WO2022199273A1 - 校正系数确定方法、装置及光通信系统 - Google Patents

校正系数确定方法、装置及光通信系统 Download PDF

Info

Publication number
WO2022199273A1
WO2022199273A1 PCT/CN2022/076143 CN2022076143W WO2022199273A1 WO 2022199273 A1 WO2022199273 A1 WO 2022199273A1 CN 2022076143 W CN2022076143 W CN 2022076143W WO 2022199273 A1 WO2022199273 A1 WO 2022199273A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
optical
wavelength signal
srs
wavelength
Prior art date
Application number
PCT/CN2022/076143
Other languages
English (en)
French (fr)
Inventor
蒋志平
李满
张寅�
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022199273A1 publication Critical patent/WO2022199273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2537Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the present application relates to the field of optical communication, and in particular, to a method, device and optical communication system for determining a correction coefficient.
  • Stimulated Raman Scattering (SRS) effect is a common nonlinear effect in optical communication systems. It refers to the effect that after the optical signal enters the optical fiber, the vibration of the molecules in the medium is induced, thereby generating a new optical frequency.
  • the SRS effect is manifested as the transfer of the energy of the optical signal after transmission through the optical fiber.
  • the SRS formula is used to calculate the transfer amount of the energy of the optical signal after it is transmitted through the optical fiber.
  • some parameter values are predetermined. For example, some parameter values are measured values determined in a laboratory. However, these preset parameter values may change to some extent during actual use. Therefore, in the optical communication system, the accuracy of the SRS energy transfer amount of the optical signal calculated by using the preset parameter value is relatively low.
  • the present application provides a correction coefficient determination method, device and optical communication system.
  • the technical solution is as follows:
  • a correction coefficient determination method is provided, the method is performed by a correction coefficient determination device, and the correction coefficient determination device can be integrated in an upstream device of an optical communication system, or can be integrated in a downstream device of the optical communication system, It can also be integrated in a device set independently in an optical communication system, for example, in a network management device.
  • the method includes: after the upstream device in the optical communication system keeps the first wavelength signal unchanged, and after performing m times of power adjustment on the second wavelength signal, acquiring m optical power changes of the downstream device, the m optical power changes Each optical power variation in the quantity reflects the variation of the optical power of the first wavelength signal before and after one power adjustment, and m is a positive integer greater than 1.
  • the one power adjustment includes one addition of the wave.
  • One add-off wave includes one add-on and/or drop-off.
  • the optical communication system includes the upstream device and the downstream device; m SRS powers are determined based on preset parameter values and the incoming optical power of the second wavelength signal obtained before and after each power adjustment in the m times of power adjustment. The variation of the transfer amount; the correction coefficient is determined based on the m optical power variation and the m SRS power transfer variation, and the correction coefficient is used to correct the preset parameter value.
  • the first wavelength signal and the second wavelength signal have different wavelength ranges.
  • the first wavelength signal may be a service optical signal or a monitoring optical signal
  • the second wavelength signal may be a service optical signal.
  • the m optical power changes of the downstream device are obtained as the actual changes of the m SRS power transfer amounts. value, and then based on the preset parameter value and the incoming optical power of the second wavelength signal obtained before and after each power adjustment in m times of power adjustment, determine the actual value of the variation of m SRS power transfer amounts, and based on m A theoretical value and m actual values determine the correction coefficient.
  • the correction coefficient thus determined is combined with the actual use scene, so that an accurate correction coefficient is obtained to correct the preset parameter value, and then the accurate SRS energy transfer amount can be determined.
  • the process of determining the change amount of m SRS power transfer amounts based on the preset parameter value and the incoming optical power of the second wavelength signal obtained before and after each power adjustment in the m times of power adjustment, respectively includes: acquiring the first incoming optical power of the second wavelength signal before the m times of power adjustment, and determining m first SRS power transfer amounts based on the preset parameter value and the first incoming optical power; acquiring After the m times of power adjustment, the second incoming optical power of the second wavelength signal, and based on the preset parameter value and the second incoming optical power, determine m second SRS power transfer amounts; One SRS power transfer amount and the m second SRS power transfer amounts determine the variation of the m SRS power transfer amounts.
  • the variation of each SRS power transfer amount in the m SRS power transfer amount changes is the absolute value of the difference between the first SRS power transfer amount and the second SRS power transfer amount in the same power adjustment.
  • each first SRS power transfer in the m first SRS power transfer amounts The amount is determined based on the weighted sum of the first incoming optical powers of the plurality of second wavelength signals obtained before the power adjustment and the preset parameter value; each second SRS power transfer in the m second SRS power transfer amounts The amount is determined based on the weighted sum of the second incoming optical powers of the plurality of second wavelength signals obtained after one power adjustment and the preset parameter value.
  • each of the m first SRS power transfer amounts is based on the first input of the one second wavelength signal obtained before one power adjustment.
  • the product of the fiber optical power and the weight value and the preset parameter value are determined;
  • each second SRS power transfer amount in the m second SRS power transfer amounts is based on the second value of the one second wavelength signal obtained after one power adjustment.
  • the product of the incoming fiber optical power and the weight value and the preset parameter value are determined.
  • the weight of the incoming optical power of each second wavelength signal in the one or more second wavelength signals is related to the frequency of the second wavelength signal and the frequency of the first wavelength signal, the The weight value reflects the degree of optical power transfer between the second wavelength signal and the first wavelength signal.
  • the preset parameter value includes: a preset coefficient, a preset Raman gain coefficient, and a preset effective fiber length;
  • the first SRS power transfer amount is a weighted sum of multiple first incoming fiber optical powers, The product of the preset coefficient, the preset Raman gain coefficient and the preset effective fiber length;
  • the second SRS power transfer amount is a weighted sum of multiple second incoming fiber optical powers, the preset coefficient, The product of the preset Raman gain coefficient and the preset effective length of the optical fiber.
  • both the first SRS power transfer amount and the second SRS power transfer amount are calculated based on the first SRS formula, and the first SRS formula includes:
  • A is the preset coefficient
  • gR is the preset Raman gain coefficient
  • L eff is the preset effective fiber length
  • N is the total number of second wavelength signals transmitted in the optical communication system
  • SRS is the first wavelength signal.
  • SRS power transfer amount Pj is the incoming fiber optical power of the jth second wavelength signal in the optical communication system
  • Tj is the weight of the incoming fiber optical power of the jth second wavelength signal in the optical communication system.
  • the Tj is related to the frequency of the jth second wavelength signal and the frequency of the first wavelength signal, which reflects the degree of influence of the jth second wavelength signal on the SRS effect of the first wavelength signal.
  • the first SRS formula has fewer parameters, and the expression form of the formula is simpler, and the SRS power transfer amount can be quickly calculated by using the first SRS formula.
  • Each of the m optical power variations is an actual value of the variation of the SRS power transfer amount.
  • the change amount of each SRS power transfer amount among the m SRS power transfer amount changes obtained by the correction coefficient determination device is a theoretical value of the change amount of the SRS power transfer amount. Then, the correction coefficient can be determined by comparing the m actual values with the m theoretical values.
  • the process of determining the correction coefficient based on the m optical power changes and the m SRS power transfer changes includes: using the m SRS power transfer changes as an independent variable, and the m optical
  • the power change amount is used as the dependent variable of the change amount of the corresponding SRS power transfer amount, and the slope k is determined by means of linear regression, wherein the change amount of the SRS power transfer amount determined by the same power adjustment corresponds to the optical power change amount;
  • the slope k is used as the correction coefficient.
  • the process of determining the correction coefficient by means of linear regression is simple, and the accuracy of the determined correction coefficient is high.
  • each optical power variation in the m optical power variation is the difference between a set of first optical powers and second optical powers of the first wavelength signal
  • the absolute value, the set of the first optical power and the second optical power is detected by the downstream device before and after the upstream device performs a power adjustment.
  • each optical power variation in the m optical power variation is the difference between the first optical fiber insertion loss and the second optical fiber insertion loss of a set of the first wavelength signal
  • the absolute value of the value, the set of the first fiber insertion loss and the second fiber insertion loss are detected by the upstream device before and after performing a power adjustment.
  • the m optical power changes of the downstream device are obtained as the actual changes of the m SRS power transfer amounts. value, and then based on the preset parameter value and the incoming optical power of the second wavelength signal obtained before and after each power adjustment in m times of power adjustment, determine the theoretical value of the variation of m SRS power transfer amounts, and based on m Actual values and m theoretical values determine the correction factor.
  • the variation of the power transfer amount of each SRS and the variation of each optical power are obtained by obtaining the absolute value of the difference between the corresponding parameters before power adjustment and after power adjustment as an example for description.
  • the aforementioned variation of each SRS power transfer amount and each optical power variation can also be obtained in other ways, as long as it is ensured that the final determined variation of each SRS power transfer amount and the corresponding change of each optical power.
  • the positive and negative quantities are the same.
  • the aforementioned variation of each SRS power transfer amount and each of the optical power variation may also be replaced by any of the following implementations:
  • each SRS power transfer amount is the difference between the first SRS power transfer amount and the second SRS power transfer amount of the same power adjustment; each optical power variation is a group of the first wavelength signal.
  • the difference between the first optical power and the second optical power, or each variation of the optical power is the difference between the first optical fiber insertion loss and the second optical fiber insertion loss of a group of the first wavelength signal.
  • each SRS power transfer amount is the difference between the second SRS power transfer amount and the first SRS power transfer amount of the same power adjustment; each optical power change amount is a group of the first wavelength signal.
  • the difference between the second optical power and the first optical power, or each optical power variation is the difference between the insertion loss of a group of the second optical fibers and the insertion loss of the first optical fiber of the first wavelength signal.
  • the correction coefficient determination device may further update the preset parameter value to be the product of the correction coefficient and the preset parameter value.
  • the updated preset parameter value is used to calculate the SRS energy transfer amount of the target wavelength signal to be detected.
  • a correction coefficient determination apparatus may include at least one module, and the at least one module may be used to implement the correction coefficient provided by the above-mentioned first aspect or various possible implementations of the first aspect Determine the method.
  • a correction coefficient determination device in a third aspect, includes: a processor and a memory; the memory stores computer instructions; the processor executes the computer instructions stored in the memory, so that the correction coefficient determination device executes the above-mentioned first aspect or Various possible implementations of the first aspect provide the correction coefficient determination method.
  • a computer-readable storage medium where computer instructions are stored in the computer-readable storage medium, and the computer instructions instruct a computer device to execute the above-mentioned first aspect or the correction coefficient provided by various possible implementations of the first aspect Determine the method.
  • a chip in a fifth aspect, includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to execute the above-mentioned first aspect or the correction coefficient determination method provided by various possible implementations of the first aspect .
  • a communication system comprising: an upstream device, a downstream device, and the correction coefficient determination device according to any one of the second aspect or the third aspect;
  • the upstream device is configured to send a wavelength signal to the downstream device through an optical fiber;
  • the downstream device is configured to receive the wavelength signal sent by the upstream device through the optical fiber;
  • the upstream device is further configured to keep the first wavelength signal unchanged, and perform m times of power adjustment on the second wavelength signal, the first wavelength signal and the The wavelength ranges of the second wavelength signals are different, and m is a positive integer greater than 1;
  • the correction coefficient determination device is integrated on the upstream device or the downstream device.
  • a computer program product comprising computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device may read the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the first aspect or the correction coefficient determination method provided by various possible implementations of the first aspect .
  • the m optical power changes of the downstream device are obtained as the actual changes of the m SRS power transfer amounts. value, and then based on the preset parameter value and the incoming optical power of the second wavelength signal obtained before and after each power adjustment in m times of power adjustment, determine the theoretical value of the variation of m SRS power transfer amounts, and based on m Actual values and m theoretical values determine the correction factor.
  • the correction coefficient thus determined is combined with the actual usage scenario, so that an accurate correction coefficient is obtained to correct the preset parameter value, and then the accurate SRS energy transfer amount can be determined.
  • FIG. 1 is a schematic structural diagram of an optical communication system 10 involved in a method for determining a correction coefficient provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of the distribution of a wavelength signal provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for determining a correction coefficient provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a downstream device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an upstream device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an apparatus for determining a correction coefficient provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for determining a correction coefficient provided by an embodiment of the present application.
  • FIG. 8 is a possible basic hardware architecture of the apparatus for determining a correction coefficient provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an optical communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an optical communication system 10 involved in a method for determining a correction coefficient provided by an embodiment of the present application.
  • the optical communication system includes: an upstream device 101 and a downstream device 102, and the upstream device 101 is used for sending a wavelength signal to the downstream device 102 through an optical fiber.
  • the upstream device 101 and the downstream device 102 may be an optical amplifier site or a reconfigurable optical add-drop multiplexe (Reconfigurable Optical Add-Drop Multiplexe, ROADM) site or the like.
  • ROADM reconfigurable optical add-drop multiplexe
  • the upstream device 101 includes a combiner 1011 , the downstream device includes a splitter 1021 , and the upstream device 101 sends a wavelength signal to the splitter 1021 of the downstream device through the combiner 1011 .
  • the upstream device 101 and the downstream device 102 are intermediate devices (also called relay devices)
  • the upstream device 101 further includes a splitter 1012, and the splitter 1012 is used to receive wavelength signals;
  • the downstream device 102 further includes A splitter 1022, the splitter 1022 is used to transmit wavelength signals.
  • the combiners and splitters in the upstream equipment 101 and the downstream equipment 102 are also called filters or combiners and splitters, which can be fiber interface units (FIUs), wavelength division multiplexers Any of (Wavelength Division Multiplexing, WDM), Arrayed Waveguide Grating (AWG), comb filter (Interleaver, ITL) and wavelength selective switch (Wavelength Selective Switch, WSS).
  • FEUs fiber interface units
  • WDM Widelength Division Multiplexing
  • AWG Arrayed Waveguide Grating
  • comb filter Interleaver, ITL
  • WSS wavelength selective switch
  • the upstream device 101 and the downstream device 102 further include an optical amplifier (Optical Amplifier, OA), and the OA includes an Erbium-doped Fiber Amplifier (EDFA), a Raman fiber amplifier (also called a Raman amplifier) , Raman Fiber Amplifier, RFA) and one or more of Semiconductor Optical Amplifier (Semiconductor Optical Amplifier, SOA).
  • EDFA Erbium-doped Fiber Amplifier
  • Raman fiber amplifier also called a Raman amplifier
  • RFA Raman Fiber Amplifier
  • SOA Semiconductor Optical Amplifier
  • each wavelength signal has one or more wavelength values, and the wavelength signals can be divided according to preset monitoring requirements.
  • Each wavelength signal can be a single wavelength signal or a multi-wavelength signal.
  • a single-wavelength signal refers to a signal with one wavelength value
  • a multi-wavelength signal refers to a signal with multiple wavelength values.
  • each single-wavelength signal (for example, Ch1, Ch2, etc.) is distinguished by the channel number of the single-wavelength signal.
  • each single-wavelength signal can be determined by the channel number of each single-wavelength signal. These wavelength signals can belong to either the C band (C Band) or the L band (L Band). In order to facilitate the reader's understanding, the wavelength signal is explained below by taking FIG. 2 as an example.
  • FIG. 2 is a schematic diagram of the distribution of a wavelength signal provided by an embodiment of the present application. It is assumed in FIG. 2 that the optical communication system includes a total of 100 single-wavelength signals Ch1-Ch100, and the 100 single-wavelength signals can be divided into 10 multi-wavelength signals.
  • Each multi-wavelength signal includes 10 consecutive single-wavelength signals, for example, multi-wavelength signal 1 includes single-wavelength signals Ch1-Ch10, multi-wavelength signal 2 includes single-wavelength signals Ch11-Ch20, ..., multi-wavelength signal 10 includes Ch91-Ch100.
  • FIG. 3 is a schematic flowchart of a method for determining a correction coefficient provided by an embodiment of the present application.
  • the method is performed by a correction coefficient determination device, and the correction coefficient determination device can be integrated in the upstream equipment of the optical communication system, can also be integrated in the downstream equipment of the optical communication system, and can also be integrated in the equipment independently set in the optical communication system. , such as integrated in network management equipment.
  • the method includes:
  • the upstream device in the optical communication system keeps the first wavelength signal unchanged, and after performing m times of power adjustment on the second wavelength signal, acquire m optical power changes of the downstream device.
  • the first wavelength signal and the second wavelength signal have different wavelength ranges, that is, the two have different wavelength values.
  • the second wavelength signal is a wavelength signal other than the first wavelength signal among the wavelength signals transmitted in the optical communication system.
  • Each of the foregoing m optical power changes reflects the change of the optical power of the first wavelength signal before and after one power adjustment (ie, before and after the first power adjustment).
  • m is a positive integer greater than 1. For example, 5 ⁇ m ⁇ 10.
  • the optical power of the transmitting end of the first wavelength signal before the power adjustment that is, the optical power detected by the upstream device
  • the optical power of the receiving end of the first wavelength signal is P in1 .
  • each optical power variation actually obtained is the actual value of the variation of the SRS power transfer amount.
  • the aforementioned keeping the first wavelength signal unchanged refers to keeping the position, quantity and power of the wavelengths of the first wavelength signal unchanged, that is, the first wavelength signal is not processed.
  • a power adjustment can be implemented by performing a power attenuation on the wavelength signal, or by adding a wave to the wavelength signal once, or by other methods, as long as the wavelength signal before and after the power adjustment is guaranteed.
  • the power can be different.
  • the upstream device can control the power attenuation of the wavelength signal through the combiner 1011 , for example, the combiner 1011 is a WSS, and the WSS can use a set attenuation adjustment amount to perform power attenuation on the wavelength signal.
  • the aforementioned upstream equipment can also control the addition and subtraction of wavelength signals through the combiner 1011 .
  • the one-time addition and drop wave includes a first-time addition wave (also called an add wave, Add) and/or a drop wave (also called a drop wave, Drop). That is, adding a wave once includes: adding at least one single wavelength signal, or dropping at least one single wavelength signal, or adding at least one single wavelength signal and dropping another at least one single wavelength signal.
  • performing wave addition on the second wavelength signal once refers to: adding waves to one or more second wavelength signals among the plurality of second wavelength signals, or , dropping one or more second wavelength signals among the plurality of second wavelength signals, or adding waves to one or more second wavelength signals among the plurality of second wavelength signals, and another one or more second wavelength signals Wavelength signal drops.
  • adding waves to the one second wavelength signal refers to adding waves to part of the single wavelength signals in the second wavelength signal, or adding waves to the second wavelength signal The whole wave addition; the wave drop of the one second wavelength signal refers to the wave drop of part of the single wavelength signal in the second wavelength signal, or the whole wave drop of the second wavelength signal.
  • adding waves to the one second wavelength signal means adding waves to the second wavelength signal as a whole; dropping waves to the one second wavelength signal means dropping waves to the second wavelength signal as a whole .
  • the process of adding and removing waves once with reference to FIG. 2 .
  • the first wavelength signal is a multi-wavelength signal 1
  • the multi-wavelength signals 1 to 10 shown in FIG. 2 are in a full-wave state.
  • the process of adding waves at one time may include: keeping the multi-wavelength signal 1 unchanged, and dropping at least one of the multi-wavelength signals 2 to 10 .
  • the objects of different power adjustments in the m times of power adjustment performed by the upstream device may be the same or different.
  • the second wavelength signal is usually a service optical signal
  • the number of the adjusted second wavelength signal is small each time the power is adjusted.
  • each power adjustment is an addition or drop of a second wavelength signal. In this way, the influence of power adjustment on the overall communication service in the optical communication system can be reduced.
  • determining the variation of the m SRS power transfer amounts is essentially a process of determining the theoretical value of the variation of the m SRS power transfer amounts of the first wavelength signal. Assuming that there are multiple second wavelength signals, and the wavelength ranges of different second wavelength signals among the multiple second wavelength signals are different, and the first incoming optical power is the incoming optical power of the second wavelength signal before power adjustment, the first The incoming fiber optical power is the incoming optical power of the second wavelength signal after power adjustment, and the process of determining the theoretical value includes the following steps:
  • A1 Acquire the first incoming optical power of the second wavelength signal before m times of power adjustment, and determine m first SRS power transfer amounts based on the preset parameter value and the first incoming optical power.
  • the optical power entering the fiber refers to the optical power of the wavelength signal entering the optical fiber from the upstream device, which can be monitored and obtained by the upstream device.
  • Each of the m first SRS power transfer amounts is determined based on the weighted sum of the first incoming optical powers of the plurality of second wavelength signals obtained before one power adjustment and a preset parameter value.
  • the weight of the incoming optical power of each second wavelength signal in the plurality of second wavelength signals is related to the frequency of the second wavelength signal and the frequency of the first wavelength signal. That is, the weight of the incoming optical power of each second wavelength signal in the plurality of second wavelength signals is related to the wavelength of the second wavelength signal and the wavelength of the first wavelength signal.
  • the first incoming fiber of the second wavelength signal Since the wavelength range of the first wavelength signal and the wavelength range of the second wavelength signal are predetermined and do not change before and after one power adjustment, the first incoming fiber of the second wavelength signal The weight of the power is the same as the weight of the optical power of the second incoming fiber.
  • the preset parameter values include: a preset coefficient, a preset Raman gain coefficient (which is a parameter describing the optical gain generated by stimulated Raman scattering in an optical fiber), and a preset effective length of the optical fiber.
  • the first SRS power transfer amount is the product of a weighted sum of multiple first incoming optical powers, a preset coefficient, a preset Raman gain coefficient, and a preset effective fiber length. For example, the first SRS power transfer amount is calculated based on the first SRS formula, and the first SRS formula includes:
  • A is the preset coefficient
  • gR is the preset Raman gain coefficient
  • L eff is the preset effective fiber length
  • N is the total number of second wavelength signals transmitted in the optical communication system
  • SRS is the first wavelength signal.
  • SRS power transfer amount Pj is the incoming fiber optical power of the jth second wavelength signal in the optical communication system
  • Tj is the weight of the incoming fiber optical power of the jth second wavelength signal in the optical communication system.
  • the Tj is related to the frequency of the jth second wavelength signal and the frequency of the first wavelength signal, which reflects the degree of influence of the jth second wavelength signal on the SRS effect of the first wavelength signal.
  • the second wavelength signal and the first wavelength signal satisfy: as the frequency difference between the second wavelength signal and the first wavelength signal increases, the SRS effect of the second wavelength signal on the first wavelength signal is limited. The degree of influence first increases and then decreases. Correspondingly, the weight of the incoming optical power of the second wavelength signal first increases and then decreases.
  • a first SRS power transfer amount is obtained by substituting the weights of the first incoming optical powers of the N second wavelength signals and the incoming optical powers of the N second wavelength signals determined before the power adjustment into the aforementioned first SRS formula. of.
  • the weight of the incoming optical power of each second wavelength signal is associated with the degree of optical power transfer between the second wavelength signal and the first wavelength signal. For example, T1 indicates that the first second wavelength signal brings power insertion loss to the first wavelength signal (that is, the power of the first wavelength signal is transferred to the power of the first second wavelength signal), then T1 is a negative value. T4 indicates that the fourth second wavelength signal brings power gain to the first wavelength signal (that is, the power of the fourth second wavelength signal is transferred to the power of the first wavelength signal), and T4 is a positive value.
  • the weights of incoming fiber optical powers of each second wavelength signal can be calculated by a preset formula, or can be pre-stored in the memory of the correction coefficient determination device in the form of a data table, which is convenient for the correction coefficient determination device to query during calculation.
  • the data table can be as shown in Table 1.
  • the correction coefficient determination device can use any one wavelength signal of the multiple wavelength signals as the first wavelength signal and other wavelength signals as the second wavelength signal to determine the correction. coefficient.
  • the weights of the incoming optical power of the corresponding second wavelength signals are different. Therefore, the correction coefficient determination device can pre-store the incoming optical power of the second wavelength signals corresponding to the different first wavelength signals. weight value.
  • A is the preset coefficient
  • gR is the preset Raman gain coefficient
  • L eff is the preset effective fiber length
  • M is the wavelength signal (including the first wavelength signal and the second wavelength signal) transmitted in the optical communication system.
  • SRS(i) is the SRS power transfer amount of the first wavelength signal when the i-th wavelength signal is used as the first wavelength signal
  • Pij is when the first wavelength signal is the i-th wavelength signal, in the optical communication system
  • Tij is the weight of the incoming fiber optical power of the jth wavelength signal in the optical communication system when the first wavelength signal is the ith wavelength signal, which reflects the jth wavelength
  • Tij can be calculated by a preset formula, and can also be pre-stored in the memory of the correction coefficient determination device in the form of a data table, which is convenient for the correction coefficient determination device to query during calculation.
  • the data table can be as shown in Table 2.
  • T12 refers to the weight of the incoming fiber optical power of the second wavelength signal when the first wavelength signal is the first wavelength signal, which reflects the effect of the second wavelength signal on the first wavelength signal. The degree of influence produced by the SRS effect of a wavelength signal.
  • T11, T22, T33, T44, T55, T66, and T77 can be 0.
  • SRS formula provided by the embodiments of the present application may also have other forms, as long as the SRS formula obtained by simple deformation on the basis of the SRS formula provided by the present application shall be covered by the protection scope of the embodiments of the present application Inside.
  • the second incoming optical power of the second wavelength signal is acquired, and based on the preset parameter value and the second incoming optical power, m second SRS power transfer amounts are determined.
  • each of the m second SRS power transfer amounts is determined based on a weighted sum of second incoming optical powers of multiple second wavelength signals obtained after one power adjustment and a preset parameter value.
  • the weight of the first incoming fiber optical power and the weight of the second incoming fiber optical power of the same second wavelength signal are the same.
  • the preset parameter values include: preset coefficients, preset Raman gain coefficients, and preset effective fiber lengths.
  • the second SRS power transfer amount is the product of a weighted sum of multiple second incoming optical powers, a preset coefficient, a preset Raman gain coefficient, and a preset effective fiber length.
  • the second SRS power transfer amount and the first SRS power transfer amount are calculated in the same way, which can avoid introducing additional calculation errors.
  • the second SRS power transfer amount is calculated based on the first SRS formula or the second SRS formula provided in step A1.
  • a second SRS power transfer amount is to substitute the weights of the second incoming optical powers of the N second wavelength signals and the incoming optical powers of the N second wavelength signals, which are determined after a power adjustment, into the aforementioned first SRS formula or The second SRS formula is obtained.
  • the change amount of each SRS power transfer amount in the aforementioned m SRS power transfer amount changes is the absolute value of the difference between the first SRS power transfer amount and the second SRS power transfer amount in the same power adjustment.
  • or x t
  • 1 ⁇ t ⁇ m, SRS t and SRS t-1 respectively represent the second SRS power transfer amount and the first SRS power transfer amount of the t-th power adjustment, that is, SRS t-1 indicates that the power
  • SRS t-1 indicates that the power
  • the first SRS power transfer amount determined by the data acquired before the adjustment, and SRS t represents the second SRS power transfer amount determined based on the data acquired after the power adjustment.
  • the foregoing steps A1 to A3 are described by taking as an example that there are multiple second wavelength signals.
  • there may be only one second wavelength signal and when there is only one second wavelength signal, the related process may refer to the process of processing multiple second wavelength signals in the foregoing steps A1 to A3, in which multiple first wavelength signals are processed.
  • the weighted sum of the incoming fiber optical power is replaced by a product of the first incoming optical power and the weight; the weighted sum of multiple second incoming optical powers is replaced by a product of the second incoming optical power and the weight.
  • each of the m optical power variations is an actual value of the variation of the SRS power transfer amount.
  • the variation of each SRS power transfer amount among the m SRS power transfer amount variations obtained by the correction coefficient determining apparatus is a theoretical value of the variation of the SRS power transfer amount.
  • the correction coefficient can be determined by comparing the m actual values with the m theoretical values.
  • the correction coefficient is used to correct the preset parameter value in S202.
  • the process of determining the correction coefficient may include the following steps:
  • the variation of the optical power corresponding to the first wavelength signal is y 1
  • the change amount of the optical power corresponding to the first wavelength signal is y 2
  • the variation of the optical power corresponding to the first wavelength signal is y m
  • the slope k can be obtained by performing linear regression on the obtained (x 1 , y 1 ), (x 2 , y 2 )...(x m , y m ).
  • the m optical power variation and the m SRS power transfer variation are input into the preset correction coefficient determination model, and the correction coefficient is received to determine the correction coefficient output by the model.
  • the correction coefficient determination model is a model obtained by pre-training, and is used to determine the correction coefficient based on the m optical power variation amounts and the variation amounts of the m SRS power transfer amounts.
  • the correction coefficient determination model may be an artificial intelligence (Artificial Intelligence, AI) model.
  • the preset parameter values include: preset coefficients, preset Raman gain coefficients, and preset effective fiber lengths.
  • the SRS energy transfer amount is determined based on the product of each parameter value in the preset parameter values. Therefore, any parameter value in the preset parameter values can be replaced by the product of the any parameter value and the correction coefficient, and the update of the preset parameter value can be completed.
  • the preset parameter value may be replaced by the product of the correction coefficient and the entire preset parameter value, so as to complete the update of the preset parameter value.
  • the updated preset parameter value is the corrected and accurate parameter value. For example, replace the original gR value with the value of gR*k, where gR is the preset Raman gain coefficient.
  • the Raman gain coefficient can be detected by a lock-in amplifier, and the effective length of the fiber can be calculated by detecting the actual fiber insertion loss.
  • the deployment cost of the lock-in amplifier is high, and on the other hand, the use of the lock-in amplifier is easily affected by the environment, and the accuracy of the detected Raman gain coefficient is low.
  • the accuracy of the effective length of the optical fiber calculated by using the optical fiber insertion loss is relatively low. Therefore, although the actual collection of multiple parameter values is performed, the final calculated SRS energy transfer amount is still less accurate. In addition, since multiple parameter values are corrected, the correction process takes a long time, and the operability is low.
  • the correction coefficient is used to correct the preset parameter value as a whole, without setting a lock-in amplifier, which effectively saves the deployment cost of the optical communication system. Get the exact amount of SRS energy transfer. Moreover, since the preset parameter value is corrected at one time by the correction coefficient, the correction time delay is short and the operability is high.
  • the target wavelength signal is a wavelength signal to be monitored in the optical communication system, and the target wavelength signal is a service optical signal normally transmitted in the optical communication system. Since the updated preset parameter value is more accurate, the accurate SRS power transfer amount of the target wavelength signal can be determined. For example, after substituting the updated preset parameter values into the aforementioned first SRS formula or second SRS formula, the target wavelength signal can be used as the first wavelength signal, and other signals in the optical communication system can be used as the second wavelength signal, and the first wavelength signal can be used as the second wavelength signal. The first SRS formula or the second SRS formula calculates the SRS power transfer amount of the target wavelength signal.
  • the upstream device can perform power pre-compensation on the target wavelength signal, or the downstream device can perform power compensation on the receiving side, thus reducing the interference of the SRS effect on the target wavelength signal.
  • m optical power changes of the downstream device are obtained as m SRS powers
  • the actual value of the change of the transfer amount and then based on the preset parameter value and the incoming optical power of the second wavelength signal obtained before and after each power adjustment in the m times of power adjustment, determine the change of the m SRS power transfer amount
  • the actual value of , and the correction coefficient is determined based on the m theoretical values and the m actual values.
  • the correction coefficient thus determined is combined with the actual usage scenario, so that an accurate correction coefficient is obtained to correct the preset parameter value, and then the accurate SRS energy transfer amount can be determined.
  • each optical power variation in the m optical power variation is the absolute value of the difference between a set of first optical powers and second optical powers of the first wavelength signal value.
  • the set of first optical power and second optical power are detected by the downstream device before and after the upstream device performs one power adjustment.
  • , or y t
  • ; before and after the second power adjustment, the optical power corresponding to the first wavelength signal is The power change amount is y 2
  • ; ... before and after the mth power adjustment, the optical power change amount corresponding to the first wavelength signal is y m
  • the downstream device detects and obtains m groups of first optical power and second optical power, and sends the m groups of first optical power and second optical power to the correction coefficient determination device , the m optical power variation amounts are determined by the correction coefficient determination device based on the received m groups of the first optical power and the second optical power.
  • the m optical powers are determined based on the m groups of first optical powers and second optical powers change amount, and send the m optical power change amounts to the correction coefficient determination device.
  • FIG. 4 is a schematic structural diagram of a downstream device 102 provided in an embodiment of the present application.
  • an OA1023 is set on the optical channel through which each second wavelength signal passes, and the input end of the OA1023 has an optical power monitoring function.
  • the downstream device 102 can The first optical power and the second optical power of each second wavelength signal are monitored through the input end of the OA1023 set on the optical channel through which each second wavelength signal passes.
  • a monitoring optical module 1024 may be set in the downstream device 102, the monitoring optical module 1024 is connected to the output end of the splitter 1021, and the downstream device 102 can monitor each The first optical power and the second optical power of the two-wavelength signal.
  • the downstream device 102 is simultaneously arranged with multiple monitoring devices for monitoring the optical power, and the downstream device 102 can monitor the first optical power and the second optical power of each second wavelength signal respectively through the multiple monitoring devices.
  • the various monitoring devices include the OA1023 and the monitoring optical module 1024.
  • the downstream device 102 can monitor the first optical power and the second optical power of each second wavelength signal through the input end of the OA1023, and at the same time monitor the optical power of each second wavelength through the monitoring optical module 1024.
  • the monitoring optical module 1024 may be an optical detector, an optical power monitor (Optical Power Monitor, OPM) or an optical spectrum analyzer (OSA).
  • the photodetector may be a photodiode detector (Photodiode Detector, PD) or an avalanche photodiode detector (Avalanche Photodiode Detectors, APD).
  • the devices used by the downstream equipment to monitor the optical power are usually deployed for the service optical signal, so the first wavelength signal and the second wavelength signal are It can be a service optical signal, so that the deployment of additional unconventional devices for optical power monitoring can be avoided, and the cost of monitoring optical power can be reduced.
  • each optical power variation in the m optical power variation is the difference between the first optical fiber insertion loss and the second optical fiber insertion loss of a set of the first wavelength signal
  • the absolute value of , a set of the first fiber insertion loss and the second fiber insertion loss are detected by the upstream device or the downstream device before and after performing a power adjustment.
  • Optical fiber insertion loss refers to the energy loss generated by wavelength signals passing through the optical fiber, which is usually negative.
  • the total optical power at the receiving end detected by the downstream device is equal to the sum of the total optical power at the transmitting end of the upstream device and the fiber insertion loss.
  • the optical power of the transmitting end of the first wavelength signal before the power adjustment is P in1
  • the receiving end of the first wavelength signal The power (that is, the optical power detected by the downstream device) is P out1
  • the optical power of the transmitting end of the first wavelength signal after the power adjustment is adjusted is P in1
  • the optical power at the receiving end of the first wavelength signal is P out2
  • the fiber insertion loss of the first wavelength signal is Loss 2
  • P in1 +Loss 2 P out2
  • each optical power change amount may be an absolute value of the difference between a set of first fiber insertion loss and second fiber insertion loss of the first wavelength signal.
  • , or y t
  • 1 ⁇ t ⁇ m, Loss t and Loss t-1 respectively represent the second fiber insertion loss and the first fiber insertion loss detected during the t-th power adjustment, that is, Loss t-1 represents the The fiber insertion loss of the first wavelength signal obtained before the power adjustment, and Loss t represents the fiber insertion loss of the first wavelength signal obtained after the power adjustment.
  • ; before and after the second power adjustment, the optical power corresponding to the first wavelength signal is The power change amount is y 2
  • ;...before and after the mth power adjustment, the optical power change amount corresponding to the first wavelength signal is y m
  • the upstream device detects and obtains m groups of the first fiber insertion loss and the second fiber insertion loss, and sends the m groups of the first fiber insertion loss and the second fiber insertion loss to the A correction coefficient determination device, wherein the m optical power variation amounts are determined by the correction coefficient determination device based on the received m groups of the first optical fiber insertion loss and the second optical fiber insertion loss.
  • the upstream device determines the m optical power variations, and the m optical power variations are sent to the correction coefficient determination device.
  • the downstream device detects and obtains m groups of first fiber insertion loss and second fiber insertion loss, and sends the m groups of first fiber insertion loss and second fiber insertion loss to A correction coefficient determination device, wherein the m optical power variation amounts are determined by the correction coefficient determination device based on the received m groups of the first optical fiber insertion loss and the second optical fiber insertion loss.
  • the downstream device determines the m optical power variations, and the m optical power variations are sent to the correction coefficient determination device.
  • the upstream equipment and/or downstream equipment in the optical communication system usually have a fault monitoring function, and the fault monitoring function is used to determine whether there is a link failure in the communication link by monitoring the optical fiber insertion loss in the communication link in the optical communication system .
  • the first device and the second device is an upstream device and the other is a downstream device.
  • the first device is provided with a monitoring (monitor, MON) module, also called a monitoring board, when the monitoring module performs fault monitoring, it sends an optical signal to the second device through an optical fiber, and receives the first device.
  • MON monitoring
  • the second device determines the optical fiber insertion loss in the communication link through the optical signal returned by the optical fiber, the transmitted optical signal and the received optical signal, and determines whether there is a link failure in the link based on the optical fiber insertion loss.
  • the monitoring module includes an optical time-domain reflectometer (OTDR) or an optical frequency domain reflectometer (OFDR).
  • the optical signal sent by the monitoring module is usually a monitoring optical signal, and the wavelength range of the monitoring optical signal and the service optical signal is different, so as to avoid the interference of the fault monitoring to the normal communication service.
  • the monitoring optical signal is usually a single wavelength signal.
  • the first wavelength signal may be a monitoring optical signal
  • the second wavelength signal may be a service optical signal.
  • FIG. 5 is a schematic structural diagram of an upstream device 101 provided by an embodiment of the present application. Normally, in the upstream device 101, an OA1013 is set on the optical channel through which each second wavelength signal passes, and the output end of the OA1013 has an optical power monitoring function. In the first acquisition method, the upstream device 101 can The output end of the OA1013 set on the optical channel through which each second wavelength signal passes monitors the incoming optical power of each second wavelength signal.
  • a monitoring optical module 1014 can be set in the upstream device 101, the monitoring optical module 1014 is connected to the output end of the combiner 1011, and the upstream device 101 can monitor each second wavelength through the monitoring optical module 1014 The incoming optical power of the signal.
  • the upstream device 101 is simultaneously arranged with multiple monitoring devices for monitoring the optical power, and the upstream device 101 can monitor the incoming optical power of each second wavelength signal through the multiple monitoring devices, and monitor the optical power of the multiple second wavelength signals.
  • the monitoring results for the same second wavelength signal obtained by the monitoring device are weighted and summed, so as to obtain a more accurate optical power monitoring result.
  • the various monitoring devices include the OA1013 and the monitoring optical module 1014.
  • the upstream device 101 can monitor the incoming optical power of each second wavelength signal through the output end of the OA1013, and simultaneously monitor each second wavelength through the monitoring optical module 1014.
  • the incoming fiber optical power of the signal, and the monitoring result of the OA 1013 and the monitoring result of the monitoring optical module 1014 for the same second wavelength signal are weighted and summed to obtain a more accurate incoming fiber optical power monitoring result.
  • the upstream device may also use the power of the second wavelength number input to the upstream device to subtract the insertion loss of the second wavelength signal in the upstream device to calculate the The incoming optical power of the second wavelength signal.
  • the precise incoming optical power of the second wavelength signal can be obtained.
  • the incoming optical power of the second wavelength signal is determined by using the existing devices of the upstream equipment, without adding additional measurement devices, reducing the deployment cost of the upstream equipment, and having strong practicability .
  • the incoming optical power of the first wavelength signal needs to be acquired, the incoming optical power can also be acquired by an upstream device.
  • the acquisition process refer to the aforementioned acquisition process of the incoming optical power of the second wavelength signal. This application The embodiment will not describe this in detail.
  • the variation of each SRS power transfer amount and the variation of each optical power are obtained by obtaining the absolute value of the difference between the corresponding parameter before power adjustment and after power adjustment as an example for description.
  • the aforementioned variation of each SRS power transfer amount and each optical power variation can also be obtained in other ways, as long as it is ensured that the final determined variation of each SRS power transfer amount and each optical power variation are equal to each other. Positive and negative are the same.
  • the aforementioned variation of each SRS power transfer amount and each of the optical power variation may also be replaced by any of the following implementations:
  • each SRS power transfer amount is the difference between the first SRS power transfer amount and the second SRS power transfer amount of the same power adjustment; each optical power variation is a group of the first wavelength signal.
  • the difference between the first optical power and the second optical power, or each variation of the optical power is the difference between the first optical fiber insertion loss and the second optical fiber insertion loss of a group of the first wavelength signal.
  • each SRS power transfer amount is the difference between the second SRS power transfer amount and the first SRS power transfer amount of the same power adjustment; each optical power change amount is a group of the first wavelength signal
  • the difference between the second optical power and the first optical power, or each variation of the optical power is the difference between the insertion loss of a group of the second optical fibers and the insertion loss of the first optical fiber of the first wavelength signal.
  • the correction coefficient determination device may periodically perform the aforementioned S201 to S205 to achieve periodic acquisition and update of the correction coefficient, so as to continuously maintain accurate Correction coefficient to achieve accurate acquisition of SRS power transfer amount.
  • the first wavelength signals of different periods may be different, and the power adjustment sequence of the second wavelength signals may also be different. This is not repeated in this embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a correction coefficient determination device 30 provided by an embodiment of the present application.
  • the device includes: a first acquisition module 301 , a second acquisition module 302 , and a determination module 303 .
  • the first acquisition module 301 is configured to keep the first wavelength signal unchanged in the upstream device in the optical communication system, and after performing m times of power adjustment on the second wavelength signal, acquire m optical power changes of the downstream device.
  • the wavelength range of a wavelength signal is different from that of the second wavelength signal, each of the m optical power changes reflects the change of the optical power of the first wavelength signal before and after a power adjustment, m is greater than A positive integer of 1, the optical communication system includes the upstream device and the downstream device; the second acquisition module 302 is used to obtain the second acquisition module 302 based on a preset parameter value and the second power adjustment before and after each power adjustment in the execution of m times of power adjustment.
  • the incoming optical power of the wavelength signal determines the variation of the m SRS power transfer quantities; the determining module 303 is used to determine the correction coefficient based on the m optical power variation and the variation of the m SRS power transfer quantities, The correction coefficient is used to correct the preset parameter value.
  • the first acquisition module obtains m optical power changes of the downstream device by keeping the first wavelength signal unchanged by the upstream device and performing m times of power adjustment on the second wavelength signal.
  • the second obtaining module determines the actual value of the variation of the m SRS power transfer amounts based on the preset parameter value and the incoming optical power of the second wavelength signal obtained before and after each power adjustment in the m times of power adjustment.
  • the m actual values of the variation of the SRS power transfer amount, and the correction coefficients are determined based on the m theoretical values and the m actual values. The correction coefficient determined in this way is combined with the actual usage scenario, so that an accurate correction coefficient can be obtained to correct the preset parameter value, and then the accurate SRS energy transfer amount can be determined.
  • the second acquisition module 302 is configured to: acquire the first incoming optical power of the second wavelength signal before the m times of power adjustment, and based on the preset parameter value and the Once the optical power of the incoming fiber, determine m first SRS power transfer amounts; after obtaining the m times of power adjustment, the second incoming optical power of the second wavelength signal is obtained, and based on the preset parameter value and the second incoming fiber Optical power, determine m second SRS power transfer amounts; based on m first SRS power transfer amounts and the m second SRS power transfer amounts, determine the variation of the m SRS power transfer amounts, wherein the m SRS power transfer amounts In the variation of the SRS power transfer amount, the variation of each SRS power transfer amount is the absolute value of the difference between the first SRS power transfer amount and the second SRS power transfer amount in the same power adjustment.
  • each first SRS power in the m first SRS power transfer amounts The transfer amount is determined based on the weighted sum of the first incoming fiber optical powers of the plurality of second wavelength signals obtained before the power adjustment and the preset parameter value; each second SRS power in the m second SRS power transfer amounts The transfer amount is determined based on the weighted sum of the second incoming optical powers of the plurality of second wavelength signals obtained after one power adjustment and the preset parameter value.
  • the weight of the incoming optical power of each second wavelength signal in the plurality of second wavelength signals is related to the frequency of the second wavelength signal and the frequency of the first wavelength signal.
  • the preset parameter value includes: a preset coefficient, a preset Raman gain coefficient, and a preset effective fiber length;
  • the first SRS power transfer amount is a weighted sum of multiple first incoming fiber optical powers, The product of the preset coefficient, the preset Raman gain coefficient and the preset effective fiber length;
  • the second SRS power transfer amount is a weighted sum of multiple second incoming fiber optical powers, the preset coefficient, The product of the preset Raman gain coefficient and the preset effective length of the optical fiber.
  • the determining module 303 is configured to: use the variation of the m SRS power transfer quantities as an independent variable, use the m optical power variation as a dependent variable of the variation of the corresponding SRS power transfer quantity, and use In the way of linear regression, the slope k is determined, wherein the variation of the SRS power transfer amount determined by the same power adjustment corresponds to the variation of the optical power; the slope k is used as the correction coefficient.
  • each of the m optical power changes is an absolute value of a difference between a group of first optical powers and second optical powers of the first wavelength signal
  • the set of first optical power and second optical power are detected by the downstream device before and after the upstream device performs a power adjustment.
  • each of the m optical power changes is the difference between a set of first fiber insertion losses and second fiber insertion losses of the first wavelength signal
  • the absolute value, the set of the first fiber insertion loss and the second fiber insertion loss are detected by the upstream device before and after performing a power adjustment.
  • FIG. 7 is a schematic structural diagram of a correction coefficient determination apparatus 30 provided by an embodiment of the present application.
  • the apparatus further includes: a correction module 304 for updating the preset parameter value to the correction coefficient and The product of the preset parameter values.
  • FIG. 8 is a possible basic hardware architecture of the apparatus for determining a correction coefficient provided by an embodiment of the present application.
  • the correction coefficient determination apparatus 600 includes a processor 601 , a memory 602 and a communication interface 603 .
  • the number of processors 601 may be one or more, and FIG. 8 only illustrates one of the processors 601.
  • the processor 601 may be a central processing unit (central processing unit, CPU), a microcontroller unit (Microcontroller Unit, MCU), a digital signal processing (Digital Signal Process) module, a field programmable logic gate array (Field Programmable gate array) Gate Array, FPGA) or integrated circuit. If the correction coefficient determination apparatus 600 has a plurality of processors 601, the types of the plurality of processors 601 may be different, or may be the same.
  • the multiple processors 601 of the correction coefficient determination apparatus 600 may also be integrated into a multi-core processor.
  • the memory 602 stores computer instructions and data; the memory 602 may store computer instructions and data required to implement the correction coefficient determination method provided by the present application, for example, the memory 602 stores instructions for implementing the steps of the correction coefficient determination method.
  • the memory 602 may be any one or any combination of the following storage media: non-volatile memory (such as read-only memory (Read-Only Memory, ROM), solid state disk (Solid State Disk or Solid State Drive, SSD), Hard disk (Hard Disk Drive, HDD), optical disc), volatile memory, etc.
  • the communication interface 603 may be any one or any combination of the following devices: a network interface (eg, an Ethernet interface), a wireless network card, and other devices with a network access function.
  • the communication interface 603 is used for data communication between the correction coefficient determination apparatus 600 and other correction coefficient determination apparatuses or terminals.
  • the correction coefficient determination apparatus 600 may also include a bus, and the bus may connect the processor 601 with the memory 602 and the communication interface 603 .
  • the processor 601 can access the memory 602, and can also use the communication interface 603 to perform data interaction with other correction coefficient determination devices or terminals.
  • the correction coefficient determination apparatus 600 executes the computer instructions in the memory 602, so that the correction coefficient determination apparatus 600 implements the correction coefficient determination method provided by the present application.
  • a non-transitory computer-readable storage medium including instructions such as a memory including instructions, is also provided, and the instructions can be executed by the processor of the correction coefficient determination apparatus to complete the steps shown in the various embodiments of the present application.
  • method for determining the correction factor may be ROM, Random Access Memory (RAM), Compact Disc Read-Only Memory (CD-ROM), magnetic tape, floppy disk, and optical data storage devices Wait.
  • FIG. 9 is a schematic structural diagram of an optical communication system 10 provided by an embodiment of the present application.
  • the optical communication system 10 includes: an upstream device 101, a downstream device 102, and any correction coefficient determination device 103 provided by the embodiment of the present application.
  • the coefficient determination apparatus 103 may be the correction coefficient determination apparatus 30 shown in FIG. 6 or FIG. 7 , or the correction coefficient determination apparatus 600 shown in FIG. 8 .
  • the upstream device 101 is used to send the wavelength signal to the downstream device 102 through the optical fiber; the downstream device 102 is used to receive the wavelength signal sent by the upstream device 101 through the optical fiber; the upstream device 101 is also used to keep the first wavelength signal unchanged, and to the second wavelength.
  • the signal performs m times of power adjustment, the first wavelength signal and the second wavelength signal have different wavelength ranges, m is a positive integer greater than 1; the correction coefficient determination device 103 is integrated on the upstream device 101 or the downstream device 102 .
  • FIG. 9 takes as an example that the correction coefficient determination device 103 is integrated in the upstream device 101 .
  • correction coefficient determination device when the correction coefficient determination device provided in the above embodiment executes the correction coefficient determination method, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions may be allocated to different functions as required. Module completion means dividing the internal structure of the device into different functional modules to complete all or part of the functions described above.
  • the correction coefficient determination device provided in the above embodiment and the correction coefficient determination method embodiments belong to the same concept, and the specific implementation process thereof is detailed in the method embodiments, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种校正系数确定方法、装置及光通信系统,属于光通信领域。方法包括:在光通信系统中的上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整后,获取下游设备的m个光功率变化量,第一波长信号与第二波长信号的波长范围不同,m个光功率变化量中每个光功率变化量反映一次功率调整前后的第一波长信号的光功率的变化量;基于预设参数值以及执行m次功率调整中每次功率调整前后分别获取的第二波长信号的入纤光功率,确定m个受激拉曼散射SRS功率转移量的变化量;基于m个光功率变化量以及m个SRS功率转移量的变化量,确定校正系数。本申请可以获取准确的校正系数来校正预设参数值。

Description

校正系数确定方法、装置及光通信系统
本申请要求于2021年3月26日提交的申请号202110327447.X、申请名称为“校正系数确定方法、装置及光通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,特别涉及一种校正系数确定方法、装置及光通信系统。
背景技术
受激拉曼散射(Stimulated Raman Scattering,SRS)效应是光通信系统中一种常见的非线性效应。其指的是光信号进入光纤后,引发介质中分子振动,从而产生新的光频的一种效应。SRS效应表现为光信号的能量经过光纤传输后产生转移。
目前,采用SRS公式计算光信号的能量经过光纤传输后的转移量。在SRS公式中,一些参数值是预先确定的。例如,有些参数值为在实验室确定的测量值。但是,在实际使用过程中这些预设参数值可能产生一定的变化。因此在光通信系统中,采用预设参数值计算得到的光信号的SRS能量转移量的准确性较低。
发明内容
本申请提供了一种校正系数确定方法、装置及光通信系统。所述技术方案如下:
第一方面,提供了一种校正系数确定方法,该方法由校正系数确定装置执行,该校正系数确定装置可以集成在光通信系统的上游设备中,也可以集成在光通信系统的下游设备中,还可以集成在光通信系统中独立设置的设备中,例如集成在网管设备中。该方法包括:在光通信系统中的上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整后,获取下游设备的m个光功率变化量,该m个光功率变化量中每个光功率变化量反映一次功率调整前后的该第一波长信号的光功率的变化量,m为大于1的正整数。例如,该一次功率调整包括一次加掉波。一次加掉波包括一次加波和/或掉波。该光通信系统包括该上游设备以及该下游设备;基于预设参数值以及该执行m次功率调整中每次功率调整前后分别获取的该第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量;基于该m个光功率变化量以及该m个SRS功率转移量的变化量,确定该校正系数,该校正系数用于校正该预设参数值。该第一波长信号与该第二波长信号的波长范围不同。示例的,第一波长信号可以为业务光信号或者监控光信号,第二波长信号可以为业务光信号。
本申请中,通过由上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整,获取下游设备的m个光功率变化量作为m个SRS功率转移量的变化量的实际值,再基于预设参数值以及执行m次功率调整中每次功率调整前后分别获取的第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量的实际值,并基于m个理论值以及m个实际值确定校正系数。如此确定的校正系数与实际使用场景结合,从而获取准确的校正系数来校正预 设参数值,进而可以确定准确的SRS能量转移量。
可选地,该基于预设参数值以及该执行m次功率调整中每次功率调整前后分别获取的该第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量的过程,包括:获取该m次功率调整前,该第二波长信号的第一入纤光功率,并基于该预设参数值与该第一入纤光功率,确定m个第一SRS功率转移量;获取该m次功率调整后,该第二波长信号的第二入纤光功率,并基于该预设参数值与该第二入纤光功率,确定m个第二SRS功率转移量;基于m个第一SRS功率转移量和该m个第二SRS功率转移量,确定该m个SRS功率转移量的变化量。其中,该m个SRS功率转移量的变化量中每个SRS功率转移量的变化量为同一次功率调整的该第一SRS功率转移量与该第二SRS功率转移量的差值的绝对值。
在第一种情况中,该第二波长信号有多个,多个第二波长信号中不同第二波长信号的波长范围不同;该m个第一SRS功率转移量中每个第一SRS功率转移量基于一次功率调整前获取的该多个第二波长信号的第一入纤光功率的加权和以及该预设参数值确定;该m个第二SRS功率转移量中每个第二SRS功率转移量基于一次功率调整后获取的该多个第二波长信号的第二入纤光功率的加权和以及该预设参数值确定。
在第二种情况中,该第二波长信号有一个;该m个第一SRS功率转移量中每个第一SRS功率转移量基于一次功率调整前获取的该一个第二波长信号的第一入纤光功率与权值的乘积以及该预设参数值确定;该m个第二SRS功率转移量中每个第二SRS功率转移量基于一次功率调整后获取的该一个第二波长信号的第二入纤光功率与权值的乘积以及该预设参数值确定。
在前述两种情况中,该一个或多个第二波长信号中每个第二波长信号的入纤光功率的权值与该第二波长信号的频率以及该第一波长信号的频率相关,该权值反映该第二波长信号与第一波长信号之间的光功率转移程度。
示例的,该预设参数值包括:预设系数,预设的拉曼增益系数以及预设的光纤有效长度;该第一SRS功率转移量为多个该第一入纤光功率的加权和、该预设系数、该预设的拉曼增益系数以及该预设的光纤有效长度的乘积;该第二SRS功率转移量为多个该第二入纤光功率的加权和、该预设系数、该预设的拉曼增益系数以及该预设的光纤有效长度的乘积。
例如,第一SRS功率转移量和第二SRS功率转移量均基于第一SRS公式计算得到,该第一SRS公式包括:
Figure PCTCN2022076143-appb-000001
其中,A为预设系数,gR为预设的拉曼增益系数,L eff为预设的光纤有效长度,N为光通信系统中传输的第二波长信号的总数,SRS为第一波长信号的SRS功率转移量,Pj为光通信系统中第j个第二波长信号的入纤光功率,Tj为光通信系统中第j个第二波长信号的入纤光功率的权值。该Tj与该第j个第二波长信号的频率以及第一波长信号的频率相关,其反映了第j个第二波长信号对第一波长信号的SRS效应所产生的影响程度。
该第一SRS公式的参数较少,公式的表达形式更简单,采用该第一SRS公式能够快速计算得到该SRS功率转移量。
m个光功率变化量中每个光功率变化量为SRS功率转移量的变化量的实际值。校正系数确定装置获取的m个SRS功率转移量的变化量中每个SRS功率转移量的变化量为SRS功率转移量的变化量的理论值。则通过m个实际值与m个理论值的对比,可以确定校正系数。该 基于该m个光功率变化量以及该m个SRS功率转移量的变化量,确定该校正系数的过程,包括:将该m个SRS功率转移量的变化量作为自变量,将该m个光功率变化量作为对应的SRS功率转移量的变化量的因变量,采用线性回归的方式,确定斜率k,其中,由同一次功率调整所确定的SRS功率转移量的变化量和光功率变化量对应;将该斜率k作为该校正系数。
通过线性回归的方式确定校正系数的过程简洁,确定的校正系数的准确性较高。
前述m个光功率变化量中的每个光功率变化量的获取方式可以有多种,本申请以以下两种获取方式为例进行说明:
在光功率变化量的第一种获取方式中,该m个光功率变化量中的每个光功率变化量为该第一波长信号的一组第一光功率和第二光功率的差值的绝对值,该一组第一光功率和第二光功率为该下游设备在该上游设备执行一次功率调整前后检测得到的。
在光功率变化量的第二种获取方式中,该m个光功率变化量中的每个光功率变化量为该第一波长信号的一组第一光纤插损和第二光纤插损的差值的绝对值,该一组第一光纤插损和第二光纤插损为该上游设备在执行一次功率调整前后检测得到的。
本申请中,通过由上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整,获取下游设备的m个光功率变化量作为m个SRS功率转移量的变化量的实际值,再基于预设参数值以及执行m次功率调整中每次功率调整前后分别获取的第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量的理论值,并基于m个实际值以及m个理论值确定校正系数。
由于实际值和理论值的正负应该是一致的,为了计算方便,减少数值正负不一致带来的干扰。前述实现方式中,以每个SRS功率转移量的变化量以及每个光功率变化量是通过求取对应参数在功率调整前和功率调整后的差值的绝对值得到为例进行说明。实际实现时,前述每个SRS功率转移量的变化量和每个光功率变化量还可以采用其他方式获取,只要保证最终确定的每个SRS功率转移量的变化量和对应的每个光功率变化量的正负一致。示例的,前述每个SRS功率转移量的变化量和每个光功率变化量还可以采用以下任意一种实现方式替换:
第一、每个SRS功率转移量的变化量为同一次功率调整的第一SRS功率转移量与第二SRS功率转移量的差值;每个光功率变化量为第一波长信号的一组第一光功率和第二光功率的差值,或者,每个光功率变化量为第一波长信号的一组第一光纤插损和第二光纤插损的差值。
第二、每个SRS功率转移量的变化量为同一次功率调整的第二SRS功率转移量与第一SRS功率转移量的差值;每个光功率变化量为第一波长信号的一组第二光功率和第一光功率的差值,或者,每个光功率变化量为第一波长信号的一组第二光纤插损和第一光纤插损的差值。
在获取了校正系数后,校正系数确定装置还可以将该预设参数值更新为该校正系数与该预设参数值的乘积。更新后的预设参数值用于计算需要检测的目标波长信号的SRS能量转移量。
第二方面,提供了一种校正系数确定装置,该校正系数确定装置可以包括至少一个模块,该至少一个模块可以用于实现上述第一方面或者第一方面的各种可能实现提供的该校正系数确定方法。
第三方面,提供一种校正系数确定装置,该装置包括:处理器和存储器;该存储器存储 计算机指令;该处理器执行该存储器存储的计算机指令,使得该校正系数确定装置执行上述第一方面或者第一方面的各种可能实现提供的该校正系数确定方法。
第四方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,该计算机指令指示计算机设备执行上述第一方面或者第一方面的各种可能实现提供的该校正系数确定方法。
第五方面,提供一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于执行上述第一方面或者第一方面的各种可能实现提供的该校正系数确定方法。
第六方面,提供一种通信系统包括:上游设备、下游设备和如第二方面或第三方面任一所述的校正系数确定装置;该上游设备用于通过光纤向该下游设备发送波长信号;该下游设备用于通过该光纤接收该上游设备发送的波长信号;该上游设备还用于保持第一波长信号不变,并对第二波长信号执行m次功率调整,该第一波长信号与该第二波长信号的波长范围不同,m为大于1的正整数;该校正系数确定装置集成在该上游设备或该下游设备上。
第七方面,提供一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器可以从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述第一方面或者第一方面的各种可能实现提供的该校正系数确定方法。
本申请中,通过由上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整,获取下游设备的m个光功率变化量作为m个SRS功率转移量的变化量的实际值,再基于预设参数值以及执行m次功率调整中每次功率调整前后分别获取的第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量的理论值,并基于m个实际值以及m个理论值确定校正系数。如此确定的校正系数与实际使用场景结合,从而获取准确的校正系数来校正预设参数值,进而可以确定准确的SRS能量转移量。
附图说明
图1是本申请实施例提供的一种校正系数确定方法所涉及的光通信系统10的结构示意图;
图2是本申请实施例提供的一种波长信号的分布示意图;
图3是本申请实施例提供一种校正系数确定方法的流程示意图;
图4是本申请实施例提供的一种下游设备的结构示意图;
图5是本申请实施例提供的一种上游设备的结构示意图;
图6是本申请实施例提供的一种校正系数确定装置的结构示意图;
图7是本申请实施例提供的一种校正系数确定装置的结构示意图;
图8是本申请实施例提供的校正系数确定装置的一种可能的基本硬件架构;
图9是本申请实施例提供一种光通信系统的结构示意图。
具体实施方式
为使本申请的原理和技术方案更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是本申请实施例提供的一种校正系数确定方法所涉及的光通信系统10的结构示意图。该光通信系统包括:上游设备101和下游设备102,该上游设备101用于通过光纤向下游设 备102发送波长信号。该上游设备101和下游设备102可以为光放大器站点或可重构光分叉复用(Reconfigurable Optical Add-Drop Multiplexe,ROADM)站点等。
上游设备101包括合路器1011,下游设备包括分路器1021,上游设备101通过合路器1011向下游设备的分路器1021发送波长信号。可选地,当上游设备101和下游设备102是中间设备(也称中继设备)时,上游设备101还包括分路器1012,该分路器1012用于接收波长信号;下游设备102还包括分路器1022,该分路器1022用于发送波长信号。
其中,前述上游设备101和下游设备102中的合路器和分路器也称为滤波器或合分波器,其可以为光纤线路接口板(fiber interface unit,FIU)、波分复用器(Wavelength Division Multiplexing,WDM)、阵列波导光栅(Arrayed Waveguide Grating,AWG)、梳状滤波器(Interleaver,ITL)和波长选择开关(Wavelength Selective Switch,WSS)中的任一种。
实际实现时,上游设备101和下游设备102中还包括光放大器(Optical Amplifier,OA),该OA包括掺铒光纤放大器(Erbium-doped Fiber Amplifier,EDFA)、拉曼光纤放大器(也称拉曼放大器,Raman Fiber Amplifier,RFA)和半导体光放大器(Semiconductor Optical Amplifier,SOA)等中的一种或多种。
本申请实施例提供的校正系数确定方法用于基于对波长信号的处理结果,对SRS的预设参数值进行校正,以提高计算得到的波长信号的SRS能量转移量的准确性。本申请实施例中,每个波长信号都具有一个或多个波长值,波长信号可以根据预设的监测需求划分。每个波长信号可以是单波长信号,也可以是多波长信号。其中,单波长信号指的是具有一个波长值的信号,多波长信号指的是具有多个波长值的信号。本申请实施例中通过单波长信号的通道编号来区分各单波长信号(例如Ch1、Ch2等)。通过每个单波长信号的通道编号即可确定每个单波长信号的波长值。这些波长信号既可以属于C波段(C Band),也可以属于L波段(L Band)。为了便于读者理解,下面以图2为例对波长信号进行解释。图2是本申请实施例提供的一种波长信号的分布示意图。图2中假设光通信系统共包括Ch1-Ch100共100个单波长信号,且这100个单波长信号可以划分为10个多波长信号。每个多波长信号包括连续的10个单波长信号,如多波长信号1包括单波长信号Ch1-Ch10,多波长信号2包括单波长信号Ch11-Ch20,…,多波长信号10包括Ch91-Ch100。
图3是本申请实施例提供一种校正系数确定方法的流程示意图。该方法由校正系数确定装置执行,该校正系数确定装置可以集成在光通信系统的上游设备中,也可以集成在光通信系统的下游设备中,还可以集成在光通信系统中独立设置的设备中,例如集成在网管设备中。如图3所示,该方法包括:
S201、在光通信系统中的上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整后,获取下游设备的m个光功率变化量。
其中,第一波长信号与第二波长信号的波长范围不同,也即是两者具有的波长值不同。在本申请实施例中,第二波长信号是光通信系统中传输的波长信号中除第一波长信号之外的波长信号。
前述m个光功率变化量中每个光功率变化量反映一次功率调整前后(即一次功率调整之前和该次功率调整之后)的第一波长信号的光功率的变化量。m为大于1的正整数。例如,5≤m≤10。对于一次功率调整,第一波长信号保持不变,则假设功率调整之前的第一波长信号的发射端光功率(即上游设备检测的光功率)为P in1,第一波长信号的接收端光功率(即下 游设备检测的光功率)为P out1,SRS功率转移量为SRS 1,则P in1+SRS 1=P out1;假设功率调整之后的第一波长信号的发射端光功率为P in1,第一波长信号的接收端光功率为P out2,SRS功率转移量为SRS 2,则P in1+SRS 2=P out2,则SRS 2-SRS 1=P out2-P out1。如此可知,实际获取的每个光功率变化量为SRS功率转移量的变化量的实际值。
前述保持第一波长信号不变指的是保持第一波长信号具有的波长的位置、数量以及功率均不变,也即是不对第一波长信号进行处理。
本申请实施例中,一次功率调整可以通过对波长信号进行一次功率衰减实现,还可以通过对波长信号进行一次加掉波实现,还可以通过其他方式实现,只要保证经过一次功率调整前后的波长信号的功率不同即可。参考图1,前述上游设备可以通过合路器1011控制波长信号的功率衰减,例如合路器1011为WSS,该WSS可以采用设定的衰减调节量对波长信号进行功率衰减。前述上游设备也可以通过合路器1011控制波长信号的加掉波。对第二波长信号执行一次加掉波可以使得第二波长信号的数目、分布以及位置等中的至少一种发生变化。该一次加掉波包括一次加波(也称上波,Add)和/或掉波(也称下波,Drop)。也即是,一次加掉波包括:至少一个单波长信号加波,或者,至少一个单波长信号掉波,或者,至少一个单波长信号加波的同时另外的至少一个单波长信号掉波。例如,当光通信系统中存在多个第二波长信号时,对第二波长信号执行一次加掉波指的是:对多个第二波长信号中的一个或多个第二波长信号加波,或者,对多个第二波长信号中的一个或多个第二波长信号掉波,或者,对多个第二波长信号中的一个或多个第二波长信号加波,另外的一个或多个第二波长信号掉波。
其中,对于一个第二波长信号,若第二波长信号为多波长信号时,对该一个第二波长信号加波指的是对第二波长信号中的部分单波长信号加波,或者对第二波长信号整体加波;对该一个第二波长信号掉波指的是对第二波长信号中的部分单波长信号掉波,或者对第二波长信号整体掉波。若第二波长信号为单波长信号时,对该一个第二波长信号加波指的是对第二波长信号整体加波;对该一个第二波长信号掉波指的是对第二波长信号整体掉波。
通常情况下,当采用整体加掉波的方式对第二波长信号进行加掉波时,可以实现加掉波的简单控制,提高加掉波的效率。也便于后续较为简单地确定第二波长信号的入纤光功率的权值。
为了便于读者理解,下面结合图2对一次加掉波的过程进行说明。假设第一波长信号为多波长信号1,第二波长信号有9个,分别是多波长信号2至10,图2示出的多波长信号1至10处于满波状态。一次加掉波的过程可以包括:保持多波长信号1不变,将多波长信号2至10中的至少一个多波长信号掉波。
前述上游设备执行的m次功率调整中不同次功率调整的对象可以相同也可以不同。且由于第二波长信号通常为业务光信号,因此,每次功率调整时,调整的第二波长信号的个数较少。例如,每次功率调整为一个第二波长信号的一次加波或掉波。如此,可以减少功率调整对光通信系统中整体通信业务的影响。
S202、基于预设参数值以及执行m次功率调整中每次功率调整前后分别获取的第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量。
S202中确定m个SRS功率转移量的变化量,实质上是第一波长信号的m个SRS功率转移量的变化量的理论值确定过程。假设第二波长信号有多个,且多个第二波长信号中不同第 二波长信号的波长范围不同,且第一入纤光功率为第二波长信号在功率调整前的入纤光功率,第二入纤光功率为第二波长信号在功率调整后的入纤光功率,则该理论值确定过程包括以下步骤:
A1、获取m次功率调整前,第二波长信号的第一入纤光功率,并基于预设参数值与第一入纤光功率,确定m个第一SRS功率转移量。
其中,入纤光功率指的是波长信号从上游设备中进入光纤的光功率,其可以由上游设备监测得到。m个第一SRS功率转移量中每个第一SRS功率转移量基于一次功率调整前获取的多个第二波长信号的第一入纤光功率的加权和以及预设参数值确定。该多个第二波长信号中每个第二波长信号的入纤光功率的权值与该第二波长信号的频率以及第一波长信号的频率相关。也即是,该多个第二波长信号中每个第二波长信号的入纤光功率的权值与该第二波长信号的波长以及第一波长信号的波长相关。对于同一第二波长信号,由于第一波长信号的波长范围和第二波长信号的波长范围是预先确定的,在一次功率调整前后均未变化,因此,该第二波长信号的第一入纤光功率的权值和第二入纤光功率的权值相同。
示例的,该预设参数值包括:预设系数,预设的拉曼增益系数(其为描述光纤中受激拉曼散射产生的光学增益的一个参数)以及预设的光纤有效长度。该第一SRS功率转移量为多个第一入纤光功率的加权和、预设系数、预设的拉曼增益系数以及预设的光纤有效长度的乘积。例如,第一SRS功率转移量基于第一SRS公式计算得到,该第一SRS公式包括:
Figure PCTCN2022076143-appb-000002
其中,A为预设系数,gR为预设的拉曼增益系数,L eff为预设的光纤有效长度,N为光通信系统中传输的第二波长信号的总数,SRS为第一波长信号的SRS功率转移量,Pj为光通信系统中第j个第二波长信号的入纤光功率,Tj为光通信系统中第j个第二波长信号的入纤光功率的权值。该Tj与该第j个第二波长信号的频率以及第一波长信号的频率相关,其反映了第j个第二波长信号对第一波长信号的SRS效应所产生的影响程度。通常情况下,第二波长信号和第一波长信号满足:随着第二波长信号的频率与第一波长信号的频率的差距的增大,该第二波长信号对第一波长信号的SRS效应所产生的影响程度先增大再减小,相应的,第二波长信号的入纤光功率的权值先增大后减小。
一个第一SRS功率转移量是将一次功率调整前确定的N个第二波长信号的第一入纤光功率以及N个第二波长信号的入纤光功率的权值代入前述第一SRS公式得到的。
每个第二波长信号的入纤光功率的权值与该第二波长信号与第一波长信号之间的光功率转移程度相关联。例如,T1表示第1个第二波长信号对第一波长信号带来功率插损(即第一波长信号的功率转移到了第1个第二波长信号的功率上),则T1为负值。T4表示第4个第二波长信号对第一波长信号带来功率增益(即第4个第二波长信号的功率转移到了第一波长信号的功率上),T4为正值。各个第二波长信号的入纤光功率的权值可以通过预设公式计算,也可以以数据表的形式预先存储在校正系数确定装置的存储器中,方便校正系数确定装置计算时进行查询。
假设光通信系统中存在7个第二波长信号,分别是波长信号1至7,则该数据表可以如表1所示。
需要说明的是,光通信系统中通常传输多个波长信号,校正系数确定装置可以将多个波长信号中任意一个波长信号作为第一波长信号,将其他波长信号作为第二波长信号,来确定 校正系数。对于不同的第一波长信号,相应的第二波长信号的入纤光功率的权值不同,因此,校正系数确定装置可以预先存储不同第一波长信号所对应的第二波长信号的入纤光功率的权值。
表1
波长信号的标识 1 2 3 4 5 6 7
权值 T1 T2 T3 T4 T5 T6 T7
相应的,前述该第一SRS公式可以变形为第二SRS公式:
Figure PCTCN2022076143-appb-000003
其中,A为预设系数,gR为预设的拉曼增益系数,L eff为预设的光纤有效长度,M为光通信系统中传输的波长信号(包括第一波长信号和第二波长信号)的总数,SRS(i)为将第i个波长信号作为第一波长信号时,该第一波长信号的SRS功率转移量,Pij为第一波长信号为第i个波长信号时,光通信系统中第j个波长信号的入纤光功率,Tij为第一波长信号为第i个波长信号时,光通信系统中第j个波长信号的入纤光功率的权值,其反映了第j个波长信号对第i个波长信号的SRS效应所产生的影响程度。由于第一波长信号对自身的SRS功率转移量不存在影响,所以当i=j时,Tij=0,或者,当i=j时,将Pij设置为0。
其中,Tij可以通过预设公式计算,也可以以数据表的形式预先存储在校正系数确定装置的存储器中,方便校正系数确定装置计算时进行查询。假设光通信系统中传输7个波长信号,分别是波长信号1至7,则该数据表可以如表2所示。以表2中的T12为例,T12指的是第一波长信号为第1个波长信号时,第2个波长信号的入纤光功率的权值,其反映了第2个波长信号对第1个波长信号的SRS效应所产生的影响程度。表2中,T11、T22、T33、T44、T55、T66、T77可以为0。
表2
Figure PCTCN2022076143-appb-000004
需要说明的是,本申请实施例提供的SRS公式还可以有其他形式,只要在本申请提供的SRS公式的基础上进行的简单变形所得到的SRS公式均应涵盖在本申请实施例的保护范围内。
A2、获取m次功率调整后,第二波长信号的第二入纤光功率,并基于预设参数值与第二入纤光功率,确定m个第二SRS功率转移量。
其中,m个第二SRS功率转移量中每个第二SRS功率转移量基于一次功率调整后获取的多个第二波长信号的第二入纤光功率的加权和以及预设参数值确定。如步骤A1所述,在保持第一波长信号不变的前提下,同一第二波长信号的第一入纤光功率的权值和第二入纤光功率的权值相同。
示例的,该预设参数值包括:预设系数,预设的拉曼增益系数以及预设的光纤有效长度。该第二SRS功率转移量为多个第二入纤光功率的加权和、预设系数、预设的拉曼增益系数以及预设的光纤有效长度的乘积。
第二SRS功率转移量和第一SRS功率转移量采用相同方式计算,可以避免引入额外的计算误差。例如,第二SRS功率转移量基于步骤A1中提供的第一SRS公式或第二SRS公式计算得到。一个第二SRS功率转移量是将一次功率调整后确定的N个第二波长信号的第二入纤光功率以及N个第二波长信号的入纤光功率的权值代入前述第一SRS公式或第二SRS公式得到的。
A3、基于m个第一SRS功率转移量和m个第二SRS功率转移量,确定m个SRS功率转移量的变化量。
前述m个SRS功率转移量的变化量中每个SRS功率转移量的变化量为同一次功率调整的第一SRS功率转移量与第二SRS功率转移量的差值的绝对值。例如,m个SRS功率转移量的变化量中第t个SRS功率转移量的变化量x t满足变化量计算公式:x t=|SRS t-SRS t-1|或者x t=|SRS t-1-SRS t|。
其中,1≤t≤m,SRS t和SRS t-1分别表示第t次功率调整的第二SRS功率转移量与第一SRS功率转移量,也即是,SRS t-1表示基于该次功率调整前获取的数据所确定的第一SRS功率转移量,SRS t表示基于该次功率调整后获取的数据所确定的第二SRS功率转移量。
需要说明的是,前述步骤A1至A3是以第二波长信号有多个为例进行说明的。实际实现时,第二波长信号可以仅有一个,当第二波长信号仅有一个时,相关过程可以参考将前述步骤A1至A3多个第二波长信号的处理过程,其中,将多个第一入纤光功率的加权和替换为一个第一入纤光功率与权值的乘积;将多个第二入纤光功率的加权和替换为一个第二入纤光功率与权值的乘积。
S203、基于m个光功率变化量以及m个SRS功率转移量的变化量,确定校正系数。
参考前述S201,m个光功率变化量中每个光功率变化量为SRS功率转移量的变化量的实际值。参考前述S202,校正系数确定装置获取的m个SRS功率转移量的变化量中每个SRS功率转移量的变化量为SRS功率转移量的变化量的理论值。则通过m个实际值与m个理论值的对比,可以确定校正系数。该校正系数用于校正S202中的预设参数值。示例的,该确定校正系数的过程可以包括以下步骤:
B1、将m个SRS功率转移量的变化量作为自变量,将m个光功率变化量作为对应的SRS功率转移量的变化量的因变量,采用线性回归的方式,确定斜率k。其中,由同一次功率调整所确定的SRS功率转移量的变化量和光功率变化量对应。
例如,将m个SRS功率转移量的变化量分别作为自变量x 1至x m,将m个光功率变化量分别作为因变量y 1至y m,得到m组数据:(x 1,y 1)、(x 2,y 2)….(x m,y m),基于该m组数据:(x 1,y 1)、(x 2,y 2)….(x m,y m)进行线性回归,得到斜率k。
示例的,第1次功率调整前后,第一波长信号对应的光功率变化量为y 1,第一波长信号 对应的SRS功率转移量的变化量为x 1=|SRS 1-SRS 0|;第2次功率调整前后,第一波长信号对应的光功率变化量为y 2,第一波长信号对应的SRS功率转移量的变化量为x 2=|SRS 2-SRS 1|;……第m次功率调整前后,第一波长信号对应的光功率变化量为y m,第一波长信号对应的SRS功率转移量的变化量为x m=|SRS m-SRS (m-1)|。将得到的(x 1,y 1)、(x 2,y 2)….(x m,y m)进行线性回归,即可得到斜率k。
B2、将斜率k作为校正系数。
值得说明的是,本申请实施例除了采用线性回归的方式确定校正系数外,还可以采用其他方式确定校正系数。例如将m个光功率变化量以及m个SRS功率转移量的变化量输入预设校正系数确定模型中,接收该校正系数确定模型输出的校正系数。该校正系数确定模型是预先训练得到的模型,用于基于m个光功率变化量以及m个SRS功率转移量的变化量确定校正系数。示例的,该校正系数确定模型可以为人工智能(Artificial Intelligence,AI)模型。
S204、将预设参数值更新为校正系数与预设参数值的乘积。
如前所述,预设参数值包括:预设系数,预设的拉曼增益系数以及预设的光纤有效长度。且在SRS公式中,SRS能量转移量是基于预设参数值中各个参数值的乘积确定的。因此,可以将该预设参数值中的任一参数值替换为该任一参数值与校正系数的乘积,即可完成预设参数值的更新。或者,可以将校正系数与预设参数值整体的乘积替换预设参数值,以完成预设参数值的更新。更新后的预设参数值为校正后的准确的参数值。例如,用gR*k的值替换原gR值,gR为预设的拉曼增益系数。
传统技术中,考虑到预设参数值不准确,提出在实际光通信系统应用过程中,对预设参数值中一个或多个参数值进行实际检测,以采用实际检测的参数值替换预设参数值。例如,拉曼增益系数可以通过锁相放大器检测,光纤有效长度可以通过检测实际的光纤插损推算得到。但是,一方面锁相放大器的部署成本较高,另一方面锁相放大器的使用容易受到环境影响,检测得到的拉曼增益系数准确性较低。再者,采用光纤插损推算得到的光纤有效长度的准确性较低。因此,虽然进行了多个参数值的实际采集,但是最终计算得到的SRS能量转移量仍然准确性较低。并且由于对多个参数值均进行校正,因此校正过程耗时较长,可操作性较低。
而本申请实施例中,采用校正系数对预设参数值进行整体修正,无需设置锁相放大器,有效节约了光通信系统的部署成本,且由于确定的校正系数准确性较高,因此,也能获取准确的SRS能量转移量。并且,由于通过校正系数对预设参数值进行一次性校正,因此校正时延较短,可操作性高。
S205、基于更新后的预设参数值,确定目标波长信号的SRS功率转移量。
目标波长信号是光通信系统中需要监测的波长信号,该目标波长信号是光通信系统中正常传输的业务光信号。由于更新后的预设参数值更为准确,因此可以确定准确的目标波长信号的SRS功率转移量。例如,可以采用更新后的预设参数值代入前述第一SRS公式或第二SRS公式后,将目标波长信号作为第一波长信号,光通信系统中的其他信号作为第二波长信号,采用该第一SRS公式或第二SRS公式计算目标波长信号的SRS功率转移量。
通过确定目标波长信号的SRS功率转移量,可以通过上游设备对该目标波长信号进行功率预补偿,或者在下游设备进行接收侧功率补偿,如此降低SRS效应对目标波长信号的干扰。
综上所述,本申请实施例中,通过由上游设备保持第一波长信号不变,并对第二波长信 号执行m次功率调整,获取下游设备的m个光功率变化量作为m个SRS功率转移量的变化量的实际值,再基于预设参数值以及执行m次功率调整中每次功率调整前后分别获取的第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量的实际值,并基于m个理论值以及m个实际值确定校正系数。如此确定的校正系数与实际使用场景结合,从而获取准确的校正系数来校正预设参数值,进而可以确定准确的SRS能量转移量。
需要说明的是,前述S201中,m个光功率变化量中的每个光功率变化量的获取方式可以有多种,本申请实施例以以下两种获取方式为例进行说明:
在光功率变化量的第一种获取方式中,m个光功率变化量中的每个光功率变化量为该第一波长信号的一组第一光功率和第二光功率的差值的绝对值。该一组第一光功率和第二光功率为下游设备在上游设备执行一次功率调整前后检测得到的。
例如,m个光功率变化量中的每个光功率变化量y t满足变化量计算公式:y t=|P t-P t-1|,或者y t=|P t-1-P t|;其中,1≤t≤m,P t和P t-1分别表示下游设备在第t次功率调整时检测到的第二光功率与第一光功率,也即是,P t-1表示下游设备在该次功率调整前获取的光功率,P t表示下游设备在该次功率调整后获取的光功率。
则前述B1的示例中,第1次功率调整前后,第一波长信号对应的光功率变化量为y 1=|P 1-P 0|;第2次功率调整前后,第一波长信号对应的光功率变化量为y 2=|P 2-P 1|;……第m次功率调整前后,第一波长信号对应的光功率变化量为y m=|P m-P (m-1)|。
在该第一种获取方式的第一种示例中,下游设备检测得到m组第一光功率和第二光功率,并将该m组第一光功率和第二光功率发送给校正系数确定装置,由校正系数确定装置基于接收到的m组第一光功率和第二光功率确定该m个光功率变化量。在该第一种获取方式的第二种示例中,下游设备检测得到m组第一光功率和第二光功率后,基于该m组第一光功率和第二光功率确定该m个光功率变化量,并将该m个光功率变化量发送给校正系数确定装置。
图4是本申请实施例提供的一种下游设备102的结构示意图。通常情况下,下游设备102中,在每个第二波长信号经过的光通道上设置有OA1023,OA1023的输入端具有光功率监测功能,则在第一种可选实现方式中,下游设备102可以通过每个第二波长信号经过的光通道上设置的OA1023的输入端监测每个第二波长信号的第一光功率和第二光功率。在第二种可选实现方式中,下游设备102中可以设置监控光模块1024,该监控光模块1024与分路器1021的输出端连接,下游设备102可以通过该监控光模块1024监测每个第二波长信号的第一光功率和第二光功率。在第三种可选实现方式中,下游设备102同时布置用于监控光功率的多种监控装置,下游设备102可以通过多种监控装置分别监测每个第二波长信号的第一光功率和第二光功率,并将多种监控装置监测得到的针对同一第二波长信号的监测结果加权求和,以得到更准确的光功率监测结果。例如,该多种监控装置包括OA1023和监控光模块1024,下游设备102可以通过OA1023的输入端监测每个第二波长信号的第一光功率和第二光功率,同时通过监控光模块1024监测每个第二波长信号的第一光功率和第二光功率,并将针对同一第二波长信号的OA1023的监测结果和监控光模块1024的监测结果加权求和,以得到更准确的光功率监测结果。示例的,该监控光模块1024可以为光探测器、光功率检测器(Optical Power Monitor,OPM)或光谱分析器(optical spectrum analyzer,OSA)。其中,光探测器可以为光电二极管探测器(Photodiode Detector,PD),或雪崩光电二极管探测器(Avalanche Photodiode Detectors,APD)。
在前述光功率变化量的第一种获取方式中,由于光通信系统中,下游设备用于进行光功率监测的器件通常是针对业务光信号进行部署的,因此第一波长信号和第二波长信号可以为业务光信号,如此可以避免额外的非常规的用于光功率监测的器件的部署,减少监测光功率的成本。
在光功率变化量的第二种获取方式中,m个光功率变化量中的每个光功率变化量为该第一波长信号的一组第一光纤插损和第二光纤插损的差值的绝对值,一组第一光纤插损和第二光纤插损为上游设备或下游设备在执行一次功率调整前后检测得到的。
光纤插损(也称光纤的插入损耗)指的是波长信号经过光纤所产生的能量损耗,其通常为负值。下游设备检测到的接收端总光功率等于上游设备的发射端总光功率与光纤插损之和。对于一次功率调整,由于第一波长信号保持不变,则假设功率调整之前的第一波长信号的发射端光功率(即上游设备检测的光功率)为P in1,第一波长信号的接收端光功率(即下游设备检测的光功率)为P out1,第一波长信号的光纤插损为Loss 1,则P in1+Loss 1=P out1;假设功率调整之后的第一波长信号的发射端光功率为P in1,第一波长信号的接收端光功率为P out2,第一波长信号的光纤插损为Loss 2,则P in1+Loss 2=P out2,则Loss 2-Loss 1=P out2-P out1。如此可知,一次功率调整前后,第一波长信号的光纤插损的变化量相当于下游设备获取的第一波长信号的光功率的变化量。因此,每个光功率变化量可以为该第一波长信号的一组第一光纤插损和第二光纤插损的差值的绝对值。
例如,m个光功率变化量中的每个光功率变化量y t满足变化量计算公式:y t=|Loss t-Loss t-1|,或者y t=|Loss t-1-Loss t|。其中,1≤t≤m,Loss t和Loss t-1分别表示在第t次功率调整时检测到的第二光纤插损与第一光纤插损,也即是,Loss t-1表示在该次功率调整前获取的第一波长信号的光纤插损,Loss t表示在该次功率调整后获取的第一波长信号的光纤插损。
则前述B1的示例中,第1次功率调整前后,第一波长信号对应的光功率变化量为y 1=|Loss 1-Loss 0|;第2次功率调整前后,第一波长信号对应的光功率变化量为y 2=|Loss 2-Loss 1|;……第m次功率调整前后,第一波长信号对应的光功率变化量为y m=|Loss m-Loss (m-1)|。
在该第二种获取方式的第一种示例中,上游设备检测得到m组第一光纤插损和第二光纤插损,并将该m组第一光纤插损和第二光纤插损发送给校正系数确定装置,由校正系数确定装置基于接收到的m组第一光纤插损和第二光纤插损确定该m个光功率变化量。在该第二种获取方式的第二种示例中,上游设备检测得到m组第一光纤插损和第二光纤插损后,基于该m组第一光纤插损和第二光纤插损确定该m个光功率变化量,并将该m个光功率变化量发送给校正系数确定装置。在该第二种获取方式的第三种示例中,下游设备检测得到m组第一光纤插损和第二光纤插损,并将该m组第一光纤插损和第二光纤插损发送给校正系数确定装置,由校正系数确定装置基于接收到的m组第一光纤插损和第二光纤插损确定该m个光功率变化量。在该第二种获取方式的第四种示例中,下游设备检测得到m组第一光纤插损和第二光纤插损后,基于该m组第一光纤插损和第二光纤插损确定该m个光功率变化量,并将该m个光功率变化量发送给校正系数确定装置。
光通信系统中的上游设备和/或下游设备通常具有故障监控功能,该故障监控功能用于通过监测光通信系统中的通信链路中的光纤插损,来确定通信链路是否存在链路故障。假设第 一设备和第二设备中一个是上游设备,另一个是下游设备。以第一设备为例,该第一设备中设置有监控(monitor,MON)模块,也称监控板,该监控模块在进行故障监控时,通过光纤向该第二设备发出光信号,并接收第二设备通过光纤返回的光信号,通过发出的光信号以及接收的光信号确定通信链路中的光纤插损,基于该光纤插损确定链路中是否存在链路故障。示例的,该监控模块包括光时域反射仪(optical time-domain reflectometer,OTDR)或者光频域反射计(optical frequency domain reflectometer,OFDR)。
其中,监控模块发出的光信号通常为监控光信号,监控光信号与业务光信号的波长范围不同,以避免故障监控对正常通信业务的干扰。监控光信号通常为单波长信号。
本申请实施例中,第一波长信号可以为监控光信号,第二波长信号可以为业务光信号,如此基于光通信系统中的上游设备和/或下游设备原本具有的故障监控功能,即可获取前述m组第一光纤插损和第二光纤插损。这样可以减少额外的监测设备的设置,提高光功率变化量的检测效率。
前述S202中,第二波长信号的入纤光功率由上游设备获取。其获取方式有多种。图5是本申请实施例提供的一种上游设备101的结构示意图。通常情况下,上游设备101中,在每个第二波长信号经过的光通道上设置有OA1013,OA1013的输出端具有光功率监测功能,则在第一种获取方式中,上游设备101可以通过每个第二波长信号经过的光通道上设置的OA1013的输出端监测每个第二波长信号的入纤光功率。在第二种获取方式中,上游设备101中可以设置监控光模块1014,该监控光模块1014与合路器1011的输出端连接,上游设备101可以通过该监控光模块1014监测每个第二波长信号的入纤光功率。在第三种获取方式中,上游设备101同时布置用于监控光功率的多种监控装置,上游设备101可以通过多种监控装置分别监测每个第二波长信号的入纤光功率,并将多种监控装置监测得到的针对同一第二波长信号的监测结果加权求和,以得到更准确的光功率监测结果。例如,该多种监控装置包括OA1013和监控光模块1014,上游设备101可以通过OA1013的输出端监测的每个第二波长信号的入纤光功率,同时通过监控光模块1014监测每个第二波长信号的入纤光功率,并将针对同一第二波长信号的OA1013的监测结果和监控光模块1014的监测结果加权求和,以得到更准确的入纤光功率监测结果。在第四种获取方式中,对于每个第二波长信号,上游设备还可以采用输入该上游设备的第二波长号的功率减去该第二波长信号在该上游设备中的插损来计算该第二波长信号的入纤光功率。其中,该第二种获取方式和第三种获取中,通过直接部署监控光模块,可以得到精确的第二波长信号的入纤光功率。该第一种获取方式和第四种获取方式,通过利用上游设备已有器件确定入第二波长信号的入纤光功率,无需新增额外测量器件,减少上游设备的部署成本,实用性较强。
需要说明的是,若需要获取第一波长信号的入纤光功率,该入纤光功率也可以由上游设备获取,该获取过程参考前述第二波长信号的入纤光功率的获取过程,本申请实施例对此不做赘述。
本申请实施例中,由于实际值和理论值的正负是一致的,为了计算方便,减少正负号引入的干扰。前述实施例中,以每个SRS功率转移量的变化量以及每个光功率变化量是通过求取对应参数在功率调整前和功率调整后的差值的绝对值得到为例进行说明。实际实现时,前述每个SRS功率转移量的变化量和每个光功率变化量还可以采用其他方式获取,只要保证最终确定的每个SRS功率转移量的变化量和每个光功率变化量的正负一致。示例的,前述每个 SRS功率转移量的变化量和每个光功率变化量还可以采用以下任意一种实现方式替换:
第一、每个SRS功率转移量的变化量为同一次功率调整的第一SRS功率转移量与第二SRS功率转移量的差值;每个光功率变化量为该第一波长信号的一组第一光功率和第二光功率的差值,或者,每个光功率变化量为该第一波长信号的一组第一光纤插损和第二光纤插损的差值。
第二、每个SRS功率转移量的变化量为同一次功率调整的第二SRS功率转移量与第一SRS功率转移量的差值;每个光功率变化量为该第一波长信号的一组第二光功率和第一光功率的差值,或者,每个光功率变化量为该第一波长信号的一组第二光纤插损和第一光纤插损的差值。
本申请实施例提供的校正系数确定方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
并且,由于光通信系统中的环境随着时间的推移也会产生变化,因此,校正系数确定装置可以周期性执行前述S201至S205,以实现校正系数的周期性获取和更新,从而持续保持准确的校正系数,实现SRS功率转移量的准确获取。其中,不同周期的第一波长信号可以不同,第二波长信号的功率调整顺序也可以不同。本申请实施例对此不做赘述。
图6是本申请实施例提供的一种校正系数确定装置30的结构示意图,该装置包括:第一获取模块301,第二获取模块302,确定模块303。
第一获取模块301,用于在光通信系统中的上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整后,获取下游设备的m个光功率变化量,该第一波长信号与该第二波长信号的波长范围不同,该m个光功率变化量中每个光功率变化量反映一次功率调整前后的所述第一波长信号的光功率的变化量,m为大于1的正整数,该光通信系统包括该上游设备以及该下游设备;第二获取模块302,用于基于预设参数值以及该执行m次功率调整中每次功率调整前后分别获取的该第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量;确定模块303,用于基于该m个光功率变化量以及该m个SRS功率转移量的变化量,确定该校正系数,该校正系数用于校正该预设参数值。
综上所述,本申请实施例中,第一获取模块通过由上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整,获取下游设备的m个光功率变化量作为m个SRS功率转移量的变化量的实际值,第二获取模块基于预设参数值以及执行m次功率调整中每次功率调整前后分别获取的第二波长信号的入纤光功率,确定模块确定m个SRS功率转移量的变化量的实际值,并基于m个理论值以及m个实际值确定校正系数。如此确定的校正系数与实际使用场景结合,从而实现获取准确的校正系数来校正预设参数值,进而可以确定准确的SRS能量转移量。
在一种可选实现方式中,该第二获取模块302,用于:获取该m次功率调整前,该第二波长信号的第一入纤光功率,并基于该预设参数值与该第一入纤光功率,确定m个第一SRS功率转移量;获取该m次功率调整后,该第二波长信号的第二入纤光功率,并基于该预设参数值与该第二入纤光功率,确定m个第二SRS功率转移量;基于m个第一SRS功率转移量和该m个第二SRS功率转移量,确定该m个SRS功率转移量的变化量,其中,该m个SRS 功率转移量的变化量中每个SRS功率转移量的变化量为同一次功率调整的该第一SRS功率转移量与该第二SRS功率转移量的差值的绝对值。
在一种可选示例中,该第二波长信号有多个,多个第二波长信号中不同第二波长信号的波长范围不同;该m个第一SRS功率转移量中每个第一SRS功率转移量基于一次功率调整前获取的该多个第二波长信号的第一入纤光功率的加权和以及该预设参数值确定;该m个第二SRS功率转移量中每个第二SRS功率转移量基于一次功率调整后获取的该多个第二波长信号的第二入纤光功率的加权和以及该预设参数值确定。
其中,该多个第二波长信号中每个第二波长信号的入纤光功率的权值与该第二波长信号的频率以及该第一波长信号的频率相关。
示例的,该预设参数值包括:预设系数,预设的拉曼增益系数以及预设的光纤有效长度;该第一SRS功率转移量为多个该第一入纤光功率的加权和、该预设系数、该预设的拉曼增益系数以及该预设的光纤有效长度的乘积;该第二SRS功率转移量为多个该第二入纤光功率的加权和、该预设系数、该预设的拉曼增益系数以及该预设的光纤有效长度的乘积。
可选地,该确定模块303,用于:将该m个SRS功率转移量的变化量作为自变量,将该m个光功率变化量作为对应的SRS功率转移量的变化量的因变量,采用线性回归的方式,确定斜率k,其中,由同一次功率调整所确定的SRS功率转移量的变化量和光功率变化量对应;将该斜率k作为该校正系数。
在一种可选实现方式中,该m个光功率变化量中的每个光功率变化量为所述第一波长信号的一组第一光功率和第二光功率的差值的绝对值,该一组第一光功率和第二光功率为该下游设备在该上游设备执行一次功率调整前后检测得到的。
在另一种可选实现方式中,该m个光功率变化量中的每个光功率变化量为所述第一波长信号的一组第一光纤插损和第二光纤插损的差值的绝对值,该一组第一光纤插损和第二光纤插损为该上游设备在执行一次功率调整前后检测得到的。
图7是本申请实施例提供的一种校正系数确定装置30的结构示意图,在图6的基础上,该装置还包括:校正模块304,用于将该预设参数值更新为该校正系数与该预设参数值的乘积。
图8是本申请实施例提供的校正系数确定装置的一种可能的基本硬件架构。参见图8,校正系数确定装置600包括处理器601、存储器602和通信接口603。
校正系数确定装置600中,处理器601的数量可以是一个或多个,图8仅示意了其中一个处理器601。可选地,处理器601,可以是中央处理器(central processing unit,CPU)、微控制单元(Microcontroller Unit,MCU)、数字信号处理(Digital Signal Process)模块、现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)或集成电路。如果校正系数确定装置600具有多个处理器601,多个处理器601的类型可以不同,或者可以相同。可选地,校正系数确定装置600的多个处理器601还可以集成为多核处理器。
存储器602存储计算机指令和数据;存储器602可以存储实现本申请提供的校正系数确定方法所需的计算机指令和数据,例如,存储器602存储用于实现校正系数确定方法的步骤的指令。存储器602可以是以下存储介质的任一种或任一种组合:非易失性存储器(例如只读存储器(Read-Only Memory,ROM)、固态硬盘(Solid State Disk或Solid State Drive,SSD)、硬盘(Hard Disk Drive,HDD)、光盘),易失性存储器等等。
通信接口603可以是以下器件的任一种或任一种组合:网络接口(例如以太网接口)、无线网卡等具有网络接入功能的器件。
通信接口603用于校正系数确定装置600与其它校正系数确定装置或者终端进行数据通信。
可选地,校正系数确定装置600还可以包总线,总线可以将处理器601与存储器602和通信接口603连接。这样,通过总线,处理器601可以访问存储器602,还可以利用通信接口603与其它校正系数确定装置或者终端进行数据交互。
在本申请中,校正系数确定装置600执行存储器602中的计算机指令,使得校正系数确定装置600实现本申请提供的校正系数确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由校正系数确定装置的处理器执行以完成本申请各个实施例所示的校正系数确定方法。例如,该非临时性计算机可读存储介质可以是ROM、随机存取存储器(Random Access Memory,RAM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、磁带、软盘和光数据存储设备等。
图9是本申请实施例提供一种光通信系统10的结构示意图,该光通信系统10包括:上游设备101、下游设备102和本申请实施例提供的任一的校正系数确定装置103,该校正系数确定装置103可以为如图6或图7所示的校正系数确定装置30,或者为图8所示的校正系数确定装置600。
上游设备101用于通过光纤向下游设备102发送波长信号;下游设备102用于通过光纤接收上游设备101发送的波长信号;上游设备101还用于保持第一波长信号不变,并对第二波长信号执行m次功率调整,第一波长信号与第二波长信号的波长范围不同,m为大于1的正整数;校正系数确定装置103集成在上游设备101或下游设备102上。图9以该校正系数确定装置103集成在上游设备101为例。
需要说明的是,该光通信系统中的上游设备101和下游设备102的结构还可以参考图1、图4和图5,本申请实施例对此不再赘述。
需要说明的是:上述实施例提供的校正系数确定装置在执行校正系数确定方法时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的校正系数确定装置与校正系数确定方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种校正系数确定方法,其特征在于,所述方法包括:
    在光通信系统中的上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整后,获取下游设备的m个光功率变化量,所述第一波长信号与所述第二波长信号的波长范围不同,所述m个光功率变化量中每个光功率变化量反映一次功率调整前后的所述第一波长信号的光功率的变化量,m为大于1的正整数,所述光通信系统包括所述上游设备以及所述下游设备;
    基于预设参数值以及所述执行m次功率调整中每次功率调整前后分别获取的所述第二波长信号的入纤光功率,确定m个受激拉曼散射SRS功率转移量的变化量;
    基于所述m个光功率变化量以及所述m个SRS功率转移量的变化量,确定所述校正系数,所述校正系数用于校正所述预设参数值。
  2. 根据权利要求1所述的方法,其特征在于,所述基于预设参数值以及所述执行m次功率调整中每次功率调整前后分别获取的所述第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量,包括:
    获取所述m次功率调整前,所述第二波长信号的第一入纤光功率,并基于所述预设参数值与所述第一入纤光功率,确定m个第一SRS功率转移量;
    获取所述m次功率调整后,所述第二波长信号的第二入纤光功率,并基于所述预设参数值与所述第二入纤光功率,确定m个第二SRS功率转移量;
    基于m个第一SRS功率转移量和所述m个第二SRS功率转移量,确定所述m个SRS功率转移量的变化量,其中,所述m个SRS功率转移量的变化量中每个SRS功率转移量的变化量为同一次功率调整的所述第一SRS功率转移量与所述第二SRS功率转移量的差值的绝对值。
  3. 根据权利要求2所述的方法,其特征在于,所述第二波长信号有多个,多个第二波长信号中不同第二波长信号的波长范围不同;
    所述m个第一SRS功率转移量中每个第一SRS功率转移量基于一次功率调整前获取的所述多个第二波长信号的第一入纤光功率的加权和以及所述预设参数值确定;
    所述m个第二SRS功率转移量中每个第二SRS功率转移量基于一次功率调整后获取的所述多个第二波长信号的第二入纤光功率的加权和以及所述预设参数值确定。
  4. 根据权利要求3所述的方法,其特征在于,所述多个第二波长信号中每个第二波长信号的入纤光功率的权值与所述第二波长信号的频率以及所述第一波长信号的频率相关。
  5. 根据权利要求3或4所述的方法,其特征在于,所述预设参数值包括:预设系数,预设的拉曼增益系数以及预设的光纤有效长度;
    所述第一SRS功率转移量为多个所述第一入纤光功率的加权和、所述预设系数、所述预设的拉曼增益系数以及所述预设的光纤有效长度的乘积;
    所述第二SRS功率转移量为多个所述第二入纤光功率的加权和、所述预设系数、所述预设的拉曼增益系数以及所述预设的光纤有效长度的乘积。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述基于所述m个光功率变化量以及所述m个SRS功率转移量的变化量,确定所述校正系数,包括:
    将所述m个SRS功率转移量的变化量作为自变量,将所述m个光功率变化量作为对应的SRS功率转移量的变化量的因变量,采用线性回归的方式,确定斜率k,其中,由同一次功率调整所确定的SRS功率转移量的变化量和光功率变化量对应;
    将所述斜率k作为所述校正系数。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述m个光功率变化量中的每个光功率变化量为所述第一波长信号的一组第一光功率和第二光功率的差值的绝对值,所述一组第一光功率和第二光功率为所述下游设备在所述上游设备执行一次功率调整前后检测得到的。
  8. 根据权利要求1至6任一所述的方法,其特征在于,所述m个光功率变化量中的每个光功率变化量为所述第一波长信号的一组第一光纤插损和第二光纤插损的差值的绝对值,所述一组第一光纤插损和第二光纤插损为所述上游设备在执行一次功率调整前后检测得到的。
  9. 根据权利要求1至8任一所述的方法,其特征在于,所述方法还包括:
    将所述预设参数值更新为所述校正系数与所述预设参数值的乘积。
  10. 一种校正系数确定装置,其特征在于,所述装置包括:
    第一获取模块,用于在光通信系统中的上游设备保持第一波长信号不变,并对第二波长信号执行m次功率调整后,获取下游设备的m个光功率变化量,所述第一波长信号与所述第二波长信号的波长范围不同,所述m个光功率变化量中每个光功率变化量反映一次功率调整前后的所述第一波长信号的光功率的变化量,m为大于1的正整数,所述光通信系统包括所述上游设备以及所述下游设备;
    第二获取模块,用于基于预设参数值以及所述执行m次功率调整中每次功率调整前后分别获取的所述第二波长信号的入纤光功率,确定m个SRS功率转移量的变化量;
    确定模块,用于基于所述m个光功率变化量以及所述m个SRS功率转移量的变化量,确定所述校正系数,所述校正系数用于校正所述预设参数值。
  11. 根据权利要求10所述的装置,其特征在于,所述第二获取模块,用于:
    获取所述m次功率调整前,所述第二波长信号的第一入纤光功率,并基于所述预设参数值与所述第一入纤光功率,确定m个第一SRS功率转移量;
    获取所述m次功率调整后,所述第二波长信号的第二入纤光功率,并基于所述预设参数值与所述第二入纤光功率,确定m个第二SRS功率转移量;
    基于m个第一SRS功率转移量和所述m个第二SRS功率转移量,确定所述m个SRS功率转移量的变化量,其中,所述m个SRS功率转移量的变化量中每个SRS功率转移量的变化量为同一次功率调整的所述第一SRS功率转移量与所述第二SRS功率转移量的差值的绝对值。
  12. 根据权利要求11所述的装置,其特征在于,所述第二波长信号有多个,多个第二波长信号中不同第二波长信号的波长范围不同;
    所述m个第一SRS功率转移量中每个第一SRS功率转移量基于一次功率调整前获取的所述多个第二波长信号的第一入纤光功率的加权和以及所述预设参数值确定;
    所述m个第二SRS功率转移量中每个第二SRS功率转移量基于一次功率调整后获取的所述多个第二波长信号的第二入纤光功率的加权和以及所述预设参数值确定。
  13. 根据权利要求12所述的装置,其特征在于,所述多个第二波长信号中每个第二波长 信号的入纤光功率的权值与所述第二波长信号的频率以及所述第一波长信号的频率相关。
  14. 根据权利要求12或13所述的装置,其特征在于,所述预设参数值包括:预设系数,预设的拉曼增益系数以及预设的光纤有效长度;
    所述第一SRS功率转移量为多个所述第一入纤光功率的加权和、所述预设系数、所述预设的拉曼增益系数以及所述预设的光纤有效长度的乘积;
    所述第二SRS功率转移量为多个所述第二入纤光功率的加权和、所述预设系数、所述预设的拉曼增益系数以及所述预设的光纤有效长度的乘积。
  15. 根据权利要求10至14任一所述的装置,其特征在于,所述确定模块,用于:
    将所述m个SRS功率转移量的变化量作为自变量,将所述m个光功率变化量作为对应的SRS功率转移量的变化量的因变量,采用线性回归的方式,确定斜率k,其中,由同一次功率调整所确定的SRS功率转移量的变化量和光功率变化量对应;
    将所述斜率k作为所述校正系数。
  16. 根据权利要求10至15任一所述的装置,其特征在于,所述m个光功率变化量中的每个光功率变化量为所述第一波长信号的一组第一光功率和第二光功率的差值的绝对值,所述一组第一光功率和第二光功率为所述下游设备在所述上游设备执行一次功率调整前后检测得到的。
  17. 根据权利要求10至15任一所述的装置,其特征在于,所述m个光功率变化量中的每个光功率变化量为所述第一波长信号的一组第一光纤插损和第二光纤插损的差值的绝对值,所述一组第一光纤插损和第二光纤插损为所述上游设备在执行一次功率调整前后检测得到的。
  18. 根据权利要求10至17任一所述的装置,其特征在于,所述装置还包括:
    校正模块,用于将所述预设参数值更新为所述校正系数与所述预设参数值的乘积。
  19. 一种光通信系统,其特征在于,包括:上游设备、下游设备和如权利要求10至18任一所述的校正系数确定装置;
    所述上游设备用于通过光纤向所述下游设备发送波长信号;
    所述下游设备用于通过所述光纤接收所述上游设备发送的波长信号;
    所述上游设备还用于保持第一波长信号不变,并对第二波长信号执行m次功率调整,所述第一波长信号与所述第二波长信号的波长范围不同,m为大于1的正整数;
    所述校正系数确定装置集成在所述上游设备或所述下游设备上。
  20. 一种校正系数确定装置,其特征在于,所述装置包括:
    处理器和存储器;
    所述存储器存储计算机指令;所述处理器执行所述存储器存储的计算机指令,使得所述校正系数确定装置执行权利要求1至9任一所述的校正系数确定方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示计算机设备执行权利要求1至9任一所述的校正系数确定方法。
PCT/CN2022/076143 2021-03-26 2022-02-14 校正系数确定方法、装置及光通信系统 WO2022199273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110327447.X 2021-03-26
CN202110327447.XA CN115133981A (zh) 2021-03-26 2021-03-26 校正系数确定方法、装置及光通信系统

Publications (1)

Publication Number Publication Date
WO2022199273A1 true WO2022199273A1 (zh) 2022-09-29

Family

ID=83375050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076143 WO2022199273A1 (zh) 2021-03-26 2022-02-14 校正系数确定方法、装置及光通信系统

Country Status (2)

Country Link
CN (1) CN115133981A (zh)
WO (1) WO2022199273A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332370A (zh) * 2000-06-22 2002-01-23 朗迅科技公司 探测光学传输系统中拉曼增益的装置
US6859622B1 (en) * 2000-12-26 2005-02-22 Nortel Networks Limited Predictive optimization of wavelength division multiplexed systems
US20110311236A1 (en) * 2009-03-26 2011-12-22 Ryuji Aida Optical amplifier, control method therefor, and optical transmission system
US20170005727A1 (en) * 2015-07-03 2017-01-05 Fujitsu Limited Transmission loss measurement device, transmission loss measurement method, and optical transmission system
US9762319B1 (en) * 2015-09-29 2017-09-12 Juniper Networks, Inc. Real-time Raman gain monitoring
CN110431765A (zh) * 2017-04-11 2019-11-08 华为技术有限公司 发送设备、接收设备、光传输系统、光功率控制方法
CN110463081A (zh) * 2017-05-27 2019-11-15 华为技术有限公司 一种光功率的补偿方法及设备
WO2019230480A1 (ja) * 2018-05-31 2019-12-05 日本電信電話株式会社 光伝送制御方法及び光伝送システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332370A (zh) * 2000-06-22 2002-01-23 朗迅科技公司 探测光学传输系统中拉曼增益的装置
US6859622B1 (en) * 2000-12-26 2005-02-22 Nortel Networks Limited Predictive optimization of wavelength division multiplexed systems
US20110311236A1 (en) * 2009-03-26 2011-12-22 Ryuji Aida Optical amplifier, control method therefor, and optical transmission system
US20170005727A1 (en) * 2015-07-03 2017-01-05 Fujitsu Limited Transmission loss measurement device, transmission loss measurement method, and optical transmission system
US9762319B1 (en) * 2015-09-29 2017-09-12 Juniper Networks, Inc. Real-time Raman gain monitoring
CN110431765A (zh) * 2017-04-11 2019-11-08 华为技术有限公司 发送设备、接收设备、光传输系统、光功率控制方法
CN110463081A (zh) * 2017-05-27 2019-11-15 华为技术有限公司 一种光功率的补偿方法及设备
WO2019230480A1 (ja) * 2018-05-31 2019-12-05 日本電信電話株式会社 光伝送制御方法及び光伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MINOGUCHI K.; OKAMOTO S.; HAMAOKA F.; MATSUSHITA A.; NAKAMURA M.; YAMAZAKI E.; KISAKA Y.: "Experiments on Stimulated Raman Scattering in S- and L-bands 16-QAM Signals for Ultra-Wideband Coherent WDM Systems", 2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), OSA, 11 March 2018 (2018-03-11), pages 1 - 3, XP033357753 *

Also Published As

Publication number Publication date
CN115133981A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
US9768902B2 (en) Control systems and methods for spectrally overlapped flexible grid spectrum using a control bandwidth
US11483090B2 (en) Method for establishing data model and apparatus
EP2717496B1 (en) Method and device for obtaining performance parameters of optical network link
US10985838B1 (en) Handling compensation for losses in optical fiber links
CN113114351B (zh) 一种光传输系统的性能确定方法和装置
CN111181636B (zh) 光网络监测方法
US20110038627A1 (en) Allocation of transmission power in an optical communication system
WO2022199273A1 (zh) 校正系数确定方法、装置及光通信系统
WO2019169915A1 (zh) 用于级联光放大器通信系统的osnr计算方法及装置
US20230261751A1 (en) Method for Determining Power Compensation Value of Optical Signal and Related Apparatus
US7593640B2 (en) Method of dynamically controlling an optical module
CN102263591A (zh) 一种光通道层功率管理优化系统及方法
US11750292B2 (en) Method for determining optical signal power change and power calculation apparatus
CN107135035B (zh) 使用光接收器的光功率监控方法及光模块
US20060233552A1 (en) Method for preemphasising an optical multiplex signal
US20090052015A1 (en) Method for acquiring spectrum shape of a gain flattening filter in an optical amplifier
CN111385019A (zh) 光线路测试系统、方法及存储介质
RU2663179C2 (ru) Способ измерения отношения оптического сигнала к шуму при четырехволновом смешении в волоконно-оптических системах передачи с частотным разделением сигналов
EP3754873A1 (en) Optical signal control device and optical communication system
US10911140B2 (en) Multi-wavelength power sensing
CN117811652A (zh) 长途光网络的性能监控系统、方法、设备及存储介质
CN118102150A (zh) 一种光信号传输方法、装置、电子设备和存储介质
US10887007B2 (en) Fast EDFA gain spectrum characterization using weak probe and fourier sampling
CN117639917A (zh) 滤波器指标确定方法、装置、设备和存储介质
CN117639914A (zh) 波的偏移量的确定方法、装置、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22773935

Country of ref document: EP

Kind code of ref document: A1