WO2022199178A1 - 先进压水堆核电厂安全壳整体性试验的设计方法及装置 - Google Patents

先进压水堆核电厂安全壳整体性试验的设计方法及装置 Download PDF

Info

Publication number
WO2022199178A1
WO2022199178A1 PCT/CN2021/141566 CN2021141566W WO2022199178A1 WO 2022199178 A1 WO2022199178 A1 WO 2022199178A1 CN 2021141566 W CN2021141566 W CN 2021141566W WO 2022199178 A1 WO2022199178 A1 WO 2022199178A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
containment
integrity test
penetrations
pressure
Prior art date
Application number
PCT/CN2021/141566
Other languages
English (en)
French (fr)
Inventor
邢继
田齐伟
赵侠
孙涛
刘勇
尚臣
杨晓燕
杜宇
吴希盼
郑仕建
陈伟
Original Assignee
中国核电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核电工程有限公司 filed Critical 中国核电工程有限公司
Priority to GB2314377.9A priority Critical patent/GB2619465A/en
Publication of WO2022199178A1 publication Critical patent/WO2022199178A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/003Remote inspection of vessels, e.g. pressure vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/002Detection of leaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of nuclear power design, in particular to a design method and a design device for a containment integrity test of an advanced pressurized water reactor nuclear power plant.
  • the containment of a pressurized water reactor nuclear power plant undertakes the safety of containing radioactive substances, shielding radiation and protecting the reactor from external natural and man-made events under normal operation and accident conditions Function.
  • the design of the containment shall ensure that any radioactive release from the nuclear power plant to the environment is kept as low as reasonably practicable, and does not exceed the regulatory discharge limit for radioactive release under operating conditions and does not exceed the allowable level of radioactive release under accident conditions. Accept the limit.
  • the design of the containment should also provide passages for the mechanical connection, electrical connection of equipment inside and outside the enclosure, and personnel access during normal operation. In order to verify the above safety functions and operability, it is necessary to conduct relevant performance tests on the containment during the commissioning before the unit is initially charged and during the refueling overhaul after operation.
  • the technical problem to be solved by the present invention is to provide a design method for the integrity test of the containment of an advanced pressurized water reactor nuclear power plant, aiming at the above-mentioned deficiencies in the prior art.
  • the safety and practicability of the test can also effectively improve the operating economy of the nuclear power plant.
  • the invention provides a design method for a containment integrity test of an advanced pressurized water reactor nuclear power plant, comprising: determining each test item during the containment integrity test; determining a pressure step and corresponding duration in each test item; The upper limit of the lifting and decompressing rate of the shell integrity test; according to the determined test items, the pressure steps in each test item and the corresponding duration, and the upper limit of the lifting and lowering rate of the containment integrity test, the containment integrity test is obtained.
  • the design result of the program comprising: determining each test item during the containment integrity test; determining a pressure step and corresponding duration in each test item; The upper limit of the lifting and decompressing rate of the shell integrity test; according to the determined test items, the pressure steps in each test item and the corresponding duration, and the upper limit of the lifting and lowering rate of the containment integrity test, the containment integrity test is obtained.
  • the design result of the program comprising: determining each test item during the containment integrity test; determining a pressure step and corresponding
  • each test item during the containment integrity test is determined, specifically: determining each test item during the containment integrity test according to the safety function requirements of the containment and the operability function requirements of the containment.
  • the test items include: leak rate test; structural integrity test; isolation valve trigger logic function test; combustible gas mixing function test; personnel gate function test; leak rate measurement system effectiveness verification, and structural integrity measurement system effectiveness verification .
  • determining the pressure steps and corresponding durations in each test item specifically includes: determining the mandatory pressure steps and corresponding durations in each test item according to containment test regulations, guidelines and standards, and, according to safety
  • the pressure requirements for the pre-test and functional test of the shell structural integrity test determine the non-mandatory pressure steps and corresponding durations in each test item.
  • the design method for the containment integrity test of an advanced pressurized water reactor nuclear power plant further includes: combing the containment boundary penetrations and process pipelines to obtain the containment penetrations and The configuration and function of the process pipeline; according to the configuration and function of each penetration of the containment and the process pipeline, as well as the test feasibility and safety requirements, the prerequisites for the containment integrity test are obtained to ensure the integrity of the containment test plan. Implementability and Security.
  • each containment penetrations and process pipelines are obtained, which specifically includes: combing all penetrations and process pipelines through the containment, and analyzing in the form of a list
  • the configuration and function of each process pipeline and penetrations, which penetrations include: process penetrations, electrical penetrations, personnel and emergency gates, equipment gates, fuel transfer channels, and spare penetrations.
  • the prerequisites for obtaining the integrity test of the containment are obtained according to the configuration and function of the penetrations of the containment and the process pipelines, as well as the test practicability and safety requirements, specifically including: according to the penetrations of the containment and the process
  • the configuration and function of the pipeline, as well as the test feasibility requirements, the boundary state is designed to form the test prerequisites related to the boundary state;
  • the relevant test conditions for the protection of personnel, process systems and equipment are designed to form safety-related test prerequisites.
  • the test prerequisites related to the boundary state include: isolating the penetration at the test boundary, closing the penetration in a normal manner, and cannot be operated manually or in other ways after isolation; Outside the system where the unit is in a safe state, the related process systems or pipelines need to be considered for air or drainage; at the same time, in order to avoid leakage to the secondary side through the evaporator during the test, the secondary circuit system needs to consider synchronous boosting; boosting and unloading equipment It needs to be installed in place, and the corresponding pipe penetrations meet the corresponding leakage rate requirements.
  • the safety-related test prerequisites include: during the test, all personnel in the containment should be stopped from working, the corresponding safety zone should be marked, and the entry and exit of irrelevant personnel should be prohibited.
  • Influence to avoid damage to the equipment in the shell caused by the pressure charging and decompression operation, for the equipment that is not pressure-bearing in the shell, consider removing it from the atmosphere of the containment or from the shell; at the same time, in order to avoid the malfunction of the specially designed safety facilities during the test, The drive signal of the relevant system needs to be blocked; the increase of the pressure in the casing will cause the ignition point of the combustibles to decrease. Before the test, the combustibles in the casing should be removed, and a corresponding emergency fire prevention plan should be formulated.
  • the present invention also provides a design device for an advanced pressurized water reactor nuclear power plant containment integrity test, comprising a first determination module, a second determination module, a third determination module, and a combination module.
  • the first determination module is used to determine each test item during the containment integrity test.
  • the second determination module is used to determine the pressure steps and corresponding durations in each test item.
  • the third determination module is used to determine the upper limit of the rise and fall rate of the containment integrity test.
  • the combination module is respectively connected with the first determination module, the second determination module, and the third determination module, and is used for each determined test item, the pressure ladder in each test item and the corresponding duration, and the integrity test of the containment
  • the upper limit of the buck-boost rate is obtained, and the design results of the containment integrity test scheme are obtained.
  • the design device for the containment integrity test of the advanced pressurized water reactor nuclear power plant further includes a combing module and an acquisition module.
  • the combing module is used to comb the containment boundary penetrations and process pipelines to obtain the configuration and functions of the containment penetrations and process pipelines.
  • the acquisition module is connected to the combing module and the combination module respectively, and is used to obtain the prerequisites for the integrity test of the containment according to the configuration and function of the penetrations and process pipelines of the containment, as well as the requirements for the feasibility and safety of the test.
  • the prerequisites of the containment integrity test are transmitted to the combined module, so that the combined module can obtain the design results of the containment integrity test plan under the preconditions of the containment integrity test, so as to ensure the implementation of the containment integrity test plan. sex and safety.
  • the design method for the containment integrity test of an advanced pressurized water reactor nuclear power plant of the present invention has the following beneficial effects:
  • the boundary state requirements during the test are designed, and the prerequisites for the containment integrity test are combed in consideration of personnel, process system and equipment protection requirements.
  • the prerequisites of the containment integrity test formed by these two aspects can ensure the safety and practicability of the test to the greatest extent.
  • the containment integrity test scheme designed based on the above steps of the technical scheme has great applicability in the design direction of the containment integrity test of advanced pressurized water reactor nuclear power units, and can also be used for the containment integrity test of other reactor-type nuclear power units. design for reference.
  • Fig. 1 shows the schematic flow chart of the design method of the containment integrity test of the advanced pressurized water reactor nuclear power plant of the present invention
  • Figure 2 shows the schematic diagram of the buck-boost curve of the containment integrity test of a third-generation advanced pressurized water reactor nuclear power unit in China.
  • the inner containment is a prestressed concrete structure with a steel lining. Its tightness; the outer containment is an ordinary reinforced concrete structure. Since the design of the containment integrity test is mainly aimed at the inner containment and is not necessarily related to the structure of the outer containment, in order to avoid confusion, the inner containment is referred to as the containment for short.
  • the embodiment of the present invention discloses a design method for the containment integrity test of an advanced pressurized water reactor nuclear power plant, comprising the following steps:
  • Step S1 combing the containment boundary penetrations and process pipelines
  • step S1 it specifically includes:
  • the penetrations include: process penetrations, electrical penetrations, personnel and emergency gates, equipment gates, Fuel transfer channels, and spare penetrations.
  • Step S2 Design of the prerequisites for the integrity test of the containment
  • the step S2 specifically includes: designing the boundary state according to the results of the combing of the penetration piece and the process pipeline, in combination with the requirements for test practicability and accuracy, and forming the test prerequisites related to the boundary state; Personnel protection requirements, design relevant test conditions for personnel, process system and equipment protection during the test, and form safety-related test prerequisites.
  • the test prerequisites related to the boundary state include: isolation of penetrations, air or drainage of the process system, and conditions that the test equipment should have;
  • the safety-related test prerequisites include requirements for personnel protection, process system and equipment protection, and fire-fighting measures.
  • the conditions for the isolation of the penetrations are: isolate the penetrations at the test boundary, close the penetrations in a normal way, and do not operate manually or in other ways after isolation;
  • the conditions that the process system should have for air or drainage are: in addition to the system that needs to be operated during the test or to ensure that the unit is in a safe state during the test, the related process system or pipeline needs to be considered for air or drainage; at the same time, in order to avoid the test period.
  • the secondary circuit system considers synchronous boosting
  • test equipment should have the following conditions: the pressure-boosting and pressure-relieving equipment needs to be installed in place, and the corresponding pipeline penetrations meet the corresponding leakage rate requirements.
  • the conditions that the personnel protection should meet are: during the test, all personnel in the containment shall be stopped from working, the corresponding safety zone shall be marked, and the entry and exit of irrelevant personnel shall be prohibited; for the pressure charging and decompression operators, the impact of noise on the hearing of personnel shall be considered. ;
  • the conditions for the protection of the process system and equipment are: to avoid damage to the equipment in the shell caused by the pressure charging and decompression operation, for the equipment that is not pressure-bearing in the shell, consider removing it from the atmosphere of the containment or removing it from the shell; To avoid the malfunction of the specially designed safety facilities during the test, the driving signals of the relevant systems need to be blocked;
  • the conditions for fire-fighting measures are: before the inspection, the combustibles in the shell should be removed, and corresponding emergency fire-fighting plans should be formulated.
  • Step S3 Design the test items based on the functional requirements of the containment, that is, determine each test item during the integrity test of the containment;
  • the step S3 specifically includes:
  • the functional test items of the containment are determined to include: structural integrity test; isolation valve trigger logic function test; combustible gas mixing function test; personnel gate function test; Validation of leak rate measurement systems and validation of structural integrity measurement systems.
  • Step S4 the overall pressure step design of the containment and the design of the pressure rise and fall rate
  • the pressure ladder design of the integrity of the containment specifically includes:
  • the pressure ladder for each test item is designed, including the selection of ladder pressure and the determination of corresponding ladder pressure. duration.
  • the step-up/down rate design includes:
  • the upper limit of the pressure rise rate and the upper limit of the pressure drop rate of the containment integrity test are determined, considering the influence of the rise and fall rate on the structural integrity of the containment and the impact of data collection.
  • Step S5 Form the design of the integrated test plan for the containment of the advanced pressurized water reactor nuclear power unit.
  • the step S5 specifically includes:
  • the pressure rise and fall curve design of the containment integrity test of the advanced pressurized water reactor nuclear power unit is formed, and the design of the test prerequisites is combined to form the advanced pressurized water reactor nuclear power Unit containment integrity test plan.
  • the boundary state requirements are designed, and the test prerequisites related to the boundary state are formed as follows:
  • Isolation of penetrations Isolate penetrations at the test boundary, close penetrations in a normal way, and cannot be operated manually or otherwise after isolation.
  • Air or drainage of the process system In addition to the systems that need to be operated during the test or to ensure that the unit is in a safe state during the test, the related process systems or pipelines need to be considered air or drainage; at the same time, in order to avoid passing the evaporator to the secondary side during the test. leakage, the secondary circuit system needs to consider synchronous boost.
  • Test equipment The pressure-boosting and pressure-relieving equipment needs to be installed in place, and the corresponding pipeline penetrations meet the corresponding leakage rate requirements.
  • Personnel protection During the test, all personnel in the containment shall be stopped from working, the corresponding safety area shall be marked, and the entry and exit of irrelevant personnel shall be prohibited. For pressure charging and decompression operators, the impact of noise on the hearing of personnel should be considered.
  • Process system and equipment protection avoid damage to equipment in the shell caused by pressure charging and decompression operations. For equipment not under pressure in the shell, consider removing it from the atmosphere of the containment or removing it from the shell; at the same time, to avoid special safety facilities during the test If the malfunction occurs, the drive signal of the related system needs to be blocked.
  • Fire-fighting measures Since the increase of the pressure in the shell will cause the ignition point of the combustibles to decrease, the combustibles in the shell should be removed before the test, and a corresponding emergency fire-fighting plan should be formulated.
  • the design safety function of the containment of the advanced pressurized water reactor nuclear power unit is to limit the leakage of polluted gas to the outside of the containment in the event of a water loss accident in the primary circuit or a rupture of the main steam pipeline in the containment. Based on this safety function requirement, it is necessary to focus on the design of the leakage rate test during the integrity test of the containment to ensure that the overall leakage rate of the containment does not exceed the initial assumption of the design basis accident analysis.
  • this advanced pressurized water reactor nuclear power plant containment functional test project should also include the following contents:
  • Structural integrity test verify the pressure-bearing characteristics of the containment (including visual inspection inside and outside the containment);
  • Isolation valve trigger logic function test verify the drive logic of the specially designed safety facilities related to the atmospheric state of the containment
  • Combustible gas mixing function test verify the atmospheric mixing function of flammable gas after the accident;
  • Personnel gate function test emergency evacuation of personnel in the containment through the personnel gate or emergency gate after an accident.
  • test items include:
  • the pressure ladder for each test item needs to be designed, mainly including two parts of the ladder pressure selection and the corresponding duration.
  • the relevant requirements for the pressure ladder design for the integrity test of the containment mainly include:
  • the maximum pressure of the containment structural integrity test before loading is 1.15 times the design pressure (test pressure);
  • test pressure The measurement of the overall leak rate requires a zero pressure test to verify the effectiveness of the measurement system (test pressure);
  • test pressure When the pressure rises to half of the design pressure, measure the leakage rate once to know the approximate leakage level (test pressure);
  • the overall leakage rate lasts for 24 hours, and the instrument data (test pressure and duration) should be read at least within the similar 20 time intervals;
  • test pressure a verification test can be carried out under the design pressure to verify the representativeness of the measuring instrument (test pressure);
  • the pressure should be lowered to 0.85 times the design pressure and stabilized for 24 hours before the overall leak rate measurement can be started (test pressure and duration).
  • the relevant mandatory requirements for the selection of stepped pressure include: 0, 0.5P, P, 1.15P, 0.85P, P, 0.
  • 0.01P and 0.25P are also added in the pressurization stage (for example, the isolation valve trigger logic test needs to be at 0.01P and 0.25P pressure.
  • Trigger the isolation valve for functional verification) pressure ladder requirements in the depressurization stage, considering the comparison between the structural integrity test data and the boost stage, a pressure ladder of 0.5P and 0.25P is also added.
  • the determined (or designed) pressure steps and corresponding durations in each test item include both mandatory pressure steps and their corresponding durations, so that the integrity test of the containment is legal and effective, and also includes
  • the non-mandatory pressure ladder and its corresponding duration are determined according to engineering experience, pre-test of structural integrity test, and functional test requirements, which makes the integrity test of containment On the basis of satisfying the feasibility, it can effectively shorten the execution period of the test and improve the economy of the test execution.
  • the rate of rise and fall of pressure per hour shall not be greater than 20% of the maximum test pressure; after each level of pressure is reached, the constant pressure time shall not be less than 1h".
  • the setting of the buck-boost rate also needs to fully consider the impact of the test on the containment structure and data collection. If the pressure rise rate is too fast, it will lead to the occurrence of inhalation phenomenon in the internal components of the containment, which will affect the accuracy of the test data measurement.
  • the containment integrity test plan for the advanced pressurized water reactor nuclear power unit has been formed.
  • the test plan includes test boundary design, test prerequisite design, test item design, and combined pressure ladder and lift
  • the design content of the buck-boost curve for the containment integrity test of the pressure rate wherein the design content of the buck-boost curve for the containment integrity test includes the pressure step corresponding to the test item, the duration corresponding to the pressure step, and the buck-boost rate.
  • the containment integrity test is carried out according to the buck-boost curve. As shown in Figure 2, at the 0 pressure step, the effectiveness of the leak rate and structural integrity measurement system is verified, and the pressure can be increased at a rate of 15 kPa/h after the initial inspection of the structural integrity. In the boosting stage, after reaching each pressure step, after completing the corresponding test items according to the buck-boost curve, the pressure can continue to be boosted until it reaches 1.15 times the design pressure (ie 1.15P). After the structural integrity test of 1.15 times the design pressure is completed, the first depressurization operation is carried out at a depressurization rate of 14kPa/h to reach a step of 0.85 times the design pressure. Secondary boost operation until the design pressure ladder. After the 24-hour containment leakage rate measurement and structural integrity verification of the designed pressure ladder, the final depressurization operation can be carried out. After the relevant tests of each pressure ladder in the depressurization stage are completed, the containment integrity test is completed.
  • This embodiment provides a design method for the containment integrity test of an advanced pressurized water reactor nuclear power plant, including:
  • Step 201 Determine each test item during the containment integrity test.
  • step 201 Determine each test item during the containment integrity test, specifically: determining each test item during the containment integrity test according to the safety function requirements of the containment and the operability function requirements of the containment .
  • the confirmed test items include: leak rate test; structural integrity test; isolation valve trigger logic function test; combustible gas mixing function test; personnel gate function test; Validation of the effectiveness of the measurement system.
  • Step 202 Determine the pressure steps and corresponding durations in each test item.
  • step 202 determining the pressure steps and corresponding durations in each test item, specifically including: determining the mandatory pressure steps and corresponding durations in each test item according to containment test regulations, guidelines and standards, And, according to the pressure requirements of the pre-test and functional test of the containment structural integrity test, the optional pressure steps and corresponding durations in each test item are determined.
  • the determined mandatory pressure gradients and corresponding durations are: 0, 0.5P, P, 1.15P, 0.85P, P, 0, wherein the durations of the 0.85P and P pressure gradients are mandatory requirements of at least 24 hours.
  • the determined non-mandatory pressure steps and the corresponding durations are: in the boosting stage, the pressure steps of 0.01P and 0.25P are added, and in the depressurization stage, the pressure steps of 0.5P and 0.25P are added.
  • the duration is only for the pressure steps of 0.85P and P, so the duration corresponding to other pressure steps can be set flexibly according to the requirements of the test items.
  • the overall test scheme is determined in this embodiment, so that the overall test of the containment can effectively shorten the execution period of the test and improve the economy of the test execution on the basis of satisfying the practicability.
  • the execution period for the test in this embodiment is 9 days.
  • Step 203 determining the upper limit of the ramp rate for the containment integrity test.
  • the impact of the comprehensive test on the containment structure and data collection is within the limit of the buck-boost rate of the containment integrity test.
  • the upper limit of the pressure increase rate of the containment integrity test of the advanced pressurized water reactor nuclear power unit is set to 15kPa/h, and the upper limit of the depressurization rate is set to 14kPa/h. Since the determined upper limit of the boost rate and the upper limit of the depressurization rate are lower than the limit of the buck-boost rate in the prior art, on the basis of ensuring the effectiveness of the buck-boost rate, the duration of the execution of the containment integrity test is shortened , thereby improving the economy of test execution. In addition, the determined upper limit of the buck-boost rate can avoid the adverse effects of excessively high buck-boost rate on the structural integrity of the containment and the collection of test data, thereby improving the safety and practicability of the test.
  • Step 204 Obtain the design result of the containment integrity test scheme according to the determined test items, the pressure steps and corresponding durations in each test item, and the upper limit of the pressure rise and fall rate of the containment integrity test.
  • the obtained design result of the containment integrity test scheme includes the test item, the pressure step corresponding to the test item, the duration corresponding to the pressure step, and the pressure rise and fall rate.
  • the design method for the containment integrity test of the advanced pressurized water reactor nuclear power plant further includes: combing the containment boundary penetrations and process pipelines to obtain safety.
  • Configuration and function of each penetration of the containment and process pipeline according to the configuration and function of each penetration of the containment and process pipeline, as well as the test practicability and safety requirements, obtain the prerequisites for the integrity test of the containment to ensure the containment Implementability and safety of the overall trial protocol.
  • combing the containment boundary penetrations and process pipelines to obtain the configuration and functions of each containment penetrations and process pipelines specifically including: combing all penetrations and process pipelines through the containment, in the form of a list.
  • Analyze the configuration and function of each process pipeline and penetrations including process penetrations, electrical penetrations, personnel and emergency gates, equipment gates, fuel transfer channels, and backup penetrations.
  • obtaining the prerequisites for the integrity test of the containment according to the configurations and functions of the penetrations of the containment and the process pipelines, as well as the test practicability and safety requirements specifically includes: according to the penetrations of the containment and The configuration and function of the process pipeline, as well as the test feasibility requirements, the boundary state is designed to form the test prerequisites related to the boundary state; The relevant test conditions for the protection of personnel, process systems and equipment during the test are designed to form safety-related test prerequisites.
  • the test prerequisites related to the boundary state include: isolating the penetration at the test boundary, closing the penetration in a normal manner, and cannot be operated manually or in other ways after isolation; Outside the system where the unit is in a safe state during the test, the related process systems or pipelines need to be considered for air or drainage; at the same time, in order to avoid leakage to the secondary side through the evaporator during the test, the secondary circuit system needs to consider synchronous boosting; boosting and unloading The equipment needs to be installed in place, and the corresponding pipeline penetrations meet the corresponding leakage rate requirements.
  • the safety-related test prerequisites include: during the test, all personnel in the containment should be stopped from working, the corresponding safety zone should be marked, and the entry and exit of irrelevant personnel should be prohibited.
  • Influence to avoid damage to the equipment in the shell caused by the pressure charging and decompression operation, for the equipment that is not pressure-bearing in the shell, consider removing it from the atmosphere of the containment or from the shell; at the same time, in order to avoid the malfunction of the specially designed safety facilities during the test, The drive signal of the relevant system needs to be blocked; the increase of the pressure in the casing will cause the ignition point of the combustibles to decrease. Before the test, the combustibles in the casing should be removed, and a corresponding emergency fire prevention plan should be formulated.
  • step 201 by combing the boundary penetration of the containment and the process pipeline, all the process penetrations of the containment are covered to the greatest extent, so as to ensure the boundary integrity of the integrity test of the containment, and for the later development Lay the foundation for the feasibility of the containment integrity test; further obtain the prerequisites for the integrity test based on the combing results, so that the acquired test prerequisites are met before the containment integrity test is carried out, thereby ensuring the safety and implementation of the test. sex.
  • This embodiment provides a design device for a containment integrity test of an advanced pressurized water reactor nuclear power plant, including a first determination module, a second determination module, a third determination module, and a combination module.
  • the first determination module is used to determine each test item during the containment integrity test.
  • the second determination module is used to determine the pressure steps and corresponding durations in each test item.
  • the third determination module is used to determine the upper limit of the rise and fall rate of the containment integrity test.
  • the combination module is respectively connected with the first determination module, the second determination module, and the third determination module, and is used for each determined test item, the pressure ladder in each test item and the corresponding duration, and the integrity test of the containment
  • the upper limit of the buck-boost rate is obtained, and the design results of the containment integrity test scheme are obtained.
  • the design device for the containment integrity test of the advanced pressurized water reactor nuclear power plant further includes a combing module and an acquisition module.
  • the combing module is used to comb the containment boundary penetrations and process pipelines to obtain the configuration and functions of the containment penetrations and process pipelines.
  • the acquisition module is connected to the combing module and the combination module respectively, and is used to obtain the prerequisites for the integrity test of the containment according to the configuration and function of the penetrations and process pipelines of the containment, as well as the requirements for the feasibility and safety of the test.
  • the prerequisites of the containment integrity test are transmitted to the combined module, so that the combined module can obtain the design results of the containment integrity test plan under the preconditions of the containment integrity test, so as to ensure the implementation of the containment integrity test plan. sex and safety.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种先进压水堆核电厂安全壳整体性试验的设计方法及设计装置,设计方法包括:确定安全壳整体性试验期间的各试验项目;确定各试验项目中的压力阶梯及对应的持续时间;确定安全壳整体性试验的升降压速率上限;根据确定的各试验项目、各试验项目中的压力阶梯及对应的持续时间,以及安全壳整体性试验的升降压速率上限,得到安全壳整体性试验方案的设计结果。根据该设计方法得到的整体性试验方案能最大程度上保证试验的安全性和可实施性,同时还能提高核电厂的经济性。

Description

先进压水堆核电厂安全壳整体性试验的设计方法及装置
本公开要求申请日为2021年3月24日、申请号为202110312538.6、名称为“一种先进压水堆核电厂安全壳整体性试验的设计方法”的中国专利申请的优先权。
技术领域
本发明涉及核电设计领域,尤其涉及一种先进压水堆核电厂安全壳整体性试验的设计方法及设计装置。
背景技术
作为限制放射性物质向环境释放的最后一道屏障,压水堆核电厂的安全壳承担着在正常运行及事故工况下包容放射性物质、屏蔽辐射以及保护反应堆免受外部自然事件和人为事件影响的安全功能。安全壳的设计需保证核电厂向环境的任何放射性释放都保持在合理可行尽量低的水平,在运行工况下不超过放射性释放的监管排放限值,在事故工况下不超过放射性释放的可接受限值。并且,基于可运行性要求,安全壳的设计还应为壳内外设备的机械连接、电气连接及正常运行期间的人员出入提供通道。为验证以上安全功能和可运行性,需在机组首次装料前调试及运行后换料大修期间对安全壳进行相关性能试验。
由于核电厂的安全壳整体性试验占用机组装料前调试及运行后换料大修的主线工期,其试验方案设计的合理性和可行性对提高核电厂的可利用率至关重要。
目前,国内在役压水堆核电机组安全壳整体性试验大多基于质量点法测量安全壳的整体泄漏率,并在整体性试验期间对安全壳结构完整性和相关功能要求进行验证,试验原理上并没有明显差别。但由于所遵循的标准及安全 壳结构和功能设计方面均存在差异,使得各核电堆型安全壳整体性试验的设计在升降压速率、压力阶梯及持续时间、各阶梯的试验项目或内容等方面存在着较大的差异,且存在着压力阶梯设计不合理、阶梯持续试验过长或升降压曲线设计不完善等问题。
如何明确先进压水堆核电厂安全壳整体性试验的执行策略,以规范安全壳整体性试验的具体执行,提高核电厂运行的安全性和经济性是亟待解决的难题。
发明内容
本发明要解决的技术问题是针对现有技术存在的上述不足,提供一种先进压水堆核电厂安全壳整体性试验的设计方法,根据该设计方法得到的整体性试验方案能最大程度上保证试验的安全性和可实施性,同时还能有效提高核电厂的运行经济性。
本发明提供一种先进压水堆核电厂安全壳整体性试验的设计方法,包括:确定安全壳整体性试验期间的各试验项目;确定各试验项目中的压力阶梯及对应的持续时间;确定安全壳整体性试验的升降压速率上限;根据确定的各试验项目、各试验项目中的压力阶梯及对应的持续时间,以及安全壳整体性试验的升降压速率上限,得到安全壳整体性试验方案的设计结果。
优选地,确定安全壳整体性试验期间的各试验项目,具体为:根据安全壳的安全功能要求及安全壳的可运行性功能要求来确定安全壳整体性试验期间的各试验项目。所述试验项目包括:泄漏率试验;结构完整性试验;隔离阀触发逻辑功能试验;可燃气体混合功能试验;人员闸门功能试验;泄漏率测量系统有效性验证,以及结构完整性测量系统有效性验证。
优选地,确定各试验项目中的压力阶梯及对应的持续时间,具体包括:根据安全壳试验法规、导则和标准,确定各试验项目中强制的压力阶梯及对应的持续时间,以及,根据安全壳结构完整性试验的预试验及功能试验执行的压力要求,确定各试验项目中非强制的压力阶梯及对应的持续时间。
优选地,确定安全壳整体性试验期间的各试验项目之前,先进压水堆核电厂安全壳整体性试验的设计方法还包括:梳理安全壳边界贯穿件及工艺管线,得到安全壳各贯穿件及工艺管线的配置及功能;根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性和安全性要求,获取安全壳整体性试验的先决条件,以保证安全壳整体性试验方案的可实施性和安全性。
优选地,所述梳理安全壳边界贯穿件及工艺管线,得到安全壳各贯穿件及工艺管线的配置及功能,具体包括:对于贯穿安全壳的所有贯穿件及工艺管线进行梳理,以清单形式分析各工艺管线及贯穿件的配置和功能,其中贯穿件包括:工艺贯穿件,电气贯穿件,人员及应急闸门,设备闸门,燃料转运通道,以及备用贯穿件。
优选地,所述根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性和安全性要求,获取安全壳整体性试验的先决条件,具体包括:根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性要求,对边界状态进行设计,形成边界状态相关的试验先决条件;根据安全壳各贯穿件及工艺管线的配置及功能,以及试验安全性要求,对试验期间人员、工艺系统和设备保护的相关试验条件进行设计,形成安全相关的试验先决条件。
优选地,所述边界状态相关的试验先决条件包括:对试验边界的贯穿件进行隔离,以正常方式关闭贯穿件,隔离后不能用手动或其它方式再操作;除了试验期间需运行或者为保证试验期间机组处于安全状态的系统外,相关工艺系统或管道需考虑对空或排水;同时,为避免试验期间通过蒸发器向二次侧的泄漏,二回路系统需考虑同步升压;升卸压设备需安装就位,对应管道贯穿件满足对应的泄漏率要求。所述安全相关的试验先决条件包括:试验期间,要求停止安全壳内的所有人员作业,标出对应的安全区,禁止无关人员的出入,对于充卸压操作人员,需考虑噪声对人员听力的影响;避免由于充卸压操作造成的壳内设备的损坏,对于壳内不承压设备,考虑从与安全壳大气相通或从壳内移出;同时为避免试验期间专设安全设施的误动作,相关系统的驱动信号需闭锁;由于壳内压力的升高会导致可燃物燃点降低,试验前需移除壳内可燃物,并制定对应的应急消防预案。
进一步地,本发明还提供一种先进压水堆核电厂安全壳整体性试验的设计装置,包括第一确定模块、第二确定模块、第三确定模块,以及组合模块。
第一确定模块,用于确定安全壳整体性试验期间的各试验项目。第二确定模块,用于确定各试验项目中的压力阶梯及对应的持续时间。第三确定模块,用于确定安全壳整体性试验的升降压速率上限。组合模块,分别与第一确定模块、第二确定模块,以及第三确定模块连接,用于根据确定的各试验项目、各试验项目中的压力阶梯及对应的持续时间,以及安全壳整体性试验的升降压速率上限,得到安全壳整体性试验方案的设计结果。
优选地,先进压水堆核电厂安全壳整体性试验的设计装置还包括梳理模块和获取模块。梳理模块,用于梳理安全壳边界贯穿件及工艺管线,得到安全壳各贯穿件及工艺管线的配置及功能。获取模块,分别与梳理模块和组合模块连接,用于根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性和安全性要求,获取安全壳整体性试验的先决条件,并将安全壳整体性试验的先决条件传输给组合模块,以使组合模块在满足安全壳整体性试验的先决条件下得到安全壳整体性试验方案的设计结果,以保证安全壳整体性试验方案的可实施性和安全性。
与现有技术相比,本发明的先进压水堆核电厂安全壳整体性试验的设计方法具有以下有益效果:
(1)针对先进压水堆核电机组的所有工艺管线及贯穿件进行梳理,详细分析各工艺管线及贯穿件配置和功能。该技术方案步骤最大程度上涵盖了安全壳的所有工艺贯穿,保证了安全壳整体性试验的边界完整性,并为后期开展安全壳整体性试验的可实施性奠定基础;
(2)基于安全壳边界贯穿及工艺管线梳理结果,对试验期间的边界状态要求进行设计,同时考虑人员、工艺系统和设备保护要求对安全壳整体性试验的先决条件进行梳理。由此两方面形成的安全壳整体性试验先决条件可最大程度上保证试验的安全性和可实施性。
(3)在核安全法规、导则和标准的基础上,对安全壳整体性试验期间的试验项目进行设计。基于安全壳功能要求梳理结果,确定安全壳整体性试验 期间的安全功能相关试验及可运行性相关试验项目设计,并充分考虑与安全壳设计特点相关的其他试验项目设计。本技术方案步骤可确保安全壳的安全功能和可运行性在试验期间得到全面验证,保证了试验项目设计的合法性、全面性和有效性,并为安全壳整体性试验升降压曲线设计奠定基础。
(4)在试验项目设计完成后,对各试验项目执行的压力阶梯进行设计,综合考虑阶梯压力选择及阶梯持续时间要求。此技术方案步骤中,针对核安全法规、导则和标准中要求的强制压力阶梯,要求根据法规、导则和标准要求明确阶梯压力及持续时间要求,并结合在该压力阶梯需进行试验项目,保证了压力阶梯设计的合法性和有效性。针对非强制压力阶梯,要求结合工程经验,充分考虑安全功能相关试验的低压预试验及可运行性相关试验要求,设置阶梯压力并明确阶梯持续时间,在满足可实施性的基础上,有效缩短安全壳整体性试验执行的工期,提高试验执行的经济性。
(5)在我国核安全法规、导则和标准中要求的升降压速率上限的范围内,对安全壳整体性试验期间的升降压速率进行设计。在满足合法性的基础上,充分考虑升降压速率对安全壳结构完整性及试验数据采集的影响,充分保证试验的安全性和可实施性,同时保证升降压速率的设计有效性,可最大范围内缩短安全壳整体性试验执行的持续时间,提高试验执行的经济性。
(6)对技术方案进行整合,以形成先进压水堆核电机组安全壳整体性试验的升降压曲线。同时,结合安全壳整体性试验边界梳理、试验先决条件设计,以形成最终的先进压水堆核电机组安全壳整体性试验的试验方案(即整体性试验方案的设计结果),保证试验设计的合理性和完整性。
基于以上技术方案步骤所设计出的安全壳整体性试验方案在先进压水堆核电机组安全壳整体性试验设计方向具有很大的可推广性,并可为其它堆型核电机组安全壳整体性试验的设计提供参考。
附图说明
图1表示本发明先进压水堆核电厂安全壳整体性试验的设计方法的流程 示意图;
图2表示国内某三代先进压水堆核电机组安全壳整体性试验升降压曲线示意图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明的实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明的限制。
我国第三代先进压水堆核电机组采用双层安全壳结构形式,内层安全壳为附有钢衬里的预应力混凝土结构,靠预应力混凝土和钢筋混凝土筏基承受压力,而由钢衬里保证其密封性;外层安全壳为普通钢筋混凝土结构。由于安全壳整体性试验的设计主要针对内层安全壳,与外层安全壳结构无必然联系,为避免混淆,以下将内层安全壳简称为安全壳。
本发明的实施例公开了一种先进压水堆核电厂安全壳整体性试验的设计方法,包括以下步骤:
步骤S1:安全壳边界贯穿件及工艺管线梳理;
所述步骤S1中,具体包括:
对于贯穿安全壳的所有贯穿件及工艺管线进行梳理,以清单形式分析各工艺管线及贯穿件的配置和功能,其中贯穿件包括:工艺贯穿件,电气贯穿件,人员及应急闸门,设备闸门,燃料转运通道,以及备用贯穿件。
步骤S2:安全壳整体性试验先决条件设计;
所述步骤S2具体包括:根据所述贯穿件和工艺管线梳理的结果,结合试验可实施性和准确性要求,对边界状态进行设计,形成边界状态相关的试验先决条件;结合试验期间的消防及人员保护要求,对试验期间人员、工艺系统和设备保护的相关试验条件进行设计,形成安全相关的试验先决条件。
所述步骤S2中,所述边界状态相关的试验先决条件包括:贯穿件隔离,工艺系统对空或排水,以及试验设备应具备的条件;
所述安全相关的试验先决条件包括对于人员保护,工艺系统和设备保护,及消防措施应具备的条件。
所述贯穿件隔离应具备的条件为:对试验边界的贯穿件进行隔离,以正常方式关闭贯穿件,隔离后不能用手动或其它方式再操作;
所述工艺系统对空或排水应具备的条件为:除了试验期间需运行或者为保证试验期间机组处于安全状态的系统外,相关工艺系统或管道需考虑对空或排水;同时,为避免试验期间通过蒸发器向二次侧的泄漏,二回路系统考虑同步升压;
所述试验设备应具备的条件为:升卸压设备需安装就位,对应管道贯穿件满足对应的泄漏率要求。
所述人员保护应具备的条件为:试验期间,要求停止安全壳内的所有人员作业,标出对应的安全区,禁止无关人员的出入;对于充卸压操作人员,考虑噪声对人员听力的影响;
所述工艺系统和设备保护应具备的条件为:避免由于充卸压操作造成的壳内设备的损坏,对于壳内不承压设备,考虑从与安全壳大气相通或从壳内移出;同时为避免试验期间专设安全设施的误动作,相关系统的驱动信号需闭锁;
消防措施应具备的条件为:验前需移除壳内可燃物,并制定对应的应急消防预案。
步骤S3:基于安全壳功能要求的试验项目设计,即确定安全壳整体性试验期间的各试验项目;
所述步骤S3具体包括:
基于安全功能要求,对安全壳整体性试验期间的泄漏率试验进行设计;
基于安全壳的可运行性功能并考虑测量系统有效性的预验证要求,确定安全壳功能试验项目包括:结构完整性试验;隔离阀触发逻辑功能试验;可燃气体混合功能试验;人员闸门功能试验;泄漏率测量系统有效性验证和结构完整性测量系统有效性验证。
步骤S4:安全壳整体性的压力阶梯设计以及升降压速率设计;
所述步骤S4中,安全壳整体性的压力阶梯设计具体包括:
根据安全壳试验相关法规、导则和标准,考虑强度试验及泄漏量的预试验及功能试验执行的压力要求,对各试验项目执行的压力阶梯进行设计,包括阶梯压力选择以及确定对应阶梯压力的持续时间。
所述步骤S4中,所述升降压速率设计包括:
在限值内,考虑升降压速率对安全壳结构完整性的影响及数据采集的影响,确定安全壳整体性试验升压速率上限和降压速率上限。
步骤S5:形成先进压水堆核电机组安全壳整体性试验方案设计。
所述步骤S5具体包括:
基于安全壳整体性试验的压力阶梯设计及升降压速率设计结果,形成先进压水堆核电机组安全壳整体性试验的升降压曲线设计,结合试验先决条件的设计,形成先进压水堆核电机组安全壳整体性试验方案。
为了进一步理解本发明,下面结合实施例对本发明提供的先进压水堆核电厂安全壳整体性试验的设计方法进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
具体参见图1,进行以下说明。
(1)安全壳边界贯穿件及工艺管线梳理
基于我国核安全法规、导则和标准要求,结合该堆型安全壳结构设计,对贯穿安全壳的所有工艺管线及贯穿件进行了梳理,并以清单形式分析了各工艺管线及贯穿件的配置和功能。形成清单示如表1所示:
表1 我国某第三代先进压水堆的安全壳贯穿件清单
Figure PCTCN2021141566-appb-000001
Figure PCTCN2021141566-appb-000002
(2)安全壳整体性试验先决条件设计
根据贯穿安全壳的工艺管线和贯穿件梳理结果,结合试验可实施性和准确性要求,对边界状态要求进行设计,形成边界状态相关的试验先决条件如下:
贯穿件隔离:对试验边界的贯穿件进行隔离,以正常方式关闭贯穿件,隔离后不能用手动或其它方式再操作。
工艺系统对空或排水:除了试验期间需运行或者为保证试验期间机组处于安全状态的系统外,相关工艺系统或管道需考虑对空或排水;同时,为避免试验期间通过蒸发器向二次侧的泄漏,二回路系统需考虑同步升压。
试验设备:升卸压设备需安装就位,对应管道贯穿件满足对应的泄漏率要求。
为保证试验安全性,需对试验期间人员、工艺系统和设备保护的相关试验条件进行设计。结合试验期间的消防要求,形成安全相关的试验先决条件如下(人员、要求):
人员保护:试验期间,要求停止安全壳内的所有人员作业,标出对应的安全区,禁止无关人员的出入。对于充卸压操作人员,需考虑噪声对人员听力的影响。
工艺系统和设备保护:避免由于充卸压操作造成的壳内设备的损坏,对于壳内不承压设备,考虑从与安全壳大气相通或从壳内移出;同时为避免试验期间专设安全设施的误动作,相关系统的驱动信号需闭锁。
消防措施:由于壳内压力的升高会导致可燃物燃点降低,试验前需移除壳内可燃物,并制定对应的应急消防预案。
(3)基于安全壳功能要求的试验项目设计
该先进压水堆核电机组安全壳的设计安全功能为:在一回路失水事故或安全壳内主蒸汽管道破裂事故时,限制被污染的气体泄漏到安全壳外。基于此安全功能要求,需着重考虑安全壳整体性试验期间的泄漏率试验设计,以保证安全壳整体泄漏率不超过设计基准事故分析的初始假设。
考虑安全壳的可运行性功能要求,该先进压水堆核电机组安全壳功能试验项目还应包括如下内容:
结构完整性试验:对安全壳的承压特性进行验证(含安全壳内外的目视检查);
隔离阀触发逻辑功能试验:验证与安全壳大气状态相关的专设安全设施的驱动逻辑;
可燃气体混合功能试验:验证事故后可燃气体的大气搅混功能;
人员闸门功能试验:事故后安全壳内人员通过人员闸门或应急闸门的紧急撤离。
除此之外,考虑测量系统的有效性,需在试验前及试验期间的低压阶梯对测量系统有效性进行验证,其他试验项目包括:
泄漏率测量系统有效性验证;
结构完整性测量系统有效性验证。
我国核安全法规、导则和标准中要求的安全壳相关的能量和放射性控制功能、辅助系统、通风系统的相关功能试验内容大多涵盖在各工艺系统的功能试验范畴,这些试验不要求模拟事故后安全壳内的大气状态,可不在安全壳整体性试验设计中考虑。
(4)安全壳整体性试验的压力阶梯设计
安全壳整体性试验期间的试验项目设计完成后,需对各试验项目执行的压力阶梯进行设计,主要包括阶梯压力选择及对应的持续时间两部分要求。我国安全壳试验相关的法规、导则和标准中,针对安全壳整体性试验的压力阶梯设计相关要求主要包括:
装料前安全壳结构完整性试验的最大压力为1.15倍设计压力(试验压力);
整体泄漏率的测量需进行零压力试验,以验证测量系统的有效性进行(试验压力);
在压力升至设计压力一半时,测定一次泄漏率,了解大致的泄漏水平(试验压力);
在设计压力作用下,整体泄漏率的持续24小时,至少在相近的20个时间间隔内读取仪表数据(试验压力及持续时间);
必要时可在设计压力下进行一次验证试验,验证测量仪表代表性(试验压力);
当装料前整体泄漏率试验与结构完整性试验同时进行时,应在结构完整性试验达到试验压力后将压力降至0.85倍设计压力以下稳定24小时,方可开始整体泄漏率的测量(试验压力及持续时间)。
由以上内容可以看出,安全壳试验相关法规、导则和标准中,针对于阶梯压力选择的相关强制性要求包括:0、0.5P、P、1.15P、0.85P、P、0。针对阶梯持续时间,除0.85P及P压力阶梯的持续时间为强制性要求外,其余压力阶梯并无硬性要求。除以上内容外,考虑结构完整性试验的预试验及功能试验执行的压力要求,在增压阶段还增加了0.01P、0.25P(例如,隔离阀触发逻辑试验在0.01P和0.25P压力时需触发隔离阀进行功能验证)压力阶梯要求,在降压阶段,考虑结构完整性试验数据与升压阶段的对比,还增加0.5P、0.25P压力阶梯,同时结合试验项目设计,明确了在各试验项目要求中各压力阶梯的持续时间。本实施例中,所确定(或设计)的各试验项目中的压力阶梯及对应的持续时间,既包括强制压力阶梯及其对应的持续时间,使得安全壳的整体性试验合法和有效,还包括非强制压力阶梯及其对应的持续时间,由于非强制压力阶梯及其对应的持续时间是根据工程经验、结构完整性试验的预试验,以及功能试验要求所确定的,使得安全壳的整体性试验在满足可实施性的基础上,有效缩短试验的执行工期,提高试验执行的经济性。
(5)安全壳整体性试验的升降压速率设计
我国核安全相关标准中,针对安全壳整体性试验的升降压速率,规定“压力的升降速率每小时不应大于最高试验压力的20%;每一级压力到达后,恒 压时间不应小于1h”。在此限值以内,升降压速率的设置还需要充分考虑对试验对安全壳结构及数据采集的影响。升压速率过快,会导致安全壳内部构件吸气现象的产生,影响试验数据测量的准确性,降压速率过快,有可能会导致安全壳(涂层、油漆)结构的损坏。因此,在安全壳整体性试验的升降压速率限值内,综合试验对安全壳结构及数据采集的影响,同时参考了国内在役及在建压水堆核电机组的工程经验,将该先进压水堆核电机组的安全壳整体性试验升压速率上限设置为15kPa/h,降压速率上限设置为14kPa/h。
(6)先进压水堆核电机组安全壳整体性试验设计
基于以上整个设计过程,便形成了该堆型先进压水堆核电机组的安全壳整体性试验方案,该试验方案包含了试验边界设计、试验先决条件设计、试验项目设计以及结合压力阶梯及升降压速率的安全壳整体性试验升降压曲线设计内容,其中,安全壳整体性试验升降压曲线设计内容包括试验项目对应的压力阶梯、压力阶梯对应的持续时间,以及升降压速率。
根据以上设计过程,形成的安全壳整体性试验升降压曲线示意图如图2所示。安全壳整体性试验前,需根据本节技术方案(1)和(2)的内容,建立安全壳整体性试验的隔离边界,并根据试验先决条件要求,完成风险识别和对应的预防措施,然后方可开展安全壳整体性试验。
安全壳整体性试验的开展根据升降压曲线进行。如图2所示,在0压阶梯,进行泄漏率和结构完整性测量系统有效性验证,并对结构完整性进行初次检查后便可以15kPa/h速率升压。在升压阶段,达到各压力阶梯后,根据升降压曲线完成对应试验项目后便可继续升压,直至达到1.15倍设计压力(即1.15P)。1.15倍设计压力的结构完整性试验完成后,以14kPa/h降压速率进行首次降压操作,达到0.85倍设计压力阶梯,根据法规、标准要求,强制稳压24小时并进行泄漏率测量后进行二次升压操作,直至设计压力阶梯。在设计压力阶梯进行24小时安全壳泄漏率测量及结构完整性验证后,便可进行最后的降压操作,完成降压阶段各压力阶梯的相关试验后,安全壳整体性试验则完整结束。
实施例2
本实施例提供一种先进压水堆核电厂安全壳整体性试验的设计方法,包括:
步骤201,确定安全壳整体性试验期间的各试验项目。
可选地,步骤201:确定安全壳整体性试验期间的各试验项目,具体为:根据安全壳的安全功能要求及安全壳的可运行性功能要求来确定安全壳整体性试验期间的各试验项目。如图2所示,确定的试验项目包括:泄漏率试验;结构完整性试验;隔离阀触发逻辑功能试验;可燃气体混合功能试验;人员闸门功能试验;泄漏率测量系统有效性验证,以及结构完整性测量系统有效性验证。
步骤202,确定各试验项目中的压力阶梯及对应的持续时间。
可选地,步骤202:确定各试验项目中的压力阶梯及对应的持续时间,具体包括:根据安全壳试验法规、导则和标准,确定各试验项目中强制的压力阶梯及对应的持续时间,以及,根据安全壳结构完整性试验的预试验及功能试验执行的压力要求,确定各试验项目中非强制的压力阶梯及对应的持续时间。
本实施例中,确定的强制的压力梯度及对应的持续时间有:0、0.5P、P、1.15P、0.85P、P、0,其中0.85P及P压力阶梯的持续时间为强制性要求至少24小时。确定的非强制的压力阶梯及对应的持续时间有:在增压阶段增加了0.01P、0.25P的压力阶梯,在降压阶段,增加了0.5P、0.25P的压力阶梯,由于强制性要求的持续时间只针对于0.85P和P的压力阶梯,故其他压力阶梯对应的持续时间根据试验项目要求弹性设置。因此,本实施例中确定整体性试验方案使得安全壳的整体性试验在满足可实施性的基础上,能有效缩短试验的执行工期,提高试验执行的经济性。例如,相比于现有技术某核电机组装料前调试阶段安全壳的整体性试验的执行工期11天,本实施例中试验的执行工期为9天。
步骤203,确定安全壳整体性试验的升降压速率上限。
本实施例中,在安全壳整体性试验的升降压速率限值内,综合试验对安 全壳结构及数据采集的影响,同时参考了国内在役及在建压水堆核电机组的工程经验,将该先进压水堆核电机组的安全壳整体性试验升压速率上限设置为15kPa/h,降压速率上限设置为14kPa/h。由于所确定的升压速率上限和降压速率上限低于现有技术的升降压速率限值,故在保证升降压速率的有效性基础上,缩短了安全壳整体性试验执行的持续时间,从而提高试验执行的经济性。此外,所确定的升降压速率上限可避免升降压速率过高对安全壳结构完整性及试验数据采集的不利影响,从而提高试验的安全性和可实施性。
步骤204,根据确定的各试验项目、各试验项目中的压力阶梯及对应的持续时间,以及安全壳整体性试验的升降压速率上限,得到安全壳整体性试验方案的设计结果。
本实施例中,如图2所示,得到的安全壳整体性试验方案的设计结果包括试验项目、试验项目对应的压力阶梯、压力阶梯对应的持续时间,以及升降压速率。
可选地,在步骤201:确定安全壳整体性试验期间的各试验项目之前,先进压水堆核电厂安全壳整体性试验的设计方法还包括:梳理安全壳边界贯穿件及工艺管线,得到安全壳各贯穿件及工艺管线的配置及功能;根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性和安全性要求,获取安全壳整体性试验的先决条件,以保证安全壳整体性试验方案的可实施性和安全性。
可选地,所述梳理安全壳边界贯穿件及工艺管线,得到安全壳各贯穿件及工艺管线的配置及功能,具体包括:对于贯穿安全壳的所有贯穿件及工艺管线进行梳理,以清单形式分析各工艺管线及贯穿件的配置和功能,其中贯穿件包括:工艺贯穿件,电气贯穿件,人员及应急闸门,设备闸门,燃料转运通道,以及备用贯穿件。
可选地,所述根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性和安全性要求,获取安全壳整体性试验的先决条件,具体包括:根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性要求,对边界状态进行设计,形成边界状态相关的试验先决条件;根据安全壳各贯穿件 及工艺管线的配置及功能,以及试验安全性要求,对试验期间人员、工艺系统和设备保护的相关试验条件进行设计,形成安全相关的试验先决条件。
可选地,所述边界状态相关的试验先决条件包括:对试验边界的贯穿件进行隔离,以正常方式关闭贯穿件,隔离后不能用手动或其它方式再操作;除了试验期间需运行或者为保证试验期间机组处于安全状态的系统外,相关工艺系统或管道需考虑对空或排水;同时,为避免试验期间通过蒸发器向二次侧的泄漏,二回路系统需考虑同步升压;升卸压设备需安装就位,对应管道贯穿件满足对应的泄漏率要求。所述安全相关的试验先决条件包括:试验期间,要求停止安全壳内的所有人员作业,标出对应的安全区,禁止无关人员的出入,对于充卸压操作人员,需考虑噪声对人员听力的影响;避免由于充卸压操作造成的壳内设备的损坏,对于壳内不承压设备,考虑从与安全壳大气相通或从壳内移出;同时为避免试验期间专设安全设施的误动作,相关系统的驱动信号需闭锁;由于壳内压力的升高会导致可燃物燃点降低,试验前需移除壳内可燃物,并制定对应的应急消防预案。
本实施例中,由于在步骤201之前,通过梳理安全壳的边界贯穿和工艺管线,使得最大程度上涵盖安全壳的所有工艺贯穿,保证了安全壳整体性试验的边界完整性,并为后期开展安全壳整体性试验的可实施性奠定基础;进一步基于梳理结果获取整体性试验先决条件,使得在开展安全壳的整体性试验之前满足所获取的试验先决条件,从而保证试验的安全性和可实施性。
实施例3
本实施例提供一种先进压水堆核电厂安全壳整体性试验的设计装置,包括第一确定模块、第二确定模块、第三确定模块,以及组合模块。
第一确定模块,用于确定安全壳整体性试验期间的各试验项目。
第二确定模块,用于确定各试验项目中的压力阶梯及对应的持续时间。
第三确定模块,用于确定安全壳整体性试验的升降压速率上限。
组合模块,分别与第一确定模块、第二确定模块,以及第三确定模块连接,用于根据确定的各试验项目、各试验项目中的压力阶梯及对应的持续时 间,以及安全壳整体性试验的升降压速率上限,得到安全壳整体性试验方案的设计结果。
可选地,先进压水堆核电厂安全壳整体性试验的设计装置还包括梳理模块和获取模块。
梳理模块,用于梳理安全壳边界贯穿件及工艺管线,得到安全壳各贯穿件及工艺管线的配置及功能。
获取模块,分别与梳理模块和组合模块连接,用于根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性和安全性要求,获取安全壳整体性试验的先决条件,并将安全壳整体性试验的先决条件传输给组合模块,以使组合模块在满足安全壳整体性试验的先决条件下得到安全壳整体性试验方案的设计结果,以保证安全壳整体性试验方案的可实施性和安全性。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (9)

  1. 一种先进压水堆核电厂安全壳整体性试验的设计方法,其特征在于,包括:
    确定安全壳整体性试验期间的各试验项目;
    确定各试验项目中的压力阶梯及对应的持续时间;
    确定安全壳整体性试验的升降压速率上限;
    根据确定的各试验项目、各试验项目中的压力阶梯及对应的持续时间,以及安全壳整体性试验的升降压速率上限,得到安全壳整体性试验方案的设计结果。
  2. 根据权利要求1所述的先进压水堆核电厂安全壳整体性试验的设计方法,其特征在于,确定安全壳整体性试验期间的各试验项目,具体为:根据安全壳的安全功能要求及安全壳的可运行性功能要求来确定安全壳整体性试验期间的各试验项目,
    所述试验项目包括:泄漏率试验;结构完整性试验;隔离阀触发逻辑功能试验;可燃气体混合功能试验;人员闸门功能试验;泄漏率测量系统有效性验证,以及结构完整性测量系统有效性验证。
  3. 根据权利要求1所述的先进压水堆核电厂安全壳整体性试验的设计方法,其特征在于,确定各试验项目中的压力阶梯及对应的持续时间,具体包括:
    根据安全壳试验法规、导则和标准,确定各试验项目中强制的压力阶梯及对应的持续时间,以及,
    根据安全壳结构完整性试验的预试验及功能试验执行的压力要求,确定各试验项目中非强制的压力阶梯及对应的持续时间。
  4. 根据权利要求1所述的先进压水堆核电厂安全壳整体性试验的设计方法,其特征在于,确定安全壳整体性试验期间的各试验项目之前,还包括:
    梳理安全壳边界贯穿件及工艺管线,得到安全壳各贯穿件及工艺管线的配置及功能;
    根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性和安全性要求,获取安全壳整体性试验的先决条件,以保证安全壳整体性试验方案的可实施性和安全性。
  5. 根据权利要求4所述的先进压水堆核电厂安全壳整体性试验的设计方法,其特征在于,所述梳理安全壳边界贯穿件及工艺管线,得到安全壳各贯穿件及工艺管线的配置及功能,具体包括:
    对于贯穿安全壳的所有贯穿件及工艺管线进行梳理,以清单形式分析各工艺管线及贯穿件的配置和功能,其中贯穿件包括:工艺贯穿件,电气贯穿件,人员及应急闸门,设备闸门,燃料转运通道,以及备用贯穿件。
  6. 根据权利要求4所述的先进压水堆核电厂安全壳整体性试验的设计方法,其特征在于,所述根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性和安全性要求,获取安全壳整体性试验的先决条件,具体包括:
    根据安全壳各贯穿件及工艺管线的配置及功能,以及试验可实施性要求,对边界状态进行设计,形成边界状态相关的试验先决条件;
    根据安全壳各贯穿件及工艺管线的配置及功能,以及试验安全性要求,对试验期间人员、工艺系统和设备保护的相关试验条件进行设计,形成安全相关的试验先决条件。
  7. 根据权利要求6所述的先进压水堆核电厂安全壳整体性试验的设计方法,其特征在于,所述边界状态相关的试验先决条件包括:
    对试验边界的贯穿件进行隔离,以正常方式关闭贯穿件,隔离后不能用手动或其它方式再操作;
    除了试验期间需运行或者为保证试验期间机组处于安全状态的系统外,相关工艺系统或管道需考虑对空或排水;同时,为避免试验期间通过蒸发器向二次侧的泄漏,二回路系统需考虑同步升压;
    升卸压设备需安装就位,对应管道贯穿件满足对应的泄漏率要求,
    所述安全相关的试验先决条件包括:
    试验期间,要求停止安全壳内的所有人员作业,标出对应的安全区,禁止无关人员的出入,对于充卸压操作人员,需考虑噪声对人员听力的影响;
    避免由于充卸压操作造成的壳内设备的损坏,对于壳内不承压设备,考虑从与安全壳大气相通或从壳内移出;同时为避免试验期间专设安全设施的误动作,相关系统的驱动信号需闭锁;
    由于壳内压力的升高会导致可燃物燃点降低,试验前需移除壳内可燃物,并制定对应的应急消防预案。
  8. 一种先进压水堆核电厂安全壳整体性试验的设计装置,其特征在于,包括第一确定模块、第二确定模块、第三确定模块,以及组合模块,
    第一确定模块,用于确定安全壳整体性试验期间的各试验项目,
    第二确定模块,用于确定各试验项目中的压力阶梯及对应的持续时间,
    第三确定模块,用于确定安全壳整体性试验的升降压速率上限,
    组合模块,分别与第一确定模块、第二确定模块,以及第三确定模块连接,用于根据确定的各试验项目、各试验项目中的压力阶梯及对应的持续时间,以及安全壳整体性试验的升降压速率上限,得到安全壳整体性试验方案的设计结果。
  9. 根据权利要求8所述的先进压水堆核电厂安全壳整体性试验的设计装置,其特征在于,还包括梳理模块和获取模块,
    梳理模块,用于梳理安全壳边界贯穿件及工艺管线,得到安全壳各贯穿件及工艺管线的配置及功能,
    获取模块,分别与梳理模块和组合模块连接,用于根据安全壳各贯穿件 及工艺管线的配置及功能,以及试验可实施性和安全性要求,获取安全壳整体性试验的先决条件,并将安全壳整体性试验的先决条件传输给组合模块,以使组合模块在满足安全壳整体性试验的先决条件下得到安全壳整体性试验方案的设计结果,以保证安全壳整体性试验方案的可实施性和安全性。
PCT/CN2021/141566 2021-03-24 2021-12-27 先进压水堆核电厂安全壳整体性试验的设计方法及装置 WO2022199178A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2314377.9A GB2619465A (en) 2021-03-24 2021-12-27 Design method and apparatus for containment integrity test of advanced pressurized water reactor nuclear power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110312538.6 2021-03-24
CN202110312538.6A CN113140340B (zh) 2021-03-24 2021-03-24 一种先进压水堆核电厂安全壳整体性试验的设计方法

Publications (1)

Publication Number Publication Date
WO2022199178A1 true WO2022199178A1 (zh) 2022-09-29

Family

ID=76810032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141566 WO2022199178A1 (zh) 2021-03-24 2021-12-27 先进压水堆核电厂安全壳整体性试验的设计方法及装置

Country Status (4)

Country Link
CN (1) CN113140340B (zh)
AR (1) AR125571A1 (zh)
GB (1) GB2619465A (zh)
WO (1) WO2022199178A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140340B (zh) * 2021-03-24 2022-07-26 中国核电工程有限公司 一种先进压水堆核电厂安全壳整体性试验的设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298675A1 (en) * 2001-09-28 2003-04-02 Paul Scherrer Institut Installation, sampling device and method for radioactivity measurement in a nuclear power plant
CA2727492A1 (en) * 2011-01-14 2012-07-14 Ge-Hitachi Nuclear Energy Canada Inc. Method for removal of pressure tubes and calandria tubes from a nuclear reactor
CN106093616A (zh) * 2016-05-30 2016-11-09 中国核电工程有限公司 一种用于先进压水堆核电站调试阶段首堆试验项目的制定方法
CN108007645A (zh) * 2017-10-25 2018-05-08 中国核电工程有限公司 一种大型压水堆安全壳整体密封性试验的传感器布置方法
CN108010594A (zh) * 2017-10-25 2018-05-08 中国核电工程有限公司 先进压水堆核电厂调试通用试验导则项目和内容的制定方法
CN211350119U (zh) * 2019-09-20 2020-08-25 中国核电工程有限公司 一种大型压水堆安全壳整体密封性试验测量系统
CN113140340A (zh) * 2021-03-24 2021-07-20 中国核电工程有限公司 一种先进压水堆核电厂安全壳整体性试验的设计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4405036B2 (ja) * 2000-04-24 2010-01-27 株式会社東芝 原子炉格納容器の試験工法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298675A1 (en) * 2001-09-28 2003-04-02 Paul Scherrer Institut Installation, sampling device and method for radioactivity measurement in a nuclear power plant
CA2727492A1 (en) * 2011-01-14 2012-07-14 Ge-Hitachi Nuclear Energy Canada Inc. Method for removal of pressure tubes and calandria tubes from a nuclear reactor
CN106093616A (zh) * 2016-05-30 2016-11-09 中国核电工程有限公司 一种用于先进压水堆核电站调试阶段首堆试验项目的制定方法
CN108007645A (zh) * 2017-10-25 2018-05-08 中国核电工程有限公司 一种大型压水堆安全壳整体密封性试验的传感器布置方法
CN108010594A (zh) * 2017-10-25 2018-05-08 中国核电工程有限公司 先进压水堆核电厂调试通用试验导则项目和内容的制定方法
CN211350119U (zh) * 2019-09-20 2020-08-25 中国核电工程有限公司 一种大型压水堆安全壳整体密封性试验测量系统
CN113140340A (zh) * 2021-03-24 2021-07-20 中国核电工程有限公司 一种先进压水堆核电厂安全壳整体性试验的设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, YUWEN : "Principle and Method of Overall Leakage Rate Experiment of AP1000 Nuclear Power Plant Safety Shell", MECHANICAL AND ELECTRICAL INFORMATION, no. 24, 31 December 2016 (2016-12-31), pages 153 - 155, XP009540017, ISSN: 1671-0797, DOI: 10.19514/j.cnki.cn32-1628/tm.2016.24.086 *
YU, JINGWEI: "Discussion on Overall Leakage Rate Experiment of AP1000 Safety Shell", CHINA HIGH TECHNOLOGY ENTERPRISES, no. 16, 1 January 2015 (2015-01-01), pages 38 - 40, XP055973071 *

Also Published As

Publication number Publication date
GB202314377D0 (en) 2023-11-01
AR125571A1 (es) 2023-07-26
GB2619465A (en) 2023-12-06
CN113140340B (zh) 2022-07-26
CN113140340A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2022199178A1 (zh) 先进压水堆核电厂安全壳整体性试验的设计方法及装置
US20220051815A1 (en) Containment structure and arrangement for nuclear reactor
Hwang et al. Development strategy of optimized Level 1&2 PSA model for APR1400 NPPs reflecting new severe accident mitigating system and its application
Pla et al. Simulation of steam generator plugging tubes in a PWR to analyze the operating impact
Kral Evolution and implementation of the design extension conditions (DEC) concept: assessment of selected events
Niemelä et al. Practical Elimination-Experiences for Units in Use, in Construction and in Design
Rahni et al. Guidance on the Verification and Improvement of SAM Strategies with L2 PSA
Georgescu et al. Use of Level 1 PSA in the Frame of EPR Licensing
Trnka Modernization programme at Dukovany NPP
Song Conceptual design enhancement for prevention and mitigation of severe accidents
Kazutoshi Newly Introduced Safety Assessment on Restarted Nuclear Power Plant in Japan
Weber Review of the safety analysis of the Ignalina Nuclear Power Plant
Julin et al. Role of PRA in new NPP projects
Torok Benefits and Risks Associated with Expanding Automated Diverse Actuation System Functions
Wang et al. The Safety Analysis of the Design of the Reactor Coolant Pump Heat Shield in Qinshan Nuclear Power Plant
Nijhawan Challenges in Multi-Unit CANDU Reactor Severe Accident Mitigation Strategies
Löffler et al. Correlation of initiating events with the PSA Level-2 Results
Proust et al. Development of new AE technology to detect and characterize leak on nuclear shielding building from inside during integrated leakage rate test
Hurtig Construction of a generic PSA model for Swedish BWRs
Yamada et al. Activities for Establishment of Nuclear Fuel Cycle
Laaksonen et al. Recent regulatory issues in Finland
Peng et al. The analysis of severe accident induced steam generator tube rupture and LERF risk
Nijhawan Regulatory Actions That Hinder Development of Effective Risk Reduction Measures by the Nuclear Industry for Enhanced Severe Accident Prevention and Mitigation Measures After Fukushima
Brisbois et al. Taking into account severe accidents in the design and the control of french PWR's
Zammite Research on PWR safety in France

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202314377

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211227

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523450821

Country of ref document: SA

122 Ep: pct application non-entry in european phase

Ref document number: 21932785

Country of ref document: EP

Kind code of ref document: A1