WO2022201699A1 - ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム - Google Patents

ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム Download PDF

Info

Publication number
WO2022201699A1
WO2022201699A1 PCT/JP2021/047759 JP2021047759W WO2022201699A1 WO 2022201699 A1 WO2022201699 A1 WO 2022201699A1 JP 2021047759 W JP2021047759 W JP 2021047759W WO 2022201699 A1 WO2022201699 A1 WO 2022201699A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
network management
wavelength band
optical signals
optical
Prior art date
Application number
PCT/JP2021/047759
Other languages
English (en)
French (fr)
Inventor
守彦 大田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023508634A priority Critical patent/JPWO2022201699A5/ja
Priority to US18/281,980 priority patent/US20240154695A1/en
Publication of WO2022201699A1 publication Critical patent/WO2022201699A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]

Definitions

  • the present invention relates to network management devices, communication devices, network management methods, and network management systems.
  • Patent Document 1 describes an optical communication system in which modulated signals modulated by a plurality of different modulation schemes are given predetermined guard bands based on bandwidths and destinations.
  • Patent Document 2 describes an optical network system in which, when signal lights of a plurality of modulation schemes are transmitted simultaneously, a guard band is provided between adjacent signal lights of different modulation schemes only when the signal lights of different modulation schemes are adjacent.
  • Patent Document 3 describes a multicarrier communication system in which signals are transmitted with a reduced number of guard intervals in the multicarrier communication method.
  • Patent Document 4 describes a base station apparatus that uses a guard time of a length that allows propagation delay between a base station and a mobile station between channel slots occupied by the same base station.
  • the signal band is reduced each time it passes through multiplexers, and signal quality deteriorates, so a guard band is provided to prevent signal quality deterioration.
  • a guard band it is necessary to secure a band wider than the signal band, which reduces the transmission capacity of the system.
  • An object of the present disclosure is to provide a network management device, a communication device, and a network management method that can improve transmission capacity in view of the above problems.
  • a network management device provides an optical communication network having a plurality of communication devices connected by a transmission line for transmitting WDM signal light in which a plurality of optical signals are wavelength division multiplexed, wherein a first communication device is When the optical signal is added to the WDM signal light, the first optical signal is inserted so that the plurality of optical signals branched by the second communication device are adjacent to the wavelength band sandwiched by the guard bands.
  • an insertion control unit for controlling a communication device; and a plurality of optical signals inserted adjacent to the wavelength band sandwiched by the guard bands when the second communication device splits the optical signal from the WDM signal light.
  • a branch control unit that controls the second communication device to branch the optical signal.
  • a communication device is connected to an optical communication network having a plurality of communication devices connected by a transmission line for transmitting WDM signal light in which a plurality of optical signals are wavelength division multiplexed, and transmits the optical signal to the
  • the plurality of optical signals to be dropped by another communication device are added adjacent to the wavelength band sandwiched by guard bands, and the optical signals are dropped from the WDM signal light
  • the plurality of optical signals inserted adjacent to the wavelength band sandwiched by the guard bands are branched.
  • a network management method provides an optical communication network having a plurality of communication devices connected by a transmission line for transmitting WDM signal light in which a plurality of optical signals are wavelength division multiplexed.
  • the first communication is such that when the optical signal is added to the WDM signal light, the plurality of optical signals branched by the second communication device are added adjacent to a wavelength band sandwiched by guard bands.
  • a network management device a communication device, and a network management method capable of improving transmission capacity are provided.
  • FIG. 1 is a diagram illustrating a network management system according to an embodiment
  • FIG. FIG. 5 is a diagram for explaining WDM signal light according to a comparative example
  • FIG. 4 is a diagram for explaining WDM signal light according to the embodiment
  • 1 is a block diagram illustrating a network management device according to an embodiment
  • FIG. FIG. 2 is a flow chart diagram illustrating a network management method of network management according to an embodiment
  • 1 is a block diagram illustrating the configuration of a communication device according to Embodiment 1
  • FIG. 1 is a block diagram illustrating the configuration of a communication device according to Embodiment 1
  • FIG. 4 is a diagram illustrating a wavelength demultiplexing function of a wavelength selective switch in the wavelength cross-connect function unit according to the first embodiment
  • FIG. 4 is a diagram illustrating a wavelength multiplexing function of a wavelength selective switch in the wavelength cross-connect function unit according to the first embodiment
  • FIG. 2 is a block diagram illustrating the configuration of a network management device according to Embodiment 1
  • FIG. 11 is a diagram illustrating a network management method according to a comparative example
  • 1 is a diagram illustrating a network management method according to Embodiment 1
  • FIG. 10 is a diagram for explaining WDM signal light according to Embodiment 2
  • FIG. 10 is a block diagram illustrating a network management device according to the second embodiment
  • FIG. 10 is a graph exemplifying an OSNR value obtained by converting a penalty estimated by an OSNR monitor value and an estimation unit of the network management device in the second embodiment into an OSNR.
  • 10 is a graph showing an example of an OSNR value obtained by converting a penalty estimated by an OSNR monitor value and an estimation unit of the network management device according to the second embodiment into an OSNR.
  • FIG. 10 is a diagram illustrating a method of estimating a penalty by an estimating unit of the network management device according to the second embodiment;
  • FIG. 10 is a flow chart diagram illustrating a method of determining the quality of a transmission line in the network management method according to the second embodiment;
  • FIG. 10 is a flow chart diagram illustrating a method for controlling intervals between optical signals in the network management method according to the second embodiment;
  • FIG. 1 is a diagram illustrating a network management system according to an embodiment.
  • the network management system 1 includes a network management device NMS and an optical communication network 100.
  • FIG. The optical communication network 100 has a plurality of communication devices NE1-NE4. Although four communication devices NE1 to NE4 are shown in the figure, the number of communication devices NE1 to NE4 is not limited. Each communication device NE1-NE4 is connected to an optical communication network via a transmission line. Therefore, the optical communication network 100 is configured by connecting a plurality of communication devices NE1 to NE4 via transmission lines. Each communication device NE may be connected point-to-point, may be connected in a ring, or may be connected in a mesh.
  • the communication devices NE1 to NE4 are collectively called a communication device NE.
  • the transmission line transmits WDM signal light obtained by wavelength division multiplexing a plurality of optical signals.
  • Each communication device NE is connected to a network management device NMS by a communication line.
  • a communication device NE is a node of the optical communication network 100 .
  • the communication device NE may be connected to a transmitter and receiver (not shown) via a wired or wireless communication line.
  • the communication device NE can function as a multiplexer, a repeater and a demultiplexer under the control of ROADM (Reconfigurable Optical Add and Drop MultiPlexing).
  • ROADM Reconfigurable Optical Add and Drop MultiPlexing
  • the operation of each communication device NE is controlled by a network management device NMS. Accordingly, the optical communication network 100 transmits optical signals by wavelength division multiplexing (WDM).
  • WDM wavelength division multiplexing
  • FIG. 2 is a diagram for explaining WDM signal light according to a comparative example.
  • FIG. 3 is a diagram for explaining WDM signal light according to the embodiment.
  • WDM signal light is divided into a plurality of wavelength bands. A plurality of slots SL correspond to each wavelength band. Therefore, the wavelength band has multiple slots SL. 2 and 3 show slots SL1 to SL24.
  • the WDM signal light of the comparative example includes optical signals P1 to P4, for example.
  • the optical signal P1 corresponds to slots SL2 to SL5. Slots SL1 and SL6 are provided with guard bands G1 and G2.
  • the optical signal P2 corresponds to slots SL8 to SL11. Slots SL7 and SL12 are provided with guard bands G3 and G4.
  • the optical signal P3 corresponds to slots SL14 to SL17. Slots SL13 and SL18 are provided with guard bands G5 and G6.
  • the optical signal P4 corresponds to slots SL20 to SL23. Slots SL19 and SL24 are provided with guard bands G7 and G8.
  • the optical signal P1 and the optical signal P3 are optical signals branched by the same communication device NE.
  • the optical signal P1 and the optical signal P3 are optical signals branched by the communication device NE4.
  • the optical signal P2 and the optical signal P4 are optical signals branched by the same communication device NE.
  • the optical signal P2 and the optical signal P4 are optical signals branched by the communication device NE3.
  • WDM signal light is divided into a plurality of wavelength bands, and each wavelength band corresponds to a plurality of slots SL.
  • the WDM signal light includes optical signals P11-P14.
  • the optical signal P11 corresponds to slots SL2 to SL5.
  • the optical signal P12 corresponds to slots SL6 to SL9.
  • the optical signal P11 and the optical signal P12 are optical signals branched by the same communication device NE.
  • the optical signal P11 and the optical signal P12 are optical signals branched by the communication device NE4.
  • Slots SL1 and SL10 are provided with guard bands G11 and G12.
  • the optical signal P13 corresponds to slots SL12 to SL15.
  • the optical signal P14 corresponds to slots SL16 to SL19.
  • Slots SL11 and SL20 are provided with guard bands G13 and G14.
  • Optical signal P13 and optical signal P14 are optical signals dropped at the same communication device NE.
  • the optical signal P13 and the optical signal P14 are optical signals branched by the communication device NE3. In the embodiment, 4 slots can be reduced compared to the comparative example.
  • FIG. 4 is a block diagram illustrating a network management device NMS according to an embodiment.
  • the network management device NMS includes an insertion control section 11 and a branch control section 12 .
  • the insertion control section 11 and the branch control section 12 have functions as insertion control means and branch control means.
  • the insertion control unit 11 divides the plurality of optical signals P11 and P12 branched by the communication device NE4 into the guard band G11. and G12, and controls the communication device NE1 so that it is inserted adjacent to the wavelength band. Further, when the communication device NE1 inserts the optical signal P14 into the WDM signal light, the insertion control unit 11, for example, sandwiches the plurality of optical signals P13 and P14 branched by the communication device NE3 between the guard bands G13 and G14. The communication device NE1 is controlled to be inserted adjacent to the selected wavelength band.
  • the branch control unit 12 divides the plurality of optical signals P11 and P12 inserted adjacent to the wavelength band sandwiched between the guard bands G11 and G12. is controlled by the communication device NE4. Further, when the communication device NE3 branches the optical signals P13 and P14 from the WDM signal light, the branch control unit 12 controls the plurality of optical signals P13 inserted adjacent to the wavelength band sandwiched between the guard bands G13 and G14. and P14 by the communication device NE3.
  • the communication devices NE1 to NE4 are connected to an optical communication network 100 including a plurality of communication devices NE1 to NE4 connected by transmission lines.
  • the communication device NE1 places the plurality of optical signals P11 and P12 branched by the communication device NE4 adjacent to the wavelength band sandwiched between the guard bands G11 and G12, for example. insert.
  • the communication device NE1 for example, divides the plurality of optical signals P13 and P14 into the wavelength bands sandwiched between the guard bands G13 and G14. and insert it.
  • the communication device NE3 when branching the optical signals P13 and P14 from the WDM signal light, branches the plurality of optical signals P13 and P14 inserted into the wavelength band sandwiched between the guard bands G13 and G14.
  • the communication device NE4 when branching the optical signals P11 and P12 from the WDM signal light, branches the plurality of optical signals P11 and P12 inserted into the wavelength band sandwiched between the guard bands G11 and G12.
  • FIG. 5 is a flow chart diagram illustrating a network management method of the network management device NMS according to the embodiment.
  • step S11 in FIG. 5 in the optical communication network 100, when the communication device NE1 inserts the optical signal P12 into the WDM signal light, for example, a plurality of optical signals P11 and P12 to be branched by the same communication device NE4 are , the communication device NE1 is inserted adjacent to the wavelength band sandwiched by the guard bands G11 and G12.
  • step S12 in the optical communication network 100, when the communication device NE4 branches the optical signals P11 and P12 from the WDM signal light, the wavelength band sandwiched between the guard bands G11 and G12 is made adjacent to the wavelength band.
  • the communication device NE4 is controlled so that the plurality of inserted optical signals P11 and P12 are branched by the communication device NE4.
  • the network management device NMS inserts a plurality of optical signals branched by the same communication device NE adjacent to the wavelength band sandwiched by the guard bands. can be reduced and the maximum transmission capacity of the optical communication network can be improved.
  • FIG. 6 is a block diagram illustrating the configuration of the communication device NE according to the first embodiment.
  • the communication device NE has a wavelength cross-connect function unit 110, a wavelength cross-connect function unit 120, a wavelength multiplexing/demultiplexing function unit 130, and a transponder function unit 140.
  • the wavelength cross-connect function unit 110 and the wavelength cross-connect function unit 120 function as wavelength cross-connect means.
  • the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 function as wavelength multiplexing/demultiplexing means and transponder means.
  • the wavelength cross-connect function unit 110, the wavelength cross-connect function unit 120, the wavelength multiplexing/demultiplexing function unit 130, and the transponder function unit 140 are referred to as the first cross-connect unit, the second cross-connect unit, the wavelength multiplexing/demultiplexing unit, and the transponder unit. Also called
  • An amplifier may be connected to the wavelength cross-connect function unit 110 and the wavelength cross-connect function unit 120 .
  • a transmitter and a receiver may be connected to the wavelength multiplexing/demultiplexing function unit 130 via the transponder function unit 140 .
  • a multiplexer can be configured by the wavelength cross-connect function unit 120 and the wavelength multiplexing/demultiplexing function unit 130 .
  • a demultiplexing device can be configured by the wavelength cross-connect function unit 110 and the wavelength multiplexing/demultiplexing function unit 130 .
  • the wavelength cross-connect function unit 110 and the wavelength cross-connect function unit 120 may constitute a repeater. Note that the repeater may not have the wavelength cross-connect function unit 110 and the wavelength cross-connect function unit 120 and may be configured by an amplifier.
  • the wavelength cross-connect function unit 110 branches a predetermined optical signal from the received WDM signal light. Specifically, the wavelength cross-connect function unit 110 selects and switches the wavelength band for branching the optical signal.
  • the wavelength cross-connect function unit 120 inserts a predetermined optical signal into WDM signal light. Specifically, the wavelength cross-connect function unit 120 selects and switches the wavelength band into which the optical signal is inserted.
  • the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 transmit the optical signal split by the wavelength cross-connect function unit 110 to the receiver. Specifically, the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 receive the branched optical signals from the wavelength band. In this case, the branch control unit 12 controls the wavelength cross-connect function unit 110 , the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 . On the other hand, the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 multiplex the optical signals transmitted from the transmitter and transmit them to the wavelength cross-connection function unit 120 .
  • the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 transmit the optical signal to be inserted into the wavelength band.
  • the insertion control unit 11 of the network management device NMS controls the wavelength cross-connect function unit 120 , the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 .
  • FIG. 7 is a block diagram illustrating the configuration of the communication device NE according to the first embodiment.
  • the communication device NE may have a wavelength cross-connect function unit 110, a wavelength cross-connect function unit 120, and an NE control unit 150.
  • FIG. 7 is a block diagram illustrating the configuration of the communication device NE according to the first embodiment.
  • the communication device NE may have a wavelength cross-connect function unit 110, a wavelength cross-connect function unit 120, and an NE control unit 150.
  • the wavelength cross-connect function unit 110 includes a WSS control unit 111 and a wavelength selective switch (Wavelength Selective Switch) 112 .
  • the WSS control unit 111 functions as control means for controlling the operation of the wavelength selective switch 112 .
  • the wavelength selective switch 112 has a function as switching means for selecting a predetermined wavelength.
  • the wavelength cross-connect function unit 120 includes a WSS control unit 121 and a wavelength selective switch 122.
  • the WSS control unit 121 functions as control means for controlling the operation of the wavelength selective switch 122 .
  • the wavelength selective switch 122 has a function as switching means for selecting a predetermined wavelength.
  • the NE control unit 150 is connected to the wavelength cross-connect function unit 110, the wavelength cross-connect function unit 120, the network management device NMS, and the transponder function unit 140.
  • the NE control unit 150 functions as control means for controlling the operations of the wavelength cross-connect function unit 110, the wavelength cross-connect function unit 120, the transponder function unit 140, and the wavelength multiplexing/demultiplexing function unit 130 (not shown).
  • FIG. 8 is a diagram exemplifying the wavelength separation function of the wavelength selective switch 112 in the wavelength cross-connect function unit 110 according to the first embodiment. As shown in FIG. 8, the wavelength selective switch 112 splits into optical signals of predetermined wavelengths ⁇ 1 to ⁇ N when WDM signal light including optical signals of wavelengths ⁇ 1 to ⁇ N is incident.
  • FIG. 9 is a diagram exemplifying the wavelength multiplexing function of the wavelength selective switch 122 in the wavelength cross-connect function unit 120 according to the first embodiment. As shown in FIG. 9, when optical signals of wavelengths ⁇ 1 to ⁇ N are incident, the wavelength selective switch 122 multiplexes the respective optical signals and outputs WDM signal light including the optical signals of wavelengths ⁇ 1 to ⁇ N. .
  • FIG. 10 is a block diagram illustrating the configuration of the network management device NMS according to the first embodiment.
  • the network management device NMS may include a controller 10 in addition to the insertion controller 11 and the branch controller 12 .
  • the control unit 10 has a function as control means.
  • the network management device NMS is, for example, a computer, and the control unit 10 is, for example, a processor such as a CPU (Central Processing Unit).
  • the control unit 10 has a function as an arithmetic device that performs control processing, arithmetic processing, and the like.
  • the control unit 10 controls operations of the insertion control unit 11 and the branch control unit 12 . Also, the control unit 10 may control various operations of the communication device NE.
  • the network management device NMS may have a storage unit, a communication unit, and an interface unit (not shown).
  • the storage unit may have, for example, a storage device such as a memory or a hard disk.
  • the storage device is, for example, ROM (Read Only Memory) or RAM (Random Access Memory).
  • the storage unit has a function of storing a control program, an arithmetic program, and the like executed by the control unit 10 .
  • the storage unit has a function of temporarily storing processing data and the like.
  • the storage may include a database.
  • the communication unit performs processing necessary for communicating with other devices via a wired or wireless network or the like. Communications may include communications ports, routers, firewalls, and the like.
  • the interface unit is, for example, a user interface.
  • the interface unit has an input device such as a keyboard, touch panel, or mouse, and an output device such as a display or speaker.
  • the interface unit receives a data input operation by a user (operator or the like) and outputs information to the user.
  • the control unit 10, storage unit, communication unit and interface unit are interconnected via a data bus or the like.
  • the network management device NMS has an insertion control unit 11 and a branch control unit 12 as components.
  • Each component can be realized by executing a program under the control of the control unit 10, for example. More specifically, each component can be implemented by the control unit 10 executing a program stored in the storage unit. Further, each component may be realized by recording necessary programs in an arbitrary non-volatile recording medium and installing them as necessary. Moreover, each component may be implemented by any combination of hardware, firmware, and software, without being limited to being implemented by program software. Also, each component may be implemented using a user-programmable integrated circuit such as an FPGA (Field-Programmable Gate Array) or a microcomputer. In this case, this integrated circuit may be used to implement a program composed of the above components.
  • FPGA Field-Programmable Gate Array
  • Network management method of comparative example Next, a network management method will be described as an operation of the network management device NMS of this embodiment. First, a network management method in a comparative example will be described. After that, the network management method of this embodiment will be described in comparison with a comparative example.
  • FIG. 11 is a diagram illustrating a network management method according to a comparative example.
  • the communication device NE1 receives WDM signal light including an optical signal P1 and an optical signal P2.
  • the optical signal P1 is an optical signal branched (dropped) by the communication device NE4, and the optical signal P2 is an optical signal branched (dropped) by the communication device NE3.
  • Guard bands G1 and G2 are provided in the slots SL1 and SL6 on both sides of the optical signal P1.
  • Guard bands G3 and G4 are provided in the slots SL7 and SL12 on both sides of the optical signal P2.
  • the communication device NE1 inserts (adds) the optical signal P3 to the received WDM signal light and multiplexes them.
  • the optical signal P3 is an optical signal branched by the communication device NE4.
  • the communication device NE1 provides guard bands G5 and G6 in the slots SL3 and SL18 on both sides of the optical signal P3.
  • the communication device NE1 outputs WDM signal light multiplexed by inserting the optical signal P3 to the communication device NE2.
  • the communication device NE2 receives WDM signal light including optical signal P1, optical signal P2 and optical signal P3.
  • the communication device NE2 inserts and multiplexes the optical signal P4 into the received WDM signal light.
  • the optical signal P4 is an optical signal branched by the communication device NE3.
  • the communication device NE2 provides guard bands G7 and G8 in the slots SL19 and SL24 on both sides of the optical signal P4. Accordingly, the WDM signal light includes optical signals P1 to P4 as shown in FIG.
  • the communication device NE2 outputs the WDM signal light multiplexed by inserting the optical signal P4 to the communication device NE3.
  • the communication device NE3 receives WDM signal light including the optical signals P1 to P4.
  • the communication device NE3 splits the optical signal P2 and the optical signal P4 from the WDM signal light.
  • the communication device NE3 outputs WDM signal light obtained by branching the optical signal P2 and the optical signal P4 to the communication device NE4.
  • the communication device NE4 receives WDM signal light including the optical signals P1 and P3.
  • the communication device NE4 splits the optical signal P1 and the optical signal P3 from the WDM signal light.
  • the communication device NE4 outputs WDM signal light obtained by branching the optical signal P1 and the optical signal P3 to the next communication device NE.
  • FIG. 12 is a diagram illustrating a network management method according to the first embodiment.
  • the communication device NE1 receives WDM signal light including an optical signal P11 and an optical signal P13.
  • the optical signal P11 is an optical signal branched by the communication device NE4, and the optical signal P13 is an optical signal branched by the communication device NE3.
  • Guard bands are provided in the slots SL1 and SL6 on both sides of the optical signal P11. Guard bands are provided in the slots SL11 and SL16 on both sides of the optical signal P13.
  • the communication device NE1 inserts and multiplexes the optical signal P12 into the received WDM signal light.
  • the optical signal P12 is an optical signal branched by the communication device NE4, like the optical signal P11. Therefore, when the communication device NE1 inserts the optical signal P12 into the WDM signal light, the insertion control unit 11 divides the plurality of optical signals P11 and P12 to be branched by the communication device NE4 into wavelengths sandwiched between the guard bands G11 and G12. The communication device NE1 is controlled to be inserted adjacent to the band. As a result, the wavelength cross-connect function unit 120 of the communication device NE1 selects and switches the wavelength band into which the optical signal P12 is inserted.
  • the wavelength cross-connect function unit 120 opens the wavelength band sandwiched between the guard bands G11 and G12.
  • the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 insert the optical signal P12 adjacent to the wavelength band sandwiched between the guard bands G11 and G12.
  • the communication device NE1 outputs WDM signal light multiplexed by inserting the optical signal P12 to the communication device NE2.
  • the communication device NE2 receives WDM signal light including the optical signal P11, the optical signal P12 and the optical signal P13.
  • the communication device NE2 inserts and multiplexes the optical signal P14 into the received WDM signal light.
  • the optical signal P14 is an optical signal branched by the communication device NE3, like the optical signal P13. Therefore, when the communication device NE2 inserts the optical signal P14 into the WDM signal light, the insertion control unit 11 divides the plurality of optical signals P13 and P14 to be branched by the communication device NE3 into wavelengths sandwiched between the guard bands G13 and G14.
  • the communication device NE2 is controlled to insert adjacent to the band.
  • the wavelength cross-connect function unit 120 of the communication device NE2 selects and switches the wavelength band into which the optical signal P14 is inserted. Therefore, the wavelength cross-connect function unit 120 opens the wavelength band sandwiched between the guard bands G13 and G14.
  • the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 insert the optical signal P14 into the wavelength band sandwiched between the guard bands G13 and G14.
  • the WDM signal light includes optical signals P11 to P14 as shown in FIG.
  • the communication device NE2 outputs the multiplexed WDM signal light to the communication device NE3.
  • the communication device NE3 receives WDM signal light including the optical signals P11 to P14.
  • the communication device NE3 splits the optical signal P13 and the optical signal P14 from the WDM signal light. For example, when the communication device NE3 branches the optical signals P13 and P14 from the WDM signal light, the branch control unit 12 splits the plurality of optical signals P13 and P14 inserted into the wavelength band sandwiched between the guard bands G13 and G14. , the communication device NE3 is controlled so as to branch at the communication device NE3.
  • the wavelength cross-connect function unit 110 of the communication device NE3 selects and switches the wavelength band for branching the optical signals P13 and P14.
  • the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 branch the optical signals P13 and P14 from the wavelength band sandwiched between the guard bands G13 and G14.
  • the communication device NE3 splits the optical signals P13 and P14 and outputs WDM signal light obtained by wavelength separation to the communication device NE4.
  • the communication device NE4 receives WDM signal light including the optical signals P11-P12.
  • the communication device NE4 splits the optical signal P11 and the optical signal P12 from the WDM signal light. For example, when the communication device NE4 branches the optical signals P11 and P12 from the WDM signal light, the branch control unit 12 splits the plurality of optical signals P11 and P12 inserted into the wavelength band sandwiched between the guard bands G11 and G12. , the communication device NE4 is controlled to branch at the communication device NE4. As a result, the wavelength cross-connect function unit 110 of the communication device NE4 selects and switches the wavelength band for branching the optical signals P11 and P12.
  • the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 branch the optical signals P11 and P12 from the wavelength band sandwiched between the guard bands G11 and G12.
  • the communication device NE4 splits the optical signals P11 and P12 and outputs WDM signal light obtained by wavelength separation to the next communication device NE.
  • the network management device NMS controls the wavelength cross-connect function units 110 and 120, the wavelength multiplexing/demultiplexing function unit 130, and the transponder function unit 140 of the communication device NE, thereby branching the same communication device NE.
  • optical signals are collectively transmitted. This can reduce guard bands between adjacent optical signals. Therefore, the transmission capacity of the optical communication network can be improved.
  • the network management device NMS of this embodiment monitors the quality of the transmission line and estimates the quality of the transmission line. Then, the network management device NMS improves the transmission capacity by controlling the interval between adjacent optical signals based on the quality of the transmission path.
  • FIG. 13 is a diagram for explaining WDM signal light according to the second embodiment. As shown in FIG. 13, the WDM signal light includes optical signals P21-P24.
  • the optical signal P21 corresponds to slots SL2 to SL5.
  • the optical signal P22 corresponds to slots SL5 to SL8.
  • the optical signal P21 and the optical signal P22 are optical signals branched by the same communication device NE.
  • the optical signal P21 and the optical signal P22 are optical signals branched by the communication device NE4.
  • Slots SL1 and SL9 are provided with guard bands G21 and G22.
  • Optical signal P23 corresponds to slot SL11 to slot SL14.
  • the optical signal P24 corresponds to slots SL14 to SL17. Slots SL10 and SL18 are provided with guard bands G23 and G24.
  • the optical signal P23 and the optical signal P24 are optical signals branched by the same communication device NE.
  • the optical signal P23 and the optical signal P24 are optical signals branched by the communication device NE3.
  • 6 slots can be reduced compared to the comparative example.
  • FIG. 14 is a block diagram illustrating a network management device NMS according to the second embodiment.
  • the network management device NMS further includes a monitor 13, an estimation unit 14, a determination unit 15 and a signal interval control unit 16 in addition to the control unit 10, the insertion control unit 11 and the branch control unit 12. ing.
  • the monitor section 13, the estimation section 14, the determination section 15, and the signal interval control section 16 function as monitor means, estimation means, determination means, and signal interval control means, respectively.
  • the monitor unit 13 acquires monitor information. Specifically, the monitor unit 13 monitors at least one piece of monitor information related to the quality of the transmission path in at least one of the plurality of communication devices NE. Specifically, the monitor information is information (monitor parameters) related to the state (quality, etc.) of optical communication. For example, monitor values obtained by actually measuring OSNR (Optical Signal to Noise Ratio). be. Note that the monitor unit 13 may monitor the power of each wavelength band and the total power as monitor information in the wavelength cross-connect function units 110 and 120, for example.
  • OSNR Optical Signal to Noise Ratio
  • the monitor unit 13 monitors the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 as monitoring information such as a Q value (Quality Factor), a spectrum monitor value, a crosstalk (XT) monitor value, an SOP (State of Polarization). Wave state) monitor value, DGD (Differential-Group-Delay) monitor value, and chromatic dispersion monitor value may be monitored.
  • Q value Quality Factor
  • XT crosstalk
  • SOP State of Polarization
  • Wave state monitor value DGD (Differential-Group-Delay) monitor value
  • chromatic dispersion monitor value may be monitored.
  • the estimation unit 14 estimates at least one penalty related to the quality of the transmission channel. For example, the estimator 14 estimates at least one penalty for the receiving side using the monitored information.
  • the penalty is a value indicating the degree (degradation amount) of an element (noise; distortion) that causes deterioration of transmission quality due to the transmission state of an optical signal.
  • the penalty is, for example, a penalty converted to OSNR.
  • FIG. 15 is a graph exemplifying OSNR values obtained by converting the OSNR monitor value VM1 actually measured by the monitor unit 13 of the network management device NMS and the penalty estimated by the estimation unit 14 according to the second embodiment.
  • the monitor unit 13 monitors a monitor value VM1 obtained by actually measuring the OSNR as monitor information.
  • the estimator 14 estimates at least one of SOP variation, filter narrowing, crosstalk, DGD, chromatic dispersion, and nonlinearity as a penalty.
  • FIG. 15 shows each penalty estimated by the estimation unit 14 as a value converted to OSNR.
  • the estimation unit 14 estimates the required value VR1 based on each penalty. Specifically, the estimating unit 14 sums the FEC threshold VF and the plurality of estimated penalties to calculate the request value VR1.
  • the FEC threshold VF is a value obtained by converting the penalty in a transmission line in the state of no load into OSNR.
  • the required value VR1 is the value of OSNR required to prevent a communication error in the communication device NE on the receiving side.
  • the optical signal transmitted from the transmitting side if the OSNR monitor value VM1 actually measured by the receiving side falls below the required value VR1, a communication error occurs, and the optical signal cannot be transmitted appropriately. In FIG. 15, the actually measured monitor value VM1 has a margin of ⁇ V1 with respect to the required value VR1.
  • FIG. 16 is a graph exemplifying the OSNR monitor value VM2 actually measured by the monitor unit 13 of the network management device NMS and the penalty estimated by the estimation unit 14 according to the second embodiment.
  • the estimating unit 14 may estimate the penalty when the interval between optical signals in the wavelength band is changed. For example, reducing the spacing between optical signals increases the crosstalk penalty.
  • FIG. 17 is a diagram illustrating a method of estimating a penalty by the estimating unit 14 of the network management device NMS according to the second embodiment.
  • the estimation unit 14 may estimate the penalty from a diagram showing the relationship between the optical signal interval ( ⁇ f) in the wavelength band and the penalty converted to OSNR.
  • the estimator 14 may also estimate the penalty using a lookup table that indicates the correspondence between optical signal intervals in the wavelength band.
  • the estimation unit 14 calculates the request value VR2 so as to include the crosstalk penalty estimated when the optical signal interval is narrowed.
  • the determination unit 15 uses the monitor information and the penalty to determine whether or not it is possible to shorten the interval between adjacent optical signals in the wavelength band. Specifically, the determination unit 15 determines whether the difference ⁇ V2 obtained by subtracting the OSNR required value VR2 from the ONSR monitor value VM2 actually measured as the monitor information exceeds Mr, which is a predetermined value (margin). determine whether or not As a result, when the difference ⁇ V2 between the OSNR value VM2 actually measured by the monitor unit 13 and the required value VR2 that is the sum of the penalties is equal to or greater than the predetermined threshold value Mr, the determination unit 15 determines whether the adjacent optical signals in the wavelength band It is determined that the interval can be reduced.
  • Mr a predetermined value
  • the signal interval control unit 16 controls the interval between adjacent optical signals in the wavelength band. For example, when it is determined that the interval between adjacent optical signals can be reduced, the signal interval control unit 16 controls each communication device NE so as to reduce the interval between optical signals. Specifically, when the difference ⁇ V2 obtained by subtracting the OSNR required value VR2 from the actually measured ONSR monitor value VM2 is greater than or equal to Mr, the signal interval control unit 16 causes the communication device NE to insert the optical signal into the WDM signal light. At this time, the intervals between the optical signals are reduced. At that time, the signal interval control unit 16 may cause some of the adjacent optical signals to correspond to the same slot SL.
  • FIG. 18 is a flow chart illustrating a method of determining the quality of a transmission line in the network management method according to the second embodiment.
  • monitor information is monitored.
  • the monitor unit 13 of the network management device NMS acquires the actually measured ONSR monitor value VM1 as the monitor information.
  • step S22 the penalty is estimated.
  • the estimation unit 14 of the network device NMS estimates the penalty and estimates the request value VR1 converted into ONSR.
  • the quality of the transmission path is determined.
  • the determination unit 15 of the network device NMS determines whether the difference ⁇ V1 between the ONSR monitor value VM1 monitored by the monitor unit 13 and the penalty request value VR1 estimated by the estimation unit 14 is greater than or equal to Mr. When the difference ⁇ V1 is greater than or equal to Mr, the determination unit 15 determines that the quality of the transmission path is good and that the interval between adjacent optical signals can be reduced.
  • FIG. 19 is a flowchart illustrating an example of a method for controlling intervals between optical signals in the network management method according to the second embodiment.
  • monitor information is monitored.
  • the monitor unit 13 of the network management device NMS acquires the actually measured ONSR monitor value VM2 as the monitor information.
  • step S32 the penalty for reducing the optical signal interval is estimated.
  • the estimator 14 of the network device NMS estimates the penalty when the interval between adjacent optical signals is reduced, and estimates the request value VR2 converted into ONSR.
  • step S33 the quality of the transmission line when the optical signal interval is reduced is determined.
  • the determination unit 15 of the network device NMS determines whether the difference ⁇ V2 between the ONSR monitor value VM2 monitored by the monitor unit 13 and the penalty request value VR2 estimated by the estimation unit 14 is greater than or equal to Mr.
  • step S34 it is determined whether the interval between optical signals can be reduced. Specifically, when the difference ⁇ V2 is smaller than Mr, the determination unit 15 determines that the optical signal interval cannot be reduced. In that case, the process ends.
  • step S34 determines that the interval between optical signals can be shortened. In that case, as shown in step S35, the intervals between the optical signals are reduced.
  • the signal interval control unit 16 controls each communication device NE so as to shorten the interval between adjacent optical signals. In this way, it is possible to control the spacing of the optical signals in the transmission line.
  • the network management device NMS of this embodiment can use the monitor information and the penalty to determine whether or not the interval between adjacent optical signals in the wavelength band can be shortened, and can shorten the interval between the optical signals. is determined, each communication device NE is controlled to reduce the interval between adjacent optical signals. Thereby, the transmission capacity can be improved.
  • the interval between the optical signals can be reduced. Since the decision is made, the transmission capacity can be improved without degrading the quality of the transmission path.
  • a first communication device inserts the optical signal into the WDM signal light. At this time, controlling the first communication device to insert the plurality of optical signals branched by the second communication device adjacent to the wavelength band sandwiched by the guard bands; When the second communication device branches the optical signal from the WDM signal light, the second communication device branches the plurality of optical signals inserted adjacent to the wavelength band sandwiched by the guard bands.
  • the first communication device has a first cross-connect unit that selects and switches the wavelength band into which the optical signal is inserted, and a transponder unit that transmits the optical signal to be inserted into the wavelength band
  • the second communication device has a second cross-connect unit that selects and switches the wavelength band from which the optical signal is branched, and the transponder unit that receives the branched optical signal from the wavelength band.
  • (Appendix 3) monitoring at least one piece of monitor information related to the quality of the transmission path in at least one of the plurality of communication devices; estimating at least one penalty associated with said quality; determining whether it is possible to reduce the interval between adjacent optical signals in the wavelength band using the monitor information and the penalty; controlling the spacing between adjacent optical signals in the wavelength band; further comprising 3.
  • the network management method according to appendix 1 or 2. (Appendix 4) In the estimating step, Estimate at least one penalty of SOP variation, filter narrowing, crosstalk, DGD, chromatic dispersion, and nonlinearity as the penalty; The network management method according to appendix 3.
  • (Appendix 5) In the estimating step, estimating the penalty using a lookup table showing a correspondence relationship with the interval of the optical signal; The network management method according to appendix 3 or 4.
  • (Appendix 6) In the determining step, determining that the interval between adjacent optical signals can be reduced in the wavelength band when the difference between the actually measured OSNR monitor value and the required value obtained by summing the penalties is equal to or greater than a predetermined threshold; The network management method according to any one of Appendices 3-5.
  • (Appendix 7) In the step of controlling the interval of the optical signals, reducing intervals between the optical signals when the first communication device inserts the optical signals into the WDM signal light; The network management method according to any one of Appendices 3-6.
  • the wavelength band has a plurality of slots, In the step of controlling the interval of the optical signals, causing portions of the adjacent optical signals to correspond to the same slot;
  • the network management method according to any one of Appendices 3-7.
  • Appendix 9 an optical communication network having a plurality of communication devices connected by a transmission line for transmitting WDM signal light in which a plurality of optical signals are wavelength division multiplexed; a network management device that manages the optical communication network; with The network management device When the first communication device inserts the optical signal into the WDM signal light, the plurality of optical signals branched by the second communication device are added adjacent to the wavelength band sandwiched by the guard bands.
  • an insertion control unit that controls the first communication device such that When the second communication device branches the optical signal from the WDM signal light, the second communication device branches the plurality of optical signals inserted adjacent to the wavelength band sandwiched by the guard bands.
  • a branch control unit that controls two communication devices;
  • the first communication device has a first cross-connect unit that selects and switches the wavelength band into which the optical signal is inserted, and a transponder unit that transmits the optical signal to be inserted into the wavelength band
  • the second communication device has a second cross-connect unit that selects and switches the wavelength band from which the optical signal is branched, and the transponder unit that receives the branched optical signal from the wavelength band.
  • the insertion control unit controls the first cross-connect unit and the transponder unit
  • the branch control unit controls the second cross-connect unit and the transponder unit.
  • a network management system according to Supplementary Note 9. (Appendix 11) The network management device a monitoring unit that monitors at least one piece of monitor information related to the quality of the transmission path in at least one of the plurality of communication devices; an estimator for estimating at least one penalty associated with said quality; a determination unit that uses the monitor information and the penalty to determine whether it is possible to reduce the interval between the adjacent optical signals in the wavelength band; a signal interval control unit that controls intervals between adjacent optical signals in the wavelength band; further comprising 11.
  • the estimating unit estimates at least one penalty of SOP variation, filter narrowing, crosstalk, DGD, chromatic dispersion, and nonlinearity as the penalty. 12.
  • the network management system according to Supplementary Note 11. (Appendix 13) The estimating unit estimates the penalty using a lookup table showing a correspondence relationship with the interval of the optical signal. 13.
  • the network management system according to appendix 11 or 12. (Appendix 14) When the difference between the OSNR monitor value actually measured by the monitor unit and the required value obtained by summing the penalties is equal to or greater than a predetermined threshold value, the determination unit reduces the interval between the adjacent optical signals in the wavelength band. determine that it is possible to 14.
  • the signal interval control unit reduces the interval of the optical signal when the first communication device inserts the optical signal into the WDM signal light. 15.
  • the network management system according to any one of Appendices 11-14.
  • the wavelength band has a plurality of slots, The signal interval control unit causes portions of the adjacent optical signals to correspond to the same slot, 16.
  • the network management system according to any one of appendices 11-15.
  • control unit 11 insertion control unit 12 branch control unit 13 monitor unit 14 estimation unit 15 determination unit 16 signal interval control unit 100 optical communication network 110 wavelength cross connect function unit 111 WSS control unit 112 wavelength selective switch 120 wavelength cross Connect function unit 121 WSS control unit 122 Wavelength selective switch 130 Wavelength multiplex/demultiplex function unit 140 Transponder function unit 150 NE control units NE, NE1, NE2, NE3, NE4 Communication device NMS Network management device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

伝送容量を向上させることができるネットワーク管理装置、通信装置、ネットワーク管理方法を提供する。ネットワーク管理装置(NMS)は、複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置(NE)を有する光通信ネットワーク(100)において、第1の通信装置(NE)が光信号をWDM信号光に挿入する際に、第2の通信装置(NE)で分岐される複数の光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように第1の通信装置(NE)を制御する挿入制御部(11)と、第2の通信装置(NE)が光信号をWDM信号光から分岐する際に、ガードバンドで挟まれた波長帯域に隣接させて挿入された複数の光信号を分岐させるように第2の通信装置(NE)を制御する分岐制御部(12)と、を備える。

Description

ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム
 本発明は、ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システムに関する。
 特許文献1には、複数の異なる変調方式で変調された変調信号が、帯域幅及び送信先に基づいて所定のガードバンドが付与される光通信システムが記載されている。
 特許文献2には、複数の変調方式の信号光が同時に伝送される場合に、異なる変調方式の信号光が隣接する場合にのみ隣接信号光の間にガードバンドを設ける光ネットワークシステムが記載されている。
 特許文献3には、マルチキャリア通信方法において、ガードインターバルの数を減らして信号を送信するマルチキャリア通信システムが記載されている。
 特許文献4には、基地局から移動局間の伝搬遅延を許容する長さのガードタイムを、同一の基地局が占有するチャネルスロット間に用いる基地局装置が記載されている。
国際公開第2015/141188号 特開2012-195787号公報 特開2004-056552号公報 特開2000-253443号公報
 光通信では、多重装置を通過するごとに、信号帯域が削られて信号品質が劣化するため、ガードバンドを設けて、信号品質の劣化を防いでいる。しかし、ガードバンドを設けると、信号帯域よりも広い帯域の確保が必要となるため、システムの伝送容量が減少する。
 本開示の目的は、上述した課題を鑑み、伝送容量を向上させることができるネットワーク管理装置、通信装置及びネットワーク管理方法を提供することにある。
 一実施の形態に係るネットワーク管理装置は、複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークにおいて、第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐される複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御する挿入制御部と、前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御する分岐制御部と、を備える。
 一実施の形態に係る通信装置は、複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークに接続され、前記光信号を前記WDM信号光に挿入する際に、他の通信装置で分岐させる複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入し、前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐する。
 一実施の形態に係るネットワーク管理方法は、複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークにおいて、第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐させる複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御するステップと、前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御するステップと、を備える。
 一実施の形態によれば、伝送容量を向上させることができるネットワーク管理装置、通信装置及びネットワーク管理方法を提供する。
実施形態に係るネットワーク管理システムを例示した図である。 比較例に係るWDM信号光を説明するための図である。 実施形態に係るWDM信号光を説明するための図である。 実施形態に係るネットワーク管理装置を例示したブロック図である。 実施形態に係るネットワーク管理のネットワーク管理方法を例示したフローチャート図である。 実施形態1に係る通信装置の構成を例示したブロック図である。 実施形態1に係る通信装置の構成を例示したブロック図である。 実施形態1に係る波長クロスコネクト機能部において、波長選択スイッチの波長分離機能を例示した図である。 実施形態1に係る波長クロスコネクト機能部において、波長選択スイッチの波長多重機能を例示した図である。 実施形態1に係るネットワーク管理装置の構成を例示したブロック図である。 比較例に係るネットワーク管理方法を例示した図である。 実施形態1に係るネットワーク管理方法を例示した図である。 実施形態2に係るWDM信号光を説明するための図である。 実施形態2に係るネットワーク管理装置を例示したブロック図である。 実施形態2におけるネットワーク管理装置のモニタ部がモニタしたOSNRのモニタ値及び推定部が推定したペナルティをOSNRに換算したOSNR値を例示したグラフである。 実施形態2に係るネットワーク管理装置のモニタ部がモニタしたOSNRのモニタ値及び推定部が推定したペナルティをOSNRに換算したOSNR値を例示したグラフである。 実施形態2に係るネットワーク管理装置の推定部がペナルティを推定する方法を例示した図である。 実施形態2に係るネットワーク管理方法において、伝送路の品質の判定方法を例示したフローチャート図である。 実施形態2に係るネットワーク管理方法において、光信号の間隔の制御方法を例示したフローチャート図である。
 以下、実施形態について、図面を参照しながら説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
 (実施形態の概要)
 本開示の実施形態の説明に先立って、本開示にかかる実施形態の概要について説明する。図1は、実施形態に係るネットワーク管理システムを例示した図である。
 <ネットワーク管理システム>
 図1に示すようにネットワーク管理システム1は、ネットワーク管理装置NMS及び光通信ネットワーク100を備えている。光通信ネットワーク100は、複数の通信装置NE1~NE4を有する。図では、4つの通信装置NE1~NE4が示されているが、通信装置NE1~NE4の個数は限定されない。各通信装置NE1~NE4は、伝送路を介して、光通信ネットワークに接続している。よって、光通信ネットワーク100は、複数の通信装置NE1~NE4が伝送路で接続されることにより構成されている。各通信装置NEは、ポイントtoポイント状に接続されてもよいし、リング状に接続されてもよいし、メッシュ状に接続されてもよい。なお、通信装置NE1~NE4を総称して通信装置NEと呼ぶ。伝送路は、複数の光信号が波長分割多重(Wavelength Division Multiplexing)されたWDM信号光を伝送する。各通信装置NEは、通信回線によりネットワーク管理装置NMSに接続されている。
 <通信装置>
 通信装置NEは、光通信ネットワーク100のノードである。通信装置NEは、図示しない送信機及び受信機と有線又は無線の通信回線により接続されてもよい。通信装置NEは、ROADM(Reconfigurable OPtical Add and DroP MultiPlexing)の制御により、多重装置、中継装置及び分離装置として機能し得る。各通信装置NEの動作は、ネットワーク管理装置NMSによって制御される。これにより、光通信ネットワーク100は、波長分割多重(WDM)により、光信号を伝送する。
 <比較例のWDM信号光>
 ここで、光通信ネットワーク100を伝送するWDM信号光を、比較例及び実施形態に分けて説明する。図2は、比較例に係るWDM信号光を説明するための図である。図3は、実施形態に係るWDM信号光を説明するための図である。図2及び図3に示すように、WDM信号光は、複数の波長帯域に分割されている。各波長帯域には複数のスロットSLが対応している。よって、波長帯域は複数のスロットSLを有している。図2及び図3には、スロットSL1~スロットSL24が示されている。まず、比較例を説明する。図2に示すように、比較例のWDM信号光は、例えば、光信号P1~P4を含む。
 光信号P1は、スロットSL2~スロットSL5に対応する。スロットSL1及びSL6には、ガードバンドG1及びG2が設けられている。光信号P2は、スロットSL8~スロットSL11に対応する。スロットSL7及びSL12には、ガードバンドG3及びG4が設けられている。光信号P3は、スロットSL14~スロットSL17に対応する。スロットSL13及びSL18には、ガードバンドG5及びG6が設けられている。光信号P4は、スロットSL20~スロットSL23に対応する。スロットSL19及びSL24には、ガードバンドG7及びG8が設けられている。
 光信号P1及び光信号P3は、同じ通信装置NEで分岐される光信号である。例えば、光信号P1及び光信号P3は、通信装置NE4で分岐される光信号である。光信号P2及び光信号P4は、同じ通信装置NEで分岐される光信号である。例えば、光信号P2及び光信号P4は、通信装置NE3で分岐される光信号である。
 <実施形態のWDM信号光>
 次に、実施形態に係るWDM信号光を説明する。図3に示すように、WDM信号光は、複数の波長帯に分割され、各波長帯には複数のスロットSLが対応している。WDM信号光は、光信号P11~P14を含む。
 光信号P11は、スロットSL2~スロットSL5に対応する。光信号P12は、スロットSL6~スロットSL9に対応する。光信号P11及び光信号P12は、同じ通信装置NEで分岐される光信号である。例えば、光信号P11及び光信号P12は、通信装置NE4で分岐される光信号である。スロットSL1及びSL10には、ガードバンドG11及びG12が設けられている。光信号P13は、スロットSL12~スロットSL15に対応する。光信号P14は、スロットSL16~スロットSL19に対応する。スロットSL11及びSL20には、ガードバンドG13及びG14が設けられている。光信号P13及び光信号P14は、同じ通信装置NEでドロップされる光信号である。例えば、光信号P13及び光信号P14は、通信装置NE3で分岐される光信号である。実施形態では、比較例に比べて、4スロットを削減することができる。
 <ネットワーク管理装置>
 図4は、実施形態に係るネットワーク管理装置NMSを例示したブロック図である。図4に示すように、ネットワーク管理装置NMSは、挿入制御部11と、分岐制御部12と、を備えている。挿入制御部11及び分岐制御部12は、挿入制御手段及び分岐制御手段としての機能を有する。
 挿入制御部11は、光通信ネットワーク100において、例えば、通信装置NE1が光信号P12をWDM信号光に挿入する際に、通信装置NE4で分岐される複数の光信号P11及びP12を、ガードバンドG11及びG12で挟まれた波長帯域に隣接させて挿入させるように通信装置NE1を制御する。また、挿入制御部11は、通信装置NE1が光信号P14をWDM信号光に挿入する際に、例えば、通信装置NE3で分岐される複数の光信号P13及びP14を、ガードバンドG13及びG14で挟まれた波長帯域に隣接させて挿入させるように通信装置NE1を制御する。
 分岐制御部12は、通信装置NE4が光信号P11及びP12をWDM信号光から分岐する際に、ガードバンドG11及びG12で挟まれた波長帯域に隣接させて挿入された複数の光信号P11及びP12を通信装置NE4で分岐させるように通信装置NE4を制御する。また、分岐制御部12は、通信装置NE3が光信号P13及びP14をWDM信号光から分岐する際に、ガードバンドG13及びG14で挟まれた波長帯域に隣接させて挿入された複数の光信号P13及びP14を通信装置NE3で分岐させるように通信装置NE3を制御する。
 通信装置NE1~NE4は、伝送路によって接続された複数の通信装置NE1~NE4を含む光通信ネットワーク100に接続されている。通信装置NE1は、光信号P12をWDM信号光に挿入する際に、例えば、通信装置NE4で分岐させる複数の光信号P11及びP12を、ガードバンドG11及びG12で挟まれた波長帯域に隣接させて挿入する。また、通信装置NE1は、光信号P14をWDM信号光に挿入する際に、例えば、通信装置NE3で分岐させる複数の光信号P13及びP14を、ガードバンドG13及びG14で挟まれた波長帯域に隣接させて挿入する。
 通信装置NE3は、光信号P13及びP14をWDM信号光から分岐する際に、ガードバンドG13及びG14で挟まれた波長帯域に挿入された複数の光信号P13及びP14を分岐する。
 通信装置NE4は、光信号P11及びP12をWDM信号光から分岐する際に、ガードバンドG11及びG12で挟まれた波長帯域に挿入された複数の光信号P11及びP12を分岐する。
 <ネットワーク管理方法>
 図5は、実施形態に係るネットワーク管理装置NMSのネットワーク管理方法を例示したフローチャート図である。
 図5のステップS11に示すように、光通信ネットワーク100において、通信装置NE1が光信号P12をWDM信号光に挿入する際に、例えば、同じ通信装置NE4で分岐させる複数の光信号P11及びP12を、ガードバンドG11及びG12で挟まれた波長帯域に隣接させて挿入させるように通信装置NE1を制御する。
 次に、ステップS12に示すように、光通信ネットワーク100において、通信装置NE4が光信号P11及びP12をWDM信号光から分岐する際に、ガードバンドG11及びG12で挟まれた波長帯域に隣接させて挿入された複数の光信号P11及びP12を、通信装置NE4で分岐させるように通信装置NE4を制御する。
 実施形態に係るネットワーク管理装置NMSは、同じ通信装置NEで分岐される複数の光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるので、隣接する光信号の間のガードバンドを削減することができ、光通信ネットワークの最大伝送容量を向上させることができる。
 (実施形態1)
 次に、実施形態1に係るネットワーク管理システム1の詳細を説明する。まず、通信装置NEを説明する。
 <通信装置の構成>
 図6は、実施形態1に係る通信装置NEの構成を例示したブロック図である。図6に示すように、通信装置NEは、波長クロスコネクト機能部110、波長クロスコネクト機能部120、波長合分波機能部130及びトランスポンダ機能部140を有している。波長クロスコネクト機能部110及び波長クロスコネクト機能部120は、波長クロスコネクト手段としての機能を有している。波長合分波機能部130及びトランスポンダ機能部140は、波長合分波手段及びトランスポンダ手段としての機能を有している。なお、波長クロスコネクト機能部110、波長クロスコネクト機能部120、波長合分波機能部130及びトランスポンダ機能部140を、第1クロスコネクト部、第2クロスコネクト部、波長合分波部及びトランスポンダ部とも呼ぶ。
 波長クロスコネクト機能部110及び波長クロスコネクト機能部120には、増幅器が接続されてもよい。波長合分波機能部130には、トランスポンダ機能部140を介して、送信機及び受信機が接続されてもよい。波長クロスコネクト機能部120及び波長合分波機能部130により、多重装置が構成され得る。波長クロスコネクト機能部110及び波長合分波機能部130により、分離装置が構成され得る。波長クロスコネクト機能部110及び波長クロスコネクト機能部120により、中継装置が構成され得る。なお、中継装置は、波長クロスコネクト機能部110及び波長クロスコネクト機能部120を有さず、増幅器により構成されてもよい。
 波長クロスコネクト機能部110は、受信したWDM信号光から所定の光信号を分岐する。具体的には、波長クロスコネクト機能部110は、光信号を分岐する波長帯域を選択してスイッチングする。波長クロスコネクト機能部120は、WDM信号光に所定の光信号を挿入する。具体的には、波長クロスコネクト機能部120は、光信号を挿入する波長帯域を選択してスイッチングする。
 波長合分波機能部130及びトランスポンダ機能部140は、波長クロスコネクト機能部110が分岐した光信号を受信機に送信する。具体的には、波長合分波機能部130及びトランスポンダ機能部140は、分岐した光信号を波長帯域から受信する。この場合に、分岐制御部12は、波長クロスコネクト機能部110、波長合分波機能部130及びトランスポンダ機能部140を制御する。一方、波長合分波機能部130及びトランスポンダ機能部140は、送信機から送信された光信号を合波して波長クロスコネクト機能部120へ送信する。具体的には、波長合分波機能部130及びトランスポンダ機能部140は、挿入する光信号を波長帯域に送信する。この場合に、ネットワーク管理装置NMSの挿入制御部11は、波長クロスコネクト機能部120、波長合分波機能部130及びトランスポンダ機能部140を制御する。
 図7は、実施形態1に係る通信装置NEの構成を例示したブロック図である。図7に示すように、通信装置NEは、波長クロスコネクト機能部110、波長クロスコネクト機能部120及びNE制御部150を有してもよい。
 波長クロスコネクト機能部110は、WSS制御部111及び波長選択スイッチ(Wavelength Selective Switch)112を含む。WSS制御部111は、波長選択スイッチ112の動作を制御する制御手段としての機能を有する。波長選択スイッチ112は、所定の波長を選択するスイッチ手段としての機能を有する。
 波長クロスコネクト機能部120は、WSS制御部121及び波長選択スイッチ122を含む。WSS制御部121は、波長選択スイッチ122の動作を制御する制御手段としての機能を有する。波長選択スイッチ122は、所定の波長を選択するスイッチ手段としての機能を有する。
 NE制御部150は、波長クロスコネクト機能部110、波長クロスコネクト機能部120、ネットワーク管理装置NMS及びトランスポンダ機能部140と接続されている。NE制御部150は、波長クロスコネクト機能部110、波長クロスコネクト機能部120、トランスポンダ機能部140及び図示しない波長合分波機能部130の動作を制御する制御手段としての機能を有する。
 図8は、実施形態1に係る波長クロスコネクト機能部110において、波長選択スイッチ112の波長分離機能を例示した図である。図8に示すように、波長選択スイッチ112は、波長λ1~波長λNの光信号を含むWDM信号光が入射した場合に、所定の波長λ1~波長λNの光信号に分岐する。
 図9は、実施形態1に係る波長クロスコネクト機能部120において、波長選択スイッチ122の波長多重機能を例示した図である。図9に示すように、波長選択スイッチ122は、波長λ1~波長λNの光信号が入射した場合に、各光信号を多重化して波長λ1~波長λNの光信号を含むWDM信号光を出力する。
 <ネットワーク管理装置の構成>
 次に、ネットワーク管理装置NMSを説明する。図10は、実施形態1に係るネットワーク管理装置NMSの構成を例示したブロック図である。図10に示すように、ネットワーク管理装置NMSは、挿入制御部11及び分岐制御部12の他、制御部10を備えてもよい。制御部10は、制御手段としての機能を有している。ネットワーク管理装置NMSは、例えば、コンピュータであり、制御部10は、例えば、CPU(Central Processing Unit)等のプロセッサである。
 制御部10は、制御処理及び演算処理等を行う演算装置としての機能を有する。制御部10は、挿入制御部11及び分岐制御部12の動作を制御する。また、制御部10は、通信装置NEの各種の動作を制御してもよい。
 ネットワーク管理装置NMSは、制御部10の他に、図示しない記憶部、通信部及びインタフェース部を有してもよい。記憶部は、例えば、メモリ又はハードディスク等の記憶装置を有してもよい。記憶装置は、例えば、ROM(Read Only Memory)又はRAM(Random Access Memory)等である。記憶部は、制御部10によって実行される制御プログラム及び演算プログラム等を記憶するための機能を有する。また、記憶部は、処理データ等を一時的に記憶するための機能を有する。記憶部は、データベースを含み得る。通信部は、他の装置と有線又は無線のネットワーク等を介して通信を行うために必要な処理を行う。通信部は、通信ポート、ルータ、ファイアウォール等を含み得る。インタフェース部は、例えばユーザインタフェース(User Interface)である。インタフェース部は、キーボード、タッチパネル又はマウス等の入力装置と、ディスプレイ又はスピーカ等の出力装置とを有する。インタフェース部は、ユーザ(オペレータ等)によるデータの入力の操作を受け付け、ユーザに対して情報を出力する。制御部10、記憶部、通信部及びインタフェース部は、データバスなどを介して相互に接続されている。
 ネットワーク管理装置NMSは、構成要素として、挿入制御部11及び分岐制御部12を有する。各構成要素は、例えば、制御部10の制御によって、プログラムを実行させることによって実現できる。より具体的には、各構成要素は、記憶部に格納されたプログラムを、制御部10が実行することによって実現され得る。また、必要なプログラムを任意の不揮発性記録媒体に記録しておき、必要に応じてインストールすることで、各構成要素を実現するようにしてもよい。また、各構成要素は、プログラムによるソフトウェアで実現することに限ることなく、ハードウェア、ファームウェア、及びソフトウェアのうちのいずれかの組み合わせ等により実現してもよい。また、各構成要素は、例えばFPGA(Field-Programmable Gate Array)又はマイコン等の、ユーザがプログラミング可能な集積回路を用いて実現してもよい。この場合、この集積回路を用いて、上記の各構成要素から構成されるプログラムを実現してもよい。
 <比較例のネットワーク管理方法>
 次に、本実施形態のネットワーク管理装置NMSの動作として、ネットワーク管理方法を説明する。まず、比較例におけるネットワーク管理方法を説明する。その後、比較例と対比させて、本実施形態のネットワーク管理方法を説明する。
 図11は、比較例に係るネットワーク管理方法を例示した図である。図2及び図11に示すように、通信装置NE1は、光信号P1及び光信号P2を含むWDM信号光を受信する。光信号P1は、通信装置NE4で分岐(ドロップ)される光信号であり、光信号P2は、通信装置NE3で分岐(ドロップ)される光信号である。光信号P1の両側のスロットSL1及びSL6には、ガードバンドG1及びG2が設けられている。光信号P2の両側のスロットSL7及びSL12には、ガードバンドG3及びG4が設けられている。なお、図が煩雑にならないようにいくつかの符号を省略している。
 通信装置NE1は、受信したWDM信号光に、光信号P3を挿入(アド)して多重化する。光信号P3は、通信装置NE4で分岐される光信号である。通信装置NE1は、光信号P3の両側のスロットSL3及びSL18に、ガードバンドG5及びG6を設ける。通信装置NE1は、光信号P3を挿入して多重化したWDM信号光を通信装置NE2に出力する。
 通信装置NE2は、光信号P1、光信号P2及び光信号P3を含むWDM信号光を受信する。通信装置NE2は、受信したWDM信号光に、光信号P4を挿入して多重化する。光信号P4は、通信装置NE3で分岐される光信号である。通信装置NE2は、光信号P4の両側のスロットSL19及びSL24に、ガードバンドG7及びG8を設ける。これにより、WDM信号光は、図2に示したように、光信号P1~P4を含む。通信装置NE2は、光信号P4を挿入して多重化したWDM信号光を、通信装置NE3に出力する。
 通信装置NE3は、光信号P1~P4を含むWDM信号光を受信する。通信装置NE3は、WDM信号光から、光信号P2及び光信号P4を分岐する。通信装置NE3は、光信号P2及び光信号P4が分岐されたWDM信号光を通信装置NE4に出力する。
 通信装置NE4は、光信号P1及びP3を含むWDM信号光を受信する。通信装置NE4は、WDM信号光から、光信号P1及び光信号P3を分岐する。通信装置NE4は、光信号P1及び光信号P3が分岐されたWDM信号光を次の通信装置NEに出力する。
 <実施形態のネットワーク管理方法>
 次に、本実施形態のネットワーク管理方法を説明する。図12は、実施形態1に係るネットワーク管理方法を例示した図である。図3及び図12に示すように、通信装置NE1は、光信号P11及び光信号P13を含むWDM信号光を受信する。光信号P11は、通信装置NE4で分岐される光信号であり、光信号P13は、通信装置NE3で分岐される光信号である。光信号P11の両側のスロットSL1及びSL6には、ガードバンドが設けられている。光信号P13の両側のスロットSL11及びSL16には、ガードバンドが設けられている。
 通信装置NE1は、受信したWDM信号光に、光信号P12を挿入して多重化する。光信号P12は、光信号P11と同様に、通信装置NE4で分岐される光信号である。そこで、挿入制御部11は、通信装置NE1が光信号P12をWDM信号光に挿入する際に、通信装置NE4で分岐させる複数の光信号P11及びP12を、ガードバンドG11及びG12で挟まれた波長帯域に隣接させて挿入させるように通信装置NE1を制御する。これにより、通信装置NE1の波長クロスコネクト機能部120は、光信号P12を挿入する波長帯域を選択してスイッチングする。よって、波長クロスコネクト機能部120は、ガードバンドG11及びG12で挟まれた波長帯域をオープンにする。波長合分波機能部130及びトランスポンダ機能部140は、光信号P12をガードバンドG11及びG12で挟まれた波長帯域に隣接させて挿入させる。通信装置NE1は、光信号P12を挿入して多重化したWDM信号光を通信装置NE2に出力する。
 通信装置NE2は、光信号P11、光信号P12及び光信号P13を含むWDM信号光を受信する。通信装置NE2は、受信したWDM信号光に、光信号P14を挿入して多重化する。光信号P14は、光信号P13と同様に、通信装置NE3で分岐される光信号である。そこで、挿入制御部11は、通信装置NE2が光信号P14をWDM信号光に挿入する際に、通信装置NE3で分岐させる複数の光信号P13及びP14を、ガードバンドG13及びG14で挟まれた波長帯域に隣接させて挿入させるように通信装置NE2を制御する。これにより、通信装置NE2の波長クロスコネクト機能部120は、光信号P14を挿入する波長帯域を選択してスイッチングする。よって、波長クロスコネクト機能部120は、ガードバンドG13及びG14で挟まれた波長帯域をオープンにする。波長合分波機能部130及びトランスポンダ機能部140は、光信号P14をガードバンドG13及びG14で挟まれた波長帯域に挿入させる。WDM信号光は、図3に示したように、光信号P11~P14を含む。通信装置NE2は、多重化したWDM信号光を通信装置NE3に出力する。
 通信装置NE3は、光信号P11~P14を含むWDM信号光を受信する。通信装置NE3は、WDM信号光から、光信号P13及び光信号P14を分岐する。例えば、分岐制御部12は、通信装置NE3が光信号P13及びP14をWDM信号光から分岐する際に、ガードバンドG13及びG14で挟まれた波長帯域に挿入された複数の光信号P13及びP14を、通信装置NE3で分岐させるように通信装置NE3を制御する。これにより、通信装置NE3の波長クロスコネクト機能部110は、光信号P13及びP14を分岐する波長帯域を選択してスイッチングする。波長合分波機能部130及びトランスポンダ機能部140は、光信号P13及びP14をガードバンドG13及びG14で挟まれた波長帯域から分岐させる。通信装置NE3は、光信号P13及びP14を分岐して波長分離したWDM信号光を通信装置NE4に出力する。
 通信装置NE4は、光信号P11~P12を含むWDM信号光を受信する。通信装置NE4は、WDM信号光から、光信号P11及び光信号P12を分岐する。例えば、分岐制御部12は、通信装置NE4が光信号P11及びP12をWDM信号光から分岐する際に、ガードバンドG11及びG12で挟まれた波長帯域に挿入された複数の光信号P11及びP12を、通信装置NE4で分岐させるように通信装置NE4を制御する。これにより、通信装置NE4の波長クロスコネクト機能部110は、光信号P11及びP12を分岐する波長帯域を選択してスイッチングする。波長合分波機能部130及びトランスポンダ機能部140は、光信号P11及びP12をガードバンドG11及びG12で挟まれた波長帯域から分岐させる。通信装置NE4は、光信号P11及びP12を分岐して波長分離したWDM信号光を次の通信装置NEに出力する。
 次に、本実施形態の効果を説明する。本実施形態では、ネットワーク管理装置NMSは、通信装置NEの波長クロスコネクト機能部110及び120、並びに、波長合分波機能部130及びトランスポンダ機能部140を制御することにより、同じ通信装置NEで分岐される光信号をまとめて伝送する。これにより、隣接する光信号の間のガードバンドを削減することができる。よって、光通信ネットワークの伝送容量を向上させることができる。
 (実施形態2)
 次に、実施形態2に係るネットワーク管理システムを説明する。本実施形態のネットワーク管理装置NMSは、伝送路の品質をモニタするとともに、伝送路の品質を推定する。そして、ネットワーク管理装置NMSは、伝送路の品質に基づいて、隣接する光信号間の間隔を制御することにより、伝送容量を向上させる。
 <実施形態2のWDM信号光>
 図13は、実施形態2に係るWDM信号光を説明するための図である。図13に示すように、WDM信号光は、光信号P21~P24を含む。
 光信号P21は、スロットSL2~スロットSL5に対応する。光信号P22は、スロットSL5~スロットSL8に対応する。光信号P21及び光信号P22は、同じ通信装置NEで分岐される光信号である。例えば、光信号P21及び光信号P22は、通信装置NE4で分岐される光信号である。スロットSL1及びSL9には、ガードバンドG21及びG22が設けられている。光信号P23は、スロットSL11~スロットSL14に対応する。光信号P24は、スロットSL14~スロットSL17に対応する。スロットSL10及びSL18には、ガードバンドG23及びG24が設けられている。光信号P23及び光信号P24は、同じ通信装置NEで分岐される光信号である。例えば、光信号P23及び光信号P24は、通信装置NE3で分岐される光信号である。実施形態2では、比較例に比べて、6スロットを削減することができる。
 <ネットワーク管理装置の構成>
 図14は、実施形態2に係るネットワーク管理装置NMSを例示したブロック図である。図14に示すように、ネットワーク管理装置NMSは、制御部10、挿入制御部11及び分岐制御部12の他に、モニタ部13、推定部14、判定部15及び信号間隔制御部16をさらに備えている。モニタ部13、推定部14、判定部15及び信号間隔制御部16は、それぞれ、モニタ手段、推定手段、判定手段及び信号間隔制御手段としての機能を有している。
 モニタ部13は、モニタ情報を取得する。具体的には、モニタ部13は、伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の通信装置NEの少なくとも1つにおいてモニタする。モニタ情報は、具体的には、光通信の状態(品質等)に関連する情報(モニタパラメータ)であり、例えば、OSNR(Optical Signal to Noise Ratio:光信号対雑音比)を実測したモニタ値である。なお、モニタ部13は、例えば、波長クロスコネクト機能部110及び120におけるモニタ情報として、各波長帯域のパワー及びトータルパワーをモニタリングしてもよい。また、モニタ部13は、波長合分波機能部130及びトランスポンダ機能部140におけるモニタ情報として、Q値(Quality Factor)、スペクトラムモニタ値、クロストーク(XT)モニタ値、SOP(State of Polarization:偏波状態)モニタ値、DGD(Differential-Group-Delay:微分群遅延)モニタ値、波長分散モニタ値をモニタしてもよい。
 推定部14は、伝送路の品質に関連する少なくとも1つのペナルティを推定する。例えば、推定部14は、モニタしたモニタ情報を用いて、受信側に対する少なくとも1つのペナルティを推定する。ここで、ペナルティとは、光信号の伝送状態に起因して発生する伝送品質の劣化要因となる要素(雑音;歪み)の程度(劣化量)を示す値である。ペナルティは、例えば、OSNRに換算されたペナルティである。
 <モニタ値及びペナルティ>
 図15は、実施形態2に係るネットワーク管理装置NMSのモニタ部13が実測したOSNRのモニタ値VM1及び推定部14が推定したペナルティをOSNRに換算した値を例示したグラフである。図15に示すように、モニタ部13は、モニタ情報として、OSNRを実測したモニタ値VM1をモニタする。推定部14は、ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する。図15には、推定部14が推定した各ペナルティをOSNRに換算した値で示している。
 推定部14は、各ペナルティに基づいて、要求値VR1を推定する。具体的には、推定部14は、FEC閾値VFに、推定した複数のペナルティを合計して、要求値VR1を算出する。なお、FEC閾値VFは、負荷のない状態の伝送路におけるペナルティをOSNRに換算した値である。また、要求値VR1とは、受信側の通信装置NEで通信エラーとならないために必要なOSNRの値である。送信側から伝送された光信号について、受信側で実測したOSNRのモニタ値VM1が要求値VR1を下回ると、通信エラーが発生するため、光信号を適切に伝送することができない。図15では、要求値VR1に対して、実測したモニタ値VM1は、ΔV1の余裕を有している。
 図16は、実施形態2に係るネットワーク管理装置NMSのモニタ部13が実測したOSNRのモニタ値VM2及び推定部14が推定したペナルティをOSNRに換算した値を例示したグラフである。図16に示すように、推定部14は、波長帯域における光信号間の間隔を変更した場合のペナルティを推定してもよい。例えば、光信号間の間隔を狭めると、クロストークのペナルティが増加する。
 図17は、実施形態2に係るネットワーク管理装置NMSの推定部14がペナルティを推定する方法を例示した図である。図17に示すように、推定部14は、波長帯域における光信号の間隔(Δf)とOSNRに換算したペナルティとの関係を示した図からペナルティを推定してもよい。また、推定部14は、ペナルティを、波長帯域における光信号の間隔との対応関係を示したルックアップテーブルを用いて推定してもよい。推定部14は、光信号の間隔を狭めた場合に推定されたクロストークのペナルティを含むように要求値VR2を算出する。
 判定部15は、モニタ情報及びペナルティを用いて、波長帯域において隣接する光信号の間隔を小さくすることが可能か否かを判定する。具体的には、判定部15は、モニタ情報として実測して得られたONSRのモニタ値VM2からOSNRの要求値VR2を減算した差ΔV2が予め定められた値(マージン)であるMrを上回るか否かを判定する。これにより、判定部15は、モニタ部13が実測したOSNRの値VM2と、ペナルティを合計した要求値VR2と、の差ΔV2が所定の閾値Mr以上の場合に、波長帯域において隣接する光信号の間隔を小さくすることが可能と判定する。
 信号間隔制御部16は、波長帯域において隣接する光信号の間隔を制御する。例えば、信号間隔制御部16は、隣接する光信号の間隔を小さくすることが可能と判定された場合に、光信号の間隔を小さくするように各通信装置NEを制御する。具体的には、実測したONSRのモニタ値VM2からOSNRの要求値VR2を減算した差ΔV2がMr以上である場合に、信号間隔制御部16は、通信装置NEが光信号をWDM信号光に挿入する際に、光信号の間隔を小さくさせる。その際に、信号間隔制御部16は、隣接させた光信号の一部を同じスロットSLに対応させてもよい。
 <伝送路の品質の判定方法>
 次に、実施形態2に係る管理方法を説明する。まず、伝送路の品質を判定する方法を説明する。図18は、実施形態2に係るネットワーク管理方法において、伝送路の品質の判定方法を例示したフローチャート図である。
 図18のステップS21及び図15に示すように、モニタ情報をモニタする。例えば、ネットワーク管理装置NMSのモニタ部13は、モニタ情報として、実測したONSRのモニタ値VM1を取得する。
 次に、ステップS22に示すように、ペナルティを推定する。具体的には、ネットワーク装置NMSの推定部14は、ペナルティを推定し、ONSRに換算した要求値VR1を推定する。
 次に、ステップS23に示すように、伝送路の品質を判定する。例えば、ネットワーク装置NMSの判定部15は、モニタ部13がモニタしたONSRのモニタ値VM1と、推定部14が推定したペナルティの要求値VR1との差ΔV1が、Mr以上であるか判定する。差ΔV1がMr以上である場合に、判定部15は、伝送路の品質は良好であり、隣接する光信号の間隔を小さくすることが可能であると判定する。
 <光信号の間隔の制御方法>
 次に、伝送路における光信号の間隔を制御する方法を説明する。図19は、実施形態2に係るネットワーク管理方法において、光信号の間隔の制御方法を例示したフローチャート図である。
 図19のステップS31に示すように、モニタ情報をモニタする。例えば、ネットワーク管理装置NMSのモニタ部13は、モニタ情報として、実測したONSRのモニタ値VM2を取得する。
 次に、ステップS32に示すように、光信号の間隔を小さくした場合のペナルティを推定する。例えば、ネットワーク装置NMSの推定部14は、隣接する光信号の間隔を小さくした場合のペナルティを推定し、ONSRに換算した要求値VR2を推定する。
 次に、ステップS33に示すように、光信号の間隔を小さくした場合の伝送路の品質を判定する。例えば、ネットワーク装置NMSの判定部15は、モニタ部13がモニタしたONSRのモニタ値VM2と、推定部14が推定したペナルティの要求値VR2との差ΔV2が、Mr以上であるか判定する。
 次に、ステップS34に示すように、光信号の間隔を小さくできるか判定する。具体的には、判定部15は、差ΔV2がMrより小さい場合には、光信号の間隔を小さくできないと判定する。その場合には、処理を終了する。
 一方、ステップS34において、差ΔV2がMr以上である場合には、光信号の間隔を小さくできると判定する。その場合には、ステップS35に示すように、光信号の間隔を小さくする。具体的には、信号間隔制御部16は、隣接する光信号の間隔を小さくなるように各通信装置NEを制御する。このようにして、伝送路における光信号の間隔を制御することができる。
 次に、本実施形態の効果を説明する。本実施形態のネットワーク管理装置NMSは、モニタ情報及びペナルティを用いて、波長帯域において隣接する光信号の間隔を小さくすることが可能か否かを判定し、光信号の間隔を小さくすることが可能と判定された場合に、隣接する光信号の間隔を小さくするように各通信装置NEを制御する。これにより、伝送容量を向上させることができる。
 また、モニタ部13が実測したOSNRのモニタ値VM2と、ペナルティをOSNRに換算した要求値VR2と、の差ΔV2が所定の閾値Mr以上の場合に、光信号の間隔を小さくすることが可能と判定するので、伝送路の品質を低下することなく、伝送容量を向上させることができる。
 以上、実施形態の概要、実施形態1及び2を参照して本願発明を説明したが、本願発明は、上記実施形態の概要、実施形態1及び2に限られたものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることが可能である。例えば、実施形態の概要、実施形態1及び2の各構成を組み合わせた実施形態も、技術的思想の範囲に含まれる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークにおいて、第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐させる複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御するステップと、
 前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御するステップと、
 を備えたネットワーク管理方法。
 (付記2)
 前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト部と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ部と、を有し、
 前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト部と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ部と、を有し、
 前記第1の通信装置を制御するステップにおいて、
 前記第1クロスコネクト部及び前記トランスポンダ部を制御し、
 前記第2の通信装置を制御するステップにおいて、
 前記第2クロスコネクト部及び前記トランスポンダ部を制御する、
 付記1に記載のネットワーク管理方法。
 (付記3)
 前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするステップと、
 前記品質に関連する少なくとも1つのペナルティを推定するステップと、
 前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定するステップと、
 前記波長帯域において隣接する前記光信号の間隔を制御するステップと、
 をさらに備えた、
 付記1または2に記載のネットワーク管理方法。
 (付記4)
 前記推定するステップにおいて、
 前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
 付記3に記載のネットワーク管理方法。
 (付記5)
 前記推定するステップにおいて、
 前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
 付記3または4に記載のネットワーク管理方法。
 (付記6)
 前記判定するステップにおいて、
 実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
 付記3~5のいずれか1項に記載のネットワーク管理方法。
 (付記7)
 前記光信号の間隔を制御するステップにおいて、
 前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
 付記3~6のいずれか1項に記載のネットワーク管理方法。
 (付記8)
 前記波長帯域は、複数のスロットを有し、
 前記光信号の間隔を制御するステップにおいて、
 隣接させた前記光信号の一部を同じスロットに対応させる、
 付記3~7のいずれか1項に記載のネットワーク管理方法。
 (付記9)
 複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークと、
 前記光通信ネットワークを管理するネットワーク管理装置と、
 を備え、
 前記ネットワーク管理装置は、
 第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐される複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御する挿入制御部と、
 前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御する分岐制御部と、
 を有するネットワーク管理システム。
 (付記10)
 前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト部と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ部と、を有し、
 前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト部と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ部と、を有し、
 前記挿入制御部は、前記第1クロスコネクト部及び前記トランスポンダ部を制御し、
 前記分岐制御部は、前記第2クロスコネクト部及び前記トランスポンダ部を制御する、
 付記9に記載のネットワーク管理システム。
 (付記11)
 前記ネットワーク管理装置は、
 前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするモニタ部と、
 前記品質に関連する少なくとも1つのペナルティを推定する推定部と、
 前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定する判定部と、
 前記波長帯域において隣接する前記光信号の間隔を制御する信号間隔制御部と、
 をさらに備えた、
 付記9または10に記載のネットワーク管理システム。
 (付記12)
 前記推定部は、前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
 付記11に記載のネットワーク管理システム。
 (付記13)
 前記推定部は、前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
 付記11または12に記載のネットワーク管理システム。
 (付記14)
 前記判定部は、前記モニタ部が実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
 付記11~13のいずれか1項に記載のネットワーク管理システム。
 (付記15)
 前記信号間隔制御部は、前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
 付記11~14のいずれか1項に記載のネットワーク管理システム。
 (付記16)
 前記波長帯域は、複数のスロットを有し、
 前記信号間隔制御部は、隣接させた前記光信号の一部を同じスロットに対応させる、
 付記11~15のいずれか1項に記載のネットワーク管理システム。
 この出願は、2021年3月22日に出願された日本出願特願2021-047961を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 ネットワーク管理システム
10 制御部
11 挿入制御部
12 分岐制御部
13 モニタ部
14 推定部
15 判定部
16 信号間隔制御部
100 光通信ネットワーク
110 波長クロスコネクト機能部
111 WSS制御部
112 波長選択スイッチ
120 波長クロスコネクト機能部
121 WSS制御部
122 波長選択スイッチ
130 波長合分波機能部
140 トランスポンダ機能部
150 NE制御部
NE、NE1、NE2、NE3、NE4 通信装置
NMS ネットワーク管理装置

Claims (25)

  1.  複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークにおいて、第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐される複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御する挿入制御手段と、
     前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御する分岐制御手段と、
     を備えたネットワーク管理装置。
  2.  前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト手段と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ手段と、を有し、
     前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト手段と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ手段と、を有し、
     前記挿入制御手段は、前記第1クロスコネクト手段及び前記トランスポンダ手段を制御し、
     前記分岐制御手段は、前記第2クロスコネクト手段及び前記トランスポンダ手段を制御する、
     請求項1に記載のネットワーク管理装置。
  3.  前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするモニタ手段と、
     前記品質に関連する少なくとも1つのペナルティを推定する推定手段と、
     前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定する判定手段と、
     前記波長帯域において隣接する前記光信号の間隔を制御する信号間隔制御手段と、
     をさらに備えた、
     請求項1または2に記載のネットワーク管理装置。
  4.  前記推定手段は、前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
     請求項3に記載のネットワーク管理装置。
  5.  前記推定手段は、前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
     請求項3または4に記載のネットワーク管理装置。
  6.  前記判定手段は、前記モニタ手段が実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
     請求項3~5のいずれか1項に記載のネットワーク管理装置。
  7.  前記信号間隔制御手段は、前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
     請求項3~6のいずれか1項に記載のネットワーク管理装置。
  8.  前記波長帯域は、複数のスロットを有し、
     前記信号間隔制御手段は、隣接させた前記光信号の一部を同じスロットに対応させる、
     請求項3~7のいずれか1項に記載のネットワーク管理装置。
  9.  複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークに接続され、
     前記光信号を前記WDM信号光に挿入する際に、他の通信装置で分岐させる複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入し、
     前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐する、
     通信装置。
  10.  複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークにおいて、第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐させる複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御するステップと、
     前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御するステップと、
     を備えたネットワーク管理方法。
  11.  前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト手段と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ手段と、を有し、
     前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト手段と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ手段と、を有し、
     前記第1の通信装置を制御するステップにおいて、
     前記第1クロスコネクト手段及び前記トランスポンダ手段を制御し、
     前記第2の通信装置を制御するステップにおいて、
     前記第2クロスコネクト手段及び前記トランスポンダ手段を制御する、
     請求項10に記載のネットワーク管理方法。
  12.  前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするステップと、
     前記品質に関連する少なくとも1つのペナルティを推定するステップと、
     前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定するステップと、
     前記波長帯域において隣接する前記光信号の間隔を制御するステップと、
     をさらに備えた、
     請求項10または11に記載のネットワーク管理方法。
  13.  前記推定するステップにおいて、
     前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
     請求項12に記載のネットワーク管理方法。
  14.  前記推定するステップにおいて、
     前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
     請求項12または13に記載のネットワーク管理方法。
  15.  前記判定するステップにおいて、
     実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
     請求項12~14のいずれか1項に記載のネットワーク管理方法。
  16.  前記光信号の間隔を制御するステップにおいて、
     前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
     請求項12~15のいずれか1項に記載のネットワーク管理方法。
  17.  前記波長帯域は、複数のスロットを有し、
     前記光信号の間隔を制御するステップにおいて、
     隣接させた前記光信号の一部を同じスロットに対応させる、
     請求項12~16のいずれか1項に記載のネットワーク管理方法。
  18.  複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークと、
     前記光通信ネットワークを管理するネットワーク管理装置と、
     を備え、
     前記ネットワーク管理装置は、
     第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐される複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御する挿入制御手段と、
     前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御する分岐制御手段と、
     を有するネットワーク管理システム。
  19.  前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト手段と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ手段と、を有し、
     前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト手段と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ手段と、を有し、
     前記挿入制御手段は、前記第1クロスコネクト手段及び前記トランスポンダ手段を制御し、
     前記分岐制御手段は、前記第2クロスコネクト手段及び前記トランスポンダ手段を制御する、
     請求項18に記載のネットワーク管理システム。
  20.  前記ネットワーク管理装置は、
     前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするモニタ手段と、
     前記品質に関連する少なくとも1つのペナルティを推定する推定手段と、
     前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定する判定手段と、
     前記波長帯域において隣接する前記光信号の間隔を制御する信号間隔制御手段と、
     をさらに備えた、
     請求項18または19に記載のネットワーク管理システム。
  21.  前記推定手段は、前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
     請求項20に記載のネットワーク管理システム。
  22.  前記推定手段は、前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
     請求項20または21に記載のネットワーク管理システム。
  23.  前記判定手段は、前記モニタ手段が実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
     請求項20~22のいずれか1項に記載のネットワーク管理システム。
  24.  前記信号間隔制御手段は、前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
     請求項20~23のいずれか1項に記載のネットワーク管理システム。
  25.  前記波長帯域は、複数のスロットを有し、
     前記信号間隔制御手段は、隣接させた前記光信号の一部を同じスロットに対応させる、
     請求項20~24のいずれか1項に記載のネットワーク管理システム。
PCT/JP2021/047759 2021-03-22 2021-12-23 ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム WO2022201699A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023508634A JPWO2022201699A5 (ja) 2021-12-23 ネットワーク管理装置、通信装置及びネットワーク管理システム
US18/281,980 US20240154695A1 (en) 2021-03-22 2021-12-23 Network management apparatus, communication apparatus, and network management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021047961 2021-03-22
JP2021-047961 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022201699A1 true WO2022201699A1 (ja) 2022-09-29

Family

ID=83396754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047759 WO2022201699A1 (ja) 2021-03-22 2021-12-23 ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム

Country Status (2)

Country Link
US (1) US20240154695A1 (ja)
WO (1) WO2022201699A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190313168A1 (en) * 2016-12-29 2019-10-10 Xieon Networks S.A.R.L. Method and system for assigning resources in optical transport networks
US20210021340A1 (en) * 2019-07-15 2021-01-21 Huawei Technologies Co., Ltd. Method and apparatus for laser frequency control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190313168A1 (en) * 2016-12-29 2019-10-10 Xieon Networks S.A.R.L. Method and system for assigning resources in optical transport networks
US20210021340A1 (en) * 2019-07-15 2021-01-21 Huawei Technologies Co., Ltd. Method and apparatus for laser frequency control

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EIRA A.; PEDRO J.; PIRES J.: "On the impact of optimized guard-band assignment for superchannels in flexible-grid optical networks", OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC), 2013, IEEE, 17 March 2013 (2013-03-17), pages 1 - 3, XP032679012, ISBN: 978-1-4799-0457-0, DOI: 10.1364/OFC.2013.OTu2A.5 *
HUNG NGUYEN TAN, KEN TANIZAWA, TAKASHI INOUE, TAKAYUKI KUROSU, AND SHU NAMIKI: "No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add–drop node", OPTICS LETTERS, vol. 38, no. 17, 1 September 2013 (2013-09-01), US , pages 3287 - 3290, XP001583944, ISSN: 0146-9592, DOI: 10.1364/OL.38.003287 *

Also Published As

Publication number Publication date
US20240154695A1 (en) 2024-05-09
JPWO2022201699A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
EP2355388B1 (en) Optical network and control method therefor
EP2106044B1 (en) Optical transmission system with pre-compensation and post-compensation of waveform distortion
JP5776330B2 (ja) 波長再配置方法及びノード装置
JP3373332B2 (ja) プリエンファシス方式光波長多重通信方法および装置
EP2448153B1 (en) Optical transmission device and optical transmission system
JP7036130B2 (ja) 光伝送装置、伝送システム、及び伝送システムの制御方法
US10608775B2 (en) Optical transmission apparatus, optical transmission method, and optical transmission system
WO2019179320A1 (en) Method and system for controlling channel replacement and spectral occupancy
JP4553556B2 (ja) 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム
US9467244B2 (en) Transmission apparatus and transmission system
JP2009118101A (ja) 光波長多重伝送装置
US20110026927A1 (en) Transmission apparatus, transmission system, and method of communication
EP3166243A1 (en) Method and apparatus for providing path protection in an optical transmission network
Boffi et al. Mode-group division multiplexing: Transmission, node architecture, and provisioning
JP6390308B2 (ja) 光伝送装置および光伝送制御方法
US20100111534A1 (en) Systems and methods for channel power offsets for multi data rate dwdm transmission over optical add drop multiplexers
US9124382B2 (en) Transmission device, transmission system, and method for adjusting passband
WO2022201699A1 (ja) ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム
JP7060085B2 (ja) 光伝送装置、光通信システム及び光通信方法
JP7548298B2 (ja) 監視装置、監視方法及びプログラム
Souza et al. On the impact of fault-induced power transients in wideband optical networks
WO2020158190A1 (ja) 光伝送装置、端局装置、光通信システム及び光通信方法
EP3079285A1 (en) Performance monitoring and projection switching in optical transmission systems
Montoya et al. Optical Transport Network Migration to Support Future Cloud-based Services and Fifth Generation Mobile Network Requirements
Chentsho Optimization of survivable optical networks in the presence of physical layer impairments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933289

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508634

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18281980

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933289

Country of ref document: EP

Kind code of ref document: A1