WO2022201818A1 - Cement composition and method for producing same - Google Patents

Cement composition and method for producing same Download PDF

Info

Publication number
WO2022201818A1
WO2022201818A1 PCT/JP2022/002355 JP2022002355W WO2022201818A1 WO 2022201818 A1 WO2022201818 A1 WO 2022201818A1 JP 2022002355 W JP2022002355 W JP 2022002355W WO 2022201818 A1 WO2022201818 A1 WO 2022201818A1
Authority
WO
WIPO (PCT)
Prior art keywords
gypsum
mass
clinker
cement composition
limestone
Prior art date
Application number
PCT/JP2022/002355
Other languages
French (fr)
Japanese (ja)
Inventor
謙介 金井
翔平 佐々木
大貴 今津
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to NZ797549A priority Critical patent/NZ797549A/en
Priority to CN202280006344.6A priority patent/CN116249680B/en
Priority to AU2022246322A priority patent/AU2022246322B2/en
Priority to KR1020237004567A priority patent/KR102593416B1/en
Publication of WO2022201818A1 publication Critical patent/WO2022201818A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/02Alcohols; Phenols; Ethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/122Hydroxy amines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a cement composition and a method for producing the same.
  • Patent Document 1 in order to provide an admixture for mortar or concrete and a cement composition used in civil engineering structures and concrete secondary products that have the effect of increasing both 7-day strength and 28-day strength.
  • Patent Document 2 which is an admixture containing trialkanolamine and diethylene glycol, and discloses a cement composition comprising cement and the admixture.
  • Patent Document 2 when manufacturing buildings, civil engineering structures, and secondary concrete products, it is possible to overcome the drawback of low initial strength of fly ash and actively mix fly ash with the cement used.
  • An object of the present invention is to provide a cement composition having high strength and excellent fluidity, and a method for producing the same.
  • the present invention provides the following ⁇ 1> to ⁇ 7>.
  • ⁇ 1> Ordinary Portland cement clinker containing 51 to 62% by mass of C 3 S and 7 to 10% by mass of C 4 AF calculated by the Borg formula, gypsum, limestone, and an auxiliary agent containing alkanolamine wherein the alkanolamine content in the total amount of the ordinary Portland cement clinker, the gypsum, and the auxiliary agent is 10 to 210 mg/kg, and the ordinary Portland cement clinker, the gypsum, the auxiliary agent, and the A cement composition having a limestone content of 3 to 10% by mass in the total amount of limestone, a lattice volume of the C 4 AF exceeding 0.4290 nm 3 , and a Blaine specific surface area of 2800 to 3500 cm 2 /g. .
  • ⁇ 2> The cement composition according to ⁇ 1>, wherein the content of the auxiliary agent in the total amount of the ordinary Portland cement clinker, the gypsum, and the auxiliary agent is 80 to 350 mg/kg.
  • ⁇ 3> The cement composition according to ⁇ 1> or ⁇ 2>, wherein the auxiliary agent contains an aliphatic polyhydric alcohol.
  • ⁇ 4> ⁇ 1> to ⁇ 3 > wherein the content of the gypsum in the total amount of the ordinary Portland cement clinker, the gypsum, and the auxiliary agent is 0.7 to 2.8% by mass in terms of SO3
  • the alkanolamine is at least one selected from the group consisting of diethanolisopropanolamine, triisopropanolamine, ethanoldiisopropanolamine, N-methyldiethanolamine, and Nn-butyldiethanolamine ⁇ 1> to ⁇ 4>
  • the cement composition according to any one of ⁇ 6> The cement composition according to any one of ⁇ 3> to ⁇ 5>, wherein the aliphatic polyhydric alcohol is at least one selected from the group consisting of glycerin and diethylene glycol.
  • the cement composition of the present invention comprises ordinary Portland cement clinker having 51 to 62% by mass of C 3 S and 7 to 10% by mass of C 4 AF calculated by the Borg formula, gypsum, limestone, and alkanolamine.
  • the content of alkanolamine in the total amount of ordinary Portland cement clinker, gypsum, and auxiliary agents is 10 to 210 mg / kg, and the total amount of ordinary Portland cement clinker, gypsum, auxiliary agents, and limestone
  • the content of limestone in the mass is 3-10% by mass
  • the lattice volume of C 4 AF is greater than 0.4290 nm 3
  • the Blaine specific surface area is 2800-3500 cm 2 /g.
  • a cement composition is usually obtained by firing prepared raw materials in a rotary kiln, adding gypsum and limestone to the obtained clinker, and pulverizing it in a finishing mill until it reaches the desired Blaine specific surface area.
  • pulverizing cement by a finishing mill it is common practice to add a dispersant such as diethylene glycol to the material to be pulverized to prevent a decrease in pulverization efficiency caused by aggregation of particles.
  • Control of strength development which is a major physical property of ordinary Portland cement, is generally carried out by adjusting raw material blending and cement fineness (Blaine specific surface area).
  • the Blaine specific surface area of the cement composition is adjusted in the pulverization process by the finishing mill, and is a factor controlling the strength level at each material age, so it is regarded as a quality control item.
  • Blaine's specific surface area increases the initial strength of mortar and concrete in particular, but reduces the fluidity during kneading of the cement paste, reducing work efficiency. If the amount of chemical admixture is increased to maintain fluidity, the cost will increase, and if the amount of water is increased, drying shrinkage of the cured product will increase, promoting cracking of the cured product and impairing durability.
  • the Blaine specific surface area of the cement composition is adjusted in the pulverization process by the finishing mill, and reducing the Blaine specific surface area leads to power reduction during the operation of the finishing mill.
  • control of strength development can be carried out by adjusting the ratio of limestone in the raw material, in addition to adjusting Blaine's specific surface area.
  • the ratio of limestone in the raw material in addition to adjusting Blaine's specific surface area.
  • the amount of alite in the cement mineral is increased, and particularly the strength development at the initial stage of hydration is increased.
  • the amount of limestone in the clinker raw material is relatively increased, and the amount of alite in the cement mineral generated can be increased to increase the strength.
  • the amount of fuel required for firing increases.
  • An increase in the raw material unit consumption of limestone and an increase in the amount of coal used as the main fuel also contribute to an increase in carbon dioxide emissions.
  • the cement composition of the present invention keeps the Blaine specific surface area of the cement composition low, suppresses the amount of limestone in the clinker raw material, increases strength, and has excellent fluidity.
  • Alkanolamine which is an auxiliary agent contained in the cement composition of the present invention, dissolves the ferrite phase among the four main cement minerals of alite, belite, aluminate, and ferrite, thereby increasing the strength of the cement. can be improved. Specifically, by dissolving the ferrite phase present on the surface of cement particles synthesized from various minerals, the surface area of the cement particles increases, and the cement minerals inside come into contact with water to promote hydration. In addition, iron hydroxide produced by dissolution of ferrite covers the surface of clinker particles and inhibits the diffusion of Ca ions eluted from clinker minerals such as alite, thereby inhibiting hydration. Since it has the effect of dissolving Fe ions of iron, it is considered that it also has the effect of promoting the hydration of alite.
  • the cement composition of the present invention will be described in detail below.
  • the cement composition of the present invention has a Blaine specific surface area of 2800-3500 cm 2 /g. If the Blaine specific surface area is less than 2800 cm 2 /g, alkanolamine will have a hydration promoting effect, but the mortar strength will be lowered. When the Blaine specific surface area exceeds 3500 cm 2 /g, the fluidity is lowered and the dissolution of C 4 AF by alkanolamine is limited, failing to obtain the effect of increasing strength. From the viewpoint of further increasing strength, the Blaine specific surface area of the cement composition is preferably 3000 to 3400 cm 2 /g, more preferably 3150 to 3350 cm 2 /g. The Blaine specific surface area of the cement composition may be measured according to JIS R 5201:2015 "Methods for Physical Testing of Cement".
  • the clinker used in the cement composition of the present invention is a normal Portland cement clinker containing 51 to 62% by mass of C 3 S and 7 to 10% by mass of C 4 AF as calculated by the Borg formula.
  • the total amount of C 3 S (3CaO.SiO 2 ) and C 2 S (2CaO.SiO 2 ) in the clinker is constant at approximately 88% by mass, and when C 3 S is 51-62% by mass, C 2
  • the S content is 16-27% by mass.
  • C 3 A (3CaO.Al 2 O 3 ) and C 4 AF (4CaO.Al 2 O 3 .FeO 3 ) in the clinker was constant at approximately 18.5% by mass, and C 4 AF is 7 to 10% by mass, the content of C 3 A is 8.5 to 12.5% by mass.
  • the content of C 3 S in the clinker is preferably 53 to 61% by mass, more preferably 55 to 59% by mass. .
  • the alkanolamine dissolves the C 4 AF on the surface of the clinker particles and temporarily promotes the hydration of C 3 S.
  • a large amount of iron hydroxide gel generated by the dissolution of Fe ions thickly covers the surface of the clinker particles, thereby delaying hydration.
  • the content of C 4 AF in the clinker is preferably 7 to 9% by mass, more preferably 8 to 9% by mass. .
  • the lattice volume of C 4 AF is greater than 0.4290 nm 3 .
  • the lattice volume of C 4 AF is preferably 0.4295 nm 3 or more, more preferably 0.4300 nm 3 or more.
  • the upper limit of the lattice volume of C 4 AF is not particularly limited, it is usually 0.4320 nm 3 or less.
  • the lattice volume of C 4 AF can be calculated by WPF (Whole Pattern Fitting) analysis from the lattice constant of C 4 AF measured by Rietveld analysis using powder X-ray diffraction.
  • the cement composition of the present invention contains an adjuvant containing alkanolamine, and the alkanolamine content in the total amount of Portland cement clinker, gypsum, and adjuvant is generally 10-210 mg/kg.
  • aids is specifically meant grinding aids, alkanolamines also act as strength enhancers.
  • Auxiliaries may contain components other than alkanolamine, and examples thereof include aliphatic polyhydric alcohols. If the content of alkanolamine in the cement composition of the present invention is less than 10 mg/kg, the concentration is too low to promote the hydration of alite by dissolving C4AF , resulting in an effect of increasing strength.
  • Alkanolamines include monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, methylethanolamine, methylisopropanolamine, Nn-butylethanolamine, N-methyldiethanolamine, and Nn-butyldiethanolamine.
  • N-methyldiisopropanolamine, diethanolisopropanolamine, diisopropanolethanolamine, tetrahydroxyethylethylenediamine, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine, tris(2-hydroxybutyl)amine, etc. can be exemplified. Only one type of alkanolamine may be used, or two or more types may be used.
  • the alkanolamine is selected from the group consisting of diethanolisopropanolamine (DEIPA), triisopropanolamine (TIPA), ethanoldiisopropanolamine (EDIPA), N-methyldiethanolamine (MDEA), and Nn-butyldiethanolamine (BDEA).
  • DEIPA diethanolisopropanolamine
  • TIPA triisopropanolamine
  • EDIPA ethanoldiisopropanolamine
  • MDEA N-methyldiethanolamine
  • BDEA Nn-butyldiethanolamine
  • DEIPA diethanol isopropanolamine
  • TIPA triisopropanolamine
  • MDEA N-methyldiethanolamine
  • BDEA Nn-butyldiethanolamine
  • DEIPA diethanol isopropanolamine
  • TIPA triisopropanolamine
  • MDEA N-methyldiethanolamine
  • BDEA Nn-butyldiethanolamine
  • DEIPA diethanol iso
  • the coagent preferably contains an aliphatic polyhydric alcohol.
  • the aliphatic polyhydric alcohol preferably has 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms.
  • the aliphatic polyhydric alcohol preferably has 2 to 8 hydroxyl groups, more preferably 2 to 4 hydroxyl groups.
  • the aliphatic polyhydric alcohol preferably has a molecular weight of 70-420, more preferably 70-210.
  • aliphatic polyhydric alcohols include glycols such as ethylene glycol, diethylene glycol and polyethylene glycol; glycerin and the like. Only one type of aliphatic polyhydric alcohol may be used, or two or more types may be used.
  • the aliphatic polyhydric alcohol is preferably at least one selected from the group consisting of glycerin and diethylene glycol, and more preferably contains diethylene glycol.
  • the content of the auxiliary agent in the total amount of ordinary portland cement clinker, gypsum and auxiliary agent is preferably 80-350 mg/kg.
  • total auxiliary agent means "the content of auxiliary agent in the total amount of ordinary Portland cement clinker, gypsum, and auxiliary agent".
  • the air entrainment of the kneaded product is suppressed, the strength is prevented from decreasing, and the fluidity of the powder does not increase more than necessary, so it is difficult to slip during transportation on a belt conveyor, and it is easy to convey uphill. , it is possible to efficiently transport the cement composition by suppressing it from slipping down due to its own weight.
  • the total amount of auxiliary agents is more preferably 100 to 350 mg/kg, even more preferably 150 to 300 mg/kg, from the viewpoint of further improving crushability and jetting properties.
  • the cement composition of the present invention contains limestone.
  • Limestone has a content of 3 to 10% by mass in the total amount of ordinary Portland cement clinker, gypsum, auxiliary agent and limestone.
  • limestone content means "the content of limestone in the total amount of ordinary Portland cement clinker, gypsum, auxiliary agent and limestone”. If the limestone content is less than 3% by mass, the effect of increasing strength cannot be obtained.
  • ettringite which is formed during initial hydration, undergoes a reaction that converts it to monosulfate as the hydration of cement proceeds. Contributes to strength enhancement.
  • the limestone content is preferably 3 to 9% by mass, more preferably 4 to 8% by mass, from the viewpoint of further increasing strength.
  • the cement composition of the present invention contains gypsum.
  • the content of gypsum in the total amount of ordinary Portland cement clinker, gypsum and alkanolamine is preferably 0.7 to 2.8% by mass in terms of SO 3 .
  • gypsum content means "the content of gypsum in the total amount of ordinary Portland cement clinker, gypsum and alkanolamine”.
  • the gypsum content is more preferably 0.8 to 2.5% by mass, more preferably 0.9 to 2.0% by mass in terms of SO 3 .
  • the gypsum content can be measured according to JIS R 5202:2010 "Method for chemical analysis of Portland cement".
  • the ratio of the mass of gypsum in terms of SO 3 in the cement composition can be obtained from the amount of gypsum compounded and the ratio of SO 3 contained in the gypsum.
  • any of anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum can be used.
  • fly ash to the cement composition of the present invention, fly ash, blast-furnace slag, silica fume, or the like can be further added for adjusting fluidity, hydration rate, strength development, and the like.
  • C 3 S calculated by the Borg formula is 51 to 62% by mass
  • C 4 AF is 7 to 10% by mass
  • the lattice volume of C 4 AF is 0.4290 nm 3 more than ordinary Portland cement clinker, gypsum, limestone, and an adjuvant containing alkanolamine
  • the amount of alkanolamine to be blended is the same as the content of alkanolamine in the cement composition of the present invention, and the preferred range is also the same.
  • the amount of limestone to be blended is synonymous with the limestone content described above, and the preferred range is also the same.
  • auxiliary agents gypsum and limestone
  • gypsum and limestone may be added to clinker and mixed, then an auxiliary agent may be added and mixed, or an auxiliary agent may be added to clinker and then gypsum and limestone may be added.
  • the means for mixing each component in the method for producing the cement composition of the present invention is not particularly limited. Examples include mixers, ball mills, roche mills, and air blending silos.
  • the mixing time can be set within a range in which it is determined that sufficient mixing is performed in the normal production of cement compositions.
  • pulverization is preferably carried out so that the Blaine specific surface area of the cement composition is 2800 to 3500 cm 2 /g.
  • blast furnace slag, siliceous admixture and fly ash are further added.
  • blast furnace slag and siliceous admixture specified in JIS R 5210:2009 "Portland cement” can be used.
  • fly ash in addition to fly ash type I and fly ash type II defined in JIS R 5210:2009 "Portland cement", fly ash type III and fly ash type IV can also be used.
  • HM hydraulic modulus
  • SM silicic acid modulus
  • IM iron modulus.
  • C 3 S (4.07 ⁇ CaO) ⁇ (7.60 ⁇ SiO 2 ) ⁇ (6.72 ⁇ Al 2 O 3 ) ⁇ (1.43 ⁇ Fe 2 O 3 )
  • C 2 S (2.87 x SiO 2 ) - (0.754 x
  • C3A (2.65 x Al2O3 ) - ( 1.69 x Fe2O3 )
  • C4AF 3.04 x Fe2O3
  • the "C 4 AF lattice volume" in Table 1 was calculated by the WPF analysis method from the lattice constant of C 4 AF measured using the Rietveld analysis method using powder X-ray diffraction. (Measurement condition) ⁇ Powder X-ray diffractometer: X7Pert PRO manufactured by PANalytical ⁇ Rietveld analysis software: High Score Plus manufactured by PANalytical ⁇ X-ray tube: Cu (tube voltage: 45 kV, tube current: 40 mA) ⁇ Slit: divergence slit-variable (irradiation width-12mm, Antiscatter slit-2°) ⁇ Measuring range: 10 to 70° (step width: 0.0167°) ⁇ Scanning speed: 0.1013°/s
  • alkanolamine DEIPA diethanol isopropanolamine [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • TIPA triisopropanolamine [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • EDIPA ethanol diisopropanolamine [manufactured by Sigma-Aldrich Japan LLC]
  • MDEA N-methyldiethanolamine [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • BDEA Nn-butyldiethanolamine [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • Aliphatic polyhydric alcohol DEG diethylene glycol [manufactured by Kanto Kagaku Co., Ltd.]
  • Example 1 Add 2.7% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 4.5% by mass of limestone to 92.8% by mass of clinker type A clinker (*) , Mixed with a mixer. Then, as shown in Table 2, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 10 mg/kg and 190 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg.
  • DEIPA diethanol isopropanolamine
  • DEG diethylene glycol
  • Example 1 the cement composition of Example 1 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200 ⁇ 50 cm 2 /g.
  • the total amount of clinker and auxiliary agent is 92.8% by mass.
  • the amount of clinker can be said to be 92.8% by mass.
  • the amount of gypsum compounded is the SO3 equivalent amount of gypsum hemihydrate/( total amount of clinker + auxiliary agent + gypsum hemihydrate) in both Examples and Comparative Examples. Gypsum hemihydrate was blended so as to be 1.5%.
  • Examples 2 to 19, 23 to 26, Comparative Examples 1 to 4, 7 to 12 As clinker, the types of clinker shown in Tables 2 and 3 are used, limestone is blended in the amount shown in Tables 2 and 3, and the type and amount of auxiliary agent [alkanol An amine and, if necessary, an aliphatic polyhydric alcohol (DEG)] were blended and mixed and pulverized in a ball mill so that the Blaine specific surface area value was within the range of ⁇ 50 cm 2 /g shown in Tables 2 and 3. obtained a cement composition in the same manner as in Example 1. In Comparative Examples 1 and 2, alkanolamine was not blended. In addition, in Comparative Example 2 and the like where the numerical value in the "DEG" column is 0, diethylene glycol was not blended.
  • auxiliary agent alkanol An amine and, if necessary, an aliphatic polyhydric alcohol (DEG)
  • Example 20 To 94.1% by mass of clinker type A clinker, 2.7% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 3.2% by mass of limestone are added and mixed in a mixer. did. Then, as shown in Table 3, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 50 mg/kg and 150 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg. Then, the cement composition of Example 20 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200 ⁇ 50 cm 2 /g.
  • DEIPA diethanol isopropanolamine
  • DEG diethylene glycol
  • Example 21 To 90.9% by mass of clinker type A clinker, 2.6% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 6.5% by mass of limestone are added and mixed in a mixer. did. Then, as shown in Table 3, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 50 mg/kg and 150 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg. Then, the cement composition of Example 21 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200 ⁇ 50 cm 2 /g.
  • DEIPA diethanol isopropanolamine
  • DEG diethylene glycol
  • Example 22 To 88.0% by mass of clinker type A clinker, 2.5% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 9.5% by mass of limestone are added and mixed in a mixer. did. Then, as shown in Table 3, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 50 mg/kg and 150 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg. Then, the cement composition of Example 22 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200 ⁇ 50 cm 2 /g.
  • DEIPA diethanol isopropanolamine
  • DEG diethylene glycol
  • Jetability Using a powder tester (TP-X) manufactured by Hosokawa Micron Corporation, the repose angle, collapse angle, and degree of dispersion of the cement compositions of Examples and Comparative Examples were measured, and applied to the jettability index table of the same device. Then, the jettability index was obtained. The smaller the jettability index, the more excellent the cement composition is in jettability. Preferably the index is less than 75. The results are shown in the "jetting index" column of Tables 2 and 3.
  • Mortar Strength The strength of the mortars obtained using the cements of Examples and Comparative Examples was evaluated according to JIS R 5201 "Physical Testing Methods for Cement". The higher the number, the higher the strength of the mortar obtained using the cement composition, and the acceptable range is above 60 N/mm 2 . The results are shown in the "mortar strength" column of Tables 2 and 3.
  • Fluidity The fluidity of the mortar obtained from the cement composition was evaluated according to JIS R 5201 "Physical Testing Methods for Cement". Specifically, 1.0% of a high-performance water reducing agent [manufactured by Kao Corporation, trade name "Mighty 150"] is added to the cement compositions of Examples and Comparative Examples, and mortar is prepared. For the mortar prepared and obtained, the flow value was measured at the time when the spreading of the mortar stopped after pulling out the cone without performing 15 falling motions. The higher the flow value, the better the fluidity of the mortar obtained from the cement composition. The tolerance is greater than 160mm. The results are shown in the "0 stroke flow" column of Tables 2 and 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A cement composition comprising: an ordinary Portland cement clinker in which the contained amounts of C3S and C4AF determined through Bogue calculation are 51-62 mass% and 7-10 mass%, respectively; gypsum; limestone; and assistant containing an alkanolamine, wherein the contained amount of the alkanolamine in the total amount of the ordinary Portland cement clinker, the gypsum, and the assistant is 10-210 mg/kg, the contained amount of the limestone in the total amount of the ordinary Portland cement clinker, the gypsum, the assistant, and the limestone is 3-10 mass%, the cell volume of the C4AF is more than 0.4290 nm3, and the Blaine's specific surface area of the cement composition is 2800-3500 cm2/g. The cement composition has high strength and excellent fluidity.

Description

セメント組成物及びその製造方法Cement composition and its manufacturing method
 本発明は、セメント組成物及びその製造方法に関する。 The present invention relates to a cement composition and a method for producing the same.
 モルタル及びコンクリートの強度を向上するために、種々の検討がなされている。
 例えば、特許文献1では、7日強度や28日強度を共に増大させる効果を奏する土木建築構造物やコンクリート二次製品に使用されるモルタル又はコンクリート用の混和剤やセメント組成物を提供するために、トリアルカノールアミンとジエチレングリコールとを含有してなる混和剤であり、セメントと該混和剤とを含有してなるセメント組成物を開示している。
 また、例えば、特許文献2では、建築物や土木構造物やコンクリート二次製品を製造するにあたり、フライアッシュの低初期強度という欠点を克服して、使用するセメントにフライアッシュを積極的に配合できるように改良されたセメント混和材及びセメント組成物を提供するために、フライアッシュ、トリアルカノールアミン及びフライアッシュ100重量部に対して0.05~0.5重量部のジエチレングリコールを含有してなるセメント混和材或いはセメントとジエチレングリコールとトリアルカノールアミンを含有するセメント混和材であり、更にセメント、フライアッシュ、トリアルカノールアミン及びジエチレングリコールを含有してなるセメント組成物を開示している。
Various studies have been made to improve the strength of mortar and concrete.
For example, in Patent Document 1, in order to provide an admixture for mortar or concrete and a cement composition used in civil engineering structures and concrete secondary products that have the effect of increasing both 7-day strength and 28-day strength. , which is an admixture containing trialkanolamine and diethylene glycol, and discloses a cement composition comprising cement and the admixture.
In addition, for example, in Patent Document 2, when manufacturing buildings, civil engineering structures, and secondary concrete products, it is possible to overcome the drawback of low initial strength of fly ash and actively mix fly ash with the cement used. Cement containing fly ash, trialkanolamine and 0.05 to 0.5 parts by weight of diethylene glycol per 100 parts by weight of fly ash in order to provide a cement admixture and a cement composition improved as It discloses an admixture or a cement admixture containing cement, diethylene glycol and trialkanolamine, and a cement composition further containing cement, fly ash, trialkanolamine and diethylene glycol.
特開2000-203909号公報Japanese Unexamined Patent Application Publication No. 2000-203909 特開2000-281404号公報JP-A-2000-281404
 しかし、特許文献1及び2に記載のセメント組成物は、流動性について検討がなされていない。
 本発明は、高い強度を有し、流動性に優れるセメント組成物及びその製造方法を提供することを目的とする。
However, the cement compositions described in Patent Literatures 1 and 2 have not been investigated for fluidity.
An object of the present invention is to provide a cement composition having high strength and excellent fluidity, and a method for producing the same.
 本発明は、以下の<1>~<7>を提供する。
<1> ボーグ式で算出されるCSが51~62質量%、CAFが7~10質量%である普通ポルトランドセメントクリンカと、石膏と、石灰石と、アルカノールアミンを含む助剤とを含み、前記普通ポルトランドセメントクリンカ、前記石膏、及び前記助剤の合計量中の前記アルカノールアミンの含有量が10~210mg/kgであり、前記普通ポルトランドセメントクリンカ、前記石膏、前記助剤、及び前記石灰石の合計量中の前記石灰石の含有量が3~10質量%であり、前記CAFの格子体積が0.4290nmを超え、ブレーン比表面積が2800~3500cm/gであるセメント組成物。
The present invention provides the following <1> to <7>.
<1> Ordinary Portland cement clinker containing 51 to 62% by mass of C 3 S and 7 to 10% by mass of C 4 AF calculated by the Borg formula, gypsum, limestone, and an auxiliary agent containing alkanolamine wherein the alkanolamine content in the total amount of the ordinary Portland cement clinker, the gypsum, and the auxiliary agent is 10 to 210 mg/kg, and the ordinary Portland cement clinker, the gypsum, the auxiliary agent, and the A cement composition having a limestone content of 3 to 10% by mass in the total amount of limestone, a lattice volume of the C 4 AF exceeding 0.4290 nm 3 , and a Blaine specific surface area of 2800 to 3500 cm 2 /g. .
<2> 前記普通ポルトランドセメントクリンカ、前記石膏、及び前記助剤の合計量中の前記助剤の含有量が80~350mg/kgである<1>に記載のセメント組成物。
<3> 前記助剤が脂肪族多価アルコールを含む<1>または<2>に記載のセメント組成物。
<4> 前記普通ポルトランドセメントクリンカ、前記石膏、及び前記助剤の合計量中の前記石膏の含有量がSO換算で0.7~2.8質量%である<1>~<3>のいずれか1つに記載のセメント組成物。
<5> 前記アルカノールアミンが、ジエタノールイソプロパノールアミン、トリイソプロパノールアミン、エタノールジイソプロパノールアミン、N-メチルジエタノールアミン、及びNn-ブチルジエタノールアミンからなる群より選択される少なくとも1つである<1>~<4>のいずれか1つに記載のセメント組成物。
<6> 前記脂肪族多価アルコールが、グリセリン及びジエチレングリコールからなる群より選択される少なくとも1つである<3>~<5>のいずれか1つに記載のセメント組成物。
<2> The cement composition according to <1>, wherein the content of the auxiliary agent in the total amount of the ordinary Portland cement clinker, the gypsum, and the auxiliary agent is 80 to 350 mg/kg.
<3> The cement composition according to <1> or <2>, wherein the auxiliary agent contains an aliphatic polyhydric alcohol.
<4><1> to < 3 >, wherein the content of the gypsum in the total amount of the ordinary Portland cement clinker, the gypsum, and the auxiliary agent is 0.7 to 2.8% by mass in terms of SO3 A cement composition according to any one of the preceding claims.
<5> The alkanolamine is at least one selected from the group consisting of diethanolisopropanolamine, triisopropanolamine, ethanoldiisopropanolamine, N-methyldiethanolamine, and Nn-butyldiethanolamine <1> to <4> The cement composition according to any one of
<6> The cement composition according to any one of <3> to <5>, wherein the aliphatic polyhydric alcohol is at least one selected from the group consisting of glycerin and diethylene glycol.
<7> ボーグ式で算出されるCSが51~62質量%、CAFが7~10質量%であり、前記CAFの格子体積が0.4290nmを超える普通ポルトランドセメントクリンカと、石膏と、石灰石と、アルカノールアミンを含む助剤とを含み、前記普通ポルトランドセメントクリンカ、前記石膏、及び前記助剤の合計量中の前記アルカノールアミンの配合量を10~210mg/kg、かつ前記普通ポルトランドセメントクリンカ、前記石膏、前記助剤、及び前記石灰石の合計量中の前記石灰石の配合量を3~10質量%として混合し、<1>~<6>のいずれか1つに記載のセメント組成物に記載のセメント組成物を製造するセメント組成物の製造方法。 <7> Ordinary Portland cement clinker having 51 to 62% by mass of C 3 S and 7 to 10% by mass of C 4 AF calculated by the Borg formula, and having a lattice volume of the C 4 AF exceeding 0.4290 nm 3 , gypsum, limestone, and an adjuvant containing alkanolamine, wherein the alkanolamine content in the total amount of the ordinary Portland cement clinker, the gypsum, and the adjuvant is 10 to 210 mg / kg, and the Ordinary Portland cement clinker, the gypsum, the auxiliary agent, and the limestone are mixed at a blending amount of 3 to 10% by mass in the total amount of the limestone, and the mixture according to any one of <1> to <6> A method for producing a cement composition for producing the cement composition described in Cement composition.
 本発明によれば、高い強度を有し、流動性に優れるセメント組成物及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a cement composition having high strength and excellent fluidity and a method for producing the same.
 本明細書中の「AA~BB」との数値範囲の表記は、「AA以上BB以下」であることを意味する。 The notation of a numerical range of "AA to BB" in this specification means "above AA and below BB".
<セメント組成物>
 本発明のセメント組成物は、ボーグ式で算出されるCSが51~62質量%、CAFが7~10質量%である普通ポルトランドセメントクリンカと、石膏と、石灰石と、アルカノールアミンを含む助剤とを含み、普通ポルトランドセメントクリンカ、石膏、及び助剤の合計量中のアルカノールアミンの含有量が10~210mg/kgであり、普通ポルトランドセメントクリンカ、石膏、助剤、及び石灰石の合計量中の石灰石の含有量が3~10質量%であり、CAFの格子体積が0.4290nmを超え、ブレーン比表面積が2800~3500cm/gである。
<Cement composition>
The cement composition of the present invention comprises ordinary Portland cement clinker having 51 to 62% by mass of C 3 S and 7 to 10% by mass of C 4 AF calculated by the Borg formula, gypsum, limestone, and alkanolamine. The content of alkanolamine in the total amount of ordinary Portland cement clinker, gypsum, and auxiliary agents is 10 to 210 mg / kg, and the total amount of ordinary Portland cement clinker, gypsum, auxiliary agents, and limestone The content of limestone in the mass is 3-10% by mass, the lattice volume of C 4 AF is greater than 0.4290 nm 3 , and the Blaine specific surface area is 2800-3500 cm 2 /g.
 セメント組成物は、通常、調合された原料をロータリーキルンにて焼成し、得られたクリンカに石こう、石灰石を添加し、仕上げミルにて所望のブレーン比表面積となるまで粉砕することで得られる。
 仕上げミルによるセメントの粉砕には、被粉砕物に対してジエチレングリコール等の分散剤を添加することで、粒子同士の凝集によって生じる粉砕効率の低下防止策がとられるのが一般的である。普通ポルトランドセメントの主要な物性である強度発現性のコントロールは、一般に原料調合とセメントの粉末度(ブレーン比表面積)の調整で実施される。セメント組成物のブレーン比表面積は仕上ミルによる粉砕工程で調整され、各材齢の強度レベルをコントロールする因子となることから、品質管理項目とされている。
A cement composition is usually obtained by firing prepared raw materials in a rotary kiln, adding gypsum and limestone to the obtained clinker, and pulverizing it in a finishing mill until it reaches the desired Blaine specific surface area.
In pulverizing cement by a finishing mill, it is common practice to add a dispersant such as diethylene glycol to the material to be pulverized to prevent a decrease in pulverization efficiency caused by aggregation of particles. Control of strength development, which is a major physical property of ordinary Portland cement, is generally carried out by adjusting raw material blending and cement fineness (Blaine specific surface area). The Blaine specific surface area of the cement composition is adjusted in the pulverization process by the finishing mill, and is a factor controlling the strength level at each material age, so it is regarded as a quality control item.
 ブレーン比表面積を増大させると、モルタル及びコンクリートの特に初期強度が増大する一方で、セメントペースト混錬時の流動性が低下することによって作業効率が低下する。流動性を維持するために化学混和剤を増量すればコスト増加となり、水量を増加すれば硬化体の乾燥収縮が増大し、硬化体のひび割れ発生を助長し耐久性を損ねることになる。 Increasing Blaine's specific surface area increases the initial strength of mortar and concrete in particular, but reduces the fluidity during kneading of the cement paste, reducing work efficiency. If the amount of chemical admixture is increased to maintain fluidity, the cost will increase, and if the amount of water is increased, drying shrinkage of the cured product will increase, promoting cracking of the cured product and impairing durability.
 また、セメントをサイロで貯蔵する場合、ブレーン比表面積が高いほど空気中の水分、二酸化炭素等とセメント粒子との反応性が増大し、セメント粒子表面の水和活性が低下し、いわゆる風化が起きやすくなる。風化したセメントは、注水後の凝結異常、流動性低下、硬化体の強度低下等を招く。
 また、風化によってセメント粒子表面に生成した水酸化カルシウムは二酸化炭素との反応によって炭酸カルシウムとなり、セメント粒子同士の凝集を助長する。そのため、サイロ内で塊状物が生じ、いわゆる固結の発生原因ともなる。
When cement is stored in a silo, the higher the specific surface area of Blaine, the greater the reactivity of the cement particles with moisture, carbon dioxide, etc. in the air. easier. Weathered cement causes problems such as abnormal setting after pouring water, reduced fluidity, and reduced strength of the hardened body.
Calcium hydroxide formed on the surface of cement particles by weathering reacts with carbon dioxide to form calcium carbonate, which promotes cohesion of cement particles. As a result, lumps are generated in the silo, which is also a cause of so-called caking.
 このことから、セメント組成物のブレーン比表面積は所望の強度が得られる範囲で、できるだけ低減させることが好ましい。また、製造面の観点からも、セメント組成物のブレーン比表面積は低減させることが好ましい。既述のように、セメント組成物のブレーン比表面積は仕上ミルによる粉砕工程で調整され、ブレーン比表面積を低減することは、仕上げミル運転時の電力削減につながる。 For this reason, it is preferable to reduce the Blaine specific surface area of the cement composition as much as possible within the range where the desired strength can be obtained. Also from the viewpoint of production, it is preferable to reduce the Blaine specific surface area of the cement composition. As described above, the Blaine specific surface area of the cement composition is adjusted in the pulverization process by the finishing mill, and reducing the Blaine specific surface area leads to power reduction during the operation of the finishing mill.
 また、強度発現性のコントロールは、ブレーン比表面積の調整のほか、原料中の石灰石割合の調整によっても行うことができる。例えば、原料中の石灰石割合を増加させることによってセメント鉱物中のエーライト量が増大し、特に水和初期の強度発現性が増大する。
 このように、クリンカ原料中の石灰石量を相対的に増やし、生成するセメント鉱物中のエーライト量を増加させて強度を増進することができるが、エーライト量が増加すると、セメント原料が難焼成性となるため、焼成にかかる燃料が増大する。石灰石の原料原単位の増加と主燃料となっている石炭の増大は、二酸化炭素の排出増大の側面もある。
In addition, control of strength development can be carried out by adjusting the ratio of limestone in the raw material, in addition to adjusting Blaine's specific surface area. For example, by increasing the limestone ratio in the raw material, the amount of alite in the cement mineral is increased, and particularly the strength development at the initial stage of hydration is increased.
In this way, the amount of limestone in the clinker raw material is relatively increased, and the amount of alite in the cement mineral generated can be increased to increase the strength. As a result, the amount of fuel required for firing increases. An increase in the raw material unit consumption of limestone and an increase in the amount of coal used as the main fuel also contribute to an increase in carbon dioxide emissions.
 これに対し、本発明のセメント組成物は、セメント組成物のブレーン比表面積を低く抑え、クリンカ原料中の石灰石量を抑制しながら、強度を増進し、流動性に優れる。かかる理由は定かではないが、次の理由によるものと推察される。 On the other hand, the cement composition of the present invention keeps the Blaine specific surface area of the cement composition low, suppresses the amount of limestone in the clinker raw material, increases strength, and has excellent fluidity. Although the reason for this is not clear, it is presumed to be due to the following reasons.
 本発明のセメント組成物に含まれる助剤のアルカノールアミンは、主要セメント鉱物であるエーライト、ビーライト、アルミネート、フェライトの4鉱物のうち、特にフェライト相を溶解し、これによってセメントの強度を増進することができる。具体的には、各種鉱物で合成されたセメント粒子表面に存在するフェライト相を溶解させることにより、セメント粒子の表面積が増大し、内部のセメント鉱物が水と接触することによって水和促進する。また、フェライトの溶解によって生成した水酸化鉄はクリンカ粒子表面を覆い、エーライト等のクリンカ鉱物から溶出したCaイオン等の拡散を阻害することによって水和を阻害するが、アルカノールアミンはその水酸化鉄のFeイオンを溶解させる効果があることからもエーライトの水和を促進する効果を発揮すると考えられる。
 以下、本発明のセメント組成物について詳細に説明する。
Alkanolamine, which is an auxiliary agent contained in the cement composition of the present invention, dissolves the ferrite phase among the four main cement minerals of alite, belite, aluminate, and ferrite, thereby increasing the strength of the cement. can be improved. Specifically, by dissolving the ferrite phase present on the surface of cement particles synthesized from various minerals, the surface area of the cement particles increases, and the cement minerals inside come into contact with water to promote hydration. In addition, iron hydroxide produced by dissolution of ferrite covers the surface of clinker particles and inhibits the diffusion of Ca ions eluted from clinker minerals such as alite, thereby inhibiting hydration. Since it has the effect of dissolving Fe ions of iron, it is considered that it also has the effect of promoting the hydration of alite.
The cement composition of the present invention will be described in detail below.
〔ブレーン比表面積〕
 本発明のセメント組成物は、ブレーン比表面積が2800~3500cm/gである。
 ブレーン比表面積が2800cm/g未満であると、アルカノールアミンによる水和促進効果は得られるものの、モルタル強さが低下する。ブレーン比表面積が3500cm/gを超えると、流動性が低下し、また、アルカノールアミンによるCAFの溶解が限定的となり、強度増進効果が得られない。
 強度をより増進する観点から、セメント組成物のブレーン比表面積は、3000~3400cm/gであることが好ましく、3150~3350cm/gであることがより好ましい。
 セメント組成物のブレーン比表面積は、JIS R 5201:2015「セメントの物理試験方法」に準じて測定すればよい。
[Blaine specific surface area]
The cement composition of the present invention has a Blaine specific surface area of 2800-3500 cm 2 /g.
If the Blaine specific surface area is less than 2800 cm 2 /g, alkanolamine will have a hydration promoting effect, but the mortar strength will be lowered. When the Blaine specific surface area exceeds 3500 cm 2 /g, the fluidity is lowered and the dissolution of C 4 AF by alkanolamine is limited, failing to obtain the effect of increasing strength.
From the viewpoint of further increasing strength, the Blaine specific surface area of the cement composition is preferably 3000 to 3400 cm 2 /g, more preferably 3150 to 3350 cm 2 /g.
The Blaine specific surface area of the cement composition may be measured according to JIS R 5201:2015 "Methods for Physical Testing of Cement".
〔クリンカ〕
 本発明のセメント組成物に使用されるクリンカは、ボーグ式で算出されるCSが51~62質量%、CAFが7~10質量%である普通ポルトランドセメントクリンカである。
 クリンカ中のCS(3CaO・SiO)とCS(2CaO・SiO)との合計量はほぼ88質量%で一定であり、CSが51~62質量%のとき、CSの含有量は16~27質量%である。また、クリンカ中のCA(3CaO・Al)とCAF(4CaO・Al・FeO)との合計量はほぼ18.5質量%で一定であり、CAFが7~10質量%のとき、CAの含有量は8.5~12.5質量%である。
[Clinker]
The clinker used in the cement composition of the present invention is a normal Portland cement clinker containing 51 to 62% by mass of C 3 S and 7 to 10% by mass of C 4 AF as calculated by the Borg formula.
The total amount of C 3 S (3CaO.SiO 2 ) and C 2 S (2CaO.SiO 2 ) in the clinker is constant at approximately 88% by mass, and when C 3 S is 51-62% by mass, C 2 The S content is 16-27% by mass. In addition, the total amount of C 3 A (3CaO.Al 2 O 3 ) and C 4 AF (4CaO.Al 2 O 3 .FeO 3 ) in the clinker was constant at approximately 18.5% by mass, and C 4 AF is 7 to 10% by mass, the content of C 3 A is 8.5 to 12.5% by mass.
(CS、CS)
 クリンカ中のCSの含有量が51質量%未満であると、モルタル強さに優れず、モルタル強さを大きくすることができても、流動性に優れない。また、アルカノールアミンの添加による強度増進効果も以下の理由から期待できない。
( C3S , C2S)
If the C 3 S content in the clinker is less than 51% by mass, the mortar strength is not excellent, and even if the mortar strength can be increased, the fluidity is not excellent. Further, the addition of alkanolamine cannot be expected to increase strength for the following reasons.
 クリンカ中のCSの含有量が51質量%未満であると、相対的に被粉砕性が劣るCSの含有量が多くなる。その結果、セメント組成物を一定のブレーン比表面積にするまでに要する粉砕時間が長くなり、主に被粉砕性がよいCS以外の鉱物(CS、CA、及びCAF)が過粉砕されることによってブレーン比表面積が増大する。また、アルカノールアミンの添加による強度増進メカニズムは、クリンカ中のCAFを選択的に溶解させることでCAFに近隣するCAFの水との接触機会が増大し水和が促進され強度増進することになるが、クリンカが過粉砕されると、もともと各鉱物が複合して存在しているクリンカ粒子が単独の鉱物として存在しやすくなるため、CAFの溶解がCAFの水和促進に繋がらなくなる。したがって、アルカノールアミンの添加による強度増進効果が得られなくなる When the content of C 3 S in the clinker is less than 51% by mass, the content of C 2 S, which is relatively poor in grindability, increases. As a result, the pulverization time required for the cement composition to have a certain Blaine specific surface area is long, and minerals other than C2S (C3S , C3A , and C4AF ) that have good pulverizability are mainly used. Blaine specific surface area is increased by over-pulverization. In addition, the mechanism of strength enhancement by the addition of alkanolamine is that by selectively dissolving C 4 AF in the clinker, C 4 AF adjacent to C 4 AF increases the chance of contact with water, promoting hydration and increasing strength. However, if the clinker is excessively ground, the clinker particles, in which each mineral is originally present in a composite form, tend to exist as a single mineral, so that the dissolution of C 4 AF becomes the water of C 4 AF. It will not lead to the promotion of harmony. Therefore, the effect of increasing the strength by adding alkanolamine cannot be obtained.
 クリンカ中のCSの含有量が62質量%を超えると、クリンカの製造において、セメント原料が難焼成性となり、未反応石灰(f.CaO)が増加し、燃料消費量が増大するため好ましくない。
 強度と流動性を増進し、燃料消費量を抑制する観点から、クリンカ中のCSの含有量は、53~61質量%であることが好ましく、55~59質量%であることがより好ましい。
If the C 3 S content in the clinker exceeds 62% by mass, the cement raw material becomes difficult to burn in the production of clinker, unreacted lime (f.CaO) increases, and fuel consumption increases, which is preferable. do not have.
From the viewpoint of enhancing strength and fluidity and suppressing fuel consumption, the content of C 3 S in the clinker is preferably 53 to 61% by mass, more preferably 55 to 59% by mass. .
(CAF、CA)
 クリンカ中のCAFの含有量が7質量%未満であると、CAFの含有量が少なすぎるため、アルカノールアミンを添加してもCAFの溶解促進によるCSの反応促進は限定的であり、顕著な強度増進効果を発揮できない。また、クリンカの効率的な製造において、液相量(CA+CAF)を一定とする必要があるためにCAFの減少は相対的にCAが増加することを意味し、CA量が増加すると初期水和時にCAと石膏との反応によって針状結晶のエトリンガイトを多量に生成することによって流動性が悪化する。
( C4AF , C3A )
When the content of C 4 AF in the clinker is less than 7% by mass, the content of C 4 AF is too small, so even if alkanolamine is added, the reaction of C 3 S cannot be promoted by promoting the dissolution of C 4 AF. It is limited and cannot exhibit a remarkable effect of increasing strength. Also, in the efficient production of clinker, it is necessary to keep the liquid phase amount (C 3 A + C 4 AF) constant, so a decrease in C 4 AF means a relative increase in C 3 A, and C When the amount of 3 A increases, fluidity deteriorates due to the formation of a large amount of needle crystal ettringite due to the reaction between C 3 A and gypsum during initial hydration.
 クリンカ中のCAFの含有量が10質量%を超えると、アルカノールアミンによってクリンカ粒子表面のCAFが溶解し、CSの水和を一時的に促進するが、CAF中のFeイオンの溶解によって生じた多量の水酸化鉄ゲル量がクリンカ粒子表面を厚く覆うことにより水和が遅延する。
 強度と流動性を増進し、燃料消費量を抑制する観点から、クリンカ中のCAFの含有量は、7~9質量%であることが好ましく、8~9質量%であることがより好ましい。
When the content of C 4 AF in the clinker exceeds 10% by mass, the alkanolamine dissolves the C 4 AF on the surface of the clinker particles and temporarily promotes the hydration of C 3 S. A large amount of iron hydroxide gel generated by the dissolution of Fe ions thickly covers the surface of the clinker particles, thereby delaying hydration.
From the viewpoint of enhancing strength and fluidity and suppressing fuel consumption, the content of C 4 AF in the clinker is preferably 7 to 9% by mass, more preferably 8 to 9% by mass. .
[CAFの格子体積]
 CAFの格子体積は、0.4290nmを超える。
 CAFの格子体積が0.4290nm以下であると、アルカノールアミンによるCAFの溶解性が低くなるため、CSの水和促進の効果が得られず、モルタル強さが低下する。
 CAFの格子体積は、0.4295nm以上であることが好ましく、0.4300nm以上であることがより好ましい。CAFの格子体積の上限は特に制限されないが、通常、0.4320nm以下である。
 CAFの格子体積は、粉末X線回折を利用したリートベルト解析方法を用いて測定したCAFの格子定数から、WPF(Whole Pattern Fitting)解析法により算出することができる。
[Lattice volume of C 4 AF]
The lattice volume of C 4 AF is greater than 0.4290 nm 3 .
When the lattice volume of C 4 AF is 0.4290 nm 3 or less, the solubility of C 4 AF by alkanolamine is low, so the effect of promoting hydration of C 3 S cannot be obtained, and the mortar strength is reduced. .
The lattice volume of C 4 AF is preferably 0.4295 nm 3 or more, more preferably 0.4300 nm 3 or more. Although the upper limit of the lattice volume of C 4 AF is not particularly limited, it is usually 0.4320 nm 3 or less.
The lattice volume of C 4 AF can be calculated by WPF (Whole Pattern Fitting) analysis from the lattice constant of C 4 AF measured by Rietveld analysis using powder X-ray diffraction.
〔助剤〕
 本発明のセメント組成物は、アルカノールアミンを含む助剤を含み、普通ポルトランドセメントクリンカ、石膏、及び助剤の合計量中のアルカノールアミンの含有量が10~210mg/kgである。
 助剤とは、具体的には粉砕助剤を意味し、アルカノールアミンは、また、強度増進剤として作用する。助剤は、アルカノールアミン以外の成分を含んでいてもよく、例えば、脂肪族多価アルコールが挙げられる。
 本発明のセメント組成物中のアルカノールアミンの含有量が10mg/kg未満であると、CAFの溶解によってエーライトの水和を促進させるためには濃度が低すぎることから強度増進効果が得られない。本発明のセメント組成物中のアルカノールアミンの含有量が210mg/kgを超えると、初期強度の増進効果は顕著であるが、28日材齢では、初期の水和活性が活発であったことに起因して水和組織が粗となり強度増進効果が得られなくなる。
[auxiliary agent]
The cement composition of the present invention contains an adjuvant containing alkanolamine, and the alkanolamine content in the total amount of Portland cement clinker, gypsum, and adjuvant is generally 10-210 mg/kg.
By aids is specifically meant grinding aids, alkanolamines also act as strength enhancers. Auxiliaries may contain components other than alkanolamine, and examples thereof include aliphatic polyhydric alcohols.
If the content of alkanolamine in the cement composition of the present invention is less than 10 mg/kg, the concentration is too low to promote the hydration of alite by dissolving C4AF , resulting in an effect of increasing strength. can't When the alkanolamine content in the cement composition of the present invention exceeds 210 mg/kg, the effect of increasing the initial strength is remarkable, but at the age of 28 days, the initial hydration activity was active. As a result, the hydrated structure becomes coarse, and the effect of increasing strength cannot be obtained.
(アルカノールアミン)
 アルカノールアミンとしては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、メチルエタノールアミン、メチルイソプロパノールアミン、Nn-ブチルエタノールアミン、N-メチルジエタノールアミン、Nn-ブチルジエタノールアミン、N-メチルジイソプロパノールアミン、ジエタノールイソプロパノールアミン、ジイソプロパノールエタノールアミン、テトラヒドロキシエチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、トリス(2-ヒドロキシブチル)アミン等が例示できる。
 アルカノールアミンは1種のみを用いてもよいし、2種以上を用いてもよい。
(Alkanolamine)
Alkanolamines include monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, methylethanolamine, methylisopropanolamine, Nn-butylethanolamine, N-methyldiethanolamine, and Nn-butyldiethanolamine. , N-methyldiisopropanolamine, diethanolisopropanolamine, diisopropanolethanolamine, tetrahydroxyethylethylenediamine, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine, tris(2-hydroxybutyl)amine, etc. can be exemplified.
Only one type of alkanolamine may be used, or two or more types may be used.
 中でも、アルカノールアミンは、ジエタノールイソプロパノールアミン(DEIPA)、トリイソプロパノールアミン(TIPA)、エタノールジイソプロパノールアミン(EDIPA)、N-メチルジエタノールアミン(MDEA)、及びNn-ブチルジエタノールアミン(BDEA)からなる群より選択される少なくとも1つであることが好ましく、ジエタノールイソプロパノールアミン(DEIPA)、トリイソプロパノールアミン(TIPA)及びN-メチルジエタノールアミン(MDEA)からなる群より選択される少なくとも1つであることがより好ましく、ジエタノールイソプロパノールアミン(DEIPA)が更に好ましい。 Among others, the alkanolamine is selected from the group consisting of diethanolisopropanolamine (DEIPA), triisopropanolamine (TIPA), ethanoldiisopropanolamine (EDIPA), N-methyldiethanolamine (MDEA), and Nn-butyldiethanolamine (BDEA). is preferably at least one, more preferably at least one selected from the group consisting of diethanol isopropanolamine (DEIPA), triisopropanolamine (TIPA) and N-methyldiethanolamine (MDEA), diethanol isopropanol Amines (DEIPA) are more preferred.
(脂肪族多価アルコール)
 助剤は、脂肪族多価アルコールを含むことが好ましい。
 脂肪族多価アルコールは、炭素数が3~20であることが好ましく、3~10であることがより好ましい。
 脂肪族多価アルコールは、水酸基数が2~8であることが好ましく、2~4であることがより好ましい。
 脂肪族多価アルコールは、分子量が70~420であることが好ましく、70~210であることがより好ましい。
(Aliphatic polyhydric alcohol)
The coagent preferably contains an aliphatic polyhydric alcohol.
The aliphatic polyhydric alcohol preferably has 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms.
The aliphatic polyhydric alcohol preferably has 2 to 8 hydroxyl groups, more preferably 2 to 4 hydroxyl groups.
The aliphatic polyhydric alcohol preferably has a molecular weight of 70-420, more preferably 70-210.
 脂肪族多価アルコールは、具体的には、エチレングリコール、ジエチレングリコール、ポリエチレングリコール等のグリコール類;グリセリン等が挙げられる。脂肪族多価アルコールは1種のみを用いてもよいし、2種以上を用いてもよい。
 脂肪族多価アルコールは、グリセリン及びジエチレングリコールからなる群より選択される少なくとも1つであることが好ましく、ジエチレングリコールを含むことがより好ましい。
Specific examples of aliphatic polyhydric alcohols include glycols such as ethylene glycol, diethylene glycol and polyethylene glycol; glycerin and the like. Only one type of aliphatic polyhydric alcohol may be used, or two or more types may be used.
The aliphatic polyhydric alcohol is preferably at least one selected from the group consisting of glycerin and diethylene glycol, and more preferably contains diethylene glycol.
 また、普通ポルトランドセメントクリンカ、石膏、及び助剤の合計量中の助剤の含有量は80~350mg/kgであることが好ましい。
 以下、「助剤合計」とは、「普通ポルトランドセメントクリンカ、石膏、及び助剤の合計量中の助剤の含有量」を意味する。
 助剤合計が80mg/kg以上であることで、セメント組成物の被粉砕性に優れる。すなわち、クリンカと石膏と石灰石を加えてボールミルにて粉砕する場合に、被粉砕物が媒体に付着しにくく、粉砕の阻害が抑制される。助剤合計が350mg/kg以下であることで、噴流性に優れる。すなわち、混錬物の空気連行性が抑えられ、強度低下を防止し、粉体の流動性が必要以上に大きくなりにくいため、ベルトコンベアでの輸送時に滑りにくく、上り勾配を搬送し易く、また、下り勾配では自重で滑り落ちることが抑制され、効率的にセメント組成物を輸送することができる。
 助剤合計は、被粉砕性及び噴流性をより向上する観点から、100~350mg/kgであることがより好ましく、150~300mg/kgであることが更に好ましい。
Also, the content of the auxiliary agent in the total amount of ordinary portland cement clinker, gypsum and auxiliary agent is preferably 80-350 mg/kg.
Hereinafter, "total auxiliary agent" means "the content of auxiliary agent in the total amount of ordinary Portland cement clinker, gypsum, and auxiliary agent".
When the total amount of auxiliaries is 80 mg/kg or more, the cement composition is excellent in crushability. That is, when clinker, gypsum, and limestone are added and pulverized by a ball mill, the material to be pulverized is less likely to adhere to the medium, and inhibition of pulverization is suppressed. When the total amount of auxiliaries is 350 mg/kg or less, the jet property is excellent. In other words, the air entrainment of the kneaded product is suppressed, the strength is prevented from decreasing, and the fluidity of the powder does not increase more than necessary, so it is difficult to slip during transportation on a belt conveyor, and it is easy to convey uphill. , it is possible to efficiently transport the cement composition by suppressing it from slipping down due to its own weight.
The total amount of auxiliary agents is more preferably 100 to 350 mg/kg, even more preferably 150 to 300 mg/kg, from the viewpoint of further improving crushability and jetting properties.
〔石灰石〕
 本発明のセメント組成物は、石灰石を含む。
 石灰石は、普通ポルトランドセメントクリンカ、石膏、助剤、及び石灰石の合計量中の含有量が3~10質量%である。
 以下、「石灰石含有量」は「普通ポルトランドセメントクリンカ、石膏、助剤、及び石灰石の合計量中の石灰石の含有量」を意味する。
 石灰石含有量が3質量%未満であると、強度増進効果が得られない。
 通常、初期水和時に生成するエトリンガイトは、セメントの水和が進行するとモノサルフェートへ転化する反応を起こすが、石灰石とアルカノールアミンが共存すると、モノカーボネートまたはヘミハイドレートへの添加を促進することによって強度増進に寄与する。しかし、石灰石含有量が3質量%未満であると、その反応が顕著に起きないため、強度増進に繋がらない。
 石灰石含有量が10質量%を超えると、セメント中の単位クリンカ量が減少することによりモルタル強さが低下する。
 石灰石含有量は、強度をより増進する観点から、3~9質量%であることが好ましく、4~8質量%であることがより好ましい。
[Limestone]
The cement composition of the present invention contains limestone.
Limestone has a content of 3 to 10% by mass in the total amount of ordinary Portland cement clinker, gypsum, auxiliary agent and limestone.
Hereinafter, "limestone content" means "the content of limestone in the total amount of ordinary Portland cement clinker, gypsum, auxiliary agent and limestone".
If the limestone content is less than 3% by mass, the effect of increasing strength cannot be obtained.
Normally, ettringite, which is formed during initial hydration, undergoes a reaction that converts it to monosulfate as the hydration of cement proceeds. Contributes to strength enhancement. However, if the limestone content is less than 3% by mass, the reaction does not occur significantly, which does not lead to increased strength.
When the limestone content exceeds 10% by mass, the unit clinker content in the cement decreases, resulting in a decrease in mortar strength.
The limestone content is preferably 3 to 9% by mass, more preferably 4 to 8% by mass, from the viewpoint of further increasing strength.
〔石膏〕
 本発明のセメント組成物は、石膏を含む。
 石膏は、普通ポルトランドセメントクリンカ、石膏、及びアルカノールアミンの合計量中の含有量がSO換算で0.7~2.8質量%であることが好ましい。
 以下、「石膏含有量」とは「普通ポルトランドセメントクリンカ、石膏、及びアルカノールアミンの合計量中の石膏の含有量」を意味する。
 石膏含有量が上記範囲であることにより、セメント組成物の凝結時間および注水後の流動性とその経時変化を適切に保ち,硬化後の性状として強度発現性と乾燥収縮を適切にすることができる。
 石膏含有量は、上記の観点から、SO換算で、0.8~2.5質量%であることがより好ましく、0.9~2.0質量%であることが更に好ましい。
 石膏含有量は、JIS R 5202:2010「ポルトランドセメントの化学分析方法」に準じて測定することができる。セメント組成物中の石膏のSOに換算した質量の割合は、石膏の配合量と石膏に含まれるSOの割合から求めることができる。
 石膏としては、無水石膏、半水石膏、二水石膏のいずれも使用することができる。
〔plaster〕
The cement composition of the present invention contains gypsum.
The content of gypsum in the total amount of ordinary Portland cement clinker, gypsum and alkanolamine is preferably 0.7 to 2.8% by mass in terms of SO 3 .
Hereinafter, "gypsum content" means "the content of gypsum in the total amount of ordinary Portland cement clinker, gypsum and alkanolamine".
When the gypsum content is within the above range, the setting time of the cement composition, the fluidity after pouring water, and its change over time can be appropriately maintained, and the strength development and drying shrinkage can be made appropriate as properties after hardening. .
From the above viewpoint, the gypsum content is more preferably 0.8 to 2.5% by mass, more preferably 0.9 to 2.0% by mass in terms of SO 3 .
The gypsum content can be measured according to JIS R 5202:2010 "Method for chemical analysis of Portland cement". The ratio of the mass of gypsum in terms of SO 3 in the cement composition can be obtained from the amount of gypsum compounded and the ratio of SO 3 contained in the gypsum.
As gypsum, any of anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum can be used.
〔その他の成分〕
 本発明のセメント組成物には、流動性、水和速度、強度発現性等の調節用として、フライアッシュ、高炉スラグあるいはシリカフュームなどをさらに添加することができる。
[Other ingredients]
To the cement composition of the present invention, fly ash, blast-furnace slag, silica fume, or the like can be further added for adjusting fluidity, hydration rate, strength development, and the like.
<セメント組成物の製造方法>
 本発明のセメント組成物の製造方法は、ボーグ式で算出されるCSが51~62質量%、CAFが7~10質量%であり、CAFの格子体積が0.4290nmを超える普通ポルトランドセメントクリンカと、石膏と、石灰石と、アルカノールアミンを含む助剤とを、普通ポルトランドセメントクリンカ、石膏、及び助剤の合計量中のアルカノールアミンの配合量を10~210mg/kg、かつ普通ポルトランドセメントクリンカ、石膏、助剤、及び石灰石の合計量中の石灰石の配合量を3~10質量%として混合し、本発明のセメント組成物を製造する方法である。
 アルカノールアミンの配合量は、本発明のセメント組成物におけるアルカノールアミンの含有量と同様であり、好ましい範囲も同様である。また、石灰石の配合量は、既述の石灰石含有量と同義であり、好ましい範囲も同様である。
<Method for producing cement composition>
In the method for producing the cement composition of the present invention, C 3 S calculated by the Borg formula is 51 to 62% by mass, C 4 AF is 7 to 10% by mass, and the lattice volume of C 4 AF is 0.4290 nm 3 more than ordinary Portland cement clinker, gypsum, limestone, and an adjuvant containing alkanolamine; In addition, it is a method of producing the cement composition of the present invention by mixing ordinary Portland cement clinker, gypsum, auxiliary agent, and limestone in a total amount of 3 to 10% by mass.
The amount of alkanolamine to be blended is the same as the content of alkanolamine in the cement composition of the present invention, and the preferred range is also the same. In addition, the amount of limestone to be blended is synonymous with the limestone content described above, and the preferred range is also the same.
 クリンカに助剤、石膏及び石灰石を添加する順序、タイミング等は特に制限されない。例えば、クリンカに石膏及び石灰石を添加し混合してから、更に助剤を添加して混合を行ってもよいし、クリンカに助剤を添加してから石膏及び石灰石を添加してもよい。 There are no particular restrictions on the order, timing, etc. of adding auxiliary agents, gypsum and limestone to the clinker. For example, gypsum and limestone may be added to clinker and mixed, then an auxiliary agent may be added and mixed, or an auxiliary agent may be added to clinker and then gypsum and limestone may be added.
 本発明のセメント組成物の製造方法における各成分の混合の手段としては特に限定されない。例えば、ミキサー、ボールミル、ロッシェミル、エアーブレンディングサイロ等が挙げられる。混合時間は、通常のセメント組成物の製造において十分に混合が行われたと判断される範囲で設定することができる。 The means for mixing each component in the method for producing the cement composition of the present invention is not particularly limited. Examples include mixers, ball mills, roche mills, and air blending silos. The mixing time can be set within a range in which it is determined that sufficient mixing is performed in the normal production of cement compositions.
 本製造方法において、セメント組成物のブレーン比表面積が2800~3500cm/gとなるように粉砕が行われることが好ましい。 In this production method, pulverization is preferably carried out so that the Blaine specific surface area of the cement composition is 2800 to 3500 cm 2 /g.
 本発明のセメント組成物の製造方法では、普通ポルトランドセメントクリンカと、石膏と、石灰石と、アルカノールアミンを含む助剤との添加に加え、高炉スラグ、シリカ質混合材及びフライアッシュをさらに添加することができる。
 本発明では、JIS R 5210:2009「ポルトランドセメント」に規定される高炉スラグ及びシリカ質混合材を使用することができる。フライアッシュに関しては、JIS R 5210:2009「ポルトランドセメント」に規定されるフライアッシュI種及びフライアッシュII種の他、フライアッシュIII種及びフライアッシュIV種も使用することができる。
In the method for producing the cement composition of the present invention, in addition to adding ordinary Portland cement clinker, gypsum, limestone, and an auxiliary agent containing alkanolamine, blast furnace slag, siliceous admixture and fly ash are further added. can be done.
In the present invention, blast furnace slag and siliceous admixture specified in JIS R 5210:2009 "Portland cement" can be used. Regarding fly ash, in addition to fly ash type I and fly ash type II defined in JIS R 5210:2009 "Portland cement", fly ash type III and fly ash type IV can also be used.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例に何ら限定されるものではない。 The present invention will be described in more detail below with reference to examples. However, the present invention is by no means limited to the following examples.
<セメント組成物の製造>
 セメント組成物の製造に下記の材料を使用した。
1.クリンカ
 A~Gの7種の普通ポルトランドセメントクリンカ〔住友大阪セメント(株)製〕を用いた。化学組成及び鉱物組成を表1に示す。クリンカの化学組成は、JIS R 5204:2019「セメントの蛍光X線分析方法」に準じて蛍光X線測定装置(PRIMUS IV、株式会社リガク製)を用いて、ガラスビード法にて成分分析を行った。鉱物組成は、得られたCaO、SiO、Al及びFeの質量割合から、下記のボーグ式を用いて算出した。なお、表1中、HMは水硬率、SMは珪酸率、IMは鉄率を意味する。
  CS=(4.07×CaO)-(7.60×SiO)-(6.72×Al)-(1.43×Fe
  CS=(2.87×SiO)-(0.754×CS)
  CA=(2.65×Al)-(1.69×Fe
  CAF=3.04×Fe
<Manufacture of cement composition>
The following materials were used in the preparation of cement compositions.
1. Seven kinds of ordinary Portland cement clinker (manufactured by Sumitomo Osaka Cement Co., Ltd.) of clinker A to G were used. The chemical composition and mineral composition are shown in Table 1. The chemical composition of clinker is analyzed by the glass bead method using a fluorescent X-ray measuring device (PRIMUS IV, manufactured by Rigaku Co., Ltd.) in accordance with JIS R 5204:2019 "Method for fluorescent X-ray analysis of cement". rice field. The mineral composition was calculated from the obtained mass ratios of CaO, SiO 2 , Al 2 O 3 and Fe 2 O 3 using the following Borg formula. In Table 1, HM means hydraulic modulus, SM means silicic acid modulus, and IM means iron modulus.
C 3 S=(4.07×CaO)−(7.60×SiO 2 )−(6.72×Al 2 O 3 )−(1.43×Fe 2 O 3 )
C 2 S = (2.87 x SiO 2 ) - (0.754 x C 3 S)
C3A = (2.65 x Al2O3 ) - ( 1.69 x Fe2O3 )
C4AF = 3.04 x Fe2O3
 表1中の「CAF格子体積」は、粉末X線回折を利用したリートベルト解析方法を用いて測定したCAFの格子定数から、WPF解析法により計算した。
(測定条件)
・粉末X線回折装置:パナリティカル社製、X7Pert PRO
・リートベルト解析ソフト: パナリティカル社製、High Score Plus
・X線管球:Cu(管電圧;45kV、管電流;40mA )
・スリット: divergence slit-可変(照射幅- 12mm、Antiscatter slit- 2°)
・測定範囲:10~70°(ステップ幅:0.0167°)
・スキャン速度:0.1013°/s
The "C 4 AF lattice volume" in Table 1 was calculated by the WPF analysis method from the lattice constant of C 4 AF measured using the Rietveld analysis method using powder X-ray diffraction.
(Measurement condition)
・ Powder X-ray diffractometer: X7Pert PRO manufactured by PANalytical
・ Rietveld analysis software: High Score Plus manufactured by PANalytical
・X-ray tube: Cu (tube voltage: 45 kV, tube current: 40 mA)
・Slit: divergence slit-variable (irradiation width-12mm, Antiscatter slit-2°)
・Measuring range: 10 to 70° (step width: 0.0167°)
・Scanning speed: 0.1013°/s
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.助剤
(1)アルカノールアミン
・DEIPA:ジエタノールイソプロパノールアミン〔東京化成工業(株)製〕
・TIPA:トリイソプロパノールアミン〔東京化成工業(株)製〕
・EDIPA:エタノールジイソプロパノールアミン
 〔シグマ アルドリッチ ジャパン合同会社製〕
・MDEA:N-メチルジエタノールアミン〔東京化成工業(株)製〕
・BDEA:Nn-ブチルジエタノールアミン〔東京化成工業(株)製〕
(2)脂肪族多価アルコール
・DEG:ジエチレングリコール〔関東化学(株)製〕
2. Auxiliary agent (1) alkanolamine DEIPA: diethanol isopropanolamine [manufactured by Tokyo Chemical Industry Co., Ltd.]
・ TIPA: triisopropanolamine [manufactured by Tokyo Chemical Industry Co., Ltd.]
・EDIPA: ethanol diisopropanolamine [manufactured by Sigma-Aldrich Japan LLC]
・ MDEA: N-methyldiethanolamine [manufactured by Tokyo Chemical Industry Co., Ltd.]
・ BDEA: Nn-butyldiethanolamine [manufactured by Tokyo Chemical Industry Co., Ltd.]
(2) Aliphatic polyhydric alcohol DEG: diethylene glycol [manufactured by Kanto Kagaku Co., Ltd.]
3.石灰石
 関東化学(株)製、炭酸カルシウム 特級、CaCO:99.5%
4.石膏
 半水石膏を用いた。具体的には、富士フィルム和光純薬(株)製、硫酸カルシウム二水和物 1級、CaSO:98.0+%、乾燥機内で120℃、12時間保持したものを使用した。石膏中のSO換算量は、JIS R 5202:2015「セメントの化学分析法」に従って測定した。
3. Limestone manufactured by Kanto Chemical Co., Ltd., special grade calcium carbonate, CaCO 3 : 99.5%
4. Gypsum Hemihydrate gypsum was used. Specifically, the one manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., calcium sulfate dihydrate grade 1, CaSO 4 : 98.0+%, and kept at 120° C. for 12 hours in a dryer was used. The SO 3 equivalent amount in gypsum was measured according to JIS R 5202:2015 "Method for chemical analysis of cement".
〔実施例1〕
 クリンカ種類Aのクリンカ92.8質量%(*)に対し、半水石膏2.7質量%(半水石膏SO換算で1.5質量%)及び石灰石4.5質量%を添加して、ミキサーで混合した。次いで、表2に示すように、助剤として、ジエタノールイソプロパノールアミン(DEIPA)及びジエチレングリコール(DEG)を、クリンカと、石膏と、助剤との合計量に対して、それぞれ、10mg/kg及び190mg/kg配合した。次いで、ブレーン比表面積値が3200±50cm/gの範囲となるようにボールミルで混合粉砕し、実施例1のセメント組成物を得た。
 なお、(*)に示す量に関し、クリンカと助剤との合計が92.8質量%であるが、助剤の量は、クリンカと助剤との合計の中の割合で考えると、ほとんどクリンカの量に影響を与えないほど、微量なものであり、クリンカ量は92.8質量%といえる。実施例1以外の実施例、及び比較例においても同様である。
[Example 1]
Add 2.7% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 4.5% by mass of limestone to 92.8% by mass of clinker type A clinker (*) , Mixed with a mixer. Then, as shown in Table 2, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 10 mg/kg and 190 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg. Then, the cement composition of Example 1 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200±50 cm 2 /g.
Regarding the amount shown in (*), the total amount of clinker and auxiliary agent is 92.8% by mass. The amount of clinker can be said to be 92.8% by mass. The same applies to Examples other than Example 1 and Comparative Examples.
 石膏の配合量は、石膏のSO換算量がクリンカに作用するため、いずれの実施例、比較例とも、半水石膏のSO換算量/(クリンカ+助剤+半水石膏合量)が1.5%となるように半水石膏を配合した。 Since the SO3 equivalent amount of gypsum acts on the clinker, the amount of gypsum compounded is the SO3 equivalent amount of gypsum hemihydrate/( total amount of clinker + auxiliary agent + gypsum hemihydrate) in both Examples and Comparative Examples. Gypsum hemihydrate was blended so as to be 1.5%.
〔実施例2~19、23~26、比較例1~4、7~12〕
 クリンカとして、表2~3に示す種類のクリンカを用い、石灰石を表2~3に示す量配合し、助剤として表2~3の「助剤」欄に示す種類及び量の助剤〔アルカノールアミン及び、必要に応じて、脂肪族多価アルコール(DEG)〕を配合し、ブレーン比表面積値が表2~3に示す値±50cm/gの範囲となるようにボールミルで混合粉砕した他は、実施例1と同様にしてセメント組成物を得た。
 なお、比較例1と比較例2においては、アルカノールアミンを配合しなかった。また、「DEG」欄の数値が0である比較例2等においては、ジエチレングリコールを配合しなかった。
[Examples 2 to 19, 23 to 26, Comparative Examples 1 to 4, 7 to 12]
As clinker, the types of clinker shown in Tables 2 and 3 are used, limestone is blended in the amount shown in Tables 2 and 3, and the type and amount of auxiliary agent [alkanol An amine and, if necessary, an aliphatic polyhydric alcohol (DEG)] were blended and mixed and pulverized in a ball mill so that the Blaine specific surface area value was within the range of ±50 cm 2 /g shown in Tables 2 and 3. obtained a cement composition in the same manner as in Example 1.
In Comparative Examples 1 and 2, alkanolamine was not blended. In addition, in Comparative Example 2 and the like where the numerical value in the "DEG" column is 0, diethylene glycol was not blended.
〔比較例5〕
 クリンカ種類Aのクリンカ96.2質量%に対し、半水石膏2.8質量%(半水石膏SO換算で1.5質量%)及び石灰石1.0質量%を添加して、ミキサーで混合した。次いで、表3に示すように、助剤として、ジエタノールイソプロパノールアミン(DEIPA)及びジエチレングリコール(DEG)を、クリンカと、石膏と、助剤との合計量に対して、それぞれ、50mg/kg及び150mg/kg配合した。次いで、ブレーン比表面積値が3200±50cm/gの範囲となるようにボールミルで混合粉砕し、比較例5のセメント組成物を得た。
[Comparative Example 5]
To 96.2% by mass of clinker type A clinker, 2.8% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 1.0% by mass of limestone are added and mixed in a mixer. did. Then, as shown in Table 3, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 50 mg/kg and 150 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg. Then, the cement composition of Comparative Example 5 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200±50 cm 2 /g.
〔実施例20〕
 クリンカ種類Aのクリンカ94.1質量%に対し、半水石膏2.7質量%(半水石膏SO換算で1.5質量%)及び石灰石3.2質量%を添加して、ミキサーで混合した。次いで、表3に示すように、助剤として、ジエタノールイソプロパノールアミン(DEIPA)及びジエチレングリコール(DEG)を、クリンカと、石膏と、助剤との合計量に対して、それぞれ、50mg/kg及び150mg/kg配合した。次いで、ブレーン比表面積値が3200±50cm/gの範囲となるようにボールミルで混合粉砕し、実施例20のセメント組成物を得た。
[Example 20]
To 94.1% by mass of clinker type A clinker, 2.7% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 3.2% by mass of limestone are added and mixed in a mixer. did. Then, as shown in Table 3, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 50 mg/kg and 150 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg. Then, the cement composition of Example 20 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200±50 cm 2 /g.
〔実施例21〕
 クリンカ種類Aのクリンカ90.9質量%に対し、半水石膏2.6質量%(半水石膏SO換算で1.5質量%)及び石灰石6.5質量%を添加して、ミキサーで混合した。次いで、表3に示すように、助剤として、ジエタノールイソプロパノールアミン(DEIPA)及びジエチレングリコール(DEG)を、クリンカと、石膏と、助剤との合計量に対して、それぞれ、50mg/kg及び150mg/kg配合した。次いで、ブレーン比表面積値が3200±50cm/gの範囲となるようにボールミルで混合粉砕し、実施例21のセメント組成物を得た。
[Example 21]
To 90.9% by mass of clinker type A clinker, 2.6% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 6.5% by mass of limestone are added and mixed in a mixer. did. Then, as shown in Table 3, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 50 mg/kg and 150 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg. Then, the cement composition of Example 21 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200±50 cm 2 /g.
〔実施例22〕
 クリンカ種類Aのクリンカ88.0質量%に対し、半水石膏2.5質量%(半水石膏SO換算で1.5質量%)及び石灰石9.5質量%を添加して、ミキサーで混合した。次いで、表3に示すように、助剤として、ジエタノールイソプロパノールアミン(DEIPA)及びジエチレングリコール(DEG)を、クリンカと、石膏と、助剤との合計量に対して、それぞれ、50mg/kg及び150mg/kg配合した。次いで、ブレーン比表面積値が3200±50cm/gの範囲となるようにボールミルで混合粉砕し、実施例22のセメント組成物を得た。
[Example 22]
To 88.0% by mass of clinker type A clinker, 2.5% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 9.5% by mass of limestone are added and mixed in a mixer. did. Then, as shown in Table 3, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 50 mg/kg and 150 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg. Then, the cement composition of Example 22 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200±50 cm 2 /g.
〔比較例6〕
 クリンカ種類Aのクリンカ86.5質量%に対し、半水石膏2.5質量%(半水石膏SO換算で1.5質量%)及び石灰石11.0質量%を添加して、ミキサーで混合した。次いで、表3に示すように、助剤として、ジエタノールイソプロパノールアミン(DEIPA)及びジエチレングリコール(DEG)を、クリンカと、石膏と、助剤との合計量に対して、それぞれ、50mg/kg及び150mg/kg配合した。次いで、ブレーン比表面積値が3200±50cm/gの範囲となるようにボールミルで混合粉砕し、比較例6のセメント組成物を得た。
[Comparative Example 6]
To 86.5% by mass of clinker type A clinker, 2.5% by mass of gypsum hemihydrate ( 1.5% by mass in terms of gypsum hemihydrate SO3) and 11.0% by mass of limestone are added and mixed in a mixer. did. Then, as shown in Table 3, diethanol isopropanolamine (DEIPA) and diethylene glycol (DEG) were added as auxiliaries to 50 mg/kg and 150 mg/kg, respectively, based on the total amount of clinker, gypsum, and auxiliaries. kg. Then, the cement composition of Comparative Example 6 was obtained by mixing and pulverizing with a ball mill so that the Blaine specific surface area value was in the range of 3200±50 cm 2 /g.
<セメント組成物の評価>
1.被粉砕性
 φ0.4m×0.72m(容積約90L)のボールミルに粉砕媒体としてφ9.5mmの高クロム球10kgを投入し、被粉砕物として、実施例及び比較例のセメント組成物を添加した。ミル回転数を60回/分とし、ブレーン比表面積が3200cm/gとなるまでの粉砕時間を測定した。
 粉砕時間が短いほどセメント組成物は被粉砕性に優れる。粉砕時間は68分未満であることが好ましい。結果を表2~3の「粉砕効果」欄に示した。
<Evaluation of cement composition>
1. Grindability 10 kg of high chromium balls of φ9.5 mm were put into a ball mill of φ0.4 m × 0.72 m (volume of about 90 L) as a grinding medium, and the cement compositions of Examples and Comparative Examples were added as materials to be ground. . The mill rotation speed was set to 60 times/min, and the pulverization time until Blaine specific surface area reached 3200 cm 2 /g was measured.
The shorter the pulverization time, the more excellent the pulverizability of the cement composition. Preferably, the milling time is less than 68 minutes. The results are shown in the "crushing effect" column of Tables 2 and 3.
2.噴流性
 ホソカワミクロン株式会社製のパウダーテスター(TP-X)を使用し、実施例及び比較例のセメント組成物の安息角、崩壊角、及び分散度を測定し、同装置の噴流性指数表に当てはめて噴流性指数を求めた。
 噴流性指数が小さいほど、セメント組成物は噴流性に優れる。指数は75未満であることが好ましい。結果を表2~3の「噴流性指数」欄に示した。
2. Jetability Using a powder tester (TP-X) manufactured by Hosokawa Micron Corporation, the repose angle, collapse angle, and degree of dispersion of the cement compositions of Examples and Comparative Examples were measured, and applied to the jettability index table of the same device. Then, the jettability index was obtained.
The smaller the jettability index, the more excellent the cement composition is in jettability. Preferably the index is less than 75. The results are shown in the "jetting index" column of Tables 2 and 3.
3.モルタル強さ
 JIS R 5201 「セメントの物理試験方法」に準拠して、実施例及び比較例のセメントを用いて得られたモルタルの強度を評価した。
 数値が大きいほど、セメント組成物を用いて得られるモルタルは強度が高く、許容範囲は60N/mm超である。結果を表2~3の「モルタル強さ」欄に示した。
3. Mortar Strength The strength of the mortars obtained using the cements of Examples and Comparative Examples was evaluated according to JIS R 5201 "Physical Testing Methods for Cement".
The higher the number, the higher the strength of the mortar obtained using the cement composition, and the acceptable range is above 60 N/mm 2 . The results are shown in the "mortar strength" column of Tables 2 and 3.
4.流動性
 JIS R 5201 「セメントの物理試験方法」に準拠してセメント組成物から得られるモルタルの流動性を評価した。
 具体的には、実施例及び比較例のセメント組成物に対して、高性能減水剤〔花王(株)製、商品名「マイティー150」)を外割で1.0%添加して、モルタルを調製し、得られたモルタルについて、15回の落下運動は実施せず、コーンを引き抜いた後にモルタルの広がりが停止した時点のフロー値を測定した。
 フロー値が大きいほど、セメント組成物から得られるモルタルは流動性に優れる。許容範囲は160mm超である。結果を表2~3の「0打フロー」欄に示した。
4. Fluidity The fluidity of the mortar obtained from the cement composition was evaluated according to JIS R 5201 "Physical Testing Methods for Cement".
Specifically, 1.0% of a high-performance water reducing agent [manufactured by Kao Corporation, trade name "Mighty 150"] is added to the cement compositions of Examples and Comparative Examples, and mortar is prepared. For the mortar prepared and obtained, the flow value was measured at the time when the spreading of the mortar stopped after pulling out the cone without performing 15 falling motions.
The higher the flow value, the better the fluidity of the mortar obtained from the cement composition. The tolerance is greater than 160mm. The results are shown in the "0 stroke flow" column of Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003


 
Figure JPOXMLDOC01-appb-T000003


 

Claims (7)

  1.  ボーグ式で算出されるCSが51~62質量%、CAFが7~10質量%である普通ポルトランドセメントクリンカと、
     石膏と、
     石灰石と、
     アルカノールアミンを含む助剤
    とを含み、
     前記普通ポルトランドセメントクリンカ、前記石膏、及び前記助剤の合計量中の前記アルカノールアミンの含有量が10~210mg/kgであり、
     前記普通ポルトランドセメントクリンカ、前記石膏、前記助剤、及び前記石灰石の合計量中の前記石灰石の含有量が3~10質量%であり、
     前記CAFの格子体積が0.4290nmを超え、
     ブレーン比表面積が2800~3500cm/gであるセメント組成物。
    Ordinary Portland cement clinker containing 51 to 62% by mass of C 3 S and 7 to 10% by mass of C 4 AF calculated by the Borg formula;
    gypsum;
    limestone;
    and an adjuvant containing an alkanolamine,
    The content of the alkanolamine in the total amount of the ordinary Portland cement clinker, the gypsum, and the auxiliary agent is 10 to 210 mg/kg,
    The content of the limestone in the total amount of the ordinary Portland cement clinker, the gypsum, the auxiliary agent, and the limestone is 3 to 10% by mass,
    the lattice volume of said C4AF is greater than 0.4290 nm3;
    A cement composition having a Blaine specific surface area of 2800 to 3500 cm 2 /g.
  2.  前記普通ポルトランドセメントクリンカ、前記石膏、及び前記助剤の合計量中の前記助剤の含有量が80~350mg/kgである請求項1に記載のセメント組成物。 The cement composition according to claim 1, wherein the content of said auxiliary agent in the total amount of said ordinary Portland cement clinker, said gypsum and said auxiliary agent is 80-350 mg/kg.
  3.  前記助剤が脂肪族多価アルコールを含む請求項1又は2に記載のセメント組成物。 The cement composition according to claim 1 or 2, wherein the auxiliary agent contains an aliphatic polyhydric alcohol.
  4.  前記普通ポルトランドセメントクリンカ、前記石膏、及び前記助剤の合計量中の前記石膏の含有量がSO換算で0.7~2.8質量%である請求項1~3のいずれか1項に記載のセメント組成物。 4. The method according to any one of claims 1 to 3 , wherein the content of the gypsum in the total amount of the ordinary Portland cement clinker, the gypsum, and the auxiliary agent is 0.7 to 2.8% by mass in terms of SO3. The described cement composition.
  5.  前記アルカノールアミンが、ジエタノールイソプロパノールアミン、トリイソプロパノールアミン、エタノールジイソプロパノールアミン、N-メチルジエタノールアミン、及びNn-ブチルジエタノールアミンからなる群より選択される少なくとも1つである請求項1~4のいずれか1項に記載のセメント組成物。 5. Any one of claims 1 to 4, wherein the alkanolamine is at least one selected from the group consisting of diethanolisopropanolamine, triisopropanolamine, ethanoldiisopropanolamine, N-methyldiethanolamine, and Nn-butyldiethanolamine. The cement composition according to .
  6.  前記脂肪族多価アルコールが、グリセリン及びジエチレングリコールからなる群より選択される少なくとも1つである請求項3に記載のセメント組成物。 The cement composition according to claim 3, wherein the aliphatic polyhydric alcohol is at least one selected from the group consisting of glycerin and diethylene glycol.
  7.  ボーグ式で算出されるCSが51~62質量%、CAFが7~10質量%であり、前記CAFの格子体積が0.4290nmを超える普通ポルトランドセメントクリンカと、
     石膏と、
     石灰石と、
     アルカノールアミンを含む助剤
    とを、
     前記普通ポルトランドセメントクリンカ、前記石膏、及び前記助剤の合計量中の前記アルカノールアミンの配合量を10~210mg/kg、かつ
     前記普通ポルトランドセメントクリンカ、前記石膏、前記助剤、及び前記石灰石の合計量中の前記石灰石の配合量を3~10質量%として混合し、請求項1~6のいずれか1項に記載のセメント組成物を製造するセメント組成物の製造方法。

     
    Ordinary Portland cement clinker containing 51 to 62% by mass of C 3 S and 7 to 10% by mass of C 4 AF calculated by the Borg formula, and having a lattice volume of the C 4 AF exceeding 0.4290 nm 3 ;
    gypsum;
    limestone;
    an auxiliary agent containing an alkanolamine;
    A blending amount of the alkanolamine in the total amount of the ordinary Portland cement clinker, the gypsum, and the auxiliary agent is 10 to 210 mg/kg, and the total amount of the ordinary Portland cement clinker, the gypsum, the auxiliary agent, and the limestone A cement composition production method for producing the cement composition according to any one of claims 1 to 6 by mixing the limestone in an amount of 3 to 10% by mass.

PCT/JP2022/002355 2021-03-26 2022-01-24 Cement composition and method for producing same WO2022201818A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NZ797549A NZ797549A (en) 2021-03-26 2022-01-24 Cement composition and method for producing same
CN202280006344.6A CN116249680B (en) 2021-03-26 2022-01-24 Cement composition and method for producing same
AU2022246322A AU2022246322B2 (en) 2021-03-26 2022-01-24 Cement composition and method for producing same
KR1020237004567A KR102593416B1 (en) 2021-03-26 2022-01-24 Cement composition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053980A JP6966012B1 (en) 2021-03-26 2021-03-26 Cement composition and its manufacturing method
JP2021-053980 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022201818A1 true WO2022201818A1 (en) 2022-09-29

Family

ID=78466266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002355 WO2022201818A1 (en) 2021-03-26 2022-01-24 Cement composition and method for producing same

Country Status (6)

Country Link
JP (1) JP6966012B1 (en)
KR (1) KR102593416B1 (en)
CN (1) CN116249680B (en)
AU (1) AU2022246322B2 (en)
NZ (1) NZ797549A (en)
WO (1) WO2022201818A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7180742B1 (en) * 2021-12-23 2022-11-30 住友大阪セメント株式会社 Cement composition and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036077A (en) * 2010-07-16 2012-02-23 Kao Corp Method for producing hydraulic powder
JP2014185040A (en) * 2013-03-21 2014-10-02 Sumitomo Osaka Cement Co Ltd Cement composition
JP2016124719A (en) * 2014-12-26 2016-07-11 花王株式会社 Additive for hydraulic composition
JP2016175785A (en) * 2015-03-18 2016-10-06 住友大阪セメント株式会社 Cement clinker composition, production method thereof, and moderate heat portland cement composition
WO2020203490A1 (en) * 2019-03-29 2020-10-08 住友大阪セメント株式会社 Cement composition and method for producing cement composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203909A (en) 1999-01-19 2000-07-25 Denki Kagaku Kogyo Kk Admixture and cement composition
JP2000281404A (en) 1999-04-01 2000-10-10 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP5310193B2 (en) * 2009-03-31 2013-10-09 宇部興産株式会社 Method for producing cement composition
JP4811534B1 (en) * 2010-06-01 2011-11-09 宇部興産株式会社 CEMENT COMPOSITION AND METHOD FOR PRODUCING CEMENT COMPOSITION
EP2864271A1 (en) * 2012-06-25 2015-04-29 Dow Global Technologies LLC Cement grinding aid composition
JP6278147B1 (en) * 2017-04-28 2018-02-14 住友大阪セメント株式会社 Mixed cement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036077A (en) * 2010-07-16 2012-02-23 Kao Corp Method for producing hydraulic powder
JP2014185040A (en) * 2013-03-21 2014-10-02 Sumitomo Osaka Cement Co Ltd Cement composition
JP2016124719A (en) * 2014-12-26 2016-07-11 花王株式会社 Additive for hydraulic composition
JP2016175785A (en) * 2015-03-18 2016-10-06 住友大阪セメント株式会社 Cement clinker composition, production method thereof, and moderate heat portland cement composition
WO2020203490A1 (en) * 2019-03-29 2020-10-08 住友大阪セメント株式会社 Cement composition and method for producing cement composition

Also Published As

Publication number Publication date
JP2022151074A (en) 2022-10-07
CN116249680A (en) 2023-06-09
CN116249680B (en) 2024-03-29
KR20230025501A (en) 2023-02-21
JP6966012B1 (en) 2021-11-10
KR102593416B1 (en) 2023-10-25
AU2022246322B2 (en) 2023-07-27
NZ797549A (en) 2024-02-23
AU2022246322A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US7160384B2 (en) Amine-containing cement processing additives
US8460457B2 (en) Robust air-detraining for cement milling
US8506701B2 (en) Method for producing hydraulic powder
ES2567468T3 (en) Grinding assistant
EP4073013A1 (en) A novel process for high-performance cements
JP7341366B2 (en) Cement composition and its manufacturing method
JP7372491B2 (en) Cement composition and its manufacturing method
US11230495B2 (en) Agents for enhancing cement strength
JP5737710B2 (en) Coal ash mixed cement composition
KR102593416B1 (en) Cement composition and method for producing the same
JP7180742B1 (en) Cement composition and its manufacturing method
JP7479900B2 (en) Manufacturing method and manufacturing apparatus for cement composition, and cement composition
TR2021019185A2 (en) GRINDING ASSISTANT
WO2023104349A1 (en) Grinding aid
WO2023036229A1 (en) Admixture for cement
JP2021109810A (en) Cement composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237004567

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022246322

Country of ref document: AU

Date of ref document: 20220124

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774620

Country of ref document: EP

Kind code of ref document: A1