WO2022201376A1 - Vehicle attitude angle estimation device and optical axis control device for vehicle lamp - Google Patents

Vehicle attitude angle estimation device and optical axis control device for vehicle lamp Download PDF

Info

Publication number
WO2022201376A1
WO2022201376A1 PCT/JP2021/012338 JP2021012338W WO2022201376A1 WO 2022201376 A1 WO2022201376 A1 WO 2022201376A1 JP 2021012338 W JP2021012338 W JP 2021012338W WO 2022201376 A1 WO2022201376 A1 WO 2022201376A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch angle
vehicle
acceleration
static
vehicle body
Prior art date
Application number
PCT/JP2021/012338
Other languages
French (fr)
Japanese (ja)
Inventor
敏裕 和田
弘毅 中本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/012338 priority Critical patent/WO2022201376A1/en
Priority to JP2023508273A priority patent/JP7435900B2/en
Publication of WO2022201376A1 publication Critical patent/WO2022201376A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/10Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution
    • B60Q1/115Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution by electric means

Definitions

  • the present disclosure relates to a device for estimating the attitude angle of a vehicle with respect to the road surface.
  • Patent Document 1 discloses a method of estimating the pitch angle of a vehicle with respect to the road surface using an acceleration sensor, an altitude sensor, and a vehicle speed sensor.
  • an acceleration sensor is used to detect the absolute pitch angle, which is the pitch angle of the vehicle with respect to the horizontal plane, and the road gradient is calculated based on the amount of change in altitude per unit time measured by the altitude sensor. It is disclosed that a pitch angle to the road surface, which is the pitch angle of the vehicle with respect to the road surface, is calculated from the difference between the obtained road surface gradient and the absolute pitch angle.
  • the pitch angle of the vehicle with respect to the road surface changes depending on the number of passengers and cargo loaded, as well as changes in the slope of the road surface and acceleration/deceleration. If the vehicle is traveling at a constant speed on a road surface with a constant gradient, it is possible to estimate the pitch angle of the vehicle from the horizontal plane by measuring the direction of gravity using an acceleration sensor as described in Patent Document 1. is. Furthermore, by measuring the amount of change in altitude of the vehicle, it is possible to estimate the slope of the road surface on which the vehicle is running from the horizontal plane. It is possible to estimate the pitch angle of the vehicle with respect to
  • the measured value of the acceleration sensor is not the direction of gravity, but the combined direction of gravity and vehicle acceleration, so the pitch angle of the vehicle from the horizontal plane cannot be estimated. Furthermore, in a situation where the acceleration of the vehicle is changing, the pitch angular acceleration of the vehicle caused by the change in the acceleration of the vehicle is superimposed on the measurement value of the acceleration sensor. Similarly, in a situation where the gradient of the road surface is changing, the pitch angular acceleration of the vehicle caused by the gradient change of the road surface is superimposed on the measurement value of the acceleration sensor. Therefore, with the method described in Patent Document 1, it is difficult to estimate the pitch angle of the vehicle with respect to the road surface when the vehicle is accelerating or decelerating or when the gradient of the road surface is changing.
  • a vehicle attitude angle estimation device includes: In a vehicle having a vehicle body supported from the road surface by a suspension, acceleration information obtained from an acceleration sensor provided on the vehicle body, at least altitude information obtained from an altitude sensor, vehicle speed information obtained from a vehicle speed sensor, and the suspension are determined.
  • a static pitch angle estimating unit that estimates a static pitch angle, which is the pitch angle of the vehicle body with respect to the road surface, when the vehicle is not accelerating or decelerating on a flat road surface, based on a constant; a synthetic acceleration estimator that calculates a component of the acceleration applied to the vehicle body parallel to the traveling direction of the vehicle from the acceleration information obtained from the acceleration sensor and the static pitch angle estimated by the static pitch angle estimator; a pitch angle storage unit that stores the pitch angle of the vehicle body relative to the road surface in the previous calculation cycle; It is determined by the component of the acceleration applied to the vehicle body that is estimated by the synthetic acceleration estimator and that is parallel to the traveling direction of the vehicle, the pitch angle of the vehicle body with respect to the road surface in the previous calculation cycle stored in the pitch angle storage unit, and the suspension.
  • a pitch angle estimating section is provided for estimating the pitch angle of the vehicle body with respect to the road surface from a constant, storing the pitch angle in the pitch angle storage section, and outputting the pitch angle to an output section.
  • the optical axis control device for a vehicle lamp includes: The vehicle attitude angle estimation device and an optical axis control section that controls the optical axis of the vehicle lamp based on the pitch angle estimated by the vehicle attitude angle estimation device.
  • the vehicle posture angle estimating device of the present disclosure it is possible to estimate the posture angle of the vehicle even during acceleration/deceleration of the vehicle or while the road surface gradient is changing.
  • optical axis control device of the vehicle lamp of the present disclosure it is possible to appropriately control the optical axis of the vehicle lamp even when the vehicle is accelerating or decelerating or the road surface gradient is changing.
  • FIG. 1 is a left side view of a vehicle having a vehicle body supported by suspensions;
  • FIG. 1 is a configuration diagram of a vehicle attitude angle estimation device according to Embodiment 1;
  • FIG. 1 is a configuration diagram of a vehicle attitude angle estimation device according to Embodiment 1;
  • FIG. 1 is a configuration diagram of a vehicle attitude angle estimation device according to Embodiment 1;
  • FIG. 10 is a configuration diagram of a static pitch angle estimator in Embodiment 2;
  • 1 is a rear side view of a vehicle having a vehicle body supported by suspensions;
  • FIG. 11 is a configuration diagram of a vehicle attitude angle estimation device according to Embodiment 5;
  • FIG. 1 is a schematic diagram of a vehicle supported by a suspension on which a vehicle attitude angle estimation device according to Embodiment 1 is mounted.
  • FIG. 2 is a block diagram showing the configuration of the vehicle posture angle estimating device according to the first embodiment.
  • the vehicle 100 has a vehicle body 104 and wheels 107 .
  • the wheels 107 are in contact with the road surface 103 and the left and right wheels 107 are connected by an axle 110 .
  • a vehicle body 104 is attached to an axle 110 via a suspension 102 .
  • the road surface 103 has a slope 108 with respect to the horizontal plane.
  • reference numeral 109 indicates the center of gravity of the vehicle 100 .
  • the vehicle 100 is provided with a vehicle attitude angle estimation device 101 , a headlamp 106 , an acceleration sensor 201 , an altitude sensor 202 and a vehicle speed sensor 203 .
  • Acceleration sensor 201 is fixed to vehicle body 104 .
  • the altitude sensor 202 is a sensor that detects the altitude of the vehicle, and may be, for example, a satellite positioning system. Alternatively, altitude sensor 202 may be a device that measures air pressure and converts it to altitude.
  • the vehicle speed sensor 203 may be a sensor that obtains the vehicle speed from the rotation speed of the wheels 107, for example. Alternatively, the vehicle speed sensor 203 may be a device that estimates the speed of the vehicle from the image of the vehicle-mounted camera.
  • the vehicle attitude angle estimation device 101 includes a static pitch angle estimation unit 205, a synthetic acceleration estimation unit 206, a pitch angle storage unit 208, and a pitch angle estimation unit 207.
  • the vehicle attitude angle estimation device 101 obtains at least vehicle acceleration information measured by the acceleration sensor 201, altitude information of the vehicle body 104 measured by the altitude sensor 202, and vehicle speed Using the vehicle speed information measured by the sensor 203 , the pitch angle 105 of the vehicle body 104 with respect to the road surface 103 is estimated and output to the output unit 204 .
  • the output unit 204 may be, for example, the optical axis control unit 111 of the headlamp 106 .
  • the optical axis controller 111 of the headlamp 106 may be configured to adjust the optical axis based on the pitch angle of the vehicle body estimated by the vehicle attitude angle estimation device 101 .
  • the static pitch angle estimation unit 205 Based on at least acceleration information obtained from the acceleration sensor 201, altitude information obtained from the altitude sensor 202, vehicle speed information obtained from the vehicle speed sensor 203, and a constant determined by the suspension 102, the static pitch angle estimation unit 205 A static pitch angle is estimated, which is the pitch angle of the vehicle body 104 with respect to the road surface when the vehicle is not accelerating or decelerating on a flat road surface.
  • Synthetic acceleration estimator 206 uses the acceleration information obtained from acceleration sensor 201 and the static pitch angle estimated by static pitch angle estimator 205 to estimate the component of the acceleration applied to vehicle body 104 parallel to the vehicle traveling direction. calculate.
  • the pitch angle storage unit 208 stores the pitch angle of the vehicle body 104 with respect to the road surface estimated in the previous calculation cycle.
  • the pitch angle estimating unit 207 calculates the component parallel to the vehicle traveling direction of the acceleration applied to the vehicle body 104 estimated by the synthetic acceleration estimating unit 206 and the acceleration of the vehicle body 104 with respect to the road surface in the previous calculation cycle stored in the pitch angle storage unit 208. Using the pitch angle and a constant determined by the suspension, the pitch angle of the vehicle body 104 with respect to the road surface is estimated. Also, the estimated pitch angle is stored in the pitch angle storage unit 208 and output to the output unit 204 .
  • a coordinate system fixed to the axle 110 is taken, with the direction of travel of the vehicle being the x-axis and the direction perpendicular to the road surface being the z-axis.
  • the wheels 107 are regarded as rigid bodies, and the axles 110 of the front and rear wheels are always parallel to the road surface 103 .
  • the position of the vehicle center of gravity 109 in the coordinate system fixed to the axle 110 is p 0,t
  • its x coordinate is x 0,t
  • its z coordinate is z 0,t .
  • the suspension 102 is a spring-damper system with a spring constant of k/4 and a damper coefficient of c/4, and the wheelbase of the vehicle is 2L.
  • the pitch angle ⁇ t of the vehicle body with respect to the road surface at time t satisfies the angular motion equation expressed by the following equation (1).
  • Jy is the moment of inertia of the vehicle around the center of gravity
  • M is the mass of the vehicle
  • d is the height of the center of gravity of the vehicle from the axle
  • ⁇ t is the road surface gradient 108 with respect to the horizontal plane
  • g is the acceleration of gravity
  • Vt is the vehicle speed.
  • ⁇ s is the pitch angle of the vehicle body 104 with respect to the road surface when the longitudinal acceleration V(dot) t ⁇ gsin ⁇ t applied to the vehicle is zero.
  • ⁇ s changes depending on cargo and passenger getting on and off, it does not change during running. More strictly speaking, it may change due to consumption of fuel or the like, but the change is sufficiently small, and ⁇ s can be regarded as constant for a short period of time.
  • ⁇ s is referred to herein as the static pitch angle.
  • a position Pt of the acceleration sensor 201 attached to the vehicle body 104 in the coordinate system fixed to the axle 110 is expressed by the following equation (2).
  • p0 ,t is the position of the center of gravity 109 of the vehicle in the coordinate system fixed to the axle 110
  • r is the position of the acceleration sensor 201 when the position of the center of gravity of the vehicle p0 ,t is set as the origin in the coordinate system fixed to the vehicle body 104.
  • R y ( ⁇ t ) is the rotation matrix represented by the following equation.
  • the acceleration measured by the acceleration sensor is the value obtained by adding gravity and inertial force to its own acceleration
  • the acceleration measured by the acceleration sensor is expressed by the following formula (4) in a coordinate system fixed to the road surface. be.
  • G is the vertical upward gravitational acceleration vector
  • F is the inertial force associated with vehicle acceleration/deceleration and gradient change, which is expressed by the following formula.
  • the measured value Ot of the acceleration sensor is obtained by rotating the acceleration represented by the formula (4) by the pitch angle of the vehicle body, and is represented by the following formula (5). be done.
  • the x component of the acceleration p(2 dots) t of the acceleration sensor is zero. If the equation (5) is approximated assuming that the pitch angle ⁇ t of the vehicle body is very small, the x component and the z component of the measurement value Ot of the acceleration sensor are represented by the following equation (6).
  • Equation (6) Eliminating ⁇ t from Equation (6) using Equation (1), V (dot) t ⁇ g sin ⁇ t and z (2 dots) 0, t ⁇ V t ⁇ (dot) t +gcos ⁇ t are obtained by ⁇ s , It can be seen that it is determined as a function of ⁇ (dot) t and ⁇ (2 dots) t . Therefore, if these functions are set to u t and w t respectively, they are represented by the following equation (7).
  • u t and w t respectively correspond to the components parallel and perpendicular to the vehicle traveling direction of the acceleration applied to the vehicle.
  • ⁇ t is obtained by solving equation (1) with respect to ⁇ t and is a function of ⁇ s , ⁇ (dot) t , and ⁇ (2 dots) t .
  • values measured using an angular acceleration sensor or an angular velocity sensor may be used as ⁇ (dot) t and ⁇ (2 dots) t .
  • the terms relating to ⁇ (dot) t and ⁇ (2 dots) t may be eliminated from u t and w t .
  • a plurality of acceleration sensors or gyro sensors arranged at different positions of the vehicle may be used to calculate the acceleration near the center of gravity position p0 ,t of the vehicle.
  • ⁇ (dot) t ⁇ ⁇ (2 dots) t ⁇ 0 may be approximated.
  • V (dot) t can be obtained from numerical differentiation of the vehicle speed V t obtained from the vehicle speed sensor. Also, the right side of the equation (8) is equal to the altitude change. Therefore, by numerically differentiating the altitude h t measured by the altitude sensor 202 and substituting it into the right side of the equation (8), the static pitch angle ⁇ s can be asked for.
  • the static pitch angle ⁇ s is obtained by the nonlinear least-squares method using equation (8) at a plurality of times t.
  • the nonlinear least-squares method may use a known optimization method such as the conjugate gradient method or the quasi-Newton method.
  • a technique specialized for the nonlinear least squares method such as the Levenberg-Marquard method may be used.
  • the numerical differentiation V (dot) t of the vehicle speed and the numerical differentiation h (dot) t of the altitude can be obtained, for example, by dividing the difference between the values at two consecutive times by the time between the two times. good to ask Alternatively, an incomplete differential filter may be used.
  • the component V(dot) t ⁇ gsin ⁇ t parallel to the traveling direction of the road surface of the composite acceleration of the acceleration due to acceleration/deceleration of the vehicle and the gravitational acceleration is substituted into the equation (1). Furthermore, by solving the initial value problem of equation (1) using the pitch angle ⁇ t-1 and the pitch angular velocity ⁇ (dot) t-1 at time t-1, which is the previous calculation cycle, the pitch of the vehicle body with respect to the road surface
  • the angle ⁇ t and the pitch angular velocity ⁇ (dot) t can be determined.
  • the Euler method may be used to solve the initial value problem.
  • the Runge-Kutta method may be used.
  • the obtained pitch angle ⁇ t and pitch angular velocity ⁇ (dot) t may be stored in the storage unit for the next calculation cycle.
  • the static pitch angle estimator 205 calculates at least the acceleration Ot measured by the acceleration sensor 201 at a plurality of times t , the vehicle speed Vt measured by the vehicle speed sensor 203 at a plurality of times t , and the altitude sensor 202.
  • the static pitch angle ⁇ s is estimated based on the equation (8) from the altitudes h t at a plurality of times t and the constants k and c determined by the suspension.
  • the coefficients k and c determined by the suspension may be stored in a storage unit (not shown).
  • Synthetic acceleration estimator 206 calculates function u t ( ⁇ s ; ⁇ (dot ) t , ⁇ (2 dots) t ), the component V(dot) t ⁇ gsin ⁇ t parallel to the traveling direction of the road surface of the resultant acceleration due to acceleration/deceleration of the vehicle and gravitational acceleration is calculated.
  • the pitch angle estimating unit 207 stores the component V (dot) t ⁇ gsin ⁇ t parallel to the traveling direction of the road surface of the synthetic acceleration of the acceleration due to acceleration/deceleration of the vehicle calculated by the synthetic acceleration estimating unit 206 and the gravitational acceleration, and a pitch angle storage unit.
  • the pitch angle ⁇ t is calculated by solving the initial value problem of equation (1) using the previous calculation period stored by 208, for example, the pitch angle ⁇ t at time t-1, and the pitch angle storage unit 208 and output to the output unit 204 .
  • the vehicle attitude angle estimation device it is possible to estimate the pitch angle of the vehicle body with respect to the road surface even when the vehicle is accelerating or decelerating or the gradient is changing.
  • the vehicle attitude angle estimation device 101 of this embodiment does not directly apply the operation corresponding to the integration or averaging to the gradient or the pitch angle, but rather the static pitch angle which is an amount that does not change while driving.
  • ⁇ s the above problem is solved, and it is possible to estimate the attitude angle of the vehicle in a situation where the vehicle is accelerating or decelerating or the gradient is changing.
  • the vehicle attitude angle estimating device 101 of this embodiment can estimate the pitch angle ⁇ t of the vehicle body with respect to the road surface even when the vehicle is accelerating or decelerating or the road surface gradient is changing.
  • the vehicle attitude angle estimation device 101 described in the present embodiment is not limited to the one that uses Equation (1) as the angular motion equation of the pitch angle.
  • the pitch angle ⁇ t is a function of the static pitch angles ⁇ s , ⁇ (dot) t , and ⁇ (2dot) t , spring non-linearity and suspension geometry effects may be introduced.
  • the static pitch angle estimation unit 205 is not limited to performing static pitch angle estimation in all calculation cycles. Since the static pitch angle does not change during running, the static pitch angle estimating unit 205 estimates the static pitch angle once every N calculation cycles, where N is an integer, and the synthetic acceleration estimating unit 206 estimates The remaining calculations may be performed using the most recent static pitch angle obtained. As a result, even if the measurement cycle of the altitude sensor 202 is N times the measurement cycle of the other sensors, the vehicle attitude angle estimation device 101 according to the present embodiment can detect the pitch angle of the vehicle body without reducing the estimation cycle. can be estimated.
  • the pitch angle estimation unit 207 further uses the angular velocity of the pitch angle of the vehicle body measured by an angular velocity sensor such as a gyro sensor, for example, using a Kalman filter. You may estimate a pitch angle, removing a noise by . Accordingly, even when noise is superimposed on the acceleration sensor 201, the vehicle attitude angle estimation device 101 can accurately estimate the pitch angle.
  • an angular velocity sensor such as a gyro sensor
  • the vehicle attitude angle estimation device 101 of this embodiment is combined with an optical axis control unit 111 that controls the optical axis of the vehicle lamp based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101.
  • the functions of the static pitch angle estimating section, the synthetic acceleration estimating section, and the pitch angle estimating section in the vehicle posture angle estimating device of this embodiment may be realized by a processing circuit as shown in FIG. That is, the vehicle attitude angle estimation device may include a processing device for estimating the static pitch angle, estimating the synthesized acceleration, estimating the pitch angle, storing the estimated pitch angle in the pitch angle storage section, and outputting the estimated pitch angle to the output section.
  • the processing circuit even if it is dedicated hardware, is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, also called DSP).
  • the processing circuit corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the functions of the static pitch angle estimating section, the synthetic acceleration estimating section, and the pitch angle estimating section may be realized individually by the processing circuit, or the functions of the respective sections may be collectively realized by the processing circuit.
  • the processing circuit When the processing circuit is a CPU, the functions of the static pitch angle estimator, synthetic acceleration estimator, and pitch angle estimator are realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory. The processing circuit implements the function of each part by reading and executing the program stored in the memory. That is, when the vehicle attitude angle estimation device is executed by the processing circuit, the step of estimating the static pitch angle, the step of estimating the resultant acceleration, the step of estimating the pitch angle, storing it in the pitch angle storage unit, and sending it to the output unit A memory is provided for storing the program that will result in the outputting step being executed.
  • the memory corresponds to, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, etc. do.
  • the functions of the static pitch angle estimator, synthetic acceleration estimator, and pitch angle estimator may be partly implemented by dedicated hardware and partly implemented by software or firmware.
  • the function of the static pitch angle estimator is realized by a processing circuit as dedicated hardware, and the processing circuit reads and executes the program stored in the memory for the synthetic acceleration estimator and pitch angle estimator. It is possible to realize the function by
  • the processing circuit can implement each of the functions described above by means of hardware, software, firmware, or a combination thereof.
  • Embodiment 2 101 A of vehicle attitude
  • the static pitch angle estimator 205A in the vehicle attitude angle estimator 101A of this embodiment will be described below with reference to FIG.
  • the static pitch angle estimator 205A includes a constant term calculator 301, a differential coefficient calculator 302, a static pitch angle calculator 303, and a state storage 304.
  • a constant term calculation unit 301 calculates a first constant term independent of the static pitch angle among components parallel to the vehicle traveling direction of the acceleration applied to the vehicle body 104 from the acceleration information obtained from the acceleration sensor 201 .
  • the differential coefficient calculation unit 302 calculates the first proportionality coefficient with respect to the static pitch angle among the components parallel to the vehicle traveling direction of the acceleration applied to the vehicle body 104.
  • the state storage unit 304 stores at least the estimated value of the static pitch angle in the previous calculation cycle.
  • Static pitch angle calculator 303 calculates at least altitude information obtained from altitude sensor 202, vehicle speed information obtained from vehicle speed sensor 203, the first constant term calculated by constant term calculator 301, and differential coefficient calculation. Estimates the static pitch angle based on the first proportional coefficient calculated by the unit 302, the estimated value of the static pitch angle in the previous calculation cycle stored in the state storage unit 304, and the constant determined by the suspension. do. In addition, the estimated static pitch angle is stored in state storage section 304 and output to synthetic acceleration estimation section 206 .
  • the component u t ( ⁇ s ; ⁇ (dot) t , ⁇ (2 dots) t ) of the acceleration applied to the vehicle body 104 parallel to the vehicle traveling direction is approximated by the first-order Taylor expansion. Since u t ( ⁇ s ; ⁇ (dot) t , ⁇ (2 dots) t ) is a function of the static pitch angle ⁇ s , it is represented by the following equation (9).
  • Equation (9) values measured using an angular acceleration sensor or an angular velocity sensor (not shown) may be used as ⁇ (dot) t and ⁇ (2 dots) t .
  • the terms relating to ⁇ (dot) t and ⁇ (2 dots) t may be eliminated from ut and wt.
  • a plurality of acceleration sensors or gyro sensors arranged at different positions on the vehicle may be used to calculate the acceleration near the center of gravity of the vehicle p0, t .
  • formula (8) can be transformed into formula (10) below.
  • the static pitch angle ⁇ s can be obtained by the linear least squares method. This eliminates the need for repetitive calculations required in the nonlinear least squares method, and determines the time required for calculation. This is a desirable property for real-time computation.
  • the amount of computation can be further reduced by using an adaptive filter described below.
  • the left side of the equation (10) is set to Y t and the right side to U T t ⁇ s , and the calculation represented by the following equation (11) is executed every hour.
  • U T t denotes the transposed matrix of U t .
  • Mt is represented by the following formula (12).
  • ⁇ t is a predetermined constant called the forgetting factor, and represents how smoothly the static pitch angle ⁇ s can change.
  • the forgetting factor may be a constant independent of time. Alternatively, it may be variable according to speed.
  • the static pitch angle estimator 205 does not need to store acceleration, altitude, and vehicle speed at multiple times. Therefore, it is suitable for mounting on a microcontroller or the like with a limited memory capacity.
  • Constant term calculator 301 calculates the first term on the right side of equation (9) from the acceleration Ot measured by acceleration sensor 201 .
  • the first term on the right side of equation (9) is a constant term that does not depend on the static pitch angle ⁇ s among the components u t of the acceleration applied to the vehicle body 104 parallel to the vehicle traveling direction.
  • the constant term is also called a first constant term.
  • a differential coefficient calculation unit 302 calculates a coefficient part related to ⁇ s in the second term on the right side of equation (9) from the acceleration O t measured by the acceleration sensor 201 .
  • the coefficient is a proportionality coefficient related to the static pitch angle ⁇ s of the component u t of the acceleration applied to the vehicle body 104 parallel to the vehicle traveling direction.
  • the static pitch angle calculator 303 calculates at least the vehicle speed Vt measured by the vehicle speed sensor 203, the altitude ht measured by the altitude sensor 202, the first constant term calculated by the constant term calculator 301, Based on the coefficient calculated by the differential coefficient calculation unit 302 and the static pitch angle ⁇ s, t-1 and the vector ⁇ t-1 one time ago stored by the state storage unit 304, the adaptive filter of formula (11) are used to calculate the static pitch angle ⁇ s,t and the vector ⁇ t , which are stored in the state storage unit 304 and output to the resultant acceleration estimation unit 206 . Thereafter, the same processing as in Embodiment 1 is performed to estimate the pitch angle ⁇ t of the vehicle body with respect to the road surface.
  • the vehicle attitude angle estimation device 101A in addition to the effects described in the first embodiment, it is possible to further reduce the amount of calculation and realize processing more suitable for real-time processing.
  • the vehicle attitude angle estimation device 101A described in this embodiment is not necessarily limited to using the equation (11) as the adaptive filter.
  • an LMS (Least Mean Squares) filter or a total recursive least mean squares filter may be used as long as the static pitch angle ⁇ s can be obtained based on the equation (10).
  • the static pitch angle estimator 205A is not limited to static pitch angle estimation in all calculation cycles. Since the static pitch angle does not change during running, the static pitch angle estimator 205A estimates the static pitch angle once every N calculation cycles, where N is an integer, and the synthetic acceleration estimator 206 estimates The remaining calculations may be performed using the most recent static pitch angle obtained. As a result, even if the measurement period of the altitude sensor 202 is N times the measurement period of the other sensors, the pitch angle of the vehicle body can be estimated without dropping the estimation period.
  • the vehicle attitude angle estimation device 101A of the present embodiment and the optical axis of the vehicle lamp are controlled based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101A. It may be combined with the optical axis control unit 111 to form an optical axis control device for a vehicle lamp.
  • each function of the constant term calculator, the differential coefficient calculator, and the static pitch angle calculator in the static pitch angle estimator of the vehicle attitude angle estimation device of the present embodiment is implemented by a processing circuit.
  • the static pitch angle estimator calculates the first constant term, calculates the first proportional coefficient, calculates the static pitch angle, stores it in the state storage unit, and outputs it to the synthetic acceleration estimator.
  • the processing circuit may be dedicated hardware or may be a CPU executing a program stored in memory.
  • the processing circuit When the processing circuit is dedicated hardware, the processing circuit corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the functions of the constant term calculation unit, differential coefficient calculation unit, and static pitch angle calculation unit may be realized individually by the processing circuit, or the functions of each unit may be collectively realized by the processing circuit.
  • the functions of the constant term calculator, differential coefficient calculator, and static pitch angle calculator are realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory.
  • the processing circuit implements the function of each part by reading and executing the program stored in the memory. That is, the vehicle attitude angle estimator, when executed by the processing circuit, calculates a first constant term, calculates a first proportional coefficient, calculates a static pitch angle and stores it in the state storage unit. and a memory for storing a program that results in execution of the step of outputting to the synthesized acceleration estimating unit. It can also be said that these programs cause a computer to execute the procedures and methods of the constant term calculator, the differential coefficient calculator, and the static pitch angle calculator.
  • the functions of the constant term calculator, the differential coefficient calculator, and the static pitch angle calculator may be partly implemented by dedicated hardware and partly implemented by software or firmware.
  • the function of the constant term calculator and the differential coefficient calculator is realized by a processing circuit as dedicated hardware, and the static pitch angle calculator reads and executes a program stored in the memory. It is possible to realize the function by
  • the processing circuit can implement each of the functions described above by means of hardware, software, firmware, or a combination thereof.
  • a vehicle attitude angle estimation device 101B in this embodiment has the same basic configuration as that in the first embodiment, but differs in that the roll angle of the vehicle body is considered. Specifically, of the measured value Ot measured by the acceleration sensor, the y component is considered in addition to the x component and z component. In other words, the orthogonal three-axis components are considered.
  • FIG. 6 is a rear side view of a vehicle having a vehicle body supported by suspensions.
  • the suspension 102 is a spring-damper system with a spring constant of k/4 and a damper coefficient of c/4, and the width between the left and right wheels is 2W.
  • ⁇ t is the roll angle of the vehicle body with respect to the road surface
  • ⁇ s is the static roll angle
  • ⁇ t is the bank angle 402 of the road surface with respect to the horizontal plane
  • ⁇ (dot) t is the yaw rate
  • V t ⁇ (dot) t is the lateral inertial force in a coordinate system fixed to the axle 110;
  • the measured value O t measured by the acceleration sensor is approximately represented by the following equation (14).
  • Equation (15) ⁇ t is obtained by solving equation (1) with respect to ⁇ t and is a function of ⁇ s , ⁇ (dot) t and ⁇ (2 dots) t .
  • ⁇ t is the solution of Equation (13) with respect to ⁇ t, and is a function of ⁇ s , ⁇ (dot) t and ⁇ (2dot) t .
  • the dynamic roll angle of the car body can be estimated from the lateral acceleration applied to the car body and the characteristics of the suspension, but the static roll angle of the car body cannot be distinguished from the bank angle of the road surface and the accelerometer installed in the car body. I don't get it. Therefore, even if the static roll angle ⁇ s is set to a minute predetermined value, preferably 0, it does not affect other estimated values such as the pitch angle of the vehicle body. Therefore, in this embodiment, the static roll angle ⁇ s of the vehicle body is set to 0 or a predetermined value.
  • ⁇ (dot) t , ⁇ (dot) t , ⁇ (2 dots) t and ⁇ (2 dots) t are measured using an angular velocity sensor such as a gyro sensor or an angular acceleration sensor (not shown). values can be used.
  • an angular velocity sensor such as a gyro sensor or an angular acceleration sensor (not shown).
  • ⁇ (dot) t , ⁇ (dot) t , ⁇ (2 dots) t and ⁇ from u t , v t , and w t (2 dots) You may eliminate the term for t .
  • the acceleration near the center of gravity 109 of the vehicle may be calculated using a plurality of acceleration sensors or gyro sensors arranged at different positions on the vehicle.
  • a plurality of acceleration sensors or gyro sensors arranged at different positions on the vehicle.
  • the equation (8) is used as in the first embodiment.
  • the static pitch angle ⁇ s can be obtained by the non-linear least squares method.
  • the static pitch angle ⁇ s can be obtained by a linear least squares method using equation (10) or an adaptive filter using equation (11).
  • the pitch angle ⁇ t of the vehicle body with respect to the road surface can be obtained in the same manner as in the first embodiment.
  • the z component of the acceleration applied to the acceleration sensor 201 is divided into the z component and the y component of the measured value Ot. Furthermore, centrifugal force is superimposed while traveling on a curved road. Therefore, when the vehicle body 104 is rolling or traveling on a curved road, the attitude angle of the vehicle body 104 cannot be correctly estimated unless the y component is considered.
  • the vehicle attitude angle estimation device 101B of the present embodiment since the y component of the measurement value Ot of the acceleration sensor is taken into account, the vehicle body 104 is rolling or passing through a curved road. Even in the case of , the attitude angle can be estimated correctly.
  • the vehicle attitude angle estimation device 101B described in this embodiment is not limited to using equation (13) as the equation of angular motion for the roll angle.
  • the roll angle ⁇ t is a function of ⁇ s , ⁇ (dot) t and ⁇ (2dot) t , spring non-linearities, suspension geometry effects, etc. may be introduced.
  • the yaw rate ⁇ (dot) t is usually sufficiently smaller than the pitch angular velocity and the roll angular velocity, the term related to the yaw rate is ignored in the acceleration of the acceleration sensor with respect to the center of gravity in the equation (15). It is also permissible to use the measured value as the yaw rate.
  • the vehicle attitude angle estimation device 101B of the present embodiment and the optical axis of the vehicle lamp are controlled based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101B. It may be combined with the optical axis control unit 111 to form an optical axis control device for a vehicle lamp.
  • a vehicle attitude angle estimation device 101C in this embodiment has the same basic configuration as in the first embodiment, but differs in that an error of the vehicle speed sensor 203 is considered.
  • the vehicle speed measured by the vehicle speed sensor 203 is defined as V0 ,t , and the true vehicle speed Vt is represented by the following equation (16).
  • is a parameter that represents the wheel radius error and does not change in a short period of time.
  • equation (8) is expressed as the following equation (17).
  • the static pitch angle ⁇ s is obtained in the same manner as in the first embodiment by using the equation (17) instead of the equation (8) used in the first embodiment. can be done.
  • the static pitch angles ⁇ s and ⁇ are obtained simultaneously by the nonlinear least-squares method using the static pitch angles ⁇ s and ⁇ as variables.
  • the same processing as in the first embodiment can be performed to estimate the pitch angle ⁇ t of the vehicle body with respect to the road surface.
  • the adaptive filter described in the second embodiment can be configured. Further, it may be combined with the third embodiment.
  • the pitch angle can be accurately estimated even when the measured value of the vehicle speed sensor 203 has an error due to the wheel radius error.
  • the vehicle speed sensor 203 may be, for example, one that multiplies the rotational speed of one wheel by the wheel radius, or the average rotational speed of a plurality of wheels. may be multiplied by the wheel radius.
  • the vehicle attitude angle estimation device 101C of the present embodiment and the optical axis of the vehicle lamp are controlled based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101C. It may be combined with the optical axis control unit 111 to form an optical axis control device for a vehicle lamp.
  • a vehicle attitude angle estimation device 101D according to this embodiment will be described with reference to FIG. As shown in FIG. 7, a vehicle attitude angle estimation device 101D in this embodiment includes a coefficient storage unit 501, a pitch angular velocity estimation unit 502, and a coefficient prediction unit 503 in addition to the vehicle attitude angle estimation device 101 of the first embodiment. .
  • the coefficient storage unit 501 stores a second constant term that does not depend on the static pitch angle and a second proportional coefficient to the static pitch angle of the pitch angular velocity of the vehicle body.
  • the pitch angular velocity estimating unit stores the second constant term in the previous calculation cycle stored in the coefficient storage unit 501, the second proportionality coefficient in the previous calculation cycle, and the present time estimated by the static pitch angle estimating unit 205.
  • the pitch angular velocity is estimated based on the estimated value of the static pitch angle in the calculation period of .
  • the coefficient prediction unit calculates the second constant in the next calculation cycle from the acceleration information obtained from the acceleration sensor 201, the pitch angle estimated by the pitch angle estimation unit 207, and the pitch angular velocity estimated by the pitch angular velocity estimation unit 502.
  • the term and the second proportional coefficient are predicted and stored in the coefficient storage unit 501 .
  • the static pitch angle estimator 205 is determined by acceleration information obtained from the acceleration sensor 201 provided in the vehicle body 104, at least altitude information obtained from the altitude sensor 202, vehicle speed information obtained from the vehicle speed sensor 203, and the suspension.
  • a static pitch angle is estimated based on the constant plus a second constant term and a second proportionality factor.
  • equation (22) By substituting equation (22) into equation (1), the differential equation expressed by equation (23) below is obtained.
  • the pitch angular velocity ⁇ (dot) t at time t is obtained from the pitch angle ⁇ t-1 and the pitch angular velocity ⁇ (dot) t-1 one time ago.
  • equation (24) is a linear expression with respect to the static pitch angle ⁇ s .
  • S 0,t is a constant term that does not depend on the static pitch angle ⁇ s
  • S 1,t is a coefficient applied to the static pitch angle ⁇ s . .
  • S 0,t is also referred to herein as the second constant term and S 1,t as the second proportionality factor.
  • the coefficient storage unit 501 stores constant terms S 0,tk and proportional coefficients S 1,tk of the pitch angular velocity at a plurality of times t 1 , . . . , t k , . do.
  • the static pitch angle estimating unit 205 calculates at least the constant term S 0,tk and the proportional coefficient S 1,tk at a plurality of times stored in the coefficient storage unit 501, and the acceleration at a plurality of times measured by the acceleration sensor 201.
  • the static pitch angle ⁇ s is estimated from the vehicle speed at a plurality of times measured by the vehicle speed sensor 203 and the altitude at a plurality of times measured by the altitude sensor 202 .
  • Pitch angular velocity estimator 502 calculates ( 24) Calculate the pitch angular velocity ⁇ (dot) t using the formula.
  • Coefficient prediction unit 503 calculates ( 23) By solving the initial value problem of the equation, for example, by the Euler method, the constant term S 0,t+1 and the proportional coefficient S 1,t+1 at time t+1, which is the next calculation cycle, are predicted and stored in the coefficient storage unit 501 .
  • the pitch angle of the vehicle body derived from the vibration mode of the suspension 102 can also be estimated without using an additional sensor such as a gyro sensor.
  • the vehicle attitude angle estimation device in this embodiment may also be combined with Embodiments 2 to 4 of the present disclosure, in which case the effects described in this embodiment are achieved in addition to the effects described in Embodiments 2 to 4. can.
  • the vehicle attitude angle estimation device 101C of the present embodiment and the optical axis of the vehicle lamp are controlled based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101C. It may be combined with the optical axis control unit 111 to form an optical axis control device for a vehicle lamp.
  • the functions of the pitch angular velocity estimator, the coefficient predictor, the static pitch angle estimator, the synthetic acceleration estimator, and the pitch angle estimator in the vehicle attitude angle estimation device of the present embodiment are the processing It may be implemented by a circuit. That is, the vehicle attitude angle estimation device estimates the pitch angular velocity based on the second constant term and the second proportional coefficient stored in the coefficient storage unit and the estimated static pitch angle, The second constant term and the second proportional coefficient are predicted and stored in the coefficient storage unit, and the static pitch angle is estimated using the second constant term and the second proportional coefficient in addition to the measured values of each sensor.
  • a processing circuit even if it is dedicated hardware, is a CPU that executes programs stored in memory may be
  • the processing circuit corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the functions of the pitch angular velocity estimator, the coefficient predictor, the static pitch angle estimator, the synthetic acceleration estimator, and the pitch angle estimator may each be implemented by a processing circuit, or the functions of each unit may be collectively implemented by the processing circuit. It can be realized.
  • the functions of the pitch angular velocity estimator, coefficient predictor, static pitch angle estimator, synthetic acceleration estimator, and pitch angle estimator are realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory. The processing circuit implements the function of each part by reading and executing the program stored in the memory.
  • the pitch angular velocity a step of estimating a second constant term and a second proportionality factor in the next calculation cycle and a step of storing the second constant term and the second proportionality factor in the coefficient storage unit;
  • the functions of the pitch angular velocity estimator, coefficient predictor, static pitch angle estimator, synthetic acceleration estimator, and pitch angle estimator are partly realized by dedicated hardware and partly by software or firmware. It may be realized.
  • the function of the static pitch angle estimator is realized by a processing circuit as dedicated hardware, and the processing circuits of the pitch angular velocity estimator, coefficient predictor, synthetic acceleration estimator, and pitch angle estimator are stored in memory. The function can be realized by reading out and executing the stored program.
  • the processing circuit can implement each of the functions described above by means of hardware, software, firmware, or a combination thereof.
  • 101, 101A, 101B, 101C, 101D vehicle attitude angle estimation device 111 optical axis control unit, 205, 205A static pitch angle estimator, 206 synthetic acceleration estimator, 207 pitch angle estimator, 208 pitch angle storage unit, 301 constant term calculator, 302 differential coefficient calculator, 303 static pitch angle calculator, 304 state storage unit, 501 coefficient storage unit, 502 pitch angular velocity estimator, 503 coefficient prediction unit

Abstract

A vehicle attitude angle estimation device (101) comprises: a static pitch angle estimation unit (205) that estimates a static pitch angle in a vehicle comprising a vehicle body supported from a road surface by a suspension on the basis of acceleration information, altitude information, vehicle speed information, and a constant determined by the suspension; a composite acceleration estimation unit (206) that, from at least the acceleration information and the static pitch angle, estimates an acceleration component parallel to the vehicle advancing direction that is applied to the vehicle body; a pitch angle storage unit (208) that stores the pitch angle of the vehicle body relative to the road surface from a previous calculation cycle; and a pitch angle estimation unit (207) that estimates the pitch angle of the vehicle body relative to the road surface from the acceleration component parallel to the vehicle advancing direction that is applied to the vehicle body, the pitch angle in the previous calculation cycle, and the constant determined by the suspension. This vehicle attitude angle estimation device makes it possible to estimate the attitude angle of a vehicle even when the vehicle is accelerating or decelerating, or undergoing a change in gradient of the road surface.

Description

車両姿勢角推定装置及び車両用灯具の光軸制御装置Vehicle attitude angle estimation device and optical axis control device for vehicle lamp
 本開示は、路面に対する車両の姿勢角を推定する装置に関するものである。 The present disclosure relates to a device for estimating the attitude angle of a vehicle with respect to the road surface.
 加速度センサと高度センサ、及び車速センサを用いて、路面に対する車両のピッチ角を推定する方法が特許文献1に開示されている。特許文献1には、加速度センサを用いて水平面に対する車両のピッチ角である絶対ピッチ角を検出するとともに、高度センサで測定される単位時間あたりの高度変化量に基づいて路面勾配を算出し、算出した路面勾配と絶対ピッチ角との差から、路面に対する車両のピッチ角である対路面ピッチ角を算出することが開示されている。 Patent Document 1 discloses a method of estimating the pitch angle of a vehicle with respect to the road surface using an acceleration sensor, an altitude sensor, and a vehicle speed sensor. In Patent Document 1, an acceleration sensor is used to detect the absolute pitch angle, which is the pitch angle of the vehicle with respect to the horizontal plane, and the road gradient is calculated based on the amount of change in altitude per unit time measured by the altitude sensor. It is disclosed that a pitch angle to the road surface, which is the pitch angle of the vehicle with respect to the road surface, is calculated from the difference between the obtained road surface gradient and the absolute pitch angle.
特開2013-112267号公報JP 2013-112267 A
 路面に対する車両のピッチ角は、乗員や貨物の積載によって変化し、また路面の勾配変化や加減速によっても変化する。もし車両が一定勾配の路面を一定速度で走行しているならば、特許文献1に記載のように加速度センサによって重力方向を測定することにより、車両の水平面からのピッチ角を推定することが可能である。さらに、車両の高度変化量を測定することで、車両が走行している路面の、水平面からの勾配を推定することができるので、特許文献1に記載の手法のように、両者の差分として路面に対する車両のピッチ角を推定することが可能である。 The pitch angle of the vehicle with respect to the road surface changes depending on the number of passengers and cargo loaded, as well as changes in the slope of the road surface and acceleration/deceleration. If the vehicle is traveling at a constant speed on a road surface with a constant gradient, it is possible to estimate the pitch angle of the vehicle from the horizontal plane by measuring the direction of gravity using an acceleration sensor as described in Patent Document 1. is. Furthermore, by measuring the amount of change in altitude of the vehicle, it is possible to estimate the slope of the road surface on which the vehicle is running from the horizontal plane. It is possible to estimate the pitch angle of the vehicle with respect to
 しかし、車両が加減速している状況においては、加速度センサの計測値は重力方向ではなく、重力と車両の加速との合成方向となるため、車両の水平面からのピッチ角を推定できない。さらに車両の加速度が変化している状況では、車両の加速度変化に起因する車両のピッチ角加速度が加速度センサの計測値に重畳する。同様に、路面の勾配が変化している状況においては、路面の勾配変化に起因する車両のピッチ角加速度が加速度センサの計測値に重畳する。このため、特許文献1に記載の手法では、車両の加減速中や、路面の勾配が変化している状況において、路面に対する車両のピッチ角を推定することは困難である。 However, when the vehicle is accelerating or decelerating, the measured value of the acceleration sensor is not the direction of gravity, but the combined direction of gravity and vehicle acceleration, so the pitch angle of the vehicle from the horizontal plane cannot be estimated. Furthermore, in a situation where the acceleration of the vehicle is changing, the pitch angular acceleration of the vehicle caused by the change in the acceleration of the vehicle is superimposed on the measurement value of the acceleration sensor. Similarly, in a situation where the gradient of the road surface is changing, the pitch angular acceleration of the vehicle caused by the gradient change of the road surface is superimposed on the measurement value of the acceleration sensor. Therefore, with the method described in Patent Document 1, it is difficult to estimate the pitch angle of the vehicle with respect to the road surface when the vehicle is accelerating or decelerating or when the gradient of the road surface is changing.
 一方で、例えばヘッドランプの防眩のための光軸レベリングを実現するためには、車両の加減速に起因するピッチ角変化にも対応して光軸を調整することが求められる。このためには、車両の加減速中においても、路面に対する車両のピッチ角を推定する必要がある。 On the other hand, for example, in order to achieve optical axis leveling for anti-glare headlamps, it is necessary to adjust the optical axis in response to changes in the pitch angle caused by acceleration and deceleration of the vehicle. For this purpose, it is necessary to estimate the pitch angle of the vehicle with respect to the road surface even during acceleration or deceleration of the vehicle.
 本開示に係る車両姿勢角推定装置は、
サスペンションによって路面から支持された車体を備える車両において、前記車体に備えられた加速度センサから得られる加速度情報と、少なくとも高度センサから得られる高度情報、車速センサから得られる車速情報及び、前記サスペンションにより定まる定数とに基づいて、前記車両が平坦な路面上で加減速していない場合における、前記路面に対する前記車体のピッチ角である静的ピッチ角を推定する静的ピッチ角推定部と、
前記加速度センサから得られる加速度情報と、静的ピッチ角推定部によって推定された静的ピッチ角から、車体にかかる加速度の車両の進行方向に平行な成分を計算する合成加速度推定部と、
前回の計算周期における路面に対する車体のピッチ角を記憶するピッチ角記憶部と、
前記合成加速度推定部によって推定された車体にかかる加速度の車両の進行方向に平行な成分と、前記ピッチ角記憶部に記憶された前回の計算周期における路面に対する車体のピッチ角と、前記サスペンションにより定まる定数から、路面に対する車体のピッチ角を推定し、前記ピッチ角記憶部に記憶させるとともに出力部へ出力するピッチ角推定部
を備える。
A vehicle attitude angle estimation device according to the present disclosure includes:
In a vehicle having a vehicle body supported from the road surface by a suspension, acceleration information obtained from an acceleration sensor provided on the vehicle body, at least altitude information obtained from an altitude sensor, vehicle speed information obtained from a vehicle speed sensor, and the suspension are determined. a static pitch angle estimating unit that estimates a static pitch angle, which is the pitch angle of the vehicle body with respect to the road surface, when the vehicle is not accelerating or decelerating on a flat road surface, based on a constant;
a synthetic acceleration estimator that calculates a component of the acceleration applied to the vehicle body parallel to the traveling direction of the vehicle from the acceleration information obtained from the acceleration sensor and the static pitch angle estimated by the static pitch angle estimator;
a pitch angle storage unit that stores the pitch angle of the vehicle body relative to the road surface in the previous calculation cycle;
It is determined by the component of the acceleration applied to the vehicle body that is estimated by the synthetic acceleration estimator and that is parallel to the traveling direction of the vehicle, the pitch angle of the vehicle body with respect to the road surface in the previous calculation cycle stored in the pitch angle storage unit, and the suspension. A pitch angle estimating section is provided for estimating the pitch angle of the vehicle body with respect to the road surface from a constant, storing the pitch angle in the pitch angle storage section, and outputting the pitch angle to an output section.
 また、本開示に係る車両用灯具の光軸制御装置は、
上記車両姿勢角推定装置と、当該車両姿勢角推定装置により推定されたピッチ角に基づいて車両用灯具の光軸を制御する光軸制御部と、を備える。
Further, the optical axis control device for a vehicle lamp according to the present disclosure includes:
The vehicle attitude angle estimation device and an optical axis control section that controls the optical axis of the vehicle lamp based on the pitch angle estimated by the vehicle attitude angle estimation device.
 本開示の車両姿勢角推定装置によれば、車両の加減速中または路面勾配変化中においても車両の姿勢角を推定することが可能となる。 According to the vehicle posture angle estimating device of the present disclosure, it is possible to estimate the posture angle of the vehicle even during acceleration/deceleration of the vehicle or while the road surface gradient is changing.
 また、本開示の車両用灯具の光軸制御装置によれば、車両の加減速中または路面勾配変化中においても、車両用灯具の光軸を適切に制御することが可能となる。 Further, according to the optical axis control device of the vehicle lamp of the present disclosure, it is possible to appropriately control the optical axis of the vehicle lamp even when the vehicle is accelerating or decelerating or the road surface gradient is changing.
サスペンションで支持された車体を有する車両の左側面図である。1 is a left side view of a vehicle having a vehicle body supported by suspensions; FIG. 実施の形態1の車両姿勢角推定装置の構成図である。1 is a configuration diagram of a vehicle attitude angle estimation device according to Embodiment 1; FIG. 実施の形態1の車両姿勢角推定装置の構成図である。1 is a configuration diagram of a vehicle attitude angle estimation device according to Embodiment 1; FIG. 実施の形態1の車両姿勢角推定装置の構成図である。1 is a configuration diagram of a vehicle attitude angle estimation device according to Embodiment 1; FIG. 実施の形態2における静的ピッチ角推定部の構成図である。FIG. 10 is a configuration diagram of a static pitch angle estimator in Embodiment 2; サスペンションで支持された車体を有する車両の後側面図である。1 is a rear side view of a vehicle having a vehicle body supported by suspensions; FIG. 実施の形態5の車両姿勢角推定装置の構成図である。FIG. 11 is a configuration diagram of a vehicle attitude angle estimation device according to Embodiment 5;
 以下、本開示の車両姿勢角推定装置を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は適宜省略する。 Hereinafter, the vehicle attitude angle estimation device of the present disclosure will be described according to each embodiment with reference to the drawings. In addition, in each embodiment, the same or corresponding parts are denoted by the same reference numerals, and redundant explanations are omitted as appropriate.
実施の形態1.
 本開示の実施の形態1における車両姿勢角推定装置を、図1及び図2を用いて説明する。図1は、本実施の形態1の車両姿勢角推定装置が搭載される、サスペンションで支持された車両の概略図である。図2は、本実施の形態1の車両姿勢角推定装置の構成を示すブロック図である。
Embodiment 1.
A vehicle attitude angle estimation device according to Embodiment 1 of the present disclosure will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a schematic diagram of a vehicle supported by a suspension on which a vehicle attitude angle estimation device according to Embodiment 1 is mounted. FIG. 2 is a block diagram showing the configuration of the vehicle posture angle estimating device according to the first embodiment.
  図1に示すように、車両100は、車体104と車輪107を有する。車輪107は路面103に接地しており、左右の車輪107は車軸110により連結されている。車体104は、サスペンション102を介して車軸110に取り付けられている。また、路面103は水平面に対して勾配108を有する。また、図1において、符号109は車両100の重心を示す。 As shown in FIG. 1, the vehicle 100 has a vehicle body 104 and wheels 107 . The wheels 107 are in contact with the road surface 103 and the left and right wheels 107 are connected by an axle 110 . A vehicle body 104 is attached to an axle 110 via a suspension 102 . Moreover, the road surface 103 has a slope 108 with respect to the horizontal plane. Further, in FIG. 1 , reference numeral 109 indicates the center of gravity of the vehicle 100 .
 車両100には、車両姿勢角推定装置101、ヘッドランプ106、加速度センサ201、高度センサ202、及び車速センサ203が設けられている。加速度センサ201は、車体104に固定されている。高度センサ202は、車両の高度を検出するセンサであり、例えば衛星測位システムであってよい。または、高度センサ202は、気圧を測定し高度に換算する装置であってもよい。車速センサ203は、例えば、車輪107の回転速度より車速を求めるセンサであってよい。あるいは、車速センサ203は、車載カメラの映像から車両の速度を推定する装置であってもよい。 The vehicle 100 is provided with a vehicle attitude angle estimation device 101 , a headlamp 106 , an acceleration sensor 201 , an altitude sensor 202 and a vehicle speed sensor 203 . Acceleration sensor 201 is fixed to vehicle body 104 . The altitude sensor 202 is a sensor that detects the altitude of the vehicle, and may be, for example, a satellite positioning system. Alternatively, altitude sensor 202 may be a device that measures air pressure and converts it to altitude. The vehicle speed sensor 203 may be a sensor that obtains the vehicle speed from the rotation speed of the wheels 107, for example. Alternatively, the vehicle speed sensor 203 may be a device that estimates the speed of the vehicle from the image of the vehicle-mounted camera.
 図2に示すように、車両姿勢角推定装置101は、静的ピッチ角推定部205と、合成加速度推定部206と、ピッチ角記憶部208と、ピッチ角推定部207と、を備える。 As shown in FIG. 2, the vehicle attitude angle estimation device 101 includes a static pitch angle estimation unit 205, a synthetic acceleration estimation unit 206, a pitch angle storage unit 208, and a pitch angle estimation unit 207.
 車両姿勢角推定装置101は、サスペンション102を介して路面103と接地した車体104において、少なくとも加速度センサ201によって計測された車両の加速度情報、高度センサ202によって計測された車体104の高度情報、及び車速センサ203によって計測された車速情報を用いて、路面103に対する車体104のピッチ角105を推定し、出力部204へ出力する。出力部204は、例えばヘッドランプ106の光軸制御部111であってよい。この場合、ヘッドランプ106の光軸制御部111は、車両姿勢角推定装置101により推定された車体のピッチ角に基づき光軸を調整可能に構成されていても良い。 The vehicle attitude angle estimation device 101 obtains at least vehicle acceleration information measured by the acceleration sensor 201, altitude information of the vehicle body 104 measured by the altitude sensor 202, and vehicle speed Using the vehicle speed information measured by the sensor 203 , the pitch angle 105 of the vehicle body 104 with respect to the road surface 103 is estimated and output to the output unit 204 . The output unit 204 may be, for example, the optical axis control unit 111 of the headlamp 106 . In this case, the optical axis controller 111 of the headlamp 106 may be configured to adjust the optical axis based on the pitch angle of the vehicle body estimated by the vehicle attitude angle estimation device 101 .
 静的ピッチ角推定部205は、少なくとも加速度センサ201から得られる加速度情報と、高度センサ202から得られる高度情報と、車速センサ203から得られる車速情報と、サスペンション102により定まる定数とに基づいて、車両が平坦な路面上で加減速していない場合における路面に対する車体104のピッチ角である静的ピッチ角を推定する。 Based on at least acceleration information obtained from the acceleration sensor 201, altitude information obtained from the altitude sensor 202, vehicle speed information obtained from the vehicle speed sensor 203, and a constant determined by the suspension 102, the static pitch angle estimation unit 205 A static pitch angle is estimated, which is the pitch angle of the vehicle body 104 with respect to the road surface when the vehicle is not accelerating or decelerating on a flat road surface.
 合成加速度推定部206は、加速度センサ201から得られる加速度情報と、静的ピッチ角推定部205によって推定された静的ピッチ角を用いて、車体104にかかる加速度の車両進行方向に平行な成分を計算する。 Synthetic acceleration estimator 206 uses the acceleration information obtained from acceleration sensor 201 and the static pitch angle estimated by static pitch angle estimator 205 to estimate the component of the acceleration applied to vehicle body 104 parallel to the vehicle traveling direction. calculate.
 ピッチ角記憶部208は、前回の計算周期において推定された、路面に対する車体104のピッチ角を記憶する。 The pitch angle storage unit 208 stores the pitch angle of the vehicle body 104 with respect to the road surface estimated in the previous calculation cycle.
 ピッチ角推定部207は、合成加速度推定部206によって推定された車体104にかかる加速度の車両進行方向に平行な成分と、ピッチ角記憶部208に記憶された前回の計算周期における路面に対する車体104のピッチ角と、サスペンションにより定まる定数を用いて、路面に対する車体104のピッチ角を推定する。また、推定したピッチ角をピッチ角記憶部208に記憶させるとともに、出力部204へ出力する。 The pitch angle estimating unit 207 calculates the component parallel to the vehicle traveling direction of the acceleration applied to the vehicle body 104 estimated by the synthetic acceleration estimating unit 206 and the acceleration of the vehicle body 104 with respect to the road surface in the previous calculation cycle stored in the pitch angle storage unit 208. Using the pitch angle and a constant determined by the suspension, the pitch angle of the vehicle body 104 with respect to the road surface is estimated. Also, the estimated pitch angle is stored in the pitch angle storage unit 208 and output to the output unit 204 .
 次に、本実施形態の車両姿勢角推定装置101におけるピッチ角推定の原理について説明する。 Next, the principle of pitch angle estimation in the vehicle attitude angle estimation device 101 of this embodiment will be described.
 図1に示すように、車両進行方向をx軸、路面に直交する方向を上を正としてz軸とし、車軸110に固定された座標系をとる。ここで、車輪107は剛体とみなし、前輪および後輪の車軸110は常に路面103に平行であるとする。時刻tにおいて、車軸110に固定された座標系における車両重心109の位置をp0,tとし、そのx座標をx0,t、z座標をz0,tとおく。 As shown in FIG. 1, a coordinate system fixed to the axle 110 is taken, with the direction of travel of the vehicle being the x-axis and the direction perpendicular to the road surface being the z-axis. Here, the wheels 107 are regarded as rigid bodies, and the axles 110 of the front and rear wheels are always parallel to the road surface 103 . At time t, the position of the vehicle center of gravity 109 in the coordinate system fixed to the axle 110 is p 0,t , its x coordinate is x 0,t , and its z coordinate is z 0,t .
 サスペンション102を、バネ定数がk/4、ダンパ係数がc/4のバネ-ダンパ系とし、車両のホイールベースを2Lとする。このとき、時刻tにおける路面に対する車体のピッチ角φは、下記(1)式で表される角運動方程式を満たす。 The suspension 102 is a spring-damper system with a spring constant of k/4 and a damper coefficient of c/4, and the wheelbase of the vehicle is 2L. At this time, the pitch angle φ t of the vehicle body with respect to the road surface at time t satisfies the angular motion equation expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、Jは重心周りの車両の慣性モーメント、Mは車両質量、dは車両重心の車軸からの高さ、θは水平面に対する路面勾配108、gは重力加速度、Vは車速である。 where Jy is the moment of inertia of the vehicle around the center of gravity, M is the mass of the vehicle, d is the height of the center of gravity of the vehicle from the axle, θt is the road surface gradient 108 with respect to the horizontal plane, g is the acceleration of gravity, and Vt is the vehicle speed.
 また、φは、車両にかかる前後方向の加速度V(ドット)-gsinθがゼロであるときの、路面に対する車体104のピッチ角である。φは貨物や乗員の乗降によって変化するが、走行中には変化しない。より厳密には、燃料の消費等によって変化しうるが、その変化は十分に小さく、短時間においてはφは一定とみなせる。本明細書において、φを静的ピッチ角と称する。 φ s is the pitch angle of the vehicle body 104 with respect to the road surface when the longitudinal acceleration V(dot) t −gsin θ t applied to the vehicle is zero. Although φ s changes depending on cargo and passenger getting on and off, it does not change during running. More strictly speaking, it may change due to consumption of fuel or the like, but the change is sufficiently small, and φ s can be regarded as constant for a short period of time. φ s is referred to herein as the static pitch angle.
 車体104に取り付けられた加速度センサ201の、車軸110に固定された座標系における位置Pは、下記(2)式で表される。 A position Pt of the acceleration sensor 201 attached to the vehicle body 104 in the coordinate system fixed to the axle 110 is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、p0,tは車軸110に固定された座標系における車両重心109の位置、rは車体104に固定された座標系において車両重心位置p0,tを原点としたときの加速度センサ201の位置であり、R(φ)は下記式で表される回転行列である。 However, p0 ,t is the position of the center of gravity 109 of the vehicle in the coordinate system fixed to the axle 110, and r is the position of the acceleration sensor 201 when the position of the center of gravity of the vehicle p0 ,t is set as the origin in the coordinate system fixed to the vehicle body 104. is the position, and R yt ) is the rotation matrix represented by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 加速度センサの加速度はpの2階微分であるから下記(3)式が成り立つ。 Since the acceleration of the acceleration sensor is the second derivative of pt , the following equation (3) holds.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 そして、加速度センサが計測する加速度は、自身の加速度に重力及び慣性力を加えた値となるから、加速度センサが計測する加速度は、路面に固定された座標系において下記(4)式で表される。 Since the acceleration measured by the acceleration sensor is the value obtained by adding gravity and inertial force to its own acceleration, the acceleration measured by the acceleration sensor is expressed by the following formula (4) in a coordinate system fixed to the road surface. be.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ただし、Gは鉛直上向きの重力加速度ベクトルであり、Fは車両加減速及び勾配変化に伴う慣性力であり、下記式で表される。 However, G is the vertical upward gravitational acceleration vector, and F is the inertial force associated with vehicle acceleration/deceleration and gradient change, which is expressed by the following formula.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 加速度センサは車体に固定されているから、加速度センサの計測値Oは、(4)式で表される加速度を車体のピッチ角で回転したものであり、下記(5)式のように表される。 Since the acceleration sensor is fixed to the vehicle body, the measured value Ot of the acceleration sensor is obtained by rotating the acceleration represented by the formula (4) by the pitch angle of the vehicle body, and is represented by the following formula (5). be done.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 サスペンションのx軸方向は拘束されているから、加速度センサの加速度p(2ドット)のx成分は0である。車体のピッチ角φが微小であるとして(5)式を近似すると、加速度センサの計測値Oのx成分およびz成分は、下記(6)式のように表される。 Since the x-axis direction of the suspension is constrained, the x component of the acceleration p(2 dots) t of the acceleration sensor is zero. If the equation (5) is approximated assuming that the pitch angle φt of the vehicle body is very small, the x component and the z component of the measurement value Ot of the acceleration sensor are represented by the following equation (6).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 (1)式を用いて(6)式からφを消去すると、V(ドット)-gsinθ及びz(2ドット)0,t-Vθ(ドット)+gcosθが、φ、φ(ドット)及びφ(2ドット)の関数として定まることがわかる。そこで、これらの関数をそれぞれu、wとおくと、下記(7)式のように表される。ここで、u、wは、それぞれ、車両にかかる加速度の車両進行方向に平行な成分と垂直な成分に相当する。 Eliminating φ t from Equation (6) using Equation (1), V (dot) t − g sin θ t and z (2 dots) 0, t − V t θ (dot) t +gcos θ t are obtained by φ s , It can be seen that it is determined as a function of φ (dot) t and φ (2 dots) t . Therefore, if these functions are set to u t and w t respectively, they are represented by the following equation (7). Here, u t and w t respectively correspond to the components parallel and perpendicular to the vehicle traveling direction of the acceleration applied to the vehicle.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ただし、(7)式において、φは(1)式をφに関して解いたものであり、φ、φ(ドット)、及びφ(2ドット)の関数となっている。 However, in equation (7), φ t is obtained by solving equation (1) with respect to φ t and is a function of φ s , φ(dot) t , and φ(2 dots) t .
 また、(7)式において、φ(ドット)およびφ(2ドット)として、図示しない角加速度センサや角速度センサを用いて計測した値を用いて良い。あるいは、加速度センサ201を車両重心109の付近に配置しr≒0とすることで、uとwからφ(ドット)及びφ(2ドット)に関する項を消去してもよい。さらに望ましくは、車両の相異なる位置に配置した複数の加速度センサあるいはジャイロセンサを用いて、車両重心位置p0,t付近における加速度を計算してもよい。あるいは、勾配の変化や車両の加減速によるピッチ角の変化は相対的に滑らかであるとし、サスペンションの振動モード等に由来する高周波のピッチ角変化を無視することで、φ(ドット)≒φ(2ドット)≒0と近似しても良い。 Further, in the equation (7), values measured using an angular acceleration sensor or an angular velocity sensor (not shown) may be used as φ (dot) t and φ (2 dots) t . Alternatively, by placing the acceleration sensor 201 near the center of gravity 109 of the vehicle and setting r≈0, the terms relating to φ(dot) t and φ(2 dots) t may be eliminated from u t and w t . More preferably, a plurality of acceleration sensors or gyro sensors arranged at different positions of the vehicle may be used to calculate the acceleration near the center of gravity position p0 ,t of the vehicle. Alternatively, φ (dot) t ≈ φ (2 dots) t ≈ 0 may be approximated.
 さて、(7)式から下記(8)式が成り立つ。 Now, the following formula (8) holds from formula (7).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 (8)式において、V(ドット)は車速センサから得られる車速Vの数値的な微分より求めることができる。また、(8)式の右辺は高度変化に等しい。したがって、高度センサ202により計測される高度hを数値的に微分して高度変化を求め(8)式の右辺に代入することで、原理的には(8)式により静的ピッチ角φを求めることができる。 In equation (8), V (dot) t can be obtained from numerical differentiation of the vehicle speed V t obtained from the vehicle speed sensor. Also, the right side of the equation (8) is equal to the altitude change. Therefore, by numerically differentiating the altitude h t measured by the altitude sensor 202 and substituting it into the right side of the equation (8), the static pitch angle φ s can be asked for.
 しかし、車速の数値的な微分V(ドット)や高度の数値的な微分h(ドット)は、数値的な微分によって強調された高周波の誤差を含むため、1つの時刻tにおける(8)式から求めた静的ピッチ角φもまた高周波の誤差を含むことになる。そこで、本実施形態による計算に於いては、複数の時刻tにおける(8)式を用いて、非線形最小二乗法により静的ピッチ角φを求める。非線形最小二乗法は、例えば共役勾配法や準Newton法等の公知の最適化手法を用いて良い。あるいはLevenberg-Marquard法等の非線形最小二乗法に特化した手法を用いても良い。 However, since the numerical derivative V (dot) t of vehicle speed and the numerical derivative h (dot) t of altitude contain high-frequency errors accentuated by the numerical derivative, (8) at one time t The static pitch angle φ s obtained from the equation also contains high frequency errors. Therefore, in the calculation according to the present embodiment, the static pitch angle φ s is obtained by the nonlinear least-squares method using equation (8) at a plurality of times t. The nonlinear least-squares method may use a known optimization method such as the conjugate gradient method or the quasi-Newton method. Alternatively, a technique specialized for the nonlinear least squares method such as the Levenberg-Marquard method may be used.
 また、車速の数値的な微分V(ドット)や高度の数値的な微分h(ドット)は、例えば連続する2時刻における値の差分を、前記2時刻の間の時間で除することによって求めて良い。あるいは不完全微分フィルタを用いても良い。 Further, the numerical differentiation V (dot) t of the vehicle speed and the numerical differentiation h (dot) t of the altitude can be obtained, for example, by dividing the difference between the values at two consecutive times by the time between the two times. good to ask Alternatively, an incomplete differential filter may be used.
 上記のようにして推定した静的ピッチ角φおよび加速度センサ201によって計測された加速度Oを(7)式に代入してuを計算することにより、車両の加減速による加速度と重力加速度の合成加速度の路面進行方向に平行な成分V(ドット)-gsinθを求めることができる。 By substituting the static pitch angle φ s estimated as described above and the acceleration O t measured by the acceleration sensor 201 into the equation (7) and calculating u t , the acceleration due to acceleration and deceleration of the vehicle and the gravitational acceleration component V(dot) t −gsin θ t parallel to the traveling direction of the road surface of the synthesized acceleration of .
 そして、車両の加減速による加速度と重力加速度の合成加速度の路面進行方向に平行な成分V(ドット)-gsinθを(1)式に代入する。さらに、前回の計算周期である時刻t-1におけるピッチ角φt-1及びピッチ角速度φ(ドット)t-1を用いて(1)式の初期値問題を解くことで、路面に対する車体のピッチ角φ及びピッチ角速度φ(ドット)を求めることができる。初期値問題の解法は、例えばEuler法を用いて良い。あるいはRunge-Kutta法を用いて良い。また、求めたピッチ角φ及びピッチ角速度φ(ドット)を、次回の計算周期のために記憶部へ記憶させておいて良い。 Then, the component V(dot) t −gsin θ t parallel to the traveling direction of the road surface of the composite acceleration of the acceleration due to acceleration/deceleration of the vehicle and the gravitational acceleration is substituted into the equation (1). Furthermore, by solving the initial value problem of equation (1) using the pitch angle φ t-1 and the pitch angular velocity φ (dot) t-1 at time t-1, which is the previous calculation cycle, the pitch of the vehicle body with respect to the road surface The angle φ t and the pitch angular velocity φ(dot) t can be determined. For example, the Euler method may be used to solve the initial value problem. Alternatively, the Runge-Kutta method may be used. Also, the obtained pitch angle φ t and pitch angular velocity φ (dot) t may be stored in the storage unit for the next calculation cycle.
 次に、本実施形態の車両姿勢角推定装置101の動作について説明する。 Next, the operation of the vehicle attitude angle estimation device 101 of this embodiment will be described.
 静的ピッチ角推定部205は、少なくとも加速度センサ201によって計測された複数の時刻tの加速度Oと、車速センサ203によって計測された複数の時刻tの車速Vと、高度センサ202によって計測された複数の時刻tの高度hと、サスペンションにより定まる定数k、cとから、(8)式に基づいて静的ピッチ角φを推定する。ここで、サスペンションにより定まる係数k、cは、図示しない記憶部に記憶されていてもよい。
 合成加速度推定部206は、少なくとも加速度センサ201によって計測された加速度Oと、静的ピッチ角推定部205によって推定された静的ピッチ角φとから、関数u(φ;φ(ドット),φ(2ドット))を計算することで、車両の加減速による加速度と重力加速度の合成加速度の路面進行方向に平行な成分V(ドット)-gsinθを計算する。
 ピッチ角推定部207は、合成加速度推定部206によって計算された車両の加減速による加速度と重力加速度の合成加速度の路面進行方向に平行な成分V(ドット)-gsinθと、ピッチ角記憶部208によって記憶された前回の計算周期、例えば時刻t-1におけるピッチ角φt-1を用いて、(1)式の初期値問題を解くことでピッチ角φを計算し、ピッチ角記憶部208に記憶するとともに、出力部204へ出力する。
The static pitch angle estimator 205 calculates at least the acceleration Ot measured by the acceleration sensor 201 at a plurality of times t , the vehicle speed Vt measured by the vehicle speed sensor 203 at a plurality of times t , and the altitude sensor 202. The static pitch angle φ s is estimated based on the equation (8) from the altitudes h t at a plurality of times t and the constants k and c determined by the suspension. Here, the coefficients k and c determined by the suspension may be stored in a storage unit (not shown).
Synthetic acceleration estimator 206 calculates function u t ( φ s ; φ(dot ) t , φ(2 dots) t ), the component V(dot) t −gsin θ t parallel to the traveling direction of the road surface of the resultant acceleration due to acceleration/deceleration of the vehicle and gravitational acceleration is calculated.
The pitch angle estimating unit 207 stores the component V (dot) t −gsin θ t parallel to the traveling direction of the road surface of the synthetic acceleration of the acceleration due to acceleration/deceleration of the vehicle calculated by the synthetic acceleration estimating unit 206 and the gravitational acceleration, and a pitch angle storage unit. The pitch angle φ t is calculated by solving the initial value problem of equation (1) using the previous calculation period stored by 208, for example, the pitch angle φ t at time t-1, and the pitch angle storage unit 208 and output to the output unit 204 .
 本実施形態による車両姿勢角推定装置により、車両の加減速中や勾配が変化している状況下であっても、路面に対する車体のピッチ角を推定することが可能である。 With the vehicle attitude angle estimation device according to this embodiment, it is possible to estimate the pitch angle of the vehicle body with respect to the road surface even when the vehicle is accelerating or decelerating or the gradient is changing.
 一般に、加速度や高度変化といった物理量は位置の微分量であり、その測定値には本質的に高周波の誤差が重畳する。このような測定値を用いて勾配やピッチ角を精度良く推定するためには、積分や平均化といった操作が不可欠である。しかしながら、積分や平均化といった操作を、勾配やピッチ角に直接適用する場合、対象期間において路面勾配や車両ピッチ角の変化が十分に小さく一定であるとみなす必要がある。しかしながら、車両の加減速中や路面勾配の変化中は、勾配やピッチ角が動的に変化するため、一定であるとみなすことはできない。このことが、公知の手法において、車両の加減速中や路面勾配の変化中において車両の姿勢角を推定できなかった要因の一つである。 In general, physical quantities such as acceleration and altitude changes are differential quantities of position, and high-frequency errors are inherently superimposed on the measured values. Operations such as integration and averaging are indispensable for accurately estimating gradients and pitch angles using such measured values. However, if operations such as integration and averaging are directly applied to the slope and pitch angle, it is necessary to assume that the changes in the road slope and vehicle pitch angle are sufficiently small and constant during the target period. However, during acceleration/deceleration of the vehicle or changes in the road surface gradient, the gradient and pitch angle change dynamically and cannot be regarded as constant. This is one of the reasons why the known method cannot estimate the attitude angle of the vehicle while the vehicle is accelerating or decelerating or while the road surface gradient is changing.
 これに対し、本実施形態の車両姿勢角推定装置101は、前記積分や平均化に相当する操作を勾配やピッチ角に直接適用するのではなく、走行中に変化しない量である静的ピッチ角φに適用することで前記課題を解決し、車両の加減速中や勾配が変化している状況において車両の姿勢角を推定することを可能としている。本実施形態の車両姿勢角推定装置101により、車両の加減速中や路面勾配の変化中であっても、路面に対する車体のピッチ角φを推定することが可能である。 On the other hand, the vehicle attitude angle estimation device 101 of this embodiment does not directly apply the operation corresponding to the integration or averaging to the gradient or the pitch angle, but rather the static pitch angle which is an amount that does not change while driving. By applying it to φ s , the above problem is solved, and it is possible to estimate the attitude angle of the vehicle in a situation where the vehicle is accelerating or decelerating or the gradient is changing. The vehicle attitude angle estimating device 101 of this embodiment can estimate the pitch angle φ t of the vehicle body with respect to the road surface even when the vehicle is accelerating or decelerating or the road surface gradient is changing.
 なお、本実施形態に記載の車両姿勢角推定装置101は、ピッチ角の角運動方程式として(1)式を用いるものに限定されない。ピッチ角φが静的ピッチ角φ、φ(ドット)、及びφ(2ドット)の関数となる限りにおいて、バネの非線形性やサスペンションジオメトリの効果を導入してよい。 The vehicle attitude angle estimation device 101 described in the present embodiment is not limited to the one that uses Equation (1) as the angular motion equation of the pitch angle. As long as the pitch angle φ t is a function of the static pitch angles φ s , φ(dot) t , and φ(2dot) t , spring non-linearity and suspension geometry effects may be introduced.
 また、本実施形態に記載の車両姿勢角推定装置101において、静的ピッチ角推定部205は、全ての計算周期において静的ピッチ角推定を行う形態に限定されない。静的ピッチ角推定部205は、静的ピッチ角は走行中に変化しないため、例えばNを整数として、計算周期のN回に1回静的ピッチ角を推定し、合成加速度推定部206は推定された最新の静的ピッチ角を用いて残りの演算を実行してよい。これにより、本実施形態に記載の車両姿勢角推定装置101は、例えば高度センサ202の計測周期が他のセンサの計測周期のN倍であったとしても、推定周期を落とすことなく車体のピッチ角を推定できる。 In addition, in the vehicle attitude angle estimation device 101 described in this embodiment, the static pitch angle estimation unit 205 is not limited to performing static pitch angle estimation in all calculation cycles. Since the static pitch angle does not change during running, the static pitch angle estimating unit 205 estimates the static pitch angle once every N calculation cycles, where N is an integer, and the synthetic acceleration estimating unit 206 estimates The remaining calculations may be performed using the most recent static pitch angle obtained. As a result, even if the measurement cycle of the altitude sensor 202 is N times the measurement cycle of the other sensors, the vehicle attitude angle estimation device 101 according to the present embodiment can detect the pitch angle of the vehicle body without reducing the estimation cycle. can be estimated.
 さらに、本実施形態に記載の車両姿勢角推定装置101において、ピッチ角推定部207は、例えばジャイロセンサ等の角速度センサによって測定された車体のピッチ角の角速度をさらに用い、例えばKalman filterを用いることでノイズを除去しつつピッチ角を推定してもよい。これにより加速度センサ201にノイズが重畳している場合においても、車両姿勢角推定装置101は、精度良くピッチ角を推定できる。 Furthermore, in the vehicle attitude angle estimation device 101 described in this embodiment, the pitch angle estimation unit 207 further uses the angular velocity of the pitch angle of the vehicle body measured by an angular velocity sensor such as a gyro sensor, for example, using a Kalman filter. You may estimate a pitch angle, removing a noise by . Accordingly, even when noise is superimposed on the acceleration sensor 201, the vehicle attitude angle estimation device 101 can accurately estimate the pitch angle.
 また、本実施形態の車両姿勢角推定装置101と、当該車両姿勢角推定装置101により推定された路面に対する車体のピッチ角に基づき車両用灯具の光軸を制御する光軸制御部111とを組合せて、車両用灯具の光軸制御装置を構成してもよい。これにより、車両の加減速中や勾配が変化している状況下であっても、対向車のドライバーを眩惑しないように車両用灯具の光軸を適切に制御することが可能となる。 In addition, the vehicle attitude angle estimation device 101 of this embodiment is combined with an optical axis control unit 111 that controls the optical axis of the vehicle lamp based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101. may constitute an optical axis control device for a vehicle lamp. This makes it possible to appropriately control the optical axis of the vehicle lamp so as not to dazzle the driver of the oncoming vehicle even when the vehicle is accelerating or decelerating or the gradient is changing.
 また、本実施形態の車両姿勢角推定装置における静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の各機能は、図3に示すように処理回路により実現されてよい。すなわち、車両姿勢角推定装置は、静的ピッチ角を推定し、合成加速度を推定し、ピッチ角を推定しピッチ角記憶部へ記憶させるとともに出力部へ出力するための処理装置を備えてよい。処理回路は、専用のハードウェアであっても、図4に示すようにメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)であってもよい。 Also, the functions of the static pitch angle estimating section, the synthetic acceleration estimating section, and the pitch angle estimating section in the vehicle posture angle estimating device of this embodiment may be realized by a processing circuit as shown in FIG. That is, the vehicle attitude angle estimation device may include a processing device for estimating the static pitch angle, estimating the synthesized acceleration, estimating the pitch angle, storing the estimated pitch angle in the pitch angle storage section, and outputting the estimated pitch angle to the output section. The processing circuit, even if it is dedicated hardware, is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, also called DSP).
 処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサー、並列プログラム化したプロセッサー、ASIC、FPGA、またはこれらを組み合わせたものが該当する。静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の各部の機能それぞれを処理回路で実現しても良いし、各部の機能をまとめて処理回路で実現しても良い。 When the processing circuit is dedicated hardware, the processing circuit corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. The functions of the static pitch angle estimating section, the synthetic acceleration estimating section, and the pitch angle estimating section may be realized individually by the processing circuit, or the functions of the respective sections may be collectively realized by the processing circuit.
 処理回路がCPUの場合、静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。処理回路は、メモリに記憶されたプログラムを読みだして実行することにより、各部の機能を実現する。すなわち、車両姿勢角推定装置は、処理回路により実行されるときに、静的ピッチ角を推定するステップ、合成加速度を推定するステップ、ピッチ角を推定しピッチ角記憶部に記憶させるとともに出力部へ出力するステップが結果的に実行されることになるプログラムを格納するためのメモリを備える。また、これらのプログラムは、静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリとは、例えば、RAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等が該当する。 When the processing circuit is a CPU, the functions of the static pitch angle estimator, synthetic acceleration estimator, and pitch angle estimator are realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory. The processing circuit implements the function of each part by reading and executing the program stored in the memory. That is, when the vehicle attitude angle estimation device is executed by the processing circuit, the step of estimating the static pitch angle, the step of estimating the resultant acceleration, the step of estimating the pitch angle, storing it in the pitch angle storage unit, and sending it to the output unit A memory is provided for storing the program that will result in the outputting step being executed. It can also be said that these programs cause a computer to execute the procedures and methods of the static pitch angle estimating section, the synthetic acceleration estimating section, and the pitch angle estimating section. Here, the memory corresponds to, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, etc. do.
 なお、静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。例えば、静的ピッチ角推定部については専用のハードウェアとしての処理回路でその機能を実現し、合成加速度推定部、ピッチ角推定部については処理回路がメモリに格納されたプログラムを読みだして実行することによってその機能を実現することが可能である。 It should be noted that the functions of the static pitch angle estimator, synthetic acceleration estimator, and pitch angle estimator may be partly implemented by dedicated hardware and partly implemented by software or firmware. For example, the function of the static pitch angle estimator is realized by a processing circuit as dedicated hardware, and the processing circuit reads and executes the program stored in the memory for the synthetic acceleration estimator and pitch angle estimator. It is possible to realize the function by
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 In this way, the processing circuit can implement each of the functions described above by means of hardware, software, firmware, or a combination thereof.
実施の形態2. 
 本実施形態の車両姿勢角推定装置101Aは、静的ピッチ角推定部を除いて、実施形態1と同じである。以下、本実施形態の車両姿勢角推定装置101Aにおける静的ピッチ角推定部205Aについて、図5を用いて説明する
Embodiment 2.
101 A of vehicle attitude|position angle estimation apparatuses of this embodiment are the same as Embodiment 1 except a static pitch angle estimation part. The static pitch angle estimator 205A in the vehicle attitude angle estimator 101A of this embodiment will be described below with reference to FIG.
  本実施形態において、静的ピッチ角推定部205Aは、定数項計算部301と、微係数計算部302と、静的ピッチ角計算部303と、状態記憶部304を備える。 In this embodiment, the static pitch angle estimator 205A includes a constant term calculator 301, a differential coefficient calculator 302, a static pitch angle calculator 303, and a state storage 304.
  定数項計算部301は、加速度センサ201から得られる加速度情報から、車体104にかかる加速度の車両進行方向に平行な成分のうち、静的ピッチ角に依存しない第1の定数項を計算する。 A constant term calculation unit 301 calculates a first constant term independent of the static pitch angle among components parallel to the vehicle traveling direction of the acceleration applied to the vehicle body 104 from the acceleration information obtained from the acceleration sensor 201 .
 微係数計算部302は、加速度センサ201から得られる加速度情報から、車体104にかかる加速度の車両進行方向に平行な成分のうち、静的ピッチ角に対する第1の比例係数を計算する。 From the acceleration information obtained from the acceleration sensor 201, the differential coefficient calculation unit 302 calculates the first proportionality coefficient with respect to the static pitch angle among the components parallel to the vehicle traveling direction of the acceleration applied to the vehicle body 104.
 状態記憶部304は、少なくとも、前回の計算周期における静的ピッチ角の推定値を記憶する。 The state storage unit 304 stores at least the estimated value of the static pitch angle in the previous calculation cycle.
 静的ピッチ角計算部303は、少なくとも、高度センサ202から得られる高度情報と、車速センサ203から得られる車速情報と、定数項計算部301によって計算された第1の定数項と、微係数計算部302によって計算された第1の比例係数と、状態記憶部304に記憶された前回の計算周期における静的ピッチ角の推定値と、サスペンションにより定まる定数とに基づいて、静的ピッチ角を推定する。また、推定した静的ピッチ角を、状態記憶部304に記憶させるとともに、合成加速度推定部206へと出力する。 Static pitch angle calculator 303 calculates at least altitude information obtained from altitude sensor 202, vehicle speed information obtained from vehicle speed sensor 203, the first constant term calculated by constant term calculator 301, and differential coefficient calculation. Estimates the static pitch angle based on the first proportional coefficient calculated by the unit 302, the estimated value of the static pitch angle in the previous calculation cycle stored in the state storage unit 304, and the constant determined by the suspension. do. In addition, the estimated static pitch angle is stored in state storage section 304 and output to synthetic acceleration estimation section 206 .
  次に、本実施形態の車両姿勢角推定装置101Aの静的ピッチ角推定部205Aにおける静的ピッチ角推定の原理について説明する。 Next, the principle of static pitch angle estimation in the static pitch angle estimation section 205A of the vehicle attitude angle estimation device 101A of this embodiment will be described.
 本実施形態においては、車体104にかかる加速度の車両進行方向に平行な成分u(φ;φ(ドット),φ(2ドット))を、1次のTaylor展開で近似する。u(φ;φ(ドット),φ(2ドット))は静的ピッチ角φの関数であるから、下記(9)式のように表される。 In this embodiment, the component u ts ; φ (dot) t , φ (2 dots) t ) of the acceleration applied to the vehicle body 104 parallel to the vehicle traveling direction is approximated by the first-order Taylor expansion. Since u ts ; φ (dot) t , φ (2 dots) t ) is a function of the static pitch angle φ s , it is represented by the following equation (9).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 (9)式において、φ(ドット)およびφ(2ドット)として、図示しない角加速度センサや角速度センサを用いて計測した値を用いて良い。あるいは、加速度センサ201を車両重心109の付近に配置しr≒0とすることで、utとwtからφ(ドット)及びφ(2ドット)に関する項を消去してもよい。さらに望ましくは、車両の相異なる位置に配置した複数の加速度センサあるいはジャイロセンサを用いて、車両重心位置p0,付近における加速度を計算してもよい。あるいは、勾配の変化や車両の加減速によるピッチ角の変化は相対的に滑らかであるとし、サスペンションの振動モード等に由来する高周波のピッチ角変化を無視することで、φ(ドット)t≒φ(2ドット)t≒0と近似しても良い。 In Equation (9), values measured using an angular acceleration sensor or an angular velocity sensor (not shown) may be used as φ (dot) t and φ (2 dots) t . Alternatively, by placing the acceleration sensor 201 near the center of gravity 109 of the vehicle and setting r≈0, the terms relating to φ (dot) t and φ (2 dots) t may be eliminated from ut and wt. More preferably, a plurality of acceleration sensors or gyro sensors arranged at different positions on the vehicle may be used to calculate the acceleration near the center of gravity of the vehicle p0, t . Alternatively, by assuming that pitch angle changes due to gradient changes and vehicle acceleration/deceleration are relatively smooth and ignoring high-frequency pitch angle changes resulting from suspension vibration modes, etc., φ (dot) t ≈ φ (2 dots) It may be approximated as t≈0.
 さて、(9)式の近似のもと、(8)式は下記(10)式のように変形できる。 Now, based on the approximation of formula (9), formula (8) can be transformed into formula (10) below.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 (10)式は、推定したい静的ピッチ角φに関して線形であるから、線形最小二乗法により静的ピッチ角φを求めることができる。これにより、非線形最小二乗法で必要となる繰り返し演算が不要となり、計算に要する時間が確定する。これはリアルタイムな演算において望ましい性質である。 Since the equation (10) is linear with respect to the static pitch angle φ s to be estimated, the static pitch angle φ s can be obtained by the linear least squares method. This eliminates the need for repetitive calculations required in the nonlinear least squares method, and determines the time required for calculation. This is a desirable property for real-time computation.
 さらに望ましくは、以下に説明する適応フィルタを用いることで、さらなる演算量の削減が可能である。具体的には、(10)式の左辺をY、右辺をU ・φとおき、以下の(11)式で表される計算を毎時刻実行する。ここで、U はUの転置行列を示す。(11)式の計算を繰り返すと、φs,tはφに収束する。これにより静的ピッチ角φを求めることができる。また、求めた静的ピッチ角φを、次回の計算周期のために記憶部へ記憶させておいて良い。 More desirably, the amount of computation can be further reduced by using an adaptive filter described below. Specifically, the left side of the equation (10) is set to Y t and the right side to U T t ·φ s , and the calculation represented by the following equation (11) is executed every hour. Here, U T t denotes the transposed matrix of U t . By repeating the calculation of equation (11), φ s,t converges to φ s . This allows the static pitch angle φ s to be obtained. Also, the determined static pitch angle φ s may be stored in the storage section for the next calculation cycle.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ただし、Mは下記(12)式で表される。 However, Mt is represented by the following formula (12).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 (11)式および(12)式において、λは忘却係数と呼ばれる所定の定数であり、静的ピッチ角φがどの程度滑らかに変化しうるかを表す。忘却係数は時刻によらない定数でもよい。または速度に応じて可変としてもよい。忘却係数を用いることにより、静的ピッチ角推定部205は複数の時刻の加速度、高度、車速を保持しておく必要がない。そのため、記憶容量が制限されたマイクロコントローラ等への実装に適する。 In equations (11) and (12), λ t is a predetermined constant called the forgetting factor, and represents how smoothly the static pitch angle φ s can change. The forgetting factor may be a constant independent of time. Alternatively, it may be variable according to speed. By using the forgetting factor, the static pitch angle estimator 205 does not need to store acceleration, altitude, and vehicle speed at multiple times. Therefore, it is suitable for mounting on a microcontroller or the like with a limited memory capacity.
 次に、本実施形態の車両姿勢角推定装置101Aの動作について説明する。 Next, the operation of the vehicle attitude angle estimation device 101A of this embodiment will be described.
 定数項計算部301は、加速度センサ201によって計測された加速度Oから、(9)式の右辺第1項を計算する。(9)式の右辺第1項は、車体104にかかる加速度の車両進行方向に平行な成分uのうち、静的ピッチ角φに依存しない定数項である。本明細書においては、当該定数項を第1の定数項とも呼ぶ。
 微係数計算部302は加速度センサ201によって計測された加速度Oから、(9)式の右辺第2項のφにかかる係数部分を計算する。当該係数は、車体104にかかる加速度の車両進行方向に平行な成分uのうち、静的ピッチ角φにかかる比例係数である。本明細書においては、当該比例係数を第1の比例係数とも呼ぶ。
 静的ピッチ角計算部303は、少なくとも車速センサ203によって計測された車速Vと、高度センサ202によって計測された高度hと、定数項計算部301によって計算された第1の定数項と、微係数計算部302によって計算された係数と、状態記憶部304によって記憶された1時刻前の静的ピッチ角φs,t-1及びベクトルΦt-1に基づき、(11)式の適応フィルタを用いて静的ピッチ角φs,t及びベクトルΦを計算し、状態記憶部304に記憶するとともに、合成加速度推定部206へと出力する。以降は、実施の形態1と同様の処理を行い、路面に対する車体のピッチ角φを推定する。
Constant term calculator 301 calculates the first term on the right side of equation (9) from the acceleration Ot measured by acceleration sensor 201 . The first term on the right side of equation (9) is a constant term that does not depend on the static pitch angle φ s among the components u t of the acceleration applied to the vehicle body 104 parallel to the vehicle traveling direction. In this specification, the constant term is also called a first constant term.
A differential coefficient calculation unit 302 calculates a coefficient part related to φ s in the second term on the right side of equation (9) from the acceleration O t measured by the acceleration sensor 201 . The coefficient is a proportionality coefficient related to the static pitch angle φ s of the component u t of the acceleration applied to the vehicle body 104 parallel to the vehicle traveling direction. This proportionality factor is also referred to herein as the first proportionality factor.
The static pitch angle calculator 303 calculates at least the vehicle speed Vt measured by the vehicle speed sensor 203, the altitude ht measured by the altitude sensor 202, the first constant term calculated by the constant term calculator 301, Based on the coefficient calculated by the differential coefficient calculation unit 302 and the static pitch angle φ s, t-1 and the vector Φ t-1 one time ago stored by the state storage unit 304, the adaptive filter of formula (11) are used to calculate the static pitch angle φ s,t and the vector Φ t , which are stored in the state storage unit 304 and output to the resultant acceleration estimation unit 206 . Thereafter, the same processing as in Embodiment 1 is performed to estimate the pitch angle φt of the vehicle body with respect to the road surface.
 本実施形態による車両姿勢角推定装置101Aによれば、実施形態1に記載の効果に加え、より計算量を削減し、よりリアルタイムな処理に適した処理を実現できる。 According to the vehicle attitude angle estimation device 101A according to the present embodiment, in addition to the effects described in the first embodiment, it is possible to further reduce the amount of calculation and realize processing more suitable for real-time processing.
 なお、本実施形態に記載の車両姿勢角推定装置101Aは、適応フィルタとして必ずしも(11)式を用いるものに限定するものではない。(10)式に基づき、静的ピッチ角φを求められる限りにおいて、例えばLMS(Least mean squares)フィルタやTotal recursive least mean squaresフィルタを用いてもよい。 It should be noted that the vehicle attitude angle estimation device 101A described in this embodiment is not necessarily limited to using the equation (11) as the adaptive filter. For example, an LMS (Least Mean Squares) filter or a total recursive least mean squares filter may be used as long as the static pitch angle φ s can be obtained based on the equation (10).
 本実施形態においても、静的ピッチ角推定部205Aは、全ての計算周期において静的ピッチ角推定を行う形態に限定されない。静的ピッチ角推定部205Aは、静的ピッチ角は走行中に変化しないため、例えばNを整数として、計算周期のN回に1回静的ピッチ角を推定し、合成加速度推定部206は推定された最新の静的ピッチ角を用いて残りの演算を実行してよい。これにより、例えば高度センサ202の計測周期が他のセンサの計測周期のN倍であったとしても、推定周期を落とすことなく車体のピッチ角を推定できる。   Also in the present embodiment, the static pitch angle estimator 205A is not limited to static pitch angle estimation in all calculation cycles. Since the static pitch angle does not change during running, the static pitch angle estimator 205A estimates the static pitch angle once every N calculation cycles, where N is an integer, and the synthetic acceleration estimator 206 estimates The remaining calculations may be performed using the most recent static pitch angle obtained. As a result, even if the measurement period of the altitude sensor 202 is N times the measurement period of the other sensors, the pitch angle of the vehicle body can be estimated without dropping the estimation period.  
 また、実施の形態1と同様、本実施の形態の車両姿勢角推定装置101Aと、当該車両姿勢角推定装置101Aにより推定された路面に対する車体のピッチ角に基づき車両用灯具の光軸を制御する光軸制御部111とを組合せて、車両用灯具の光軸制御装置を構成してもよい。 Further, as in the first embodiment, the vehicle attitude angle estimation device 101A of the present embodiment and the optical axis of the vehicle lamp are controlled based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101A. It may be combined with the optical axis control unit 111 to form an optical axis control device for a vehicle lamp.
 また、実施の形態1と同様、本実施形態の車両姿勢角推定装置の静的ピッチ角推定部における定数項計算部、微係数計算部、静的ピッチ角計算部の各機能は、処理回路により実現されてよい。すなわち、静的ピッチ角推定部は、第1の定数項を計算し、第1の比例係数を計算し、静的ピッチ角を計算し状態記憶部へ記憶させるとともに合成加速度推定部へ出力するための処理装置を備えてよい。処理回路は、専用のハードウェアであっても、メモリに格納されるプログラムを実行するCPUであってもよい。 Further, as in the first embodiment, each function of the constant term calculator, the differential coefficient calculator, and the static pitch angle calculator in the static pitch angle estimator of the vehicle attitude angle estimation device of the present embodiment is implemented by a processing circuit. may be realized. That is, the static pitch angle estimator calculates the first constant term, calculates the first proportional coefficient, calculates the static pitch angle, stores it in the state storage unit, and outputs it to the synthetic acceleration estimator. may comprise a processor of The processing circuit may be dedicated hardware or may be a CPU executing a program stored in memory.
 処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサー、並列プログラム化したプロセッサー、ASIC、FPGA、またはこれらを組み合わせたものが該当する。定数項計算部、微係数計算部、静的ピッチ角計算部の各部の機能それぞれを処理回路で実現しても良いし、各部の機能をまとめて処理回路で実現しても良い。 When the processing circuit is dedicated hardware, the processing circuit corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. The functions of the constant term calculation unit, differential coefficient calculation unit, and static pitch angle calculation unit may be realized individually by the processing circuit, or the functions of each unit may be collectively realized by the processing circuit.
 処理回路がCPUの場合、定数項計算部、微係数計算部、静的ピッチ角計算部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。処理回路は、メモリに記憶されたプログラムを読みだして実行することにより、各部の機能を実現する。すなわち、車両姿勢角推定装置は、処理回路により実行されるときに、第1の定数項を計算するステップ、第1の比例係数を計算するステップ、静的ピッチ角を計算し状態記憶部へ記憶させるとともに合成加速度推定部へ出力するステップが結果的に実行されることになるプログラムを格納するためのメモリを備える。また、これらのプログラムは、定数項計算部、微係数計算部、静的ピッチ角計算部の手順や方法をコンピュータに実行させるものであるともいえる。 When the processing circuit is a CPU, the functions of the constant term calculator, differential coefficient calculator, and static pitch angle calculator are realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory. The processing circuit implements the function of each part by reading and executing the program stored in the memory. That is, the vehicle attitude angle estimator, when executed by the processing circuit, calculates a first constant term, calculates a first proportional coefficient, calculates a static pitch angle and stores it in the state storage unit. and a memory for storing a program that results in execution of the step of outputting to the synthesized acceleration estimating unit. It can also be said that these programs cause a computer to execute the procedures and methods of the constant term calculator, the differential coefficient calculator, and the static pitch angle calculator.
 なお、定数項計算部、微係数計算部、静的ピッチ角計算部の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。例えば、定数項計算部および微係数計算部については専用のハードウェアとしての処理回路でその機能を実現し、静的ピッチ角計算部については処理回路がメモリに格納されたプログラムを読みだして実行することによってその機能を実現することが可能である。 It should be noted that the functions of the constant term calculator, the differential coefficient calculator, and the static pitch angle calculator may be partly implemented by dedicated hardware and partly implemented by software or firmware. For example, the function of the constant term calculator and the differential coefficient calculator is realized by a processing circuit as dedicated hardware, and the static pitch angle calculator reads and executes a program stored in the memory. It is possible to realize the function by
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 In this way, the processing circuit can implement each of the functions described above by means of hardware, software, firmware, or a combination thereof.
実施の形態3. 
 本実施形態における車両姿勢角推定装置101Bは、基本的な構成は実施の形態1と同じであるが、車体のロール角を考慮する点で異なる。具体的には、加速度センサにおいて計測される計測値Oのうち、x成分及びz成分に加えてy成分を考慮する。つまり、直交する3軸の成分を考慮する。
Embodiment 3.
A vehicle attitude angle estimation device 101B in this embodiment has the same basic configuration as that in the first embodiment, but differs in that the roll angle of the vehicle body is considered. Specifically, of the measured value Ot measured by the acceleration sensor, the y component is considered in addition to the x component and z component. In other words, the orthogonal three-axis components are considered.
 図6は、サスペンションで支持された車体を有する車両の後側面図である。図6に示すように、車両進行方向をx軸、路面に直交する方向を上を正としてz軸とし、x軸およびz軸に直交する方向をy軸とした、車軸110に固定された座標系をとる。サスペンション102を、バネ定数がk/4、ダンパ係数がc/4のバネ-ダンパ系とし、左右の車輪間の幅を2Wとする。このとき、時刻tにおける路面103に対する車両のロール角ψは、下記(13)式で表される角運動方程式を満たす。 FIG. 6 is a rear side view of a vehicle having a vehicle body supported by suspensions. As shown in FIG. 6, coordinates fixed to the axle 110 with the direction of travel of the vehicle as the x-axis, the direction perpendicular to the road surface as the positive z-axis, and the direction perpendicular to the x- and z-axes as the y-axis. take the system The suspension 102 is a spring-damper system with a spring constant of k/4 and a damper coefficient of c/4, and the width between the left and right wheels is 2W. At this time, the roll angle ψ t of the vehicle with respect to the road surface 103 at time t satisfies the angular motion equation expressed by the following equation (13).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ただし、ψは路面に対する車体のロール角、ψは静的ロール角、ηは水平面に対する路面のバンク角402であり、χ(ドット)はヨーレートであり、Vχ(ドット)は車軸110に固定された座標系における横方向の慣性力である。 where ψ t is the roll angle of the vehicle body with respect to the road surface, ψ s is the static roll angle, η t is the bank angle 402 of the road surface with respect to the horizontal plane, χ (dot) t is the yaw rate, and V t χ (dot) t is the lateral inertial force in a coordinate system fixed to the axle 110;
 路面に対する車体のピッチ角φ及びロール角ψが微小なとき、加速度センサにおいて計測される計測値Oは、近似的に下記(14)式で表される。 When the pitch angle φ t and the roll angle ψ t of the vehicle body with respect to the road surface are very small, the measured value O t measured by the acceleration sensor is approximately represented by the following equation (14).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 (14)式から(1)式及び(13)式を用いてφ及びψを消去すると、V(ドット)-gsinθ、y(2ドット)0、t+Vχ(ドット)+gsinηcosθ及びz(2ドット)0,t-Vθ(ドット)+gcosηcosθが、φ及びφ(ドット)、φ(2ドット)の関数として定まる。そこで、これらの関数をそれぞれu、v、wとおくと、下記(15)式のように表される。 Eliminating φ t and ψ t from equation (14) using equations (1) and (13) yields V(dot) t −gsin θ t , y(2 dots) 0, t +V t χ(dot) t +g sin η t cos θ t and z(2 dots) 0,t −V t θ(dots) t +g cos η t cos θ t are determined as functions of φ s and φ(dots) t , φ(2 dots) t . Therefore, if these functions are set to u t , v t , and w t respectively, they are represented by the following equation (15).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 ただし、(15)式において、φは(1)式をφに関して解いたものであり、φ、φ(ドット)及びφ(2ドット)の関数となっている。同様に、ψは(13)式をψtに関して解いたものであり、ψ、ψ(ドット)及びψ(2ドット)の関数となっている。 However, in equation (15), φ t is obtained by solving equation (1) with respect to φ t and is a function of φ s , φ(dot) t and φ(2 dots) t . Similarly, ψ t is the solution of Equation (13) with respect to ψt, and is a function of ψ s , ψ(dot) t and ψ(2dot) t .
 さて、車体の動的なロール角は車体にかかる横方向の加速度とサスペンションの性質から推定できるが、車体の静的なロール角は路面のバンク角と車体に備えられた加速度センサからは区別し得ない。従って、静的ロール角ψを微小な所定の値、望ましくは0とおいても、車体のピッチ角等の他の推定値に影響を与えない。ゆえに、本実施形態においては車体の静的ロール角ψは0、あるいは所定の値とする。 The dynamic roll angle of the car body can be estimated from the lateral acceleration applied to the car body and the characteristics of the suspension, but the static roll angle of the car body cannot be distinguished from the bank angle of the road surface and the accelerometer installed in the car body. I don't get it. Therefore, even if the static roll angle ψ s is set to a minute predetermined value, preferably 0, it does not affect other estimated values such as the pitch angle of the vehicle body. Therefore, in this embodiment, the static roll angle ψ s of the vehicle body is set to 0 or a predetermined value.
 (15)式において、φ(ドット)、ψ(ドット)、φ(2ドット)及びψ(2ドット)として、図示しないジャイロセンサ等の角速度センサや角加速度センサを用いて計測した値を用いてよい。あるいは、加速度センサ201を車両重心109付近に配置しr≒0とすることで、u、v、wからφ(ドット)、ψ(ドット)、φ(2ドット)及びψ(2ドット)に関する項を消去してもよい。さらに望ましくは、車両の相異なる位置に配置した複数の加速度センサあるいはジャイロセンサを用いて、車両重心109付近における加速度を計算してもよい。あるいは、勾配の変化や車両の加減速によるピッチ角及びロール角の変化は相対的に滑らかであるとし、サスペンションの振動モード等に由来する高周波のピッチ角及びロール角の変化を無視することで、φ(ドット)≒ψ(ドット)≒φ(2ドット)≒ψ(2ドット)≒0と近似しても良い。 In equation (15), φ (dot) t , ψ (dot) t , φ (2 dots) t and ψ (2 dots) t are measured using an angular velocity sensor such as a gyro sensor or an angular acceleration sensor (not shown). values can be used. Alternatively, by placing the acceleration sensor 201 near the center of gravity 109 of the vehicle and setting r≈0, φ (dot) t , ψ (dot) t , φ (2 dots) t and ψ from u t , v t , and w t (2 dots) You may eliminate the term for t . More preferably, the acceleration near the center of gravity 109 of the vehicle may be calculated using a plurality of acceleration sensors or gyro sensors arranged at different positions on the vehicle. Alternatively, by assuming that changes in pitch and roll angles due to gradient changes and vehicle acceleration/deceleration are relatively smooth, and ignoring high-frequency pitch and roll angle changes due to suspension vibration modes, etc., It may be approximated as φ (dot) t ≈ψ (dot) t ≈φ (2 dots) t ≈ψ (2 dots) t ≈0.
 本実施形態の車両姿勢角推定装置101Bにおいては、実施形態1で用いたu(φ;φ(ドット),φ(2ドット))に代えて(15)式で表されるu(φ、ψ;φ(ドット),ψ(ドット),φ(2ドット),ψ(2ドット))を用いて、実施形態1と同様に(8)式を用いた非線形最小二乗法により静的ピッチ角φを求めることができる。あるいは、実施形態2と同様に(10)式を用いた線形最小二乗法あるいは(11)式を用いた適応フィルタにより静的ピッチ角φを求めることができる。また、静的ピッチ角φを求めた後は実施形態1と同様にして路面に対する車体のピッチ角φを求めることができる。 In the vehicle posture angle estimation device 101B of the present embodiment, u Using ts , φ s ; φ (dot) t , φ (dot) t , φ (2 dots) t , φ (2 dots) t ), the equation (8) is used as in the first embodiment. The static pitch angle φ s can be obtained by the non-linear least squares method. Alternatively, as in the second embodiment, the static pitch angle φ s can be obtained by a linear least squares method using equation (10) or an adaptive filter using equation (11). After obtaining the static pitch angle φ s , the pitch angle φ t of the vehicle body with respect to the road surface can be obtained in the same manner as in the first embodiment.
 加速度センサ201が車体104に固定されている場合において、車体104がロールしている場合、加速度センサ201にかかる加速度のz成分は計測値Oのz成分及びy成分に分配される。さらに、曲線路を走行中は遠心力が重畳される。従って、車体104がロールしている場合や曲線路を通過中の場合などにおいては、y成分を考慮しないと、車体104の姿勢角を正しく推定できない。これに対して、本実施形態の車両姿勢角推定装置101Bによれば、加速度センサの計測値Oのy成分を考慮しているため、車体104がロールしている場合や曲線路を通過中の場合においても、姿勢角を正しく推定することができる。 When the acceleration sensor 201 is fixed to the vehicle body 104 and the vehicle body 104 rolls, the z component of the acceleration applied to the acceleration sensor 201 is divided into the z component and the y component of the measured value Ot. Furthermore, centrifugal force is superimposed while traveling on a curved road. Therefore, when the vehicle body 104 is rolling or traveling on a curved road, the attitude angle of the vehicle body 104 cannot be correctly estimated unless the y component is considered. On the other hand, according to the vehicle attitude angle estimation device 101B of the present embodiment, since the y component of the measurement value Ot of the acceleration sensor is taken into account, the vehicle body 104 is rolling or passing through a curved road. Even in the case of , the attitude angle can be estimated correctly.
 なお、本実施形態に記載の車両姿勢角推定装置101Bは、ロール角の角運動方程式として(13)式を用いることに限定されない。ロール角ψがψ、ψ(ドット)及びψ(2ドット)の関数となる限りにおいて、バネの非線形性やサスペンションジオメトリの効果等を導入してよい。また、通常、ヨーレートχ(ドット)はピッチ角速度やロール角速度より十分小さいから、(15)式において重心に対する加速度センサの加速度においてヨーレートに関する項を無視しているが、例えばヨー軸に関する角速度センサによる計測値をヨーレートとして用いることも許容される。 Note that the vehicle attitude angle estimation device 101B described in this embodiment is not limited to using equation (13) as the equation of angular motion for the roll angle. As long as the roll angle φ t is a function of φ s , φ(dot) t and φ(2dot) t , spring non-linearities, suspension geometry effects, etc. may be introduced. Also, since the yaw rate χ (dot) t is usually sufficiently smaller than the pitch angular velocity and the roll angular velocity, the term related to the yaw rate is ignored in the acceleration of the acceleration sensor with respect to the center of gravity in the equation (15). It is also permissible to use the measured value as the yaw rate.
 また、実施の形態1と同様、本実施の形態の車両姿勢角推定装置101Bと、当該車両姿勢角推定装置101Bにより推定された路面に対する車体のピッチ角に基づき車両用灯具の光軸を制御する光軸制御部111とを組合せて、車両用灯具の光軸制御装置を構成してもよい。 Further, as in the first embodiment, the vehicle attitude angle estimation device 101B of the present embodiment and the optical axis of the vehicle lamp are controlled based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101B. It may be combined with the optical axis control unit 111 to form an optical axis control device for a vehicle lamp.
実施の形態4. 
 本実施形態における車両姿勢角推定装置101Cは、基本的な構成は実施の形態1と同じであるが、車速センサ203の誤差を考慮する点で異なる。
Embodiment 4.
A vehicle attitude angle estimation device 101C in this embodiment has the same basic configuration as in the first embodiment, but differs in that an error of the vehicle speed sensor 203 is considered.
 車速センサ203の測定原理として、車輪の回転角速度に車輪半径を乗じて求める原理を用いるとき、車輪の摩耗や空気圧の低下によって車輪半径が誤差を持っていたならば、計測される車速もまた誤差を持つ。そこで車速センサ203によって計測された車速をV0,tとおき、真の車速Vを下記(16)式のように表す。 When using the principle of multiplying the rotational angular velocity of the wheel by the wheel radius as the measurement principle of the vehicle speed sensor 203, if the wheel radius has an error due to wear of the wheel or a decrease in air pressure, the measured vehicle speed also has an error. have. Therefore, the vehicle speed measured by the vehicle speed sensor 203 is defined as V0 ,t , and the true vehicle speed Vt is represented by the following equation (16).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、кは車輪半径の誤差を表すパラメータであり、短時間では変化しない。このとき、(8)式は下記(17)式のように表される。 Here, κ is a parameter that represents the wheel radius error and does not change in a short period of time. At this time, the equation (8) is expressed as the following equation (17).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 本実施形態の車両姿勢角推定装置101Cにおいては、実施形態1で用いた(8)式に代えて(17)式を用いることで、実施形態1と同様に静的ピッチ角φを求めることができる。具体的には、(17)式において、静的ピッチ角φ及びкを変数とする非線形最小二乗法により静的ピッチ角φ及びкを同時に求める。静的ピッチ角φを求めた後は、実施の形態1と同様の処理を行い、路面に対する車体のピッチ角φを推定することができる。 In the vehicle attitude angle estimating device 101C of the present embodiment, the static pitch angle φ s is obtained in the same manner as in the first embodiment by using the equation (17) instead of the equation (8) used in the first embodiment. can be done. Specifically, in the equation (17), the static pitch angles φs and κ are obtained simultaneously by the nonlinear least-squares method using the static pitch angles φs and κ as variables. After obtaining the static pitch angle φ s , the same processing as in the first embodiment can be performed to estimate the pitch angle φ t of the vehicle body with respect to the road surface.
 同様に、(10)式に替えて下記の(18)式を用いることで、実施形態2で説明した適応フィルタを構成できる。さらに実施形態3と組み合わせてもよい。 Similarly, by using the following formula (18) instead of formula (10), the adaptive filter described in the second embodiment can be configured. Further, it may be combined with the third embodiment.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 本実施形態の車両姿勢角推定装置101Cによれば、車速センサ203の測定値が車輪半径の誤差に起因する誤差をもつ場合であっても、ピッチ角を正確に推定することができる。 According to the vehicle attitude angle estimating device 101C of this embodiment, the pitch angle can be accurately estimated even when the measured value of the vehicle speed sensor 203 has an error due to the wheel radius error.
 なお、本実施形態に記載の車両姿勢角推定装置101Cにおいて、車速センサ203は、例えばある1つの車輪の回転速度に車輪半径を乗じるものであってよいし、あるいは複数の車輪の回転速度の平均に車輪半径を乗じるものであってもよい。 In the vehicle attitude angle estimation device 101C described in this embodiment, the vehicle speed sensor 203 may be, for example, one that multiplies the rotational speed of one wheel by the wheel radius, or the average rotational speed of a plurality of wheels. may be multiplied by the wheel radius.
 また、実施の形態1と同様、本実施の形態の車両姿勢角推定装置101Cと、当該車両姿勢角推定装置101Cにより推定された路面に対する車体のピッチ角に基づき車両用灯具の光軸を制御する光軸制御部111とを組合せて、車両用灯具の光軸制御装置を構成してもよい。 Further, as in the first embodiment, the vehicle attitude angle estimation device 101C of the present embodiment and the optical axis of the vehicle lamp are controlled based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101C. It may be combined with the optical axis control unit 111 to form an optical axis control device for a vehicle lamp.
実施の形態5. 
 本実施形態による車両姿勢角推定装置101Dを、図7を用いて説明する。
 図7に示すように、本実施形態における車両姿勢角推定装置101Dは、実施の形態1の車両姿勢角推定装置101に加え、係数記憶部501、ピッチ角速度推定部502、係数予測部503を有する。
Embodiment 5.
A vehicle attitude angle estimation device 101D according to this embodiment will be described with reference to FIG.
As shown in FIG. 7, a vehicle attitude angle estimation device 101D in this embodiment includes a coefficient storage unit 501, a pitch angular velocity estimation unit 502, and a coefficient prediction unit 503 in addition to the vehicle attitude angle estimation device 101 of the first embodiment. .
 係数記憶部501は、車体のピッチ角速度のうち、静的ピッチ角に依存しない第2の定数項と、静的ピッチ角に対する第2の比例係数を記憶する。 The coefficient storage unit 501 stores a second constant term that does not depend on the static pitch angle and a second proportional coefficient to the static pitch angle of the pitch angular velocity of the vehicle body.
 ピッチ角速度推定部は、係数記憶部501に記憶された前回の計算周期における第2の定数項と、前回の計算周期における第2の比例係数と、静的ピッチ角推定部205によって推定された今回の計算周期における静的ピッチ角の推定値に基づいて、ピッチ角速度を推定する。 The pitch angular velocity estimating unit stores the second constant term in the previous calculation cycle stored in the coefficient storage unit 501, the second proportionality coefficient in the previous calculation cycle, and the present time estimated by the static pitch angle estimating unit 205. The pitch angular velocity is estimated based on the estimated value of the static pitch angle in the calculation period of .
 係数予測部は、加速度センサ201から得られる加速度情報と、ピッチ角推定部207によって推定されたピッチ角と、ピッチ角速度推定部502によって推定されたピッチ角速度から、次の計算周期における第2の定数項と第2の比例係数を予測し、係数記憶部501に記憶させる。 The coefficient prediction unit calculates the second constant in the next calculation cycle from the acceleration information obtained from the acceleration sensor 201, the pitch angle estimated by the pitch angle estimation unit 207, and the pitch angular velocity estimated by the pitch angular velocity estimation unit 502. The term and the second proportional coefficient are predicted and stored in the coefficient storage unit 501 .
 また、静的ピッチ角推定部205は、車体104に備えられた加速度センサ201から得られる加速度情報と、少なくとも高度センサ202から得られる高度情報、車速センサ203から得られる車速情報及び、サスペンションにより定まる定数に加え、第2の定数項と第2の比例係数に基づいて静的ピッチ角を推定する。 Also, the static pitch angle estimator 205 is determined by acceleration information obtained from the acceleration sensor 201 provided in the vehicle body 104, at least altitude information obtained from the altitude sensor 202, vehicle speed information obtained from the vehicle speed sensor 203, and the suspension. A static pitch angle is estimated based on the constant plus a second constant term and a second proportionality factor.
 次に、本実施形態の車両姿勢角推定装置101Dにおけるピッチ角推定の原理について説明する。まず(6)式を下記(19)式のように変形する。 Next, the principle of pitch angle estimation in the vehicle attitude angle estimation device 101D of this embodiment will be described. First, the equation (6) is transformed into the following equation (19).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 (19)式より、V(ドット)-gsinθ及びz(2ドット)0,t-Vθ(ドット)+gcosθはφ(2ドット)に関して線形であることがわかる。従って、下記(20)式が成り立つ。 From equation (19), it can be seen that V(dot) t −gsin θ t and z(2 dots) 0, t −V t θ(dot) t +gcos θ t are linear with respect to φ(2 dots) t . Therefore, the following formula (20) holds.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 ここで逆行列補題を用いると、下記(21)式が成り立つ。 Using the inverse matrix lemma here, the following equation (21) holds.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 したがって、下記(22)式が成り立つ。 Therefore, the following formula (22) holds.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 簡単のため、(22)式の右辺を下記数式のようにおく。 For simplicity, the right side of formula (22) is written as the following formula.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 (22)式を(1)式に代入すると、下記(23)式で表される微分方程式が得られる。 By substituting equation (22) into equation (1), the differential equation expressed by equation (23) below is obtained.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 (23)式の初期値問題を例えばEuler法によって解くことで、1時刻前のピッチ角φt-1及びピッチ角速度φ(ドット)t-1から、時刻tにおけるピッチ角速度φ(ドット)を、静的ピッチ角φに関する線形式である下記(24)式の形で予測できる。 (23) By solving the initial value problem of the equation, for example, by the Euler method, the pitch angular velocity φ (dot) t at time t is obtained from the pitch angle φ t-1 and the pitch angular velocity φ (dot) t-1 one time ago. , can be predicted in the form of the following equation (24), which is a linear expression with respect to the static pitch angle φ s .
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 ピッチ角速度φ(ドット)を表す(24)式において、S0,tは静的ピッチ角φに依存しない定数項であり、S1,tは静的ピッチ角φにかかる係数である。本明細書においては、S0,tを第2の定数項、S1,tを第2の比例係数とも呼ぶ。 In the equation (24) representing the pitch angular velocity φ (dot) t , S 0,t is a constant term that does not depend on the static pitch angle φ s , and S 1,t is a coefficient applied to the static pitch angle φ s . . S 0,t is also referred to herein as the second constant term and S 1,t as the second proportionality factor.
 さらに(24)式を時刻tにおける(23)式に代入すると、時刻tにおけるピッチ角加速度φ(2ドット)は静的ピッチ角φの関数として定まる。これを下記(25)式のようにおく。 Furthermore, by substituting equation (24) into equation (23) at time t, pitch angular acceleration φ(2 dots) t at time t is determined as a function of static pitch angle φ s . This is expressed as the following formula (25).
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 (24)式と(25)式を(19)式に代入し、さらに(1)式を用いてφを消去すると、V(ドット)-gsinθ及びz(2ドット)0,t-Vθ(ドット)+gcosθが、φの関数として定まる。これにより、実施形態1と同様に(8)式を用いて非線形最小二乗法を用いてφを推定できる。 Substituting equations (24) and (25) into equation (19) and then eliminating φ t using equation (1) yields V(dot) t −gsin θ t and z(2 dots) 0,t − V t θ(dot) t +gcos θ t is determined as a function of φ s . As a result, φ s can be estimated using the nonlinear least-squares method using equation (8) as in the first embodiment.
 次に、本実施形態の車両姿勢角推定装置101Dの動作について説明する。
 係数記憶部501は、時刻tを含む複数の時刻t、・・・、t、・・・、t、tにおけるピッチ角速度の定数項S0,tk及び比例係数S1,tkを記憶する。
 静的ピッチ角推定部205は、少なくとも係数記憶部501に記憶された複数の時刻の定数項S0,tk及び比例係数S1,tkと、加速度センサ201によって計測された複数の時刻の加速度と、車速センサ203によって計測された複数の時刻の車速と、高度センサ202によって計測された複数の時刻の高度とから、静的ピッチ角φを推定する。
 ピッチ角速度推定部502は、静的ピッチ角推定部205によって推定された静的ピッチ角φと、係数記憶部501に記憶された定数項S0,tk及び比例係数S1,tkから、(24)式を用いてピッチ角速度φ(ドット)を計算する。
 係数予測部503は、ピッチ角推定部207によって推定されたピッチ角φと、ピッチ角速度推定部502によって計算されたピッチ角速度φ(ドット)と、加速度センサ201によって測定された加速度から、(23)式の初期値問題を例えばEuler法によって解くことで、次回の計算周期である時刻t+1における定数項S0,t+1及び比例係数S1,t+1を予測し、係数記憶部501に記憶する。
Next, the operation of the vehicle attitude angle estimation device 101D of this embodiment will be described.
The coefficient storage unit 501 stores constant terms S 0,tk and proportional coefficients S 1,tk of the pitch angular velocity at a plurality of times t 1 , . . . , t k , . do.
The static pitch angle estimating unit 205 calculates at least the constant term S 0,tk and the proportional coefficient S 1,tk at a plurality of times stored in the coefficient storage unit 501, and the acceleration at a plurality of times measured by the acceleration sensor 201. , the static pitch angle φ s is estimated from the vehicle speed at a plurality of times measured by the vehicle speed sensor 203 and the altitude at a plurality of times measured by the altitude sensor 202 .
Pitch angular velocity estimator 502 calculates ( 24) Calculate the pitch angular velocity φ (dot) t using the formula.
Coefficient prediction unit 503 calculates ( 23) By solving the initial value problem of the equation, for example, by the Euler method, the constant term S 0,t+1 and the proportional coefficient S 1,t+1 at time t+1, which is the next calculation cycle, are predicted and stored in the coefficient storage unit 501 .
 本実施形態の車両姿勢角推定装置によれば、実施形態1に記載の効果に加え、サスペンション102の振動モードに由来する車体のピッチ角に関しても、ジャイロセンサ等の追加のセンサを用いることなく推定できる。本実施形態における車両姿勢角推定装置はまた、本開示の実施形態2~4と組み合わせてもよく、その場合は実施形態2~4に記載の効果に加え、本実施形態に記載の効果を実現できる。 According to the vehicle posture angle estimating apparatus of the present embodiment, in addition to the effects described in the first embodiment, the pitch angle of the vehicle body derived from the vibration mode of the suspension 102 can also be estimated without using an additional sensor such as a gyro sensor. can. The vehicle attitude angle estimation device in this embodiment may also be combined with Embodiments 2 to 4 of the present disclosure, in which case the effects described in this embodiment are achieved in addition to the effects described in Embodiments 2 to 4. can.
 また、実施の形態1と同様、本実施の形態の車両姿勢角推定装置101Cと、当該車両姿勢角推定装置101Cにより推定された路面に対する車体のピッチ角に基づき車両用灯具の光軸を制御する光軸制御部111とを組合せて、車両用灯具の光軸制御装置を構成してもよい。 Further, as in the first embodiment, the vehicle attitude angle estimation device 101C of the present embodiment and the optical axis of the vehicle lamp are controlled based on the pitch angle of the vehicle body with respect to the road surface estimated by the vehicle attitude angle estimation device 101C. It may be combined with the optical axis control unit 111 to form an optical axis control device for a vehicle lamp.
 また、実施形態1と同様に、本実施形態の車両姿勢角推定装置におけるピッチ角速度推定部、係数予測部、静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の各機能は、処理回路により実現されてよい。すなわち、車両姿勢角推定装置は、係数記憶部に記憶された第2の定数項および第2の比例係数と推定された静的ピッチ角とに基づいてピッチ角速度を推定し、次回の計算周期における第2の定数項および第2の比例係数を予測するとともに係数記憶部に記憶させ、各センサの計測値に加え第2の定数項および第2の比例係数を用いて静的ピッチ角を推定し、合成加速度を推定し、ピッチ角を推定しピッチ角記憶部へ記憶させるとともに出力部へ出力するための処理装置を備えてよい。処理回路は、専用のハードウェアであっても、メモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)であってもよい。 Further, as in the first embodiment, the functions of the pitch angular velocity estimator, the coefficient predictor, the static pitch angle estimator, the synthetic acceleration estimator, and the pitch angle estimator in the vehicle attitude angle estimation device of the present embodiment are the processing It may be implemented by a circuit. That is, the vehicle attitude angle estimation device estimates the pitch angular velocity based on the second constant term and the second proportional coefficient stored in the coefficient storage unit and the estimated static pitch angle, The second constant term and the second proportional coefficient are predicted and stored in the coefficient storage unit, and the static pitch angle is estimated using the second constant term and the second proportional coefficient in addition to the measured values of each sensor. and a processing device for estimating the synthesized acceleration, estimating the pitch angle, storing it in the pitch angle storage unit, and outputting it to the output unit. A processing circuit, even if it is dedicated hardware, is a CPU that executes programs stored in memory may be
 処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサー、並列プログラム化したプロセッサー、ASIC、FPGA、またはこれらを組み合わせたものが該当する。ピッチ角速度推定部、係数予測部、静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の各部の機能それぞれを処理回路で実現しても良いし、各部の機能をまとめて処理回路で実現しても良い。 When the processing circuit is dedicated hardware, the processing circuit corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. The functions of the pitch angular velocity estimator, the coefficient predictor, the static pitch angle estimator, the synthetic acceleration estimator, and the pitch angle estimator may each be implemented by a processing circuit, or the functions of each unit may be collectively implemented by the processing circuit. It can be realized.
 処理回路がCPUの場合、ピッチ角速度推定部、係数予測部、静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。処理回路は、メモリに記憶されたプログラムを読みだして実行することにより、各部の機能を実現する。すなわち、車両姿勢角推定装置は、処理回路により実行されるときに、係数記憶部に記憶された第2の定数項および第2の比例係数と推定された静的ピッチ角とに基づいてピッチ角速度を推定するステップ、次回の計算周期における第2の定数項および第2の比例係数を予測するとともに係数記憶部に記憶させるステップ、各センサの計測値に加え第2の定数項および第2の比例係数を用いて静的ピッチ角を推定するステップ、合成加速度を推定するステップ、ピッチ角を推定しピッチ角記憶部へ記憶させるとともに出力部へ出力するステップが結果的に実行されることになるプログラムを格納するためのメモリを備える。また、これらのプログラムは、ピッチ角速度推定部、係数予測部、静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の手順や方法をコンピュータに実行させるものであるともいえる。 When the processing circuit is a CPU, the functions of the pitch angular velocity estimator, coefficient predictor, static pitch angle estimator, synthetic acceleration estimator, and pitch angle estimator are realized by software, firmware, or a combination of software and firmware. be. Software and firmware are written as programs and stored in memory. The processing circuit implements the function of each part by reading and executing the program stored in the memory. That is, when the vehicle attitude angle estimation device is executed by the processing circuit, the pitch angular velocity a step of estimating a second constant term and a second proportionality factor in the next calculation cycle and a step of storing the second constant term and the second proportionality factor in the coefficient storage unit; A program that results in the steps of estimating the static pitch angle using the coefficient, estimating the resultant acceleration, estimating the pitch angle, storing it in the pitch angle storage unit, and outputting it to the output unit. a memory for storing the It can also be said that these programs cause a computer to execute the procedures and methods of the pitch angular velocity estimator, the coefficient predictor, the static pitch angle estimator, the synthetic acceleration estimator, and the pitch angle estimator.
 なお、ピッチ角速度推定部、係数予測部、静的ピッチ角推定部、合成加速度推定部、ピッチ角推定部の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。例えば、静的ピッチ角推定部については専用のハードウェアとしての処理回路でその機能を実現し、ピッチ角速度推定部、係数予測部、合成加速度推定部、ピッチ角推定部については処理回路がメモリに格納されたプログラムを読みだして実行することによってその機能を実現することが可能である。 The functions of the pitch angular velocity estimator, coefficient predictor, static pitch angle estimator, synthetic acceleration estimator, and pitch angle estimator are partly realized by dedicated hardware and partly by software or firmware. It may be realized. For example, the function of the static pitch angle estimator is realized by a processing circuit as dedicated hardware, and the processing circuits of the pitch angular velocity estimator, coefficient predictor, synthetic acceleration estimator, and pitch angle estimator are stored in memory. The function can be realized by reading out and executing the stored program.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 In this way, the processing circuit can implement each of the functions described above by means of hardware, software, firmware, or a combination thereof.
 なお、本開示は、その発明の範囲内において、各実施の形態及び変形例を自由に組み合わせたり、各実施の形態及び変形例を適宜変形、省略したりすることが可能である。 It should be noted that, within the scope of the present disclosure, it is possible to freely combine each embodiment and modifications, and to modify or omit each embodiment and modifications as appropriate.
 本開示は詳細に説明されたが、上記の説明は、すべての態様において、例示であって、本開示がそれに限定されるものではない。例示されていない無数の変形例が、本開示の範囲から外れることなく想定されるものと解される。 Although the present disclosure has been described in detail, the above description, in all its aspects, is illustrative and the present disclosure is not limited thereto. It is understood that numerous variations not illustrated are contemplated without departing from the scope of the present disclosure.
101、101A、101B、101C、101D 車両姿勢角推定装置、
111 光軸制御部、
205、205A 静的ピッチ角推定部、
206 合成加速度推定部、
207 ピッチ角推定部、
208 ピッチ角記憶部、
301 定数項計算部、
302 微係数計算部、
303 静的ピッチ角計算部、
304 状態記憶部、
501 係数記憶部、
502 ピッチ角速度推定部、
503 係数予測部
101, 101A, 101B, 101C, 101D vehicle attitude angle estimation device,
111 optical axis control unit,
205, 205A static pitch angle estimator,
206 synthetic acceleration estimator,
207 pitch angle estimator,
208 pitch angle storage unit,
301 constant term calculator,
302 differential coefficient calculator,
303 static pitch angle calculator,
304 state storage unit,
501 coefficient storage unit,
502 pitch angular velocity estimator,
503 coefficient prediction unit

Claims (7)

  1.  サスペンションによって路面から支持された車体を備える車両において、少なくとも、前記車体に備えられた加速度センサから得られる加速度情報、高度センサから得られる高度情報、車速センサから得られる車速情報、及び、前記サスペンションにより定まる定数に基づいて、前記車両が平坦な路面上で加減速していない場合における、前記路面に対する前記車体のピッチ角である静的ピッチ角を推定する静的ピッチ角推定部と、
     少なくとも、前記加速度情報、及び、前記静的ピッチ角推定部によって推定された静的ピッチ角から、車体にかかる加速度の車両の進行方向に平行な成分を推定する合成加速度推定部と、
     前回の計算周期における路面に対する車体のピッチ角を記憶するピッチ角記憶部と、
     少なくとも、前記合成加速度推定部によって推定された車体にかかる加速度の車両の進行方向に平行な成分、前記ピッチ角記憶部に記憶された前回の計算周期における路面に対する車体のピッチ角、及び、前記サスペンションにより定まる定数から、路面に対する車体のピッチ角を推定し、前記ピッチ角記憶部に記憶させるとともに出力部へ出力するピッチ角推定部と、
     を備えた車両姿勢角推定装置。
    In a vehicle having a vehicle body supported from the road surface by a suspension, at least acceleration information obtained from an acceleration sensor provided on the vehicle body, altitude information obtained from an altitude sensor, vehicle speed information obtained from a vehicle speed sensor, and the suspension. a static pitch angle estimation unit that estimates a static pitch angle, which is the pitch angle of the vehicle body with respect to the road surface, when the vehicle is not accelerating or decelerating on a flat road surface, based on a determined constant;
    a synthetic acceleration estimating unit for estimating a component of the acceleration applied to the vehicle body parallel to the traveling direction of the vehicle from at least the acceleration information and the static pitch angle estimated by the static pitch angle estimating unit;
    a pitch angle storage unit that stores the pitch angle of the vehicle body relative to the road surface in the previous calculation cycle;
    At least the component parallel to the direction of travel of the vehicle of the acceleration applied to the vehicle body estimated by the synthetic acceleration estimation unit, the pitch angle of the vehicle body with respect to the road surface in the previous calculation cycle stored in the pitch angle storage unit, and the suspension a pitch angle estimating unit that estimates the pitch angle of the vehicle body with respect to the road surface from a constant determined by, stores it in the pitch angle storage unit, and outputs it to an output unit;
    A vehicle attitude angle estimation device with
  2.  前記静的ピッチ角推定部は、
     前記加速度センサから得られる加速度情報から、前記車体にかかる加速度の車両の進行方向に平行な成分のうち、静的ピッチ角に依存しない第1の定数項を計算する定数項計算部と、
     前記加速度センサから得られる加速度情報から、前記車体にかかる加速度の車両の進行方向に平行な成分のうち、静的ピッチ角に対する第1の比例係数を計算する微係数計算部と、
     少なくとも前回の計算周期における静的ピッチ角の推定値を記憶する状態記憶部と、
     少なくとも、前記高度センサから得られる高度情報、前記車速センサから得られる車速情報、前記定数項計算部によって計算された第1の定数項、前記微係数計算部によって計算された第1の比例係数、及び前記サスペンションにより定まる定数に基づいて静的ピッチ角を推定し、得られた静的ピッチ角の推定値を前記状態記憶部へ記憶させるとともに前記合成加速度推定部へと出力する静的ピッチ角計算部とを備える、
     請求項1に記載の車両姿勢角推定装置。
    The static pitch angle estimator,
    a constant term calculation unit that calculates a first constant term that does not depend on the static pitch angle, among the components of the acceleration applied to the vehicle body that are parallel to the traveling direction of the vehicle, from the acceleration information obtained from the acceleration sensor;
    a differential coefficient calculation unit that calculates a first proportional coefficient with respect to a static pitch angle among components of the acceleration applied to the vehicle body parallel to the traveling direction of the vehicle from acceleration information obtained from the acceleration sensor;
    a state storage unit that stores at least the estimated value of the static pitch angle in the previous calculation cycle;
    At least altitude information obtained from the altitude sensor, vehicle speed information obtained from the vehicle speed sensor, a first constant term calculated by the constant term calculator, a first proportional coefficient calculated by the differential coefficient calculator, and static pitch angle calculation for estimating a static pitch angle based on a constant determined by the suspension, storing the obtained static pitch angle estimated value in the state storage unit, and outputting it to the synthetic acceleration estimating unit. and
    The vehicle posture angle estimating device according to claim 1.
  3.  前記静的ピッチ角推定部は、少なくとも、前記車体に備えられた加速度センサから得られる加速度情報、高度センサから得られる高度情報、車速センサから得られる車速情報、及び前記サスペンションにより定まる定数に加え、角速度センサから得られるピッチ角速度情報に基づいて静的ピッチ角を推定する、
     請求項1又は2に記載の車両姿勢角推定装置。
    The static pitch angle estimator includes at least acceleration information obtained from an acceleration sensor provided on the vehicle body, altitude information obtained from an altitude sensor, vehicle speed information obtained from a vehicle speed sensor, and a constant determined by the suspension, estimating a static pitch angle based on pitch angular velocity information obtained from an angular velocity sensor;
    The vehicle attitude angle estimation device according to claim 1 or 2.
  4.  前記車体のピッチ角速度のうち、静的ピッチ角に依存しない第2の定数項、及び、静的ピッチ角に対する第2の比例係数を記憶する係数記憶部と、
     少なくとも、前記係数記憶部に記憶された前記第2の定数項及び前記第2の比例係数、並びに、前記静的ピッチ角推定部によって推定された静的ピッチ角に基づいて、ピッチ角速度を推定するピッチ角速度推定部と、
     前記加速度センサから得られる加速度情報と、前記ピッチ角推定部によって推定されたピッチ角と、前記ピッチ角速度推定部によって推定されたピッチ角速度から、次回の計算周期における前記第2の定数項及び前記第2の比例係数を予測し、前記係数記憶部に記憶させる係数予測部とをさらに備え、
     前記静的ピッチ角推定部は、少なくとも、前記車体に備えられた加速度センサから得られる加速度情報、高度センサから得られる高度情報、車速センサから得られる車速情報、及び前記サスペンションにより定まる定数に加え、前記第2の定数項及び前記第2の比例係数に基づいて静的ピッチ角を推定する、
     請求項1又は2に記載の車両姿勢角推定装置。
    a coefficient storage unit that stores a second constant term that does not depend on the static pitch angle and a second proportional coefficient to the static pitch angle of the pitch angular velocity of the vehicle body;
    estimating a pitch angular velocity based on at least the second constant term and the second proportional coefficient stored in the coefficient storage unit and the static pitch angle estimated by the static pitch angle estimating unit; a pitch angular velocity estimator;
    From acceleration information obtained from the acceleration sensor, the pitch angle estimated by the pitch angle estimation unit, and the pitch angular velocity estimated by the pitch angular velocity estimation unit, the second constant term and the second a coefficient prediction unit that predicts a proportional coefficient of 2 and stores it in the coefficient storage unit;
    The static pitch angle estimator includes at least acceleration information obtained from an acceleration sensor provided on the vehicle body, altitude information obtained from an altitude sensor, vehicle speed information obtained from a vehicle speed sensor, and a constant determined by the suspension, estimating a static pitch angle based on the second constant term and the second proportionality factor;
    The vehicle attitude angle estimation device according to claim 1 or 2.
  5.  前記静的ピッチ角推定部は、前記車体に備えられた加速度センサから得られる加速度情報のうち、直交する3軸の成分を考慮して前記静的ピッチ角を推定する、
     請求項1から4のいずれか一項に記載の車両姿勢角推定装置。
    The static pitch angle estimating unit estimates the static pitch angle by considering orthogonal three-axis components of acceleration information obtained from an acceleration sensor provided on the vehicle body.
    The vehicle attitude angle estimation device according to any one of claims 1 to 4.
  6.  前記静的ピッチ角推定部は、静的ピッチ角を推定するとともに、前記車速センサから得られる車速情報の誤差を推定する、
     請求項1から5のいずれか一項に記載の車両姿勢角推定装置。
    The static pitch angle estimator estimates a static pitch angle and estimates an error in vehicle speed information obtained from the vehicle speed sensor.
    The vehicle attitude angle estimation device according to any one of claims 1 to 5.
  7.  請求項1から6のいずれか一項に記載の車両姿勢角推定装置と、
     前記車両姿勢角推定装置により推定された前記ピッチ角に基づいて車両用灯具の光軸を制御する光軸制御部と、
     を備えた車両用灯具の光軸制御装置。
    A vehicle attitude angle estimation device according to any one of claims 1 to 6;
    an optical axis control unit that controls an optical axis of a vehicle lamp based on the pitch angle estimated by the vehicle attitude angle estimation device;
    An optical axis control device for a vehicle lamp.
PCT/JP2021/012338 2021-03-24 2021-03-24 Vehicle attitude angle estimation device and optical axis control device for vehicle lamp WO2022201376A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/012338 WO2022201376A1 (en) 2021-03-24 2021-03-24 Vehicle attitude angle estimation device and optical axis control device for vehicle lamp
JP2023508273A JP7435900B2 (en) 2021-03-24 2021-03-24 Vehicle attitude angle estimation device and optical axis control device for vehicle lamps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012338 WO2022201376A1 (en) 2021-03-24 2021-03-24 Vehicle attitude angle estimation device and optical axis control device for vehicle lamp

Publications (1)

Publication Number Publication Date
WO2022201376A1 true WO2022201376A1 (en) 2022-09-29

Family

ID=83396627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012338 WO2022201376A1 (en) 2021-03-24 2021-03-24 Vehicle attitude angle estimation device and optical axis control device for vehicle lamp

Country Status (2)

Country Link
JP (1) JP7435900B2 (en)
WO (1) WO2022201376A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112267A (en) * 2011-11-30 2013-06-10 Denso Corp Headlamp control device for vehicle
JP2017090159A (en) * 2015-11-06 2017-05-25 株式会社日本自動車部品総合研究所 Vehicle pitch angle estimation device
JP2021020626A (en) * 2019-07-30 2021-02-18 株式会社Soken Display control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112267A (en) * 2011-11-30 2013-06-10 Denso Corp Headlamp control device for vehicle
JP2017090159A (en) * 2015-11-06 2017-05-25 株式会社日本自動車部品総合研究所 Vehicle pitch angle estimation device
JP2021020626A (en) * 2019-07-30 2021-02-18 株式会社Soken Display control device

Also Published As

Publication number Publication date
JP7435900B2 (en) 2024-02-21
JPWO2022201376A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP4161923B2 (en) Vehicle stabilization control system
JP4655004B2 (en) Vehicle physical quantity estimation device and program
US7480547B2 (en) Attitude sensing system for an automotive vehicle relative to the road
JP5809474B2 (en) Body posture control device
US8583354B2 (en) Continuous computation of center of gravity of a vehicle
JP7028649B2 (en) Vehicle, vehicle motion state estimation device and vehicle motion state estimation method
JP5029442B2 (en) Vehicle attitude angle estimation device and program
US9026334B2 (en) Vehicle attitude control system
JP7056356B2 (en) Vehicle condition estimation device
JP4861813B2 (en) Vehicle physical quantity estimation device and program
JP6547065B2 (en) Attitude estimation device and transportation equipment
Klier et al. Robust estimation of vehicle sideslip angle-an approach w/o vehicle and tire models
US20220161781A1 (en) State quantity calculation device, control device, and vehicle
CN110626333A (en) Method and apparatus for accelerometer-based tire normal force estimation
JP2020117196A (en) Vehicle motion state estimation device
WO2022201376A1 (en) Vehicle attitude angle estimation device and optical axis control device for vehicle lamp
KR102533560B1 (en) Vehicle motion state estimation device, vehicle motion state estimation method, and vehicle
US20080167777A1 (en) Method for Controlling the Steering Orientation of a Vehicle
Singh et al. Integrated state and parameter estimation for vehicle dynamics control
JP6454857B2 (en) Posture detection apparatus and posture detection method
WO2023210535A1 (en) Control device for vehicle
WO2023210536A1 (en) Arithmetic device and vehicle control device
JP5104594B2 (en) Vehicle control device
JP5157683B2 (en) Suspension control device
JP7121690B2 (en) Vehicle motion state estimation device and vehicle motion state estimation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932986

Country of ref document: EP

Kind code of ref document: A1