WO2022199300A1 - 超宽带设备、测试系统及其测试方法 - Google Patents

超宽带设备、测试系统及其测试方法 Download PDF

Info

Publication number
WO2022199300A1
WO2022199300A1 PCT/CN2022/077063 CN2022077063W WO2022199300A1 WO 2022199300 A1 WO2022199300 A1 WO 2022199300A1 CN 2022077063 W CN2022077063 W CN 2022077063W WO 2022199300 A1 WO2022199300 A1 WO 2022199300A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
antenna
wideband
radio frequency
signal
Prior art date
Application number
PCT/CN2022/077063
Other languages
English (en)
French (fr)
Inventor
王泽卫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022199300A1 publication Critical patent/WO2022199300A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves

Definitions

  • the present application relates to the technical field of ranging, and in particular, to an ultra-wideband device, a test system and a test method thereof.
  • UWB ranging has centimeter-level accuracy, and the application market of UWB ranging is getting wider and wider with the wide application of GPS positioning.
  • the existing ultra-wideband devices are relatively bulky, which greatly hinders the further expansion of the application scenarios of the ultra-wideband devices.
  • an ultra-wideband device a test system and a test method thereof are provided.
  • An ultra-wideband device comprising:
  • an ultra-wideband component connected to the clock chip, for generating and transmitting an ultra-wideband radio frequency signal according to the system clock signal, receiving a feedback radio frequency signal output by the target device in response to the ultra-wideband radio frequency signal, and The radio frequency signal and the feedback radio frequency signal obtain the distance information of the target device.
  • An ultra-wideband test system comprising:
  • a target device configured to receive an ultra-wideband radio frequency signal, and output a feedback radio frequency signal in response to the ultra-wideband radio frequency signal;
  • an ultra-wideband communication connection is performed with the target device, so as to obtain the distance information of the target device.
  • An ultra-wideband test method, applied to ultra-wideband equipment, the test method includes:
  • the feedback radio frequency signal output by the target device in response to the UWB radio frequency signal is received, and the distance information of the target device is acquired according to the UWB radio frequency signal and the feedback radio frequency signal.
  • the method before generating the system clock signal, the method further includes: sending a clock request signal by the ultra-wideband component;
  • the generating the system clock signal includes: a clock chip outputting the system clock signal in response to the clock request signal.
  • FIG. 1 is a schematic diagram of an application scenario of an ultra-wideband device according to an embodiment of the present application
  • FIG. 3 is a second structural block diagram of an ultra-wideband device according to an embodiment
  • FIG. 4 is a schematic structural diagram of a ground wire and a clock signal wire according to an embodiment
  • FIG. 5 is a third structural block diagram of an ultra-wideband device according to an embodiment
  • FIG. 6 is a fourth structural block diagram of an ultra-wideband device according to an embodiment
  • FIG. 7 is a fifth structural block diagram of an ultra-wideband device according to an embodiment
  • FIG. 8 is a schematic structural diagram of a first antenna ANT1, a second antenna ANT2 and a third antenna ANT3 according to an embodiment
  • FIG. 9 is a sixth structural block diagram of an ultra-wideband device according to an embodiment.
  • FIG. 10 is a seventh structural block diagram of an ultra-wideband device according to an embodiment
  • FIG. 11 is the eighth structural block diagram of an ultra-wideband device according to an embodiment.
  • FIG. 12 is a ninth structural block diagram of an ultra-wideband device according to an embodiment
  • FIG. 13 is a tenth structural block diagram of an ultra-wideband device according to an embodiment
  • FIG. 14 is a structural block diagram of an ultra-wideband test system according to an embodiment
  • FIG. 15 is a flowchart of an ultra-wideband testing method according to an embodiment.
  • Ultra-wideband equipment 10; clock chip: 100; clock signal line: 110; ultra-wideband component: 200; antenna group: 210; ultra-wideband chip: 220; switch circuit: 230; first switch unit: 231; second switch unit : 232; third switch unit: 233; first filter unit: 240; second filter unit: 250; third filter unit: 260; temperature acquisition component: 300; clock calibration component: 400; ground wire: 500; Board Connector: 600; Target Device: 20.
  • first, second, etc. used in this application may be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish a first element from another element.
  • a first receive port may be referred to as a second receive port, and similarly, a second receive port may be referred to as a first receive port, without departing from the scope of this application.
  • Both the first receive port and the second receive port are receive ports, but they are not the same receive port.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features delimited with “first”, “second” may expressly or implicitly include at least one feature.
  • plural means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • severeal means at least one, such as one, two, etc., unless expressly and specifically defined otherwise.
  • FIG. 1 is a schematic diagram of an application scenario of the ultra-wideband device 10 according to the embodiment of the present application.
  • the ultra-wideband device 10 in this embodiment is used to perform ranging on a target device 20 , to obtain the distance information between the UWB device 10 and the target device 20 .
  • the ultra-wideband device 10 refers to a test component that uses the ultra-wideband wireless communication technology to realize the ranging function.
  • the pulse is extended to a frequency range, so it occupies a large spectrum range, and the power spectral density is very low, so it has the advantages of high transmission rate, large space capacity, strong anti-interference ability, and resistance to channel fading (such as multipath, non-vision, etc.). distance and equal channel) insensitivity and so on.
  • UWB technology uses extremely short pulses for communication and has high resolution, its positioning accuracy is very high, reaching the centimeter level (within ⁇ 10cm), and has been widely used in military, industrial, medical and other fields.
  • the target device 20 may be, but is not limited to, a mobile phone, a wearable device, a wireless vehicle-mounted device, etc.
  • the target device 20 may also be a device equivalent to the UWB device 10 , for example, both have UWB functions
  • the electronic device, or the target device 20 may be a separate UWB tag device, and by fixing the tag device on the device to be tested, the distance measurement of the device to be tested is realized.
  • FIG. 2 is one of the structural block diagrams of the ultra-wideband device 10 according to an embodiment.
  • the ultra-wideband device 10 includes a clock chip 100 and an ultra-wideband component 200 .
  • the clock chip 100 has a complete package structure, and can be connected to the UWB component 200 through pins.
  • the system clock signal generated by the clock chip 100 has a relatively accurate frequency, so it can be used as the local oscillator signal required by the UWB component 200 for radio frequency, thereby improving the frequency accuracy of the UWB radio frequency signal generated by the UWB component 200 .
  • the clock chip 100 can adjust the frequency of the output system clock signal, or simultaneously output a plurality of system clock signals with different frequencies, so that it can be adapted to different types of ultra-wideband.
  • the component 200 can be adapted to other components or functions in the UWB device 10 that need to be supported by the system clock signal, thereby effectively improving the flexibility and richness of the system clock signal.
  • the use efficiency of the clock chip 100 can also be improved, thereby effectively reducing the number of crystal oscillators required in the ultra-wideband device 10.
  • the ultra-wideband component 200 is connected to the clock chip 100, and is used for generating and transmitting an ultra-wideband radio frequency signal according to the system clock signal, receiving a feedback radio frequency signal output by the target device 20 in response to the ultra-wideband radio frequency signal, and according to the The UWB radio frequency signal and the feedback radio frequency signal obtain the distance information of the target device 20 .
  • the ultra-wideband component 200 sends the ultra-wideband radio frequency signal carrying the ranging request information to the target device 20, and the target device 20 receives the ultra-wideband radio frequency signal.
  • the corresponding data processing is performed on the information, and the feedback radio frequency signal is generated and transmitted after the data processing is completed.
  • the data processing performed by the target device 20 includes but is not limited to radio frequency processing and digital processing.
  • the radio frequency processing may include amplifying the ultra-wideband radio frequency signal by a low-noise amplifier of the target device 20, and down-converting the amplified signal through a mixer to generate an intermediate frequency signal.
  • the digital processing may include an analog-to-digital converter converting the intermediate frequency signal into a digital signal, and performing digital signal processing on the digital signal to obtain ranging request information.
  • T TAT the time interval between the target device 20 receiving the ultra-wideband radio frequency signal and transmitting the feedback radio frequency signal.
  • the target device 20 can start the timing function of the timer when receiving the UWB radio frequency signal, and add time information to the feedback radio frequency signal by means of a timestamp when sending the feedback radio frequency signal, so as to facilitate the UWB component 200 to perform the operation. Data processing and analysis.
  • the distance information of the target device 20 can be obtained by using a Time of Flight (TOF) method.
  • TOF Time of Flight
  • the time-of-flight method refers to calculating the distance by measuring the time of flight required for the UWB radio frequency signal to travel back and forth between the target device 20 and the UWB component 200, that is, the UWB radio frequency signal is transmitted between the target device 20 and the UWB component 200 to calculate the distance.
  • the distance information between the target device 20 and the UWB component 200 can be obtained by multiplying the one-way flight time T TOF by the speed of light.
  • the ultra-wideband device 10 includes a clock chip 100 for generating a system clock signal, and an ultra-wideband component 200 connected to the clock chip 100, and the ultra-wideband component 200 generates and transmits the ultra-wideband component 200 according to the system clock signal.
  • the broadband radio frequency signal receives the feedback radio frequency signal output by the target device 20 in response to the ultra-wideband radio frequency signal, and obtains the distance information of the target device 20 according to the ultra-wideband radio frequency signal and the feedback radio frequency signal.
  • FIG. 3 is the second structural block diagram of the ultra-wideband device 10 according to an embodiment.
  • the ultra-wideband device 10 further includes a clock signal line 110 , a temperature acquisition component 300 and a clock calibration component 400 .
  • the clock signal line 110 is respectively connected to the clock chip 100 and the ultra-wideband component 200 for transmitting the system clock signal.
  • the clock signal line 110 may be covered with a material with better thermal insulation properties, so as to reduce the influence of the ambient temperature on the temperature of the clock signal line 110 . It can be understood that the temperature stability of the wire will directly affect the parameters such as the delay of the transmitted signal. Therefore, improving the temperature stability of the clock signal line 110 can effectively improve the stability of the system clock signal, thereby improving the system clock signal.
  • the stability of the UWB RF signal generated by the signal to improve the accuracy of UWB test results.
  • the temperature acquisition component 300 is used to acquire the ambient temperature of at least one of the clock chip 100 , the UWB component 200 and the clock signal line 110 , and the ambient temperature may refer to the air temperature near structures such as the corresponding chip or component.
  • the temperature acquisition assembly 300 may include one or more temperature sensing elements, and the temperature sensing elements may be, for example, a temperature sensor, a temperature resistance, and the like. If the temperature acquisition component 300 includes a plurality of temperature sensing elements, each temperature sensing element can be used to acquire a corresponding ambient temperature, for example, the ambient temperature of the clock chip 100 is acquired through one temperature sensing element, and the ambient temperature of the clock chip 100 is acquired through another temperature sensing element. The element acquires the ambient temperature of the UWB component 200 , and acquires the ambient temperature of the clock signal line 110 through another temperature sensing element.
  • the clock calibration component 400 is connected to the clock chip 100 and the temperature acquisition component 300 respectively, and is used for calibrating the frequency of the system clock signal according to the ambient temperature and a preset adjustment curve.
  • the following steps may be adopted to calibrate the frequency of the system clock signal according to the ambient temperature and a preset adjustment curve: acquiring a plurality of sample data points, where the sample data points include a temperature value and a frequency offset corresponding to the temperature value; A corresponding preset adjustment curve is formed according to the sample data points; the current ambient temperature and the current frequency of the system clock signal are obtained; the corresponding frequency offset value is determined according to the current ambient temperature and the preset adjustment curve; according to the current frequency and the determined frequency offset value pair The frequency of the system clock signal is calibrated. Based on the above steps, the frequency can be adjusted correspondingly according to different ambient temperatures, thereby effectively improving the accuracy of the frequency adjustment.
  • the ambient temperature in different regions can also be prioritized, and the calibration rules corresponding to the priority settings can be calibrated.
  • the calibration rules for t can be preconfigured in the clock calibration component 400 . For example, if the frequency of the system clock signal should be increased by 1 Hz according to the ambient temperature of the clock chip 100, the frequency of the system clock signal should be increased by 2 Hz according to the ambient temperature of the clock signal line 110, and the ambient temperature of the clock chip 100 should increase the frequency of the system clock signal by 2 Hz.
  • the influence of the clock signal line 110 accounts for 60%, and the influence of the ambient temperature of the clock signal line 110 on the frequency accounts for 40%, that is, the priority of the clock chip 100 is higher than that of the clock signal line 110, and the weighted calculation can be performed according to the respective influence proportions And get the final frequency amplitude that should be adjusted to achieve a more accurate calibration.
  • the clock calibration component 400 is further configured to acquire a standard clock signal carrying standard time information when the ambient temperature of the clock chip 100 is within a preset range, and to calibrate the clock signal according to the standard time information the time of the system clock signal.
  • the preset range of the ambient temperature may be the temperature range with the highest frequency in the normal use of the ultra-wideband device 10 , such as the normal temperature range of 20°C to 30°C, so as to better improve the ranging accuracy of the ultra-wideband device 10 in daily use .
  • the precision performance of the system clock signal under high temperature and low temperature conditions is often directly related to the state of the system clock signal at room temperature. Therefore, in this embodiment, the clock chip can be adjusted at room temperature. 100 is calibrated so that the time difference and frequency difference between the system clock signal at normal temperature and the standard clock signal are both small, thereby reducing the frequency offset and time offset of the system clock signal at high temperature and low temperature to a large extent.
  • the ultra-wideband device 10 further includes a plurality of ground wires 500 .
  • FIG. 4 is a schematic structural diagram of the ground wires 500 and the clock signal wires 110 according to an embodiment. Referring to FIG. 4 , two of the clock signal wires 110 At least one ground line 500 is formed on each side, and the extension direction of each of the ground lines 500 is the same as the extension direction of the clock signal line 110 .
  • the clock signal line 110 can be shielded to a certain extent, thereby avoiding the interference of strong interference signals such as radio frequency signals or high-speed digital signals to the system clock signal. Thereby, the stability of the system clock signal is improved. Further, holes may be drilled on the ground wire 500 to improve its shielding capability and improve the stability of the system clock signal.
  • FIG. 5 is a third structural block diagram of the UWB device 10 according to an embodiment.
  • the UWB component 200 includes an antenna group 210 , an UWB chip 220 and a switch circuit 230 .
  • the UWB chip 220 is configured with a transmit port TX_OUT and a first receive port RX1_IN, wherein the transmit port TX_OUT and the first receive port RX1_IN can be understood as pins of the UWB chip 220 for connecting with external devices.
  • the antenna group 210 includes a first antenna ANT1 and a second antenna ANT2. Specifically, both the first antenna ANT1 and the second antenna ANT2 can support the sending and receiving of radio frequency signals in at least one frequency band. receive and transmit.
  • This embodiment is described by using the first antenna ANT1 to transmit the ultra-wideband signal as an example. In other embodiments, the ultra-wideband signal may also be transmitted through the second antenna ANT2. Moreover, this embodiment does not specifically limit the specific positions of the first antenna ANT1 and the second antenna ANT2.
  • first antenna ANT1 and the second antenna ANT2 may be formed using any suitable type of antenna.
  • the first antenna ANT1 and the second antenna ANT2 within the antenna group 210 may include antennas with resonant elements formed from the following antenna structures: array antenna structures, loop antenna structures, patch antenna structures, slot antenna structures, helical antennas At least one of a structure, a strip antenna, a monopole antenna, a dipole antenna, and the like.
  • the switch circuit 230 is respectively connected to the transmit port TX_OUT, the first receive port RX1_IN, the first antenna ANT1, and the second antenna ANT2, and the switch circuit 230 is used to selectively turn on the transmit port TX_OUT and the second antenna ANT2.
  • the UWB chip 220 controls the switch circuit 230 to turn on the transmit path, it also controls the switch circuit 230 to disconnect the receive path, and the UWB chip 220 completes the preset duration of signal transmission. After that, select and turn on the receiving path. Based on the above method, it is possible to effectively prevent the UWB signal transmitted by the first antenna ANT1 from entering the second antenna ANT2 through spatial coupling, thereby preventing the receiving path where the second antenna ANT2 is located from feeding back the coupled and received UWB signal to the UWB chip 220.
  • the first receiving port RX1_IN is used to avoid the problem of crosstalk between the coupled radio frequency signal of the UWB chip 220 and the feedback radio frequency signal, and to improve the ranging accuracy of the UWB chip 220 .
  • FIG. 6 is the fourth structural block diagram of the ultra-wideband device 10 according to an embodiment.
  • the ultra-wideband chip 220 is further configured with a second receiving port RX2_IN, and the feedback radio frequency signal includes the first receiving port RX2_IN.
  • the switch circuit 230 is further connected to the second receive port RX2_IN, and the switch circuit 230 is further configured to select and synchronously turn on the first receive path between the first antenna ANT1 and the first receive port RX1_IN, and a second receiving channel between the second antenna ANT2 and the second receiving port RX2_IN, where the second receiving channel is used to receive the first feedback signal in synchronization with the first receiving channel.
  • the ultra-wideband chip 220 may control the switch circuit 230 to switch after a preset time period after transmitting the ultra-wideband radio frequency signal, so as to synchronously turn on the first receiving channel and the second receiving channel.
  • the synchronous turn-on in this embodiment may be that the switch circuit 230 selects and turns on the first receiving path and the second receiving path at the same time, or the switch circuit 230 selects and turns on the first receiving path and the second receiving path in sequence.
  • the UWB chip 220 is further configured to acquire the first angle of arrival data of the target device 20 according to the two channels of the first feedback signals received synchronously.
  • the UWB chip 220 stores the relative positional relationship between the first antenna ANT1 and the second antenna ANT2. Therefore, the UWB chip 220 can calculate and obtain the first angle of arrival data by combining the phase difference between the two first feedback signals. .
  • the ultra-wideband device 10 in this embodiment can also realize the angle measurement function.
  • the angle of arrival test in the target direction can also be achieved by configuring the relative positional relationship between the first antenna ANT1 and the second antenna ANT2.
  • the first antenna ANT1 and the second antenna ANT2 are a group of horizontal antennas, that is, the If the first antenna ANT1 and the second antenna ANT2 are located on the same horizontal line, the obtained first angle of arrival data is the horizontal azimuth angle; if the first antenna ANT1 and the second antenna ANT2 are a group of vertical antennas, that is, the first antenna ANT1 and the second antenna ANT2 The two antennas ANT2 are located on the same vertical line, and the acquired first angle of arrival data is the vertical pitch angle.
  • FIG. 7 is a fifth structural block diagram of the ultra-wideband device 10 according to an embodiment.
  • the antenna group 210 further includes a third antenna ANT3, and the first antenna ANT1 and the second antenna ANT2 and the third antenna ANT3 are not arranged collinearly.
  • the third antenna ANT3 may also support the reception and transmission of radio frequency signals in multiple frequency bands, and may at least be used to support the reception and transmission of ultra-wideband signals.
  • the third antenna ANT3 may be formed using any suitable type of antenna, for example, may include an antenna with resonating elements formed from the following antenna structures: array antenna structures, loop antenna structures, patch antenna structures, slot antenna structures, helical antenna structures , at least one of a strip antenna, a monopole antenna, a dipole antenna, etc. It should be noted that, in this embodiment, the types of the first antenna ANT1 , the second antenna ANT2 and the third antenna ANT3 may be the same or different, but they can all support the transmission and reception of ultra-wideband signals.
  • the switch circuit 230 is further connected to the third antenna ANT3, the feedback radio frequency signal further includes a second feedback signal, and the second feedback signal and the first feedback signal are transmitted in time division,
  • the second feedback signal refers to the feedback radio frequency signal received by the UWB device 10 at the second moment.
  • the switch circuit 230 is further configured to select and synchronously turn on the first receive path between the first antenna ANT1 and the first receive port RX1_IN, and the connection between the third antenna ANT3 and the second receive port RX2_IN.
  • a third receiving channel between the third receiving channel and the first receiving channel is configured to receive the second feedback signal in synchronization with the first receiving channel.
  • the ultra-wideband device 10 may firstly receive two channels of first feedback signals synchronously, or may first receive two channels of second feedback signals simultaneously .
  • the UWB chip 220 is further configured to acquire the second angle of arrival data of the target device 20 according to the two channels of the second feedback signals received synchronously, and obtain the second angle of arrival data of the target device 20 according to the first angle of arrival data and the first angle of arrival data.
  • Two-dimensional angle-of-arrival data acquires three-dimensional angle-of-arrival data.
  • the ultra-wideband chip 220 controls the switch circuit 230 to implement the above-mentioned conduction mode of the receiving path, so as to obtain the angle of arrival (AoA) of the target device 20.
  • AoA angle of arrival
  • the principle of acquiring the second angle of arrival data based on the two synchronously received second feedback signals is similar to the aforementioned principle of acquiring the first angle of arrival data, and will not be repeated here. Further, by configuring the relative positional relationship among the first antenna ANT1, the second antenna ANT2 and the third antenna ANT3, the three-dimensional angle of arrival data of the target device 20 can be calculated and obtained.
  • FIG. 8 is a schematic structural diagram of the first antenna ANT1 , the second antenna ANT2 and the third antenna ANT3 according to an embodiment.
  • the first antenna ANT1 and the second antenna ANT2 Located on the first straight line, the first antenna ANT1 and the third antenna ANT3 are located on the second straight line, and the first straight line and the second straight line are vertically arranged.
  • the first distance d1 between the first antenna ANT1 and the second antenna ANT2 is equal to the second distance d2 between the first antenna ANT1 and the third antenna ANT3, thereby improving the difficulty and position accuracy of the antenna installation , thereby improving the positioning accuracy of the UWB device 10 .
  • the "vertical" in this embodiment is not limited to absolute vertical, but also includes substantially vertical or nearly vertical, and the specific definition can be subject to the understanding of those skilled in the art. It can be understood that, in other embodiments, the first straight line and the second straight line may also have other angular relationships, and the three antennas may also have other distance relationships, but as long as the above angular relationship and distance relationship are stored in the ultra-wideband chip In 220, corresponding testing and analysis can be performed.
  • FIG. 9 is a sixth structural block diagram of the UWB device 10 according to an embodiment.
  • the switch circuit 230 includes a first switch unit 231 and a second switch unit 232 .
  • the two first ends of the first switch unit 231 are respectively connected to the transmit port TX_OUT and the first receive port RX1_IN in a one-to-one correspondence, and the second end of the first switch unit 231 is connected to the first antenna ANT1 connection.
  • the first switch unit 231 includes a first radio frequency terminal RF1, a second radio frequency terminal RF2 and a common terminal COMMON, the first radio frequency terminal RF1 of the first switch unit 231 is connected to the transmit port TX_OUT, and the second radio frequency terminal of the first switch unit 231
  • the radio frequency terminal RF2 is connected to the first receiving port RX1_IN, and the common terminal COMMON of the first switch unit 231 is connected to the common terminal COMMON of the second switch unit 232 .
  • the first end of the second switch unit 232 is connected to the second receiving port RX2_IN, and the two second ends of the second switch unit 232 are respectively connected to the second antenna ANT2 and the third antenna ANT3 A corresponding connection.
  • the second switch unit 232 may also include a first radio frequency terminal RF1, a second radio frequency terminal RF2 and a common terminal COMMON, the first radio frequency terminal RF1 of the second switch unit 232 is connected to the second antenna ANT2, and the second switch unit 232
  • the second radio frequency terminal RF2 is connected to the third antenna ANT3, and the common terminal COMMON of the second switch unit 232 is connected to the second receiving port RX2_IN.
  • the first switch unit 231 and the second switch unit 232 are used for synchronous switching, so as to select to synchronously turn on the two receiving paths corresponding to the first feedback signal or the two receiving paths corresponding to the second feedback signal .
  • the first switch unit 231 can be used to switch the first receive path where the first receive port RX1_IN is located and the transmit path where the transmit port TX_OUT is located
  • the second switch unit 232 can be used to switch the second antenna ANT2 and the third antenna ANT3 one to the second receive port RX2_IN.
  • the first switch unit 231 and the second switch unit 232 may both be SPDT switches, wherein the single terminal of the SPDT switch may be used as the common terminal COMMON of each switch unit, and the selection terminal of the SPDT switch may be used as the radio frequency terminal of each switch unit.
  • the first switch unit 231 as the first SPDT switch and the second switch unit 232 as the second SPDT switch as an example to illustrate the principle of using the independent first antenna ANT1 to complete the ranging.
  • Transmission control based on the first antenna ANT1 the first transmission port TX_OUT ⁇ the first radio frequency terminal of the first switch unit 231 ⁇ switch to the single terminal of the first switch unit 231 ⁇ the first antenna ANT1.
  • Reception control based on the first antenna ANT1 the first antenna ANT1 ⁇ switch to the single terminal of the first switch unit 231 ⁇ switch to the second radio frequency terminal of the first switch unit 231 ⁇ the first receive port RX1_IN.
  • the angle measurement is completed in the following manner.
  • Synchronous reception control based on the first antenna ANT1 and the second antenna ANT2 the first antenna ANT1 ⁇ switch to the single terminal of the first switch unit 231 ⁇ switch to the second radio frequency terminal of the first switch unit 231 ⁇ the first receive port RX1_IN, The second antenna ANT2 ⁇ switch to the first radio frequency terminal of the second switch unit 232 ⁇ switch to the single terminal of the second switch unit 232 ⁇ the second receive port RX2_IN.
  • Synchronous reception control based on the first antenna ANT1 and the third antenna ANT3 the first antenna ANT1 ⁇ switch to the single terminal of the first switch unit 231 ⁇ switch to the second radio frequency terminal of the first switch unit 231 ⁇ the first receive port RX1_IN, The third antenna ANT3 ⁇ switch to the second radio frequency terminal of the second switch unit 232 ⁇ switch to the single terminal of the second switch unit 232 ⁇ the second receive port RX2_IN.
  • the UWB device 10 can accurately acquire the distance information and the three-dimensional arrival angle data of the target device 20 , thereby realizing the positioning function of the target device 20 .
  • FIG. 10 is the seventh structural block diagram of the ultra-wideband testing device 10 according to an embodiment.
  • the ultra-wideband component 200 further includes a first filtering unit 240 , which is respectively connected to the The switch circuit 230 is connected to the first antenna ANT1, and is used for filtering the radio frequency signals sent and received by the first antenna ANT1.
  • the first filtering unit 240 only allows signals of a preset frequency band to pass through, that is, only allows ultra-wideband signals to pass through.
  • the first filtering unit 240 can filter out harmonics of signals in other frequency bands, so that the filtered signal only has The ultra-wideband signal is included, thereby improving the signal-to-noise ratio of the radio frequency signal received by the ultra-wideband chip 220 to improve the ranging accuracy of the ultra-wideband component 200 .
  • the filter may be a band-pass filter, a low-pass filter, or the like. It should be noted that, in this embodiment, the types and numbers of filters in the first filtering unit 240 are not further limited, and an appropriate number of filters and the setting positions of each filter can be selected according to requirements.
  • a filter unit can also be set between the first radio frequency end of the first switch unit 231 and the transmit port TX_OUT of the UWB chip 220, and the second radio frequency end of the first switch unit 231 and the UWB chip
  • Another filtering unit is arranged between the first receiving ports RX1_IN of the chip 220, so as to realize the functions of the first filtering unit 240 mentioned above, but the setting method of the first filtering unit 240 can obviously reduce one filtering unit, thereby improving the integration of the device. degree, and at the same time reduce the manufacturing cost of the ultra-wideband device 10.
  • the UWB component 200 further includes a second filtering unit 250, and the second filtering unit 250 is respectively connected to the switch circuit 230 and at least one receiving port of the UWB chip 100, specifically in
  • the second filtering unit 250 is respectively connected to the switching circuit 230 and the second receiving port RX2_IN, and is used to filter the feedback radio frequency signal received by the second antenna ANT2 or the third antenna ANT3, and The filtered radio frequency signal is transmitted to the second receiving port RX2_IN.
  • the connection manner of the second filtering unit 250 in this embodiment can also improve the integration of the device, and at the same time reduce the manufacturing cost of the UWB device 10 .
  • the connection method of the second filtering unit 250 has the risk of intermodulation and harmonic components falling into the ultra-wideband signal band of the cellular or Wifi signal through the switch to a certain extent. Therefore, this application Some embodiments are also provided to achieve better radio frequency performance.
  • the second-order harmonic power of the second switch unit 232 is less than 60 dBm, that is, the linearity of the second switch unit 232 is 2F0 ⁇ -60dBm, and further, 3F0 ⁇ -60dBm.
  • FIG. 11 is the eighth structural block diagram of the ultra-wideband device 10 according to an embodiment.
  • the ultra-wideband component 200 further includes a third filtering unit 260 , which is respectively connected with the third filtering unit 260 .
  • the second end of the first switch unit 231 and the first antenna ANT1 are connected, or, respectively, are connected to a second end of the second switch unit 232 and the second antenna ANT2, or, respectively, are connected to the The other second end of the second switch unit 232 is connected to the third antenna ANT3, and the third filter unit 260 is configured to perform high-pass filtering on the received radio frequency signal.
  • FIG. 11 is the eighth structural block diagram of the ultra-wideband device 10 according to an embodiment.
  • the ultra-wideband component 200 further includes a third filtering unit 260 , which is respectively connected with the third filtering unit 260 .
  • the second end of the first switch unit 231 and the first antenna ANT1 are connected, or, respectively, are connected to a second end of the second switch unit 232
  • the UWB component 200 may further include three filter units, which are respectively arranged on the above paths in a one-to-one correspondence, so that a high-pass filter is constructed by using discrete components between the antenna and the switch. form to solve the aforementioned problems.
  • the isolation between any antenna in the antenna group 210 and the LTE antenna, the NR antenna, and the WIFI antenna, respectively, is greater than 15 dB.
  • the distance between the UWB antenna and the LTE (B1, B3, B7, B39, B41) antenna, NR (N41, N77, N78) antenna and WIFI antenna can be increased to be above a threshold, or by adjusting the UWB antenna
  • the radiation direction increases the antenna isolation.
  • FIG. 12 is the ninth structural block diagram of the ultra-wideband device 10 according to an embodiment.
  • the ultra-wideband device 10 further includes a board-to-board connector 600 , and the board-to-board connector 600 includes a detachable connection
  • the first connection seat and the second connection seat of the first connection seat are respectively connected with the switch circuit 230, and the second pins of the second connection seat are respectively connected with the switch circuit 230.
  • the first antenna ANT1, the second antenna ANT2 and the third antenna ANT3 are connected in one-to-one correspondence.
  • a corresponding board-to-board probe can be set to perform radio frequency testing, so as to obtain the insertion loss of each antenna, the center frequency, bandwidth, in-band fluctuation, and out-of-band suppression of the ultra-wideband signal received by each antenna. index.
  • FIG. 13 is a tenth structural block diagram of the UWB device 10 according to an embodiment.
  • the switch circuit 230 includes a third switch unit 233 .
  • One end is respectively connected to the transmit port TX_OUT, the first receive port RX1_IN, and the second receive port RX2_IN in a one-to-one correspondence, and the three second ends of the third switch unit 233 are respectively connected to the first antenna ANT1, the second antenna ANT2 and the third antenna ANT3 are connected in one-to-one correspondence.
  • the third switch unit 233 includes a first radio frequency end RF1, a second radio frequency end RF2, a third radio frequency end RF3, a fourth radio frequency end RF4, a fifth radio frequency end RF5 and a sixth radio frequency end RF6, wherein the first radio frequency end RF1 is connected to the first antenna ANT1, the second radio frequency end RF2 is connected to the second antenna ANT2, the third radio frequency end RF3 is connected to the third antenna ANT3, the fourth radio frequency end RF4 is connected to the transmitting port TX_OUT, and the fifth radio frequency end RF5 is connected to the third antenna ANT3.
  • a receiving port RX1_IN is connected, and the sixth radio frequency terminal RF6 is connected with the second receiving port RX2_IN.
  • the third switch unit 233 may be a 3P3T switch.
  • the UWB component 200 further includes a first filtering unit 240, and the first filtering unit 240 is respectively connected to the switching circuit 230 and the first antenna ANT1, and is used for transmitting and receiving the radio frequency of the first antenna ANT1. signal is filtered.
  • the UWB component 200 further includes a second filtering unit 250, and the second filtering unit 250 is respectively connected to the switch circuit 230 and at least one receiving port of the UWB chip 100.
  • the second filtering unit 250 is The unit 250 is respectively connected to the switch circuit 230, the first receiving port RX1_IN, and the second receiving port RX2_IN.
  • the second filtering unit 250 includes two filters, one filter is respectively connected to the fifth radio frequency terminal RF5 and the first receiving port RX2_IN.
  • the port RX1_IN is connected, and the other filter is respectively connected with the sixth radio frequency terminal RF6 and the second receiving port RX2_IN.
  • the isolation degree between any antenna in the antenna group 210 in this embodiment and the LTE antenna, the NR antenna, and the WIFI antenna is greater than 15 dB.
  • a high-pass filter as shown in FIG. 11 can also be set on the radio frequency path between the antenna group and the third switch unit 233 to improve the sensitivity of the ultra-wideband test.
  • the ranging principle is described by taking the third switch unit 233 as a 3P3T switch as an example.
  • the sixth radio frequency terminal RF6 of the 3P3T switch is switched to the third radio frequency terminal RF3, and the fifth radio frequency terminal RF5 of the 3P3T switch is switched to the second radio frequency terminal RF2.
  • the switch does not need to be switched when transmitting the ultra-wideband radio frequency signal and receiving the feedback radio frequency signal, so the requirement for the switch is low. Conduction calibration is performed on each channel to determine the delay on each channel separately.
  • the angle measurement is completed in the following manner.
  • Synchronous reception control based on the first antenna ANT1 and the second antenna ANT2 the first antenna ANT1 ⁇ switch to the first radio frequency terminal RF1 of the 3P3T switch ⁇ switch to the fifth radio frequency terminal RF5 of the 3P3T switch ⁇ the first receiving port RX1_IN, the second Antenna ANT2 ⁇ switch to the second radio frequency terminal RF2 of the 3P3T switch ⁇ the sixth radio frequency terminal RF6 of the 3P3T switch ⁇ the second receiving port RX2_IN.
  • Synchronous reception control based on the first antenna ANT1 and the third antenna ANT3 the first antenna ANT1 ⁇ switch to the first radio frequency terminal RF1 of the 3P3T switch ⁇ switch to the fifth radio frequency terminal RF5 of the 3P3T switch ⁇ the first receiving port RX1_IN, the third Antenna ANT3 ⁇ switch to the third radio frequency terminal RF3 of the 3P3T switch ⁇ the sixth radio frequency terminal RF6 of the 3P3T switch ⁇ the second receiving port RX2_IN.
  • FIG. 14 is a structural block diagram of an ultra-wideband test system according to an embodiment.
  • the present application also provides an ultra-wideband test system, including a target device 20 and the above-mentioned ultra-wideband device 10, and the target device 20 is used for receiving Ultra-wideband radio frequency signal, and output feedback radio frequency signal in response to the ultra-wideband radio frequency signal; the ultra-wideband device 10 is connected with the target device 20 for ultra-wideband communication to obtain the distance information of the target device 20 .
  • the test system in the embodiment of FIG. 14 includes the ultra-wideband device 10 shown in the embodiment of FIG. 12 , and it can be understood that the ultra-wideband device 10 shown in other embodiments may also be used.
  • the number of crystal oscillators in the ultra-wideband test equipment can be reduced, thereby providing a more lightweight, small-sized, low-cost cost-effective ultra-wideband test system.
  • FIG. 15 is a flowchart of an ultra-wideband testing method according to an embodiment.
  • the ultra-wideband testing method of this embodiment is applied to the ultra-wideband device 10 .
  • the ultra-wideband testing method includes steps 1502 to 1506 .
  • Step 1502 generating a system clock signal
  • Step 1504 generating and transmitting an ultra-wideband radio frequency signal according to the system clock signal
  • Step 1506 Receive the feedback radio frequency signal output by the target device 20 in response to the UWB radio frequency signal, and obtain the distance information of the target device 20 according to the UWB radio frequency signal and the feedback radio frequency signal.
  • the clock chip 100 provides the local oscillator signal of the ultra-wideband component 200 without setting an additional crystal oscillator.
  • the number of crystal oscillators required in the ultra-wideband device 10 can be effectively reduced, thereby providing an ultra-wideband test method with lower test cost.
  • the method before generating the system clock signal, the method further includes: the UWB component 200 sends a clock request signal.
  • the generating the system clock signal includes: the clock chip 100 outputs the system clock signal in response to the clock request signal.
  • the ultra-wideband component 200 before the ultra-wideband component 200 needs to perform ranging or angle measurement, it sends a clock request signal to obtain the system clock signal from the clock chip 100.
  • the clock chip 100 does not need to continuously send the system clock signal to the ultra-wideband.
  • the broadband component 200 can effectively reduce the power consumption of transmitting signals and prolong the standby time of the ultra-wideband device 10 .
  • the clock chip 100 can also calibrate the time and frequency of the system clock signal in response to the clock request signal, thereby ensuring the accuracy of the sent system clock signal and improving the accuracy of the test.
  • steps in the flowchart of FIG. 15 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence shown by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIG. 15 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. The execution of these sub-steps or stages The sequence is also not necessarily sequential, but may be performed alternately or alternately with other steps or sub-steps of other steps or at least a portion of a phase.

Abstract

一种超宽带设备(10),包括:时钟芯片(100),用于生成系统时钟信号;超宽带组件(200),与所述时钟芯片(100)连接,用于根据所述系统时钟信号生成并发射超宽带射频信号,接收目标设备(20)响应于所述超宽带射频信号输出的反馈射频信号,并根据所述超宽带射频信号和反馈射频信号获取所述目标设备(20)的距离信息。

Description

超宽带设备、测试系统及其测试方法
相关申请的交叉引用
本申请要求于2021年3月22日提交中国专利局、申请号为2021103167656、发明名称为“超宽带设备、测试系统及其测试方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及测距技术领域,特别是涉及一种超宽带设备、测试系统及其测试方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
随着测距技术的发展,出现了蓝牙测距、WIFI测距和超宽带(Ultra Wide Band,UWB)测距等。其中UWB测距具有厘米级精度,UWB测距的应用市场随着GPS定位的广泛应用也越来越广阔。但是,现有超宽带设备体积较大,大大阻碍了超宽带设备的应用场景的进一步扩展。
发明内容
根据本申请的各种实施例,提供一种超宽带设备、测试系统及其测试方法。
一种超宽带设备,包括:
时钟芯片,用于生成系统时钟信号;
超宽带组件,与所述时钟芯片连接,用于根据所述系统时钟信号生成并发射超宽带射频信号,接收目标设备响应于所述超宽带射频信号输出的反馈射频信号,并根据所述超宽带射频信号和反馈射频信号获取所述目标设备的距离信息。
一种超宽带测试系统,包括:
目标设备,用于接收超宽带射频信号,并响应于所述超宽带射频信号输出反馈射频信号;
如上述的超宽带设备,与所述目标设备进行超宽带通信连接,以获取所述目标设备的距离信息。
一种超宽带测试方法,应用于超宽带设备,所述测试方法包括:
生成系统时钟信号;
根据所述系统时钟信号生成并发射超宽带射频信号;
接收目标设备响应于所述超宽带射频信号输出的反馈射频信号,并根据所述超宽带射频信号和反馈射频信号获取所述目标设备的距离信息。
在其中一个实施例中,所述生成系统时钟信号前,还包括:超宽带组件发 送时钟请求信号;
所述生成系统时钟信号包括:时钟芯片响应于所述时钟请求信号输出所述系统时钟信号。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本申请实施例的超宽带设备的应用场景示意图;
图2为一实施例的超宽带设备的结构框图之一;
图3为一实施例的超宽带设备的结构框图之二;
图4为一实施例的地线和时钟信号线的结构示意图;
图5为一实施例的超宽带设备的结构框图之三;
图6为一实施例的超宽带设备的结构框图之四;
图7为一实施例的超宽带设备的结构框图之五;
图8为一实施例的第一天线ANT1、第二天线ANT2和第三天线ANT3的结构示意图;
图9为一实施例的超宽带设备的结构框图之六;
图10为一实施例的超宽带设备的结构框图之七;
图11为一实施例的超宽带设备的结构框图之八;
图12为一实施例的超宽带设备的结构框图之九;
图13为一实施例的超宽带设备的结构框图之十;
图14为一实施例的超宽带测试系统的结构框图;
图15为一实施例的超宽带测试方法的流程图。
元件标号说明:
超宽带设备:10;时钟芯片:100;时钟信号线:110;超宽带组件:200;天线组:210;超宽带芯片:220;开关电路:230;第一开关单元:231;第二开关单元:232;第三开关单元:233;第一滤波单元:240;第二滤波单元:250;第三滤波单元:260;温度采集组件:300;时钟校准组件:400;地线:500;板对板连接器:600;目标设备:20。
具体实施方式
为了便于理解本申请实施例,下面将参照相关附图对本申请实施例进行更全面的描述。附图中给出了本申请实施例的首选实施例。但是,本申请实施例可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请实施例的公开内容更加透彻全面。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一接收端口称为第二接收端口,且类似地,可将第二接收端口称为第一接收端口。第一接收端口和第二接收端口两者都是接收端口,但其不是同一接收端口。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体地限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体地限定。
本申请实施例提供一种超宽带设备10,图1为本申请实施例的超宽带设备10的应用场景示意图,参考图1,本实施例的超宽带设备10用于对目标设备20进行测距,以获取超宽带设备10与目标设备20之间的距离信息。超宽带设备10是指采用超宽带无线通信技术实现测距功能的测试组件,超宽带无线通信技术作为一种无载波通信技术,使用纳秒级能量脉冲序列,并通过正交频分调制或直接将脉冲扩展到一个频率范围内,因此其所占的频谱范围很大,功率谱密度很低,因此具有传输速率高、空间容量大、抗干扰能力强、对信道衰落(如多径、非视距等信道)不敏感等特点。此外,由于UWB技术使用极短的脉冲进行通信,分辨率高,因此其定位精度很高,达到了厘米级(±10cm以内),在军事、工业、医疗等领域均得到了人们的广泛使用。在本实施例中,目标设备20可以是但不限于手机、可穿戴设备、无线车载设备等,目标设备20还可以是与超宽带设备10对等的设备,例如二者都是具备UWB功能的电子设备,或者目标设备20可以是单独的UWB标签设备,通过将标签设备固定在待测设备上,从而实现对待测设备的测距。
图2为一实施例的超宽带设备10的结构框图之一,参考图2,在本实施例中,超宽带设备10包括时钟芯片100和超宽带组件200。
其中,时钟芯片100具有完整封装结构,并可以通过引脚与超宽带组件200进行连接。时钟芯片100生成的系统时钟信号具有较为准确的频率,因此能够作为超宽带组件200射频所需的本振信号,从而提高超宽带组件200生成的超宽带射频信号的频率准确性。
可以理解的是,基于内部的硬件结构,时钟芯片100可以对输出的系统时钟信号的频率进行调节,或同时输出多个不同频率的系统时钟信号,以使其能够适配于不同类型的超宽带组件200,且能够适配于超宽带设备10中其他需要系统时钟信号进行支持的组件或功能,从而有效提高了系统时钟信号的灵活性和丰富性。而且,通过与其他组件共用同一时钟芯片100,还可以提高时钟芯片100的使用效率,从而有效减少超宽带设备10中所需的晶振数量,示例性地,一个38.4MHz的晶体需要占用的面积约为2mm*2.4mm=4.8mm 2,而一个32.768KHz的晶体需要占用的面积约为1.3mm*1.9mm=2.47mm 2,因此, 减少晶振数量不仅可以降低超宽带设备10的制造成本,还可以减小超宽带设备10的整体体积。
超宽带组件200与所述时钟芯片100连接,用于根据所述系统时钟信号生成并发射超宽带射频信号,接收目标设备20响应于所述超宽带射频信号输出的反馈射频信号,并根据所述超宽带射频信号和反馈射频信号获取所述目标设备20的距离信息。具体地,对目标设备20进行测距时,超宽带组件200将携带测距请求信息的超宽带射频信号发送给目标设备20,目标设备20接收到超宽带射频信号,根据超宽带射频信号携带的信息进行相应的数据处理,并在完成数据处理后生成并发射的反馈射频信号。
其中,目标设备20进行的数据处理包括但不限于射频处理和数字处理。射频处理可以包括目标设备20的低噪声放大器对超宽带射频信号进行放大,并经混频器对放大后的信号进行下变频生成中频信号。数字处理可以包括模数转换器将中频信号转化为数字信号,并对数字信号进行数字信号处理以获得测距请求信息。在本实施例中,目标设备20从接收到超宽带射频信号到发射反馈射频信号之间的时间间隔记为T TAT。示例性地,目标设备20可以在接收到超宽带射频信号时开启计时器的计时功能,并在发送反馈射频信号时通过时间戳的方式将时间信息加入反馈射频信号,从而便于超宽带组件200进行数据的处理和分析。
超宽带组件200接收到目标设备20发射的反馈射频信号时,可以通过飞行时间(Time of flight,TOF)方法获取目标设备20的距离信息。飞行时间方法是指,通过测量超宽带射频信号在目标设备20与超宽带组件200之间往返所需的飞行时间来计算距离,即,将超宽带射频信号在目标设备20与超宽带组件200之间单程的飞行时间T TOF乘以光速,即可获得目标设备20与超宽带组件200的距离信息。其中,超宽带组件200可以记录发送超宽带射频信号和接收到反馈射频信号之间的时间间隔为T TOT,则超宽带射频信号的单程飞行时间T TOF=(T TOF-T TAT)/2,即可进一步计算获得目标设备20的距离信息。
在本实施例中,超宽带设备10包括用于生成系统时钟信号的时钟芯片100,以及与所述时钟芯片100连接的超宽带组件200,超宽带组件200根据所述系统时钟信号生成并发射超宽带射频信号,接收目标设备20响应于所述超宽带射频信号输出的反馈射频信号,并根据所述超宽带射频信号和反馈射频信号获取所述目标设备20的距离信息。通过时钟芯片100提供超宽带组件200的本振信号,可以无需设置额外的晶振以支持超宽带射频信号的射频功能,从而可以有效减少超宽带设备10中所需的晶振数量,进而提供一种成本更低、体积更小的超宽带设备10。
图3为一实施例的超宽带设备10的结构框图之二,在本实施例中,超宽带设备10还包括时钟信号线110、温度采集组件300和时钟校准组件400。
其中,时钟信号线110分别与所述时钟芯片100、所述超宽带组件200连接,用于传输所述系统时钟信号。时钟信号线110可以采用具有较好隔热性能的材料进行包覆,从而减少环境温度对时钟信号线110的温度的影响。可以理 解的是,线材的温度稳定性会直接影响其传输的信号的延迟等参数性能,因此,改善时钟信号线110的温度稳定性,可以有效提升系统时钟信号的稳定性,从而改善根据系统时钟信号生成的超宽带射频信号的稳定性,以提升超宽带测试结果的准确性。
温度采集组件300用于获取所述时钟芯片100、超宽带组件200和时钟信号线110中至少一个的环境温度,环境温度可以是指对应的芯片或组件等结构附近的空气温度。示例性地,温度采集组件300可以包括一个或多个温度感测元件,温度感测元件例如可以为温度传感器、温变电阻等。若温度采集组件300包括多个温度感测元件,则各温度感测元件可以用于获取一个对应的环境温度,例如通过一个温度感测元件获取时钟芯片100的环境温度,通过另一个温度感测元件获取超宽带组件200的环境温度,通过又一个温度感测元件获取时钟信号线110的环境温度。
时钟校准组件400,分别与所述时钟芯片100、所述温度采集组件300连接,用于根据所述环境温度和预设调节曲线校准所述系统时钟信号的频率。
进一步地,可以采用下述步骤实现根据所述环境温度和预设调节曲线校准所述系统时钟信号的频率:获取多个样本数据点,样本数据点包含温度值和与温度值对应的频偏;根据样本数据点形成对应的预设调节曲线;获取当前环境温度和系统时钟信号的当前频率;根据当前环境温度和预设调节曲线确定对应的频偏值;根据当前频率和确定的频偏值对系统时钟信号的频率进行校准。基于上述步骤,可以根据不同的环境温度对频率进行对应的调节,从而有效提升了频率调节的准确性。
再进一步地,若通过温度采集组件300获取到多个环境温度,还可以对不同区域的环境温度设置优先级,并根据优先级设定对应的校准规则进行校准,其中,上述关于环境温度优先级的校准规则可以预先配置在时钟校准组件400中。例如,若根据时钟芯片100的环境温度应当对系统时钟信号的频率增大1Hz,而根据时钟信号线110的环境温度应当对系统时钟信号的频率增大2Hz,而且时钟芯片100的环境温度对频率的影响占比为60%,时钟信号线110的环境温度对频率的影响占比为40%,即时钟芯片100的优先级高于时钟信号线110,则可以根据各自的影响占比进行加权计算并获得最终应当调节的频率幅度,从而实现更加准确的校准。
在其中一个实施例中,所述时钟校准组件400还用于当所述时钟芯片100的环境温度处于预设范围时,获取携带标准时刻信息的标准时钟信号,并根据所述标准时刻信息校正所述系统时钟信号的时刻。具体地,环境温度的预设范围可以为超宽带设备10常规使用时出现频率最高的温度范围,例如常温范围20℃至30℃,从而较好地提升超宽带设备10日常使用时的测距精度。而且可以理解的是,系统时钟信号在高温和低温条件下的精度表现,往往都是与系统时钟信号在常温下的状态直接相关的,因此,在本实施例中,可以在常温下对时钟芯片100进行校准,以使系统时钟信号在常温下与标准时钟信号之间的时刻差异和频率差异都较小,从而较大程度上地降低系统时钟信号在高温和 低温的频偏和时刻偏移。
在其中一个实施例中,超宽带设备10还包括多条地线500,图4为一实施例的地线500和时钟信号线110的结构示意图,参考图4,所述时钟信号线110的两侧分别形成有至少一条所述地线500,且各所述地线500的延伸方向分别与所述时钟信号线110的延伸方向相同。在本实施例中,通过设置包围时钟信号线110的地线500,可以对时钟信号线110实现一定程度上的屏蔽,从而避免射频信号或高速数字信号等强干扰信号对系统时钟信号的干扰,进而提高系统时钟信号的稳定性。进一步地,还可以在地线500上进行打孔,以提升其屏蔽能力,改善系统时钟信号的稳定性。
图5为一实施例的超宽带设备10的结构框图之三,参考图5,在本实施例中,所述超宽带组件200包括天线组210、超宽带芯片220和开关电路230。超宽带芯片220被配置有发射端口TX_OUT和第一接收端口RX1_IN,其中,发射端口TX_OUT和第一接收端口RX1_IN可以理解为超宽带芯片220的引脚,用于与各外部器件进行连接。
天线组210包括第一天线ANT1和第二天线ANT2。具体地,第一天线ANT1和第二天线ANT2均可以支持对至少一个频段的射频信号的收发,在本实施例中,第一天线ANT1和第二天线ANT2均至少可以用于支持超宽带信号的接收和发射。本实施例以通过第一天线ANT1对超宽带信号进行发射为例进行说明,在其他实施例中,也可以通过第二天线ANT2对超宽带信号进行发射。而且,本实施例不具体限定第一天线ANT1和第二天线ANT2的具体位置。
进一步地,第一天线ANT1和第二天线ANT2可以使用任何合适类型的天线形成。例如,天线组210内的第一天线ANT1和第二天线ANT2可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。
开关电路230分别与所述发射端口TX_OUT、所述第一接收端口RX1_IN、所述第一天线ANT1、所述第二天线ANT2连接,所述开关电路230用于选择导通所述发射端口TX_OUT与所述第一天线ANT1之间的发射通路,以及,选择导通所述第一天线ANT1或第二天线ANT2与所述第一接收端口RX1_IN之间的接收通路,其中,所述发射通路用于发射所述超宽带射频信号,所述接收通路用于接收所述反馈射频信号。
进一步地,超宽带芯片220在控制所述开关电路230导通所述发射通路时,还同时控制所述开关电路230断开所述接收通路,并在超宽带芯片220完成信号发射的预设时长后,再选择导通接收通路。基于上述方式,可以有效避免第一天线ANT1发射的超宽带信号通过空间耦合进入第二天线ANT2,进而避免第二天线ANT2所在的接收通路将耦合接收到的超宽带信号反馈至超宽带芯片220的第一接收端口RX1_IN,以避免超宽带芯片220的耦合射频信号与反馈射频信号之间发生串扰问题,提高超宽带芯片220的测距精准度。
图6为一实施例的超宽带设备10的结构框图之四,参考图6,在本实施例中,所述超宽带芯片220还被配置有第二接收端口RX2_IN,所述反馈射频信号包括第一反馈信号,其中,第一反馈信号是指超宽带设备10在第一时刻接收到的反馈射频信号。
所述开关电路230还与所述第二接收端口RX2_IN连接,所述开关电路230还用于选择同步导通所述第一天线ANT1与所述第一接收端口RX1_IN之间的第一接收通路,以及所述第二天线ANT2与所述第二接收端口RX2_IN之间的第二接收通路,所述第二接收通路用于与所述第一接收通路同步接收所述第一反馈信号。具体地,超宽带芯片220可以在发射超宽带射频信号后的预设时长后,控制开关电路230进行切换,以同步导通第一接收通路和第二接收通路。需要说明的是,本实施例的同步导通既可以是开关电路230在同一时刻选择导通第一接收通路和第二接收通路,可以是在开关电路230依次选择导通第一接收通路和第二接收通路,但两个接收通路的导通都在第一时刻前完成,其中,若为依次选择导通两个接收通路,本实施例不具体限定两个接收通路的导通顺序。
在本实施例中,所述超宽带芯片220还用于根据同步接收的两路所述第一反馈信号,获取所述目标设备20的第一到达角数据。超宽带芯片220中存储有第一天线ANT1和第二天线ANT2之间的相对位置关系,因此,超宽带芯片220可以结合两路第一反馈信号之间的相位差,计算获取第一到达角数据。通过扩展第二接收端口RX2_IN,并通过第一接收端口RX1_IN和第二接收端口RX2_IN同步接收同一射频信号,本实施例的超宽带设备10还能够实现测角功能。进一步地,还可以通过配置第一天线ANT1和第二天线ANT2的相对位置关系,实现目标方向上的到达角测试,例如,若第一天线ANT1和第二天线ANT2为一组水平天线,即第一天线ANT1和第二天线ANT2位于同一水平线上,则获取的第一到达角数据为水平的方位角;若第一天线ANT1和第二天线ANT2为一组垂直天线,即第一天线ANT1和第二天线ANT2位于同一竖直线上,则获取的第一到达角数据为垂直的俯仰角。
图7为一实施例的超宽带设备10的结构框图之五,参考图7,在本实施例中,所述天线组210还包括第三天线ANT3,且所述第一天线ANT1、第二天线ANT2和第三天线ANT3不共线设置。具体地,第三天线ANT3也可以支持多个频段的射频信号的接收和发射,且至少可以用于支持超宽带信号的接收和发射。第三天线ANT3可以使用任何合适类型的天线形成,例如,可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。需要说明的是,在本实施例中,第一天线ANT1、第二天线ANT2和第三天线ANT3的类型可以相同也可以不相同,但是都可以支持超宽带信号的收发。
在本实施例中,所述开关电路230还与所述第三天线ANT3连接,所述反馈射频信号还包括第二反馈信号,所述第二反馈信号与所述第一反馈信号 分时传输,第二反馈信号是指超宽带设备10在第二时刻接收到的反馈射频信号。所述开关电路230还用于选择同步导通所述第一天线ANT1与所述第一接收端口RX1_IN之间的第一接收通路,以及所述第三天线ANT3与所述第二接收端口RX2_IN之间的第三接收通路,所述第三接收通路用于与所述第一接收通路同步接收所述第二反馈信号。需要说明的是,本实施例不具体限定第一时刻和第二时刻的先后顺序,即,超宽带设备10可以先同步接收两路第一反馈信号,也可以先同步接收两路第二反馈信号。其中,所述超宽带芯片220还用于根据同步接收的两路所述第二反馈信号,获取所述目标设备20的第二到达角数据,并根据所述第一到达角数据和所述第二到达角数据获取三维到达角数据。
当超宽带设备10需要对目标设备20进行测距时,超宽带芯片220控制开关电路230实现上述接收通路的导通方式,以获取目标设备20的到达角(Angle of Arrival,AoA)。可以理解的是,基于同步接收的两路第二反馈信号获取第二到达角数据的原理与前述获取第一到达角数据的原理相似,此处不再赘述。进一步地,通过配置第一天线ANT1、第二天线ANT2和第三天线ANT3三者之间的相对位置关系,即可计算获得目标设备20的三维到达角数据。
具体地,图8为一实施例的第一天线ANT1、第二天线ANT2和第三天线ANT3的结构示意图,如图8所示,在其中一个实施例中,第一天线ANT1、第二天线ANT2位于第一直线上,第一天线ANT1和第三天线ANT3位于第二直线上,第一直线和第二直线垂直设置。可选地,第一天线ANT1与第二天线ANT2之间的第一距离d1和第一天线ANT1与第三天线ANT3之间的第二距离d2相等,从而改善天线安装时的难度和位置准确性,进而提高超宽带设备10的定位精度。需要说明的是,本实施例的“垂直”并不限于绝对的垂直,也包括实质垂直或者接近垂直,具体定义方式可以以本领域技术人员的理解为准。可以理解的是,在其他实施例中,第一直线和第二直线也可以具有其他角度关系,三个天线也可以具有其他距离关系,但只要将上述角度关系和距离关系存储在超宽带芯片220中,即可进行相应的测试和分析。
图9为一实施例的超宽带设备10的结构框图之六,参考图9,在本实施例中,所述开关电路230包括第一开关单元231和第二开关单元232。
所述第一开关单元231的两个第一端分别与所述发射端口TX_OUT、所述第一接收端口RX1_IN一一对应连接,所述第一开关单元231的第二端与所述第一天线ANT1连接。具体地,第一开关单元231包括第一射频端RF1、第二射频端RF2和公共端COMMON,第一开关单元231的第一射频端RF1与发射端口TX_OUT连接,第一开关单元231的第二射频端RF2与第一接收端口RX1_IN连接,第一开关单元231的公共端COMMON与第二开关单元232的公共端COMMON连接。
所述第二开关单元232的第一端与所述第二接收端口RX2_IN连接,所述第二开关单元232的两个第二端分别与所述第二天线ANT2、所述第三天线 ANT3一一对应连接。具体地,第二开关单元232也可以包括第一射频端RF1、第二射频端RF2和公共端COMMON,第二开关单元232的第一射频端RF1与第二天线ANT2连接,第二开关单元232的第二射频端RF2与第三天线ANT3连接,第二开关单元232的公共端COMMON与第二接收端口RX2_IN连接。
其中,所述第一开关单元231和所述第二开关单元232用于同步进行切换,以选择同步导通第一反馈信号对应的两路的接收通路或第二反馈信号对应的两路接收通路。可以理解为第一开关单元231可以用于切换第一接收端口RX1_IN所在的第一接收通路和发射端口TX_OUT所在的发射通路,第二开关单元232可以用于切换第二天线ANT2和第三天线ANT3中的一个至第二接收端口RX2_IN。第一开关单元231和第二开关单元232可以均为SPDT开关,其中,SPDT开关的单端子可以作为各开关单元的公共端COMMON,SPDT开关的选择端可以作为各开关单元的射频端。
示例性地,以第一开关单元231为第一SPDT开关,第二开关单元232为第二SPDT开关为例来阐述使用独立的第一天线ANT1来完成测距的原理。基于第一天线ANT1的发射控制:第一发射端口TX_OUT→第一开关单元231的第一射频端→切换至第一开关单元231的单端子→第一天线ANT1。基于第一天线ANT1的接收控制:第一天线ANT1→切换至第一开关单元231的单端子→切换至第一开关单元231的第二射频端→第一接收端口RX1_IN。
当需要使用第一天线ANT1、第二天线ANT2和第三天线ANT3来共同完成测角时,采用如下方式来完成测角。基于第一天线ANT1的发射控制:第一发射端口TX_OUT→第一开关单元231的第一射频端→切换至第一开关单元231的单端子→第一天线ANT1。基于第一天线ANT1和第二天线ANT2的同步接收控制:第一天线ANT1→切换至第一开关单元231的单端子→切换至第一开关单元231的第二射频端→第一接收端口RX1_IN,第二天线ANT2→切换至第二开关单元232的第一射频端→切换至第二开关单元232的单端子→第二接收端口RX2_IN。基于第一天线ANT1和第三天线ANT3的同步接收控制:第一天线ANT1→切换至第一开关单元231的单端子→切换至第一开关单元231的第二射频端→第一接收端口RX1_IN,第三天线ANT3→切换至第二开关单元232的第二射频端→切换至第二开关单元232的单端子→第二接收端口RX2_IN。
基于上述开关切换方法,超宽带设备10可以准确获取目标设备20的距离信息和三维到达角数据,从而实现对目标设备20的定位功能。
图10为一实施例的超宽带测试设备10的结构框图之七,参考图10,在本实施例中,所述超宽带组件200还包括第一滤波单元240,第一滤波单元240分别与所述开关电路230、所述第一天线ANT1连接,用于对所述第一天线ANT1收发的射频信号进行滤波。其中,第一滤波单元240仅允许预设频段的信号通过,即仅允许超宽带信号通过,因此,可以通过第一滤波单元240滤除其他频段信号的谐波,以使滤波处理后的信号仅包括超宽带信号,从而改 善超宽带芯片220接收到的射频信号的信噪比,以提高超宽带组件200的测距精度。其中,滤波器可以为带通滤波器、低通滤波器等。需要说明的是,在本实施例中,对第一滤波单元240中的滤波器的类型以及数量不做进一步的限定,可以根据需求选取合适数量的滤波器以及各滤波器的设置位置。
在其他实施例中,也可以在第一开关单元231的第一射频端与超宽带芯片220的发射端口TX_OUT之间设置一滤波单元,并在第一开关单元231的第二射频端与超宽带芯片220的第一接收端口RX1_IN之间设置另一滤波单元,从而实现共同实现上述第一滤波单元240的功能,但第一滤波单元240的设置方式明显可以减少一个滤波单元,从而提高设备的集成度,并同时降低超宽带设备10的制造成本。
进一步地,继续参考图10,所述超宽带组件200还包括第二滤波单元250,第二滤波单元250分别与所述开关电路230、所述超宽带芯片100的至少一个接收端口连接,具体在本实施例中,第二滤波单元250分别与所述开关电路230、所述第二接收端口RX2_IN连接,用于对所述第二天线ANT2或第三天线ANT3接收的反馈射频信号进行滤波,并将滤波后的射频信号传输至所述第二接收端口RX2_IN。与前述第一滤波单元240相似地,本实施例中第二滤波单元250的连接方式同样可以提高设备的集成度,并同时降低超宽带设备10的制造成本。但是,因为开关属于非线性器件,第二滤波单元250的连接方式在一定程度上存在蜂窝或Wifi的信号经过开关产生互调、谐波分量落入超宽带信号带内的风险,因此,本申请还提供了一些实施例以实现更好的射频性能。
在其中一个实施例中,所述第二开关单元232的二阶谐波功率小于60dBm,即第二开关单元232线性度2F0<-60dBm,进一步地,还可以3F0<-60dBm。通过选择恰当线性度特性的第二开关单元232,可以在不过度增加超宽带设备10器件成本的前提下,有效避免蜂窝或Wifi的信号经过开关产生互调、谐波分量落入超宽带信号带内的问题,从而改善超宽带测试的灵敏度。
图11为一实施例的超宽带设备10的结构框图之八,参考图11,在本实施例中,所述超宽带组件200还包括第三滤波单元260,所述第三滤波单元260分别与所述第一开关单元231的第二端、所述第一天线ANT1连接,或,分别与所述第二开关单元232的一第二端、所述第二天线ANT2连接,或,分别与所述第二开关单元232的另一第二端、所述第三天线ANT3连接,所述第三滤波单元260用于对接收的射频信号进行高通滤波。如图11所示,在一些实施例中,超宽带组件200还可以包括三个滤波单元,并分别一一对应设置在上述路径上,从而通过在天线和开关之间用分立元件搭建高通滤波器的形式解决前述问题。
在其中一个实施例中,所述天线组210中任一天线分别与LTE天线、NR天线、WIFI天线之间的隔离度大于15dB。示例性地,可以通过增加UWB天线和LTE(B1、B3、B7、B39、B41)天线、NR(N41、N77、N78)天线、WIFI天线之间的距离为一阈值以上,或者通过调整UWB天线的辐射方向增 加天线隔离度。可以理解的是,前述通过分立的阻容感器件搭建高通滤波器的实施方式,集成的成本相对较高,即,本实施例提供了一种成本较低的解决方案。
图12为一实施例的超宽带设备10的结构框图之九,参考图12,在本实施例中,超宽带设备10还包括板对板连接器600,板对板连接器600包括可拆卸连接的第一连接座和第二连接座,所述第一连接座的多个第一引脚分别与所述开关电路230的连接,所述第二连接座的多个第二引脚分别与所述第一天线ANT1、所述第二天线ANT2和所述第三天线ANT3一一对应连接。在本实施例中,通过采用板对板座结合板对板软板的形式,可以节约很大的设备空间,并且在高频下(6G-8.5G),板对板座结合板对板软板的射频性能更优。进一步地,还可以设置相应的板对板探测器(probe)进行射频测试,从而获取各个天线的插入损耗,各天线接收的超宽带信号的中心频率、带宽、带内波动、带外抑制等测试指标。
图13为一实施例的超宽带设备10的结构框图之十,参考图13,在本实施例中,所述开关电路230包括第三开关单元233,所述第三开关单元233的三个第一端分别与所述发射端口TX_OUT、所述第一接收端口RX1_IN、所述第二接收端口RX2_IN一一对应连接,所述第三开关单元233的三个第二端分别与所述第一天线ANT1、所述第二天线ANT2和所述第三天线ANT3一一对应连接。
其中,第三开关单元233包括第一射频端RF1、第二射频端RF2、第三射频端RF3、第四射频端RF4、第五射频端RF5和第六射频端RF6,其中,第一射频端RF1与第一天线ANT1连接,第二射频端RF2与第二天线ANT2连接,第三射频端RF3与第三天线ANT3连接,第四射频端RF4与发射端口TX_OUT连接,第五射频端RF5与第一接收端口RX1_IN连接,第六射频端RF6与第二接收端口RX2_IN连接。其中,第三开关单元233可以为3P3T开关。
进一步地,所述超宽带组件200还包括第一滤波单元240,第一滤波单元240分别与所述开关电路230、所述第一天线ANT1连接,用于对所述第一天线ANT1收发的射频信号进行滤波。所述超宽带组件200还包括第二滤波单元250,第二滤波单元250分别与所述开关电路230、所述超宽带芯片100的至少一个接收端口连接,具体在本实施例中,第二滤波单元250分别与所述开关电路230、所述第一接收端口RX1_IN、第二接收端口RX2_IN连接,第二滤波单元250包括两个滤波器,一个滤波器分别与第五射频端RF5和第一接收端口RX1_IN连接,另一个滤波器分别与第六射频端RF6和第二接收端口RX2_IN连接。
再进一步地,本实施例的天线组210中任一天线分别与LTE天线、NR天线、WIFI天线之间的隔离度大于15dB。而且,也可以在天线组与第三开关单元233之间的射频通路上设置如图11所示的高通滤波器,以改善超宽带测试的灵敏度。
示例性地,以第三开关单元233为3P3T开关为例来阐述测距原理。基于第一天线ANT1的发射控制:第一发射端口TX_OUT→3P3T开关的第四射频端RF4→切换至第一射频端RF1→第一天线ANT1。其中,3P3T开关的第六射频端RF6切换至第三射频端RF3、3P3T开关的第五射频端RF5切换至第二射频端RF2。基于第二天线ANT2的接收控制:第二天线ANT2→3P3T开关的第二射频端RF2→切换至第五射频端RF5→第一接收端口RX1_IN。采用上述实施方式,在发射超宽带射频信号和接收反馈射频信号时开关不需要切换,因此对开关的要求较低,但可以理解的是,由于收发采用不同的天线,因此需要分别对两个天线的通路做传导校准,以分别确定各个通路上的延时。
当需要使用第一天线ANT1、第二天线ANT2和第三天线ANT3来共同完成测角时,采用如下方式来完成测角。基于第一天线ANT1的发射控制:第一发射端口TX_OUT→3P3T开关的第四射频端RF4→切换至第一射频端RF1→第一天线ANT1。基于第一天线ANT1和第二天线ANT2的同步接收控制:第一天线ANT1→切换至3P3T开关的第一射频端RF1→切换至3P3T开关的第五射频端RF5→第一接收端口RX1_IN,第二天线ANT2→切换至3P3T开关的第二射频端RF2→3P3T开关的第六射频端RF6→第二接收端口RX2_IN。基于第一天线ANT1和第三天线ANT3的同步接收控制:第一天线ANT1→切换至3P3T开关的第一射频端RF1→切换至3P3T开关的第五射频端RF5→第一接收端口RX1_IN,第三天线ANT3→切换至3P3T开关的第三射频端RF3→3P3T开关的第六射频端RF6→第二接收端口RX2_IN。
图14为一实施例的超宽带测试系统的结构框图,参考图14,本申请还提供了一种超宽带测试系统,包括目标设备20和如上述的超宽带设备10,目标设备20用于接收超宽带射频信号,并响应于所述超宽带射频信号输出反馈射频信号;超宽带设备10与所述目标设备20进行超宽带通信连接,以获取所述目标设备20的距离信息。图14实施例的测试系统包括图12实施例所示的超宽带设备10,可以理解是,也可以采用其他实施例所示的超宽带设备10。在本实施例中,通过采用时钟芯片100提供的系统时钟信号作为超宽带芯片220的本振信号,可以减少超宽度测试设备中的晶振数量,从而提供一种更加轻量级、小体积、低成本的超宽带测试系统。
图15为一实施例的超宽带测试方法的流程图,本实施例的超宽带测试方法应用于超宽带设备10,参考图15,所述超宽带测试方法包括步骤1502至步骤1506。
步骤1502,生成系统时钟信号;
步骤1504,根据所述系统时钟信号生成并发射超宽带射频信号;
步骤1506,接收目标设备20响应于所述超宽带射频信号输出的反馈射频信号,并根据所述超宽带射频信号和反馈射频信号获取所述目标设备20的距离信息。
可以理解的是,本实施例各步骤的实施方式可以参考前述超宽带测试方法的实施方式,此处不再赘述,通过时钟芯片100提供超宽带组件200的本 振信号,可以无需设置额外的晶振以支持超宽带射频信号的射频功能,从而可以有效减少超宽带设备10中所需的晶振数量,进而提供一种测试成本更低的超宽带测试方法。
在其中一个实施例中,所述生成系统时钟信号前,还包括:超宽带组件200发送时钟请求信号。所述生成系统时钟信号包括:时钟芯片100响应于所述时钟请求信号输出所述系统时钟信号。在本实施例中,当超宽带组件200需要执行测距或测角前,发送时钟请求信号,以从时钟芯片100获取系统时钟信号,基于上述方法,时钟芯片100无需持续发送系统时钟信号至超宽带组件200,从而可以有效降低发送信号的功耗,延长超宽带设备10的待机时长。进一步地,时钟芯片100还可以响应于时钟请求信号对系统时钟信号的时刻和频率进行校准,从而确保发送的系统时钟信号的准确性,进行提升测试的准确性。
应理解的是,虽然图15的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图15中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请实施例的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请实施例构思的前提下,还可以做出若干变形和改进,这些都属于本申请实施例的保护范围。因此,本申请实施例专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种超宽带设备,包括:
    时钟芯片,用于生成系统时钟信号;
    超宽带组件,与所述时钟芯片连接,用于根据所述系统时钟信号生成并发射超宽带射频信号,接收目标设备响应于所述超宽带射频信号输出的反馈射频信号,并根据所述超宽带射频信号和反馈射频信号获取所述目标设备的距离信息。
  2. 根据权利要求1所述的超宽带设备,还包括:
    时钟信号线,分别与所述时钟芯片、所述超宽带组件连接,用于传输所述系统时钟信号;
    温度采集组件,用于获取所述时钟芯片、超宽带组件和时钟信号线中至少一个的环境温度;
    时钟校准组件,分别与所述时钟芯片、所述温度采集组件连接,用于根据所述环境温度和预设调节曲线校准所述系统时钟信号的频率。
  3. 根据权利要求2所述的超宽带设备,所述时钟校准组件还用于当所述时钟芯片的环境温度处于预设范围时,获取携带标准时刻信息的标准时钟信号,并根据所述标准时刻信息校正所述系统时钟信号的时刻。
  4. 根据权利要求1所述的超宽带设备,还包括:多条地线;
    其中,所述时钟信号线的两侧分别形成有至少一条所述地线,且各所述地线的延伸方向分别与所述时钟信号线的延伸方向相同。
  5. 根据权利要求1所述的超宽带设备,所述超宽带组件包括:
    天线组,包括第一天线和第二天线;
    超宽带芯片,被配置有发射端口和第一接收端口;
    开关电路,分别与所述发射端口、所述第一接收端口、所述第一天线、所述第二天线连接,所述开关电路用于选择导通所述发射端口与所述第一天线之间的发射通路,以及,选择导通所述第一天线或第二天线与所述第一接收端口之间的接收通路,其中,所述发射通路用于发射所述超宽带射频信号,所述接收通路用于接收所述反馈射频信号。
  6. 根据权利要求5所述的超宽带设备,所述超宽带芯片还被配置有第二接收端口,所述反馈射频信号包括第一反馈信号,所述开关电路还与所述第二接收端口连接;
    所述开关电路还用于选择同步导通所述第一天线与所述第一接收端口之间的第一接收通路,以及所述第二天线与所述第二接收端口之间的第二接收通路,所述第二接收通路用于与所述第一接收通路同步接收所述第一反馈信号;
    其中,所述超宽带芯片还用于根据同步接收的两路所述第一反馈信号,获取所述目标设备的第一到达角数据。
  7. 根据权利要求6所述的超宽带设备,所述反馈射频信号还包括第二反馈信号,所述第二反馈信号与所述第一反馈信号分时传输,所述天线组还包 括第三天线,所述第一天线、第二天线和第三天线不共线设置,所述开关电路还与所述第三天线连接;
    所述开关电路还用于选择同步导通所述第一天线与所述第一接收端口之间的第一接收通路,以及所述第三天线与所述第二接收端口之间的第三接收通路,所述第三接收通路用于与所述第一接收通路同步接收所述第二反馈信号;
    其中,所述超宽带芯片还用于根据同步接收的两路所述第二反馈信号,获取所述目标设备的第二到达角数据,并根据所述第一到达角数据和所述第二到达角数据获取三维到达角数据。
  8. 根据权利要求7所述的超宽带设备,所述开关电路包括:
    第一开关单元,所述第一开关单元的两个第一端分别与所述发射端口、所述第一接收端口一一对应连接,所述第一开关单元的第二端与所述第一天线连接;
    第二开关单元,所述第二开关单元的第一端与所述第二接收端口连接,所述第二开关单元的两个第二端分别与所述第二天线、所述第三天线一一对应连接;
    其中,所述第一开关单元和所述第二开关单元用于同步进行切换,以选择同步导通第一反馈信号对应的两路的接收通路或第二反馈信号对应的两路接收通路。
  9. 根据权利要求7所述的超宽带设备,所述开关电路包括:
    第三开关单元,所述第三开关单元的三个第一端分别与所述发射端口、所述第一接收端口、所述第二接收端口一一对应连接,所述第三开关单元的三个第二端分别与所述第一天线、所述第二天线和所述第三天线一一对应连接。
  10. 根据权利要求7至9任一项所述的超宽带设备,所述超宽带组件还包括:
    第一滤波单元,分别与所述开关电路、所述第一天线连接,用于对所述第一天线收发的射频信号进行滤波。
  11. 根据权利要求10所述的超宽带设备,所述超宽带组件还包括:
    第二滤波单元,分别与所述开关电路、所述超宽带芯片的至少一个接收端口连接,用于对接收的反馈射频信号进行滤波,并将滤波后的射频信号传输至连接的接收端口。
  12. 根据权利要求11所述的超宽带设备,所述超宽带组件还包括:
    第三滤波单元,设置在所述第一天线与所述开关电路之间的通路上,或,所述第二天线与所述开关电路之间的通路上,或,所述第三天线与所述开关电路之间的通路上,所述第三滤波单元用于对接收的射频信号进行高通滤波。
  13. 根据权利要求11所述的超宽带设备,所述天线组中任一天线分别与LTE天线、NR天线、WIFI天线之间的隔离度大于15dB。
  14. 根据权利要求13所述的超宽带设备,所述天线组中任一天线与LT天 线、NR天线、WIFI天线之间的距离均大于阈值。
  15. 根据权利要求8所述的超宽带设备,所述第二开关单元的二阶谐波功率小于60dBm。
  16. 根据权利要求7所述的超宽带设备,还包括:
    板对板连接器,包括可拆卸连接的第一连接座和第二连接座,所述第一连接座的多个第一引脚分别与所述开关电路的连接,所述第二连接座的多个第二引脚分别与所述第一天线、所述第二天线和所述第三天线一一对应连接。
  17. 根据权利要求16所述的超宽带设备,还包括:
    板对板探测器,以获取各个天线的插入损耗、各天线接收的超宽带信号的中心频率、带宽、带内波动、带外抑制等测试指标中的至少一个。
  18. 一种超宽带测试系统,包括:
    目标设备,用于接收超宽带射频信号,并响应于所述超宽带射频信号输出反馈射频信号;
    如权利要求1至17任一项所述的超宽带设备,与所述目标设备进行超宽带通信连接,以获取所述目标设备的距离信息。
  19. 一种超宽带测试方法,应用于超宽带设备,所述测试方法包括:
    生成系统时钟信号;
    根据所述系统时钟信号生成并发射超宽带射频信号;
    接收目标设备响应于所述超宽带射频信号输出的反馈射频信号,并根据所述超宽带射频信号和反馈射频信号获取所述目标设备的距离信息。
  20. 根据权利要求19所述的超宽带测试方法,所述生成系统时钟信号前,还包括:超宽带组件发送时钟请求信号;
    所述生成系统时钟信号包括:时钟芯片响应于所述时钟请求信号输出所述系统时钟信号。
PCT/CN2022/077063 2021-03-22 2022-02-21 超宽带设备、测试系统及其测试方法 WO2022199300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110316765.6 2021-03-22
CN202110316765.6A CN113093161A (zh) 2021-03-22 2021-03-22 超宽带设备、测试系统及其测试方法

Publications (1)

Publication Number Publication Date
WO2022199300A1 true WO2022199300A1 (zh) 2022-09-29

Family

ID=76669563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077063 WO2022199300A1 (zh) 2021-03-22 2022-02-21 超宽带设备、测试系统及其测试方法

Country Status (2)

Country Link
CN (1) CN113093161A (zh)
WO (1) WO2022199300A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093161A (zh) * 2021-03-22 2021-07-09 Oppo广东移动通信有限公司 超宽带设备、测试系统及其测试方法
CN114115328A (zh) * 2021-10-14 2022-03-01 荣耀终端有限公司 一种无人机、定位设备及定位系统
CN114966542A (zh) * 2022-07-29 2022-08-30 合肥有感科技有限责任公司 数字钥匙定位系统和定位方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506205A (zh) * 2014-12-26 2015-04-08 重庆邮电大学 一种软件无线电接收机射频系统
WO2018077199A1 (zh) * 2016-10-28 2018-05-03 中兴通讯股份有限公司 一种健康监测装置和方法
US20190199286A1 (en) * 2017-12-22 2019-06-27 Wiser Systems, Inc. Methods for Correcting Oscillator Offsets in Ultra-Wideband (UWB) Networks
CN110765729A (zh) * 2019-10-30 2020-02-07 中国电子科技集团公司第五十四研究所 一种基于soc集成化可扩展卫星通信业务系统
CN110856102A (zh) * 2019-11-18 2020-02-28 广东博智林机器人有限公司 一种超带宽定位系统及方法
CN112260718A (zh) * 2020-10-22 2021-01-22 Oppo广东移动通信有限公司 一种超宽带通信装置及系统
CN112260717A (zh) * 2020-10-23 2021-01-22 Oppo广东移动通信有限公司 超宽带测量组件、装置和系统
CN112437399A (zh) * 2020-11-23 2021-03-02 Oppo广东移动通信有限公司 一种定位方法及天线装置、电子设备、存储介质
CN113093161A (zh) * 2021-03-22 2021-07-09 Oppo广东移动通信有限公司 超宽带设备、测试系统及其测试方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186561A (ja) * 2002-12-05 2004-07-02 Fujitsu Ltd 半導体集積回路の配線構造
CN104811194B (zh) * 2012-01-09 2018-05-01 青岛海信移动通信技术股份有限公司 一种集中式时钟装置和移动终端设备
CN108199728B (zh) * 2018-03-16 2020-05-19 Oppo广东移动通信有限公司 多路选择开关、射频系统和无线通信设备
CN210742494U (zh) * 2019-09-19 2020-06-12 青岛中电众益智能科技发展有限公司 一种用于浅层异物探测的四通带超宽带成像的雷达系统
CN110768681B (zh) * 2019-09-29 2021-07-02 深圳市微能信息科技有限公司 一种基于uwb通信的定位电路、定位系统及定位方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506205A (zh) * 2014-12-26 2015-04-08 重庆邮电大学 一种软件无线电接收机射频系统
WO2018077199A1 (zh) * 2016-10-28 2018-05-03 中兴通讯股份有限公司 一种健康监测装置和方法
US20190199286A1 (en) * 2017-12-22 2019-06-27 Wiser Systems, Inc. Methods for Correcting Oscillator Offsets in Ultra-Wideband (UWB) Networks
CN110765729A (zh) * 2019-10-30 2020-02-07 中国电子科技集团公司第五十四研究所 一种基于soc集成化可扩展卫星通信业务系统
CN110856102A (zh) * 2019-11-18 2020-02-28 广东博智林机器人有限公司 一种超带宽定位系统及方法
CN112260718A (zh) * 2020-10-22 2021-01-22 Oppo广东移动通信有限公司 一种超宽带通信装置及系统
CN112260717A (zh) * 2020-10-23 2021-01-22 Oppo广东移动通信有限公司 超宽带测量组件、装置和系统
CN112437399A (zh) * 2020-11-23 2021-03-02 Oppo广东移动通信有限公司 一种定位方法及天线装置、电子设备、存储介质
CN113093161A (zh) * 2021-03-22 2021-07-09 Oppo广东移动通信有限公司 超宽带设备、测试系统及其测试方法

Also Published As

Publication number Publication date
CN113093161A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022199300A1 (zh) 超宽带设备、测试系统及其测试方法
CN112260717B (zh) 超宽带测量组件、装置和系统
KR101537644B1 (ko) 무선 디바이스에서의 동적 안테나 선택
CN111123220B (zh) 一种毫米波雷达的多通道幅相校准方法及系统
Müller et al. Ultrawideband multichannel sounding for mm-wave
US10673514B1 (en) Communication device with receive antenna tuning
EP2499752A1 (en) Quick re-connect diversity radio system
Wen et al. mmWave channel sounder based on COTS instruments for 5G and indoor channel measurement
CN112532360B (zh) 发送定位参考信号的方法和相关装置
WO2017184925A1 (en) Antenna element self-test and monitoring
Salous et al. Parallel receiver channel sounder for spatial and MIMO characterisation of the mobile radio channel
US20230093847A1 (en) Radio frequency pa mid device, radio frequency transceiving system, and communication apparatus
Botler et al. Direction finding with uwb and ble: A comparative study
CN212811690U (zh) 射频l-drx器件、射频收发系统和通信设备
US10097282B1 (en) System and method for testing a device under test (DUT) capable of determining relative times of arrival or angles of arrival of multiple radio frequency signals
US20180195909A1 (en) Anti-interference temperature signal receiving device and signal processing method
Kempke et al. Harmonia: Wideband spreading for accurate indoor RF localization
Rozum et al. SIMO RSS measurement in Bluetooth low power indoor positioning system
Sandra et al. Ultrawideband usrp-based channel sounding utilizing the rfnoc framework
Schmid et al. A W-band integrated silicon-germanium loop-back and front-end transmit-receive switch for built-in-self-test
CN215498956U (zh) 一种射频前端电路及电子设备
US20240085348A1 (en) Measurement device and measurement method
WO2021238430A1 (zh) 射频PA Mid器件、射频系统和通信设备
Inac et al. Built-in self test systems for silicon-based phased arrays
US20230089408A1 (en) Radio-frequency l-drx device, radio-frequency transceiving system, and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22773962

Country of ref document: EP

Kind code of ref document: A1