましい。 Further, the resonance frequency in the width direction of the acoustic matching piece 4A, that is, the resonance frequency caused by the width L1 is set at the high frequency side of the frequency band A1 of the piezoelectric element 3 at a sensitivity of −20 dB in order to obtain a high-definition ultrasonic image, for example. However, if it is higher than the frequency on the high frequency side in the frequency band that takes at least half the amplitude value of the resonance frequency in the thickness direction of the piezoelectric element 3, the high frequency can be obtained without degrading the image quality. A fine ultrasound image can be obtained. Further, the resonance frequency caused by the width L1 of the acoustic matching piece 4A is higher than the frequency on the high frequency side in the frequency band having a value of 1/10 of the amplitude of the resonance frequency in the thickness direction of the piezoelectric element 3. It is more preferable from the viewpoint of obtaining a high-definition ultrasonic image without lowering the .
 音響整合片4Bの幅L2に起因する共振周波数についても、音響整合片4Aの幅L1に起因する共振周波数と同様に、圧電素子3の厚み方向の共振周波数の振幅値の少なくとも半値をとる周波数帯域における高周波数側の周波数よりも高いことが好ましく、圧電素子3の厚み方向の共振周波数の振幅の1/10の値をとる周波数帯域における高周波数側の周波数よりも高いことがより好ましい。 The resonance frequency caused by the width L2 of the acoustic matching piece 4B is also in a frequency band that takes at least half the amplitude value of the resonance frequency in the thickness direction of the piezoelectric element 3, similarly to the resonance frequency caused by the width L1 of the acoustic matching piece 4A. is preferably higher than the frequency on the high frequency side in the thickness direction of the piezoelectric element 3, and more preferably higher than the frequency on the high frequency side in the frequency band having a value of 1/10 of the amplitude of the resonance frequency in the thickness direction of the piezoelectric element 3.
 また、高精細な超音波画像を生成する場合でなく、-6dB等の、通常の超音波画像を生成する場合に使用される感度においても、高画質な超音波画像を得るために、音響整合片4Aの幅L1に起因する共振周波数と音響整合片4Bの幅L2に起因する共振周波数は、圧電素子3の厚み方向の周波数帯域A1の高周波数側の周波数よりも高いことが好ましい。 In order to obtain a high-quality ultrasound image, even at a sensitivity of -6 dB or the like, which is used when generating a normal ultrasound image, rather than when generating a high-definition ultrasound image, acoustic matching The resonance frequency caused by the width L1 of the piece 4A and the resonance frequency caused by the width L2 of the acoustic matching piece 4B are preferably higher than the frequency on the high frequency side of the frequency band A1 in the thickness direction of the piezoelectric element 3 .
 また、第1の音響整合層4の音響整合片4Aの幅L1と音響整合片4Bの幅L2は、互いに同一の長さを有することができるが、互いに異なる長さを有することもできる。この場合でも、音響整合片4Aの幅L1と音響整合片4Bの幅L2は、圧電素子3のY方向の幅よりも狭いため、音響整合片4Aの幅L1に起因する共振周波数と音響整合片4Bの幅L2に起因する共振周波数を、圧電素子3の周波数帯域A1の高周波数側の周波数よりも高くできる。 Also, the width L1 of the acoustic matching piece 4A and the width L2 of the acoustic matching piece 4B of the first acoustic matching layer 4 can have the same length, but can also have different lengths. Even in this case, the width L1 of the acoustic matching piece 4A and the width L2 of the acoustic matching piece 4B are narrower than the width of the piezoelectric element 3 in the Y direction. The resonance frequency caused by the width L2 of 4B can be made higher than the frequency on the high frequency side of the frequency band A1 of the piezoelectric element 3 .
 また、第1の音響整合層4が2つの音響整合片4Aおよび4Bにより構成されることが説明されているが、第1の音響整合層4は、Y方向に並んで配置された3つ以上の音響整合片を有することもできる。第1の音響整合層4が3つ以上の音響整合片を有している場合には、第1の音響整合層4が2つの音響整合片4Aおよび4Bを有している場合と比べて、それぞれの音響整合片のY方向の幅を狭くできるため、それぞれの音響整合片のY方向の幅に起因する共振周波数を、圧電素子3の周波数帯域A1の高周波数側の周波数よりも、さらに高くできる。 Also, although it is described that the first acoustic matching layer 4 is composed of two acoustic matching pieces 4A and 4B, the first acoustic matching layer 4 includes three or more pieces arranged side by side in the Y direction. of acoustic matching pieces. When the first acoustic matching layer 4 has three or more acoustic matching pieces, compared to the case where the first acoustic matching layer 4 has two acoustic matching pieces 4A and 4B, Since the width of each acoustic matching piece in the Y direction can be narrowed, the resonance frequency caused by the width of each acoustic matching piece in the Y direction can be made higher than the frequency on the high frequency side of the frequency band A1 of the piezoelectric element 3. can.
 また、第1の音響整合層4は、例えば図7に示すように、Y方向およびX方向にそれぞれ配列された複数の音響整合片から構成されることもできる。図7の例では、第1の音響整合層41は、四角柱形状の複数の音響整合片41Aを有している。複数の音響整合片41Aは、X方向およびY方向にそれぞれ隙間を介して配置されている。 Also, the first acoustic matching layer 4 can be composed of a plurality of acoustic matching pieces arranged in the Y direction and the X direction, respectively, as shown in FIG. 7, for example. In the example of FIG. 7, the first acoustic matching layer 41 has a plurality of square prism-shaped acoustic matching pieces 41A. A plurality of acoustic matching pieces 41A are arranged with gaps in the X direction and the Y direction.
 また、複数の音響整合片41A間の隙間は、充填剤SPと同様の充填剤で埋められることができる。 Also, the gaps between the plurality of acoustic matching pieces 41A can be filled with a filler similar to the filler SP.
 また、例えば図8に示すように、第1の音響整合層42は、円柱形状を有する複数の音響整合片42Aにより構成されることもできる。
 図7および図8では、音響整合片41Aおよび42Aの形状として、四角柱形状および円柱形状が例示されているが、正多角柱等の任意の柱形状の音響整合片が使用されてもよく、正多角錐または円錐等の任意の錐形状の音響整合片が使用されてもよい。このような形状を有する音響整合片は、例えば、エッチング等の技術により形成されることができる。
Further, as shown in FIG. 8, for example, the first acoustic matching layer 42 may be composed of a plurality of cylindrical acoustic matching pieces 42A.
In FIGS. 7 and 8, the shapes of the acoustic matching pieces 41A and 42A are exemplified by a square prism shape and a cylindrical shape. Any cone-shaped acoustic matching piece, such as a regular polygonal pyramid or a cone, may be used. An acoustic matching piece having such a shape can be formed by a technique such as etching, for example.
 また、第1の音響整合層4、41および42を構成する音響整合片の数は、音響整合片のY方向の幅が圧電素子3のY方向の幅よりも狭ければ、特に限定されるものではない。 The number of acoustic matching pieces constituting the first acoustic matching layers 4, 41 and 42 is particularly limited if the width of the acoustic matching pieces in the Y direction is narrower than the width of the piezoelectric element 3 in the Y direction. not a thing
 また、第1の音響整合層4、41および42の複数の音響整合片は、+Z方向から見た場合に、例えば、図9~図11に示すようなパターンを有するように配列されていてもよい。図9に示す例では、複数の四角柱形状の音響整合片51がX方向において互い違いにずれて配置されている。図10に示す例では、複数の正三角柱形状の音響整合片52がXY面内で最密充填されるように配列されている。図11に示す例では、複数の正六角柱形状の音響整合片53がXY面内で最密充填されるように配列され、いわゆるハニカム形状のパターンが形成されている。 Also, the plurality of acoustic matching pieces of the first acoustic matching layers 4, 41 and 42 may be arranged to have patterns as shown in FIGS. 9 to 11 when viewed from the +Z direction. good. In the example shown in FIG. 9, a plurality of square prism-shaped acoustic matching pieces 51 are arranged in a staggered manner in the X direction. In the example shown in FIG. 10, a plurality of equilateral triangular prism-shaped acoustic matching pieces 52 are arranged so as to be closely packed in the XY plane. In the example shown in FIG. 11, a plurality of regular hexagonal prismatic acoustic matching pieces 53 are arranged so as to be closely packed in the XY plane, forming a so-called honeycomb pattern.
 また、超音波探触子1のY方向に配列されている複数の第1の音響整合層4、41または42のうち、第1の音響整合層4、41または42毎に、複数の音響整合片のY方向の幅の合計値を変化させるように設計できる。これにより、Y方向において、超音波探触子1から発せられる超音波の音速を局所的に調節できる。これにより、超音波探触子1の音響的な設計を多種多様に行うことが可能である。 Further, among the plurality of first acoustic matching layers 4, 41 or 42 arranged in the Y direction of the ultrasound probe 1, each of the first acoustic matching layers 4, 41 or 42 has a plurality of acoustic matching layers. It can be designed to vary the sum of the Y-direction widths of the strips. Thereby, the speed of sound of the ultrasonic waves emitted from the ultrasonic probe 1 can be locally adjusted in the Y direction. As a result, the ultrasonic probe 1 can be acoustically designed in a wide variety of ways.
 また、超音波探触子1のX方向の中央部に位置する第1の音響整合層4、41および42ほど複数の音響整合片をX方向に比較的密に配置し、超音波探触子1のX方向の両端部に位置する第1の音響整合層4、41および42ほど複数の音響整合片をX方向に比較的疎に配置することもできる。これにより、いわゆるアポダイゼーションの手法のように、超音波探触子1のX方向の両端部から発せられる超音波ビームの発射を抑制して超音波ビームを絞り、超音波探触子1のX方向の中央部から外れた方向に超音波ビームが発射されるいわゆるサイドローブを低減できる。 Also, the first acoustic matching layers 4, 41, and 42 located in the center of the X direction of the ultrasonic probe 1 have a plurality of acoustic matching pieces arranged relatively densely in the X direction, and the ultrasonic probe A plurality of acoustic matching pieces can be arranged relatively sparsely in the X direction in the first acoustic matching layers 4, 41 and 42 positioned at both ends of the X direction. As a result, like a so-called apodization method, the emission of the ultrasonic beams emitted from both ends of the ultrasonic probe 1 in the X direction is suppressed, the ultrasonic beams are narrowed, and the X direction of the ultrasonic probe 1 is suppressed. It is possible to reduce so-called side lobes in which ultrasonic beams are emitted in directions deviating from the center of the .
 また、第1の音響整合層4~第4の音響整合層7のうち、第1の音響整合層4のみが複数の音響整合片により構成されることが説明されているが、第1の音響整合層4~第4の音響整合層7の少なくとも1つが複数の音響整合片により構成されることもできる。しかしながら、圧電素子3の最も近傍に位置する第1の音響整合層4は、第2の音響整合層5~第4の音響整合層7よりも音響インピーダンスの高い材料で構成されるため、第1の音響整合層4が複数の音響整合片により構成されることが、高画質な超音波画像を得る観点から、最も好ましい。 Further, it is described that only the first acoustic matching layer 4 among the first acoustic matching layer 4 to the fourth acoustic matching layer 7 is composed of a plurality of acoustic matching pieces. At least one of the matching layer 4 to the fourth acoustic matching layer 7 may be composed of a plurality of acoustic matching pieces. However, since the first acoustic matching layer 4 located closest to the piezoelectric element 3 is made of a material having a higher acoustic impedance than the second acoustic matching layer 5 to the fourth acoustic matching layer 7, the first From the viewpoint of obtaining a high-quality ultrasound image, it is most preferable that the acoustic matching layer 4 is composed of a plurality of acoustic matching pieces.
 また、超音波探触子1は、第1の音響整合層4~第4の音響整合層7の4つの音響整合層を有することが説明されているが、5つ以上の音響整合層を有することもできる。超音波探触子1が多くの音響整合層を持つほど、圧電素子3に近い位置に配置される音響整合層を音響インピーダンスの高い材料で構成する必要があるため、音響整合層を1つの音響整合片で構成すると、音響整合片のY方向の幅に起因する共振周波数が、圧電素子3の周波数帯域A1に近づきやすくなると考えられる。本発明の超音波探触子1は、音響整合片のY方向の幅を圧電素子3のY方向の幅よりも狭くすることで、圧電素子3の周波数帯域A1と音響整合片のY方向の幅に起因する周波数帯域を互いに離すことができるため、超音波探触子1が多くの音響整合層を持つほど有用である。 In addition, although the ultrasonic probe 1 has been described as having four acoustic matching layers, the first acoustic matching layer 4 to the fourth acoustic matching layer 7, it has five or more acoustic matching layers. can also The more acoustic matching layers the ultrasonic probe 1 has, the more the acoustic matching layers placed closer to the piezoelectric element 3 need to be made of a material with a higher acoustic impedance. It is considered that the resonance frequency caused by the width of the acoustic matching piece in the Y direction tends to approach the frequency band A1 of the piezoelectric element 3 when the matching piece is used. In the ultrasonic probe 1 of the present invention, the width of the acoustic matching piece in the Y direction is narrower than the width of the piezoelectric element 3 in the Y direction. The more acoustic matching layers the ultrasonic probe 1 has, the more useful it is because the frequency bands due to the width can be separated from each other.
 また、送受信部12は、プロセッサ22に含まれることが説明されているが、電気回路により構成されることもできる。
 また、送受信部12は、超音波プローブ21に含まれていてもよい。
 このように、送受信部12が電気回路により構成されている場合でも、超音波プローブ21に含まれる場合でも、本発明の実施の形態における超音波診断装置11は、本発明の実施の形態に係る超音波探触子1を備えているため、送受信部12により超音波探触子1から被検体に送信される超音波の周波数帯域と、超音波探触子1で受信される超音波の周波数帯域を広帯域化しつつ、高画質な超音波画像を得ることができる。
Also, although the transmitter/receiver 12 is described as being included in the processor 22, it can also be configured by an electric circuit.
Also, the transmitter/receiver 12 may be included in the ultrasonic probe 21 .
As described above, regardless of whether the transmitting/receiving unit 12 is configured by an electric circuit or is included in the ultrasonic probe 21, the ultrasonic diagnostic apparatus 11 according to the embodiment of the present invention Since the ultrasonic probe 1 is provided, the frequency band of ultrasonic waves transmitted from the ultrasonic probe 1 to the subject by the transmitting/receiving unit 12 and the frequency of the ultrasonic waves received by the ultrasonic probe 1 A high-quality ultrasound image can be obtained while widening the band.
1 超音波探触子、2 バッキング材、3 圧電素子、4,41,42 第1の音響整合層、4A,4B,41A,42A,51,52,53 音響整合片、5 第2の音響整合層、6 第3の音響整合層、7 第4の音響整合層、8 音響レンズ、11 超音波診断装置、12 送受信回路、13 画像生成部、14 表示制御部、15 モニタ、16 装置制御部、17 入力装置、21 超音波プローブ、22 プロセッサ、31 パルサ、32 増幅部、33 AD変換部、34 ビームフォーマ、35 信号処理部、36 DSC、37 画像処理部、A1,A2,A3 周波数帯域、L1,L2 幅、SP 充填剤。 1 Ultrasonic probe 2 Backing material 3 Piezoelectric element 4, 41, 42 First acoustic matching layer 4A, 4B, 41A, 42A, 51, 52, 53 Acoustic matching piece 5 Second acoustic matching layer, 6 third acoustic matching layer, 7 fourth acoustic matching layer, 8 acoustic lens, 11 ultrasonic diagnostic apparatus, 12 transmission/reception circuit, 13 image generation unit, 14 display control unit, 15 monitor, 16 device control unit, 17 Input device, 21 Ultrasound probe, 22 Processor, 31 Pulser, 32 Amplifier, 33 AD converter, 34 Beamformer, 35 Signal processor, 36 DSC, 37 Image processor, A1, A2, A3 Frequency band, L1 , L2 width, SP filler.

Claims (9)

  1.  複数の圧電素子がバッキング材の上に配列方向に沿って配列された超音波探触子であって、
     それぞれの前記圧電素子の上に積層された複数の音響整合層を備え、
     前記複数の音響整合層のうち少なくとも1つの音響整合層は、前記圧電素子の前記配列方向の幅よりも狭い幅を有する少なくとも1つの音響整合片からなる超音波探触子。
    An ultrasonic probe in which a plurality of piezoelectric elements are arranged along the arrangement direction on a backing material,
    A plurality of acoustic matching layers laminated on each of the piezoelectric elements,
    At least one acoustic matching layer among the plurality of acoustic matching layers is an ultrasonic probe comprising at least one acoustic matching piece having a width narrower than the width of the piezoelectric elements in the arrangement direction.
  2.  前記少なくとも1つの音響整合層は、前記複数の音響整合層のうち前記圧電素子に最も近接する音響整合層である請求項1に記載の超音波探触子。 The ultrasonic probe according to claim 1, wherein the at least one acoustic matching layer is the acoustic matching layer closest to the piezoelectric element among the plurality of acoustic matching layers.
  3.  前記複数の音響整合層は、前記圧電素子から離れるほど段階的に音響インピーダンスが低くなる、4層以上の音響整合層からなる請求項1または2に記載の超音波探触子。 The ultrasonic probe according to claim 1 or 2, wherein the plurality of acoustic matching layers are composed of four or more acoustic matching layers, the acoustic impedance of which decreases stepwise as the distance from the piezoelectric element increases.
  4.  前記音響整合片の幅方向の共振周波数は、前記圧電素子の厚み方向の共振周波数の振幅値の少なくとも半値をとる周波数帯域における高周波数側の周波数より高い請求項1~3のいずれか一項に記載の超音波探触子。 4. The acoustic matching piece according to any one of claims 1 to 3, wherein the resonance frequency in the width direction of the acoustic matching piece is higher than the frequency on the high frequency side in a frequency band that takes at least half the amplitude value of the resonance frequency in the thickness direction of the piezoelectric element. An ultrasonic probe as described.
  5.  前記音響整合片の幅方向の共振周波数は、前記圧電素子の厚み方向の共振周波数の振幅値の1/10の値をとる周波数帯域における高周波数側の周波数より高い請求項4に記載の超音波探触子。 5. The ultrasonic wave according to claim 4, wherein the resonance frequency in the width direction of the acoustic matching piece is higher than the frequency on the high frequency side in a frequency band having a value of 1/10 of the amplitude value of the resonance frequency in the thickness direction of the piezoelectric element. probe.
  6.  前記少なくとも1つの音響整合層は、前記配列方向に配列された複数の前記音響整合片からなる請求項1~5のいずれか一項に記載の超音波探触子。 The ultrasonic probe according to any one of claims 1 to 5, wherein said at least one acoustic matching layer comprises a plurality of said acoustic matching pieces arranged in said arrangement direction.
  7.  前記少なくとも1つの音響整合層は、前記配列方向および前記配列方向に直交する方向にそれぞれ配列された複数の前記音響整合片からなる請求項6に記載の超音波探触子。 The ultrasonic probe according to claim 6, wherein said at least one acoustic matching layer comprises a plurality of said acoustic matching pieces arranged in said arrangement direction and in a direction orthogonal to said arrangement direction.
  8.  前記音響整合片は、前記複数の音響整合層の積層方向に延びる多角柱、円柱、多角錐および円錐のいずれかの形状を有する請求項7に記載の超音波探触子。 The ultrasonic probe according to claim 7, wherein the acoustic matching piece has any shape of a polygonal column, a cylinder, a polygonal pyramid, and a cone extending in the stacking direction of the plurality of acoustic matching layers.
  9.  前記複数の前記音響整合片の間に樹脂からなる充填剤が配置されている請求項6~8のいずれか一項に記載の超音波探触子。 The ultrasonic probe according to any one of claims 6 to 8, wherein a resin filler is arranged between the plurality of acoustic matching pieces.
PCT/JP2022/006899 2021-03-26 2022-02-21 Ultrasonic probe WO2022202034A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023508807A JPWO2022202034A1 (en) 2021-03-26 2022-02-21
EP22774834.0A EP4319196A1 (en) 2021-03-26 2022-02-21 Ultrasonic probe
US18/465,661 US20230414200A1 (en) 2021-03-26 2023-09-12 Ultrasound transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053464 2021-03-26
JP2021-053464 2021-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/465,661 Continuation US20230414200A1 (en) 2021-03-26 2023-09-12 Ultrasound transducer

Publications (1)

Publication Number Publication Date
WO2022202034A1 true WO2022202034A1 (en) 2022-09-29

Family

ID=83397019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006899 WO2022202034A1 (en) 2021-03-26 2022-02-21 Ultrasonic probe

Country Status (4)

Country Link
US (1) US20230414200A1 (en)
EP (1) EP4319196A1 (en)
JP (1) JPWO2022202034A1 (en)
WO (1) WO2022202034A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155857A (en) * 1997-12-01 1999-06-15 Hitachi Medical Corp Ultrasonic probe and ultrasonograph using it
JP2005064623A (en) * 2003-08-19 2005-03-10 Ookusonikku:Kk Array-type ultrasonic wave probe and manufacturing method thereof
JP2006270725A (en) * 2005-03-25 2006-10-05 Toshiba Corp Ultrasonic probe, and ultrasonographic device
JP2016192666A (en) 2015-03-31 2016-11-10 コニカミノルタ株式会社 Ultrasonic transducer, method of manufacturing the same, and ultrasonic probe
JP2020175049A (en) * 2019-04-23 2020-10-29 コニカミノルタ株式会社 Ultrasonic probe and ultrasonic diagnostic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155857A (en) * 1997-12-01 1999-06-15 Hitachi Medical Corp Ultrasonic probe and ultrasonograph using it
JP2005064623A (en) * 2003-08-19 2005-03-10 Ookusonikku:Kk Array-type ultrasonic wave probe and manufacturing method thereof
JP2006270725A (en) * 2005-03-25 2006-10-05 Toshiba Corp Ultrasonic probe, and ultrasonographic device
JP2016192666A (en) 2015-03-31 2016-11-10 コニカミノルタ株式会社 Ultrasonic transducer, method of manufacturing the same, and ultrasonic probe
JP2020175049A (en) * 2019-04-23 2020-10-29 コニカミノルタ株式会社 Ultrasonic probe and ultrasonic diagnostic apparatus

Also Published As

Publication number Publication date
JPWO2022202034A1 (en) 2022-09-29
EP4319196A1 (en) 2024-02-07
US20230414200A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP4897370B2 (en) Ultrasonic transducer array, ultrasonic probe, ultrasonic endoscope, ultrasonic diagnostic equipment
WO2007046180A1 (en) Ultrasonic transducer, ultrasonic probe and ultrasonic imaging device
US20080009741A1 (en) Ultrasonic transducer array, ultrasonic probe, ultrasonic endoscope and ultrasonic diagnostic apparatus
JP5702326B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus including the same
JP4286621B2 (en) Ultrasonic transceiver
US11585922B2 (en) Ultrasound imaging probe with a gradient refractive index lens
WO2014156976A1 (en) Unimorph ultrasonic transducer
JP4632728B2 (en) Ultrasonic probe and ultrasonic diagnostic imaging apparatus
US9839411B2 (en) Ultrasound diagnostic apparatus probe having laminated piezoelectric layers oriented at different angles
JP2024019547A (en) Acoustic lenses for ultrasound probes, ultrasound probes, ultrasound probes, and ultrasound diagnostic equipment
WO2022202034A1 (en) Ultrasonic probe
JP5776542B2 (en) Ultrasonic probe and ultrasonic inspection device
US8876718B2 (en) Ultrasound diagnostic apparatus and ultrasound image generating method
JP5842533B2 (en) Ultrasonic probe and ultrasonic inspection device
JPH03151952A (en) Apparatus for ultrasonic therapy
JP2010219774A (en) Ultrasound transducer, ultrasound probe, and ultrasound diagnostic apparatus
JP7305479B2 (en) Ultrasonic probe and ultrasonic diagnostic equipment
US8663115B2 (en) Ultrasound probe and ultrasound diagnostic apparatus
JP2009201053A (en) Ultrasonic probe, manufacturing method thereof and ultrasonic diagnostic device using the ultrasonic probe
JP5682762B2 (en) Piezoelectric device and ultrasonic probe
US20090088642A1 (en) Ultrasonic imaging apparatus and ultrasonic imaging method
JP2024028300A (en) Ultrasonic transducers, ultrasound probes and ultrasound diagnostic equipment
WO2019208387A1 (en) Ultrasound system and ultrasound system control method
JP2007289283A (en) Ultrasonic probe
JP2008035903A (en) Ultrasonic diagnostic apparatus and method for generating ultrasonic diagnostic image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508807

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022774834

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022774834

Country of ref document: EP

Effective date: 20231026