WO2022199463A1 - 一种燃料电池电堆故障诊断方法及系统 - Google Patents

一种燃料电池电堆故障诊断方法及系统 Download PDF

Info

Publication number
WO2022199463A1
WO2022199463A1 PCT/CN2022/081570 CN2022081570W WO2022199463A1 WO 2022199463 A1 WO2022199463 A1 WO 2022199463A1 CN 2022081570 W CN2022081570 W CN 2022081570W WO 2022199463 A1 WO2022199463 A1 WO 2022199463A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell stack
fault
temperature
preset
Prior art date
Application number
PCT/CN2022/081570
Other languages
English (en)
French (fr)
Inventor
孙祥
岑健
钱程
Original Assignee
永安行科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永安行科技股份有限公司 filed Critical 永安行科技股份有限公司
Publication of WO2022199463A1 publication Critical patent/WO2022199463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the field of fuel cells, in particular to a method and system for diagnosing faults of a fuel cell stack.
  • Hydrogen fuel cell is an efficient and clean power energy supply device in new energy research.
  • Hydrogen energy is a renewable energy source that can be produced by electrolysis of water, natural gas and other methods. Therefore, hydrogen-fueled electric bicycles are environmentally friendly in terms of emissions, energy consumption, and fuel preparation.
  • the control system is responsible for receiving the control instructions of the whole vehicle, the fuel cell stack provides power output to the hydrogen fuel electric bicycle, and the electric energy released by the hydrogen fuel cell can provide power for the vehicle after being stabilized. , without any mechanical loss, the efficiency will be higher than other mechanical equipment.
  • the fuel cell stack will release a lot of heat in the working state. In the long-term, it will directly affect the performance and life of the fuel cell. When the part of the heat released by the fuel cell system does not meet the working requirements, it will affect the hydrogen. The charging and discharging speed cannot maintain the power output of the hydrogen fuel electric bicycle system after a fault occurs in the current state.
  • the purpose of the present invention is to provide a fuel cell stack fault diagnosis method and system, which are used to solve the problem that the existing fuel cell stack cannot maintain the power output of the hydrogen fuel electric bicycle system after a fault occurs during the working process. , It is necessary to troubleshoot the problem that the reliability, safety and durability of the fuel cell system cannot be maintained.
  • the invention discloses a fault diagnosis method for a fuel cell stack, wherein the fuel cell stack is connected to a hydrogen storage device, including the following:
  • Step 1 Collect the real-time temperature of the hydrogen storage device, and execute the heating process when the real-time temperature of the hydrogen storage device is lower than the preset first threshold; when the real-time temperature of the hydrogen storage device exceeds the preset first threshold, execute the power-on process , execute step 2;
  • Step 2 Detect the temperature of the fuel cell stack to determine whether the temperature of the fuel cell stack exceeds a preset second threshold in the working state; if so, set the temperature fault flag, execute shutdown protection, and then execute the cooling process; if not , perform step three;
  • Step 3 carry out pressure monitoring on the output part of the hydrogen storage device to determine whether the hydrogen pressure output by the hydrogen storage device is lower than a preset third threshold; if so, set the first pressure fault flag, and execute the heating process after shutdown protection; If not, go to step 4;
  • Step 4 Perform pressure monitoring on the fuel cell stack to determine whether the voltage of the fuel cell stack is lower than a preset fourth threshold; if so, set the voltage fault flag, and execute shutdown protection; if not, execute Step 5;
  • Step 5 Control the restart of the fuel cell system, if the restart failure is greater than the preset upper limit, set the limit restart failure failure flag, and execute the shutdown protection process to continue waiting; if the restart is successful, execute step 2.
  • performing the cooling process in the second step includes: using a cooling device to cool the fuel cell stack, and monitoring the temperature of the fuel cell stack in real time during the cooling process;
  • the temperature fault flag is reset, and step 3 is performed after the startup process is performed.
  • the heating process is performed in the third step, including the following:
  • a heating device is used to heat the hydrogen storage device, and when the working time of the heating device reaches a preset fifth threshold, the first pressure fault flag is reset, and step 4 is performed after the startup process is performed.
  • the method further includes:
  • step 5 the shutdown protection process is executed to continue waiting.
  • the limit restart failure fault flag is manually reset.
  • the solenoid valve is controlled to execute the startup process or the shutdown protection.
  • the invention also discloses another fault diagnosis method of the fuel cell power generation system, wherein the fuel cell power generation system is connected with a hydrogen storage device,
  • Step 1 Detect the temperature of the hydrogen storage tank, when the temperature of the hydrogen storage tank is lower than the preset first threshold, execute the heating process; when the temperature of the hydrogen storage tank exceeds the preset first threshold, execute the heating off process, and execute step two;
  • Step 2 Detect the temperature of the fuel cell stack, and determine whether the temperature of the fuel cell stack in the working state exceeds a preset second threshold for a preset time; , after reaching the preset time or the temperature is lower than the preset second threshold, go to step five; if not, go to step three;
  • Step 3 monitor the output hydrogen pressure of the hydrogen storage device, and determine whether the hydrogen pressure output from the hydrogen storage device is lower than the preset third threshold for a preset time; if so, mark the hydrogen output pressure fault flag, and execute shutdown protection Execute the heating process, after reaching the preset time or the pressure is lower than the preset third threshold, execute step 5; if not, execute step 4;
  • Step 4 monitor the output voltage of the fuel cell stack to determine whether the voltage of the fuel cell stack is lower than the preset fourth threshold for a preset time; if so, mark the voltage fault flag, execute shutdown protection, and reach the preset value After the time, go to step five; if not, go to step one;
  • Step 5 Restart the fuel cell control system, if the number of restart failures or time is greater than the preset upper limit, mark the restart failure failure flag, and execute the shutdown protection process to continue waiting; if the restart is successful, go to step 1.
  • the invention also discloses a fuel cell stack fault diagnosis system, which is characterized by comprising: a fuel cell stack, a hydrogen storage device for supplying hydrogen to the fuel cell stack, a sensing unit, a processing unit, a heating devices and cooling devices;
  • the sensing unit includes a first temperature sensor and a first pressure sensor acting on the hydrogen storage tank, and a second temperature sensor acting on the fuel cell stack;
  • Both the first temperature sensor and the first pressure sensor are electrically connected to the processing unit to feed back the temperature of the hydrogen storage tank and the output air pressure to the processing unit;
  • the second temperature sensor is electrically connected to the processing unit to feed back the temperature of the fuel cell stack to the processing unit;
  • a voltage monitoring circuit for sampling the output voltage of the fuel cell stack, the voltage monitoring circuit being electrically connected to the processing unit to feed back the output voltage of the fuel cell stack to the processing unit;
  • the processing unit controls the heating device or the cooling device to work according to the fault identification
  • the processing unit executes the startup process or shutdown protection through the solenoid valve.
  • the storage unit is electrically connected with the processing unit, and is used for storing fault data;
  • the heating device comprises a heating assembly mounted on the hydrogen storage tank, and a fuel cell stack in a state of generating waste heat;
  • the cooling device includes a cooling fan for cooling the fuel cell stack.
  • the heat release of the battery stack in the working state is monitored by the temperature fault flag, and the output voltage of the battery stack is monitored by the first pressure fault flag and the voltage fault flag to ensure that it meets the working requirements.
  • the device and cooling device can quickly solve the fault and maintain the power output of the hydrogen fuel electric bicycle system to ensure the reliability, safety and durability of the fuel cell system in the vehicle environment;
  • an external cooling device and a heating device can be set to perform a heating process or a cooling process on the fuel cell stack, so that the fuel cell stack is under a heating process or a cooling process.
  • FIG. 1 is a flowchart of Embodiment 1 of a fuel cell stack fault diagnosis method according to the present invention
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of a fuel cell stack fault diagnosis system according to the present invention
  • FIG. 3 is a schematic structural diagram of the second embodiment of a fuel cell stack fault diagnosis system according to the present invention, which is used to demonstrate that the pressure reducing valve is arranged on the hydrogen storage device.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • Embodiment 1 discloses a fault diagnosis method for a fuel cell stack. Referring to FIGS. 1-3 When a fault occurs in the state, the fault location is diagnosed in time, and corresponding measures are taken to maintain the power output of the hydrogen fuel electric bicycle system under the fault state, and ensure the reliability, safety and durability of the fuel cell system in the vehicle environment. sex.
  • the specific fault diagnosis method includes the following steps:
  • S10 Perform 2 real-time temperature collections on the hydrogen storage tank, when the real-time temperature of the hydrogen storage tank 2 is lower than the preset first threshold, execute the heating process; when the real-time temperature of the hydrogen storage tank 2 exceeds the preset first threshold value, Execute the boot process, and execute S20;
  • the first temperature sensor 31 installed on the hydrogen storage tank 2 realizes the real-time temperature acquisition of the hydrogen storage tank 2, and monitors the temperature of the hydrogen storage tank 2 to ensure that the gas outlet state of the hydrogen gas is normal when in use, and reduces the In the initial stage of use, the temperature of the hydrogen accumulator 2 is low, which affects the hydrogen emission.
  • the processing unit 4 is provided in this embodiment to monitor the temperature and pressure to set the fault flag and control the heating process and cooling process; when the temperature of the hydrogen storage device 2 is low, the heating process Device 2 performs temperature compensation. It should be noted that all heating processes in this embodiment have the same functions, and the specific implementation methods may be the same or different, including but not limited to using external heating components or collecting waste heat from battery electric pushers.
  • the above steps are performed before the fault diagnosis system of the fault diagnosis method starts, so as to achieve the purpose of preheating and to ensure the execution of the subsequent steps S20-S50.
  • the temperature of the fuel cell stack 1 is monitored by the second temperature sensor 32 disposed at the fuel cell stack 1. Since the temperature of the fuel cell stack 1 is too high, it will directly affect the performance and life of the fuel cell.
  • the feedback temperature received by the processing unit 4 exceeds the preset second threshold, it will perform shutdown protection while cooling the fuel cell stack 1.
  • the above-mentioned S20 performs the cooling process, including:
  • the cooling device 6 includes, but is not limited to, a cooling fan disposed outside the battery stack 1 , and other external components for cooling can also be applied here.
  • step S22 when the real-time temperature of the fuel cell stack 1 is lower than the preset second threshold, reset the temperature fault flag, and perform step S30 after the startup process is performed.
  • the cooling process When the cooling process is performed for a period of time and the real-time temperature of the fuel cell stack 1 decreases, it means that the temperature fault has been handled. At this time, it can be classified as a temperature fault flag, and the work process can be resumed at this time.
  • the lower temperature threshold is preset, and the temperature fault flag can be reset only when the real-time temperature drops below the lower temperature threshold. During this process, it is not necessary to keep the shutdown state until the obstacle is manually dealt with.
  • the cooling device 6 is used to accelerate the cooling process and shorten the shutdown time. , the power supply can be maintained by the waste heat during the cooling process.
  • S30 Perform pressure monitoring on the output part of the hydrogen storage device 2 to determine whether the hydrogen pressure output from the hydrogen storage device 2 is lower than a preset third threshold; if so, set the first pressure fault flag, and execute the heating process after shutdown protection is executed ; if not, execute S40;
  • the pressure of hydrogen output from the hydrogen storage device 2 will affect the amount of hydrogen discharged, which in turn causes the heat released by the fuel cell stack due to the insufficient amount of hydrogen to be insufficient to meet the working requirements. Therefore, when the pressure of the output hydrogen is lower than the third When the threshold value is reached, the hydrogen storage device 2 needs to be heated through the heating process to increase the pressure of the hydrogen output.
  • the hydrogen pressure output from the hydrogen storage device 2 can be obtained by the first pressure sensor 32 provided on the hydrogen storage device 2.
  • step S30 Perform the heating process, including the following:
  • the processing unit 4 when the processing unit 4 receives that the pressure value fed back by the first pressure sensor 32 exceeds the preset third threshold value, it indicates that there is a pressure failure at the hydrogen storage device, and at this time, the heating device 5 is turned on and the hydrogen storage device is turned on at the preset time.
  • the device 2 is heated, and the preset time is set to prevent the hidden safety hazard caused by the heating time process.
  • it is judged whether the pressure failure at the hydrogen storage device 2 is solved by judging whether the heating device 5 has timed out for the temperature compensation time of the hydrogen storage device. After a certain time of temperature compensation, the obstacle has been dealt with, so as to shorten the shutdown protection time and maintain the power output of the hydrogen fuel electric bicycle system.
  • S40 Perform pressure monitoring on the fuel cell stack 1 to determine whether the output voltage of the fuel cell stack 1 is lower than a preset fourth threshold; if so, set the voltage fault flag, and execute shutdown protection; if not, execute step 5 ;
  • the implemented output voltage of the fuel cell stack 1 is monitored by the voltage monitoring circuit 34 disposed at the output end of the battery stack 1.
  • the method further includes:
  • the processing unit judges whether the fault has been eliminated, and resets the voltage fault flag after all the faults are eliminated.
  • the heating process or the cooling process is performed after the fault, so the fuel cell system is controlled to restart to monitor whether each fault is eliminated, so as to ensure the safety and reliability of the entire work process. Durability. Specifically, after the restart fails in the above step S50, and the shutdown protection process is executed and continues to wait, the following steps are further included:
  • the fault processing status of each fault bit can be obtained by whether the fault is set or reset.
  • the faults of all fault bits are in the reset state, the faults are processed and the entire workflow can be continuously executed.
  • the startup process or the shutdown protection is performed by controlling the solenoid valve 8 arranged on the circuit between the fuel cell stack 1 and the hydrogen storage device 2 , and when any fault flag is set, shutdown is performed.
  • the processing unit controls the operation of the heating device 5 or the cooling device 6, heats or cools the hydrogen storage device or the battery stack, monitors the heat release of the fuel cell stack 1 in the working state through the temperature fault flag, and uses the first A pressure fault indicator and a voltage fault indicator monitor the output voltage of the battery stack 1 to ensure that it meets the working requirements.
  • the heating device 5 and the cooling device 6 are used to quickly solve the fault to maintain the power output of the hydrogen fuel electric bicycle system to ensure Reliability, safety and durability of fuel cell systems in automotive environments.
  • Embodiment 2 provides a fuel cell stack fault diagnosis system, referring to FIG. 1 to FIG. 3 , including: a fuel cell stack 1 , and a hydrogen storage device for supplying hydrogen to the fuel cell stack 1 2.
  • the processing unit 4 is electrically connected to the hydrogen storage 2 and the fuel cell stack 1 respectively, and receives the data fed back by the sensing unit to control the startup and shutdown.
  • first temperature sensor 31 and first pressure sensor 32 are both electrically connected to the processing unit to feed back the temperature and output air pressure of the hydrogen storage tank 2 to the processing unit 4; to perform steps S10 and S30 in the above-mentioned first embodiment
  • the second temperature sensor 32 is electrically connected with the processing unit 4 to feed back the temperature of the fuel cell stack 1 to the processing unit 4, and the processing unit reads the fault identification and performs steps S20, S40 and S50 in the above-mentioned embodiment, and according to the fault identification Control the heating device 5 or the cooling device 6 to work; specifically, the processing unit 4 executes the startup process or shutdown protection through the solenoid valve 8 .
  • the hydrogen storage device 2 is also provided with a radio frequency identification module 21 (refer to FIG. 2 ) for identifying the information of the hydrogen storage device 21, including but not limited to information such as hydrogen gas capacity and output air pressure, so as to facilitate the storage of background data,
  • the pressure reduction valve 61 (refer to FIG. 3 ) can also be set on the hydrogen storage device 2 to control the air pressure in the hydrogen storage device 2, thereby controlling the hydrogen output pressure of the hydrogen storage device 2, so as to adjust the gas pressure entering the fuel cell stack. 1 to increase the safety during use.
  • the fault diagnosis system further includes a storage unit 7, which is electrically connected to the processing unit 4 for storing fault data, so as to analyze the fault data later to diagnose the fault
  • the system is optimized; further preferably, the above-mentioned heating device 5 includes a heating assembly installed on the hydrogen storage device 2, and the fuel cell stack 1 in a state of generating waste heat; the above-mentioned cooling device 6 is used for cooling the fuel cell stack.
  • the cooling fan (not shown in the figure) can be used to control the temperature and pressure of the hydrogen storage or the fuel cell stack by arranging the heating assembly and the cooling fan at the hydrogen storage or the fuel cell stack.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供了一种燃料电池电堆故障诊断方法及系统,涉及燃料电池领域,燃料电池电堆与一储氢器连接,包括以下:对储氢器进行实时温度采集,当储氢器温度超出预设第一阈值,执行开机流程,监测燃料电池电堆的温度是否超出预设第二阈值;若是,置位温度故障标识,若否,判断储氢器输出的氢气压力是否低于预设第三阈值;若是,置位第一压力故障标识,若否,判断燃料电池电堆的电压是否低于预设第四阈值;若是,置位电压故障标识,若否,对燃料电池系统控制重启,若重启失败,置位极限重启失败故障标识,若重启成功,执行开机流程,用于解决现有燃料电池电堆出现故障后无法维持氢燃料电动车系统的动力输出的问题。

Description

一种燃料电池电堆故障诊断方法及系统 技术领域
本发明涉及燃料电池领域,尤其涉及一种燃料电池电堆故障诊断方法及系统。
背景技术
随着新能源技术的发展,燃料电池逐渐表现出越来越多的优势。氢燃料电池在新能源研究中是一种高效、清洁的动力能源供给装置。氢能是一种可再生的能源,通过电解水、天然气以及其他方式可以制备,因此氢燃料电动自行车从排放、能源消耗以及燃料的制备等各方面来看均比较环保。
在氢燃料电动自行车控制系统中,控制系统负责接收整车的控制指令,燃料电池电堆给氢燃料电动自行车提供动力输出,氢燃料电池释放出的电能经过稳压处理后即可为车辆提供动力,没有任何机械损耗,相比于其他的机械设备的效率会更高。
但是燃料电池电堆在工作状态下会释放大量热量,长期如此下,会直接影响燃料电池的性能和寿命,而当燃料电池系统释放的自身发出的部分热量不满足工作要求时将会影响氢气的充放速度,现有状态下出现故障后无法维持氢燃料电动自行车系统的动力输出,需要对燃料电池电堆停机处理并排除故障,费时费力。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种燃料电池电堆故障诊断方法及系统,用于解决现有燃料电池电堆在工作过程中出现故障后无法维持氢燃料电动自行车系统的动力输出,需要排除故障,无法维持燃料电池系统的可靠性、安全性和耐久性的问题。
本发明公开了一种燃料电池电堆故障诊断方法,所述燃料电池电堆与一储氢器连接,包括以下:
步骤一:对储氢器进行实时温度采集,当所述储氢器实时温度低于预设第一阈值,执行加热流程;当所述储氢器实时温度超出预设第一阈值,执行开机流程,执行步骤二;
步骤二:对燃料电池电堆温度检测,,判断所述燃料电池电堆工作状态下的温度是否超出预设第二阈值;若是,置位温度故障标识,执行关机保护后执行冷却流程;若否,执行步骤三;
步骤三:对储氢器输出部进行压力监测,判断所述储氢器输出的氢气压力是否低于预设第三阈值;若是,置位第一压力故障标识,执行关机保护后执行加热流程;若否,执行步骤四;
步骤四:对燃料电池电堆进行压力监测,判断所述燃料电池电堆的电压是否低于预设第四阈值;若是,置位电压故障标识,执行关机保护;若否,执行步骤五;
步骤五:对所述燃料电池系统控制重启,若重启失败大于预设上限值,置位极限重启失败故障标识,执行关机保护流程继续等待;若重启成功,执行步骤二。
优选地,所述步骤二执行冷却流程,包括:采用冷却装置对所述燃料电池电堆进行冷却处理,并实时监测燃料电池电堆在冷却过程中的温度;
当燃料电池电堆的实时温度低于预设第二阈值时,复位所述温度故障标识,执行开机流程后执行步骤三。
优选地,在所述步骤三执行加热过程,包括以下:
采用加热装置对储氢器进行加热处理,当所述加热装置工作时间达到预设第五阈值,复位所述第一压力故障标识,执行开机流程后执行步骤四。
优选地,在所述步骤四执行关机保护后,还包括:
执行延时重启,若重启失败,继续关机等待;若重启成功,复位所述电压故障标识,执行开机流程后执行步骤五。
优选地,在所述步骤五重启失败,执行关机保护流程继续等待后,还包括以下:
监测所述温度故障标识、所述第一压力故障标识以及所述第二压力故障标对应的故障位故障处理状态;
当所述触发温度故障标识、所述第一压力故障标识以及所述第二压力故障标对应的故障位故障处理完毕,手动复位所述极限重启失败故障标识。
优选地,控制电磁阀执行所述开机流程或所述关机保护。
本发明还公开了另一种燃料电池发电系统的故障诊断方法,所述燃料电池发电系统与一储氢器连接,
包括以下:
步骤一:对储氢器温度进行检测,当所述储氢器温度低于预设第一阈值,执行加热 流程;当所述储氢器温度超出预设第一阈值,执行关加热流程,执行步骤二;
步骤二:对燃料电池电堆温度检测,判断所述燃料电池电堆工作状态下的温度是否持续预设时间内超出预设第二阈值;若是,标记温度故障标识,执行关机保护后执行冷却流程,达到预设时间后或温度低于预设第二阈值,执行步骤五;若否,执行步骤三;
步骤三:对储氢器输出氢气压力进行监测,判断所述储氢器输出的氢气压力是否持续预设时间内低于预设第三阈值;若是,标记氢气输出压力故障标识,执行关机保护后执行加热流程,达到预设时间后或压力低于预设第三阈值,执行步骤五;若否,执行步骤四;
步骤四:对燃料电池电堆输出电压进行监测,判断所述燃料电池电堆的电压是否持续预设时间内低于预设第四阈值;若是,标记电压故障标识,执行关机保护,达到预设时间后,执行步骤五;若否,执行步骤一;
步骤五:对所述燃料电池控制系统重启,若重启失败次数或时间大于预设上限值,标记重启失败故障标识,执行关机保护流程继续等待;若重启成功,执行步骤一。
本发明还公开了一种燃料电池电堆故障诊断系统,其特征在于,包括:燃料电池电堆、用于给所述燃料电池电堆提供氢气的储氢器、传感单元、处理单元、加热装置以及冷却装置;
所述传感单元包括作用于储氢器的第一温度传感器和第一压力传感器,以及作用于燃料电池电堆的第二温度传感器;
所述第一温度传感器和所述第一压力传感器均与所述处理单元电连接,以向所述处理单元反馈储氢器温度和输出气压;
所述第二温度传感器与所述处理单元电连接,以向所述处理单元反馈燃料电池电堆温度;
还包括用于对燃料电池电堆的输出电压进行采样的电压监测电路,所述电压监测电路与所述处理单元电连接以向所述处理单元反馈燃料电池电堆的输出电压;
所述处理单元根据故障标识控制加热装置或冷却装置工作;
所述处理单元通过电磁阀执行开机流程或关机保护。
优选地,还包括存储单元,所述存储单元与所述处理单元电连接,用于存储故障数据;
优选地,所述加热装置包括安装在储氢器上的加热组件,以及处于产生废热状态下 燃料电池电堆;
优选地,所述冷却装置包括用于给燃料电池电堆降温的散热风扇。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.本方案中通过温度故障标识监测电池电堆在工作状态下热量释放情况,通过第一压力故障标识和电压故障标识监测电池电堆输出电压,确保其满足工作需求,故障状态下,通过加热装置和冷却装置快速解决故障,维持氢燃料电动自行车系统的动力输出,以确保车用环境下,燃料电池系统的可靠性、安全性和耐久性;
2.本方案中可设置外置的冷却装置和加热装置对燃料电池电堆执行加热流程或冷却流程,使燃料电池电堆处于加热流程或冷却流程下。
附图说明
图1为本发明所述一种燃料电池电堆故障诊断方法实施例一的流程图;
图2为本发明所述一种燃料电池电堆故障诊断系统实施例二的结构示意图;
[根据细则26改正16.05.2022] 
图3为本发明所述一种燃料电池电堆故障诊断系统实施例二中用于体现减压阀设置在储氢器上的结构示意图。
附图标记:1-燃料电池电堆;2-储氢器;21-射频识别模块;31-第一温度传感器;32-第一压力传感器;33-第二温度传感器;34-电压监测电路;4-处理单元;5-加热装置;6-冷却装置;61-减压阀;7-存储单元;8-电磁阀。
具体实施方式
以下结合附图与具体实施例进一步阐述本发明的优点。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,“模块”与“部件”可以混合地使用。
实施例一:本实施例公开了一种燃料电池电堆故障诊断方法,参阅图1-图3,所述燃料电池电堆1与一储氢器2连接,以便于在燃料电池电堆1工作状态下出现故障时及时诊断出故障位,并采取对应处理措施,以在故障状态下,维持氢燃料电动自行车系统的动力输出,保证车用环境下,燃料电池系统的可靠性、安全性和耐久性。具体的故障诊断方法包括以下步骤:
S10:对储氢器进2行实时温度采集,当所述储氢器2实时温度低于预设第一阈值,执行加热流程;当所述储氢器2实时温度超出预设第一阈值,执行开机流程,执行S20;
在上述步骤中,通过安装在储氢器2上的第一温度传感器31实现对储氢器2的实时温度采集,监测储氢器2的温度,确保氢气在使用时的出气状态正常,减由于储氢器2在使用初期自身温度较低而影响氢气排放的情况。需要补充说明的是,本实施方式中设置处理单元4,用于监控温度、压力以置位故障标识并控制加热流程和冷却流程;当储氢器2温度较低时,通过加热流程对储氢器2进行温度补偿,需要说明的是,本实施方式中所有加热流程作用均一致,具体的实现方式可相同或不同,包括但不限于采用外置的加热组件或采集电池电推的废热。上述步骤为执行该故障诊断方法的故障诊断系统未开 始前,以达到预加热的目的,以确保后续步骤S20-S50的可执行。
S20:对燃料电池电堆温度检测,判断燃料电池电堆1工作状态下的温度是否超出预设第二阈值;若是,置位温度故障标识,执行关机保护后执行冷却流程;若否,执行S30;
在上述步骤中,通过设置在燃料电池电堆1处的第二温度传感器32来监测燃料电池电堆1的温度,由于电池电堆温度1过高会直接影响燃料电池的性能和寿命,因此当处理单元4接收到反馈的温度超出预设第二阈值时,会执行关机保护同时对燃料电池电堆1冷却处理,具体的,上述S20执行冷却流程,包括:
S21:采用冷却装置6对所述燃料电池电堆1进行冷却处理,并实时监测燃料电池电堆1在冷却过程中的温度;
在上述步骤中,冷却装置6包括但不限于设置在电池电堆1外的散热风扇,其他用于冷却的外置组件也可适用于此。
S22:当燃料电池电堆1的实时温度低于预设第二阈值时,复位所述温度故障标识,执行开机流程后执行步骤S30。
当冷却流程执行一段时间,燃料电池电堆1的实时温度降低,则说明温度故障被处理,此时可分为温度故障标识,此时可恢复工作流程,需要说明是,还可根据实际使用场景预设下限温度阈值,在实时温度降低至下限温度阈值以下时才可将温度故障标识复位,在此过程中无需一直保持关机状态直至人工处理障碍,同时采用冷却装置6加速冷却过程,缩短关机时间,在冷却过程中可由余热维持动力供给。
S30:对储氢器2输出部进行压力监测,判断所述储氢器2输出的氢气压力是否低于预设第三阈值;若是,置位第一压力故障标识,执行关机保护后执行加热流程;若否,执行S40;
在上述步骤中,储氢器2输出的氢气压力会影响到氢气的排放量,进而导致燃料电池电堆由于氢气量不足释放的热量不足以满足工作要求,因此当输出的氢气压力低于第三阈值时,需要通过加热流程对储氢器2加热以增加氢气输出的压力,储氢器2输出的氢气压力可由设置在储氢器2上的第一压力传感器32获得,具体的在上述步骤S30执行加热过程,包括以下:
S31:采用加热装置5对储氢器2进行加热处理,当所述加热装置5工作时间达到预设第五阈值,复位所述第一压力故障标识,执行开机流程后执行S40。
在上述步骤中,处理单元4接收到第一压力传感器32反馈的压力值超出预设第三阈值时,说明储氢器处存在压力故障,此时打开加热装置5并在预设时间对储氢器2加热, 设置预设时间是防止加热时间过程而产生的安全隐患,在此过程中通过判断加热装置5对储氢器温度补偿时间是否超时来判断是否解决储氢器2处的压力故障,在温度补偿一定时间后则该障碍已被处理,以缩短关机保护时间,进而维持氢燃料电动自行车系统的动力输出。
S40:对燃料电池电堆1进行压力监测,判断所述燃料电池电堆1的输出电压是否低于预设第四阈值;若是,置位电压故障标识,执行关机保护;若否,执行步骤五;
在上述步骤中,通过设置在电池电堆1输出端的电压监测电路34来监测燃料电池电堆1的实施输出电压,在所述步骤四执行关机保护后,还包括:
S41:执行延时重启,若重启失败,继续关机等待;若重启成功,复位所述电压故障标识,执行开机流程后执行步骤S50。
当燃料电池电堆1的输出电压低于预设第四阈值,则输出的电压无法满足车用环境需求,此时执行延时重启,使该处工作步骤重置,关机过程中等待维护消除故障,通过处理单元判断故障是否已经消除完毕,等故障全部消除完毕后复位所述电压故障标识。
S50:对所述燃料电池系统控制重启,若重启失败大于预设上限值,置位极限重启失败故障标识,执行关机保护流程继续等待;若重启成功,执行S20。
在执行上述步骤后,由于上述步骤S10-S40中可能产生故障,在故障后执行加热过程或冷却过程,因此控制燃料电池系统重启,以监测各个故障是否被消除,确保整个工作流程的安全性和耐久性。具体的,在上述步骤S50重启失败,执行关机保护流程继续等待后,还包括以下:
S51:监测所述温度故障标识、所述第一压力故障标识以及所述第二压力故障标对应的故障位故障处理状态;
S52:当所述触发温度故障标识、所述第一压力故障标识以及所述第二压力故障标对应的故障位故障处理完毕,手动复位所述极限重启失败故障标识。
在上述步骤中,各个故障位故障处理状态可以由故障处于置位还是复位获得,当所有故障位的故障处于复位状态下,则各处故障被处理,整个工作流程可以持续执行。
在本实施方式中,通过控制设置在燃料电池电堆1与储氢器2之间电路上的电磁阀8执行所述开机流程或所述关机保护,在任一故障标识被置位时,执行关机保护,同时通过处理单元控制加热装置5或冷却装置6的工作,对储氢器或电池电堆进行加热或冷却,通过温度故障标识监测燃料电池电堆1在工作状态下热量释放情况,通过第一压力故障标识和电压故障标识监测电池电堆1输出电压,确保其满足工作需求,故障状态下,通 过加热装置5和冷却装置6快速解决故障,维持氢燃料电动自行车系统的动力输出,以确保车用环境下,燃料电池系统的可靠性、安全性和耐久性。
实施例二:本实施例提供了一种燃料电池电堆故障诊断系统,参阅图1-图3,包括:燃料电池电堆1、用于给所述燃料电池电堆1提供氢气的储氢器2、传感单元、处理单元4、加热装置5以及冷却装置6;上述传感单元包括作用于储氢器2的第一温度传感器31和第一压力传感器32,以及作用于燃料电池电堆1的第二温度传感器33;还包括用于对燃料电池电堆1的输出电压进行采样的电压监测电路34,电压监测电路34与处理单元4电连接以向处理单元4反馈燃料电池电堆1的输出电压,处理单元4分别与储氢器2和燃料电池电堆1电连接,且接收传感单元反馈的数据,控制开机及关机。
更具体的,上述第一温度传感器31和第一压力传感器32均与处理单元电连接,以向处理单元4反馈储氢器2温度和输出气压;以执行上述实施例一中的步骤S10、S30;第二温度传感器32与处理单元4电连接,以向处理单元4反馈燃料电池电堆1温度,处理单元读取故障标识执行上述实施例一种的步骤S20、S40以及S50,并根据故障标识控制加热装置5或冷却装置6工作;具体的,处理单元4通过电磁阀8执行开机流程或关机保护。
在上述实施方式中,储氢器2还设置有用于识别储氢器21信息的射频识别模块21(参阅图2),包括但不限于氢气容量、输出气压等信息,便于将后台数据的存储,进一步的,还可以通过在储氢器2上设置减压阀61(参阅图3)来控制储氢器2内的气压,进而控制储氢器2的氢气输出气压,以调整进入燃料电池电堆1内的氢气气压,以提高使用过程中的安全性。
在一个优选的实施方式中,该故障诊断系统还包括存储单元7,所述存储单元7与所述处理单元4电连接,用于存储故障数据,以便后续对故障数据进行分析,以对故障诊断系统进行优化;进一步优选的,上述加热装置5包括安装在储氢器2上的加热组件,以及处于产生废热状态下燃料电池电堆1;上述冷却装置6为用于给燃料电池电堆降温的散热风扇(图中未标出)可以通过将加热组件和散热风扇设置在储氢器处或燃料电池电堆处以实现对储氢器或燃料电池电堆的温度控制和压力控制。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (11)

  1. 一种燃料电池电堆的故障诊断方法,所述燃料电池电堆与一储氢器连接,其特征在于,包括以下:
    步骤一:对储氢器进行实时温度采集,当所述储氢器实时温度低于预设第一阈值,执行加热流程;当所述储氢器实时温度超出预设第一阈值,执行开机流程,执行步骤二;
    步骤二:对燃料电池电堆温度检测,判断所述燃料电池电堆工作状态下的温度是否超出预设第二阈值;若是,置位温度故障标识,执行关机保护后执行冷却流程;若否,执行步骤三;
    步骤三:对储氢器输出部进行压力监测,判断所述储氢器输出的氢气压力是否低于预设第三阈值;若是,置位第一压力故障标识,执行关机保护后执行加热流程;若否,执行步骤四;
    步骤四:对燃料电池电堆进行电压监测,判断所述燃料电池电堆的电压是否低于预设第四阈值;若是,置位电压故障标识,执行关机保护;若否,执行步骤五;
    步骤五:对所述燃料电池系统控制重启,若重启失败大于预设上限值,置位极限重启失败故障标识,执行关机保护流程继续等待;若重启成功,执行步骤二。
  2. 根据权利要求1所述的故障诊断方法,其特征在于,所述步骤二执行冷却流程,包括:
    采用冷却装置对所述燃料电池电堆进行冷却处理,并实时监测燃料电池电堆在冷却过程中的温度;
    当燃料电池电堆的实时温度低于预设第二阈值时,复位所述温度故障标识,执行开机流程后执行步骤三。
  3. 根据权利要求1所述的故障诊断方法,其特征在于,在所述步骤三执行加热过程,包括以下:
    采用加热装置对储氢器进行加热处理,当所述加热装置工作时间达到预设第五阈值,复位所述第一压力故障标识,执行开机流程后执行步骤四。
  4. 根据权利要求1所述的故障诊断方法,其特征在于,在所述步骤四执行关机保护后,还包括:
    执行延时重启,若重启失败,继续关机等待;若重启成功,复位所述电压故障标识, 执行开机流程后执行步骤五。
  5. 根据权利要求1所述的故障诊断方法,其特征在于,在所述步骤五重启失败,执行关机保护流程继续等待后,还包括以下:
    监测所述温度故障标识、所述第一压力故障标识以及所述第二压力故障标对应的故障位故障处理状态;
    当所述触发温度故障标识、所述第一压力故障标识以及所述第二压力故障标对应的故障位故障处理完毕,手动复位所述极限重启失败故障标识。
  6. 根据权利要求1所述的故障诊断方法,其特征在于:
    控制电磁阀执行所述开机流程或所述关机保护。
  7. 一种燃料电池发电系统的故障诊断方法,所述燃料电池发电系统与一储氢器连接,其特征在于,
    包括以下:
    步骤一:对储氢器温度进行检测,当所述储氢器温度低于预设第一阈值,执行加热流程;当所述储氢器温度超出预设第一阈值,执行关加热流程,执行步骤二;
    步骤二:对燃料电池电堆温度检测,判断所述燃料电池电堆工作状态下的温度是否持续预设时间内超出预设第二阈值;若是,标记温度故障标识,执行关机保护后执行冷却流程,达到预设时间后或温度低于预设第二阈值,执行步骤五;若否,执行步骤三;
    步骤三:对储氢器输出氢气压力进行监测,判断所述储氢器输出的氢气压力是否持续预设时间内低于预设第三阈值;若是,标记氢气输出压力故障标识,执行关机保护后执行加热流程,达到预设时间后或压力低于预设第三阈值,执行步骤五;若否,执行步骤四;
    步骤四:对燃料电池电堆输出电压进行监测,判断所述燃料电池电堆的电压是否持续预设时间内低于预设第四阈值;若是,标记电压故障标识,执行关机保护,达到预设时间后,执行步骤五;若否,执行步骤一;
    步骤五:对所述燃料电池控制系统重启,若重启失败次数或时间大于预设上限值,标记重启失败故障标识,执行关机保护流程继续等待;若重启成功,执行步骤一。
  8. 一种燃料电池电堆故障诊断系统,其特征在于,包括:燃料电池电堆、用于给所述燃 料电池电堆提供氢气的储氢器、传感单元、处理单元、加热装置以及冷却装置;
    所述传感单元包括作用于储氢器的第一温度传感器和第一压力传感器,以及作用于燃料电池电堆的第二温度传感器;
    所述第一温度传感器和所述第一压力传感器均与所述处理单元电连接,以向所述处理单元反馈储氢器温度和输出气压;
    所述第二温度传感器与所述处理单元电连接,以向所述处理单元反馈燃料电池电堆温度;
    还包括用于对燃料电池电堆的输出电压进行采样的电压监测电路,所述电压监测电路与所述处理单元电连接以向所述处理单元反馈燃料电池电堆的输出电压;
    所述处理单元根据故障标识控制加热装置或冷却装置工作;
    所述处理单元通过电磁阀执行开机流程或关机保护。
  9. 根据权利要求7所述的故障诊断系统,其特征在于:
    还包括存储单元,所述存储单元与所述处理单元电连接,用于存储故障数据。
  10. 根据权利要求7所述的故障诊断系统,其特征在于:
    所述加热装置包括安装在储氢器上的加热组件,以及处于产生废热状态下燃料电池电堆。
  11. 根据权利要求7所述的故障诊断系统,其特征在于:
    所述冷却装置包括用于给燃料电池电堆降温的散热风扇。
PCT/CN2022/081570 2021-03-22 2022-03-18 一种燃料电池电堆故障诊断方法及系统 WO2022199463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110303772.2 2021-03-22
CN202110303772.2A CN113067019B (zh) 2021-03-22 2021-03-22 一种燃料电池电堆故障诊断方法及系统

Publications (1)

Publication Number Publication Date
WO2022199463A1 true WO2022199463A1 (zh) 2022-09-29

Family

ID=76562721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081570 WO2022199463A1 (zh) 2021-03-22 2022-03-18 一种燃料电池电堆故障诊断方法及系统

Country Status (2)

Country Link
CN (1) CN113067019B (zh)
WO (1) WO2022199463A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067019B (zh) * 2021-03-22 2022-04-22 永安行科技股份有限公司 一种燃料电池电堆故障诊断方法及系统
CN114843559B (zh) * 2022-05-17 2024-01-02 成都亿华通动力科技有限公司 一种氢气不纯导致燃料电池单低的诊断方法及存储介质
CN114914488B (zh) * 2022-05-25 2023-04-14 厦门金龙联合汽车工业有限公司 一种燃料电池缺氢检测与诊断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106022A1 (en) * 2002-11-27 2004-06-03 Norihiko Saito Diagnostic apparatus and diagnostic method for fuel cell
CN110212220A (zh) * 2019-05-30 2019-09-06 北京亿华通科技股份有限公司 一种燃料电池氢系统的储氢气瓶故障诊断方法
CN110993993A (zh) * 2019-11-29 2020-04-10 山东明宇新能源技术有限公司 一种燃料电池观光车
CN111993909A (zh) * 2020-09-02 2020-11-27 江苏集萃安泰创明先进能源材料研究院有限公司 氢燃料电池助力自行车的动力系统
CN113067019A (zh) * 2021-03-22 2021-07-02 永安行科技股份有限公司 一种燃料电池电堆故障诊断方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207409592U (zh) * 2017-09-26 2018-05-25 上海重塑能源科技有限公司 燃料电池系统供氢装置
CN207663032U (zh) * 2018-01-11 2018-07-27 西南交通大学 一种燃料电池故障诊断实验平台
CN108321413A (zh) * 2018-04-08 2018-07-24 苏州弗尔赛能源科技股份有限公司 一种车载燃料电池氢气控制装置
CN110112443B (zh) * 2019-05-30 2021-06-04 北京亿华通科技股份有限公司 一种燃料电池氢系统的加氢故障诊断方法
CN110531270A (zh) * 2019-09-18 2019-12-03 上海重塑能源科技有限公司 一种燃料电池供气系统的诊断方法及其诊断系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106022A1 (en) * 2002-11-27 2004-06-03 Norihiko Saito Diagnostic apparatus and diagnostic method for fuel cell
CN110212220A (zh) * 2019-05-30 2019-09-06 北京亿华通科技股份有限公司 一种燃料电池氢系统的储氢气瓶故障诊断方法
CN110993993A (zh) * 2019-11-29 2020-04-10 山东明宇新能源技术有限公司 一种燃料电池观光车
CN111993909A (zh) * 2020-09-02 2020-11-27 江苏集萃安泰创明先进能源材料研究院有限公司 氢燃料电池助力自行车的动力系统
CN113067019A (zh) * 2021-03-22 2021-07-02 永安行科技股份有限公司 一种燃料电池电堆故障诊断方法及系统

Also Published As

Publication number Publication date
CN113067019B (zh) 2022-04-22
CN113067019A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2022199463A1 (zh) 一种燃料电池电堆故障诊断方法及系统
CN107199891B (zh) 燃料电池汽车上下电控制方法、整车控制器及电动汽车
US10826094B2 (en) Fuel cell thermal management system and control method of the same
US10483572B2 (en) Flow control method of cooling medium in a fuel cell system, and fuel cell system
US10090539B2 (en) Fuel cell system
JP4513119B2 (ja) 燃料電池システム
CN106848349B (zh) 一种分布式燃料电池热管理系统
US10052968B2 (en) Method and system for diagnosing fuel cell stack
CN108448200A (zh) 一种动力电源系统的冷却方法及其系统
CN110931829A (zh) 一种带吹扫装置的燃料电池冷启动系统及控制方法
CN207690929U (zh) 氢燃料电池车辆及其燃料电池吹扫系统
CN204793041U (zh) 一种燃料电池发电系统及使用该系统的车辆
CN107962965B (zh) 一种车载燃料电池能量分配管理控制装置
CN114335629A (zh) 一种燃料电池热电联供控制方法及系统
CN113809353A (zh) 一种燃料电池控制方法、控制系统、电子设备及存储介质
CN206574801U (zh) 一种分布式燃料电池热管理系统
CN112820907B (zh) 一种氢燃料电池系统上电及启动的控制方法
JP5436352B2 (ja) 燃料電池システム及びその制御方法
CN110112441A (zh) 一种燃料电池系统的高电位控制方法及装置
CN104795580A (zh) 一种燃料电池系统的冷却子系统启动方法
JP2011134529A (ja) 燃料電池システム
US11757110B2 (en) Method for operating a fuel cell and controller therefore
CN115649016A (zh) 一种氢燃料车辆低温冷启动方法、装置、设备及存储介质
CN108429331A (zh) 备用电源装置及变桨控制装置
CN115411411A (zh) 一种电池热管理控制方法以及一种电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774124

Country of ref document: EP

Kind code of ref document: A1