WO2022201699A1 - ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム - Google Patents
ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム Download PDFInfo
- Publication number
- WO2022201699A1 WO2022201699A1 PCT/JP2021/047759 JP2021047759W WO2022201699A1 WO 2022201699 A1 WO2022201699 A1 WO 2022201699A1 JP 2021047759 W JP2021047759 W JP 2021047759W WO 2022201699 A1 WO2022201699 A1 WO 2022201699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication device
- network management
- wavelength band
- optical signals
- optical
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 253
- 238000007726 management method Methods 0.000 title claims abstract description 124
- 230000003287 optical effect Effects 0.000 claims abstract description 345
- 230000005540 biological transmission Effects 0.000 claims abstract description 46
- 238000003780 insertion Methods 0.000 claims abstract description 22
- 230000037431 insertion Effects 0.000 claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims description 8
- 239000006185 dispersion Substances 0.000 claims description 7
- 230000006870 function Effects 0.000 description 101
- 238000010586 diagram Methods 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 102100025297 Mannose-P-dolichol utilization defect 1 protein Human genes 0.000 description 1
- 101710089919 Mannose-P-dolichol utilization defect 1 protein Proteins 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07953—Monitoring or measuring OSNR, BER or Q
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/021—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
- H04J14/0212—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
Definitions
- the present invention relates to network management devices, communication devices, network management methods, and network management systems.
- Patent Document 1 describes an optical communication system in which modulated signals modulated by a plurality of different modulation schemes are given predetermined guard bands based on bandwidths and destinations.
- Patent Document 2 describes an optical network system in which, when signal lights of a plurality of modulation schemes are transmitted simultaneously, a guard band is provided between adjacent signal lights of different modulation schemes only when the signal lights of different modulation schemes are adjacent.
- Patent Document 3 describes a multicarrier communication system in which signals are transmitted with a reduced number of guard intervals in the multicarrier communication method.
- Patent Document 4 describes a base station apparatus that uses a guard time of a length that allows propagation delay between a base station and a mobile station between channel slots occupied by the same base station.
- the signal band is reduced each time it passes through multiplexers, and signal quality deteriorates, so a guard band is provided to prevent signal quality deterioration.
- a guard band it is necessary to secure a band wider than the signal band, which reduces the transmission capacity of the system.
- An object of the present disclosure is to provide a network management device, a communication device, and a network management method that can improve transmission capacity in view of the above problems.
- a network management device provides an optical communication network having a plurality of communication devices connected by a transmission line for transmitting WDM signal light in which a plurality of optical signals are wavelength division multiplexed, wherein a first communication device is When the optical signal is added to the WDM signal light, the first optical signal is inserted so that the plurality of optical signals branched by the second communication device are adjacent to the wavelength band sandwiched by the guard bands.
- an insertion control unit for controlling a communication device; and a plurality of optical signals inserted adjacent to the wavelength band sandwiched by the guard bands when the second communication device splits the optical signal from the WDM signal light.
- a branch control unit that controls the second communication device to branch the optical signal.
- a communication device is connected to an optical communication network having a plurality of communication devices connected by a transmission line for transmitting WDM signal light in which a plurality of optical signals are wavelength division multiplexed, and transmits the optical signal to the
- the plurality of optical signals to be dropped by another communication device are added adjacent to the wavelength band sandwiched by guard bands, and the optical signals are dropped from the WDM signal light
- the plurality of optical signals inserted adjacent to the wavelength band sandwiched by the guard bands are branched.
- a network management method provides an optical communication network having a plurality of communication devices connected by a transmission line for transmitting WDM signal light in which a plurality of optical signals are wavelength division multiplexed.
- the first communication is such that when the optical signal is added to the WDM signal light, the plurality of optical signals branched by the second communication device are added adjacent to a wavelength band sandwiched by guard bands.
- a network management device a communication device, and a network management method capable of improving transmission capacity are provided.
- FIG. 1 is a diagram illustrating a network management system according to an embodiment
- FIG. FIG. 5 is a diagram for explaining WDM signal light according to a comparative example
- FIG. 4 is a diagram for explaining WDM signal light according to the embodiment
- 1 is a block diagram illustrating a network management device according to an embodiment
- FIG. FIG. 2 is a flow chart diagram illustrating a network management method of network management according to an embodiment
- 1 is a block diagram illustrating the configuration of a communication device according to Embodiment 1
- FIG. 1 is a block diagram illustrating the configuration of a communication device according to Embodiment 1
- FIG. 4 is a diagram illustrating a wavelength demultiplexing function of a wavelength selective switch in the wavelength cross-connect function unit according to the first embodiment
- FIG. 4 is a diagram illustrating a wavelength multiplexing function of a wavelength selective switch in the wavelength cross-connect function unit according to the first embodiment
- FIG. 2 is a block diagram illustrating the configuration of a network management device according to Embodiment 1
- FIG. 11 is a diagram illustrating a network management method according to a comparative example
- 1 is a diagram illustrating a network management method according to Embodiment 1
- FIG. 10 is a diagram for explaining WDM signal light according to Embodiment 2
- FIG. 10 is a block diagram illustrating a network management device according to the second embodiment
- FIG. 10 is a graph exemplifying an OSNR value obtained by converting a penalty estimated by an OSNR monitor value and an estimation unit of the network management device in the second embodiment into an OSNR.
- 10 is a graph showing an example of an OSNR value obtained by converting a penalty estimated by an OSNR monitor value and an estimation unit of the network management device according to the second embodiment into an OSNR.
- FIG. 10 is a diagram illustrating a method of estimating a penalty by an estimating unit of the network management device according to the second embodiment;
- FIG. 10 is a flow chart diagram illustrating a method of determining the quality of a transmission line in the network management method according to the second embodiment;
- FIG. 10 is a flow chart diagram illustrating a method for controlling intervals between optical signals in the network management method according to the second embodiment;
- FIG. 1 is a diagram illustrating a network management system according to an embodiment.
- the network management system 1 includes a network management device NMS and an optical communication network 100.
- FIG. The optical communication network 100 has a plurality of communication devices NE1-NE4. Although four communication devices NE1 to NE4 are shown in the figure, the number of communication devices NE1 to NE4 is not limited. Each communication device NE1-NE4 is connected to an optical communication network via a transmission line. Therefore, the optical communication network 100 is configured by connecting a plurality of communication devices NE1 to NE4 via transmission lines. Each communication device NE may be connected point-to-point, may be connected in a ring, or may be connected in a mesh.
- the communication devices NE1 to NE4 are collectively called a communication device NE.
- the transmission line transmits WDM signal light obtained by wavelength division multiplexing a plurality of optical signals.
- Each communication device NE is connected to a network management device NMS by a communication line.
- a communication device NE is a node of the optical communication network 100 .
- the communication device NE may be connected to a transmitter and receiver (not shown) via a wired or wireless communication line.
- the communication device NE can function as a multiplexer, a repeater and a demultiplexer under the control of ROADM (Reconfigurable Optical Add and Drop MultiPlexing).
- ROADM Reconfigurable Optical Add and Drop MultiPlexing
- the operation of each communication device NE is controlled by a network management device NMS. Accordingly, the optical communication network 100 transmits optical signals by wavelength division multiplexing (WDM).
- WDM wavelength division multiplexing
- FIG. 2 is a diagram for explaining WDM signal light according to a comparative example.
- FIG. 3 is a diagram for explaining WDM signal light according to the embodiment.
- WDM signal light is divided into a plurality of wavelength bands. A plurality of slots SL correspond to each wavelength band. Therefore, the wavelength band has multiple slots SL. 2 and 3 show slots SL1 to SL24.
- the WDM signal light of the comparative example includes optical signals P1 to P4, for example.
- the optical signal P1 corresponds to slots SL2 to SL5. Slots SL1 and SL6 are provided with guard bands G1 and G2.
- the optical signal P2 corresponds to slots SL8 to SL11. Slots SL7 and SL12 are provided with guard bands G3 and G4.
- the optical signal P3 corresponds to slots SL14 to SL17. Slots SL13 and SL18 are provided with guard bands G5 and G6.
- the optical signal P4 corresponds to slots SL20 to SL23. Slots SL19 and SL24 are provided with guard bands G7 and G8.
- the optical signal P1 and the optical signal P3 are optical signals branched by the same communication device NE.
- the optical signal P1 and the optical signal P3 are optical signals branched by the communication device NE4.
- the optical signal P2 and the optical signal P4 are optical signals branched by the same communication device NE.
- the optical signal P2 and the optical signal P4 are optical signals branched by the communication device NE3.
- WDM signal light is divided into a plurality of wavelength bands, and each wavelength band corresponds to a plurality of slots SL.
- the WDM signal light includes optical signals P11-P14.
- the optical signal P11 corresponds to slots SL2 to SL5.
- the optical signal P12 corresponds to slots SL6 to SL9.
- the optical signal P11 and the optical signal P12 are optical signals branched by the same communication device NE.
- the optical signal P11 and the optical signal P12 are optical signals branched by the communication device NE4.
- Slots SL1 and SL10 are provided with guard bands G11 and G12.
- the optical signal P13 corresponds to slots SL12 to SL15.
- the optical signal P14 corresponds to slots SL16 to SL19.
- Slots SL11 and SL20 are provided with guard bands G13 and G14.
- Optical signal P13 and optical signal P14 are optical signals dropped at the same communication device NE.
- the optical signal P13 and the optical signal P14 are optical signals branched by the communication device NE3. In the embodiment, 4 slots can be reduced compared to the comparative example.
- FIG. 4 is a block diagram illustrating a network management device NMS according to an embodiment.
- the network management device NMS includes an insertion control section 11 and a branch control section 12 .
- the insertion control section 11 and the branch control section 12 have functions as insertion control means and branch control means.
- the insertion control unit 11 divides the plurality of optical signals P11 and P12 branched by the communication device NE4 into the guard band G11. and G12, and controls the communication device NE1 so that it is inserted adjacent to the wavelength band. Further, when the communication device NE1 inserts the optical signal P14 into the WDM signal light, the insertion control unit 11, for example, sandwiches the plurality of optical signals P13 and P14 branched by the communication device NE3 between the guard bands G13 and G14. The communication device NE1 is controlled to be inserted adjacent to the selected wavelength band.
- the branch control unit 12 divides the plurality of optical signals P11 and P12 inserted adjacent to the wavelength band sandwiched between the guard bands G11 and G12. is controlled by the communication device NE4. Further, when the communication device NE3 branches the optical signals P13 and P14 from the WDM signal light, the branch control unit 12 controls the plurality of optical signals P13 inserted adjacent to the wavelength band sandwiched between the guard bands G13 and G14. and P14 by the communication device NE3.
- the communication devices NE1 to NE4 are connected to an optical communication network 100 including a plurality of communication devices NE1 to NE4 connected by transmission lines.
- the communication device NE1 places the plurality of optical signals P11 and P12 branched by the communication device NE4 adjacent to the wavelength band sandwiched between the guard bands G11 and G12, for example. insert.
- the communication device NE1 for example, divides the plurality of optical signals P13 and P14 into the wavelength bands sandwiched between the guard bands G13 and G14. and insert it.
- the communication device NE3 when branching the optical signals P13 and P14 from the WDM signal light, branches the plurality of optical signals P13 and P14 inserted into the wavelength band sandwiched between the guard bands G13 and G14.
- the communication device NE4 when branching the optical signals P11 and P12 from the WDM signal light, branches the plurality of optical signals P11 and P12 inserted into the wavelength band sandwiched between the guard bands G11 and G12.
- FIG. 5 is a flow chart diagram illustrating a network management method of the network management device NMS according to the embodiment.
- step S11 in FIG. 5 in the optical communication network 100, when the communication device NE1 inserts the optical signal P12 into the WDM signal light, for example, a plurality of optical signals P11 and P12 to be branched by the same communication device NE4 are , the communication device NE1 is inserted adjacent to the wavelength band sandwiched by the guard bands G11 and G12.
- step S12 in the optical communication network 100, when the communication device NE4 branches the optical signals P11 and P12 from the WDM signal light, the wavelength band sandwiched between the guard bands G11 and G12 is made adjacent to the wavelength band.
- the communication device NE4 is controlled so that the plurality of inserted optical signals P11 and P12 are branched by the communication device NE4.
- the network management device NMS inserts a plurality of optical signals branched by the same communication device NE adjacent to the wavelength band sandwiched by the guard bands. can be reduced and the maximum transmission capacity of the optical communication network can be improved.
- FIG. 6 is a block diagram illustrating the configuration of the communication device NE according to the first embodiment.
- the communication device NE has a wavelength cross-connect function unit 110, a wavelength cross-connect function unit 120, a wavelength multiplexing/demultiplexing function unit 130, and a transponder function unit 140.
- the wavelength cross-connect function unit 110 and the wavelength cross-connect function unit 120 function as wavelength cross-connect means.
- the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 function as wavelength multiplexing/demultiplexing means and transponder means.
- the wavelength cross-connect function unit 110, the wavelength cross-connect function unit 120, the wavelength multiplexing/demultiplexing function unit 130, and the transponder function unit 140 are referred to as the first cross-connect unit, the second cross-connect unit, the wavelength multiplexing/demultiplexing unit, and the transponder unit. Also called
- An amplifier may be connected to the wavelength cross-connect function unit 110 and the wavelength cross-connect function unit 120 .
- a transmitter and a receiver may be connected to the wavelength multiplexing/demultiplexing function unit 130 via the transponder function unit 140 .
- a multiplexer can be configured by the wavelength cross-connect function unit 120 and the wavelength multiplexing/demultiplexing function unit 130 .
- a demultiplexing device can be configured by the wavelength cross-connect function unit 110 and the wavelength multiplexing/demultiplexing function unit 130 .
- the wavelength cross-connect function unit 110 and the wavelength cross-connect function unit 120 may constitute a repeater. Note that the repeater may not have the wavelength cross-connect function unit 110 and the wavelength cross-connect function unit 120 and may be configured by an amplifier.
- the wavelength cross-connect function unit 110 branches a predetermined optical signal from the received WDM signal light. Specifically, the wavelength cross-connect function unit 110 selects and switches the wavelength band for branching the optical signal.
- the wavelength cross-connect function unit 120 inserts a predetermined optical signal into WDM signal light. Specifically, the wavelength cross-connect function unit 120 selects and switches the wavelength band into which the optical signal is inserted.
- the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 transmit the optical signal split by the wavelength cross-connect function unit 110 to the receiver. Specifically, the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 receive the branched optical signals from the wavelength band. In this case, the branch control unit 12 controls the wavelength cross-connect function unit 110 , the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 . On the other hand, the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 multiplex the optical signals transmitted from the transmitter and transmit them to the wavelength cross-connection function unit 120 .
- the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 transmit the optical signal to be inserted into the wavelength band.
- the insertion control unit 11 of the network management device NMS controls the wavelength cross-connect function unit 120 , the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 .
- FIG. 7 is a block diagram illustrating the configuration of the communication device NE according to the first embodiment.
- the communication device NE may have a wavelength cross-connect function unit 110, a wavelength cross-connect function unit 120, and an NE control unit 150.
- FIG. 7 is a block diagram illustrating the configuration of the communication device NE according to the first embodiment.
- the communication device NE may have a wavelength cross-connect function unit 110, a wavelength cross-connect function unit 120, and an NE control unit 150.
- the wavelength cross-connect function unit 110 includes a WSS control unit 111 and a wavelength selective switch (Wavelength Selective Switch) 112 .
- the WSS control unit 111 functions as control means for controlling the operation of the wavelength selective switch 112 .
- the wavelength selective switch 112 has a function as switching means for selecting a predetermined wavelength.
- the wavelength cross-connect function unit 120 includes a WSS control unit 121 and a wavelength selective switch 122.
- the WSS control unit 121 functions as control means for controlling the operation of the wavelength selective switch 122 .
- the wavelength selective switch 122 has a function as switching means for selecting a predetermined wavelength.
- the NE control unit 150 is connected to the wavelength cross-connect function unit 110, the wavelength cross-connect function unit 120, the network management device NMS, and the transponder function unit 140.
- the NE control unit 150 functions as control means for controlling the operations of the wavelength cross-connect function unit 110, the wavelength cross-connect function unit 120, the transponder function unit 140, and the wavelength multiplexing/demultiplexing function unit 130 (not shown).
- FIG. 8 is a diagram exemplifying the wavelength separation function of the wavelength selective switch 112 in the wavelength cross-connect function unit 110 according to the first embodiment. As shown in FIG. 8, the wavelength selective switch 112 splits into optical signals of predetermined wavelengths ⁇ 1 to ⁇ N when WDM signal light including optical signals of wavelengths ⁇ 1 to ⁇ N is incident.
- FIG. 9 is a diagram exemplifying the wavelength multiplexing function of the wavelength selective switch 122 in the wavelength cross-connect function unit 120 according to the first embodiment. As shown in FIG. 9, when optical signals of wavelengths ⁇ 1 to ⁇ N are incident, the wavelength selective switch 122 multiplexes the respective optical signals and outputs WDM signal light including the optical signals of wavelengths ⁇ 1 to ⁇ N. .
- FIG. 10 is a block diagram illustrating the configuration of the network management device NMS according to the first embodiment.
- the network management device NMS may include a controller 10 in addition to the insertion controller 11 and the branch controller 12 .
- the control unit 10 has a function as control means.
- the network management device NMS is, for example, a computer, and the control unit 10 is, for example, a processor such as a CPU (Central Processing Unit).
- the control unit 10 has a function as an arithmetic device that performs control processing, arithmetic processing, and the like.
- the control unit 10 controls operations of the insertion control unit 11 and the branch control unit 12 . Also, the control unit 10 may control various operations of the communication device NE.
- the network management device NMS may have a storage unit, a communication unit, and an interface unit (not shown).
- the storage unit may have, for example, a storage device such as a memory or a hard disk.
- the storage device is, for example, ROM (Read Only Memory) or RAM (Random Access Memory).
- the storage unit has a function of storing a control program, an arithmetic program, and the like executed by the control unit 10 .
- the storage unit has a function of temporarily storing processing data and the like.
- the storage may include a database.
- the communication unit performs processing necessary for communicating with other devices via a wired or wireless network or the like. Communications may include communications ports, routers, firewalls, and the like.
- the interface unit is, for example, a user interface.
- the interface unit has an input device such as a keyboard, touch panel, or mouse, and an output device such as a display or speaker.
- the interface unit receives a data input operation by a user (operator or the like) and outputs information to the user.
- the control unit 10, storage unit, communication unit and interface unit are interconnected via a data bus or the like.
- the network management device NMS has an insertion control unit 11 and a branch control unit 12 as components.
- Each component can be realized by executing a program under the control of the control unit 10, for example. More specifically, each component can be implemented by the control unit 10 executing a program stored in the storage unit. Further, each component may be realized by recording necessary programs in an arbitrary non-volatile recording medium and installing them as necessary. Moreover, each component may be implemented by any combination of hardware, firmware, and software, without being limited to being implemented by program software. Also, each component may be implemented using a user-programmable integrated circuit such as an FPGA (Field-Programmable Gate Array) or a microcomputer. In this case, this integrated circuit may be used to implement a program composed of the above components.
- FPGA Field-Programmable Gate Array
- Network management method of comparative example Next, a network management method will be described as an operation of the network management device NMS of this embodiment. First, a network management method in a comparative example will be described. After that, the network management method of this embodiment will be described in comparison with a comparative example.
- FIG. 11 is a diagram illustrating a network management method according to a comparative example.
- the communication device NE1 receives WDM signal light including an optical signal P1 and an optical signal P2.
- the optical signal P1 is an optical signal branched (dropped) by the communication device NE4, and the optical signal P2 is an optical signal branched (dropped) by the communication device NE3.
- Guard bands G1 and G2 are provided in the slots SL1 and SL6 on both sides of the optical signal P1.
- Guard bands G3 and G4 are provided in the slots SL7 and SL12 on both sides of the optical signal P2.
- the communication device NE1 inserts (adds) the optical signal P3 to the received WDM signal light and multiplexes them.
- the optical signal P3 is an optical signal branched by the communication device NE4.
- the communication device NE1 provides guard bands G5 and G6 in the slots SL3 and SL18 on both sides of the optical signal P3.
- the communication device NE1 outputs WDM signal light multiplexed by inserting the optical signal P3 to the communication device NE2.
- the communication device NE2 receives WDM signal light including optical signal P1, optical signal P2 and optical signal P3.
- the communication device NE2 inserts and multiplexes the optical signal P4 into the received WDM signal light.
- the optical signal P4 is an optical signal branched by the communication device NE3.
- the communication device NE2 provides guard bands G7 and G8 in the slots SL19 and SL24 on both sides of the optical signal P4. Accordingly, the WDM signal light includes optical signals P1 to P4 as shown in FIG.
- the communication device NE2 outputs the WDM signal light multiplexed by inserting the optical signal P4 to the communication device NE3.
- the communication device NE3 receives WDM signal light including the optical signals P1 to P4.
- the communication device NE3 splits the optical signal P2 and the optical signal P4 from the WDM signal light.
- the communication device NE3 outputs WDM signal light obtained by branching the optical signal P2 and the optical signal P4 to the communication device NE4.
- the communication device NE4 receives WDM signal light including the optical signals P1 and P3.
- the communication device NE4 splits the optical signal P1 and the optical signal P3 from the WDM signal light.
- the communication device NE4 outputs WDM signal light obtained by branching the optical signal P1 and the optical signal P3 to the next communication device NE.
- FIG. 12 is a diagram illustrating a network management method according to the first embodiment.
- the communication device NE1 receives WDM signal light including an optical signal P11 and an optical signal P13.
- the optical signal P11 is an optical signal branched by the communication device NE4, and the optical signal P13 is an optical signal branched by the communication device NE3.
- Guard bands are provided in the slots SL1 and SL6 on both sides of the optical signal P11. Guard bands are provided in the slots SL11 and SL16 on both sides of the optical signal P13.
- the communication device NE1 inserts and multiplexes the optical signal P12 into the received WDM signal light.
- the optical signal P12 is an optical signal branched by the communication device NE4, like the optical signal P11. Therefore, when the communication device NE1 inserts the optical signal P12 into the WDM signal light, the insertion control unit 11 divides the plurality of optical signals P11 and P12 to be branched by the communication device NE4 into wavelengths sandwiched between the guard bands G11 and G12. The communication device NE1 is controlled to be inserted adjacent to the band. As a result, the wavelength cross-connect function unit 120 of the communication device NE1 selects and switches the wavelength band into which the optical signal P12 is inserted.
- the wavelength cross-connect function unit 120 opens the wavelength band sandwiched between the guard bands G11 and G12.
- the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 insert the optical signal P12 adjacent to the wavelength band sandwiched between the guard bands G11 and G12.
- the communication device NE1 outputs WDM signal light multiplexed by inserting the optical signal P12 to the communication device NE2.
- the communication device NE2 receives WDM signal light including the optical signal P11, the optical signal P12 and the optical signal P13.
- the communication device NE2 inserts and multiplexes the optical signal P14 into the received WDM signal light.
- the optical signal P14 is an optical signal branched by the communication device NE3, like the optical signal P13. Therefore, when the communication device NE2 inserts the optical signal P14 into the WDM signal light, the insertion control unit 11 divides the plurality of optical signals P13 and P14 to be branched by the communication device NE3 into wavelengths sandwiched between the guard bands G13 and G14.
- the communication device NE2 is controlled to insert adjacent to the band.
- the wavelength cross-connect function unit 120 of the communication device NE2 selects and switches the wavelength band into which the optical signal P14 is inserted. Therefore, the wavelength cross-connect function unit 120 opens the wavelength band sandwiched between the guard bands G13 and G14.
- the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 insert the optical signal P14 into the wavelength band sandwiched between the guard bands G13 and G14.
- the WDM signal light includes optical signals P11 to P14 as shown in FIG.
- the communication device NE2 outputs the multiplexed WDM signal light to the communication device NE3.
- the communication device NE3 receives WDM signal light including the optical signals P11 to P14.
- the communication device NE3 splits the optical signal P13 and the optical signal P14 from the WDM signal light. For example, when the communication device NE3 branches the optical signals P13 and P14 from the WDM signal light, the branch control unit 12 splits the plurality of optical signals P13 and P14 inserted into the wavelength band sandwiched between the guard bands G13 and G14. , the communication device NE3 is controlled so as to branch at the communication device NE3.
- the wavelength cross-connect function unit 110 of the communication device NE3 selects and switches the wavelength band for branching the optical signals P13 and P14.
- the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 branch the optical signals P13 and P14 from the wavelength band sandwiched between the guard bands G13 and G14.
- the communication device NE3 splits the optical signals P13 and P14 and outputs WDM signal light obtained by wavelength separation to the communication device NE4.
- the communication device NE4 receives WDM signal light including the optical signals P11-P12.
- the communication device NE4 splits the optical signal P11 and the optical signal P12 from the WDM signal light. For example, when the communication device NE4 branches the optical signals P11 and P12 from the WDM signal light, the branch control unit 12 splits the plurality of optical signals P11 and P12 inserted into the wavelength band sandwiched between the guard bands G11 and G12. , the communication device NE4 is controlled to branch at the communication device NE4. As a result, the wavelength cross-connect function unit 110 of the communication device NE4 selects and switches the wavelength band for branching the optical signals P11 and P12.
- the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 branch the optical signals P11 and P12 from the wavelength band sandwiched between the guard bands G11 and G12.
- the communication device NE4 splits the optical signals P11 and P12 and outputs WDM signal light obtained by wavelength separation to the next communication device NE.
- the network management device NMS controls the wavelength cross-connect function units 110 and 120, the wavelength multiplexing/demultiplexing function unit 130, and the transponder function unit 140 of the communication device NE, thereby branching the same communication device NE.
- optical signals are collectively transmitted. This can reduce guard bands between adjacent optical signals. Therefore, the transmission capacity of the optical communication network can be improved.
- the network management device NMS of this embodiment monitors the quality of the transmission line and estimates the quality of the transmission line. Then, the network management device NMS improves the transmission capacity by controlling the interval between adjacent optical signals based on the quality of the transmission path.
- FIG. 13 is a diagram for explaining WDM signal light according to the second embodiment. As shown in FIG. 13, the WDM signal light includes optical signals P21-P24.
- the optical signal P21 corresponds to slots SL2 to SL5.
- the optical signal P22 corresponds to slots SL5 to SL8.
- the optical signal P21 and the optical signal P22 are optical signals branched by the same communication device NE.
- the optical signal P21 and the optical signal P22 are optical signals branched by the communication device NE4.
- Slots SL1 and SL9 are provided with guard bands G21 and G22.
- Optical signal P23 corresponds to slot SL11 to slot SL14.
- the optical signal P24 corresponds to slots SL14 to SL17. Slots SL10 and SL18 are provided with guard bands G23 and G24.
- the optical signal P23 and the optical signal P24 are optical signals branched by the same communication device NE.
- the optical signal P23 and the optical signal P24 are optical signals branched by the communication device NE3.
- 6 slots can be reduced compared to the comparative example.
- FIG. 14 is a block diagram illustrating a network management device NMS according to the second embodiment.
- the network management device NMS further includes a monitor 13, an estimation unit 14, a determination unit 15 and a signal interval control unit 16 in addition to the control unit 10, the insertion control unit 11 and the branch control unit 12. ing.
- the monitor section 13, the estimation section 14, the determination section 15, and the signal interval control section 16 function as monitor means, estimation means, determination means, and signal interval control means, respectively.
- the monitor unit 13 acquires monitor information. Specifically, the monitor unit 13 monitors at least one piece of monitor information related to the quality of the transmission path in at least one of the plurality of communication devices NE. Specifically, the monitor information is information (monitor parameters) related to the state (quality, etc.) of optical communication. For example, monitor values obtained by actually measuring OSNR (Optical Signal to Noise Ratio). be. Note that the monitor unit 13 may monitor the power of each wavelength band and the total power as monitor information in the wavelength cross-connect function units 110 and 120, for example.
- OSNR Optical Signal to Noise Ratio
- the monitor unit 13 monitors the wavelength multiplexing/demultiplexing function unit 130 and the transponder function unit 140 as monitoring information such as a Q value (Quality Factor), a spectrum monitor value, a crosstalk (XT) monitor value, an SOP (State of Polarization). Wave state) monitor value, DGD (Differential-Group-Delay) monitor value, and chromatic dispersion monitor value may be monitored.
- Q value Quality Factor
- XT crosstalk
- SOP State of Polarization
- Wave state monitor value DGD (Differential-Group-Delay) monitor value
- chromatic dispersion monitor value may be monitored.
- the estimation unit 14 estimates at least one penalty related to the quality of the transmission channel. For example, the estimator 14 estimates at least one penalty for the receiving side using the monitored information.
- the penalty is a value indicating the degree (degradation amount) of an element (noise; distortion) that causes deterioration of transmission quality due to the transmission state of an optical signal.
- the penalty is, for example, a penalty converted to OSNR.
- FIG. 15 is a graph exemplifying OSNR values obtained by converting the OSNR monitor value VM1 actually measured by the monitor unit 13 of the network management device NMS and the penalty estimated by the estimation unit 14 according to the second embodiment.
- the monitor unit 13 monitors a monitor value VM1 obtained by actually measuring the OSNR as monitor information.
- the estimator 14 estimates at least one of SOP variation, filter narrowing, crosstalk, DGD, chromatic dispersion, and nonlinearity as a penalty.
- FIG. 15 shows each penalty estimated by the estimation unit 14 as a value converted to OSNR.
- the estimation unit 14 estimates the required value VR1 based on each penalty. Specifically, the estimating unit 14 sums the FEC threshold VF and the plurality of estimated penalties to calculate the request value VR1.
- the FEC threshold VF is a value obtained by converting the penalty in a transmission line in the state of no load into OSNR.
- the required value VR1 is the value of OSNR required to prevent a communication error in the communication device NE on the receiving side.
- the optical signal transmitted from the transmitting side if the OSNR monitor value VM1 actually measured by the receiving side falls below the required value VR1, a communication error occurs, and the optical signal cannot be transmitted appropriately. In FIG. 15, the actually measured monitor value VM1 has a margin of ⁇ V1 with respect to the required value VR1.
- FIG. 16 is a graph exemplifying the OSNR monitor value VM2 actually measured by the monitor unit 13 of the network management device NMS and the penalty estimated by the estimation unit 14 according to the second embodiment.
- the estimating unit 14 may estimate the penalty when the interval between optical signals in the wavelength band is changed. For example, reducing the spacing between optical signals increases the crosstalk penalty.
- FIG. 17 is a diagram illustrating a method of estimating a penalty by the estimating unit 14 of the network management device NMS according to the second embodiment.
- the estimation unit 14 may estimate the penalty from a diagram showing the relationship between the optical signal interval ( ⁇ f) in the wavelength band and the penalty converted to OSNR.
- the estimator 14 may also estimate the penalty using a lookup table that indicates the correspondence between optical signal intervals in the wavelength band.
- the estimation unit 14 calculates the request value VR2 so as to include the crosstalk penalty estimated when the optical signal interval is narrowed.
- the determination unit 15 uses the monitor information and the penalty to determine whether or not it is possible to shorten the interval between adjacent optical signals in the wavelength band. Specifically, the determination unit 15 determines whether the difference ⁇ V2 obtained by subtracting the OSNR required value VR2 from the ONSR monitor value VM2 actually measured as the monitor information exceeds Mr, which is a predetermined value (margin). determine whether or not As a result, when the difference ⁇ V2 between the OSNR value VM2 actually measured by the monitor unit 13 and the required value VR2 that is the sum of the penalties is equal to or greater than the predetermined threshold value Mr, the determination unit 15 determines whether the adjacent optical signals in the wavelength band It is determined that the interval can be reduced.
- Mr a predetermined value
- the signal interval control unit 16 controls the interval between adjacent optical signals in the wavelength band. For example, when it is determined that the interval between adjacent optical signals can be reduced, the signal interval control unit 16 controls each communication device NE so as to reduce the interval between optical signals. Specifically, when the difference ⁇ V2 obtained by subtracting the OSNR required value VR2 from the actually measured ONSR monitor value VM2 is greater than or equal to Mr, the signal interval control unit 16 causes the communication device NE to insert the optical signal into the WDM signal light. At this time, the intervals between the optical signals are reduced. At that time, the signal interval control unit 16 may cause some of the adjacent optical signals to correspond to the same slot SL.
- FIG. 18 is a flow chart illustrating a method of determining the quality of a transmission line in the network management method according to the second embodiment.
- monitor information is monitored.
- the monitor unit 13 of the network management device NMS acquires the actually measured ONSR monitor value VM1 as the monitor information.
- step S22 the penalty is estimated.
- the estimation unit 14 of the network device NMS estimates the penalty and estimates the request value VR1 converted into ONSR.
- the quality of the transmission path is determined.
- the determination unit 15 of the network device NMS determines whether the difference ⁇ V1 between the ONSR monitor value VM1 monitored by the monitor unit 13 and the penalty request value VR1 estimated by the estimation unit 14 is greater than or equal to Mr. When the difference ⁇ V1 is greater than or equal to Mr, the determination unit 15 determines that the quality of the transmission path is good and that the interval between adjacent optical signals can be reduced.
- FIG. 19 is a flowchart illustrating an example of a method for controlling intervals between optical signals in the network management method according to the second embodiment.
- monitor information is monitored.
- the monitor unit 13 of the network management device NMS acquires the actually measured ONSR monitor value VM2 as the monitor information.
- step S32 the penalty for reducing the optical signal interval is estimated.
- the estimator 14 of the network device NMS estimates the penalty when the interval between adjacent optical signals is reduced, and estimates the request value VR2 converted into ONSR.
- step S33 the quality of the transmission line when the optical signal interval is reduced is determined.
- the determination unit 15 of the network device NMS determines whether the difference ⁇ V2 between the ONSR monitor value VM2 monitored by the monitor unit 13 and the penalty request value VR2 estimated by the estimation unit 14 is greater than or equal to Mr.
- step S34 it is determined whether the interval between optical signals can be reduced. Specifically, when the difference ⁇ V2 is smaller than Mr, the determination unit 15 determines that the optical signal interval cannot be reduced. In that case, the process ends.
- step S34 determines that the interval between optical signals can be shortened. In that case, as shown in step S35, the intervals between the optical signals are reduced.
- the signal interval control unit 16 controls each communication device NE so as to shorten the interval between adjacent optical signals. In this way, it is possible to control the spacing of the optical signals in the transmission line.
- the network management device NMS of this embodiment can use the monitor information and the penalty to determine whether or not the interval between adjacent optical signals in the wavelength band can be shortened, and can shorten the interval between the optical signals. is determined, each communication device NE is controlled to reduce the interval between adjacent optical signals. Thereby, the transmission capacity can be improved.
- the interval between the optical signals can be reduced. Since the decision is made, the transmission capacity can be improved without degrading the quality of the transmission path.
- a first communication device inserts the optical signal into the WDM signal light. At this time, controlling the first communication device to insert the plurality of optical signals branched by the second communication device adjacent to the wavelength band sandwiched by the guard bands; When the second communication device branches the optical signal from the WDM signal light, the second communication device branches the plurality of optical signals inserted adjacent to the wavelength band sandwiched by the guard bands.
- the first communication device has a first cross-connect unit that selects and switches the wavelength band into which the optical signal is inserted, and a transponder unit that transmits the optical signal to be inserted into the wavelength band
- the second communication device has a second cross-connect unit that selects and switches the wavelength band from which the optical signal is branched, and the transponder unit that receives the branched optical signal from the wavelength band.
- (Appendix 3) monitoring at least one piece of monitor information related to the quality of the transmission path in at least one of the plurality of communication devices; estimating at least one penalty associated with said quality; determining whether it is possible to reduce the interval between adjacent optical signals in the wavelength band using the monitor information and the penalty; controlling the spacing between adjacent optical signals in the wavelength band; further comprising 3.
- the network management method according to appendix 1 or 2. (Appendix 4) In the estimating step, Estimate at least one penalty of SOP variation, filter narrowing, crosstalk, DGD, chromatic dispersion, and nonlinearity as the penalty; The network management method according to appendix 3.
- (Appendix 5) In the estimating step, estimating the penalty using a lookup table showing a correspondence relationship with the interval of the optical signal; The network management method according to appendix 3 or 4.
- (Appendix 6) In the determining step, determining that the interval between adjacent optical signals can be reduced in the wavelength band when the difference between the actually measured OSNR monitor value and the required value obtained by summing the penalties is equal to or greater than a predetermined threshold; The network management method according to any one of Appendices 3-5.
- (Appendix 7) In the step of controlling the interval of the optical signals, reducing intervals between the optical signals when the first communication device inserts the optical signals into the WDM signal light; The network management method according to any one of Appendices 3-6.
- the wavelength band has a plurality of slots, In the step of controlling the interval of the optical signals, causing portions of the adjacent optical signals to correspond to the same slot;
- the network management method according to any one of Appendices 3-7.
- Appendix 9 an optical communication network having a plurality of communication devices connected by a transmission line for transmitting WDM signal light in which a plurality of optical signals are wavelength division multiplexed; a network management device that manages the optical communication network; with The network management device When the first communication device inserts the optical signal into the WDM signal light, the plurality of optical signals branched by the second communication device are added adjacent to the wavelength band sandwiched by the guard bands.
- an insertion control unit that controls the first communication device such that When the second communication device branches the optical signal from the WDM signal light, the second communication device branches the plurality of optical signals inserted adjacent to the wavelength band sandwiched by the guard bands.
- a branch control unit that controls two communication devices;
- the first communication device has a first cross-connect unit that selects and switches the wavelength band into which the optical signal is inserted, and a transponder unit that transmits the optical signal to be inserted into the wavelength band
- the second communication device has a second cross-connect unit that selects and switches the wavelength band from which the optical signal is branched, and the transponder unit that receives the branched optical signal from the wavelength band.
- the insertion control unit controls the first cross-connect unit and the transponder unit
- the branch control unit controls the second cross-connect unit and the transponder unit.
- a network management system according to Supplementary Note 9. (Appendix 11) The network management device a monitoring unit that monitors at least one piece of monitor information related to the quality of the transmission path in at least one of the plurality of communication devices; an estimator for estimating at least one penalty associated with said quality; a determination unit that uses the monitor information and the penalty to determine whether it is possible to reduce the interval between the adjacent optical signals in the wavelength band; a signal interval control unit that controls intervals between adjacent optical signals in the wavelength band; further comprising 11.
- the estimating unit estimates at least one penalty of SOP variation, filter narrowing, crosstalk, DGD, chromatic dispersion, and nonlinearity as the penalty. 12.
- the network management system according to Supplementary Note 11. (Appendix 13) The estimating unit estimates the penalty using a lookup table showing a correspondence relationship with the interval of the optical signal. 13.
- the network management system according to appendix 11 or 12. (Appendix 14) When the difference between the OSNR monitor value actually measured by the monitor unit and the required value obtained by summing the penalties is equal to or greater than a predetermined threshold value, the determination unit reduces the interval between the adjacent optical signals in the wavelength band. determine that it is possible to 14.
- the signal interval control unit reduces the interval of the optical signal when the first communication device inserts the optical signal into the WDM signal light. 15.
- the network management system according to any one of Appendices 11-14.
- the wavelength band has a plurality of slots, The signal interval control unit causes portions of the adjacent optical signals to correspond to the same slot, 16.
- the network management system according to any one of appendices 11-15.
- control unit 11 insertion control unit 12 branch control unit 13 monitor unit 14 estimation unit 15 determination unit 16 signal interval control unit 100 optical communication network 110 wavelength cross connect function unit 111 WSS control unit 112 wavelength selective switch 120 wavelength cross Connect function unit 121 WSS control unit 122 Wavelength selective switch 130 Wavelength multiplex/demultiplex function unit 140 Transponder function unit 150 NE control units NE, NE1, NE2, NE3, NE4 Communication device NMS Network management device
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
Description
本開示の実施形態の説明に先立って、本開示にかかる実施形態の概要について説明する。図1は、実施形態に係るネットワーク管理システムを例示した図である。
図1に示すようにネットワーク管理システム1は、ネットワーク管理装置NMS及び光通信ネットワーク100を備えている。光通信ネットワーク100は、複数の通信装置NE1~NE4を有する。図では、4つの通信装置NE1~NE4が示されているが、通信装置NE1~NE4の個数は限定されない。各通信装置NE1~NE4は、伝送路を介して、光通信ネットワークに接続している。よって、光通信ネットワーク100は、複数の通信装置NE1~NE4が伝送路で接続されることにより構成されている。各通信装置NEは、ポイントtoポイント状に接続されてもよいし、リング状に接続されてもよいし、メッシュ状に接続されてもよい。なお、通信装置NE1~NE4を総称して通信装置NEと呼ぶ。伝送路は、複数の光信号が波長分割多重(Wavelength Division Multiplexing)されたWDM信号光を伝送する。各通信装置NEは、通信回線によりネットワーク管理装置NMSに接続されている。
通信装置NEは、光通信ネットワーク100のノードである。通信装置NEは、図示しない送信機及び受信機と有線又は無線の通信回線により接続されてもよい。通信装置NEは、ROADM(Reconfigurable OPtical Add and DroP MultiPlexing)の制御により、多重装置、中継装置及び分離装置として機能し得る。各通信装置NEの動作は、ネットワーク管理装置NMSによって制御される。これにより、光通信ネットワーク100は、波長分割多重(WDM)により、光信号を伝送する。
ここで、光通信ネットワーク100を伝送するWDM信号光を、比較例及び実施形態に分けて説明する。図2は、比較例に係るWDM信号光を説明するための図である。図3は、実施形態に係るWDM信号光を説明するための図である。図2及び図3に示すように、WDM信号光は、複数の波長帯域に分割されている。各波長帯域には複数のスロットSLが対応している。よって、波長帯域は複数のスロットSLを有している。図2及び図3には、スロットSL1~スロットSL24が示されている。まず、比較例を説明する。図2に示すように、比較例のWDM信号光は、例えば、光信号P1~P4を含む。
次に、実施形態に係るWDM信号光を説明する。図3に示すように、WDM信号光は、複数の波長帯に分割され、各波長帯には複数のスロットSLが対応している。WDM信号光は、光信号P11~P14を含む。
図4は、実施形態に係るネットワーク管理装置NMSを例示したブロック図である。図4に示すように、ネットワーク管理装置NMSは、挿入制御部11と、分岐制御部12と、を備えている。挿入制御部11及び分岐制御部12は、挿入制御手段及び分岐制御手段としての機能を有する。
図5は、実施形態に係るネットワーク管理装置NMSのネットワーク管理方法を例示したフローチャート図である。
次に、実施形態1に係るネットワーク管理システム1の詳細を説明する。まず、通信装置NEを説明する。
図6は、実施形態1に係る通信装置NEの構成を例示したブロック図である。図6に示すように、通信装置NEは、波長クロスコネクト機能部110、波長クロスコネクト機能部120、波長合分波機能部130及びトランスポンダ機能部140を有している。波長クロスコネクト機能部110及び波長クロスコネクト機能部120は、波長クロスコネクト手段としての機能を有している。波長合分波機能部130及びトランスポンダ機能部140は、波長合分波手段及びトランスポンダ手段としての機能を有している。なお、波長クロスコネクト機能部110、波長クロスコネクト機能部120、波長合分波機能部130及びトランスポンダ機能部140を、第1クロスコネクト部、第2クロスコネクト部、波長合分波部及びトランスポンダ部とも呼ぶ。
次に、ネットワーク管理装置NMSを説明する。図10は、実施形態1に係るネットワーク管理装置NMSの構成を例示したブロック図である。図10に示すように、ネットワーク管理装置NMSは、挿入制御部11及び分岐制御部12の他、制御部10を備えてもよい。制御部10は、制御手段としての機能を有している。ネットワーク管理装置NMSは、例えば、コンピュータであり、制御部10は、例えば、CPU(Central Processing Unit)等のプロセッサである。
次に、本実施形態のネットワーク管理装置NMSの動作として、ネットワーク管理方法を説明する。まず、比較例におけるネットワーク管理方法を説明する。その後、比較例と対比させて、本実施形態のネットワーク管理方法を説明する。
次に、本実施形態のネットワーク管理方法を説明する。図12は、実施形態1に係るネットワーク管理方法を例示した図である。図3及び図12に示すように、通信装置NE1は、光信号P11及び光信号P13を含むWDM信号光を受信する。光信号P11は、通信装置NE4で分岐される光信号であり、光信号P13は、通信装置NE3で分岐される光信号である。光信号P11の両側のスロットSL1及びSL6には、ガードバンドが設けられている。光信号P13の両側のスロットSL11及びSL16には、ガードバンドが設けられている。
次に、実施形態2に係るネットワーク管理システムを説明する。本実施形態のネットワーク管理装置NMSは、伝送路の品質をモニタするとともに、伝送路の品質を推定する。そして、ネットワーク管理装置NMSは、伝送路の品質に基づいて、隣接する光信号間の間隔を制御することにより、伝送容量を向上させる。
図13は、実施形態2に係るWDM信号光を説明するための図である。図13に示すように、WDM信号光は、光信号P21~P24を含む。
図14は、実施形態2に係るネットワーク管理装置NMSを例示したブロック図である。図14に示すように、ネットワーク管理装置NMSは、制御部10、挿入制御部11及び分岐制御部12の他に、モニタ部13、推定部14、判定部15及び信号間隔制御部16をさらに備えている。モニタ部13、推定部14、判定部15及び信号間隔制御部16は、それぞれ、モニタ手段、推定手段、判定手段及び信号間隔制御手段としての機能を有している。
図15は、実施形態2に係るネットワーク管理装置NMSのモニタ部13が実測したOSNRのモニタ値VM1及び推定部14が推定したペナルティをOSNRに換算した値を例示したグラフである。図15に示すように、モニタ部13は、モニタ情報として、OSNRを実測したモニタ値VM1をモニタする。推定部14は、ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する。図15には、推定部14が推定した各ペナルティをOSNRに換算した値で示している。
次に、実施形態2に係る管理方法を説明する。まず、伝送路の品質を判定する方法を説明する。図18は、実施形態2に係るネットワーク管理方法において、伝送路の品質の判定方法を例示したフローチャート図である。
次に、伝送路における光信号の間隔を制御する方法を説明する。図19は、実施形態2に係るネットワーク管理方法において、光信号の間隔の制御方法を例示したフローチャート図である。
複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークにおいて、第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐させる複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御するステップと、
前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御するステップと、
を備えたネットワーク管理方法。
(付記2)
前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト部と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ部と、を有し、
前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト部と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ部と、を有し、
前記第1の通信装置を制御するステップにおいて、
前記第1クロスコネクト部及び前記トランスポンダ部を制御し、
前記第2の通信装置を制御するステップにおいて、
前記第2クロスコネクト部及び前記トランスポンダ部を制御する、
付記1に記載のネットワーク管理方法。
(付記3)
前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするステップと、
前記品質に関連する少なくとも1つのペナルティを推定するステップと、
前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定するステップと、
前記波長帯域において隣接する前記光信号の間隔を制御するステップと、
をさらに備えた、
付記1または2に記載のネットワーク管理方法。
(付記4)
前記推定するステップにおいて、
前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
付記3に記載のネットワーク管理方法。
(付記5)
前記推定するステップにおいて、
前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
付記3または4に記載のネットワーク管理方法。
(付記6)
前記判定するステップにおいて、
実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
付記3~5のいずれか1項に記載のネットワーク管理方法。
(付記7)
前記光信号の間隔を制御するステップにおいて、
前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
付記3~6のいずれか1項に記載のネットワーク管理方法。
(付記8)
前記波長帯域は、複数のスロットを有し、
前記光信号の間隔を制御するステップにおいて、
隣接させた前記光信号の一部を同じスロットに対応させる、
付記3~7のいずれか1項に記載のネットワーク管理方法。
(付記9)
複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークと、
前記光通信ネットワークを管理するネットワーク管理装置と、
を備え、
前記ネットワーク管理装置は、
第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐される複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御する挿入制御部と、
前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御する分岐制御部と、
を有するネットワーク管理システム。
(付記10)
前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト部と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ部と、を有し、
前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト部と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ部と、を有し、
前記挿入制御部は、前記第1クロスコネクト部及び前記トランスポンダ部を制御し、
前記分岐制御部は、前記第2クロスコネクト部及び前記トランスポンダ部を制御する、
付記9に記載のネットワーク管理システム。
(付記11)
前記ネットワーク管理装置は、
前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするモニタ部と、
前記品質に関連する少なくとも1つのペナルティを推定する推定部と、
前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定する判定部と、
前記波長帯域において隣接する前記光信号の間隔を制御する信号間隔制御部と、
をさらに備えた、
付記9または10に記載のネットワーク管理システム。
(付記12)
前記推定部は、前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
付記11に記載のネットワーク管理システム。
(付記13)
前記推定部は、前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
付記11または12に記載のネットワーク管理システム。
(付記14)
前記判定部は、前記モニタ部が実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
付記11~13のいずれか1項に記載のネットワーク管理システム。
(付記15)
前記信号間隔制御部は、前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
付記11~14のいずれか1項に記載のネットワーク管理システム。
(付記16)
前記波長帯域は、複数のスロットを有し、
前記信号間隔制御部は、隣接させた前記光信号の一部を同じスロットに対応させる、
付記11~15のいずれか1項に記載のネットワーク管理システム。
10 制御部
11 挿入制御部
12 分岐制御部
13 モニタ部
14 推定部
15 判定部
16 信号間隔制御部
100 光通信ネットワーク
110 波長クロスコネクト機能部
111 WSS制御部
112 波長選択スイッチ
120 波長クロスコネクト機能部
121 WSS制御部
122 波長選択スイッチ
130 波長合分波機能部
140 トランスポンダ機能部
150 NE制御部
NE、NE1、NE2、NE3、NE4 通信装置
NMS ネットワーク管理装置
Claims (25)
- 複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークにおいて、第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐される複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御する挿入制御手段と、
前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御する分岐制御手段と、
を備えたネットワーク管理装置。 - 前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト手段と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ手段と、を有し、
前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト手段と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ手段と、を有し、
前記挿入制御手段は、前記第1クロスコネクト手段及び前記トランスポンダ手段を制御し、
前記分岐制御手段は、前記第2クロスコネクト手段及び前記トランスポンダ手段を制御する、
請求項1に記載のネットワーク管理装置。 - 前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするモニタ手段と、
前記品質に関連する少なくとも1つのペナルティを推定する推定手段と、
前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定する判定手段と、
前記波長帯域において隣接する前記光信号の間隔を制御する信号間隔制御手段と、
をさらに備えた、
請求項1または2に記載のネットワーク管理装置。 - 前記推定手段は、前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
請求項3に記載のネットワーク管理装置。 - 前記推定手段は、前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
請求項3または4に記載のネットワーク管理装置。 - 前記判定手段は、前記モニタ手段が実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
請求項3~5のいずれか1項に記載のネットワーク管理装置。 - 前記信号間隔制御手段は、前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
請求項3~6のいずれか1項に記載のネットワーク管理装置。 - 前記波長帯域は、複数のスロットを有し、
前記信号間隔制御手段は、隣接させた前記光信号の一部を同じスロットに対応させる、
請求項3~7のいずれか1項に記載のネットワーク管理装置。 - 複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークに接続され、
前記光信号を前記WDM信号光に挿入する際に、他の通信装置で分岐させる複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入し、
前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐する、
通信装置。 - 複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークにおいて、第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐させる複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御するステップと、
前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御するステップと、
を備えたネットワーク管理方法。 - 前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト手段と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ手段と、を有し、
前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト手段と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ手段と、を有し、
前記第1の通信装置を制御するステップにおいて、
前記第1クロスコネクト手段及び前記トランスポンダ手段を制御し、
前記第2の通信装置を制御するステップにおいて、
前記第2クロスコネクト手段及び前記トランスポンダ手段を制御する、
請求項10に記載のネットワーク管理方法。 - 前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするステップと、
前記品質に関連する少なくとも1つのペナルティを推定するステップと、
前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定するステップと、
前記波長帯域において隣接する前記光信号の間隔を制御するステップと、
をさらに備えた、
請求項10または11に記載のネットワーク管理方法。 - 前記推定するステップにおいて、
前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
請求項12に記載のネットワーク管理方法。 - 前記推定するステップにおいて、
前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
請求項12または13に記載のネットワーク管理方法。 - 前記判定するステップにおいて、
実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
請求項12~14のいずれか1項に記載のネットワーク管理方法。 - 前記光信号の間隔を制御するステップにおいて、
前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
請求項12~15のいずれか1項に記載のネットワーク管理方法。 - 前記波長帯域は、複数のスロットを有し、
前記光信号の間隔を制御するステップにおいて、
隣接させた前記光信号の一部を同じスロットに対応させる、
請求項12~16のいずれか1項に記載のネットワーク管理方法。 - 複数の光信号が波長分割多重されたWDM信号光を伝送する伝送路によって接続された複数の通信装置を有する光通信ネットワークと、
前記光通信ネットワークを管理するネットワーク管理装置と、
を備え、
前記ネットワーク管理装置は、
第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、第2の通信装置で分岐される複数の前記光信号を、ガードバンドで挟まれた波長帯域に隣接させて挿入させるように前記第1の通信装置を制御する挿入制御手段と、
前記第2の通信装置が前記光信号を前記WDM信号光から分岐する際に、前記ガードバンドで挟まれた前記波長帯域に隣接させて挿入された複数の前記光信号を分岐させるように前記第2の通信装置を制御する分岐制御手段と、
を有するネットワーク管理システム。 - 前記第1の通信装置は、前記光信号を挿入する前記波長帯域を選択してスイッチングする第1クロスコネクト手段と、挿入する前記光信号を前記波長帯域に送信するトランスポンダ手段と、を有し、
前記第2の通信装置は、前記光信号を分岐する前記波長帯域を選択してスイッチングする第2クロスコネクト手段と、分岐した前記光信号を前記波長帯域から受信する前記トランスポンダ手段と、を有し、
前記挿入制御手段は、前記第1クロスコネクト手段及び前記トランスポンダ手段を制御し、
前記分岐制御手段は、前記第2クロスコネクト手段及び前記トランスポンダ手段を制御する、
請求項18に記載のネットワーク管理システム。 - 前記ネットワーク管理装置は、
前記伝送路の品質に関連する少なくとも1つのモニタ情報を、複数の前記通信装置の少なくとも1つにおいてモニタするモニタ手段と、
前記品質に関連する少なくとも1つのペナルティを推定する推定手段と、
前記モニタ情報及び前記ペナルティを用いて、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能か否かを判定する判定手段と、
前記波長帯域において隣接する前記光信号の間隔を制御する信号間隔制御手段と、
をさらに備えた、
請求項18または19に記載のネットワーク管理システム。 - 前記推定手段は、前記ペナルティとして、SOP変動、フィルタ狭窄化、クロストーク、DGD、波長分散及び非線形のうち、少なくとも1つのペナルティを推定する、
請求項20に記載のネットワーク管理システム。 - 前記推定手段は、前記ペナルティを、前記光信号の間隔との対応関係を示したルックアップテーブルを用いて推定する、
請求項20または21に記載のネットワーク管理システム。 - 前記判定手段は、前記モニタ手段が実測したOSNRのモニタ値と、前記ペナルティを合計した要求値と、の差が所定の閾値以上の場合に、前記波長帯域において隣接する前記光信号の間隔を小さくすることが可能と判定する、
請求項20~22のいずれか1項に記載のネットワーク管理システム。 - 前記信号間隔制御手段は、前記第1の通信装置が前記光信号を前記WDM信号光に挿入する際に、前記光信号の間隔を小さくさせる、
請求項20~23のいずれか1項に記載のネットワーク管理システム。 - 前記波長帯域は、複数のスロットを有し、
前記信号間隔制御手段は、隣接させた前記光信号の一部を同じスロットに対応させる、
請求項20~24のいずれか1項に記載のネットワーク管理システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023508634A JPWO2022201699A5 (ja) | 2021-12-23 | ネットワーク管理装置、通信装置及びネットワーク管理システム | |
US18/281,980 US20240154695A1 (en) | 2021-03-22 | 2021-12-23 | Network management apparatus, communication apparatus, and network management system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021047961 | 2021-03-22 | ||
JP2021-047961 | 2021-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022201699A1 true WO2022201699A1 (ja) | 2022-09-29 |
Family
ID=83396754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/047759 WO2022201699A1 (ja) | 2021-03-22 | 2021-12-23 | ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240154695A1 (ja) |
WO (1) | WO2022201699A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190313168A1 (en) * | 2016-12-29 | 2019-10-10 | Xieon Networks S.A.R.L. | Method and system for assigning resources in optical transport networks |
US20210021340A1 (en) * | 2019-07-15 | 2021-01-21 | Huawei Technologies Co., Ltd. | Method and apparatus for laser frequency control |
-
2021
- 2021-12-23 US US18/281,980 patent/US20240154695A1/en active Pending
- 2021-12-23 WO PCT/JP2021/047759 patent/WO2022201699A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190313168A1 (en) * | 2016-12-29 | 2019-10-10 | Xieon Networks S.A.R.L. | Method and system for assigning resources in optical transport networks |
US20210021340A1 (en) * | 2019-07-15 | 2021-01-21 | Huawei Technologies Co., Ltd. | Method and apparatus for laser frequency control |
Non-Patent Citations (2)
Title |
---|
EIRA A.; PEDRO J.; PIRES J.: "On the impact of optimized guard-band assignment for superchannels in flexible-grid optical networks", OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC), 2013, IEEE, 17 March 2013 (2013-03-17), pages 1 - 3, XP032679012, ISBN: 978-1-4799-0457-0, DOI: 10.1364/OFC.2013.OTu2A.5 * |
HUNG NGUYEN TAN, KEN TANIZAWA, TAKASHI INOUE, TAKAYUKI KUROSU, AND SHU NAMIKI: "No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add–drop node", OPTICS LETTERS, vol. 38, no. 17, 1 September 2013 (2013-09-01), US , pages 3287 - 3290, XP001583944, ISSN: 0146-9592, DOI: 10.1364/OL.38.003287 * |
Also Published As
Publication number | Publication date |
---|---|
US20240154695A1 (en) | 2024-05-09 |
JPWO2022201699A1 (ja) | 2022-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2355388B1 (en) | Optical network and control method therefor | |
EP2106044B1 (en) | Optical transmission system with pre-compensation and post-compensation of waveform distortion | |
JP5776330B2 (ja) | 波長再配置方法及びノード装置 | |
JP3373332B2 (ja) | プリエンファシス方式光波長多重通信方法および装置 | |
EP2448153B1 (en) | Optical transmission device and optical transmission system | |
JP7036130B2 (ja) | 光伝送装置、伝送システム、及び伝送システムの制御方法 | |
US10608775B2 (en) | Optical transmission apparatus, optical transmission method, and optical transmission system | |
WO2019179320A1 (en) | Method and system for controlling channel replacement and spectral occupancy | |
JP4553556B2 (ja) | 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム | |
US9467244B2 (en) | Transmission apparatus and transmission system | |
JP2009118101A (ja) | 光波長多重伝送装置 | |
US20110026927A1 (en) | Transmission apparatus, transmission system, and method of communication | |
EP3166243A1 (en) | Method and apparatus for providing path protection in an optical transmission network | |
Boffi et al. | Mode-group division multiplexing: Transmission, node architecture, and provisioning | |
JP6390308B2 (ja) | 光伝送装置および光伝送制御方法 | |
US20100111534A1 (en) | Systems and methods for channel power offsets for multi data rate dwdm transmission over optical add drop multiplexers | |
US9124382B2 (en) | Transmission device, transmission system, and method for adjusting passband | |
WO2022201699A1 (ja) | ネットワーク管理装置、通信装置、ネットワーク管理方法及びネットワーク管理システム | |
JP7060085B2 (ja) | 光伝送装置、光通信システム及び光通信方法 | |
JP7548298B2 (ja) | 監視装置、監視方法及びプログラム | |
Souza et al. | On the impact of fault-induced power transients in wideband optical networks | |
WO2020158190A1 (ja) | 光伝送装置、端局装置、光通信システム及び光通信方法 | |
EP3079285A1 (en) | Performance monitoring and projection switching in optical transmission systems | |
Montoya et al. | Optical Transport Network Migration to Support Future Cloud-based Services and Fifth Generation Mobile Network Requirements | |
Chentsho | Optimization of survivable optical networks in the presence of physical layer impairments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21933289 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023508634 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18281980 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21933289 Country of ref document: EP Kind code of ref document: A1 |