WO2022201468A1 - Blower device - Google Patents

Blower device Download PDF

Info

Publication number
WO2022201468A1
WO2022201468A1 PCT/JP2021/012710 JP2021012710W WO2022201468A1 WO 2022201468 A1 WO2022201468 A1 WO 2022201468A1 JP 2021012710 W JP2021012710 W JP 2021012710W WO 2022201468 A1 WO2022201468 A1 WO 2022201468A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
bell mouth
main plate
air
downstream
Prior art date
Application number
PCT/JP2021/012710
Other languages
French (fr)
Japanese (ja)
Inventor
誠 田中
嘉浩 小見山
成浩 岡田
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN202180084260.XA priority Critical patent/CN116601392A/en
Priority to PCT/JP2021/012710 priority patent/WO2022201468A1/en
Priority to JP2023508350A priority patent/JP7458552B2/en
Publication of WO2022201468A1 publication Critical patent/WO2022201468A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the embodiment of the present invention relates to a blower.
  • a blower that includes a turbofan and a bell mouth on the suction side of the turbofan is known.
  • the inventors have found that in a conventional air blower in which a turbofan shroud is arranged near the bell mouth, a vortex is generated on the back side of the bell mouth (inside the housing) and in the radially outer region of the shroud. found to occur. This vortex reduces the amount of air drawn by the blower.
  • an object of the present invention is to provide a blower capable of efficiently sucking air from a bell mouth and blowing air with high efficiency.
  • An air blower includes an annular bell mouth, a flat downstream side surface that continues to the downstream end of the bell mouth, sucks air from the bell mouth, and blows air in a direction along the downstream side. and an impeller.
  • the impeller includes a main plate portion that extends substantially parallel to the downstream side surface and extends radially, and a plurality of open blades that are annularly arranged and protrude from the main plate portion toward the downstream side surface and the bellmouth. and The outermost diameter drawn by the plurality of wing portions is larger than the outermost diameter of the main plate portion.
  • the protruding ends of the plurality of wing portions include a first portion arranged close to the downstream side surface and a second portion protruding toward the upstream end of the bell mouth from the downstream end of the bell mouth. It has a part and a.
  • the exit angle of the root portion of each blade portion connected to the main plate portion is larger than the entrance angle of the root portion.
  • the root portion of each of the blade portions connected to the main plate portion has a linear shape.
  • the thickness of each of the blade portions is thinner than the thickness of the main plate portion.
  • the number of the plurality of blade portions is a prime number.
  • a first line segment connecting the trailing edge of the first blade portion and the rotation center line, and the trailing edge of the second blade portion adjacent to the first blade portion, when viewed from the direction along the rotation center line of the impeller. and the second line segment connecting the center line of rotation is preferably 25 degrees or more.
  • the blower device it is preferable to include a reinforcing member that connects the second portions of the plurality of blade portions.
  • FIG. 2 is a vertical cross-sectional view of an impeller and a bell mouth according to the present embodiment; The perspective view of the blade part of the impeller which concerns on this embodiment.
  • FIG. 4 is a schematic diagram of the inlet angle and the outlet angle of the blade portion of the impeller according to the present embodiment.
  • FIG. 1 An embodiment of a blower device according to the present invention will be described with reference to FIGS. 1 to 11.
  • FIG. the same code
  • FIG. 1 is a schematic perspective view of an indoor unit of a refrigeration cycle apparatus equipped with a blower according to an embodiment of the present invention.
  • Fig. 2 is a schematic vertical cross-sectional view of an indoor unit of a refrigeration cycle apparatus equipped with a blower according to an embodiment of the present invention.
  • the refrigeration cycle apparatus includes an indoor unit 1 installed indoors as a user side and an outdoor unit (not shown) installed outdoors as a heat source side, as shown in FIG. .
  • the refrigeration cycle device includes a refrigeration cycle (not shown).
  • the refrigeration cycle includes a heat source side heat exchanger (not shown), a compressor (not shown), a heat exchanger 2 on the user side, an expander (not shown), and a refrigerant that circulates the refrigerant through these devices.
  • a tube (not shown);
  • the refrigeration cycle may include a four-way valve (not shown) for switching between cooling operation and heating operation of the refrigeration cycle device.
  • the indoor unit 1 accommodates a heat exchanger 2 on the user side of the refrigeration cycle.
  • the outdoor unit accommodates a heat source side heat exchanger, a compressor, and a four-way valve of the refrigeration cycle.
  • the expander may be housed in the indoor unit 1 or may be housed in the outdoor unit.
  • the outdoor unit and the indoor unit are connected via a connecting pipe (not shown).
  • the transition pipe is part of the refrigerant pipe.
  • the refrigeration cycle device circulates a refrigerant between a heat exchanger on the outdoor unit side and a heat exchanger 2 on the indoor unit 1 side to harmonize indoor air.
  • the installation location of the indoor unit 1 is inside the building.
  • the indoor unit 1 is installed by being embedded in the indoor ceiling or suspended from the ceiling or beams.
  • the indoor unit 1 includes a housing 5, a heat exchanger 2 provided inside the housing 5, and a blower 6.
  • the blower device 6 includes an annular bell mouth 7 provided on the housing 5 and a turbo fan 8 that sucks air from the bell mouth 7 and blows the air onto the heat exchanger 2 .
  • the indoor unit 1 includes an electric expansion valve (not shown) that is an expander of a refrigeration cycle.
  • the housing 5 is a box having a rectangular top surface, four rectangular side surfaces, and a rectangular bottom surface.
  • the top surface of the housing 5 is covered with a top plate 11.
  • - ⁇ A turbo fan 8 is provided on the bottom surface of the top plate 11 .
  • Four side surfaces of the housing 5 are covered with side plates 12 .
  • the corners between the sides are beveled like a chamfer. This chamfered portion is closed with an inclined plate 13 .
  • the bottom surface of the housing 5 is covered with a bottom plate 14.
  • a circular suction port 16 for sucking air from below the indoor unit 1 is provided in the central portion of the bottom plate 14 .
  • a plurality of rectangular outlets 17 for blowing air downward are provided on the outer edge of the bottom plate 14 .
  • Each air outlet 17 extends along each side of the rectangular bottom surface of the housing 5 . Therefore, the indoor unit 1 sucks indoor air from the suction port 16 on the bottom surface of the housing 5, heat-exchanges the refrigerant and the air in the heat exchanger 2, and heats the air from the blowout port 17 on the bottom surface of the housing 5. blow out the air.
  • the heat exchanger 2 is fixed to the top plate 11 of the housing 5.
  • the heat exchanger 2 is, for example, of a fin-and-tube type, and includes a large number of aligned aluminum alloy fins and refrigerant pipes passing through the fan.
  • the heat exchanger 2 is provided inside the housing 5 and surrounds the radially outer side of the turbo fan 8 .
  • the inner peripheral surface of the heat exchanger 2 faces the turbo fan 8
  • the outer peripheral surface of the heat exchanger 2 faces the inner surface of the side plate 12 .
  • the heat exchanger 2 has a flat plate portion 2a facing each side plate 12 of the housing 5 and a curved plate 13 between two adjacent side plates 12 to connect the two adjacent flat plate portions 2a. and a curved plate portion 2b.
  • An annular bell mouth 7 is provided at the suction port 16 of the bottom plate 14 .
  • the opening edge of the bell mouth 7 on the suction side that is, the upstream end 7 a of the bell mouth 7 continues to the outer surface 14 a of the bottom plate 14 .
  • the opening edge of the bell mouth 7 on the blowout side that is, the downstream end 7 b of the bell mouth 7 continues to the inner surface 14 b of the bottom plate 14 .
  • An inner surface 14 b of the bottom plate 14 is flat and reaches the heat exchanger 2 from the downstream end 7 b of the bell mouth 7 .
  • the outer surface 14a of the bottom plate 14 is a flat upstream side surface 18 connected to the upstream end 7a of the bellmouth 7, and the inner surface 14b of the bottom plate 14 is a flat downstream side surface 19 connected to the downstream end 7b of the bellmouth 7. be.
  • a drain pan may be provided below the heat exchanger 2 to receive condensed water generated on the surface of the heat exchanger 2 .
  • the moisture contained in the air passing through the heat exchanger 2 that is, the humidity in the room, condenses on the surface of the heat exchanger 2 and condenses on the heat exchanger 2 as condensed water. It adheres and drips from the heat exchanger 2.
  • a drain pan receives condensed water falling from the heat exchanger 2 . Condensed water stored in the drain pan is pumped up by a drain pump (not shown) provided in the housing 5 and discharged to the outside of the indoor unit 1 through a drain pipe (not shown).
  • the drain pan preferably has a concave portion for receiving condensed water in a portion where the planar portion extending from the downstream end 7b of the bell mouth 7 to the heat exchanger 2 is as close to the heat exchanger 2 as possible.
  • the drain pan is preferably formed in a heat insulating material integrated with the bottom plate 14 of the housing 5 .
  • the turbo fan 8 includes a fan motor 22 having a rotating shaft 21 extending in the vertical direction, and an impeller 23 fixed to the rotating shaft 21 so as to rotate integrally.
  • the fan motor 22 rotates the impeller 23 .
  • the fan motor 22 is fixed to the inner surface of the top plate 11 of the housing 5 via fixtures 25 .
  • the rotationally driven impeller 23 sucks the air around the housing 5 from the bell mouth 7 of the suction port 16, blows out the air radially in the direction along the inner surface 14b of the bottom plate 14, and directs the blown air to the heat exchanger 2. Spray.
  • a maximum outer diameter A of the turbofan 8 is larger than an opening diameter B of the bell mouth 7 .
  • the rotation center line C of the impeller 23 coincides with the rotation shaft 21 of the fan motor 22 and extends vertically with the indoor unit 1 installed.
  • the compressor of the outdoor unit discharges high-temperature and high-pressure gas refrigerant and sends it to the heat exchanger (condenser) on the outdoor side.
  • the outdoor-side heat exchanger exchanges heat between the refrigerant flowing therein and the outdoor air to condense the refrigerant.
  • the condensed liquid refrigerant is sent to the indoor unit 1 through the refrigerant pipe.
  • the indoor unit 1 expands the liquid refrigerant flowing from the refrigerant pipe with an electric expansion valve, and sends a low-temperature gas-liquid mixed refrigerant to the heat exchanger 2 (evaporator).
  • the heat exchanger 2 exchanges heat between the low-temperature refrigerant flowing therein and the indoor air to gasify the refrigerant.
  • the room is cooled by the low-temperature air blown out from the indoor unit 1 .
  • the compressor of the outdoor unit discharges high-temperature and high-pressure gas refrigerant and sends it to the heat exchanger 2 (condenser) of the indoor unit 1.
  • the heat exchanger 2 exchanges heat between the refrigerant flowing inside and the air in the room to condense the refrigerant. At this time, the room is heated by the high-temperature air blown out from the indoor unit 1 .
  • FIG. 3 is a plan view of the impeller according to this embodiment.
  • FIG. 4 is a perspective view showing the impeller according to this embodiment from the bottom side.
  • FIG. 5 is a longitudinal sectional view of the impeller and bell mouth according to this embodiment.
  • the impeller 23 of the blower device 6 is substantially parallel to the downstream side 19 connected to the bell mouth 7 and is arranged radially.
  • a plurality of wing portions 32 protruding from the main plate portion 31 toward the downstream side surface 19 and the bell mouth 7 and arranged in an annular shape; and a hub portion 33 provided at the center of the main plate portion 31. I have.
  • the impeller 23 is an integrally molded product made of fiber reinforced plastic (FRP), aluminum alloy, or magnesium metal.
  • the impeller 23 is made of fiber-reinforced plastic, for example, and integrally molded by hand lay-up.
  • the main plate portion 31 has a flat plate shape with a substantially uniform thickness.
  • the main plate portion 31 is an assembly of a plurality of petal portions 35 radially extending from the hub portion 33 in the radial direction of the impeller 23 .
  • Each petal portion 35 has a first side portion 35a having a linear edge and a second side portion 35b having a linear edge. Or it extends in a tapered shape.
  • the first side portion 35 a of each petal portion 35 is also called the first edge of the main plate portion 31
  • the second side portion 35 b of each petal portion 35 is also called the second edge of the main plate portion 31 .
  • the first side 35 a of one petal 35 faces the second side 35 b of the other petal 35 .
  • the first side portion 35a of one petal portion 35 and the second side portion 35b of the other petal portion 35 face each other with a gap in the circumferential direction of the main plate portion 31 .
  • the shapes of all the petals 35 are substantially the same.
  • the ends of the plurality of petals 35 located radially inward of the turbofan 8 that is, the root ends of the plurality of petals 35 tightly surround the outer periphery of the hub portion 33 .
  • the root end of the first side portion 35 a of one petal portion 35 coincides with the root end of the second side portion 35 b of the other petal portion 35 .
  • the ends of the plurality of petals 35 located radially outward of the turbofan 8, that is, the projecting ends of the plurality of petals 35 are connected by a virtual circle. This virtual circle corresponds to the outermost diameter D ⁇ b>1 of the main plate portion 31 .
  • a plurality of wing portions 32 and hub portions 33 protrude from the main plate portion 31 in the same direction.
  • the hub portion 33 has a truncated cone shape that tapers away from the main plate portion 31 .
  • the protrusion height of the plurality of blade portions 32 with respect to the main plate portion 31 is higher than the protrusion height of the hub portion 33 .
  • the number of wings 32 that is, the number of wings is a prime number, and is 11 in this embodiment.
  • All wings 32 are plates of uniform thickness.
  • the plurality of wings 32 are open. That is, the impeller 23 does not have a shroud that connects the projecting ends 32a of the plurality of blades 32. As shown in FIG.
  • Each wing portion 32 is connected only to the main plate portion 31 and is not in contact with and is not connected to the hub portion 33 .
  • a root end 32 b of each wing portion 32 is an edge of each wing portion 32 that continues to the main plate portion 31 .
  • a root end 32b of each wing portion 32 continues to a first side portion 35a of each petal portion 35 .
  • Each wing portion 32 protrudes from the first side portion 35 a of each petal portion 35 . Therefore, the root end 32b of each wing portion 32 has the same linear shape as the first side portion 35a of each petal portion 35 and has a linear shape that matches the chord of the blade.
  • Each blade portion 32 is inclined in the circumferential direction of the turbofan 8 and in the direction away from the second side portion 35b of each petal portion 35. Further, each blade portion 32 is inclined radially outward of the turbofan 8 from the root end 32b toward the projecting end 32a. Therefore, the outermost diameter D2 drawn by the plurality of blade portions 32 is larger than the outermost diameter D1 of the main plate portion 31 .
  • the impeller 23 rotates in a direction R in which the first side portion 35a of each petal portion 35 precedes the second side portion 35b to flow air. That is, the front edge 41 of each blade 32 is positioned on the inner peripheral side of the impeller 23 , and the trailing edge 42 of the blade 32 is positioned on the outer peripheral side of the impeller 23 .
  • a first line segment L1 connecting the trailing edge 42 of the first blade portion 32 and the rotation centerline C and the first line segment L1 adjacent to the first blade portion 32 The angle ⁇ between the trailing edge 42 of the second wing portion 32 and the second line segment L2 connecting the rotation center line C is preferably 25 degrees or more. That is, the number of wings 32 is preferably a prime number of 13 or less, and is 11 in this embodiment.
  • each wing portion 32 protrudes toward the upstream end 7a of the bell mouth 7 from the first portion 45 arranged close to the downstream side 19 and the downstream end 7b of the bell mouth 7. and a second portion 46 where the second portion 46 is located. That is, the protruding end 32 a of each wing 32 has a convex portion 47 that enters the inside of the bell mouth 7 .
  • the convex portion 47 protrudes following the shape of the bell mouth 7 .
  • the second portion 46 is the ridgeline of the convex portion 47 .
  • the first portion 45 of the wing portion 32 and the downstream side surface 19 are arranged to face each other with an interval of about several millimeters therebetween.
  • the distance between the impeller 23 and the bell mouth 7 is preferably as close as possible within the range in which the impeller 23 can rotate smoothly without interfering with the bell mouth 7 .
  • each wing portion 32 is thinner than the thickness of the main plate portion 31 .
  • Such a thickness relationship is compared to the case where the thickness of each wing portion 32 is the same as the thickness of the main plate portion 31 or the case where the thickness of each wing portion 32 is thicker than the thickness of the main plate portion 31.
  • reduce the centrifugal force acting on the wings 32 reduces the deformation of the wing portions 32 and prevents the reduction in the air volume due to the deformation of the wing portions 32 .
  • the main plate portion 31, which is thicker than each wing portion 32 reduces deformation of the wing portions 32 due to centrifugal force, and prevents reduction in air volume due to deformation of the wing portions 32.
  • FIG. 6 is a perspective view of the wing portion of the impeller according to this embodiment.
  • the planar shape of the blade portion 32 of the impeller 23 is close to a quadrangle, for example, a parallelogram.
  • the root end 32b has a linear shape that continues to the first side portion 35a of the petal portion 35 .
  • a straight line connecting point a and point b in FIG. 6 is root end 32b.
  • the protruding end 32a has a non-linear shape and has a protrusion 47 that passes through the protruding end of the trailing edge 42 and protrudes in a direction away from the root end 32b with respect to an imaginary line VL parallel to the root end 32b.
  • the projecting end 32a is a line connecting points c, d, and e in FIG.
  • a line connecting points a and c in FIG. 6 is the leading edge 41 of the wing 32 , and a line connecting points b and e in FIG.
  • the convex portion 47 has a straight edge 48 that continues to the front edge 41 and is parallel to the root end 32 b and parallel to the main plate portion 31 , and a curved edge 49 that connects the straight edge 48 and the rear edge 42 .
  • a straight edge 48 is a straight line connecting points c and d in FIG. 6, and a curved edge 49 is a curved line connecting points d and e in FIG.
  • the straight edge 48 and part of the curved edge 49 that follows the bellmouth 7 are the second portion 46 of the protruding end 32a, and the remainder of the curved edge 49 is the first portion 45 located adjacent the downstream side 19. is. That is, the remainder of curvilinear edge 49 is substantially parallel to root end 32b. Between the protruding end 32 a and the bell mouth 7 and between the protruding end 32 a and the downstream side surface 19 , there are gaps that do not hinder the rotation of the impeller 23 . This gap is preferably 5 millimeters or less.
  • FIG. 7 is a diagram comparing the characteristics of the impeller according to the present embodiment and the characteristics of the impeller of the comparative example.
  • FIG. 7 is a diagram showing the relationship between the static pressure P of the impeller and the flow rate Q of the impeller, which is the so-called PQ characteristic.
  • the impeller of the comparative example does not have the protrusions 47 on each of the blades 32, and has projecting ends parallel to the downstream side surface 19 and the main plate portion 31.
  • the protruding end of the impeller of the comparative example does not protrude into the bell mouth 7 and is arranged close to the downstream side 19 that is arranged on the same plane and continues to the bell mouth 7 .
  • the PQ characteristic of the impeller 23 according to the present embodiment is represented by a curve ⁇ 1
  • the PQ characteristic of the impeller of the comparative example is represented by a curve ⁇ 1.
  • the impeller 23 according to this embodiment can blow more air than the impeller of the comparative example. Further, the impeller 23 according to the present embodiment can obtain a higher static pressure than the impeller of the comparative example by bringing it close to the bellmouth 7 .
  • FIG. 8 is a schematic diagram of the inlet angle and outlet angle of the blade portion of the impeller according to this embodiment.
  • the inlet angle and the outlet angle of the blade portion 32 are represented by angles based on the rotation direction of the impeller 23. That is, the inlet angle of the wing portion 32 is the angle between the propelling direction u of the wing portion 32 and the forward direction of the blade arc, and the exit angle of the wing portion 32 is the angle between the propelling direction u of the wing portion 32 and the backward direction of the blade arc. is the angle formed by
  • the blade portion 32 of the impeller 23 has an inlet angle ⁇ 1 of the root end 32b, an outlet angle ⁇ 2 of the root end 32b, an inlet angle ⁇ 3 of the projecting end 32a, and an angle ⁇ 3 of the projecting end 32a. It has an exit angle ⁇ 4.
  • the exit angle ⁇ 2 of the root end 32b is greater than the entrance angle ⁇ 1 of the root end 32b.
  • the entrance angle ⁇ 3 of the protruding end 32a and the exit angle ⁇ 4 of the protruding end 32a may be appropriately set from the respective velocity triangles.
  • the protruding end 32 a has a curved shape that protrudes outward in the radial direction of the impeller 23 .
  • the airfoil of the wing portion 32 is a three-dimensional shape that smoothly continues from the linear root end 32b to the curved protruding end 32a. Therefore, the airfoil of each airfoil portion 32 is a plate of substantially uniform thickness that is convexly curved radially outwardly of the impeller 23 so that the protruding distance from the chord increases as it approaches the protruding end 32a. Shape.
  • FIG. 9 is a diagram comparing the characteristics of the impeller according to the present embodiment and the characteristics of the impeller of the comparative example.
  • FIG. 9 is a diagram showing the relationship between the static pressure P of the impeller and the flow rate Q of the impeller, which is the so-called PQ characteristic.
  • the outlet angle ⁇ 2 of the root end 32b of the impeller of the comparative example is smaller than the inlet angle ⁇ 1 of the root end 32b.
  • a curve ⁇ 2 represents the PQ characteristic of the impeller 23 according to the present embodiment, and a curve ⁇ 2 represents the PQ characteristic of the impeller of the comparative example.
  • the impeller 23 according to this embodiment can blow more air than the impeller of the comparative example. Further, the impeller 23 according to the present embodiment can obtain a higher static pressure than the impeller of the comparative example by bringing it close to the bellmouth 7 .
  • FIG 10 and 11 are perspective views showing another example of the impeller according to this embodiment from the bottom side.
  • the impellers 23A and 23B may include reinforcing members 51A and 51B that connect the second parts 46 of the plurality of blade portions 32.
  • the reinforcing members 51A and 51B are not the shrouds of conventional impellers that have a width in the radial direction and have a large dimensional difference between the outer diameter and the inner diameter, but are linear members such as steel wires. is.
  • the reinforcing members 51A and 51B connect the second parts 46 of a pair of adjacent wing parts 32 and connect the second parts 46 of all the wing parts 32 .
  • All wings 32 may be connected with a single reinforcing member 51A, 51B, or all wings 32 may be connected with a plurality of reinforcing members 51A, 51B that connect two or more but less than the total number of wings 32. It's okay to be
  • the reinforcing member 51A may have a simple circular shape and may be fixed so as to make point contact with the second portion 46 of each wing portion 32 (Fig. 10).
  • the reinforcing member 51B has a first straight portion 52 along the second portion 46 of each wing portion 32, and a second straight portion 53 bridging between a pair of adjacent wing portions 32. It may be fixed in line contact with the second portion 46 of the portion 32 (FIG. 11).
  • the blower device 6 includes the ring-shaped bell mouth 7, the flat downstream side 19 connected to the downstream end 7b of the bell mouth 7, and the downstream side 19 by sucking air from the bell mouth 7. and an impeller 23 for blowing out air in a direction along.
  • the impeller 23 includes a main plate portion 31 extending radially and substantially parallel to the downstream side 19 and a plurality of open blade portions 32 .
  • the outermost diameter D ⁇ b>2 drawn by the plurality of blade portions 32 is larger than the outermost diameter D ⁇ b>1 of the main plate portion 31 .
  • the protruding ends 32a of the plurality of wings 32 protrude toward the upstream end 7a of the bell mouth 7 from the first portion 45 arranged close to the downstream side 19 and the downstream end 7b of the bell mouth 7. and a second portion 46 where the second portion 46 is located. Therefore, the blower device 6 can suppress turbulence in the flow of the air blown out from the impeller 23 and prevent a decrease in blowing efficiency. In addition, the blower 6 draws in air from the bell mouth 7 connected to the flat downstream side 19 and can generate an unturbulent air flow along the flat downstream side 19 .
  • the air blower 6 has a second portion 46 projecting toward the upstream end 7a of the bell mouth 7 from the downstream end 7b of the bell mouth 7, that is, the projection 47 of the wing portion 32.
  • the air volume can be easily increased compared to a blower without the air blower.
  • the impeller 23 does not have a shroud, it can be integrally molded. Therefore, the impeller 23 eliminates factors that cause defects such as poor welding and poor adhesion when the separate shroud is joined to the wing portion. It is possible to reduce the imbalance amount of rotation balance.
  • the impeller 23 includes a plurality of blade portions 32 that are connected only to the main plate portion 31 . Therefore, the impeller 23 can be easily made lighter than a conventional impeller having a shroud and a frame, and can eliminate obstacles to the air flow.
  • the impeller 23 includes the wing portions 32 having root ends 32b that are continuous with the first side portions 35a of the respective petal portions 35, which are part of the edge of the main plate portion 31. Therefore, the impeller 23 can smoothly blow out the flow of air to which energy is given by the blade portion 32 .
  • the impeller 23 has a first side portion 35a of the petal portion 35 and a second side portion 35b of the petal portion 35 facing each other across a gap in the circumferential direction of the main plate portion 31 . Therefore, the impeller 23 can blow out the air energized by the blades 32 through the gaps between the adjacent petals 35 . Such air flow improves the air blowing function of the impeller 23 .
  • the gaps between the adjacent petals 35 improve the workability of each step in the hand lay-up method when integrally molding the impeller 23 and facilitate mold release.
  • the impeller 23 includes a plurality of blade portions 32 each having a higher protrusion height than the hub portion 33 . Therefore, the impeller 23 can reduce the airflow resistance of the hub portion 33 and easily push out the airflow with the wing portions 32 .
  • the exit angle ⁇ 2 of the root end 32b of each blade 32 of the impeller 23 according to the present embodiment is larger than the entrance angle ⁇ 1 of the root end 32b of the blade 32 . Therefore, the amount of air blown by the blower 6 is higher than that of an air blower having an impeller having a root portion in which the outlet angle ⁇ 2 is smaller than the inlet angle ⁇ 1. Also, the blower 6 can more easily provide a higher static pressure than a blower with an impeller whose outlet angle ⁇ 2 is smaller than the inlet angle ⁇ 1.
  • the root end 32b of each blade portion 32 of the impeller 23 according to the present embodiment has a linear shape. Therefore, the air blower 6 can easily set the outlet angle ⁇ 2 of the root end 32b of each blade 32 to be larger than the inlet angle ⁇ 1 of the root end 32b of the blade 32 .
  • each blade portion 32 of the impeller 23 is thinner than the thickness of the main plate portion 31 . Therefore, the impeller 23 reduces the deformation of the blade portion 32 and prevents the reduction of the air volume due to the deformation of the blade portion 32 .
  • the impeller 23 has a prime blade portion 32, and a pair of line segments L1 and L2 connecting the trailing edge 42 and the rotation center line C forms an angle of 25 degrees or more. Adjacent wings 32 are provided. Therefore, the impeller 23 reduces noise called blade pitch noise, reduces the air flow resistance generated between the adjacent blade portions 32 to improve the air volume, and furthermore, the manufacturability when integrally molding the impeller 23 improve.
  • the impeller 23 may include a reinforcing member 51 that connects the second portions 46 of the plurality of blade portions 32 . Therefore, even if the impeller 23 does not have a shroud, the weight of the entire impeller 23 is reduced, the influence of the centrifugal force on the blade portion 32 is reduced, the decrease in the air volume is suppressed, and the blade portion 32 is reduced. This prevents collision between the bell mouth 7 and the wings 32 due to deformation.
  • blower device 6 According to the blower device 6 according to the present embodiment, air can be efficiently sucked from the bell mouth 7 and blown with high efficiency.
  • Hub part 35 Petal portion 35a First side portion 35b Second side portion 41 Front edge 42 Rear edge 45 First portion 46 Second portion 47 Convex portion 48 Linear edge 49... Curved edge, 51A, 51B... Reinforcement member, 52... First straight portion, 53... Second straight portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a blower device which efficiently takes in air from a bell mouth and can blow air with high efficiency. A blower device (6) comprises an annular bell mouth (7); a downstream-side surface (19) which is flat and continuous with the downstream-side end (7b) of the bell mouth (7); and an impeller (23) which takes in air from the bell mouth (7) and blows air out in the direction along the downstream-side surface (19). The impeller (23) comprises a main plate part (31) which is substantially parallel to the downstream-side surface (19) and which extends radially, and a plurality of open-type blade parts (32) which protrude from the main plate part (31) toward the downstream-side surface (19) and the bell mouth 7, and which are arranged in an annular manner. The maximum outer diameter drawn by the plurality of blade parts (32) is larger than the maximum outer diameter of the main plate part (31). The protruding ends (32a) of the blade parts (32) each have a first part (45) which is disposed in proximity to the downstream-side surface (19), and a second part (46) which protrudes more toward the upstream-side end (7a) of the bell mouth (7) than the downstream-side end (7b) of the bell mouth 7.

Description

送風装置blower
 本発明の実施形態は、送風装置に関する。 The embodiment of the present invention relates to a blower.
 ターボファンと、ターボファンの吸込側にベルマウスと、を備える送風装置が知られている。 A blower that includes a turbofan and a bell mouth on the suction side of the turbofan is known.
国際公開第2009/054316号WO2009/054316
 従来の送風装置のターボファンは、羽根(ブレード)の先端を連結するシュラウドを備えている。このシュラウドは、ベルマウスの近傍に配置されている。 Conventional blower turbofans are equipped with shrouds that connect the tips of the blades. This shroud is arranged near the bellmouth.
 そして、発明者らは、ベルマウスの近傍にターボファンのシュラウドが配置されている従来の送風装置では、ベルマウスの背面側(筐体の内側)、かつシュラウドの径方向外側の領域に渦が発生することを見出した。この渦は、送風装置が吸い込む空気の風量を低下させる。 In addition, the inventors have found that in a conventional air blower in which a turbofan shroud is arranged near the bell mouth, a vortex is generated on the back side of the bell mouth (inside the housing) and in the radially outer region of the shroud. found to occur. This vortex reduces the amount of air drawn by the blower.
 そこで、本発明は、ベルマウスから空気を効率良く吸い込んで、高い効率で送風可能な送風装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a blower capable of efficiently sucking air from a bell mouth and blowing air with high efficiency.
 本発明の実施形態に係る送風装置は、環状のベルマウスと、前記ベルマウスの下流側端に連なる平坦な下流側面と、前記ベルマウスから空気を吸い込んで前記下流側面に沿う方向へ空気を吹き出す羽根車と、を備えている。前記羽根車は、前記下流側面に実質的に平行し、かつ放射状に広がる主板部と、前記主板部から前記下流側面および前記ベルマウスへ向かって突出して環状に配列される開放型の複数の翼部と、を備えている。前記複数の翼部が描く最外径は、前記主板部の最外径より大きい。前記複数の翼部の突出端は、前記下流側面に近接して配置された第一部位と、前記ベルマウスの前記下流側端よりも前記ベルマウスの上流側端へ向かって突出している第二部位と、を有している。 An air blower according to an embodiment of the present invention includes an annular bell mouth, a flat downstream side surface that continues to the downstream end of the bell mouth, sucks air from the bell mouth, and blows air in a direction along the downstream side. and an impeller. The impeller includes a main plate portion that extends substantially parallel to the downstream side surface and extends radially, and a plurality of open blades that are annularly arranged and protrude from the main plate portion toward the downstream side surface and the bellmouth. and The outermost diameter drawn by the plurality of wing portions is larger than the outermost diameter of the main plate portion. The protruding ends of the plurality of wing portions include a first portion arranged close to the downstream side surface and a second portion protruding toward the upstream end of the bell mouth from the downstream end of the bell mouth. It has a part and a.
 また、実施形態に係る送風装置において、それぞれの前記翼部の前記主板部に連なる根元部の出口角は、前記根元部の入口角よりも大きいことが好ましい。 Further, in the blower device according to the embodiment, it is preferable that the exit angle of the root portion of each blade portion connected to the main plate portion is larger than the entrance angle of the root portion.
 さらに、実施形態に係る送風装置において、それぞれの前記翼部の前記主板部に連なる根元部は、直線形状であることが好ましい。 Furthermore, in the blower device according to the embodiment, it is preferable that the root portion of each of the blade portions connected to the main plate portion has a linear shape.
 また、実施形態に係る送風装置において、それぞれの前記翼部の肉厚は、前記主板部の肉厚よりも薄いことが好ましい。 Further, in the blower device according to the embodiment, it is preferable that the thickness of each of the blade portions is thinner than the thickness of the main plate portion.
 さらに、実施形態に係る送風装置において、前記複数の翼部の数量は、素数であることが好ましい。前記羽根車の回転中心線に沿う方向から見て、第一翼部の後縁と前記回転中心線とを結ぶ第一線分と、前記第一翼部に隣り合う第二翼部の後縁と前記回転中心線とを結ぶ第二線分とがなす角度が、25度以上であることが好ましい。 Furthermore, in the air blower according to the embodiment, it is preferable that the number of the plurality of blade portions is a prime number. A first line segment connecting the trailing edge of the first blade portion and the rotation center line, and the trailing edge of the second blade portion adjacent to the first blade portion, when viewed from the direction along the rotation center line of the impeller. and the second line segment connecting the center line of rotation is preferably 25 degrees or more.
 また、実施形態に係る送風装置において、前記複数の翼部の前記第二部位を連結する補強部材を備えていることが好ましい。 Also, in the blower device according to the embodiment, it is preferable to include a reinforcing member that connects the second portions of the plurality of blade portions.
 本発明によれば、ベルマウスから空気を効率良く吸い込んで、高い効率で送風可能な送風装置を提供できる。 According to the present invention, it is possible to provide a blower capable of efficiently sucking air from the bell mouth and blowing air with high efficiency.
本発明の実施形態に係る送風装置を備える冷凍サイクル装置の室内機の模式的な斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The typical perspective view of the indoor unit of the refrigerating-cycle apparatus provided with the air blower which concerns on embodiment of this invention. 本発明の実施形態に係る送風装置を備える冷凍サイクル装置の室内機の模式的な縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The typical longitudinal cross-sectional view of the indoor unit of the refrigerating-cycle apparatus provided with the air blower which concerns on embodiment of this invention. 本実施形態に係る羽根車の平面図。The top view of the impeller which concerns on this embodiment. 本実施形態に係る羽根車を底面側から示す斜視図。The perspective view which shows the impeller which concerns on this embodiment from the bottom face side. 本実施形態に係る羽根車およびベルマウスの縦断面図。FIG. 2 is a vertical cross-sectional view of an impeller and a bell mouth according to the present embodiment; 本実施形態に係る羽根車の翼部の斜視図。The perspective view of the blade part of the impeller which concerns on this embodiment. 本実施形態に係る羽根車の特性と比較例の羽根車の特性とを比較する図。The figure which compares the characteristic of the impeller which concerns on this embodiment, and the characteristic of the impeller of a comparative example. 本実施形態に係る羽根車の翼部の入口角および出口角の模式図。FIG. 4 is a schematic diagram of the inlet angle and the outlet angle of the blade portion of the impeller according to the present embodiment. 本実施形態に係る羽根車の特性と比較例の羽根車の特性とを比較する図。The figure which compares the characteristic of the impeller which concerns on this embodiment, and the characteristic of the impeller of a comparative example. 本実施形態に係る羽根車の他の例を底面側から示す斜視図。The perspective view which shows the other example of the impeller which concerns on this embodiment from the bottom face side. 本実施形態に係る羽根車の他の例を底面側から示す斜視図。The perspective view which shows the other example of the impeller which concerns on this embodiment from the bottom face side.
 本発明に係る送風装置の実施形態について図1から図11を参照して説明する。なお、複数の図面中、同一または相当する構成には同一の符号を付している。 An embodiment of a blower device according to the present invention will be described with reference to FIGS. 1 to 11. FIG. In addition, the same code|symbol is attached|subjected to the same or corresponding structure in several drawings.
 図1は、本発明の実施形態に係る送風装置を備える冷凍サイクル装置の室内機の模式的な斜視図である。 FIG. 1 is a schematic perspective view of an indoor unit of a refrigeration cycle apparatus equipped with a blower according to an embodiment of the present invention.
 図2は、本発明の実施形態に係る送風装置を備える冷凍サイクル装置の室内機の模式的な縦断面図である。 Fig. 2 is a schematic vertical cross-sectional view of an indoor unit of a refrigeration cycle apparatus equipped with a blower according to an embodiment of the present invention.
 本実施形態に係る冷凍サイクル装置は、図1に示す、利用側としての室内に設置される室内機1と、熱源側としての室外に設置される室外機(図示省略)と、を備えている。 The refrigeration cycle apparatus according to this embodiment includes an indoor unit 1 installed indoors as a user side and an outdoor unit (not shown) installed outdoors as a heat source side, as shown in FIG. .
 また、冷凍サイクル装置は、冷凍サイクル(図示省略)を備えている。冷凍サイクルは、熱源側の熱交換器(図示省略)と、圧縮機(図示省略)と、利用側の熱交換器2と、膨張機(図示省略)と、これらの機器に冷媒を流通させる冷媒管(図示省略)と、を備えている。冷凍サイクルは、冷凍サイクル装置の冷却運転と加熱運転とを切り替える四方弁(図示省略)を備えていても良い。 In addition, the refrigeration cycle device includes a refrigeration cycle (not shown). The refrigeration cycle includes a heat source side heat exchanger (not shown), a compressor (not shown), a heat exchanger 2 on the user side, an expander (not shown), and a refrigerant that circulates the refrigerant through these devices. a tube (not shown); The refrigeration cycle may include a four-way valve (not shown) for switching between cooling operation and heating operation of the refrigeration cycle device.
 室内機1は、冷凍サイクルの利用側の熱交換器2を収容している。室外機は、冷凍サイクルの熱源側の熱交換器、圧縮機、および四方弁を収容している。膨張機は、室内機1に収容されていても良いし、室外機に収容されていても良い。室外機と室内機とは、渡り配管(図示省略)を介して接続されている。渡り配管は、冷媒管の一部である。冷凍サイクル装置は、室外機側の熱交換器と室内機1側の熱交換器2との間で冷媒を循環させて室内の空気を調和させる。 The indoor unit 1 accommodates a heat exchanger 2 on the user side of the refrigeration cycle. The outdoor unit accommodates a heat source side heat exchanger, a compressor, and a four-way valve of the refrigeration cycle. The expander may be housed in the indoor unit 1 or may be housed in the outdoor unit. The outdoor unit and the indoor unit are connected via a connecting pipe (not shown). The transition pipe is part of the refrigerant pipe. The refrigeration cycle device circulates a refrigerant between a heat exchanger on the outdoor unit side and a heat exchanger 2 on the indoor unit 1 side to harmonize indoor air.
 室内機1の設置場所は建築物の室内である。室内機1は、室内の天井に埋め込まれたり、天井や梁から吊り下げられたりして設置される。 The installation location of the indoor unit 1 is inside the building. The indoor unit 1 is installed by being embedded in the indoor ceiling or suspended from the ceiling or beams.
 図1および図2に示すように、本実施形態に係る室内機1は、筐体5と、筐体5内に設けられる熱交換器2と、送風装置6と、を備えている。送風装置6は、筐体5に設けられる環状のベルマウス7と、ベルマウス7から空気を吸い込んで熱交換器2へ空気を吹き付けるターボファン8と、を備えている。 As shown in FIGS. 1 and 2, the indoor unit 1 according to this embodiment includes a housing 5, a heat exchanger 2 provided inside the housing 5, and a blower 6. The blower device 6 includes an annular bell mouth 7 provided on the housing 5 and a turbo fan 8 that sucks air from the bell mouth 7 and blows the air onto the heat exchanger 2 .
 また、室内機1は、冷凍サイクルの膨張機である電動膨張弁(図示省略)を備えている。 In addition, the indoor unit 1 includes an electric expansion valve (not shown) that is an expander of a refrigeration cycle.
 筐体5は、矩形の天面、矩形の4つの側面、および矩形の底面を有する箱体である。筐体5の天面は天板11で塞がれている。天板11の下面には、ターボファン8が設けられている。筐体5の4つの側面は、側板12で塞がれている。側面と側面との間の角部は、面取りのように傾斜している。この面取り部分は、傾斜板13で塞がれている。 The housing 5 is a box having a rectangular top surface, four rectangular side surfaces, and a rectangular bottom surface. The top surface of the housing 5 is covered with a top plate 11. - 特許庁A turbo fan 8 is provided on the bottom surface of the top plate 11 . Four side surfaces of the housing 5 are covered with side plates 12 . The corners between the sides are beveled like a chamfer. This chamfered portion is closed with an inclined plate 13 .
 筐体5の底面は、底板14で覆われている。底板14の中央部には、室内機1の下方から空気を吸い込む円形の吸込口16が設けられている。底板14の外縁部には、空気を下向きに吹き出す複数の矩形の吹出口17が設けられている。それぞれの吹出口17は、筐体5の矩形の底面のそれぞれの辺に沿っている。したがって、室内機1は、筐体5の底面の吸込口16から室内の空気を吸い込み、熱交換器2で冷媒と空気とを熱交換させて、筐体5の底面の吹出口17から調和された空気を吹き出す。 The bottom surface of the housing 5 is covered with a bottom plate 14. A circular suction port 16 for sucking air from below the indoor unit 1 is provided in the central portion of the bottom plate 14 . A plurality of rectangular outlets 17 for blowing air downward are provided on the outer edge of the bottom plate 14 . Each air outlet 17 extends along each side of the rectangular bottom surface of the housing 5 . Therefore, the indoor unit 1 sucks indoor air from the suction port 16 on the bottom surface of the housing 5, heat-exchanges the refrigerant and the air in the heat exchanger 2, and heats the air from the blowout port 17 on the bottom surface of the housing 5. blow out the air.
 熱交換器2は、筐体5の天板11に固定されている。熱交換器2は、本実施形態では、例えばフィンアンドチューブ式であって、整列する多数のアルミニウム合金製のフィンと、ファンを貫通する冷媒管と、を備えている。 The heat exchanger 2 is fixed to the top plate 11 of the housing 5. In this embodiment, the heat exchanger 2 is, for example, of a fin-and-tube type, and includes a large number of aligned aluminum alloy fins and refrigerant pipes passing through the fan.
 熱交換器2は、筐体5の内部に設けられてターボファン8の径方向外側を囲んでいる。熱交換器2の内周面は、ターボファン8に対向し、熱交換器2の外周面は、側板12の内面に対向している。熱交換器2は、筐体5のそれぞれの側板12に対向する平板部分2aと、隣り合う2つの側板12の間の傾斜板13に対向して湾曲し、隣り合う2つの平板部分2aを繋ぐ湾曲板部分2bと、を有している。平板部分2aは4つあって、湾曲板部分2bは3つある。つまり、熱交換器2は、一続きの環状ではない。 The heat exchanger 2 is provided inside the housing 5 and surrounds the radially outer side of the turbo fan 8 . The inner peripheral surface of the heat exchanger 2 faces the turbo fan 8 , and the outer peripheral surface of the heat exchanger 2 faces the inner surface of the side plate 12 . The heat exchanger 2 has a flat plate portion 2a facing each side plate 12 of the housing 5 and a curved plate 13 between two adjacent side plates 12 to connect the two adjacent flat plate portions 2a. and a curved plate portion 2b. There are four flat plate portions 2a and three curved plate portions 2b. That is, the heat exchanger 2 is not continuous annular.
 底板14の吸込口16には、環状のベルマウス7が設けられている。ベルマウス7の吸込側の開口縁、つまり、ベルマウス7の上流側端7aは、底板14の外面14aに連なっている。ベルマウス7の吹出側の開口縁、つまり、ベルマウス7の下流側端7bは、底板14の内面14bに連なっている。底板14の内面14bは、平面であって、ベルマウス7の下流側端7bから熱交換器2に達している。なお、底板14の外面14aは、ベルマウス7の上流側端7aに連なる平坦な上流側面18であり、底板14の内面14bは、ベルマウス7の下流側端7bに連なる平坦な下流側面19である。 An annular bell mouth 7 is provided at the suction port 16 of the bottom plate 14 . The opening edge of the bell mouth 7 on the suction side, that is, the upstream end 7 a of the bell mouth 7 continues to the outer surface 14 a of the bottom plate 14 . The opening edge of the bell mouth 7 on the blowout side, that is, the downstream end 7 b of the bell mouth 7 continues to the inner surface 14 b of the bottom plate 14 . An inner surface 14 b of the bottom plate 14 is flat and reaches the heat exchanger 2 from the downstream end 7 b of the bell mouth 7 . The outer surface 14a of the bottom plate 14 is a flat upstream side surface 18 connected to the upstream end 7a of the bellmouth 7, and the inner surface 14b of the bottom plate 14 is a flat downstream side surface 19 connected to the downstream end 7b of the bellmouth 7. be.
 なお、熱交換器2の下方には、熱交換器2の表面で生じる結露水を受けるドレンパン(図示省略)が設けられていても良い。熱交換器2が蒸発器として機能する冷房運転時には、熱交換器2を通過する空気に含まれる水分、つまり室内の湿気が熱交換器2の表面で結露し、結露水として熱交換器2に付着し、熱交換器2から滴り落ちる。ドレンパンは、熱交換器2から落ちる結露水を受ける。ドレンパンに貯留される結露水は、筐体5内に設けられるドレンポンプ(図示省略)によって揚水され、排水管(図示省略)を通じて室内機1の外部に排水される。 A drain pan (not shown) may be provided below the heat exchanger 2 to receive condensed water generated on the surface of the heat exchanger 2 . During cooling operation in which the heat exchanger 2 functions as an evaporator, the moisture contained in the air passing through the heat exchanger 2, that is, the humidity in the room, condenses on the surface of the heat exchanger 2 and condenses on the heat exchanger 2 as condensed water. It adheres and drips from the heat exchanger 2. A drain pan receives condensed water falling from the heat exchanger 2 . Condensed water stored in the drain pan is pumped up by a drain pump (not shown) provided in the housing 5 and discharged to the outside of the indoor unit 1 through a drain pipe (not shown).
 ドレンパンは、ベルマウス7の下流側端7bから熱交換器2へ広がる平面部分が、熱交換器2に極力接近している箇所に結露水を受ける凹部を有していることが好ましい。ドレンパンは、筐体5の底板14に一体化された断熱材に形成されていることが好ましい。 The drain pan preferably has a concave portion for receiving condensed water in a portion where the planar portion extending from the downstream end 7b of the bell mouth 7 to the heat exchanger 2 is as close to the heat exchanger 2 as possible. The drain pan is preferably formed in a heat insulating material integrated with the bottom plate 14 of the housing 5 .
 ターボファン8は、筐体5のほぼ中心において、上下方向へ延びる回転軸21を有するファンモーター22と、回転軸21に回転一体に固定される羽根車23と、を備えている。 The turbo fan 8 includes a fan motor 22 having a rotating shaft 21 extending in the vertical direction, and an impeller 23 fixed to the rotating shaft 21 so as to rotate integrally.
 ファンモーター22は、羽根車23を回転駆動する。ファンモーター22は、筐体5の天板11の内面に固定具25を介して固定されている。 The fan motor 22 rotates the impeller 23 . The fan motor 22 is fixed to the inner surface of the top plate 11 of the housing 5 via fixtures 25 .
 回転駆動する羽根車23は、筐体5の周囲の空気を吸込口16のベルマウス7から吸い込み、底板14の内面14bに沿う方向へ空気を放射状に吹き出し、吹き出した空気を熱交換器2へ吹きかける。 The rotationally driven impeller 23 sucks the air around the housing 5 from the bell mouth 7 of the suction port 16, blows out the air radially in the direction along the inner surface 14b of the bottom plate 14, and directs the blown air to the heat exchanger 2. Spray.
 平面視において、実質的に環状な熱交換器2の中心、ターボファン8の回転中心、円形の吸込口16の中心、および環状のベルマウス7の中心は、一致している。ターボファン8の最大外径Aは、ベルマウス7の開口径Bよりも大きい。 In plan view, the center of the substantially annular heat exchanger 2, the rotation center of the turbo fan 8, the center of the circular suction port 16, and the center of the annular bell mouth 7 are aligned. A maximum outer diameter A of the turbofan 8 is larger than an opening diameter B of the bell mouth 7 .
 羽根車23の回転中心線Cは、ファンモーター22の回転軸21に一致し、室内機1を設置した状態で鉛直方向に延びる。 The rotation center line C of the impeller 23 coincides with the rotation shaft 21 of the fan motor 22 and extends vertically with the indoor unit 1 installed.
 空気調和機を冷房運転する場合には、室外機の圧縮機は、高温高圧のガス冷媒を吐出して、室外側の熱交換器(凝縮器)へ送る。室外側の熱交換器は、その内部を流れる冷媒と室外の空気とを熱交換し、冷媒を凝縮させる。凝縮された液冷媒は、冷媒配管を通じて室内機1に送られる。室内機1は、冷媒配管から流れ込む液状の冷媒を、電動膨張弁で膨張させ、低温の気液混合冷媒を熱交換器2(蒸発器)へ送る。熱交換器2は、その内部を流れる低温の冷媒と室内の空気とを熱交換し、冷媒をガス化させる。この際に、室内は室内機1から吹き出る低温の空気によって冷房される。 When the air conditioner is in cooling operation, the compressor of the outdoor unit discharges high-temperature and high-pressure gas refrigerant and sends it to the heat exchanger (condenser) on the outdoor side. The outdoor-side heat exchanger exchanges heat between the refrigerant flowing therein and the outdoor air to condense the refrigerant. The condensed liquid refrigerant is sent to the indoor unit 1 through the refrigerant pipe. The indoor unit 1 expands the liquid refrigerant flowing from the refrigerant pipe with an electric expansion valve, and sends a low-temperature gas-liquid mixed refrigerant to the heat exchanger 2 (evaporator). The heat exchanger 2 exchanges heat between the low-temperature refrigerant flowing therein and the indoor air to gasify the refrigerant. At this time, the room is cooled by the low-temperature air blown out from the indoor unit 1 .
 空気調和機を暖房運転する場合には、室外ユニットの圧縮機は、高温高圧のガス冷媒を吐出して、室内機1の熱交換器2(凝縮器)へ送る。熱交換器2は、その内部を流れる冷媒と室内の空気とを熱交換し、冷媒を凝縮させる。この際、室内は室内機1から吹き出る高温の空気によって暖房される。 When the air conditioner is operated for heating, the compressor of the outdoor unit discharges high-temperature and high-pressure gas refrigerant and sends it to the heat exchanger 2 (condenser) of the indoor unit 1. The heat exchanger 2 exchanges heat between the refrigerant flowing inside and the air in the room to condense the refrigerant. At this time, the room is heated by the high-temperature air blown out from the indoor unit 1 .
 次いで、羽根車23について詳細に説明する。 Next, the impeller 23 will be described in detail.
 図3は、本実施形態に係る羽根車の平面図である。 FIG. 3 is a plan view of the impeller according to this embodiment.
 図4は、本実施形態に係る羽根車を底面側から示す斜視図である。 FIG. 4 is a perspective view showing the impeller according to this embodiment from the bottom side.
 図5は、本実施形態に係る羽根車およびベルマウスの縦断面図である。 FIG. 5 is a longitudinal sectional view of the impeller and bell mouth according to this embodiment.
 図1および図2に加えて、図3から図5に示すように、本実施形態に係る送風装置6の羽根車23は、ベルマウス7に連なる下流側面19に実質的に平行し、かつ放射状に広がる主板部31と、主板部31から下流側面19およびベルマウス7へ向かって突出して環状に配列される複数の翼部32と、主板部31の中心部に設けられるハブ部33と、を備えている。 As shown in FIGS. 3 to 5 in addition to FIGS. 1 and 2, the impeller 23 of the blower device 6 according to the present embodiment is substantially parallel to the downstream side 19 connected to the bell mouth 7 and is arranged radially. a plurality of wing portions 32 protruding from the main plate portion 31 toward the downstream side surface 19 and the bell mouth 7 and arranged in an annular shape; and a hub portion 33 provided at the center of the main plate portion 31. I have.
 羽根車23は、繊維強化プラスチック(Fiber Reinforced Plastics、FRP)製、アルミニウム合金製、またはマグネシウム金属製の一体成形品である。羽根車23は、例えば繊維強化プラスチック製であって、ハンドレイアップ法で一体成形されている。 The impeller 23 is an integrally molded product made of fiber reinforced plastic (FRP), aluminum alloy, or magnesium metal. The impeller 23 is made of fiber-reinforced plastic, for example, and integrally molded by hand lay-up.
 主板部31は、実質的に厚さの均一な平板状である。主板部31は、ハブ部33から羽根車23の径方向へ放射状に延びる複数の花弁部35の集合である。 The main plate portion 31 has a flat plate shape with a substantially uniform thickness. The main plate portion 31 is an assembly of a plurality of petal portions 35 radially extending from the hub portion 33 in the radial direction of the impeller 23 .
 それぞれの花弁部35は、直線形状の縁を有する第一辺部35aと、直線形状の縁を有する第二辺部35bと、を有して、中心側(ハブ部33側)から三角形状、またはテーパー状に延びている。それぞれの花弁部35の第一辺部35aを、主板部31の第一縁とも呼び、それぞれの花弁部35の第二辺部35bを主板部31の第二縁とも呼ぶ。 Each petal portion 35 has a first side portion 35a having a linear edge and a second side portion 35b having a linear edge. Or it extends in a tapered shape. The first side portion 35 a of each petal portion 35 is also called the first edge of the main plate portion 31 , and the second side portion 35 b of each petal portion 35 is also called the second edge of the main plate portion 31 .
 隣り合う一対の花弁部35について、一方の花弁部35の第一辺部35aは、他方の花弁部35の第二辺部35bに対向している。換言すると、一方の花弁部35の第一辺部35aと他方の花弁部35の第二辺部35bとは、主板部31の周方向において隙間を隔てて向かい合っている。 For a pair of adjacent petals 35 , the first side 35 a of one petal 35 faces the second side 35 b of the other petal 35 . In other words, the first side portion 35a of one petal portion 35 and the second side portion 35b of the other petal portion 35 face each other with a gap in the circumferential direction of the main plate portion 31 .
 全ての花弁部35の形状は、実質的に同じである。複数の花弁部35の、ターボファン8の径方向内側に位置する端、つまり複数の花弁部35の根元端は、ハブ部33の外周を密に囲んでいる。換言すると、隣り合う一対の花弁部35について、一方の花弁部35の第一辺部35aの根元端は、他方の花弁部35の第二辺部35bの根元端に一致している。複数の花弁部35の、ターボファン8の径方向外側に位置する端、つまり複数の花弁部35の突出端は、仮想円で結ばれる。この仮想円は、主板部31の最外径D1に相当する。 The shapes of all the petals 35 are substantially the same. The ends of the plurality of petals 35 located radially inward of the turbofan 8 , that is, the root ends of the plurality of petals 35 tightly surround the outer periphery of the hub portion 33 . In other words, for a pair of adjacent petals 35 , the root end of the first side portion 35 a of one petal portion 35 coincides with the root end of the second side portion 35 b of the other petal portion 35 . The ends of the plurality of petals 35 located radially outward of the turbofan 8, that is, the projecting ends of the plurality of petals 35, are connected by a virtual circle. This virtual circle corresponds to the outermost diameter D<b>1 of the main plate portion 31 .
 複数の翼部32およびハブ部33は、主板部31から同じ方向へ突出している。ハブ部33は、主板部31から離れるほど窄む円錐台形状を有している。主板部31を基準とする複数の翼部32の突出高さは、ハブ部33の突出高さよりも高い。 A plurality of wing portions 32 and hub portions 33 protrude from the main plate portion 31 in the same direction. The hub portion 33 has a truncated cone shape that tapers away from the main plate portion 31 . The protrusion height of the plurality of blade portions 32 with respect to the main plate portion 31 is higher than the protrusion height of the hub portion 33 .
 翼部32の数量、つまり枚数は、素数であって、本実施形態では11枚である。 The number of wings 32, that is, the number of wings is a prime number, and is 11 in this embodiment.
 全ての翼部32の形状は、実質的に同じである。全ての翼部32は、一様な厚さの板状体である。複数の翼部32は、開放型である。つまり、羽根車23は、複数の翼部32の突出端32aを繋ぐシュラウドを有していない。それぞれの翼部32は、主板部31のみに連接し、ハブ部33に非接触であり、非連結である。 The shape of all wings 32 is substantially the same. All wings 32 are plates of uniform thickness. The plurality of wings 32 are open. That is, the impeller 23 does not have a shroud that connects the projecting ends 32a of the plurality of blades 32. As shown in FIG. Each wing portion 32 is connected only to the main plate portion 31 and is not in contact with and is not connected to the hub portion 33 .
 それぞれの翼部32の根元端32bは、主板部31に連なるそれぞれの翼部32の縁である。それぞれの翼部32の根元端32bは、それぞれの花弁部35の第一辺部35aに連なっている。それぞれの翼部32は、それぞれの花弁部35の第一辺部35aから突出している。したがって、それぞれの翼部32の根元端32bは、それぞれの花弁部35の第一辺部35aと同じ直線形状を有し、かつ翼弦に一致する直線形状を有している。 A root end 32 b of each wing portion 32 is an edge of each wing portion 32 that continues to the main plate portion 31 . A root end 32b of each wing portion 32 continues to a first side portion 35a of each petal portion 35 . Each wing portion 32 protrudes from the first side portion 35 a of each petal portion 35 . Therefore, the root end 32b of each wing portion 32 has the same linear shape as the first side portion 35a of each petal portion 35 and has a linear shape that matches the chord of the blade.
 それぞれの翼部32は、ターボファン8の周方向、かつそれぞれの花弁部35の第二辺部35bから離れる方向へ傾いている。また、それぞれの翼部32は、根元端32bから突出端32aへ向かってターボファン8の径方向外側へ傾いている。そのため、複数の翼部32が描く最外径D2は、主板部31の最外径D1より大きい。 Each blade portion 32 is inclined in the circumferential direction of the turbofan 8 and in the direction away from the second side portion 35b of each petal portion 35. Further, each blade portion 32 is inclined radially outward of the turbofan 8 from the root end 32b toward the projecting end 32a. Therefore, the outermost diameter D2 drawn by the plurality of blade portions 32 is larger than the outermost diameter D1 of the main plate portion 31 .
 羽根車23は、それぞれの花弁部35の第一辺部35aが第二辺部35bより先行する方向Rへ回転して空気を流動させる。つまり、それぞれの翼部32の前縁41は、羽根車23の内周側に位置し、翼部32の後縁42は、羽根車23の外周側に位置している。 The impeller 23 rotates in a direction R in which the first side portion 35a of each petal portion 35 precedes the second side portion 35b to flow air. That is, the front edge 41 of each blade 32 is positioned on the inner peripheral side of the impeller 23 , and the trailing edge 42 of the blade 32 is positioned on the outer peripheral side of the impeller 23 .
 羽根車23の回転中心線に沿う方向から見て(図3)、第一翼部32の後縁42と回転中心線Cとを結ぶ第一線分L1と、第一翼部32に隣り合う第二翼部32の後縁42と回転中心線Cとを結ぶ第二線分L2とがなす角度θは、25度以上であることが好ましい。つまり、翼部32の枚数は、13枚以下の素数であることが好ましく、本実施形態では11枚である。 When viewed from the direction along the rotation centerline of the impeller 23 ( FIG. 3 ), a first line segment L1 connecting the trailing edge 42 of the first blade portion 32 and the rotation centerline C and the first line segment L1 adjacent to the first blade portion 32 The angle θ between the trailing edge 42 of the second wing portion 32 and the second line segment L2 connecting the rotation center line C is preferably 25 degrees or more. That is, the number of wings 32 is preferably a prime number of 13 or less, and is 11 in this embodiment.
 それぞれの翼部32の突出端32aは、下流側面19に近接して配置された第一部位45と、ベルマウス7の下流側端7bよりもベルマウス7の上流側端7aへ向かって突出している第二部位46と、を有している。つまり、それぞれの翼部32の突出端32aは、ベルマウス7の内側に入り込む凸部47を有している。凸部47は、ベルマウス7の形状に倣って突出している。第二部位46は、凸部47の稜線である。本実施形態では、翼部32の第一部位45と下流側面19とは、数ミリ程度の間隔を挟んで対面するよう配置されている。羽根車23とベルマウス7との間隔は、羽根車23がベルマウス7に干渉せずに円滑に回転できる範囲で極力近いことが好ましい。 The protruding end 32a of each wing portion 32 protrudes toward the upstream end 7a of the bell mouth 7 from the first portion 45 arranged close to the downstream side 19 and the downstream end 7b of the bell mouth 7. and a second portion 46 where the second portion 46 is located. That is, the protruding end 32 a of each wing 32 has a convex portion 47 that enters the inside of the bell mouth 7 . The convex portion 47 protrudes following the shape of the bell mouth 7 . The second portion 46 is the ridgeline of the convex portion 47 . In this embodiment, the first portion 45 of the wing portion 32 and the downstream side surface 19 are arranged to face each other with an interval of about several millimeters therebetween. The distance between the impeller 23 and the bell mouth 7 is preferably as close as possible within the range in which the impeller 23 can rotate smoothly without interfering with the bell mouth 7 .
 それぞれの翼部32の肉厚は、主板部31の肉厚よりも薄い。そのような肉厚の関係は、それぞれの翼部32の肉厚が主板部31の肉厚と同じ場合、またはそれぞれの翼部32の肉厚が主板部31の肉厚より厚い場合に比べると、翼部32に作用する遠心力を低下させる。遠心力の低下は、翼部32の変形を軽減し、翼部32の変形による風量の低下を防ぐ。また、それぞれの翼部32よりも肉厚が厚い主板部31は、遠心力による翼部32の変形を低減し、翼部32の変形による風量の低下を防ぐ。 The thickness of each wing portion 32 is thinner than the thickness of the main plate portion 31 . Such a thickness relationship is compared to the case where the thickness of each wing portion 32 is the same as the thickness of the main plate portion 31 or the case where the thickness of each wing portion 32 is thicker than the thickness of the main plate portion 31. , reduce the centrifugal force acting on the wings 32 . The reduction in centrifugal force reduces the deformation of the wing portions 32 and prevents the reduction in the air volume due to the deformation of the wing portions 32 . Further, the main plate portion 31, which is thicker than each wing portion 32, reduces deformation of the wing portions 32 due to centrifugal force, and prevents reduction in air volume due to deformation of the wing portions 32.
 図6は、本実施形態に係る羽根車の翼部の斜視図である。 FIG. 6 is a perspective view of the wing portion of the impeller according to this embodiment.
 図6に示すように、本実施形態に係る羽根車23の翼部32の平面形は、四角形、例えば平行四辺形に近い。根元端32bは、花弁部35の第一辺部35aに連なる直線形状を有している。図6の点aと点bとを結ぶ直線が根元端32bである。突出端32aは、非直線形状であり、後縁42の突出端を通り、かつ根元端32bに平行な仮想線VLよりも根元端32bから遠ざかる方向へ突出する凸部47を有している。突出端32aは、図6の点cと点dと点eとを結ぶ線である。 As shown in FIG. 6, the planar shape of the blade portion 32 of the impeller 23 according to this embodiment is close to a quadrangle, for example, a parallelogram. The root end 32b has a linear shape that continues to the first side portion 35a of the petal portion 35 . A straight line connecting point a and point b in FIG. 6 is root end 32b. The protruding end 32a has a non-linear shape and has a protrusion 47 that passes through the protruding end of the trailing edge 42 and protrudes in a direction away from the root end 32b with respect to an imaginary line VL parallel to the root end 32b. The projecting end 32a is a line connecting points c, d, and e in FIG.
 図6の点aと点cとを結ぶ線は、翼部32の前縁41であり、図6の点bと点eとを結ぶ線は、翼部32の後縁42である。 A line connecting points a and c in FIG. 6 is the leading edge 41 of the wing 32 , and a line connecting points b and e in FIG.
 凸部47は、前縁41に連なり、かつ根元端32bに平行、および主板部31に平行する直線縁48と、直線縁48と後縁42とを繋ぐ曲線縁49と、を有している。直線縁48は、図6の点cと点dとを結ぶ直線であり、曲線縁49は、図6の点dと点eとを結ぶ曲線である。直線縁48、およびベルマウス7に倣う曲線縁49の一部は、突出端32aの第二部位46であり、曲線縁49の残部は、下流側面19に近接して配置された第一部位45である。つまり、曲線縁49の残部は、実質的に根元端32bに平行している。突出端32aとベルマウス7との間、および突出端32aと下流側面19との間には、羽根車23の回転を阻害しない程度の隙間がある。この隙間は、5ミリメートル以下であることが好ましい。 The convex portion 47 has a straight edge 48 that continues to the front edge 41 and is parallel to the root end 32 b and parallel to the main plate portion 31 , and a curved edge 49 that connects the straight edge 48 and the rear edge 42 . . A straight edge 48 is a straight line connecting points c and d in FIG. 6, and a curved edge 49 is a curved line connecting points d and e in FIG. The straight edge 48 and part of the curved edge 49 that follows the bellmouth 7 are the second portion 46 of the protruding end 32a, and the remainder of the curved edge 49 is the first portion 45 located adjacent the downstream side 19. is. That is, the remainder of curvilinear edge 49 is substantially parallel to root end 32b. Between the protruding end 32 a and the bell mouth 7 and between the protruding end 32 a and the downstream side surface 19 , there are gaps that do not hinder the rotation of the impeller 23 . This gap is preferably 5 millimeters or less.
 図7は、本実施形態に係る羽根車の特性と比較例の羽根車の特性とを比較する図である。 FIG. 7 is a diagram comparing the characteristics of the impeller according to the present embodiment and the characteristics of the impeller of the comparative example.
 図7は、羽根車の静圧Pと、羽根車の流量Qとの関係を示す図であり、いわゆるP-Q特性である。 FIG. 7 is a diagram showing the relationship between the static pressure P of the impeller and the flow rate Q of the impeller, which is the so-called PQ characteristic.
 比較例の羽根車は、本実施形態に係る羽根車23と異なり、それぞれの翼部32に凸部47を有しておらず、下流側面19および主板部31に平行な突出端を有している。比較例の羽根車の突出端は、ベルマウス7内に突出することなく、同一の平面上に配置されてベルマウス7に連なる下流側面19に近接して配置されている。 Unlike the impeller 23 according to the present embodiment, the impeller of the comparative example does not have the protrusions 47 on each of the blades 32, and has projecting ends parallel to the downstream side surface 19 and the main plate portion 31. there is The protruding end of the impeller of the comparative example does not protrude into the bell mouth 7 and is arranged close to the downstream side 19 that is arranged on the same plane and continues to the bell mouth 7 .
 また、本実施形態に係る羽根車23のP-Q特性を曲線α1で表し、比較例の羽根車のP-Q特性を曲線γ1で表す。 Also, the PQ characteristic of the impeller 23 according to the present embodiment is represented by a curve α1, and the PQ characteristic of the impeller of the comparative example is represented by a curve γ1.
 図7に示すように、本実施形態に係る羽根車23は、比較例の羽根車よりも多くの風量を送風できる。また、本実施形態に係る羽根車23は、ベルマウス7に近接させることで、比較例の羽根車よりも高い静圧を得ることができる。 As shown in FIG. 7, the impeller 23 according to this embodiment can blow more air than the impeller of the comparative example. Further, the impeller 23 according to the present embodiment can obtain a higher static pressure than the impeller of the comparative example by bringing it close to the bellmouth 7 .
 図8は、本実施形態に係る羽根車の翼部の入口角および出口角の模式図である。 FIG. 8 is a schematic diagram of the inlet angle and outlet angle of the blade portion of the impeller according to this embodiment.
 なお、翼部32の入口角および出口角は、羽根車23の回転方向を基準とする角度で表す。つまり、翼部32の入口角は、翼部32の推進方向uと翼円弧前方向とがなす角であり、翼部32の出口角は、翼部32の推進方向uと翼円弧後ろ方向とがなす角である。 The inlet angle and the outlet angle of the blade portion 32 are represented by angles based on the rotation direction of the impeller 23. That is, the inlet angle of the wing portion 32 is the angle between the propelling direction u of the wing portion 32 and the forward direction of the blade arc, and the exit angle of the wing portion 32 is the angle between the propelling direction u of the wing portion 32 and the backward direction of the blade arc. is the angle formed by
 図8に示すように、本実施形態に係る羽根車23の翼部32は、根元端32bの入口角β1、根元端32bの出口角β2、突出端32aの入口角β3、および突出端32aの出口角β4を有している。 As shown in FIG. 8, the blade portion 32 of the impeller 23 according to the present embodiment has an inlet angle β1 of the root end 32b, an outlet angle β2 of the root end 32b, an inlet angle β3 of the projecting end 32a, and an angle β3 of the projecting end 32a. It has an exit angle β4.
 そして、根元端32bの出口角β2は、根元端32bの入口角β1よりも大きい。 The exit angle β2 of the root end 32b is greater than the entrance angle β1 of the root end 32b.
 なお、突出端32aの入口角β3、および突出端32aの出口角β4は、それぞれにおける速度三角形から適宜に設定すれば良い。突出端32aは、羽根車23の径方向外側へ向かって凸の曲線形状を有している。 The entrance angle β3 of the protruding end 32a and the exit angle β4 of the protruding end 32a may be appropriately set from the respective velocity triangles. The protruding end 32 a has a curved shape that protrudes outward in the radial direction of the impeller 23 .
 翼部32の翼型は、直線形状の根元端32bから曲線形状の突出端32aへ滑らかに続く三次元形状である。したがって、それぞれの翼部32の翼型は、突出端32aへ近づくほど翼弦からの突出距離が大きくなるよう羽根車23の径方向外側へ凸に湾曲する実質的に一様な厚さの板形状である。 The airfoil of the wing portion 32 is a three-dimensional shape that smoothly continues from the linear root end 32b to the curved protruding end 32a. Therefore, the airfoil of each airfoil portion 32 is a plate of substantially uniform thickness that is convexly curved radially outwardly of the impeller 23 so that the protruding distance from the chord increases as it approaches the protruding end 32a. Shape.
 図9は、本実施形態に係る羽根車の特性と比較例の羽根車の特性とを比較する図である。 FIG. 9 is a diagram comparing the characteristics of the impeller according to the present embodiment and the characteristics of the impeller of the comparative example.
 図9は、羽根車の静圧Pと、羽根車の流量Qとの関係を示す図であり、いわゆるP-Q特性である。 FIG. 9 is a diagram showing the relationship between the static pressure P of the impeller and the flow rate Q of the impeller, which is the so-called PQ characteristic.
 本実施形態に係る羽根車23と異なり、比較例の羽根車の根元端32bの出口角β2は、根元端32bの入口角β1よりも小さい。また、本実施形態に係る羽根車23のP-Q特性を曲線α2で表し、比較例の羽根車のP-Q特性を曲線γ2で表す。 Unlike the impeller 23 according to the present embodiment, the outlet angle β2 of the root end 32b of the impeller of the comparative example is smaller than the inlet angle β1 of the root end 32b. A curve α2 represents the PQ characteristic of the impeller 23 according to the present embodiment, and a curve γ2 represents the PQ characteristic of the impeller of the comparative example.
 図9に示すように、本実施形態に係る羽根車23は、比較例の羽根車より多くの風量を送風できる。また、本実施形態に係る羽根車23は、ベルマウス7に近接させることで、比較例の羽根車よりも高い静圧を得ることができる。 As shown in FIG. 9, the impeller 23 according to this embodiment can blow more air than the impeller of the comparative example. Further, the impeller 23 according to the present embodiment can obtain a higher static pressure than the impeller of the comparative example by bringing it close to the bellmouth 7 .
 図10および図11は、本実施形態に係る羽根車の他の例を底面側から示す斜視図である。 10 and 11 are perspective views showing another example of the impeller according to this embodiment from the bottom side.
 図10および図11に示すように、本実施形態に係る羽根車23A、23Bは、複数の翼部32の第二部位46を連結する補強部材51A、51Bを備えていても良い。補強部材51A、51Bは、従来の羽根車のシュラウドのように径方向に幅を有して外形寸法と内径寸法との間に大きな寸法差を有するものではなく、線状の部材、例えば鋼線である。 As shown in FIGS. 10 and 11, the impellers 23A and 23B according to this embodiment may include reinforcing members 51A and 51B that connect the second parts 46 of the plurality of blade portions 32. As shown in FIGS. The reinforcing members 51A and 51B are not the shrouds of conventional impellers that have a width in the radial direction and have a large dimensional difference between the outer diameter and the inner diameter, but are linear members such as steel wires. is.
 補強部材51A、51Bは、隣り合う一対の翼部32の第二部位46を連結し、全ての翼部32の第二部位46を連結する。単一の補強部材51A、51Bで全ての翼部32を連結していても良いし、2以上かつ全数より少ない翼部32を連結する複数の補強部材51A、51Bで全ての翼部32を連結していても良い。 The reinforcing members 51A and 51B connect the second parts 46 of a pair of adjacent wing parts 32 and connect the second parts 46 of all the wing parts 32 . All wings 32 may be connected with a single reinforcing member 51A, 51B, or all wings 32 may be connected with a plurality of reinforcing members 51A, 51B that connect two or more but less than the total number of wings 32. It's okay to be
 また、補強部材51Aは、単純な円形であって、それぞれの翼部32の第二部位46に点接触するように固定されていても良い(図10)。補強部材51Bは、それぞれの翼部32の第二部位46に沿う第一直線部分52と、隣り合う一対の翼部32の間に架け渡される第二直線部分53と、を有してそれぞれの翼部32の第二部位46に線接触するように固定されていても良い(図11)。 Further, the reinforcing member 51A may have a simple circular shape and may be fixed so as to make point contact with the second portion 46 of each wing portion 32 (Fig. 10). The reinforcing member 51B has a first straight portion 52 along the second portion 46 of each wing portion 32, and a second straight portion 53 bridging between a pair of adjacent wing portions 32. It may be fixed in line contact with the second portion 46 of the portion 32 (FIG. 11).
 以上のように、本実施形態に係る送風装置6は、環状のベルマウス7と、ベルマウス7の下流側端7bに連なる平坦な下流側面19と、ベルマウス7から空気を吸い込んで下流側面19に沿う方向へ空気を吹き出す羽根車23と、を備えている。羽根車23は、下流側面19に実質的に平行し、かつ放射状に広がる主板部31と、開放型の複数の翼部32と、を備えている。複数の翼部32が描く最外径D2は、主板部31の最外径D1より大きい。複数の翼部32の突出端32aは、下流側面19に近接して配置された第一部位45と、ベルマウス7の下流側端7bよりもベルマウス7の上流側端7aへ向かって突出している第二部位46と、を有している。そのため、送風装置6は、羽根車23から吹き出す空気に流れに生じる乱れを抑制して、送風効率の低下を防ぐことができる。また、送風装置6は、平坦な下流側面19に連なるベルマウス7から空気を吸い込み、平坦な下流側面19に沿った乱れのない空気の流れを生じさせることができる。さらに、送風装置6は、ベルマウス7の下流側端7bよりもベルマウス7の上流側端7aへ向かって突出している第二部位46、つまり翼部32の凸部47によって、凸部47の無い送風装置に比べて容易に風量を向上できる。 As described above, the blower device 6 according to the present embodiment includes the ring-shaped bell mouth 7, the flat downstream side 19 connected to the downstream end 7b of the bell mouth 7, and the downstream side 19 by sucking air from the bell mouth 7. and an impeller 23 for blowing out air in a direction along. The impeller 23 includes a main plate portion 31 extending radially and substantially parallel to the downstream side 19 and a plurality of open blade portions 32 . The outermost diameter D<b>2 drawn by the plurality of blade portions 32 is larger than the outermost diameter D<b>1 of the main plate portion 31 . The protruding ends 32a of the plurality of wings 32 protrude toward the upstream end 7a of the bell mouth 7 from the first portion 45 arranged close to the downstream side 19 and the downstream end 7b of the bell mouth 7. and a second portion 46 where the second portion 46 is located. Therefore, the blower device 6 can suppress turbulence in the flow of the air blown out from the impeller 23 and prevent a decrease in blowing efficiency. In addition, the blower 6 draws in air from the bell mouth 7 connected to the flat downstream side 19 and can generate an unturbulent air flow along the flat downstream side 19 . Further, the air blower 6 has a second portion 46 projecting toward the upstream end 7a of the bell mouth 7 from the downstream end 7b of the bell mouth 7, that is, the projection 47 of the wing portion 32. The air volume can be easily increased compared to a blower without the air blower.
 また、羽根車23は、シユラウドを有していないので、一体成形が可能である。そのため、羽根車23は、溶接不良、溶着不良など、別体のシュラウドを翼部に接合する場合における不良発生要因を排除し、かつ、別体のシュラウドを翼部32に接合する場合に比べて回転バランスの不均衡量を低減できる。 Also, since the impeller 23 does not have a shroud, it can be integrally molded. Therefore, the impeller 23 eliminates factors that cause defects such as poor welding and poor adhesion when the separate shroud is joined to the wing portion. It is possible to reduce the imbalance amount of rotation balance.
 さらに、本実施形態に係る羽根車23は、主板部31のみに連接する複数の翼部32を備えている。そのため、羽根車23は、シュラウドやフレームを有する従来の羽根車に比べて容易に軽量化可能であり、また、空気の流れの障害を排除できる。 Furthermore, the impeller 23 according to this embodiment includes a plurality of blade portions 32 that are connected only to the main plate portion 31 . Therefore, the impeller 23 can be easily made lighter than a conventional impeller having a shroud and a frame, and can eliminate obstacles to the air flow.
 さらに、本実施形態に係る羽根車23は、主板部31の縁の一部である、それぞれの花弁部35の第一辺部35aに連なる根元端32bを有する翼部32を備えている。そのため、羽根車23は、翼部32でエネルギーを与えられた空気の流れを円滑に吹き出すことができる。 Further, the impeller 23 according to the present embodiment includes the wing portions 32 having root ends 32b that are continuous with the first side portions 35a of the respective petal portions 35, which are part of the edge of the main plate portion 31. Therefore, the impeller 23 can smoothly blow out the flow of air to which energy is given by the blade portion 32 .
 また、本実施形態に係る羽根車23は、主板部31の周方向において隙間を隔てて向かい合う花弁部35の第一辺部35aと花弁部35の第二辺部35bとを有している。そのため、羽根車23は、翼部32でエネルギーを与えられた空気を隣り合う花弁部35の隙間を通じて吹き出すことができる。このような空気の流れは羽根車23の送風機能を向上させる。また、隣り合う花弁部35の隙間は、羽根車23を一体成形する際の、ハンドレイアップ法における各工程の作業性を高め、かつ離型を容易にする。 In addition, the impeller 23 according to this embodiment has a first side portion 35a of the petal portion 35 and a second side portion 35b of the petal portion 35 facing each other across a gap in the circumferential direction of the main plate portion 31 . Therefore, the impeller 23 can blow out the air energized by the blades 32 through the gaps between the adjacent petals 35 . Such air flow improves the air blowing function of the impeller 23 . In addition, the gaps between the adjacent petals 35 improve the workability of each step in the hand lay-up method when integrally molding the impeller 23 and facilitate mold release.
 さらに、本実施形態に係る羽根車23は、ハブ部33の突出高さより突出高さが高い複数の翼部32を備えている。そのため、羽根車23は、ハブ部33の気流抵抗を低減させて、翼部32で気流を容易に押し出すことができる。 Furthermore, the impeller 23 according to this embodiment includes a plurality of blade portions 32 each having a higher protrusion height than the hub portion 33 . Therefore, the impeller 23 can reduce the airflow resistance of the hub portion 33 and easily push out the airflow with the wing portions 32 .
 また、本実施形態に係る羽根車23のそれぞれの翼部32の根元端32bの出口角β2は、翼部32の根元端32bの入口角β1よりも大きい。そのため、送風装置6の送風量は、出口角β2が入口角β1よりも小さい根元部を有する羽根車を備える送風装置の送風量よりも向上する。また、送風装置6は、出口角β2が入口角β1よりも小さい羽根車を備える送風装置よりも容易に高い静圧を提供できる。 Also, the exit angle β2 of the root end 32b of each blade 32 of the impeller 23 according to the present embodiment is larger than the entrance angle β1 of the root end 32b of the blade 32 . Therefore, the amount of air blown by the blower 6 is higher than that of an air blower having an impeller having a root portion in which the outlet angle β2 is smaller than the inlet angle β1. Also, the blower 6 can more easily provide a higher static pressure than a blower with an impeller whose outlet angle β2 is smaller than the inlet angle β1.
 さらに、本実施形態に係る羽根車23のそれぞれの翼部32の根元端32bは、直線形状である。そのため、送風装置6は、それぞれの翼部32の根元端32bの出口角β2を翼部32の根元端32bの入口角β1よりも容易に大きく設定できる。 Furthermore, the root end 32b of each blade portion 32 of the impeller 23 according to the present embodiment has a linear shape. Therefore, the air blower 6 can easily set the outlet angle β2 of the root end 32b of each blade 32 to be larger than the inlet angle β1 of the root end 32b of the blade 32 .
 また、本実施形態に係る羽根車23のそれぞれの翼部32の肉厚は、主板部31の肉厚よりも薄い。そのため、羽根車23は、翼部32の変形を軽減し、翼部32の変形による風量の低下を防ぐ。 Also, the thickness of each blade portion 32 of the impeller 23 according to this embodiment is thinner than the thickness of the main plate portion 31 . Therefore, the impeller 23 reduces the deformation of the blade portion 32 and prevents the reduction of the air volume due to the deformation of the blade portion 32 .
 さらに、本実施形態に係る羽根車23は、素数の翼部32を有し、かつ、後縁42と回転中心線Cとを結ぶ一対の線分L1、L2が25度以上の角度をなして隣り合う翼部32を備えている。そのため、羽根車23は、翼ピッチ音と呼ばれる騒音を低減し、隣り合う翼部32の間に発生する通風抵抗を低減させて風量を向上させ、さらに羽根車23を一体成形する場合の製造性を向上させる。 Further, the impeller 23 according to the present embodiment has a prime blade portion 32, and a pair of line segments L1 and L2 connecting the trailing edge 42 and the rotation center line C forms an angle of 25 degrees or more. Adjacent wings 32 are provided. Therefore, the impeller 23 reduces noise called blade pitch noise, reduces the air flow resistance generated between the adjacent blade portions 32 to improve the air volume, and furthermore, the manufacturability when integrally molding the impeller 23 improve.
 また、本実施形態に係る羽根車23は、複数の翼部32の第二部位46を連結する補強部材51を備えていても良い。そのため、羽根車23は、シュラウドを有していなくても、羽根車23全体の重量を低減させ、翼部32への遠心力の影響を減じて風量低下を抑制し、かつ、翼部32の変形によるベルマウス7と翼部32との衝突を防ぐ。 Further, the impeller 23 according to this embodiment may include a reinforcing member 51 that connects the second portions 46 of the plurality of blade portions 32 . Therefore, even if the impeller 23 does not have a shroud, the weight of the entire impeller 23 is reduced, the influence of the centrifugal force on the blade portion 32 is reduced, the decrease in the air volume is suppressed, and the blade portion 32 is reduced. This prevents collision between the bell mouth 7 and the wings 32 due to deformation.
 したがって、本実施形態に係る送風装置6によれば、ベルマウス7から空気を効率良く吸い込んで、高い効率で送風することができる。 Therefore, according to the blower device 6 according to the present embodiment, air can be efficiently sucked from the bell mouth 7 and blown with high efficiency.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
 1…室内機、2…熱交換器、2a…平板部分、2b…湾曲板部分、5…筐体、6…送風装置、7…ベルマウス、7a…上流側端、7b…下流側端、8…ターボファン、11…天板、12…側板、13…傾斜板、14…底板、14a…外面、14b…内面、16…吸込口、17…吹出口、18…上流側面、19…下流側面、21…回転軸、22…ファンモーター、23、23A、23B…羽根車、25…固定具、31…主板部、32…翼部、32a…突出端、32b…根元端、33…ハブ部、35…花弁部、35a…第一辺部、35b…第二辺部、41…前縁、42…後縁、45…第一部位、46…第二部位、47…凸部、48…直線縁、49…曲線縁、51A、51B…補強部材、52…第一直線部分、53…第二直線部分。 DESCRIPTION OF SYMBOLS 1... Indoor unit 2... Heat exchanger 2a... Flat plate part 2b... Curved plate part 5... Housing 6... Air blower 7... Bell mouth 7a... Upstream end 7b... Downstream end 8 ... turbo fan 11 ... top plate 12 ... side plate 13 ... inclined plate 14 ... bottom plate 14a ... outer surface 14b ... inner surface 16 ... suction port 17 ... outlet 18 ... upstream side 19 ... downstream side, DESCRIPTION OF SYMBOLS 21... Rotating shaft 22... Fan motor 23, 23A, 23B... Impeller 25... Fixture 31... Main plate part 32... Wing part 32a... Protruding end 32b... Root end 33... Hub part 35 Petal portion 35a First side portion 35b Second side portion 41 Front edge 42 Rear edge 45 First portion 46 Second portion 47 Convex portion 48 Linear edge 49... Curved edge, 51A, 51B... Reinforcement member, 52... First straight portion, 53... Second straight portion.

Claims (6)

  1. 環状のベルマウスと、
     前記ベルマウスの下流側端に連なる平坦な下流側面と、
     前記ベルマウスから空気を吸い込んで前記下流側面に沿う方向へ空気を吹き出す羽根車と、を備え、
     前記羽根車は、
      前記下流側面に実質的に平行し、かつ放射状に広がる主板部と、
      前記主板部から前記下流側面および前記ベルマウスへ向かって突出して環状に配列される開放型の複数の翼部と、を備え、
      前記複数の翼部が描く最外径は、前記主板部の最外径より大きく、
      前記複数の翼部の突出端は、前記下流側面に近接して配置された第一部位と、前記ベルマウスの前記下流側端よりも前記ベルマウスの上流側端へ向かって突出している第二部位と、を有する送風装置。
    an annular bellmouth,
    a flat downstream side continuous with the downstream end of the bell mouth;
    an impeller that draws in air from the bell mouth and blows out the air in a direction along the downstream side;
    The impeller is
    a main plate portion substantially parallel to the downstream side and extending radially;
    a plurality of open wing portions arranged in a ring projecting from the main plate portion toward the downstream side surface and the bell mouth;
    The outermost diameter drawn by the plurality of wing portions is larger than the outermost diameter of the main plate portion,
    The protruding ends of the plurality of wing portions include a first portion arranged close to the downstream side surface and a second portion protruding toward the upstream end of the bell mouth from the downstream end of the bell mouth. and a blower device.
  2. それぞれの前記翼部の前記主板部に連なる根元端の出口角は、前記根元端の入口角よりも大きい請求項1に記載の送風装置。 2. The blower according to claim 1, wherein the exit angle of the root end of each of the blades connected to the main plate is greater than the entrance angle of the root end.
  3. それぞれの前記翼部の前記主板部に連なる根元端は、直線形状である請求項1または2に記載の送風装置。 The air blower according to claim 1 or 2, wherein the base end of each of the blades connected to the main plate has a linear shape.
  4. それぞれの前記翼部の肉厚は、前記主板部の肉厚よりも薄い請求項1から3のいずれか1項に記載の送風装置。 The air blower according to any one of claims 1 to 3, wherein the thickness of each of the blade portions is thinner than the thickness of the main plate portion.
  5. 前記複数の翼部の数量は、素数であり、
     前記羽根車の回転中心線に沿う方向から見て、第一翼部の後縁と前記回転中心線とを結ぶ第一線分と、前記第一翼部に隣り合う第二翼部の後縁と前記回転中心線とを結ぶ第二線分とがなす角度が、25度以上である請求項1から4のいずれか1項に記載の送風装置。
    the quantity of the plurality of wings is a prime number;
    A first line segment connecting the trailing edge of the first blade portion and the rotation center line, and the trailing edge of the second blade portion adjacent to the first blade portion, when viewed from the direction along the rotation center line of the impeller. 5. The blower device according to claim 1, wherein an angle formed by a second line segment connecting the second line segment and the rotation center line is 25 degrees or more.
  6. 前記複数の翼部の前記第二部位を連結する補強部材を備える請求項1から5のいずれか1項に記載の送風装置。 The blower device according to any one of claims 1 to 5, further comprising a reinforcing member that connects the second portions of the plurality of blade portions.
PCT/JP2021/012710 2021-03-25 2021-03-25 Blower device WO2022201468A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180084260.XA CN116601392A (en) 2021-03-25 2021-03-25 Air supply device
PCT/JP2021/012710 WO2022201468A1 (en) 2021-03-25 2021-03-25 Blower device
JP2023508350A JP7458552B2 (en) 2021-03-25 2021-03-25 Air blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012710 WO2022201468A1 (en) 2021-03-25 2021-03-25 Blower device

Publications (1)

Publication Number Publication Date
WO2022201468A1 true WO2022201468A1 (en) 2022-09-29

Family

ID=83396628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012710 WO2022201468A1 (en) 2021-03-25 2021-03-25 Blower device

Country Status (3)

Country Link
JP (1) JP7458552B2 (en)
CN (1) CN116601392A (en)
WO (1) WO2022201468A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389607U (en) * 1976-12-24 1978-07-22
JP2003180051A (en) * 2001-12-10 2003-06-27 Fuji Electric Co Ltd Moving blade of totally-enclosed fan-cooled rotating electric machine
JP2007292026A (en) * 2006-04-27 2007-11-08 Toshiba Home Technology Corp Fan motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389607U (en) * 1976-12-24 1978-07-22
JP2003180051A (en) * 2001-12-10 2003-06-27 Fuji Electric Co Ltd Moving blade of totally-enclosed fan-cooled rotating electric machine
JP2007292026A (en) * 2006-04-27 2007-11-08 Toshiba Home Technology Corp Fan motor

Also Published As

Publication number Publication date
JPWO2022201468A1 (en) 2022-09-29
JP7458552B2 (en) 2024-03-29
CN116601392A (en) 2023-08-15

Similar Documents

Publication Publication Date Title
US10890194B2 (en) Air-sending device and air-conditioning apparatus using the same
EP3043077B1 (en) Propeller fan, air-blowing device, and outdoor unit
JP6945739B2 (en) Multi-blade blower and air conditioner
US11976872B2 (en) Axial flow fan, air-sending device, and refrigeration cycle apparatus
JP6611676B2 (en) Outdoor unit for blower and refrigeration cycle equipment
KR20170006833A (en) Blower and air conditioner having the same
WO2022201468A1 (en) Blower device
US11674520B2 (en) Centrifugal fan and air-conditioning apparatus
CN114174726B (en) Indoor unit and impeller of refrigeration cycle device
JP2701604B2 (en) Air conditioner
WO2023074578A1 (en) Impeller
JP6745902B2 (en) Blower, outdoor unit and refrigeration cycle device
EP3916238A1 (en) Fan blower, indoor unit, and air conditioner
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
WO2023084652A1 (en) Cross-flow fan, blowing device, and refrigeration cycle device
JP6430032B2 (en) Centrifugal fan, air conditioner and refrigeration cycle apparatus
EP4098885A1 (en) Centrifugal blower and air conditioner provided with same
JP7245339B2 (en) Propeller fan impellers, air blowers, and air conditioner outdoor units
WO2021172360A1 (en) Centrifugal compressor
JP6625213B2 (en) Multi-blade fan and air conditioner
JP2023044874A (en) Ceiling-embedded type air conditioner
CN117222815A (en) Blower, air conditioner, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508350

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084260.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933073

Country of ref document: EP

Kind code of ref document: A1