WO2022200616A1 - Accélérateur laser-plasma à train d'impulsions - Google Patents
Accélérateur laser-plasma à train d'impulsions Download PDFInfo
- Publication number
- WO2022200616A1 WO2022200616A1 PCT/EP2022/058016 EP2022058016W WO2022200616A1 WO 2022200616 A1 WO2022200616 A1 WO 2022200616A1 EP 2022058016 W EP2022058016 W EP 2022058016W WO 2022200616 A1 WO2022200616 A1 WO 2022200616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- plasma
- pulse
- pulses
- train
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000010894 electron beam technology Methods 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 47
- 230000003321 amplification Effects 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 2
- 210000002381 plasma Anatomy 0.000 description 27
- 150000002500 ions Chemical class 0.000 description 19
- 230000003287 optical effect Effects 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000002601 radiography Methods 0.000 description 3
- 101100112225 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) cpa-1 gene Proteins 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/50—Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
- H01H1/54—Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by magnetic force
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H15/00—Methods or devices for acceleration of charged particles not otherwise provided for, e.g. wakefield accelerators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H15/00—Switches having rectilinearly-movable operating part or parts adapted for actuation in opposite directions, e.g. slide switch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0057—Temporal shaping, e.g. pulse compression, frequency chirping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Definitions
- the present invention relates to a method for producing energetic electron beams using a laser-plasma accelerator.
- a laser-plasma accelerator comprises a laser and a device generating a cloud of gas in a vacuum chamber.
- laser-plasma accelerators make it possible to produce energetic electron beams by focusing an intense laser pulse in a cloud of gas.
- the laser-plasma accelerator uses a laser to create a wake wave in a plasma. This wave is formed by plasma electrons which are not accelerated. Instead, the wave generates an accelerating field in which other electrons are accelerated over very short distances to very high energies.
- the aim of the invention is to increase the charge of accelerated electron beams in laser-plasma accelerators.
- Another object of the invention is a new accelerator using a lower power laser for a level of charge equivalent to current systems.
- Another object of the invention is to propose an improvement that is simple to implement and inexpensive.
- At least one of the aforementioned objectives is achieved with a method for producing energetic electron beams by means of a laser-plasma accelerator comprising a laser and a device for generating a cloud of gas in a vacuum chamber, the method comprising a step of generating at least one laser pulse which is focused in the gas cloud so as to create a plasma.
- the step of generating at least one laser pulse comprises at least the generation of a train of laser pulses with a delay between two successive laser pulses comprised between three times and thirty times the plasma period T P , such as :
- the method according to the invention can for example be implemented by using a processing unit to control the laser and various components.
- the gas cloud can come from a gas jet, gas-filled cells or any other device capable of generating a gas cloud in a vacuum space.
- a train of pulses is used instead of a single laser pulse.
- Each pulse accelerates electrons in its wake, so that a train of bunches of electrons is produced.
- the present invention is notably remarkable for the fact that the technique defined is less sensitive to the space charge. This is an important criterion for applications combining high load and low energy.
- the electrons at the exit of the accelerator repel each other and their divergence can increase very strongly, which can be problematic for their use.
- the impact of this phenomenon is greatly reduced.
- the inventors have realized that by separating the laser pulses with a duration between three times and thirty times the plasma period, a maximum of electrons are trapped in the ionic cavities formed in the wake of the laser pulse. .
- the first pulse ionizes the gas and forms a wake wave in which electrons are trapped and accelerated.
- the second pulse forms a second wake where a new bunch of electrons is trapped and accelerated, and so on.
- a laser-plasma acceleration is obtained offering an inexpensive and small-sized laser because the power can be lower than for the lasers of the prior art.
- the installation can be compact with the possibility of producing electron beams and X-rays from 1 to 200 MeV.
- the method according to the invention proposes an improvement that is simple to implement and makes it possible to significantly improve the performance of laser-plasma accelerators for radiography and therefore to reduce their cost.
- An increase in the electron load by a factor of two almost halves the cost of the laser, which is the most expensive element of a laser-plasma accelerator.
- the duration of each pulse can be between 5 femtoseconds and 100 femtoseconds.
- the total number of pulses in the laser pulse train can be between 2 and 200, or between 2 and 100 or ideally between 2 and 40. With the range of 2 to 40 pulses, or even from 2 to 30 pulses, it is ensured that the ions are still close to the optical axis. Beyond that, the ions begin to deviate significantly from the optical axis due to radial acceleration by charge separation. In other words, each laser pulse pulls electrons away from the optical axis. These electrons are then called back towards the optical axis by the ions and oscillate. On average, there are more ions on the optical axis and more electrons around the optical axis. This generates an electric field that accelerates the ions sideways.
- the total laser energy at the output of the laser can be between 100 mJ and 20 J.
- the laser used can generate a beam of energy lower than the energy of the lasers of the prior art.
- the repetition of the pulses according to the invention makes it possible to increase the overall charge of the electrons.
- the energy per laser pulse can be between 25 mJ and 2 J. In this range of energies, in most cases, we remain below the threshold of the energy capable of saturating the charge of the packet of electrons.
- the laser can emit a laser beam having a wavelength of 800 nm.
- a wavelength of 800 nm one can for example use a Ti:Sapphire laser but other wavelengths such as in the visible or near infrared are possible.
- all the laser pulses can have the same wavelength or different wavelengths comprising a wavelength and harmonics.
- the laser beam can be focused so that each pulse of the train of laser pulses reaches in the gas cloud an illumination greater than 10 17 Wcm -2 . With such an intensity, it is ensured that each pulse effectively excites only a plasma wave.
- the gas can comprise one or a mixture of the following gases: He, H2, Ar, N2. Other gases can be used.
- the electron density of the plasma n can be between 10 18 cm -3 and 10 21 cm -3 , preferably between 5 ⁇ 10 18 cm -3 and 5 ⁇ 10 19 cm -3 .
- the electron density is defined as being the number of free electrons per cm3, after ionization of the gas. For helium for example, this corresponds to the density of the gas, for H2 to 2 times the density of the gas...
- the gas cloud is produced either continuously or pulsed at the frequency of the laser pulses.
- the gas cloud can be emitted in an impulsive manner at the frequency of laser pulses with an opening duration greater than 1ms.
- the length of the plasma can be between 0.02mm and 100mm, preferably between 0.1mm and 3mm.
- a laser-plasma accelerator for producing energetic electron beams by implementing a method as described above; the laser-plasma accelerator comprising: - a laser to emit a laser beam, - a laser compressor, - a pulse train laser beam splitter, - a gas cloud production device in a vacuum chamber, - a focusing lens.
- said laser can be a laser integrating the technique of frequency drift amplification (CPA for “Chirped Pulse Amplification”).
- CPA frequency drift amplification
- the principle of the CPA technique is to spread a laser pulse before amplification.
- the different components of the laser pulse are delayed relative to each other and pass in turn through the amplifying medium.
- the pulse is recombined, thus restoring to it the total power of each of the frequencies.
- CPA 1 laser emitting at 800nm with an energy of 1J.
- This laser is designed to emit an initial laser pulse with a duration of 30 fs.
- a laser compressor 2 compresses this initial laser pulse before supplying a divider 3 which generates a train of 8 pulses each having an energy of the order of 125 mJ.
- this pulse is cut into several pulses so as to constitute a train of pulses according to the invention. The goal is to lower the energy for each pulse in the pulse train and multiply the number of laser pulses that accelerate electrons in their wake.
- the divider 3 can be placed downstream of the laser compressor 2 as shown in the or upstream as represented by the dotted box 3' on the . It is also possible to envisage the use of a laser capable of generating femtosecond pulses at the desired energy levels. Such a laser can be considered as integrating a pulse train divider as represented by the dotted box 3''.
- the gas injector 6 is capable of producing a cloud of gas 8, such as helium, along for example a vertical axis inside the vacuum enclosure.
- the optical focusing assembly 5 comprises two mirrors, the arrangement of which makes it possible to guide and focus the train of pulses 7 coming from the laser-compressor-splitter assembly in the gas jet 8.
- the train of pulses 7 crosses the cloud of gas 8 at a right angle but other arrangements allowing different angles to be envisaged.
- pulse train 7 can collide with gas cloud 8 at an oblique angle so as, for example, to increase the distance traveled by pulse train 7 in gas cloud 8.
- section of the gas cloud 8 can have different shapes such as circular, rectangular, square, oval, elliptical, etc.
- the laser-compressor-splitter assembly is configured so that the intensity of each pulse reaching the gas cloud 8 is equal to or greater than 10 17 Wcm-2.
- the gas is ionized by the rising edge of the first pulse in the train. Then all the other laser pulses in the train see a plasma directly.
- Each train of pulses encounters a new gas cloud, for example every s, 10ms, or 100ms... depending on the rate.
- the pulse train 7 crosses the gas cloud 8 by creating packets of electrons which accompany the crossing of the pulse train and are transformed into an electron beam 9 at the exit of the gas cloud.
- the electron density of the plasma can be calculated or estimated.
- the electronic density of the plasma is of the order of 2e19 cm-3.
- the invention is particularly remarkable in that the frequency of the pulses in the pulse train is between three times and thirty times the plasma period. With a frequency defined in this interval, the successive pulses in the pulse train make it possible to produce energetic electron beams with a maximum of electrons.
- the system according to the invention depending on the targeted application, it is possible to define an optimal laser energy making it possible to produce electrons having the characteristics necessary for the targeted application.
- This laser energy is optimal because it allows these electrons to be produced most efficiently per laser joule. For example, it is different if the aim is to produce electrons at 5 MeV or at 100 MeV.
- the accelerator according to the invention makes it possible to easily control the electron beam generated while maintaining an average energy of approximately 4 MeV.
- a single high-energy pulse is not used, but a train of pulses with a delay between two pulses of the order of a hundred femtoseconds for example. Each pulse accelerates electrons in its wake so that a train of electron bunches is created.
- Each laser pulse creates a plasma wave consisting of several ion cavities.
- the accelerated electrons are inside close to the optical axis . Initially they are injected at the rear, then move forward during acceleration. In some cases, electrons are continuously injected; they can therefore ultimately occupy the entire optical axis inside the ion cavity. For each ion cavity, a ponderomotive force expels the electrons from the optical axis.
- the ion cavity 11 formed in the wake of the pulse 10 can be seen. This is for example an elongated ellipsoid in the direction of propagation. A part of the ion cavity overlaps with a rear part of the pulse. In the example of the , the large part of the ion cavity extends outside the pulse.
- the backward or forward direction is defined according to the direction of propagation of the laser pulse.
- This ionic cavity is the place of competition of two electric fields.
- a decelerating electric field is present in front of the ion cavity in the area overlapping with part of the pulse.
- An accelerating electric field is present at the back, in the cavity and accelerates the electrons.
- the electrons that form the ion cavity are not the same over time; at each instant new electrons form the ionic cavity. They do not follow the laser pulse.
- electrons that form the cavity gain enough energy to be injected back, as shown in the . This is not always the case, especially when using Ar or N2, or a mixture containing one of these gases. In this case, it is the core electrons of these atoms which are torn from the ions and injected directly into the ion cavity.
- the ion cavity 11 of the has a diameter along the axis of propagation of approximately 10 ⁇ m.
- the present invention proposes a train of pulses, with a delay of the order of a hundred femtoseconds between two successive pulses. Each pulse accelerates electrons in its wake, so that a train of bunches of electrons is produced.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Lasers (AREA)
- Particle Accelerators (AREA)
Abstract
Description
- un laser pour émettre un faisceau laser,
- un compresseur laser,
- un diviseur du faisceau laser en train d’impulsions,
- un dispositif de production de nuage de gaz dans une enceinte sous vide,
- une optique de focalisation.
Claims (15)
- Procédé pour produire des faisceaux d’électrons énergétiques au moyen d’un accélérateur laser-plasma comprenant un laser et un dispositif de production d’un nuage de gaz dans une enceinte sous vide, le procédé comprenant une étape de génération d’au moins une impulsion laser qui est focalisée dans le nuage de gaz de façon à créer un plasma ; le procédé est caractérisé en ce que l’étape de génération d’au moins une impulsion laser comprend au moins la génération d’un train d’impulsions laser avec un délai entre deux impulsions laser successives compris entre trois fois et trente fois la période plasma TP, telle que :
Tp= λp/c
λp étant la longueur d’onde plasma définie par: λp= (2π/c) * (n e² / (m ε0 ))- 1/2 , avec c la célérité de la lumière, n la densité électronique du plasma en cm-3, e=1,6e-19 C la charge électronique, m=9,1e-31 kg la masse électronique, et ε0 = 8,85 × 10-12 m-3 kg-1 s4 A2 la permittivité du vide. - Procédé selon la revendication 1, caractérisé en ce que la durée de chaque impulsion est comprise entre 5 femtosecondes et 100 femtosecondes.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le nombre total d’impulsions dans le train d’impulsions laser est compris entre 2 et 200, ou entre 2 et 100 ou idéalement entre 2 et 40.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’énergie laser totale est comprise entre 100 mJ et 20J.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’énergie par impulsion laser est comprise entre 25 mJ et 2 J.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le laser émet un faisceau laser ayant une longueur d’onde de 800nm.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que toutes les impulsions laser présentent une même longueur d’onde ou des longueurs d’ondes différentes comprenant une longueur d’onde et des harmoniques.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le faisceau laser est focalisé de façon à ce que chaque impulsion du train d’impulsions laser atteigne dans le nuage de gaz un éclairement supérieur à 1018 Wcm-2.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le gaz comprend l’un ou un mélange des gaz suivants : He, H2, Ar, N2.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la densité électronique du plasma n est comprise entre 1018 cm-3 et 1021 cm-3, préférentiellement entre 5×1018 cm-3 et 5×1019 cm-3.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le nuage de gaz est produit soit de façon continue, soit de façon impulsionnelle à la fréquence des impulsions laser.
- Procédé selon la revendication 11, caractérisé en ce que le nuage de gaz est émis de façon impulsionnelle à la fréquence des impulsions laser avec une durée d’ouverture supérieure à 1ms.
- Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la longueur du plasma est comprise entre 0,02mm et 100mm.
- Accélérateur laser-plasma pour produire des faisceaux d’électrons énergétiques en mettant e œuvre un procédé selon l’une quelconque des revendications précédentes ; l’accélérateur laser-plasma comprenant :
- un laser pour émettre un faisceau laser,
- un compresseur laser,
- un diviseur du faisceau laser en train d’impulsions,
- un dispositif d’émission de nuage de gaz dans une enceinte sous vide,
- une optique de focalisation. - Accélérateur laser-plasma selon la revendication 14, caractérisé en ce que ledit laser est un laser intégrant la technique d’amplification à dérive de fréquence (CPA pour « Chirped Pulse Amplification »).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/551,791 US20240170232A1 (en) | 2021-03-25 | 2022-03-25 | Pulse-train laser-plasma accelerator |
EP22714892.1A EP4316214A1 (fr) | 2021-03-25 | 2022-03-25 | Accélérateur laser-plasma à train d'impulsions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2103036 | 2021-03-25 | ||
FR2103036A FR3121309B1 (fr) | 2021-03-25 | 2021-03-25 | Accélérateur laser-plasma à train d’impulsions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022200616A1 true WO2022200616A1 (fr) | 2022-09-29 |
Family
ID=77021405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2022/058016 WO2022200616A1 (fr) | 2021-03-25 | 2022-03-25 | Accélérateur laser-plasma à train d'impulsions |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240170232A1 (fr) |
EP (1) | EP4316214A1 (fr) |
FR (1) | FR3121309B1 (fr) |
WO (1) | WO2022200616A1 (fr) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5637966A (en) | 1995-02-06 | 1997-06-10 | The Regents Of The University Of Michigan | Method for generating a plasma wave to accelerate electrons |
-
2021
- 2021-03-25 FR FR2103036A patent/FR3121309B1/fr active Active
-
2022
- 2022-03-25 EP EP22714892.1A patent/EP4316214A1/fr active Pending
- 2022-03-25 US US18/551,791 patent/US20240170232A1/en active Pending
- 2022-03-25 WO PCT/EP2022/058016 patent/WO2022200616A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5637966A (en) | 1995-02-06 | 1997-06-10 | The Regents Of The University Of Michigan | Method for generating a plasma wave to accelerate electrons |
Non-Patent Citations (8)
Title |
---|
CRAIG W. SIDERS ET AL.: "Efficient high-energy pulse-train génération using a 2n-pulse Michelson interferometer", APPLIED OPTICS, vol. 22, 1998, pages 5302 - 5305, XP000781289, DOI: 10.1364/AO.37.005302 |
HOOKER S M ET AL: "Multi-pulse laser wakefield acceleration: a new route to efficient, high-repetition-rate plasma accelerators and high flux radiation sources", JOURNAL OF PHYSICS B, ATOMIC MOLECULAR AND OPTICAL PHYSICS, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 47, no. 23, 24 November 2014 (2014-11-24), pages 234003, XP020274144, ISSN: 0953-4075, [retrieved on 20141124], DOI: 10.1088/0953-4075/47/23/234003 * |
JAMES COWLEY ET AL: "Excitation and Control of Plasma Wakefields by Multiple Laser Pulses", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 14 August 2017 (2017-08-14), XP080952826, DOI: 10.1103/PHYSREVLETT.119.044802 * |
KIM ET AL: "Double pulse laser wakefield accelerator", PHYSICS LETTERS A, NORTH-HOLLAND PUBLISHING CO., AMSTERDAM, NL, vol. 370, no. 3-4, 11 October 2007 (2007-10-11), pages 310 - 315, XP022293914, ISSN: 0375-9601, DOI: 10.1016/J.PHYSLETA.2007.05.060 * |
MARQUÈS J. R. ET AL: "Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse", vol. 76, no. 19, 30 October 1995 (1995-10-30), US, pages 3566 - 3569, XP055862880, ISSN: 0031-9007, Retrieved from the Internet <URL:https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.76.3566> DOI: 10.1103/PhysRevLett.76.3566 * |
MENG WEN ET AL.: "Génération of high charged energetic electrons by using multiparallel laser pulses", PHYSICS OF PLASMAS, vol. 17, 2010, pages 103113 |
PAOLO TOMASSINI ET AL.: "The resonant multi-pulse ionization injection", PHYSICS OF PLASMAS, vol. 24, 2017, pages 103120 |
SADLER JAMES D. ET AL: "Overcoming the dephasing limit in multiple-pulse laser wakefield acceleration", vol. 23, no. 2, 1 February 2020 (2020-02-01), XP055862827, Retrieved from the Internet <URL:https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.021303> DOI: 10.1103/PhysRevAccelBeams.23.021303 * |
Also Published As
Publication number | Publication date |
---|---|
US20240170232A1 (en) | 2024-05-23 |
FR3121309B1 (fr) | 2023-09-08 |
FR3121309A1 (fr) | 2022-09-30 |
EP4316214A1 (fr) | 2024-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pukhov et al. | Laser wake field acceleration: the highly non-linear broken-wave regime | |
Fisch et al. | Generation of ultrahigh intensity laser pulses | |
Mordovanakis et al. | Quasimonoenergetic Electron Beams with Relativistic Energies and Ultrashort Duration<? format?> from Laser-Solid Interactions at 0.5 kHz | |
EP2798710B1 (fr) | Source laser a puissance crete superieure a 100 terawatt et haut contraste | |
EP2719260B1 (fr) | Procédé et agencement pour engendrer un jet de fluide, procédé et système de transformation du jet en un plasma et applications de ce système | |
d'Humières et al. | Investigation of high intensity laser proton acceleration with underdense targets | |
WO2006111684A2 (fr) | Dispositif de generation d'impulsions laser amplifiees par fibres optiques a couches photoniques | |
EP2430713A1 (fr) | Procede de generation et systeme laser a electrons libres par interaction avec un onduleur laser | |
WO2022200616A1 (fr) | Accélérateur laser-plasma à train d'impulsions | |
EP3714517B1 (fr) | Système et procédé de génération d'un faisceau laser de forte intensité localisé spatialement | |
EP2567431A1 (fr) | Cavité laser à extraction centrale par polarisation pour couplage cohérent de faisceaux intracavité intenses | |
EP3216324B1 (fr) | Lentille laser plasma | |
EP2356890B1 (fr) | Procede et systeme pour augmenter la duree de vie d'un plasma | |
WO2012017179A2 (fr) | Dispositif d'amplification à dérive de fréquence pour un laser impulsionnel | |
Miura et al. | Stable generation of quasi-monoenergetic electron beams with laser-driven plasma-based acceleration by suppressing nanosecond prepulse | |
US20200020459A1 (en) | Burst-mode chirped pulse amplification method | |
FR2598850A1 (fr) | Obturateur de plasma a flux axial | |
WO2023198653A1 (fr) | Procede et systeme d'acceleration d'electrons par interaction laser-plasma | |
Shaw | Characterization of Sub-millimeter-scale Gas Cells as Possible Injectors for Staged Laser Wakefield Acceleration | |
FR3042641A1 (fr) | Generation d'un faisceau d'ions ultracourt | |
Kim et al. | High-harmonic Generation from Solid Surface Using an Oscillating Mirror Model and Plasma Mirror System for High Contrast Laser Pulse | |
Nakamura | Progress on laser plasma accelerator development using transversely and longitudinally shaped plasmas | |
Ando et al. | Periodical H3+ emission from CH3OH2+ induced by few-cycle intense laser pulses | |
WO1992019087A1 (fr) | Procede pour reduire les instabilites des faisceaux de particules chargees groupees en paquets | |
Nakajima et al. | Recent progress on laser acceleration research |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22714892 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18551791 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022714892 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022714892 Country of ref document: EP Effective date: 20231025 |