WO2022201403A1 - 端末及び無線通信方法 - Google Patents

端末及び無線通信方法 Download PDF

Info

Publication number
WO2022201403A1
WO2022201403A1 PCT/JP2021/012420 JP2021012420W WO2022201403A1 WO 2022201403 A1 WO2022201403 A1 WO 2022201403A1 JP 2021012420 W JP2021012420 W JP 2021012420W WO 2022201403 A1 WO2022201403 A1 WO 2022201403A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical uplink
uplink shared
shared channel
repetition
slots
Prior art date
Application number
PCT/JP2021/012420
Other languages
English (en)
French (fr)
Inventor
春陽 越後
浩樹 原田
大輔 栗田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023508295A priority Critical patent/JPWO2022201403A1/ja
Priority to PCT/JP2021/012420 priority patent/WO2022201403A1/ja
Priority to US18/283,674 priority patent/US20240179688A1/en
Priority to CN202180095803.8A priority patent/CN116982380A/zh
Publication of WO2022201403A1 publication Critical patent/WO2022201403A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a terminal and wireless communication method compatible with coverage extension.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • Non-Patent Document 1 For example, in 3GPP Release-17, it was agreed to consider coverage enhancement (CE: Coverage Enhancement) in NR (Non-Patent Document 1).
  • Non-Patent Document 2 Physical Uplink shared channels allocated to multiple slots, specifically, TB processing over multi-slot PUSCH (PUSCH (Physical Uplink Shared Channel) for processing transport blocks (TB) via PUSCH (Physical Uplink Shared Channel) It has been agreed to study a method for determining time resources for TBoMS (Non-Patent Document 2).
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the transport block size (TBS) is specified on the basis of a single slot, and applying the TBS directly to TBoMS may not necessarily be efficient. .
  • the following disclosure is made in view of this situation, and aims to make TBoMS more efficient in processing transport blocks (TB) over physical uplink shared channels (PUSCHs) assigned to multiple slots.
  • the purpose is to provide a terminal and a wireless communication method that can be practically realized.
  • One aspect of the present disclosure is a receiving unit (control signal/reference signal processing unit 240) that receives control information indicating allocation in the time domain of a physical uplink shared channel, and the physical uplink across multiple slots.
  • a control unit (control unit 270) that allocates a shared channel, and the control unit determines a transport block to be transmitted via the physical uplink shared channel based on the control information. be.
  • control unit 270 that allocates a physical uplink shared channel across multiple slots, and a transmission unit that transmits a data sequence via the physical uplink shared channel (radio signal a transmitting/receiving unit 210), and the transmitting unit is a terminal (UE 200) that repeatedly transmits the data sequence after concatenating a plurality of code blocks via the physical uplink shared channel.
  • control unit 270 that allocates a physical uplink shared channel across multiple slots, and a transmission unit (radio signal transmission/reception unit 210) that transmits the physical uplink shared channel.
  • control unit is a terminal (UE 200) that determines the size of a transport block to be transmitted via the physical uplink shared channel based on the configuration information of the physical uplink shared channel in the serving cell.
  • control unit 270 that allocates a physical uplink shared channel across multiple slots
  • a transmission unit radio signal transmission/reception unit 210 that transmits the physical uplink shared channel. and the control unit, based on whether or not to allocate the physical uplink shared channel across a plurality of slots, a plurality of codes of transport blocks transmitted via the physical uplink shared channel
  • a terminal UE 200 that determines division into blocks.
  • control unit 270 that allocates a physical uplink shared channel across multiple slots
  • a transmission unit radio signal transmission/reception unit 210 that transmits the physical uplink shared channel.
  • the control unit determines a modulation and coding scheme to be applied to the physical uplink shared channel based on whether to allocate the physical uplink shared channel across a plurality of slots (UE200).
  • One aspect of the present disclosure includes the steps of: receiving control information indicating allocation in the time domain of a physical uplink shared channel; In the wireless communication method, the step of allocating a link shared channel determines a transport block to be transmitted via the physical uplink shared channel based on the control information.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 3 is a functional block configuration diagram of gNB100 and UE200.
  • FIG. 4 is a diagram showing an example of PUSCH allocation by TBoMS.
  • FIG. 5 is an explanatory diagram of problems in an example of PUSCH allocation by TBoMS (Type A repetition like TDRA).
  • FIG. 6 is a diagram showing an example of PUSCH time domain allocation according to Operation Example 1 (Opt 1, 2).
  • FIG. 7 is a diagram showing an example of allocation of PUSCH (TB) according to operation example 2 (Alt 1-1-1).
  • FIG. 8 is a diagram showing a configuration example of a redundancy version (RV) according to operation example 2 (Alt 2-2).
  • FIG. 9 is a diagram illustrating a calculation example of N sh symb according to Operation Example 3-1 (Opt 1).
  • FIG. 10 is a diagram illustrating an example of TB allocation according to operation example 4 (Alt 2).
  • FIG. 11 is a diagram illustrating an example of TB allocation according to operation example 4 (Alt 4-1).
  • FIG. 12 is a diagram illustrating an example of UL channel repetition according to operation example 6 (Opt 3).
  • FIG. 13 is a diagram illustrating an example of UL channel repetition according to operation example 6-1 (Opt 4).
  • FIG. 14 is a diagram illustrating an example of UL channel repetition according to operation example 6-2 (Opt 3, 4).
  • FIG. 15 is a diagram illustrating an example of UL channel repetition according to operation example 6-2 (Opt 5).
  • FIG. 16 is a diagram illustrating an example of UL channel repetition according to operation example 6-3 (Alt 1, 2).
  • FIG. 17 is a diagram illustrating an example of UL channel repetition according to operation example 6-3 (Alt 3, 4).
  • 18 is a diagram illustrating a configuration example of a MAC RAR according to Operation Example 7.
  • FIG. FIG. 19 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and terminals 200 (User Equipment 200, hereinafter UE 200).
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • UE 200 User Equipment 200
  • the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a radio base station 100 (hereinafter gNB 100).
  • gNB 100 radio base station 100
  • the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • gNBs or ng-eNBs
  • 5GC 5G-compliant core network
  • the gNB100 is an NR-compliant radio base station and performs NR-compliant radio communication with the UE200.
  • gNB100 and UE200 control radio signals transmitted from multiple antenna elements to generate beams with higher directivity Massive MIMO, carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle, And dual connectivity (DC) in which communication is performed simultaneously between the UE and multiple NG-RAN Nodes, etc., can be supported.
  • Massive MIMO Massive MIMO
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410MHz to 7.125GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is a higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
  • the wireless communication system 10 may also support a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 may support frequency bands above 52.6 GHz and up to 114.25 GHz.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM may be applied not only to the uplink (UL) but also to the downlink (DL).
  • FIG. 2 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). Note that the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Also, the number of slots per subframe may vary depending on the SCS. Additionally, the SCS may be wider than 240kHz (eg, 480kHz, 960kHz, as shown in Figure 2).
  • time direction (t) shown in FIG. 2 may also be referred to as the time domain, time domain, symbol period, symbol time, or the like.
  • the frequency direction may also be called frequency domain, frequency domain, resource block, resource block group, subcarrier, BWP (Bandwidth part), subchannel, common frequency resource, and the like.
  • the radio communication system 10 can support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells (or physical channels) formed by the gNB 100.
  • Coverage enhancement may provide mechanisms for increasing the success rate of reception of various physical channels.
  • gNB 100 can support repeated transmission of PDSCH (Physical Downlink Shared Channel), and UE 200 can support repeated transmission of PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • a time division duplex (TDD) slot configuration pattern may be set.
  • DDDSU downlink (DL) symbol
  • S DL/uplink (UL) or guard symbol
  • U UL symbol
  • D indicates a slot containing all DL symbols
  • S indicates a slot containing a mixture of DL, UL, and guard symbols (G).
  • U indicates a slot containing all UL symbols. For example, when the S slot is 10D+2G+2U, 2 consecutive symbols (2U) and 1 slot (14 symbols) in the time direction can be used for UL, that is, multiple consecutive slots can be used for UL. .
  • channel estimation of PUSCH can be performed using a demodulation reference signal (DMRS) for each slot.
  • DMRS demodulation reference signal
  • Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
  • the UE 200 can transmit DMRS assigned to (spanning) multiple slots so that the gNB 100 can perform joint channel estimation using DMRS.
  • TB processing over multi-slot PUSCH which processes transport blocks (TB) via PUSCHs assigned to multiple slots, may be applied for coverage extension.
  • the number of allocated symbols can be the same in each slot, as in Time Domain Resource Allocation (TDRA) of PUSCH Repetition type A (details below), or PUSCH Repetition type B (details below) ), the number of symbols allocated to each slot may be different.
  • TDRA Time Domain Resource Allocation
  • TDRA may be interpreted as resource allocation in the PUSCH time domain specified in 3GPP TS38.214.
  • the PUSCH TDRA may be interpreted as defined by a radio resource control layer (RRC) information element (IE), specifically PDSCH-Config or PDSCH-ConfigCommon.
  • RRC radio resource control layer
  • TDRA may also be interpreted as resource allocation in the time domain of PUSCH specified by Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • FIG. 3 is a functional block configuration diagram of gNB100 and UE200.
  • the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
  • FIG. 3 shows only main functional blocks related to the description of the embodiment, and that the UE 200 (gNB 100) has other functional blocks (for example, power supply section, etc.). Also, FIG. 3 shows the functional block configuration of the UE 200, and please refer to FIG. 19 for the hardware configuration.
  • the radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR.
  • the radio signal transmitting/receiving unit 210 controls radio (RF) signals transmitted from multiple antenna elements to generate beams with higher directivity. It can support aggregation (CA), dual connectivity (DC) in which communication is performed simultaneously between the UE and two NG-RAN Nodes, and the like.
  • CA aggregation
  • DC dual connectivity
  • the radio signal transmitting/receiving unit 210 may transmit a physical uplink shared channel.
  • the radio signal transmitting/receiving unit 210 may constitute a transmitting unit.
  • the radio signal transmitting/receiving unit 210 may transmit PUSCH toward the network (gNB 100).
  • the radio signal transmitting/receiving unit 210 may support repeated transmission (Repetition) of PUSCH.
  • Repetition type A may be interpreted as a form in which the PUSCH allocated within the slot is repeatedly transmitted. That is, PUSCH is 14 symbols or less, and there is no possibility of being allocated across multiple slots (adjacent slots).
  • Repetition type B may be interpreted as repeated transmission of PUSCH to which 15 or more PUSCH symbols may be allocated. In the present embodiment, allocation of such PUSCH across multiple slots may be allowed.
  • the radio signal transmitting/receiving unit 210 may repeatedly transmit an uplink channel (UL channel) in a specific period of a plurality of slots or more.
  • the uplink channel may include a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • a shared channel may also be referred to as a data channel.
  • a specific period of multiple slots or more may be interpreted as a period related to PUSCH (or PUCCH) repetition.
  • the specific period may be indicated by the number of Repetitions, or may be the time during which a specified number of Repetitions are executed.
  • the radio signal transmitting/receiving unit 210 may repeatedly transmit the UL channel a specific number of times. Specifically, radio signal transmitting/receiving section 210 may repeatedly transmit PUSCH (or PUCCH) multiple times.
  • the specific period and/or the specific number of times may be indicated by signaling from the network (the upper layer of RRC or the lower layer such as DCI, the same applies hereinafter), or may be preset in the UE 200. .
  • the radio signal transmitting/receiving unit 210 may repeatedly transmit the data sequence after concatenating a plurality of code blocks (CB) via PUSCH.
  • the data series may be replaced with other synonymous terms such as data block, bit series, and bit string.
  • the CB may be the CB after Cyclic Redundancy Checksum (CRC) processing, CB segmentation, channel coding and rate matching.
  • CRC Cyclic Redundancy Checksum
  • the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • the modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100, etc.).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • a DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
  • reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI)), and Physical Broadcast Channel (PBCH) etc. may be included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data may refer to data transmitted over a data channel.
  • control signal/reference signal processing unit 240 may transmit the capability information of the UE 200 regarding allocation of the physical uplink shared channel (PUSCH) to the network.
  • the control signal/reference signal processing unit 240 may configure a transmitting unit that transmits capability information.
  • control signal/reference signal processing unit 240 can transmit UE Capability Information related to PUSCH allocation (which may include repetition) to the gNB 100. Details of UE Capability Information will be described later.
  • control signal/reference signal processing unit 240 can receive control information indicating allocation of PUSCHs in the time domain.
  • the control signal/reference signal processing unit 240 may constitute a receiving unit.
  • control signal/reference signal processing unit 240 may receive downlink control information (DCI) indicating allocation of PUSCH in the time domain.
  • DCI downlink control information
  • the encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
  • the data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on hybrid ARQ (Hybrid automatic repeat request).
  • hybrid ARQ Hybrid automatic repeat request
  • the control unit 270 controls each functional block that configures the UE200.
  • the control unit 270 controls transmission of UL channels, specifically PUSCH and PUCCH.
  • control unit 270 can hop the UL channel in the frequency direction in units of a specific period of more than a plurality of slots. Hopping in the frequency direction of the UL channel may be called frequency hopping, and frequency hopping in units of a specific period of multiple slots or more may be called inter-slot frequency hopping. . Note that hopping may mean that the frequency resource to be used changes. In short, it may mean that the subcarrier, resource block, resource block group, BWP, etc. are changed.
  • control unit 270 may cause the UL channel to hop in the frequency direction in units of a specific number of times indicating the number of repeated transmissions of the UL channel. Specifically, the control unit 270 may perform frequency hopping in units of the number of repeated transmissions (repetition number) of the designated UL channel, in other words, every predetermined number of repetitions.
  • the control unit 270 if the transmission of the UL channel (PUSCH and PUCCH) overlaps (may be expressed as a case of collision), the UL channel (Repetition may be )
  • the UL channel (Repetition may be )
  • a frequency hopping pattern using allocatable resources that avoids duplication may be determined.
  • the control unit 270 can assign avoiding overlap at the first Repetition of the UL channel, specifically at the transmission timing of the first Repetition.
  • a hopping pattern using resources may be determined.
  • control unit 270 may set a hopping pattern related to UL channel repetition as described above, based on signaling from the network.
  • the control unit 270 may determine the allocation of DMRS transmitted on the UL channel, specifically the PUSCH, based on the PUSCH repetition state, that is, the number of repetitions, the repetition period, and the like.
  • control unit 270 may transmit the same DMRS symbol (OFDM symbol) for each predetermined number of repetitions. Also, the control unit 270 may set a DMRS symbol (OFDM symbol) to be used for each predetermined number of repetitions.
  • OFDM symbol DMRS symbol
  • control unit 270 may allocate PUSCH across multiple slots, that is, support TBoMS.
  • control unit 270 may determine a transport block (TB) to be transmitted via PUSCH based on DCI (control information) received by the control signal/reference signal processing unit 240.
  • TB transport block
  • Across multiple slots may mean that the PUSCH is assigned to two or more consecutive slots. Also, instead of the slot, the unit may be a symbol, a subframe, or the like.
  • the control unit 270 may determine the size of a transport block (TB) to be transmitted via PUSCH based on PUSCH setting information in the serving cell. For example, control section 270 may determine the size of the TB based on PDSCH-ServingCellConfig, which is an information element (IE) of the RRC layer. However, other information elements of the RRC layer may be used as long as they are related to PUSCH configuration information, and they are not necessarily limited to the serving cell. Also, control section 270 may determine the size of the TB based on setting information related to PUSCH in layers other than the RRC layer.
  • IE information element
  • control unit 270 may determine division of a TB transmitted via PUSCH into a plurality of code blocks (CB) based on whether PUSCH is allocated across a plurality of slots. .
  • the control unit 270 may divide one TB into a plurality of CBs (up to 8) as in 3GPP Release-15, 16.
  • control section 270 may change the maximum division number into CBs according to the number of slots (or the number of symbols) to which PUSCH is allocated.
  • control unit 270 may determine the modulation and coding scheme to be applied to the PUSCH based on whether or not to allocate the PUSCH across multiple slots. Specifically, the control unit 270 allocates PUSCH across multiple slots, that is, in the case of TBoMS, a specific Quadrature Amplitude Modulation (QAM) may be applied as a modulation scheme, a specific Modulation and A Coding Scheme (MCS) may be applied.
  • QAM Quadrature Amplitude Modulation
  • MCS Modulation and A Coding Scheme
  • the gNB 100 may also be provided with the functions related to DMRS transmission/reception and TBoMS described above.
  • the gNB 100 (radio signal transmitting/receiving unit 210) may configure a receiving unit that receives UL channels repeatedly transmitted from the UE 200 within a specific period.
  • the radio signal transmitting/receiving unit 210 of the gNB 100 may receive the UL channel hopped in the frequency direction in units of the specific period.
  • the gNB 100 may receive from the UE 200 a specific number of repeated transmissions, that is, a UL channel (for example, PUSCH) on which Repetition is performed.
  • the gNB 100 may receive the UL channel hopped in the frequency direction in units of the specific number of times.
  • the gNB 100 configures a control unit that performs channel estimation (Joint channel estimation) of UL channels allocated to multiple slots, for example PUSCH, using DMRS allocated to multiple slots. good.
  • the gNB 100 controls the reception of a TBoMS that processes TBs via UL channels assigned to multiple slots, that is, UL channels such as PUSCH assigned across multiple slots. can be executed.
  • TBoMS may be interpreted as a technique for transmitting one transport block using multiple slots.
  • FIG. 4 shows an example of PUSCH allocation by TBoMS. Specifically, FIG. 4 shows an example of PUSCH allocation by TBoMS according to Type A repetition like TDRA and Type B repetition like TDRA. Type A and B are described above. May mean Repetition type A, B.
  • TBoMS can have the following advantages.
  • ⁇ Since resources are allocated across multiple slots, the encoding rate (code rate) decreases.
  • the channel coding gain is improved by lengthening the code sequence.
  • TBS size of TB
  • N RE the number of REs
  • N info The number of information bits
  • TBS is then determined based on the calculated N info .
  • TBS determination is based on the assumption that PUSCH is assigned to only one slot.
  • Fig. 5 is an explanatory diagram of problems in an example of PUSCH allocation by TBoMS (Type A repetition like TDRA). As shown in FIG. 5, in the case of TBoMS, it is necessary to determine the TBS size corresponding to PUSCH allocated across multiple slots (which may be consecutive).
  • ⁇ (Operation example 1) PUSCH time domain allocation method when TBoMS is applied
  • ⁇ (Operation example 2) Method of transmitting 1 TB in multiple slots
  • ⁇ (Operation example 3) TBS determination method when TBoMS is applied
  • TBS determination method when TBoMS is applied ⁇ (Operation Example 3-1): When calculating N RE , extend the number of REs to multiple slots instead of 1 slot ⁇ (Operation example 3-2): Calculate N RE based on SLIV (Start and Length Indicator Value) of TDRA and calculate N info according to TDRA ⁇ (Operation example 4): Code block number determination method when using TBoMS ⁇ (Operation example 5): MCS table selection method when using TBoMS ⁇ (Operation example 6): When using TBoMS frequency hopping ⁇ (Operation example 6-1): frequency hopping (Type A repetition like TDRA) ⁇ (Operation example 6-2): frequency hopping (Type B repetition
  • the UE 200 may notify the network (radio base station) of the PUSCH time domain allocation method by any of the following.
  • the number of slots (or the number of repeated transmissions (Repetition)) to be transmitted may be notified (or the network may notify the UE 200, and the UE 200 may operate based on the notification (hereinafter the same).
  • FIG. 6 shows an example of PUSCH time domain allocation according to Operation Example 1 (Opt 1, 2). As shown in FIG. 6, multiple Repetitions may be integrated into one Repetition (Option 1), and PUSCH for 1 TB may be allocated to multiple slots independently of the number of Repetitions.
  • the number of repetitions may be the number of repetitions actually allocated, or the number of repetitions before the repetition resource is dropped.
  • the PUSCH-Config IE or ConfiguredGrantConfig IE of the RRC layer may be used.
  • the number of slots may be the number of slots that can actually be assigned or the number of consecutive slots before the repetition resource is dropped.
  • TBoMS-related information may be added as an element of the TDRA table of the RRC layer.
  • TBoMS-related information may be linked to the DCI field and notified.
  • TBoMS-related information may be linked to a CCE (Control channel element) index in which a DCI for resource allocation is allocated and notified.
  • the linking method may be notified by upper layer signaling, or may be determined by a predetermined rule.
  • Operation example 2 In this operation example, the operation of transmitting 1 TB in multiple slots will be described.
  • UE 200 may transmit 1 TB using multiple slots by any of the following.
  • ⁇ (Alt 1) Transmits a 1-bit sequence after code block (CB) concatenation across multiple slots.
  • the divided sequences may be transmitted using the resources obtained.
  • ⁇ (Alt 1-1) Transmit a 1-bit sequence via multiple PUSCHs
  • ⁇ (Alt 1-2) Assign one PUSCH to multiple slots
  • ⁇ (Alt 2) Repeatedly transmit a sequence after CB concatenation
  • Multiple sequences may be allocated using resources specified across multiple slots (similar to Repetition). In this case, the same sequence may be repeatedly transmitted, or different sequences may be transmitted.
  • CRC attachment, CB segmentation, CRC attachment per CB, Channel coding, Rate matching, CB concatenation may be processed in order.
  • ⁇ (Alt 1-1-1) Transmits equally divided bit sequences via each PUSCH
  • ⁇ (Alt 1-1-2) Determines the bit length to be transmitted according to the symbol length of each PUSCH For example, Type B When segmentation occurs in repetition like TDRA, bit sequences with different bit lengths may be transmitted in each repetition.
  • FIG. 7 shows an example of allocation of PUSCH (TB) according to operation example 2 (Alt 1-1-1).
  • ⁇ (Alt 2-1) Use conventional bit selection when rate matching
  • ⁇ (Alt 2-2) Apply new bit selection when rate matching For example, set 5 or more redundancy versions (RV) , one may be selected during bit selection.
  • RV redundancy versions
  • Alt 2-2) shows a configuration example of a redundancy version (RV). As shown in FIG. 8, RVs (RV0 to 3) to which existing starting points are assigned and RVs (RV4, 5) to which different starting points are assigned may be used (Opt A). Each RV may be assigned a new starting point (Opt B).
  • Operation example 3 In this operation example, operations related to TBS determination when TBoMS is applied will be described. Specifically, determination of a TBS corresponding to a TB spanning multiple slots will be described.
  • N RE N' RE
  • N RE N' RE
  • each variable may be changed to the number of REs spanning multiple slots.
  • the actual repetition is the repetition to be finally transmitted, and the nominal repetition may be interpreted as the repetition notified/assigned by the gNB to the UE.
  • the following factors can change actual repetition and nominal repetition:
  • the nominal repetition may be excluded.
  • the nominal repetition may be split at the slot boundary and turned into two actual repetitions.
  • a predetermined parameter (the parameter may be notified using DCI or higher layer signaling)
  • a predetermined parameter (K) may be added when calculating the value of N info as follows.
  • K may be a value (scaling factor) that multiplies the N info value by K, but is not necessarily limited to this purpose.
  • N PRB oh may be calculated by either:
  • the number of undivided actual repetitions may be multiplied.
  • ⁇ (Opt 2-3) Calculated according to SLIV of TDRA and number of symbols to be allocated, total number of symbols to be allocated and xOverhead For example, calculated by (xOverhead) ⁇ (total number of symbols) / (SLIV of TDRA and number of symbols to be allocated) may be
  • different parameters set by PDSCH-ServingCellConfig may be used instead of xOverhead.
  • N PRB oh may be calculated based on the added parameter and xOverhead, both slot symbol numbers.
  • different parameters may be set when TBoMS is applied and when not applied.
  • N sh symb N PRB DMRS
  • (Alt 1) Change to the number of symbols (RE) of all resources to which resources are allocated
  • the number of symbols (RE) may be calculated in consideration of the TDD pattern, SFI, and CI.
  • the number of undivided actual repetitions may be multiplied.
  • FIG. 9 shows a calculation example of N sh symb according to Operation Example 3-1 (Opt 1). As shown in FIG. 9, the number of symbols for multiple slots (18) may be calculated.
  • 1TB for TBoMS may be divided into CBs by any of the following methods.
  • (Alt 3) Change the number of divisions of the maximum CB according to the number of slots (number of symbols)
  • the maximum number of CBs may be changed as appropriate according to the number of slots (number of symbols) to which 1 TB is allocated.
  • the number of slots to which 1TB is allocated may be multiplied by the maximum number of CBs set by RRC.
  • FIG. 11 shows an example of TB allocation according to operation example 4 (Alt 4-1). As shown in FIG. 11, when 1 TB spans 3 slots, the maximum number of CBs may be 6, and when 1 TB spans 2 slots, the maximum number of CBs may be 4.
  • ⁇ (Alt 1) Fixed to qam 64 low SE MCS table when using TBoMS Specifically, fixed to qam 64 low SE MCS table when using TBoMS regardless of whether MCS-C (Cell)-RNTI is used may be Note that such an operation may be applied to Msg 3.
  • Msg3 is a random access channel (RACH) procedure message, and PUSCH may be used to transmit Msg3.
  • a new low SE MCS table can be used Specifically, when TBoMS is used, a new MCS table may be used.
  • C-RNTI any of the following MCS tables may be specified by predefined rules, higher layer signaling or DCI.
  • any of the following MCS tables may be specified by predetermined rules, higher layer signaling or DCI.
  • MCS table may be implicitly selected according to the MCS index, TDRA, or transmission power.
  • the UE 200 may determine the hopping pattern of the UL channel from among the following hopping patterns according to rules (settings) specified by the network (radio base station) or defined in advance.
  • the UL channel may mean either PUSCH or PUCCH (same below).
  • the UL channel may include repeated PUSCH or PUCCH.
  • the UE 200 may determine any of the following hopping patterns when applying Type A repetition-like TDRA or using PUCCH.
  • frequency hopping may be disabled based on the number of repeated transmissions of the UL channel.
  • the number of repetitions may be the number of repetitions actually allocated, or the number of repetitions before the repetition resource is dropped. Note that the repetition resource drop may be interpreted as a resource (time resource and/or frequency resource) that is not allocated due to collision (overlapping allocation) of the repetition resource with another UL channel resource.
  • the number of slots may be the number of slots actually allocated by Repetition, or the number of slots before the Repetition resource is dropped.
  • FIG. 12 shows an example of UL channel repetition according to operation example 6 (Opt 3).
  • each frame in the time (t) direction may be interpreted as corresponding to a slot (although it may be a symbol or the like) (same below).
  • hop duration may be expressed in terms such as duration hop, hopping duration, duration per hop, etc., and may be indicated by the length of time or the number of repetitions.
  • (Opt 4): frequency hopping every X slots (Opt 4-1): Duration per hop is notified from the network For example, it is notified that duration per hop X number of slots, and frequency hopping may be performed for each X slot.
  • the time window size may be set in units of slots, or may be set in other time domain units such as symbols (same below).
  • Operation example 6-2 In this operation example, operations related to frequency hopping (Type B repetition like TDRA) when TBoMS is applied will be described.
  • the UE 200 may determine the hopping pattern of the UL channel from among the following hopping patterns according to rules specified by the network (radio base station) or defined in advance.
  • the UE 200 may determine any of the following hopping patterns.
  • FIG. 14 shows an example of UL channel repetition according to operation example 6-2 (Opt 3, 4). Specifically, the upper side of FIG. 14 shows an example of UL channel repetition for Opt 3, and the lower side of FIG. 14 shows an example of UL channel repetition for Opt 4.
  • Rep Repetitions
  • ⁇ (Opt 5): Frequency hopping every X Repetition (Opt 5-1): Duration per hop is notified from the network For example, the UE 200 may notify duration per hop X number of repetitions, and perform frequency hopping every X repetitions.
  • the time window size may be a time domain to which joint channel estimation is applicable, may be a slot unit, or may be another time domain unit such as a symbol.
  • FIG. 15 shows an example of UL channel repetition according to operation example 6-2 (Opt 5).
  • frequency hopping may be performed every three slots.
  • the hopping timing may be within a slot (in the middle) instead of at the slot boundary.
  • FIG. 16 shows an example of UL channel repetition according to operation example 6-3 (Alt 1, 2).
  • Joint channel estimation is applied (on the radio base station side) to UE 200, and repetition resources of UL channels (eg, PUSCH) collide with different resources (eg, resources for PUCCH) (which may be called overlap). If so, one of the following hopping patterns may apply:
  • the hopping pattern may be applied on a slot-by-slot basis without considering the case where resources are dropped. For example, a similar hopping pattern may be maintained even if the Repetition resource is dropped for the second time (see upper part of FIG. 16, the dropped Repetition resource is indicated by the dotted line frame).
  • a hopping pattern may be applied based on resources used for transmission of each repetition. For example, if the second Repetition resource is dropped, the hopping pattern may be applied except for the dropped resource (see the bottom of FIG. 10, since the dropped Repetition resource (dotted frame) is excluded, the slot The resources in the frequency direction after #3 are different from Alt. 1).
  • Alt 1 and 2 may be set separately when a hopping pattern as described later is applied, or when the number of repeated transmissions is specified based on the number of allocatable resources.
  • FIG. 17 shows an example of UL channel Repetition according to operation example 6-3 (Alt 3, 4).
  • allocatable resources may be determined according to the reason for collision. For example, symbols of TDD pattern, SS/PBCH block (Synchronization Signal/ Physical Broadcast Channel blocks) may be considered, but collision with repeated transmission of SFI (Slot Format Indication) / CI (Control Information) / PUCCH is not considered. may be assumed. Alternatively, the drop of Repetition resources known to the radio base station (gNB 100) may be considered, but the drop that the radio base station cannot determine may not be considered.
  • allocatable resources may be determined according to the reason for time collision. Similar to Alt 3, for example, symbols of TDD pattern and SS/PBCH block may be considered, but collision with repeated transmission of SFI/CI/PUCCH may not be considered.
  • the drop of Repetition resources known to the radio base station may be considered, but the drop that the radio base station cannot determine may not be considered.
  • Operation example 6-4 the UE 200 may receive frequency hopping-related information by any of the following methods.
  • DCI - (Opt 1-1) Explicit frequency hopping-related information by DCI field
  • higher-layer signaling is used to link (associate) the frequency hopping-related information with the DCI field.
  • a predefined rule (setting) may be followed.
  • frequency hopping-related information information elements Add frequency hopping-related information information elements to the TDRA table in the upper layer, determined by DCI (Opt 1-3): Implicit frequency hopping-related information by DCI fields
  • the DCI field may be associated with frequency hopping-related information.
  • frequency hopping-related information may be associated with a CCE (Control channel element) index in which a DCI for resource allocation is allocated.
  • CCE Control channel element
  • a hopping pattern may be selected based on frequency hopping-related information received in RRC.
  • the UE 200 may set the hopping pattern by any of the following methods.
  • the UE 200 may receive related information of TBoMS for Msg3initial transmission based on any of the following methods or combinations.
  • TBoMS-related settings may differ depending on the frequency (band) used by the UE.
  • PUSCH-ConfigCommon IE Information Element
  • RACH-ConfigCommon IE defined in the RRC layer
  • Msg3 is a random access channel (RACH) procedure message
  • PUSCH may be used to transmit Msg3.
  • Msg1 may be transmitted via PRACH (Physical Random Access Channel). Msg1 may be called PRACH Preamble. Msg2 may be transmitted via PDSCH. Msg2 may be called RAR (Random Access Response). Msg3 may be called RRC Connection Request. Msg4 may be called RRC Connection Setup.
  • PRACH Physical Random Access Channel
  • Msg1 may be called PRACH Preamble.
  • Msg2 may be transmitted via PDSCH.
  • Msg2 may be called RAR (Random Access Response).
  • Msg3 may be called RRC Connection Request.
  • Msg4 may be called RRC Connection Setup.
  • Enhanced UE is notified by transmitting a RAR with a MAC configuration different from that of a normal UE
  • Enhanced UE may mean a UE that supports TBoMS.
  • Alt 2 Notification using TDRA of UL grant (grant) For example, add an information element related to channel estimation across multiple slots to the TDRA table set in RRC, the information is selected by DCI you can
  • Implicit notification using UL grant information For example, it may be linked to a TPC (Transmit Power Control) command or MCS (Modulation and Coding Scheme).
  • the linking method may be set according to a predetermined rule or network (radio base station).
  • FIG. 18 shows a configuration example of MAC RAR according to Operation Example 7.
  • the reserved bit (R) included in the MAC RAR may be used for the above notification. For example, only whether or not TBoMS is used may be notified using a reserved bit.
  • TBoMS-related information may be added to the PUSCH-ConfigCommon information element TDRA table in notification by higher layer signaling.
  • related information may be linked to TDRA, TPC command, or MCS.
  • the linking method may be set according to a predetermined rule or network (radio base station).
  • RNTI for DCI with CRC scrambled by Enhanced UE may be used.
  • RNTI for Enhanced UE may be assigned by RAR.
  • TBoMS-related information may be notified by DCI for Enhanced UE.
  • the UE 200 may report (notify) to the network (radio base station) whether or not to apply TBoMS when transmitting Msg3, based on any of the following methods.
  • ⁇ (Opt 2) Report independently of the applicability (or request) of repeated transmission of Msg3 ⁇ (Opt 2-1): Assign a different initial bandwidth depending on the applicability (or request) ⁇ (Opt 2 -2): Use different RACH preambles depending on applicability (or requirements) - (Opt 2-3): Use different RACH occasions depending on applicability (or requirements) - (Opt 2-4): Use a specific OCC (Orthogonal Cover Code) pattern in Msg1, which is repeated as applicable (or requested)
  • OCC Orthogonal Cover Code
  • UE 200 may report the following contents as UE Capability Information to the network regarding TBoMS.
  • the UE 200 may report the corresponding (supported) frequencies (FR or band) by any of the following methods.
  • the UE 200 may report the supported duplexing scheme by any of the following methods.
  • transport block (TB) was used, but as will be explained later, it is a block of a given data, which is replaced by another synonymous term such as, for example, a data packet. you can
  • demodulation reference signals used for channel estimation of PUSCH (or PUCCH) have been described.
  • Other reference signals may be used.
  • configure, activate, update, indicate, enable, specify, and select may be read interchangeably. good.
  • link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
  • each functional block is implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 19 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 19, the device may be configured as a computer device including a processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, R
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB Physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for a UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 NG-RAN 100 gNB 200UE 210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、物理上りリンク共有チャネルの時間領域における割り当てを示す制御情報を受信し、複数のスロットに跨がって物理上りリンク共有チャネルを割り当てる。端末は、制御情報に基づいて、物理上りリンク共有チャネルを介して送信されるトランスポートブロックを決定する。

Description

端末及び無線通信方法
 本開示は、カバレッジ拡張に対応した端末及び無線通信方法に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 例えば、3GPP Release-17では、NRにおけるカバレッジ拡張(CE: Coverage Enhancement)について検討することが合意されている(非特許文献1)。
 また、カバレッジ拡張に関して、複数スロットに割り当てられた物理上りリンク共有チャネル、具体的には、PUSCH(Physical Uplink Shared Channel)を介してトランスポートブロック(TB)を処理するTB processing over multi-slot PUSCH(TBoMS)の時間リソースの決定方法について検討することが合意されている(非特許文献2)。
"New WID on NR coverage enhancements", RP-202928, 3GPP TSG RAN meeting #90e, 3GPP, 2020年12月 "RAN1 Chairman’s Notes", 3GPP TSG RAN WG1 Meeting #104-ee-Meeting, 3GPP, 2021年2月
 しかしながら、3GPP Release-15, 16では、トランスポートブロックサイズ(TBS)は、単一スロットを基準として規定されており、当該TBSをそのままTBoMSに適用しても、必ずしも効率的ではない可能性がある。
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、複数スロットに割り当てられた物理上りリンク共有チャネル(PUSCH)を介してトランスポートブロック(TB)を処理するTBoMSをより効率的に実現し得る端末及び無線通信方法の提供を目的とする。
 本開示の一態様は、物理上りリンク共有チャネルの時間領域における割り当てを示す制御情報を受信する受信部(制御信号・参照信号処理部240)と、複数のスロットに跨がって前記物理上りリンク共有チャネルを割り当てる制御部(制御部270)とを備え、前記制御部は、前記制御情報に基づいて、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックを決定する端末(UE200)である。
 本開示の一態様は、複数のスロットに跨がって物理上りリンク共有チャネルを割り当てる制御部(制御部270)と、前記物理上りリンク共有チャネルを介してデータ系列を送信する送信部(無線信号送受信部210)とを備え、前記送信部は、複数のコードブロックが連結された後の前記データ系列を、前記物理上りリンク共有チャネルを介して繰り返し送信する端末(UE200)である。
 本開示の一態様は、複数のスロットに跨がって物理上りリンク共有チャネルを割り当てる制御部(制御部270)と、前記物理上りリンク共有チャネルを送信する送信部(無線信号送受信部210)とを備え、前記制御部は、サービングセルにおける前記物理上りリンク共有チャネルの設定情報に基づいて、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックのサイズを決定する端末(UE200)である。
 本開示の一態様は、複数のスロットに跨がって物理上りリンク共有チャネルを割り当てる制御部(制御部270)と、前記物理上りリンク共有チャネルを送信する送信部(無線信号送受信部210)とを備え、前記制御部は、複数のスロットに跨がって前記物理上りリンク共有チャネルを割り当てるか否かに基づいて、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックの複数のコードブロックへの分割を決定する端末(UE200)である。
 本開示の一態様は、複数のスロットに跨がって物理上りリンク共有チャネルを割り当てる制御部(制御部270)と、前記物理上りリンク共有チャネルを送信する送信部(無線信号送受信部210)とを備え、前記制御部は、複数のスロットに跨がって前記物理上りリンク共有チャネルを割り当てるか否かに基づいて、前記物理上りリンク共有チャネルに適用される変調及び符号化方式を決定する端末(UE200)である。
 本開示の一態様は、物理上りリンク共有チャネルの時間領域における割り当てを示す制御情報を受信するステップと、複数のスロットに跨がって物理上りリンク共有チャネルを割り当てるステップとを備え、前記物理上りリンク共有チャネルを割り当てるステップでは、前記制御情報に基づいて、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックを決定する無線通信方法である。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。 図3は、gNB100及びUE200の機能ブロック構成図である。 図4は、TBoMSによるPUSCHの割り当て例を示す図である。 図5は、TBoMSによるPUSCHの割り当て例(Type A repetition like TDRA)における問題点の説明図である。 図6は、動作例1(Opt 1, 2)に係るPUSCH時間領域の割り当て例を示す図である。 図7は、動作例2(Alt 1-1-1)に係るPUSCH(TB)の割り当て例を示す図である。 図8は、動作例2(Alt 2-2)に係るredundancy version(RV)の構成例を示す図である。 図9は、動作例3-1(Opt 1)に係るNsh symbの計算例を示す図である。 図10は、動作例4(Alt 2)に係るTBの割り当て例を示す図である。 図11は、動作例4(Alt 4-1)に係るTBの割り当て例を示す図である。 図12は、動作例6(Opt 3)に係るULチャネルのRepetitionの例を示す図である。 図13は、動作例6-1(Opt 4)に係るULチャネルのRepetitionの例を示す図である。 図14は、動作例6-2(Opt 3, 4)に係るULチャネルのRepetitionの例を示す図である。 図15は、動作例6-2(Opt 5)に係るULチャネルのRepetitionの例を示す図である。 図16は、動作例6-3(Alt 1, 2)に係るULチャネルのRepetitionの例を示す図である。 図17は、動作例6-3(Alt 3, 4)に係るULチャネルのRepetitionの例を示す図である。 図18は、動作例7に係るMAC RARの構成例を示す図である。 図19は、gNB100及びUE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
 gNB100は、NRに従った無線基地局であり、UE200とNRに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 無線通信システム10は、FR1及びFR2に対応する。各FR(Frequency Range)の周波数帯は、次のとおりである。
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 さらに、無線通信システム10は、FR2の周波数帯域よりも高周波数帯域にも対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯域に対応し得る。
 また、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。さらに、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも適用されてもよい。
 図2は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
 図2に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。なお、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。また、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。さらに、SCSは、240kHzよりも広くてもよい(例えば、図2に示すように、480kHz, 960kHz)。
 なお、図2に示す時間方向(t)は、時間領域、時間ドメイン、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、周波数ドメイン、リソースブロック、リソースブロックグループ、サブキャリア、BWP(Band width part)、サブチャネル、共通周波数リソースなどと呼ばれてもよい。
 無線通信システム10は、gNB100が形成するセル(或いは物理チャネルでもよい)のカバレッジを広げるカバレッジ拡張(CE: Coverage Enhancement)をサポートできる。カバレッジ拡張では、各種の物理チャネルの受信成功率を高めるための仕組みが提供されてよい。
 例えば、gNB100は、PDSCH(Physical Downlink Shared Channel)の繰り返し送信に対応でき、UE200は、PUSCH(Physical Uplink Shared Channel)の繰り返し送信に対応できる。
 無線通信システム10では、時分割複信(TDD)のスロット設定パターン(Slot Configuration pattern)が設定されてよい。例えば、DDDSU(D:下りリンク(DL)シンボル、S:DL/上りリンク(UL)またはガードシンボル、U:ULシンボル)が規定(3GPP TS38.101-4参照)されてよい。
 「D」は、全てDLシンボルを含むスロットを示し、「S」は、DL、UL、及びガードシンボル(G)が混在するスロットを示す。「U」は、全てULシンボルを含むスロットを示す。例えば、Sスロットが10D+2G+2Uの場合、時間方向において連続した2シンボル(2U)と1スロット(14シンボル)とをULに利用、つまり、連続した複数スロットをULに利用することができる。
 また、無線通信システム10では、スロット毎に復調用参照信号(DMRS)を用いてPUSCH(またはPUCCH(Physical Uplink Control Channel))のチャネル推定を実行できるが、さらに、複数スロットにそれぞれ割り当てられたDMRSを用いてPUSCH(またはPUCCH)のチャネル推定を実行できる。このようなチャネル推定は、Joint channel estimationと呼ばれてもよい。或いは、cross-slot channel estimationなど、別の名称で呼ばれてもよい。
 UE200は、gNB100がDMRSを用いたJoint channel estimationを実行できるように、複数スロットに割り当てられた(跨がった)DMRSを送信できる。
 また、無線通信システム10では、カバレッジ拡張に関して、複数スロットに割り当てられたPUSCHを介してトランスポートブロック(TB)を処理するTB processing over multi-slot PUSCH(TBoMS)が適用されてもよい。
 TBoMSでは、PUSCHのRepetition type A(詳細について後述)のTime Domain Resource Allocation(TDRA)のように、割り当てられたシンボルの数は、各スロットにおいて同じでもよいし、PUSCHのRepetition type B(詳細について後述)のTDRAのように、各スロットに割り当てられたシンボルの数は異なっていてもよい。
 TDRAは、3GPP TS38.214において規定されているPUSCHの時間ドメインにおけるリソース割り当てと解釈されてよい。PUSCHのTDRAは、無線リソース制御レイヤ(RRC)の情報要素(IE)、具体的には、PDSCH-ConfigまたはPDSCH-ConfigCommonによって規定されると解釈されてもよい。
 また、TDRAは、下りリンク制御情報(DCI:Downlink Control Information)によって指定されるPUSCHの時間ドメインにおけるリソース割り当てと解釈されてもよい。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。図3は、gNB100及びUE200の機能ブロック構成図である。
 図3に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
 なお、図3では、実施形態の説明に関連する主な機能ブロックのみが示されており、UE200(gNB100)は、他の機能ブロック(例えば、電源部など)を有することに留意されたい。また、図3は、UE200の機能的なブロック構成について示しており、ハードウェア構成については、図19を参照されたい。
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、複数のアンテナ素子から送信される無線(RF)信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 また、無線信号送受信部210は、物理上りリンク共有チャネルを送信してよい。本実施形態において、無線信号送受信部210は、送信部を構成してよい。
 具体的には、無線信号送受信部210は、PUSCHをネットワーク(gNB100)に向けて送信してよい。無線信号送受信部210は、PUSCHの繰り返し送信(Repetition)をサポートしてよい。
 PUSCHの繰り返し送信は、複数の種類が規定されてよい。具体的には、Repetition type A及びRepetition type Bが規定されてよい。Repetition type Aは、スロット内に割り当てられたPUSCHが繰り返し送信される形態と解釈されてよい。つまり、PUSCHは、14シンボル以下であり、複数スロット(隣接スロット)に跨がって割り当てられる可能性はない。
 一方、Repetition type Bは、15シンボル以上のPUSCHが割り当てられる可能性があるPUSCHの繰り返し送信と解釈されてよい。本実施形態では、このようなPUSCHを複数スロットに跨がって割り当てることが許容されてよい。
 また、無線信号送受信部210は、複数スロット以上の特定期間において、上りリンクチャネル(ULチャネル)を繰り返し送信してもよい。上りリンクチャネルには、物理上りリンク共有チャネル(PUSCH)及び物理上りリンク制御チャネル(PUCCH)が含まれてよい。共有チャネルは、データチャネルと呼ばれてもよい。
 複数スロット以上の特定期間とは、PUSCH(またはPUCCH)のrepetitionに関する期間と解釈されてよい。例えば、特定期間とは、Repetitionの数によって示されてもよいし、規定された数のRepetitionが実行される時間であってもよい。
 或いは、無線信号送受信部210は、ULチャネルを特定回数、繰り返し送信してもよい。具体的には、無線信号送受信部210は、PUSCH(またはPUCCH)を、複数回数、繰り返し送信してよい。
 特定期間及び/または特定回数は、ネットワークからのシグナリング(RRCの上位レイヤでもよいし、DCIなどの下位レイヤでもよい、以下同)によって指示されてもよいし、UE200に予め設定されていてもよい。
 また、無線信号送受信部210は、複数のコードブロック(CB)が連結(concatenation)された後のデータ系列を、PUSCHを介して繰り返し送信してよい。データ系列は、データブロック、ビット系列、ビット列など、他の同義の用語に読み替えられてもよい。CBは、Cyclic Redundancy Checksum(CRC)処理、CB分割、チャネル符号化及びレートマッチング後のCBであってもよい。
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
 変復調部230は、所定の通信先(gNB100など)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれてよい。
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味してよい。
 また、制御信号・参照信号処理部240は、物理上りリンク共有チャネル(PUSCH)の割り当てに関するUE200の能力情報をネットワークに送信してよい。本実施形態において、制御信号・参照信号処理部240は、能力情報を送信する送信部を構成してよい。
 具体的には、制御信号・参照信号処理部240は、PUSCHの割り当て(Repetitionを含んでよい)に関するUE Capability InformationをgNB100に送信できる。なお、UE Capability Informationの詳細については、後述する。
 また、制御信号・参照信号処理部240は、PUSCHの時間領域における割り当てを示す制御情報を受信できる。本実施形態において、制御信号・参照信号処理部240は、受信部を構成してよい。
 具体的には、制御信号・参照信号処理部240は、PUSCHの時間領域における割り当てを示す下りリンク制御情報(DCI)を受信してよい。
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。
 制御部270は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部270は、ULチャネル、具体的には、PUSCH及びPUCCHの送信を制御する。
 具体的には、制御部270は、複数スロット以上の特定期間を単位として、ULチャネルを周波数方向においてホッピングさせることができる。ULチャネルの周波数方向におけるホッピングとは、frequency hoppingと呼ばれてもよく、複数スロット以上の特定期間を単位としたfrequency hoppingは、スロット間周波数ホッピング(inter-slot frequency hopping)と呼ばれてもよい。なお、ホッピングとは、利用する周波数リソースが変化することを意味してよい。端的には、サブキャリア、リソースブロック、リソースブロックグループまたはBWPなどが変化することを意味してよい。
 また、制御部270は、ULチャネルの繰り返し送信数を示す特定回数を単位として、ULチャネルを周波数方向においてホッピングさせてもよい。具体的には、制御部270は、指定されたULチャネルの繰り返し送信数(Repetition数)を単位として、言い換えると、所定数のRepetition毎にfrequency hoppingを実行してよい。
 制御部270は、gNB100におけるJoint channel estimationが適用された場合において、ULチャネル(PUSCH及びPUCCH)の送信が重複する場合(衝突した場合と表現されてもよい)、当該ULチャネル(のRepetitionでもよい)リソース割り当て時、具体的には、DCI受信のタイミングにおいて、重複を回避した割り当て可能なリソースを用いたfrequency hoppingのパターン(hopping pattern)を決定してもよい。
 或いは、制御部270は、ULチャネル(PUSCH及びPUCCH)の送信が重複する場合、当該ULチャネルの最初のRepetition時、具体的には、最初のRepetitionの送信タイミングにおいて、重複を回避した割り当て可能なリソースを用いたhopping patternを決定してもよい。
 また、制御部270は、ネットワークからのシグナリングに基づいて、上述したようなULチャネルのRepetitionに関するhopping patternを設定してもよい。
 制御部270は、ULチャネル、具体的には、PUSCH上において送信されるDMRSの割り当てを、PUSCHの繰り返しの状態、つまり、Repetition数、Repetition期間などに基づいて決定してもよい。
 具体的には、制御部270は、所定数のRepetition毎に、同一のDMRS用のシンボル(OFDMシンボル)を送信してもよい。また、制御部270は、所定数のRepetition毎に、使用するDMRS用のシンボル(OFDMシンボル)をそれぞれ設定してもよい。
 制御部270は、上述したように、複数のスロットに跨がってPUSCHを割り当てて、つまり、TBoMSをサポートしてよい。TBoMSをサポートする場合、制御部270は、制御信号・参照信号処理部240が受信したDCI(制御情報)に基づいて、PUSCHを介して送信されるトランスポートブロック(TB)を決定してよい。
 なお、複数のスロットに跨がるとは、連続する2つ以上のスロットにPUSCHに割り当てられることを意味してよい。また、スロットではなく、シンボル或いはサブフレームなどが単位とされてもよい。
 制御部270は、サービングセルにおけるPUSCHの設定情報に基づいて、PUSCHを介して送信されるトランスポートブロック(TB)のサイズを決定してよい。例えば、制御部270は、RRCレイヤの情報要素(IE)であるPDSCH-ServingCellConfigに基づいて、当該TBのサイズを決定してよい。但し、PUSCHの設定情報に関連していれば、RRCレイヤの他の情報要素でもよいし、必ずしもサービングセルに限定されなくてもよい。また、制御部270は、RRCレイヤ以外の他のレイヤのPUSCHに関する設定情報に基づいて、当該TBのサイズを決定してもよい。
 また、制御部270は、複数のスロットに跨がってPUSCHを割り当てるか否かに基づいて、PUSCHを介して送信されるTBの複数のコードブロック(CB)への分割を決定してもよい。例えば、制御部270は、3GPP Release-15, 16と同様に、1つのTBを複数のCB(最大8つ)に分割してもよい。或いは、制御部270は、PUSCHが割り当てられるスロット数(またはシンボル数)に応じて、CBへの最大分割数を変更してもよい。
 また、制御部270は、複数のスロットに跨がってPUSCHを割り当てるか否かに基づいて、PUSCHに適用される変調及び符号化方式を決定してもよい。具体的には、制御部270は、複数のスロットに跨がってPUSCHを割り当てる、つまり、TBoMSの場合、変調方式として特定のQuadrature Amplitude Modulation(QAM)が適用されてもよく、特定のModulation and Coding Scheme(MCS)が適用されてもよい。
 また、上述したDMRS送受信及びTBoMSに関する機能は、gNB100にも備えられてよい。例えば、gNB100(無線信号送受信部210)は、UE200から特定期間内において繰り返し送信されるULチャネルを受信する受信部を構成してよい。gNB100の無線信号送受信部210は、当該特定期間を単位として、周波数方向においてホッピングしたULチャネルを受信してよい。
 また、gNB100(無線信号送受信部210)は、UE200から特定回数、繰り返し送信、つまり、Repetitionが実行されるULチャネル(例えば、PUSCH)を受信してよい。この場合、gNB100(無線信号送受信部210)は、当該特定回数を単位として、周波数方向においてホッピングしたULチャネルを受信してよい。
 gNB100(制御部270)は、複数のスロットに割り当てられたDMRSを用いて、複数のスロットに割り当てられたULチャネル、例えば、PUSCHのチャネル推定(Joint channel estimation)を実行する制御部を構成してよい。
 また、gNB100(制御部270)は、複数スロットに割り当てられたULチャネルを介してTBを処理するTBoMS、つまり、複数のスロットに跨がって割り当てられたPUSCHなどのULチャネルの受信に関する制御を実行してよい。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。カバレッジ拡張の性能(coverage performance)を目的とした上りリンクチャネルのチャネル推定に関する動作について説明する。
 (3.1)前提
 上述したように、TBoMSとは、1つのトランスポートブロックを複数のスロットを用いて送信する技術と解釈されてよい。
 図4は、TBoMSによるPUSCHの割り当て例を示す。具体的には、図4は、Type A repetition like TDRA及びType B repetition like TDRAに従ったTBoMSによるPUSCHの割り当て例を示す。なお、Type A, Bは、上述した。Repetition type A, Bを意味してよい。
 TBoMSは、次のような利点を有し得る。
  ・複数スロットに跨がってリソースが割り当てられるため、符号化レート(コードレート)が低下する。
  ・符号系列が長くなることによって、チャネルコーディングのゲインが向上する。
  ・複数TBを送信する場合に比べて上位レイヤのヘッダー量を削減できる。
 また、3GPP Release-15などでは、PUSCH(PDSCHも同様)を介して送信されるTBのサイズ(TBS)の決定する場合、まず、RE数(NRE)が計算され、次に、計算されたNREを用いて情報ビット数(Ninfo)が計算される。そして、TBSは、計算されたNinfoに基づいて決定される。ここで、TBSの決定では、PUSCHが1スロットのみに割り当てられることを前提としている。
 図5は、TBoMSによるPUSCHの割り当て例(Type A repetition like TDRA)における問題点の説明図である。図5に示すように、TBoMSの場合、複数スロット(連続してよい)に跨がって割り当てられるPUSCHに対応したTBSサイズが決定される必要がある。
 (3.2)動作概要
 以下では、次の動作例について説明する。
  ・(動作例1):TBoMS 適用時におけるPUSCHの時間領域割当方法
  ・(動作例2):1TBを複数スロットで送信する方法
  ・(動作例3):TBoMS適用時におけるTBSの決定方法
   ・(動作例3-1):NREを計算する際に1スロットでなく複数スロットでのRE数に拡張
   ・(動作例3-2):TDRAのSLIV (Start and Length Indicator Value)に基づいてNRE計算し、TDRAに応じてNinfoを計算
  ・(動作例4):TBoMS時のコードブロック数決定方法
  ・(動作例5):TBoMS使用時のMCS table選択方法
  ・(動作例6):TBoMS使用時のfrequency hopping
   ・(動作例6-1):frequency hopping(Type A repetition like TDRA)
   ・(動作例6-2):frequency hopping(Type B repetition like TDRA)
   ・(動作例6-3):Repetitionリソースのドロップ時のhopping pattern
   ・(動作例6-4):frequency hopping関連情報の受信方法
  ・(動作例7):Msg3 PUSCHへの適用
   ・(動作例7-1):Msg3でのJoint channel estimation適用可否
  ・(動作例8):UE capabilityの通知
 (3.3)動作例1
 本動作例では、TBoMS適用時におけるPUSCH時間領域の割り当てに関する動作について説明する。
 UE200は、TBoMSのTDRAを実行する際、次の何れかによってPUSCH時間領域の割り当て方法をネットワーク(無線基地局)に通知してよい。
  ・(Opt 1):割り当てる複数のRepetitionをTBoMS PUSCHの1つのRepetitionに統合するように通知
  ・(Opt 2):Repetitionとは独立して、1つのTB(1TB)の送信に用いられるPUSCHが割り当てられるスロット数(または繰り返し送信(Repetition)数)を通知(或いは、ネットワークが当該通知をUE200に対して行い、UE200は、当該通知に基づいて動作してもよい(以下同)。
 図6は、動作例1(Opt 1, 2)に係るPUSCH時間領域の割り当て例を示す。図6に示すように、複数のRepetitionが1つのRepetitionに統合されてもよい(Opt 1)し、Repetitionの回数に依存せず、複数スロットに1TB用のPUSCHが割り当てられてもよい。
   ・(Opt 2-1):上位レイヤのシグナリングによって、スロット数(或いはRepetition数)を通知
 この場合、Repetition数は、実際に割り当てるRepetition数でもよいし、Repetitionリソースのドロップ前のRepetition数でもよい。当該シグナリングには、例えば、RRCレイヤのPUSCH-Config IEまたはConfiguredGrantConfig IEなどが用いられてよい。
   ・(Opt 2-2):DCIを用いてスロット数(或いはRepetition数)を通知
 この場合、スロット数は、実際に割り当て可能なスロット数またはRepetitionリソースのドロップ前の連続したスロット数でもよい。
    ・(Opt 2-2-1):DCIを用いて明示的に通知する
 例えば、RRCレイヤのTDRA tableの要素として、TBoMS関連情報が追加されてよい。
    ・(Opt 2-2-2):DCIを用いて暗黙的に通知する
 例えば、DCIのフィールドにTBoMS関連情報を紐づけて通知してもよい。或いは、リソース割り当て用のDCIが配置されるCCE (Control channel element) indexにTBoMS関連情報を紐づけて通知してもよい。この場合、紐づけ方法は、上位レイヤのシグナリングによる通知でもよいし、所定のルールによって決定されてもよい。
 (3.4)動作例2
 本動作例では、1TBを複数スロットで送信する動作について説明する。UE200は、次の何れかによって、複数スロットを用いて1TBを送信してもよい。
  ・(Alt 1):コードブロック(CB)連結(concatenation)後の1ビット系列を複数スロットに跨がって送信
 具体的には、1ビット系列を分割し、複数スロットに跨がって指定されたリソースを用いて分割した系列が送信されてよい。
   ・(Alt 1-1):複数のPUSCHを介して1ビット系列を送信
   ・(Alt 1-2):1つのPUSCHを複数のスロットに割り当て
  ・(Alt 2):CB連結後の系列を繰り返し送信
 複数スロットに跨がって指定されたリソースを用いて複数の系列を割当てもよい(Repetitionと同様)。この場合、同じ系列が繰り返し送信されてもよいし、異なる系列が送信されてもよい。
 なお、CRC付加(CRC attachment)、CB分割(CB segmentation)、CB毎のCRC付加(CRC attachment per CB)、チャネル符号化(Channel coding)、レートマッチング(Rate matching)、CB連結(CB concatenation)の順に処理されてよい。
    ・(Alt 1-1-1): 各PUSCHを介して等分割したビット系列を送信
    ・(Alt 1-1-2): 各PUSCHのシンボル長に応じて送信するビット長を決定
 例えば、Type B repetition like TDRAにおいてsegmentationが発生した場合、各Repetitionにおいて異なるビット長のビット系列が送信されてもよい。
 図7は、動作例2(Alt 1-1-1)に係るPUSCH(TB)の割り当て例を示す。
   ・(Alt 2-1):レートマッチングの際、従来のbit selectionを使用
   ・(Alt 2-2):レートマッチングの際、新しいbit selectionを適用
 例えば、5つ以上のredundancy version(RV)を設け、bit selection時に1つが選択されてもよい。
  ・(Opt A):既存のstarting pointが割り当てられたRVに加え、異なるstarting pointを割り当てたRVを追加
  ・(Opt B):各RVに新しくそれぞれstarting pointを割り当て
 図8は、動作例2(Alt 2-2)に係るredundancy version(RV)の構成例を示す。図8に示すように、既存のstarting pointが割り当てられたRV(RV0~3)と、異なるstarting pointが割り当てられたRV(RV4, 5)とが用いられてもよいし(Opt A)、各RVに新しくそれぞれstarting pointが割り当てられてもよい(Opt B)。
 (3.5)動作例3
 本動作例では、TBoMS適用時におけるTBSの決定に関する動作について説明する。具体的には、複数スロットに跨がるTBに対応したTBSの決定について説明する。
  ・(Opt 1): NREを計算する際、1スロットでなく複数スロットでのRE数に拡張する(動作例3-1)
 具体的には、次のように、NRE(N'RE)が計算されてよい。
Figure JPOXMLDOC01-appb-M000001
 ここで、各変数は、複数スロットに跨がるREの数に変更されてよい。
  ・(Opt 2):TDRAのSLIVに基づいてNREを計算し、TDRAに応じてNinfoを計算する(動作例3-2)
   ・(Alt 1):Type A repetition like TDRAの場合、1スロットのNREを計算し、繰り返し送信数をNinfo計算時に乗算する
 この場合、ドロップするスロットを考慮してスロット数が計算されてもよい(割り当て可能なスロット数を乗算)。TDD pattern、SFI (Slot Format Indication) / CI (Cancel Indication) などが存在する場合、送信または受信するTBSが通知した値から変更されてもよい。
   ・(Alt 2): Type B repetition like TDRAの場合、1つのRepetitionのNREを計算し、繰り返し送信数をNinfo計算時に乗算する
    ・(Opt 1):actual repetition数を乗算する。この場合、分割(segmentation)されていないactual repetitionの数が乗算されてもよい。
    ・(Opt 2):nominal repetition数を乗算する。
 なお、 actual repetitionとは、最終的に送信するrepetitionであり、nominal repetitionは、gNBがUEに通知/割り当てたrepetitionと解釈されてよい。例えば、次のような要因によって、actual repetitionとnominal repetitionとが変わり得る。
  (i)nominal repetitionがULシンボルに配置されていない場合、nominal repetitionは除外されてよい。
  (ii)nominal repetitionがスロット境界(slot boundary)に配置されている場合、slot boundaryにおいてnominal repetitionが分割され、2つのactual repetitionに変わってよい。
   ・(Alt 3):所定のパラメータを追加(DCIまたは上位レイヤのシグナリングを利用して当該パラメータが通知されてよい)
 例えば、次のように、Ninfoの値を計算する際に所定のパラメータ(K)が追加されてよい。例えば、Kは、Ninfo値をK倍する値(スケーリングファクタ)でよいが、必ずしもこのような目的に限定されない。
Figure JPOXMLDOC01-appb-M000002
 (3.5.1)動作例3-1
 本動作例では、NREを計算する際に1スロットでなく複数スロットでのRE数に拡張されてよい。
 この場合、NPRB ohは、次の何れかによって計算されてよい。
  ・(Opt 1):全スロットで同じNPRB ohを設定
   ・(Opt 1-1):PDSCH-ServingCellConfigによって設定したxOverheadを各スロットに割当
   ・(Opt 1-2):PDSCH-ServingCellConfig で設定したxOverheadをTBoMSが適用されるスロット数で除した値を各スロットにおいてNPRB ohとして設定
 この場合、ceilまたはfloorによって商が整数に整えられてもよい。
   ・(Opt 1-3):新しいパラメータを追加し、TBoMS使用時には、当該パラメータに基づいてNPRB ohに決定
   ・(Opt 1-4):新しいパラメータを追加し、TBoMS使用時には、当該パラメータとxOverheadとに基づいてNPRB ohに決定
  ・(Opt 2): TBoMSが適用されるスロット・シンボル数に基づいてNPRB ohを設定
   ・(Opt 2-1):リソースが割り当てられるスロット数をxOverheadに乗算(Type A repetition like TDRA)
   ・(Opt 2-2):繰り返し送信数をxOverheadに乗算(Type B repetition like TDRA)
    ・(Opt 2-2-1):actual repetition数を乗算する。
 この場合、分割されていないactual repetitionの数が乗算されてもよい。
    ・(Opt 2-2-2):nominal repetition数を乗算する。
   ・(Opt 2-3):TDRAのSLIVと割り当てるシンボル数、割り当てた全シンボル数とxOverheadに応じて計算
 例えば、(xOverhead) × (全シンボル数) / (TDRAのSLIVと割り当てるシンボル数)によって計算されてもよい。
 また、Opt 2-1, 2-2, 2-3では、xOverheadの代わりにPDSCH-ServingCellConfigによって設定さえた異なるパラメータが用いられてもよい。例えば、追加したパラメータとxOverhead、両スロット・シンボル数に基づいてNPRB ohが計算されてもよい。この場合、TBoMS適用時と適用しない時とにおいて、別々のパラメータが設定されてもよい。
 また、Nsh symbの計算(NPRB DMRS)に関しては、次の何れかが適用されてもよい。
  ・(Alt 1): リソースが割り当てられる全リソースのシンボル(RE)数に変更
 この場合、TDD pattern、SFI、CIを考慮してシンボル(RE)数が計算されてもよい。
  ・(Alt 2): リソースを割り当てられるスロット数を乗算(Type A repetition like TDRA)
  ・(Alt 3): 繰り返し送信数を乗算(Type B repetition like TDRA)
   ・(Opt 1):actual repetition数を乗算する。
 この場合、分割されていないactual repetitionの数が乗算されてもよい。
   ・(Opt 2):nominal repetition数を乗算する。
 図9は、動作例3-1(Opt 1)に係るNsh symbの計算例を示す。図9に示すように、複数スロットのシンボル数(18)が計算されてよい。
 (3.6)動作例4
 本動作例では、TBoMS時のコードブロック数決定に関する動作について説明する。
 TBoMSに関する1TBは、次の何れかの方法によって、CBに分割されてもよい。
  ・(Alt 1): TBoMS使用時には、CBの分割を行わない
 RRCによって設定されたmaxCodeBlockGroupsPerTransportBlockに関わらず、CBに分割しない
  ・(Alt 2):3GPP Release 15, 16と同様に、1TBを複数CBに分割(最大8CB)する
 この場合、maxCodeBlockGroupsPerTransportBlockの最大数が増やされてもよい。また、TBoMSを使用時の最大CB数が個別に設定されてもよい。
  ・(Alt 3):スロット数(シンボル数)に応じて最大CBの分割数を変更
 この場合、1TBが割り当てられるスロット数(シンボル数)に応じて最大CB数が適宜変更されてもよい。例えば、1TBが割り当てられているスロット数に、RRCによって設定された最大CB数が乗算されてもよい。
  ・(Alt 4):リソースを割り当てる際のRepetition数に応じてCB数を設定
 図10は、動作例4(Alt 2)に係るTBの割り当て例を示す。図10に示すように、maxCodeBlockGroupsPerTransportBlock = 4 の場合、3スロットに渡る1つのTBが4つのCBに分割されてよい。
   ・(Alt 4-1):繰り返し配置数を最大CB数に乗算
   ・(Alt 4-2):繰り返し配置数 = 最大CB数に設定
 なお、Alt 3及びAlt 4は、従来のDCIによって対応できるように、最大CB数が8に制限されてもよい。
 図11は、動作例4(Alt 4-1)に係るTBの割り当て例を示す。図11に示すように、1TBが3スロットに跨がる場合、最大CB数を6とし、2 スロットに跨がる場合、最大CB数を4としてもよい。
 (3.7)動作例5
 本動作例では、TBoMS使用時のMCS table選択に関する動作について説明する。TBoMS使用時のMCS tableに関しては、次の何れかの動作が適用されてよい。
  ・(Alt 1):TBoMS使用時には、qam 64 low SE MCS tableに固定
 具体的には、MCS-C (Cell)-RNTIの使用有無に関わらず、TBoMS使用時には、qam 64 low SE MCS tableに固定されてよい。なお、このような動作は、Msg 3に適用されてもよい。なお、Msg3は、ランダムアクセスチャネル(RACH(Random Access Channel)手順のメッセージであり、Msg3の送信にはPUSCHが用いられてよい。
  ・(Alt 2):TBoMS使用時には、新しいlow SE MCS tableを使用可能とする
 具体的には、TBoMS使用時には、新しいMCS tableが利用されてよい。C-RNTIの使用時には、次のMCS tableの何れかが、所定のルール、上位レイヤのシグナリングまたはDCIによって指定されてもよい。
  ・既存のMCS table
  ・qam 64 low SE MCS table
  ・新しいMCS table
 また、MCS-C-RNTIの使用時には、次のMCS tableの何れかが、所定のルール、上位レイヤのシグナリングまたはDCIによって指定されてもよい。
  ・qam 64 low SE MCS table
  ・新しいMCS table
 なお、MCS index、TDRAまたは送信電力に応じて、暗黙的にMCS tableが選択されるようにしてもよい。
 (3.8)動作例6
 (3.8.1)動作例6-1
 本動作例では、TBoMS使用時のfrequency hoppingに関する動作について説明する。
 UE200は、TBoMS適用時において、次のhopping patternの中から、ネットワーク(無線基地局)によって指定、或いは予め規定されたルール(設定)に従ってULチャネルのhopping patternを決定してよい。なお、ULチャネルは、PUSCHまたはPUCCHの何れかを意味してよい(以下同)。また、ULチャネルには、RepetitionされたPUSCHまたはPUCCHが含まれてよい。
 具体的には、UE200は、Type A repetition like TDRAを適用、またはPUCCHを使用した場合、次の何れかのhopping patternを決定してよい。
  ・(Opt 1):スロット毎にfrequency hopping
  ・(Opt 2):スロット内においてfrequency hopping
  ・(Opt 3):Repetition送信内で1度のみfrequency hopping
   ・(Opt 3-1):繰り返し送信数に基づいて一意のホップ期間(hop duration)を計算
 この場合、ULチャネルの繰り返し送信数に基づいて、frequency hoppingを行わないようにしてもよい。また、Repetition数は、実際に割り当てるRepetition数でもよいし、Repetitionリソースのドロップ前のRepetition数でもよい。なお、Repetitionリソースのドロップとは、当該Repetitionリソースが他のULチャネルのリソースと衝突(割り当てが重複すること)によって、割り当てられないリソース(時間リソース及び/または周波数リソース)と解釈されてよい。
 例えば、first hopping duration = floor(Repetition数/2) or ceil(Repetition数/2)によってホップ期間が決定されてもよい。
   ・(Opt 3-2):frequency hoppingを行うスロット位置を通知
 例えば、UE200は、duration per hop = X slot 数(X repetition 数)をネットワークに通知し、X repetition送信(X回のrepetition送信、以下同)後、frequency hoppingしてもよい。或いは、ネットワークが当該通知をUE200に対して行い、UE200は、当該通知に基づいて動作してもよい(以下同)。
 また、スロット数は、実際にRepetitionが割り当てるスロット数でもよいし、Repetitionリソースのドロップ前のスロット数でもよい。
 図12は、動作例6(Opt 3)に係るULチャネルのRepetitionの例を示す。図12に示すように、ホップ期間は、floor(Repetition (Rep)数(6)/2)=3と決定されてよい。図12において、時間(t)方向におけるそれぞれの枠は、スロット(但し、シンボルなどでもよい)と対応すると解釈されてもよい(以下同)。
 なお、ホップ期間(hop duration)は、duration hop、hopping duration、duration per hopなどの用語で表現されてもよく、時間長またはRepetitionの数によって示されてよい。
  ・(Opt 4):Xスロット毎にfrequency hopping
   ・(Opt 4-1):duration per hopがネットワークから通知される
 例えば、duration per hop = X slot数と通知され、X slot毎にfrequency hoppingしてよい。
   ・(Opt 4-2):Joint channel estimationが適用されるスロット数(シンボル数でもよい)に基づいてhopping patternを決定する
 例えば、Time window sizeが3スロットの場合、3スロット毎にfrequency hoppingしてよい。Time window sizeは、スロットを単位としてもよいし、シンボルなど、他の時間領域の単位でもよい(以下同)。
   ・(Opt 4-3):繰り返し送信数に基づいてduration per hopを決定する
   ・(Opt 4-4):繰り返し送信数とJoint channel estimationが適用されるスロット数(シンボル数でもよい)に基づいてhopping patternを決定する
 図13は、動作例6-1(Opt 4)に係るULチャネルのRepetitionの例を示す。図13に示すように、2スロット毎にfrequency hopping(X = 2)してよい。
 (3.8.2)動作例6-2
 本動作例では、TBoMS適用時におけるfrequency hopping(Type B repetition like TDRA)に関する動作について説明する。
 UE200は、次のhopping patternの中から、ネットワーク(無線基地局)によって指定、或いは予め規定されたルールに従ってULチャネルのhopping patternを決定してよい。
 具体的には、UE200は、Type B repetition like TDRAを適用した場合、次の何れかのhopping patternを決定してよい。
  ・(Opt 1):スロット毎にfrequency hopping
  ・(Opt 2):Repetition毎にfrequency hopping
  ・(Opt 3):Repetition送信内で1度のみfrequency hopping
  ・(Opt 4):Xスロット毎にfrequency hopping
 図14は、動作例6-2(Opt 3, 4)に係るULチャネルのRepetitionの例を示す。具体的には、図14の上側は、Opt 3に係るULチャネルのRepetitionの例を示し、図14の下側は、Opt 4に係るULチャネルのRepetitionの例を示す。
 図14に示すように、ホップ期間は、floor(Repetition数(10)/2)=5と決定されてもよいし、2スロット毎にfrequency hopping(X = 2)してよい。また、図14に示すように、Type B repetition like TDRAの場合、スロット内において、複数のRepetition(Rep)が繰り返されてもよく、同一スロット内に複数のRepetitionが割り当てられてもよい。
  ・(Opt 5):X Repetition毎にfrequency hopping
   ・(Opt 5-1):duration per hopがネットワークから通知される
 例えば、UE200は、duration per hop = X repetition数として通知し、X repetition毎にfrequency hoppingしてよい。
   ・(Opt 5-2):Joint channel estimationが適用されるスロット数(シンボル数でもよい)に基づいてhopping patternを決定する
 例えば、Time window sizeが3スロットの場合、3スロット毎にfrequency hoppingしてよい。Time window sizeは、Joint channel estimationが適用可能な時間領域であってよく、スロットを単位としてもよいし、シンボルなど、他の時間領域の単位でもよい。
 図15は、動作例6-2(Opt 5)に係るULチャネルのRepetitionの例を示す。図15に示すように、3スロット毎にfrequency hoppingしてよい。また、図15に示すように、ホッピングのタイミングは、スロット境界でなく、スロット内(中間)でもよい。
 (3.8.3)動作例6-3
 本動作例では、TBoMS適用時において、Repetitionリソースのドロップ時のhopping patternに関する動作について説明する。図16は、動作例6-3(Alt 1, 2)に係るULチャネルのRepetitionの例を示す。
 UE200は、(無線基地局側において)Joint channel estimationが適用され、ULチャネル(例えば、PUSCH)のRepetitionリソースが、異なるリソース(例えば、PUCCH用のリソース)と衝突(重複と呼ばれてもよい)する場合、次の何れかのhopping patternを適用してよい。
  ・(Alt 1):リソースの衝突を考慮せずhopping patternを適用
 この場合、リソースがドロップされる場合を考慮せずにスロット単位でhopping patternが適用されてよい。例えば、2回目のRepetitionリソースがドロップされた場合でも、同様のhopping patternが維持されてもよい(図16の上側参照、ドロップされたRepetitionリソースを点線枠で示す)。
  ・(Alt 2):実際に送信されるリソースに基づいてhopping patternを適用
 この場合、各Repetitionの送信に用いられるリソースに基づいてhopping patternが適用されてよい。例えば、2回目のRepetitionリソースがドロップされた場合、ドロップされたリソースを除いてhopping patternが適用されてよい(図10の下側参照、ドロップされたRepetitionリソース(点線枠)が除かれるため、スロット#3以降の周波数方向のリソースがAlt. 1と異なっている)。
 なお、後述するようなhopping patternの適用時、或いは割り当て可能なリソース数に基づいた繰り返し送信数が指定される場合、Alt 1, 2が別々に設定されてもよい。
 図17は、動作例6-3(Alt 3, 4)に係るULチャネルのRepetitionの例を示す。
  ・(Alt 3):リソース割り当て時において、割り当て可能なRepetitionリソースに基づいてhopping patternを適用
 この場合、衝突理由に応じて割り当て可能なリソースが決定されてもよい。例えば、TDD pattern , SS/PBCH block (Synchronization Signal/ Physical Broadcast Channel blocks)のシンボルは考慮されてよいが、SFI (Slot Format Indication) / CI (Control Information) / PUCCHの繰り返し送信との衝突は考慮しないとされてもよい。或いは、無線基地局(gNB100)が既知であるRepetitionリソースのドロップは考慮されてよいが、無線基地局が判断できないドロップは考慮されなくてもよい。
  ・(Alt 4):最初のRepetitionの送信時において、割り当て可能なRepetitionリソースに対してhopping patternを適用
 この場合、時衝突理由に応じて割り当て可能なリソースが決定されてもよい。Alt 3と同様に、例えば、TDD pattern , SS/PBCH blockのシンボルは考慮されてよいが、SFI / CI / PUCCHの繰り返し送信との衝突は考慮しないとされてもよい。或いは、無線基地局が既知であるRepetitionリソースのドロップは考慮されてよいが、無線基地局が判断できないドロップは考慮されなくてもよい。
 (3.8.4)動作例6-4
 本動作例では、UE200は、次の何れかの方法によって、frequency hopping関連情報を受信してよい。
  ・(Opt 1):DCI
   ・(Opt 1-1):DCIのフィールドによる明示的(explicit)なfrequency hopping関連情報
 この場合、frequency hopping関連情報とDCIフィールドとの紐づけ(対応付け)は、上位レイヤのシグナリングが用いられてもよいし、予め規定されたルール(設定)に従ってもよい。
   ・(Opt 1-2):上位レイヤにおいて、TDRA tableにfrequency hopping関連情報の情報要素を追加し、DCIによって決定
   ・(Opt 1-3):DCIのフィールドによる暗黙的(implicit)frequency hopping関連情報
 例えば、DCIのフィールドにfrequency hopping関連情報が紐づけられてもよい。或いは、リソース割り当て用のDCIが配置されるCCE (Control channel element) indexにfrequency hopping関連情報が紐づけられてもよい。
  ・(Opt 2):上位レイヤ信号
 例えば、RRCにおいて受信したfrequency hopping関連情報に基づいて、hopping patternが選択されてよい。
  ・(Opt 3):所定のルールに基づいて、hopping patternを決定
 例えば、複数スロットを用いたチャネル推定の場合、hopping patternの何れかのオプションが指定されてもよい。
 また、UE200は、次の何れかの方法によってhopping patternを設定してもよい。
  ・Joint channel estimationが適用されるスロット数とhop durationのパラメータとを別々または共通に設定する
  ・Type A like repetition TDRAと、Type B like repetition TDRAとで別々または共通のパラメータを設定する
  ・Type B like repetition TDRAのhop durationを、スロット数とRepetition数とで別々または共通のパラメータを設定する
 (3.9)動作例7
 本動作例では、TBoMSのMsg3 PUSCHへの適用に関する動作について説明する。
 UE200は、次の何れかの方法または組合せに基づいて、TBoMS for Msg3initial transmissionの関連情報を受信してよい。この場合、UEの使用周波数(帯域)に応じてTBoMSに関する設定が異なってもよい。
  ・上位レイヤのシグナリングによるUE200への通知
 例えば、RRCレイヤにおいて規定されるPUSCH-ConfigCommon IE (Information Element)またはRACH-ConfigCommon IEなどが用いられてよい。なお、Msg3は、ランダムアクセスチャネル(RACH(Random Access Channel)手順のメッセージであり、Msg3の送信にはPUSCHが用いられてよい。
 また、Msg1は、PRACH(Physical Random Access Channel)を介して送信されてもよい。Msg1は、PRACH Preambleと呼称されてもよい。Msg2は、PDSCHを介して送信されてもよい。Msg2は、RAR(Random Access Response)と呼称されてもよい。Msg3は、RRC Connection Requestと呼称されてもよい。Msg4は、RRC Connection Setupと呼称されてもよい。
  ・Msg2 RARを通じてのUE200への通知
 次の何れかの方法が適用されてよい。
  ・(Alt 1):Enhanced UEには、通常のUEと異なるMAC構成のRARを送信することによる通知
 Enhanced UEとは、TBoMSをサポートしているUEを意味してよい。
  ・(Alt 2):UL grant(許可)のTDRAを用いた通知
 例えば、RRCにおいて設定されるTDRA tableに複数スロットに跨がるチャネル推定に関する情報要素を追加し、当該情報が、DCIによって選択されてよい。
  ・(Alt 3):UL grantの情報を用いて暗黙的に通知
 例えば、TPC (Transmit Power Control) commandまたはMCS(Modulation and Coding Scheme)に紐づけられてもよい。この場合、所定のルールまたネットワーク(無線基地局)によって紐づけ方法が設定されてもよい。
  ・(Alt 4):予約ビットを用いた通知
 図18は、動作例7に係るMAC RARの構成例を示す。図18に示すように、MAC RARに含まれる予約ビット(R)が上述した通知に用いられてもよい。例えば、予約ビットを用いてでTBoMSの使用有無のみが通知されてもよい。
 また、上位レイヤのシグナリングによる通知では、PUSCH-ConfigCommon information element TDRA tableにTBoMS関連の情報が追加されてもよい。
 或いは、DCI format 0_0 with CRC scrambled by TC-RNTI (Temporary C (Cell)-RNTI)を通じた通知では、次の何れかが適用されてよい。
  ・(Alt 1):DCIが配置されたCCE indexに応じてTBoMS関連情報を暗黙的に通知
  ・(Alt 2):HARQ process number, New data indicatorの予約ビット(reserved bits)を用いてTBoMS関連情報を通知
  ・(Alt 3):DCIによって通知される情報によって暗黙的に通知
 例えば、TDRA、TPC commandまたはMCSに関連情報が紐づけられてもよい。この場合、所定のルールまたネットワーク(無線基地局)によって紐づけ方法が設定されてもよい。
 或いは、DCI with CRC scrambled by Enhanced UE用のRNTIが用いられてもよい。Enhanced UE用のRNTIは、RARによって割り当てられてもよい。また、Enhanced UE用のDCIによって、TBoMS関連情報が通知されてもよい。
 また、UE200は、次の何れかの方法に基づいて、Msg3送信時にTBoMSを適用するか否か、或いは適用可否をネットワーク(無線基地局)に報告(通知)してもよい。
  ・(Opt 1):Msg3の繰り返し送信の適用可否(または要求)と併せて報告する
 Msg3の繰り返し送信を行う場合、TBoMSを適用可能などが含まれてよい。
  ・(Opt 2):Msg3の繰り返し送信の適用可否(or要求)とは独立に報告する
   ・(Opt 2-1):適用可否(または要求)に応じてそれぞれ異なるinitial bandwidthを割り当てる
   ・(Opt 2-2):適用可否(または要求)に応じてそれぞれ異なるRACH preambleを用いる
   ・(Opt 2-3):適用可否(または要求)に応じてそれぞれ異なるRACH occasionを用いる
   ・(Opt 2-4):適用可否(または要求)に応じて繰り返し送信されるMsg1において、特定のOCC(Orthogonal Cover Code)パターンを使用
 (3.10)動作例8
 本動作例では、UE capabilityの通知に関する動作について説明する。
 UE200は、TBoMS に関して、次の内容をUE Capability Informationとしてネットワークに報告してよい。
  ・TBoMS PUSCHの繰り返し送信適用可否
  ・TBoMS適用時の各RV拡張の適用可否
  ・TBoMS適用時の新しいlow SE MCS table適用可否
  ・TBoMS適用時の各frequency hopping patternの適用可否
  ・Msg 3 PUSCHへのTBoMS適用可否
 UE200は、対応(サポート)する周波数(FRまたはバンドでもいい)について、次の何れかの方法によって報告してよい。
  ・全周波数一括での対応可否(移動局としての対応可否)
  ・周波数毎の対応可否
  ・FR1/FR2毎の対応可否
  ・SCS毎の対応可否
 また、UE200は、対応する複信方式について、次の何れかの方法によって報告してよい。
  ・UEとしての対応可否
  ・複信方式毎(TDD/FDD)の対応可否
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、上述した動作例1~8に係るUE200(及びgNB100)によれば、複数スロットに割り当てられた物理上りリンク共有チャネル(PUSCH)を介してトランスポートブロック(TB)を処理するTBoMSをより効率的に実現し得る。
 特に、上述した動作例によれば、TBoMSを考慮した適切なPUSCHの配置、TBS決定、コードブロック決定、MCS table選択、frequency hopping、Msg3の送信、及びUE Capability Informationの送信などを実現し得る。
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、トランスポートブロック(TB)の用語が用いられていたが、後述するように、所定のデータのブロックであり、例えば、データパケットなどの別の同義の用語に置き換えられてよい。
 上述した実施形態では、PUSCH(またはPUCCH)のチャネル推定に用いられる復調用参照信号(DMRS)について説明したが、PUSCH(またはPUCCH)などの物理チャネルのチャネル推定に用いられる参照信号であれば、他の参照信号であってもよい。
 また、上述した記載において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。
 また、上述した実施形態の説明に用いたブロック構成図(図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図19は、当該装置のハードウェア構成の一例を示す図である。図19に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス

Claims (6)

  1.  物理上りリンク共有チャネルの時間領域における割り当てを示す制御情報を受信する受信部と、
     複数のスロットに跨がって前記物理上りリンク共有チャネルを割り当てる制御部と
    を備え、
     前記制御部は、前記制御情報に基づいて、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックを決定する端末。
  2.  複数のスロットに跨がって物理上りリンク共有チャネルを割り当てる制御部と、
     前記物理上りリンク共有チャネルを介してデータ系列を送信する送信部と
    を備え、
     前記送信部は、複数のコードブロックが連結された後の前記データ系列を、前記物理上りリンク共有チャネルを介して繰り返し送信する端末。
  3.  複数のスロットに跨がって物理上りリンク共有チャネルを割り当てる制御部と、
     前記物理上りリンク共有チャネルを送信する送信部と
    を備え、
     前記制御部は、サービングセルにおける前記物理上りリンク共有チャネルの設定情報に基づいて、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックのサイズを決定する端末。
  4.  複数のスロットに跨がって物理上りリンク共有チャネルを割り当てる制御部と、
     前記物理上りリンク共有チャネルを送信する送信部と
    を備え、
     前記制御部は、複数のスロットに跨がって前記物理上りリンク共有チャネルを割り当てるか否かに基づいて、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックの複数のコードブロックへの分割を決定する端末。
  5.  複数のスロットに跨がって物理上りリンク共有チャネルを割り当てる制御部と、
     前記物理上りリンク共有チャネルを送信する送信部と
    を備え、
     前記制御部は、複数のスロットに跨がって前記物理上りリンク共有チャネルを割り当てるか否かに基づいて、前記物理上りリンク共有チャネルに適用される変調及び符号化方式を決定する端末。
  6.  物理上りリンク共有チャネルの時間領域における割り当てを示す制御情報を受信するステップと、
     複数のスロットに跨がって物理上りリンク共有チャネルを割り当てるステップと
    を備え、
     前記物理上りリンク共有チャネルを割り当てるステップでは、前記制御情報に基づいて、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックを決定する無線通信方法。
PCT/JP2021/012420 2021-03-24 2021-03-24 端末及び無線通信方法 WO2022201403A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023508295A JPWO2022201403A1 (ja) 2021-03-24 2021-03-24
PCT/JP2021/012420 WO2022201403A1 (ja) 2021-03-24 2021-03-24 端末及び無線通信方法
US18/283,674 US20240179688A1 (en) 2021-03-24 2021-03-24 Terminal and radio communication method
CN202180095803.8A CN116982380A (zh) 2021-03-24 2021-03-24 终端和无线通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012420 WO2022201403A1 (ja) 2021-03-24 2021-03-24 端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2022201403A1 true WO2022201403A1 (ja) 2022-09-29

Family

ID=83395415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012420 WO2022201403A1 (ja) 2021-03-24 2021-03-24 端末及び無線通信方法

Country Status (4)

Country Link
US (1) US20240179688A1 (ja)
JP (1) JPWO2022201403A1 (ja)
CN (1) CN116982380A (ja)
WO (1) WO2022201403A1 (ja)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILUS INC.: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2101680, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971833 *

Also Published As

Publication number Publication date
CN116982380A (zh) 2023-10-31
US20240179688A1 (en) 2024-05-30
JPWO2022201403A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2022079876A1 (ja) 端末
WO2021171594A1 (ja) 端末
WO2022201403A1 (ja) 端末及び無線通信方法
WO2022244501A1 (ja) 端末及び無線通信方法
WO2022201401A1 (ja) 端末及び無線基地局
WO2022201404A1 (ja) 端末
WO2022239081A1 (ja) 端末及び無線通信方法
WO2022239080A1 (ja) 端末及び無線通信方法
WO2022239082A1 (ja) 端末及び無線通信方法
WO2022153506A1 (ja) 無線基地局及び端末
WO2022244504A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022244097A1 (ja) 端末及び無線通信方法
WO2022249721A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022149269A1 (ja) 端末、基地局及び無線通信方法
WO2022195787A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022149270A1 (ja) 端末、基地局及び無線通信方法
WO2022264428A1 (ja) 端末および無線通信方法
WO2022264432A1 (ja) 端末
WO2022107256A1 (ja) 端末
WO2022239078A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022264429A1 (ja) 端末および無線通信方法
WO2023022184A1 (ja) 端末及び無線通信方法
WO2022162906A1 (ja) 端末及び無線通信方法
WO2022215272A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2022215271A1 (ja) 端末、無線通信システム及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508295

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180095803.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18283674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933013

Country of ref document: EP

Kind code of ref document: A1