WO2022199990A1 - Additiv hergestellte fluid-permeable materialstruktur - Google Patents

Additiv hergestellte fluid-permeable materialstruktur Download PDF

Info

Publication number
WO2022199990A1
WO2022199990A1 PCT/EP2022/055102 EP2022055102W WO2022199990A1 WO 2022199990 A1 WO2022199990 A1 WO 2022199990A1 EP 2022055102 W EP2022055102 W EP 2022055102W WO 2022199990 A1 WO2022199990 A1 WO 2022199990A1
Authority
WO
WIPO (PCT)
Prior art keywords
lattice
component
functional
material structure
functional material
Prior art date
Application number
PCT/EP2022/055102
Other languages
English (en)
French (fr)
Inventor
Johannes Albert
Oliver Strohmeier
Stefan Wanjura
Original Assignee
Siemens Energy Global GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH & Co. KG filed Critical Siemens Energy Global GmbH & Co. KG
Publication of WO2022199990A1 publication Critical patent/WO2022199990A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1115Making porous workpieces or articles with particular physical characteristics comprising complex forms, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/22Three-dimensional parallelepipedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the present invention relates to an additively manufactured or manufacturable turbine component that is subjected to high thermal loads, as well as a material or composite structure for a particularly mechanical and/or corresponding manufacturing process.
  • the invention also relates to the turbine component itself and a computer program product containing manufacturing instructions with which the procedure can be carried out.
  • the component is preferably intended for use in the hot gas path of a gas turbine.
  • the component relates to a component to be cooled.
  • the component can be a component for use in automobiles or in the aviation sector.
  • High-performance machine components are the subject of constant improvement, in particular to increase their efficiency in use.
  • heat engines in particular gas turbines
  • the metallic materials and the component design of heavy-duty components such as turbine blades or other hot gas parts are constantly being improved in terms of their strength, service life, creep resistance and thermomechanical fatigue.
  • additive manufacturing Due to technical advances, generative or additive manufacturing is becoming increasingly interesting for the series production of the components mentioned above, such as turbine blades or burner components.
  • Additive manufacturing processes (AM: "additive manufacturing") have proven to be particularly advantageous for complex or fi ligree designed components, for example labyrinth-like structures, cooling structures and / or lightweight structures
  • a particularly short chain of process steps is advantageous, since a manufacturing or manufacturing step of a component can be carried out largely on the basis of a corresponding CAD file and the selection of appropriate manufacturing parameters.
  • a method for selective laser melting with pulsed radiation is known, for example, from EP 3 022 008 Bl.
  • Additive manufacturing processes also known colloquially as 3D printing, include selective laser melting (SLM) or laser sintering (SLS) or electron beam melting (EBM) as powder bed processes.
  • SLM selective laser melting
  • SLS laser sintering
  • EBM electron beam melting
  • the material structure presented is intended to provide a solution for cooling and/or damping concepts in highly stressed components, with corresponding components produced from this material being sufficiently loadable mechanically and/or thermally at the same time.
  • One aspect of the present invention relates to an additively manufactured material structure for a component, in particular a turbine component, the material structure comprising a solid material lattice and a porous functional material, the functional material also being arranged in lattice spaces of the material lattice and the functional material being Use of the component of a fluid, such as a cooling fluid, is designed to be able to flow through it.
  • the solid lattice of material provides improved mechanical properties, such as increased strength, elongation at break, or the like.
  • the design of the material structure can advantageously significantly improve mechanical properties of the components.
  • functional properties of the material can be refined or better exploited through its improved structure and the additive manufacturing route can be validated for even more complex components at the same time.
  • the material structure consists of an, in particular regular, cohesive composite of the material grid and the functional material.
  • This integral, advantageous mechanical connection implemented via the corresponding additive manufacturing process enables the excellent mechanical properties of the material structure, including an advantageous resilience of the structure, for example to dynamic loads, with simultaneous weight reduction.
  • the thickness or strength of lattice elements, such as lattice struts, of the material lattice is between 0.3 mm and 1 mm.
  • the proposed structure can be advantageously designed down to this "resolution”.
  • a pore size, for example an average one, of pores in the functional material is smaller than an average size or an average diameter of lattice elements of the material lattice, such as the lattice struts described.
  • a lattice parameter or a lattice constant for example a cell length of the material lattice, is between 2 and 5 mm.
  • a further aspect of the present invention relates to a turbine component comprising the material structure described, the component being a component of the hot gas path of a gas turbine, for example a component to be cooled or a damper component.
  • a damping component can, for example, be a Helmholtz resonator, in particular re for (thermo-acoustic) damping of combustion chamber oscillations or combustion instabilities in turbine operation.
  • a further aspect of the present invention relates to a turbine comprising the turbine component described.
  • Another aspect of the present invention relates to a method for producing the material structure, wherein the material structure is built up additively from a powder bed, preferably by selective laser melting, with structure parameters that produce solid material for the material lattice and structure parameters that produce porosity for the functional material being selected, and with irradiation paths which for the fabrication of the material grid and the functional material (as part of the build parameters) are chosen to overlap by an amount between 0.2 mm and 0.5 mm.
  • the method allows the parametric setting of permeability properties of the functional material and thus a specific packaging of the cooling capacity and/or damping properties of the component.
  • additive manufacturing advantageously allows the mechanical strength of the material lattice to be adjusted via a corresponding choice of structure or irradiation parameters.
  • construction parameters are selected in such a way that irradiation paths, which are selected for the production of the material grid and the fusion material, completely overlap.
  • a further aspect of the present invention relates to a computer program product, comprising instructions which, in the execution of a corresponding program by a computer, for example for controlling the irradiation in an additive manufacturing plant, cause this to select the Structure parameters and / or the execution of the selective Be irradiation of a powder bed to perform.
  • the computer program product relates to manufacturing instructions, according to which an additive manufacturing system, for example using CAM ("Computer-Aided Manufacturing”) means, is controlled by a corresponding computer program for manufacturing the component.
  • an additive manufacturing system for example using CAM (“Computer-Aided Manufacturing") means
  • Such a computer program product can, for example, be in the form of a (volatile or non-volatile) storage or playback medium, such as a memory card, a USB stick, a CD-ROM or DVD, or in the form of a downloadable file from a server and/or are provided or exist in a network.
  • the provision can also be made, for example, in a wireless communication network by transferring a corresponding file with the computer program product.
  • the computer program product may include program code, machine code or numerical control instructions such as G-code and/or other executable program instructions in general.
  • the computer program product can also contain geometry data and/or design data in a data set or data format, such as a 3D format or as CAD data, or can include a program or program code for providing this data.
  • Configurations, features and/or advantages that relate to the material structure or the component in the present case can also directly relate to the additive manufacturing process or the computer program product, and vice versa.
  • FIG. 1 shows a schematic perspective illustration of a grid-like material structure for a turbine component.
  • FIG. 2 shows a schematic photograph of part of an additively manufactured material structure according to the invention, comprising a material lattice and a functional material arranged in the interstices of the lattice.
  • FIG. 3 shows a material structure similar to that in FIG. 2 in a different configuration.
  • FIG. 4 shows exemplary voltage characteristics of additively manufactured structures.
  • FIG. 5 uses a schematic sectional view to indicate basic process steps of a powder bed-based additive manufacturing process.
  • FIG. 1 shows a schematic of an additively manufactured material structure 10.
  • the material structure 10 is preferably provided for a component 20 or 30 and includes a solid material grid 11, which is provided for mechanical support or stability of the structure 10 or a component area of the component.
  • the material structure 10 is in a turbine component 20 of the hot gas pipe of a gas turbine 30 used.
  • component 20 may relate to a damper component such as a Helmholtz resonator. Accordingly, advantages of the present invention are already evident in the design or additive manufacturing of the structure 10 and manifest themselves in the use of the turbine component 20 or even the superordinate turbine 30, which is equipped with a turbine component 20 that is improved in terms of material technology.
  • the component 20 can be another part 20 of a turbomachine.
  • the component can be a blade or vane, a ring segment, a combustion chamber or burner part, such as a burner tip, a skirt, a shield, a heat shield, a nozzle, a seal, a filter, an orifice or lance, a stamp or designate a swirler, or a corresponding retrofit part.
  • the structure 10 or the entire component 20 is preferably produced by a powder bed process, for example LPBF.
  • the horizontal dashed arrow which is marked with the reference character F, is intended to indicate that at least one region of the component 20 in which the material structure 10 is present preferably has fluid-permeable properties and between the lattice struts of the material lattice 11 as intended can be flowed through with a cooling fluid.
  • the material structure 10 also comprises a porous functional material 12, the functional material 12 being arranged in lattice interspaces 13 of the material lattice 11.
  • the material structure 10 is preferably formed from a cohesive composite of the material grid 11 and the functional material 12 (see below).
  • a thickness d of lattice struts or lattice elements of the material lattice 11 is preferably between 0.3 mm and 1 mm. This makes it possible, for example in connection with the selection of the lattice parameters, to achieve optimal mechanical strength of the structure 10 .
  • a lattice parameter a of the material lattice 11, in particular a lattice cell length, is preferably between 2 mm and 5 mm.
  • an average pore size (not explicitly marked in the figures) of pores P of the functional material 12 is expediently smaller than an average size of lattice elements of the material lattice 11.
  • the present invention thus proposes a combination of lattice structures and porous structures.
  • the invention combines the improved mechanical properties of the grid and the functional properties of the porous functional material, e.g. with regard to the described parametrically adjustable flowability and functional properties.
  • different process or construction parameters are assigned to the named areas.
  • the lattice structures 11 are given so-called solid material parameters, for example via a corresponding control program or computer program product, whereas the porous material is manufactured with structural parameters that create porosity.
  • the two partial structures can overlap completely for a good connection, or only an edge or overlapping area o of, for example, between 0.2 mm and 0.5 mm can overlap or overlap.
  • the latter can be accomplished via an overlap of structure parameters, in particular of radiation vectors (see below) for the structure structure.
  • the choice or amount of overlap may depend on the dimension of the grid braces.
  • irradiation paths which are selected as part of the construction parameters for the production of the material grid 11 and the functional material 12, can completely overlap.
  • FIG. 3 shows an illustration similar to FIG. 2, showing an alternative pattern for the lattice regions 11 and the functional regions 12 of the material structure 10.
  • Figure 3 Compared to Figure 2, which shows a two-dimensional, rectangular (regular) grid with corresponding functional "material fillings", Figure 3 describes a somewhat more complex design, with round or spherical grid spaces 13 being defined by the material grid 11, in which the functional material 12 is arranged.
  • This tailor-made functional material can be varied or customized across all possible process parameters. It is provided that—in contrast to what is shown in FIGS. 2 and 3—the material structure is actually three-dimensional.
  • FIG. 4 uses stress-strain characteristics of three different structures to illustrate the advantages according to the invention of the material structure 10 presented, as described above.
  • the lower curve shows the course of a porous material without a supporting structure, ie without a material grid.
  • the mechanical strength or stress S of the materials comprising the material structure 10 according to the invention has been significantly increased; in the case of the structure shown on the right, even by 100% (cf. y-axis).
  • the elongation at break (cf. x-axis) for the structure shown at the top right in FIG. 4 could be increased by 65%, which is particularly advantageous for vibrating or dynamically loaded components.
  • FIG. 5 shows an additive manufacturing system 100.
  • the system 100 is preferably designed as an LPBF system and for the additive construction of parts or components from a powder bed.
  • the system 100 can also relate specifically to a system for electron beam melting.
  • the system has a construction platform 6 .
  • an additive material structure 10 for a component 20 is produced in layers from a material 1 Bauma.
  • the latter is formed by a powder P ge which can be distributed in layers on the construction platform 6 by a coating device 3 or can be doctored on.
  • each powder layer L (cf. Layer thickness t)
  • an energy beam 5 for example a laser or electron beam
  • the construction platform 6 is preferably lowered by an amount corresponding to the layer thickness L (cf. arrow pointing downwards in FIG. 1).
  • the thickness L is usually only between 20 gm and 40 gm, so the whole process can easily involve the selective irradiation of thousands to tens of thousands of layers.
  • a set of parameters can preferably be implemented in terms of production technology via a controller 4, for example the irradiation device 2, by selecting appropriate construction parameters.
  • the controller 4 can be computer-aided and have, for example, a data processing device or a processor.
  • the parameters or instructions are preferably provided by a computer program product CP. This includes commands which, when a corresponding program is executed by a computer or the controller 4 of the beam 5 in the system 100, cause the latter to select the construction parameters and/or to carry out the selective irradiation of a powder bed 1.
  • the geometry of the component is usually defined by a CAD file (“computer-aided design”). After such a file has been read into the manufacturing system 100, the process then first requires the definition of a suitable irradiation strategy, for example by means of the CAM, which also the component geometry is divided into the individual layers.
  • CAD file computer-aided design
  • the method is therefore an additive method for producing the material structure 10, preferably by selective laser melting, with the solid material lattice 11 being constructed with parameters for a solid material, and porosity-generating construction parameters being selected for the functional material.
  • the parameters or CAM instructions mentioned preferably include a large number of individual irradiation vectors V for irradiating a layer L, an irradiation pattern formed accordingly, an irradiation speed v, an irradiation power p, a hatching or grid spacing (not explicitly marked), as well as the described beam, grid, or melt pool overlap o.
  • the component 20 can advantageously be equipped with tailor-made mechanical see properties and permeability properties are equipped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

Es wird eine additiv hergestellte Materialstruktur (10) für eine Turbinenkomponente (20, 30) angegeben, wobei die Materialstruktur (10) ein massives Materialgitter (11) umfasst und ein poröses Funktionsmaterial (12), wobei das Funktionsmaterial (12) in Gitterzwischenräumen (13) des Materialgitters (11) angeordnet und wobei das Funktionsmaterial (12) während eines bestimmungsgemäßen Einsatzes der Komponente von einem Fluid (F) durchströmbar ausgebildet ist. Weiterhin wird eine entsprechende Turbinenkomponente sowie ein Verfahren und ein Computerprogrammprodukt zur Herstellung der Materialstruktur (10) angegeben, wobei für das massive Materialgitter (11) Aufbauparametern (V, p, v, o, a, d) für ein Vollmaterial, und wobei für das Funktionsmaterial porositätserzeugende Aufbauparameter (V, p, v) gewählt werden.

Description

Beschreibung
Additiv hergestellte fluid-permeable Materialstruktur
Die vorliegende Erfindung betrifft eine additiv hergestellte oder herstellbare hermisch hochbelastete Turbinenkomponente, sowie ein Material- oder Verbundstruktur für eine, insbeson dere mechanisch und/oder tentsprechendes Herstellungsverfah ren. Weiterhin betrifft die Erfindung die Turbinenkomponente selbst sowie ein Computerprogrammprodukt, enthaltend Herstel lungsanweisungen, mit denen das Verfahren durchgeführt werden kann.
Die Komponente ist vorzugsweise für den Einsatz im Heißgas pfad einer Gasturbine vorgesehen. Beispielsweise betrifft das Bauteil eine zu kühlende Komponente. Alternativ oder zusätz lich kann es sich bei dem Bauteil um eine Komponente für den Einsatz in der Automobilität oder im Luftfahrtsektor handeln.
Hochleistungs-Maschinenkomponenten sind Gegenstand stetiger Verbesserung, um insbesondere ihre Effizienz im Einsatz zu steigern. Bei Wärmekraftmaschinen, insbesondere Gasturbinen, führt dies allerdings unter anderem zu immer höheren Einsatz temperaturen. Die metallischen Materialien und das Komponen tendesign hochbelastbarer Bauteile, wie Turbinenlaufschaufeln oder anderen Heißgasteilen werden ständig hinsichtlich ihrer Festigkeit, Lebensdauer, Kriechbelastbarkeit und thermomecha nischer Ermüdung, verbessert.
Die generative oder additive Fertigung wird aufgrund techni scher Weiterentwicklung zunehmend interessant auch für die Serienherstellung der oben genannten Bauteile, wie beispiels weise Turbinenschaufeln oder Brennerkomponenten. Additive Fertigungsverfahren (AM: „additive manufacturing") haben sich insbesondere als besonders vorteilhaft für komplexe oder fi ligran gestaltete Bauteile, beispielsweise labyrinthartige Strukturen, Kühlstrukturen und/oder Leichtbau-Strukturen er wiesen. Insbesondere ist die additive Fertigung durch eine besonders kurze Kette von Prozessschritten vorteilhaft, da ein Herstellungs- oder Fertigungsschritt eines Bauteils weit gehend auf Basis einer entsprechenden CAD-Datei und der Wahl entsprechender Fertigungsparameter erfolgen kann.
Ein Verfahren zum selektiven Laserschmelzen mit gepulster Be strahlung ist beispielsweise bekannt aus EP 3 022 008 Bl.
Additive Herstellungsverfahren, umgangssprachlich auch als 3D-Druck bezeichnet, umfassen beispielsweise als Pulverbett verfahren das selektive Laserschmelzen (SLM) oder Lasersin tern (SLS), oder das Elektronenstrahlschmelzen (EBM).
Die Herstellung von Gasturbinenschaufeln mittels der be schriebenen pulverbett-basierten Verfahren (LPBF englisch für „Laser Powder Bed Fusion") ermöglicht vorteilhaft die Imple mentierung von neuen Geometrien, Konzepten, Lösungen und/oder Design, welche die Herstellungskosten bzw. die Aufbau- und Durchlaufzeit reduzieren, den Herstellungsprozess optimieren und beispielsweise eine thermo-mechanische Auslegung oder Strapaziertähigkeit der Komponenten verbessern können. Auf konventionelle Art, beispielsweise gusstechnisch, hergestell te Komponenten stehen der additiven Fertigungsroute, bei spielsweise hinsichtlich ihrer Formgebungsfreiheit und auch in Bezug auf die erforderliche Durchlaufzeit und den damit verbundenen hohen Kosten sowie dem fertigungstechnischen Auf wand, deutlich nach.
Durch den Pulverbettprozess entstehen in der Bauteilstruktur inhärent jedoch hohe thermische Spannungen. Insbesondere füh ren zu kurz bemessene Bestrahlungswege oder -Vektoren zu starken Überhitzungen, die wiederum zum Verzug der Struktur führen. Ein starker Verzug während des Aufbauprozesses führt leicht zu strukturellen Ablösungen, thermischen Verformungen oder geometrischen Abweichungen außerhalb zulässiger Tole- ranz. Dennoch ermöglicht die additive Fertigung, beispielsweise via LPBF, sogar die Herstellung von porösen Strukturen, welche beispielsweise im Einsatz der entsprechenden Komponente eine effiziente Kühlung oder Durchströmbarkeit für ein Fluid, er möglichen. Im Vergleich zu additiv erzeugten Vollmaterial strukturen können diese (porösen) oder funktionalen Struktu ren durch ihren verringerten Materialanteil aber weniger me chanische Last aufnehmen. Dies führt üblicherweise zu einem nur beschränkten Einsatz und Betrieb der Komponente.
Es ist daher eine Aufgabe der vorliegenden Erfindung, Mittel für eine neuartige additiv hergestellte Materialstruktur an zugeben, mit der die genannten technischen Schwierigkeiten überwunden werden können. Insbesondere soll durch die vorge stellte Materialstruktur eine Lösung für Kühl- und/oder Dämp fungskonzepte in hochbelasteten Bauteilen angegeben werden, wobei entsprechende aus diesem Material erzeugte Komponenten mechanisch und/oder thermisch gleichzeitig hinreichend be lastbar sind.
Diese Aufgabe wird durch den Gegenstand der unabhängigen Pa tentansprüche gelöst. Vorteilhafte Ausgestaltungen sind Ge genstand der abhängigen Patentansprüche.
Ein Aspekt der vorliegenden Erfindung betrifft eine additiv hergestellte Materialstruktur für eine Komponente, insbeson dere eine Turbinenkomponente, wobei die Materialstruktur ein massives Materialgitter umfasst und ein poröses Funktionsma terial, wobei das Funktionsmaterial weiterhin in Gitterzwi schenräumen des Materialgitters angeordnet ist und wobei das Funktionsmaterial während eines bestimmungsgemäßen Einsatzes der Komponente von einem Fluid, wie einem Kühlfluid, durch- strömbar ausgebildet ist. Vorzugsweise sorgt das massive Ma terialgitter für verbesserte mechanische Eigenschaften, wie eine gesteigerte Festigkeit, Bruchdehnung, oder dergleichen. Durch die Ausgestaltung der Materialstruktur können mechani sche Eigenschaften der Komponenten vorteilhafterweise deut lich verbessert werden. Gleichzeitig können funktionale Ei- genschaften des Materials durch dessen verbesserte Struktur verfeinert oder besser ausgenutzt werden und die additive Fertigungsroute gleichzeitig für noch komplexere Komponenten validiert werden.
In einer Ausgestaltung besteht die Materialstruktur aus ei nem, insbesondere regelmäßigen, stoffschlüssigen Verbund aus dem Materialgitter und dem Funktionsmaterial. Diese über das entsprechende additive Herstellungsverfahren implementierte stoffschlüssige vorteilhafte mechanische Anbindung ermöglicht gerade die ausgezeichneten mechanischen Eigenschaften der Ma terialstruktur, umfassend eine vorteilhafte Resilienz der Struktur beispielsweise gegenüber dynamischer Belastung, bei gleichzeitiger Gewichtsreduktion.
In einer Ausgestaltung beträgt eine Dicke oder Stärke von Gitterelementen, wie beispielsweise Gitterstreben, des Mate rialgitters zwischen 0,3 mm und 1 mm. Bis hinab zu dieser „Auflösung" lässt sich die vorgeschlagene Struktur vorteil haft ausbilden.
In einer Ausgestaltung ist eine, beispielsweise mittlere, Po rengröße von Poren des Funktionsmaterials kleiner als eine mittlere Größe oder ein mittlerer Durchmesser von Gitterele menten des Materialgitters, wie der beschriebenen Gitterstre ben.
In einer Ausgestaltung beträgt ein Gitterparameter, oder eine Gitterkonstante, beispielsweise eine Zelllänge des Material gitters, zwischen 2 und 5 mm.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft eine Turbinenkomponente umfassend die beschriebene Materialstruk tur, wobei die Komponente ein Bauteil des Heißgaspfades einer Gasturbine ist, beispielsweise eine zu kühlende Komponente oder eine Dämpferkomponente. Solch eine Dämpfungskomponente kann beispielsweise ein Helmholtz-Resonator sein, insbesonde- re zur (thermo-akustischen) Dämpfung von Brennkammerschwin gungen oder Verbrennungsinstabilitäten im Turbinenbetrieb.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft eine Turbine umfassend die beschriebene Turbinenkomponente.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung der Materialstruktur, wobei die Ma terialstruktur additiv aus einem Pulverbett aufgebaut wird, vorzugsweise durch selektives Laserschmelzen, wobei für das Materialgitter vollmaterialerzeugende Aufbauparameter und für das Funktionsmaterial porositätserzeugende Aufbauparameter gewählt werden, und wobei Bestrahlungspfade, welche für die Herstellung des Materialgitters und des Funktionsmaterials (als Teil der Aufbauparameter) gewählt werden, um ein Maß zwischen 0,2 mm und 0,5 mm überlappen. Vorteilhafterweise er laubt das Verfahren die parametrische Einstellung von Permea- bilitätseigenschaften des Funktionsmaterials und mithin eine spezifische Konfektionierung von Kühlleistung und/oder Dämp fungseigenschaften der Komponente. Weiterhin erlaubt es die additive Fertigung vorteilhaft, die mechanische Festigkeit des Materialgitters über eine entsprechende Wahl von Aufbau oder Bestrahlungsparametern einzustellen.
In einer Ausgestaltung werden Aufbauparameter derart gewählt, dass Bestrahlungspfade, welche für die Herstellung des Mate rialgitters und des Fusionsmaterials gewählt werden, voll ständig überlappen. Durch diese Ausgestaltung kann mit Vor teil eine besonders rigide mechanische Anbindung und/oder stoffschlüssige Verbindung zwischen dem Materialgitter und dem Funktionsmaterial hergestellt werden.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Computerprogrammprodukt, umfassend Befehle, die bei der Aus führung eines entsprechenden Programms durch einen Computer, beispielsweise zur Steuerung der Bestrahlung in einer additi ven Herstellungsanlage, diesen veranlassen, eine Wahl der Aufbauparameter und/oder die Ausführung der selektiven Be strahlung eines Pulverbettes durchzuführen.
In einer Ausgestaltung betrifft das Computerprogrammprodukt Herstellungsanweisungen, gemäß denen eine additive Herstel lungsanlage, beispielsweise über Mittel des CAM („Computer- Aided-Manufacturing" ), durch ein entsprechendes Computerpro gramm zur Herstellung des Bauteils gesteuert wird.
Ein solches Computerprogrammprodukt, kann beispielsweise als (flüchtiges oder nicht-flüchtiges) Speicher- oder Wiedergabe medium, wie z.B. eine Speicherkarte, ein USB-Stick, eine CD- ROM oder DVD, oder auch in Form einer herunterladbaren Datei von einem Server und/oder in einem Netzwerk bereitgestellt werden oder vorliegen. Die Bereitstellung kann weiterhin zum Beispiel in einem drahtlosen Kommunikationsnetzwerk durch die Übertragung einer entsprechenden Datei mit dem Computerpro grammprodukt erfolgen. Das Computerprogrammprodukt kann Pro grammcode, Maschinencode bzw. numerische Steuerungsanweisun gen, wie G-code und/oder andere ausführbare Programmanweisun gen im Allgemeinen beinhalten. Das Computerprogrammprodukt kann weiterhin Geometriedaten und/oder Konstruktionsdaten in einem Datensatz oder Datenformat, wie einem 3D-Format bzw. als CAD-Daten enthalten bzw. ein Programm oder Programmcode zum Bereitstellen dieser Daten umfassen.
Ausgestaltungen, Merkmale und/oder Vorteile, die sich vorlie gend auf die Materialstruktur bzw. die Komponente beziehen, können ferner direkt das additive Herstellungsverfahren oder das Computerprogrammprodukt betreffen, und umgekehrt.
Der hier verwendete Ausdruck „und/oder", wenn er in einer Reihe von zwei oder mehreren Elementen benutzt wird, bedeutet, dass jedes der aufgeführten Elemente alleine verwendet werden kann, oder es kann jede Kombination von zwei oder mehr der aufgeführten Elemente verwendet werden. Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Figuren beschrieben.
Figur 1 zeigt eine schematische perspektivische Abbildung ei ner gitterartigen Materialstruktur für eine Turbinenkomponen te.
Figur 2 zeigt eine schematische Aufnahme eines Teils einer erfindungsgemäßen additiv hergestellten Materialstruktur, um fassend ein Materialgitter sowie ein in Gitterzwischenräumen des Gitters angeordnetes Funktionsmaterial.
Figur 3 zeigt eine zur Abbildung der Figur 2 ähnliche Materi alstruktur in einer anderen Ausgestaltung.
Figur 4 zeigt beispielhafte Spannungskennlinien von additiv hergestellten Strukturen.
Figur 5 deutet anhand einer schematischen Schnittansicht grundlegende Verfahrensschritte eines pulverbett-basierten additiven Herstellungsverfahrens an.
In den Ausführungsbeispielen und Figuren können gleiche oder gleichwirkende Elemente jeweils mit den gleichen Bezugszei chen versehen sein. Die dargestellten Elemente und deren Grö ßenverhältnisse untereinander sind grundsätzlich nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Elemente, zur besseren Darstellbarkeit und/oder zum besseren Verständ nis übertrieben dick oder groß dimensioniert dargestellt sein.
Figur 1 zeigt schematisch eine additiv hergestellte Material struktur 10. Die Materialstruktur 10 ist vorzugsweise für ei ne Komponente 20 oder 30, vorgesehen und umfasst ein massives Materialgitter 11, welches zur mechanischen Unterstützung oder Stabilität der Struktur 10 bzw. eines Bauteilbereichs der Komponente vorgesehen ist. Vorzugsweise wird die Materi alstruktur 10 in einer Turbinenkomponente 20 des Heißgaspfa- des einer Gasturbine 30 eingesetzt. Beispielsweise kann die Komponente 20 eine Dämpferkomponente, wie einen Helmholtz- Resonator, betreffen. Vorteile der vorliegenden Erfindung er geben sich demgemäß bereits über die Auslegung bzw. additive Herstellung der Struktur 10 und manifestieren sich im Einsatz der Turbinenkomponente 20 bzw. sogar der übergeordneten Tur bine 30, welche mit einer materialtechnisch verbesserten Tur binenkomponente 20 ausgerüstet ist.
Alternativ kann es sich bei der Komponente 20 um ein anderes Bauteil 20 einer Strömungsmaschine handeln. Insbesondere kann das Bauteil eine Lauf- oder Leitschaufel, ein Ringsegment, ein Brennkammer- oder Brennerteil, wie eine Brennerspitze, eine Zarge, eine Schirmung, ein Hitzeschild, eine Düse, eine Dichtung, einen Filter, eine Mündung oder Lanze, einen Stem pel oder einen Wirbler bezeichnen, oder ein entsprechendes Nachrüstteil .
Wie anhand der Beschreibung der Figur 5 näher erläutert, wird die Struktur 10 bzw. die ganze Komponente 20 vorzugsweise durch einen Pulverbett-Prozess, beispielsweise LPBF herge stellt.
Durch den horizontalen gestrichelten Pfeil, welcher mit dem Bezugszeichen F gekennzeichnet ist, soll angedeutet werden, dass zumindest ein Bereich der Komponente 20, in dem die Ma terialstruktur 10 vorliegt, vorzugsweise fluid-permeable Ei genschaften aufweist und zwischen den Gitterstreben des Mate rialgitters 11 bestimmungsgemäß mit einem Kühlfluid durch strömt werden kann.
Wie anhand von Figur 2 erkenntlich, umfasst die erfindungsge mäße Materialstruktur 10 weiterhin ein poröses Funktionsmate rial 12, wobei das Funktionsmaterial 12 in Gitterzwischenräu- men 13 des Materialgitters 11 angeordnet ist. Dazu wird die Materialstruktur 10 vorzugsweise aus einem stoffschlüssigen Verbund aus dem Materialgitter 11 und dem Funktionsmaterial 12 gebildet (siehe unten). Eine Dicke d von Gitterstreben oder Gitterelementen des Mate rialgitters 11 beträgt vorzugsweise zwischen 0,3 mm und 1 mm. Dadurch lässt sich z.B. in Verbindung mit der Wahl der Git terparameter eine optimale mechanische Festigkeit der Struk tur 10 erreichen. Ein Gitterparameter a des Materialgitters 11, insbesondere eine Gitterzelllänge, beträgt vorzugsweise zwischen 2 mm und 5 mm. Eine mittlere Porengröße (in den Fi guren nicht explizit gekennzeichnet) von Poren P des Funkti onsmaterials 12 ist zweckmäßigerweise hingegen kleiner als eine mittlere Größe von Gitterelementen des Materialgitters 11.
Die vorliegende Erfindung schlägt also eine Kombination aus Gitterstrukturen und porösen Strukturen vor. Die Erfindung kombiniert hierbei die verbesserten mechanischen Eigenschaf ten der Gitter und die funktionalen Eigenschaften des porösen Funktionsmaterials, z.B. hinsichtlich der beschriebenen para metrisch einstellbaren Durchströmbarkeit und funktionellen Eigenschaften. In dem zugrunde liegenden additiven Herstel lungsprozess (vergleiche Figur 5 weiter unten) werden den ge nannten Bereichen entsprechend unterschiedliche Prozess- oder Aufbauparameter zugewiesen. Die Gitterstrukturen 11 erhalten beispielsweise über ein entsprechendes Steuerungsprogramm oder Computerprogrammprodukt sogenannte Vollmaterialparame ter, wohingegen das poröse Material mit porositätserzeugenden Aufbauparametern gefertigt wird.
Hierbei können sich die beiden Teilstrukturen für eine gute Anbindung vollends überlagern oder nur ein Rand- oder Über lappbereich o von beispielsweise zwischen 0,2 mm und 0,5 mm überlagert oder überlappt sich. Letzteres kann über einen Überlapp von Aufbauparametern, insbesondere von Bestrahlungs vektoren (siehe weiter unten) für den Strukturaufbau bewerk stelligt werden. Die Wahl oder das Maß der Überlappung kann von der Abmessung der Gitterstreben abhängen. Alternativ können Bestrahlungspfade, welche für die Herstel lung des Materialgitters 11 und des Funktionsmaterials 12 als Teil der Aufbauparameter gewählt werden, vollständig überlap pen.
Figur 3 zeigt eine zur Figur 2 ähnliche Abbildung, welche ein alternatives Muster für die Gitterbereiche 11 und die Funk tionsbereiche 12 der Materialstruktur 10 zeigt.
Gegenüber der Figur 2, welche ein zweidimensionales, recht eckiges (regelmäßiges) Gitter mit entsprechenden funktionalen „Materialfüllungen" zeigt, beschreibt Figur 3 eine etwas kom plexere Ausgestaltung, wobei runde bzw. sphärische Gitterzwi schenräume 13 durch das Materialgitter 11 definiert werden, in denen dann das Funktionsmaterial 12 angeordnet ist.
Die Eigenschaften dieses maßgeschneiderten Funktionsmaterials können über alle möglichen Prozessparameter hinweg beliebig variiert oder konfektioniert werden. Dabei ist vorgesehen, dass - anders als in den Figuren 2 und 3 dargestellt - die Materialstruktur in Wirklichkeit dreidimensional ausgebildet wird.
Figur 4 verdeutlicht anhand von Spannungs-Dehnungskennlinien dreier unterschiedlicher Strukturen die erfindungsgemäßen Vorteile der vorgestellten Materialstruktur 10, wie oben be schrieben.
In der unteren Kennlinie ist der Verlauf eines porösen Mate rials, ohne stützendes Gerüst, d.h. ohne Materialgitter ge zeigt. Es ist in Figur 4 weiterhin zu erkennen, dass die me chanische Festigkeit bzw. Spannung S der Materialien, welche die erfindungsgemäße Materialstruktur 10 umfassen (siehe obe re beiden Kennlinien), deutlich gesteigert wurde; im Fall der im rechten Teilbild gezeigten Struktur sogar um 100 % (vgl. y-Achse). Weiterhin ist in Figur 4 zu erkennen, dass die Bruchdehnung (vgl. x-Achse) für die oben rechts in der Figur 4 gezeigte Struktur um 65 % gesteigert werden konnte, was insbesondere für schwingende oder dynamisch belastete Bauteile von beson derem Vorteil ist.
Es ist zu bemerken, dass alle drei untersuchten Materialien mit den gleichen Bestrahlungsparametern für das poröse Funk tionsmaterial aufgebaut wurden.
Figur 5 zeigt eine additive Herstellungsanlage 100. Die Anla ge 100 ist vorzugsweise als LPBF-Anlage und für den additiven Aufbau von Bauteilen oder Komponenten aus einem Pulverbett ausgestaltet. Die Anlage 100 kann im Speziellen auch eine An lage zum Elektronenstrahlschmelzen betreffen.
Demgemäß weist die Anlage eine Bauplattform 6 auf. Auf der Bauplattform 6 wird eine additiv herzustellende Material struktur 10 für ein Bauteil 20 schichtweise aus einem Bauma terial 1 hergestellt. Letzteres wird durch ein Pulver P ge bildet, welches durch eine Beschichtungseinrichtung 3 schichtweise auf der Bauplattform 6 verteilt oder aufgerakelt werden kann.
Nach dem Aufträgen einer jeden Pulverschicht L (vgl. Schicht dicke t) werden gemäß der vorgegebenen Geometrie des Bauteils 20 selektiv Bereiche der Schicht mit einem Energiestrahl 5, beispielsweise einem Laser oder Elektronenstrahl, von einer Bestrahlungseinrichtung 2 aufgeschmolzen und anschließend verfestigt .
Nach jeder Schicht L wird die Bauplattform 6 vorzugsweise um ein der Schichtdicke L entsprechendes Maß abgesenkt (vgl. nach unten gerichteter Pfeil in Figur 1). Die Dicke L beträgt üblicherweise lediglich zwischen 20 gm und 40 gm, so dass der gesamte Prozess leicht die selektive Bestrahlung von Tausen den bis hin zu Zehntausenden von Schichten umfassen kann. Über die Wahl entsprechender Aufbauparameter kann gemäß dem Verfahren der vorliegenden Erfindung vorzugsweise ein Parame tersatz über eine Steuerung 4, beispielsweise der Bestrah lungseinrichtung 2, herstellungstechnisch umgesetzt werden. Die Steuerung 4 kann dazu computergestützt sein und bei spielsweise eine Datenverarbeitungseinrichtung oder einen Prozessor aufweisen. Die Parameter oder Anweisungen liegen vorzugsweise durch ein Computerprogrammprodukt CP vor. Dieses umfasst Befehle, die bei der Ausführung eines entsprechenden Programms durch einen Computer oder die Steuerung 4 des Strahls 5 in der Anlage 100, diesen veranlassen, eine Wahl der Aufbauparameter und/oder die Ausführung der selektiven Bestrahlung eines Pulverbettes 1 durchzuführen.
Die Geometrie des Bauteils wird üblicherweise durch eine CAD Datei („Computer-Aided-Design") festgelegt. Nach dem Einlesen einer solchen Datei in die Herstellungsanlage 100 erfordert der Prozess anschließend zunächst die Festlegung einer geeig neten Bestrahlungsstrategie beispielsweise durch Mittel des CAM, wodurch auch ein Aufteilen der Bauteilgeometrie in die einzelnen Schichten erfolgt.
Das Verfahren ist also ein additives Verfahren zur Herstel lung der Materialstruktur 10, vorzugsweise durch selektives Laserschmelzen, wobei für das massive Materialgitter 11 Auf bauparametern für ein Vollmaterial, und wobei für das Funkti onsmaterial porositätserzeugende Aufbauparameter gewählt wer den.
Die genannten Parameter oder CAM-Anweisungen umfassen vor zugsweise eine Vielzahl einzelner Bestrahlungsvektoren V für die Bestrahlung einer Schicht L, ein entsprechend davon ge bildetes Bestrahlungsmuster, eine Bestrahlungsgeschwindigkeit v, eine Bestrahlungsleistung p, einen Schraffur- oder Raster abstand (nicht explizit gekennzeichnet), sowie den beschrie benen Strahl-, Raster-, oder Schmelzbadüberlapp o. Über die Festlegung dieser und ggf. weiterer Parameter kann die Kompo nente 20 vorteilhafterweise mit maßgeschneiderten mechani- sehen Eigenschaften und Permeabilitätseigenschaften ausge stattet werden.

Claims

Patentansprüche
1. Additiv hergestellte Materialstruktur (10) für eine Kompo nente (20, 30), wobei die Materialstruktur (10) ein massives Materialgitter (11) umfasst und ein poröses Funktionsmaterial
(12), wobei das Funktionsmaterial (12) in Gitterzwischenräu- men (13) des Materialgitters (11) angeordnet ist und wobei das Funktionsmaterial (12) während eines bestimmungsgemäßen Einsatzes der Komponente von einem Fluid (F) durchströmbar ausgebildet ist, wobei die Materialstruktur aus einem stoff schlüssigen Verbund aus dem Materialgitter (11) und dem Funk tionsmaterial (12) besteht.
2. Materialstruktur (10) gemäß Anspruch 1, wobei eine Dicke (d) von Gitterelementen des Materialgitters (11) zwischen 0,3 mm und 1 mm beträgt.
3. Materialstruktur (10) gemäß einem der vorhergehenden An sprüche, wobei eine mittlere Porengröße von Poren (P) des Funktionsmaterials (12) kleiner ist als eine mittlere Größe von Gitterelementen des Materialgitters (11).
4. Materialstruktur (10) gemäß einem der vorhergehenden An sprüche, wobei ein Gitterparameter (a) des Materialgitters (11), insbesondere eine Gitterzelllänge, zwischen 2 mm und 5 mm beträgt.
5. Turbinenkomponente (20) umfassend eine Materialstruktur (10) gemäß einem der vorhergehenden Ansprüche, wobei die Kom ponente ein Bauteil des Heißgaspfades einer Gasturbine ist, beispielsweise eine Dämpferkomponente.
6. Turbine (30) umfassend eine Turbinenkomponente (20) gemäß Anspruch 5.
7. Verfahren zur Herstellung einer Materialstruktur (10) ge mäß einem der vorhergehenden Ansprüche, wobei die Material struktur additiv aus einem Pulverbett (1) aufgebaut wird, vorzugsweise durch selektives Laserschmelzen, wobei für das massive Materialgitter (11) vollmaterialerzeugende Aufbaupa rameter (V, p, v, o), und wobei für das Funktionsmaterial po- rositätserzeugende Aufbauparameter (V, p, v) gewählt werden, und wobei Bestrahlungspfade (V), welche für die Herstellung des Materialgitters (11) und des Funktionsmaterials (12) ge wählt werden, um ein Maß von zwischen 0,2 mm und 0,5 mm über lappen (o). 8. Verfahren gemäß Anspruch 7, wobei Bestrahlungspfade (V), welche für die Herstellung des Materialgitters (11) und des Funktionsmaterials (12) gewählt werden, vollständig überlap pen. 9. Computerprogrammprodukt (CP), umfassend Befehle, die bei der Ausführung eines Programms durch einen Computer, bei spielsweise zur Steuerung der Bestrahlung in einer additiven Herstellungsanlage (100), diesen veranlassen, eine Wahl der Aufbauparameter (V, p, v, o, a, d) und/oder die Ausführung der selektiven Bestrahlung eines Pulverbettes (1) gemäß dem Verfahren nach Anspruch 7 oder 8 durchzuführen.
PCT/EP2022/055102 2021-03-24 2022-03-01 Additiv hergestellte fluid-permeable materialstruktur WO2022199990A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021202852.7 2021-03-24
DE102021202852.7A DE102021202852A1 (de) 2021-03-24 2021-03-24 Additiv hergestellte fluid-permeable Materialstruktur

Publications (1)

Publication Number Publication Date
WO2022199990A1 true WO2022199990A1 (de) 2022-09-29

Family

ID=80785282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/055102 WO2022199990A1 (de) 2021-03-24 2022-03-01 Additiv hergestellte fluid-permeable materialstruktur

Country Status (2)

Country Link
DE (1) DE102021202852A1 (de)
WO (1) WO2022199990A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105274379A (zh) * 2015-10-28 2016-01-27 西北有色金属研究院 一种金属多孔材料的制备方法
EP3022008B1 (de) 2013-10-29 2017-11-01 Siemens Aktiengesellschaft Verfahren zur herstellung eines bauteils sowie optische bestrahlungsvorrichtung
CN107498047A (zh) * 2017-09-01 2017-12-22 西北有色金属研究院 一种钨铜复合材料及其制备方法
CN109261967A (zh) * 2018-11-30 2019-01-25 西北有色金属研究院 一种多孔钨材料的电子束分区扫描成形方法
US20190299290A1 (en) * 2018-04-01 2019-10-03 Masten Space Systems, Inc. Additively manufactured non-uniform porous materials and components in-situ with fully material, and related methods, systems and computer program product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8544597B1 (en) 2012-05-31 2013-10-01 Aerojet Rocketdyne Of De, Inc. Tuned damper member
EP3520929A1 (de) 2018-02-06 2019-08-07 Siemens Aktiengesellschaft Verfahren zum selektiven bestrahlen einer materialschicht, herstellungsverfahren und computerprogrammprodukt
CN110756801A (zh) 2019-09-09 2020-02-07 中国地质大学(武汉) 一种基于3d打印技术的涡轮钻具转子及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3022008B1 (de) 2013-10-29 2017-11-01 Siemens Aktiengesellschaft Verfahren zur herstellung eines bauteils sowie optische bestrahlungsvorrichtung
CN105274379A (zh) * 2015-10-28 2016-01-27 西北有色金属研究院 一种金属多孔材料的制备方法
CN107498047A (zh) * 2017-09-01 2017-12-22 西北有色金属研究院 一种钨铜复合材料及其制备方法
US20190299290A1 (en) * 2018-04-01 2019-10-03 Masten Space Systems, Inc. Additively manufactured non-uniform porous materials and components in-situ with fully material, and related methods, systems and computer program product
CN109261967A (zh) * 2018-11-30 2019-01-25 西北有色金属研究院 一种多孔钨材料的电子束分区扫描成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELAHINIA MOHAMMAD ET AL: "Fabrication of NiTi through additive manufacturing: A review", PROGRESS IN MATERIALS SCIENCE, PERGAMON PRESS, GB, vol. 83, 24 August 2016 (2016-08-24), pages 630 - 663, XP029773974, ISSN: 0079-6425, DOI: 10.1016/J.PMATSCI.2016.08.001 *

Also Published As

Publication number Publication date
DE102021202852A1 (de) 2022-09-29

Similar Documents

Publication Publication Date Title
DE102015102397A1 (de) System mit einer Schichtstruktur und Verfahren zu dessen Herstellung
EP3621758B1 (de) Verfahren für ein additiv herzustellendes bauteil mit vorbestimmter oberflächenstruktur
EP3713697A1 (de) Verfahren zum selektiven bestrahlen einer materialschicht, herstellungsverfahren und computerprogrammprodukt
DE102017201084A1 (de) Verfahren zur additiven Herstellung und Beschichtungsvorrichtung
EP3956088A1 (de) Schichtbauverfahren und schichtbauvorrichtung zum additiven herstellen zumindest einer wand eines bauteils sowie computerprogrammprodukt und speichermedium
EP4142970A1 (de) Bestrahlungsstrategie für eine kühlbare, additiv hergestellte struktur
EP3461571A1 (de) Verfahren zum bestrahlen einer pulverschicht in der additiven herstellung mit kontinuierlich definierten herstellungsparametern
EP4010136A1 (de) Verfahren zum selektiven bestrahlen einer pulverschicht in der additiven herstellung mit einem ersten und einem zweiten bestrahlungsmuster
EP3559556B1 (de) Brennerspitze zum einbau in einen brenner mit luftkanalsystem und brennstoffkanalsystem und verfahren zu deren herstellung
WO2022199990A1 (de) Additiv hergestellte fluid-permeable materialstruktur
WO2022263310A2 (de) Verfahren zur pulverbettbasierten additiven herstellung einer filigranen struktur mit vorbestimmter porosität sowie poröse funktionsstruktur
WO2021094026A1 (de) Verfahren zur schichtweisen additiven herstellung eines verbundwerkstoffs
WO2021156087A1 (de) Verfahren zum herstellen einer stützstruktur in der additiven herstellung
WO2020157190A1 (de) Gasturbinen-heissgas-bauteil und verfahren zum herstellen eines derartigen gasturbinen-heissgas-bauteils
DE102019214667A1 (de) Komponente mit einem zu kühlenden Bereich und Mittel zur additiven Herstellung derselben
WO2022096170A1 (de) Bestrahlungsstrategie für die additive herstellung eines bauteils und entsprechendes bauteil
EP3936260A1 (de) Bestrahlungsstrategie für eine additiv hergestellte struktur
EP4015106A1 (de) Additiv hergestellte poröse bauteilstruktur und mittel zu deren herstellung
EP3480431A1 (de) Bauteil für eine gasturbine mit einer struktur mit einem gradienten im elastizitätsmodul und additives herstellungsverfahren
WO2023011805A1 (de) Additives herstellungsverfahren mit gepulster bestrahlung für bauteil mit definierter oberflächentextur
DE102020202089A1 (de) Plattformstruktur für eine Turbinenschaufel und additives Herstellungsverfahren
DE102017215209A1 (de) Additiv hergestelltes Bauteil, insbesondere für eine Gasturbine, sowie Verfahren zu dessen Herstellung
DE102020209386A1 (de) Verfahren zum Herstellen von Hohlräumen in einer schichtweise additiv herzustellenden Struktur
DE102020201621A1 (de) Strategie zum Trennen von Bauteilen in der additiven Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22710989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22710989

Country of ref document: EP

Kind code of ref document: A1