WO2022199096A1 - 一种电化学脱氮除磷装置及方法 - Google Patents

一种电化学脱氮除磷装置及方法 Download PDF

Info

Publication number
WO2022199096A1
WO2022199096A1 PCT/CN2021/133132 CN2021133132W WO2022199096A1 WO 2022199096 A1 WO2022199096 A1 WO 2022199096A1 CN 2021133132 W CN2021133132 W CN 2021133132W WO 2022199096 A1 WO2022199096 A1 WO 2022199096A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit reactor
dimensional
phosphorus removal
reactor
electro
Prior art date
Application number
PCT/CN2021/133132
Other languages
English (en)
French (fr)
Inventor
柏永生
常江
苏博君
师路远
韩军
刘垚
于丽昕
王欢欢
Original Assignee
北京城市排水集团有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京城市排水集团有限责任公司 filed Critical 北京城市排水集团有限责任公司
Priority to US18/548,274 priority Critical patent/US20240140848A1/en
Publication of WO2022199096A1 publication Critical patent/WO2022199096A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46175Electrical pulses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the technical field of wastewater treatment, and in particular relates to an electrochemical denitrification and dephosphorization device and method.
  • the electrochemical oxidation method can improve B/C, has the function of sterilization and disinfection, is less affected by temperature, is simple to operate, easy to control, does not produce sludge, does not need external chemicals, produces less sludge and most of the
  • the advantages of direct oxidation of ammonia nitrogen to nitrogen have attracted widespread attention.
  • two-dimensional electro-oxidation mostly relies on the indirect oxidation of anode to remove ammonia nitrogen, which has the disadvantages of low current efficiency and high energy consumption.
  • the method of reducing energy consumption by adding chloride salt cannot be converted into application, and the research on three-dimensional electrodes has gradually attracted attention at home and abroad.
  • the three-dimensional electrode method effectively increases the electrode surface area and reaction rate due to the introduction of particle electrodes, the reaction speed is faster, the footprint is smaller, and a lower energy consumption efficiency ratio can be achieved without adding salt. , avoid secondary pollution, can be used alone or in combination with other technologies, easy to standardize productization.
  • the methods of optimizing three-dimensional electrocatalytic oxidation technology mainly focus on the development of efficient particle electrodes, catalysts, plate plates and reaction devices, etc., and do not pay enough attention to the optimization of the operation control system.
  • the operation control system is optimized to keep the electrocatalytic oxidation reaction in the high-efficiency section, which has greater operability in practical engineering applications. Therefore, based on the three-dimensional electrocatalytic oxidation deamination technology to develop a cost-effective and efficient
  • the device and method of decentralized sewage pretreatment and deamination have important practical significance.
  • the electro-biological coupling process is a combination of electrochemical action and biological action, and under the enhanced environment of the external electric field, with the appropriate increase of the field strength, the activity of the microbial enzyme system will be enhanced, and the rate of enzymatic reaction will be improved, which is beneficial to improve the microbial resistance to pollutants.
  • the cell mitosis cycle is shortened, the proliferation rate is accelerated, and the growth and reproduction rate of microorganisms in the biological community is accelerated; the permeability of the cell membrane is enhanced, and the appropriate electric field strength enhances the mass transfer of the matrix fluid ; It is used by hydrogen autotrophic denitrifying bacteria for denitrification reaction.
  • the organic carbon source in the system can also be used as an electron donor for heterotrophic denitrifying bacteria. Therefore, the operation of this process can save carbon sources and is suitable for deep denitrification of low C/N reclaimed water.
  • a large number of theoretical and applied researches have been carried out on the treatment of sewage by electrode-biofilm reactors at home and abroad, but have not yet been commercialized and engineered. Therefore, it is of great practical significance to develop an economical and efficient decentralized sewage treatment device and method based on three-dimensional electro-biological coupling technology.
  • Two-dimensional electroflocculation has been gradually applied in the field of decentralized sewage phosphorus removal. However, it still has problems such as high energy consumption, and the total phosphorus in effluent cannot meet higher emission standards.
  • three-dimensional electroflocculation has the advantages of higher electrode specific surface area, lower energy consumption, and higher removal efficiency. Therefore, it is of great practical significance to develop an economical and efficient phosphorus removal device and method for sewage treatment based on three-dimensional electro-flocculation technology.
  • most of phosphorus flows in one direction in the biosphere, and the reserves of phosphate rock are very limited. The phosphate rock with low impurity content and high grade in my country's phosphate rock reserves is expected to be mined in the next 10 to 15 years. Therefore, it is of great practical significance to develop the recovery technology of phosphorus resources in sewage.
  • the purpose of the present invention is to propose an electrochemical denitrification and phosphorus removal device and method in view of the defects of the prior art.
  • the invention can achieve the purpose of efficient sewage treatment through the combined action of electrochemical flocculation, electrocatalytic oxidation and electroactive microorganisms, and is especially suitable for the treatment of domestic sewage with high ammonia nitrogen and low C/N ratio. It has the advantages of short time, low investment and operation cost, simple operation control, less influence by temperature, energy saving and environmental protection.
  • an electrochemical denitrification and phosphorus removal device which includes a three-dimensional electrocatalytic oxidation unit reactor, a three-dimensional electro-biological coupling unit reactor, a light filter material filter unit reactor, and Three-dimensional electroflocculation phosphorus removal unit reactor;
  • the general water inlet pipe, the three-dimensional electrocatalytic oxidation unit reactor, the three-dimensional electro-biological coupling unit reactor, and the light filter material filter unit reactor are connected in sequence;
  • the water outlet pipe of the light filter material filter unit reactor is respectively connected with the general water outlet pipe and the water inlet pipe of the three-dimensional electroflocculation phosphorus removal unit reactor;
  • a pump and a check valve are connected to the inlet pipe of the light filter media filter unit reactor.
  • the bottom of the tank body of the three-dimensional electrocatalytic oxidation unit reactor, the three-dimensional electro-biological coupling unit reactor, the light filter material filter unit reactor and the three-dimensional electro-flocculation phosphorus removal unit reactor are all provided with an aeration pipe and a vent. Tube.
  • Another aspect of the present invention provides an electrochemical denitrification and phosphorus removal method.
  • the method adopts the electrochemical denitrification and phosphorus removal treatment device, comprising the following steps:
  • S1 start the three-dimensional electrocatalytic oxidation unit reactor, the three-dimensional electro-biological coupling unit reactor, the light filter material filter unit reactor and the three-dimensional electro-flocculation phosphorus removal unit reactor; start the three-dimensional electrocatalytic oxidation unit reactor , the aeration pipe of the three-dimensional electro-biological coupling unit reactor and the three-dimensional electro-flocculation phosphorus removal unit reactor; start the first power source, the second power source and the third power source;
  • S2 The sewage is sent from the main water inlet pipe to the electrochemical denitrification and phosphorus removal treatment device and sequentially passes through the three-dimensional electrocatalytic oxidation unit reactor, the three-dimensional electro-biological coupling unit reactor and the light filter material filter pool unit reactor;
  • S3 discharging a part of the effluent of the light filter unit reactor from the general water outlet pipe to the electrochemical denitrification and phosphorus removal treatment device; The other part of the effluent is sent to the three-dimensional electro-flocculation phosphorus removal unit reactor; the effluent of the three-dimensional electro-flocculation phosphorus removal unit reactor is returned to the light filter material through the reflux pump and the check valve Filter unit reactor.
  • the present invention achieves the purpose of efficient sewage treatment through the combined action of electrochemical flocculation, electrocatalytic oxidation and electroactive microorganisms, and is especially suitable for the treatment of domestic sewage with high ammonia nitrogen and low C/N ratio.
  • the carbon source can be significantly reduced.
  • the consumption of chemicals such as alkalinity and alkalinity can save 30 to 40% of operating costs.
  • the present invention adopts the combined denitrification and phosphorus removal process of electrochemical and biological action, which can reduce the total hydraulic retention time to less than 10h, and significantly reduce the construction cost.
  • the present invention can use a bidirectional pulse power supply, which not only effectively prevents electrode passivation, but also reduces power consumption by 15-35% compared with ordinary power supplies.
  • the sacrificial electrodes of the three-dimensional electroflocculation phosphorus removal unit reactor of the present invention are particle electrodes. Compared with the electroflocculation system that consumes electrode plates, it has the advantages of good treatment effect, low energy consumption, and easy replacement of particle electrodes.
  • the total nitrogen and total phosphorus removal efficiency of the present invention is high, and the engineering construction and operation costs are low.
  • electrochemical flocculation, electrocatalytic oxidation and electroactive microorganisms it can significantly enhance the life of distributed high-ammonia-nitrogen and low-carbon sources.
  • the dephosphorization and denitrification effect of sewage is improved, and the sludge output after sewage is treated with the device and method of the present invention is small, and the cost of excess sludge treatment can be saved.
  • the present invention can recover phosphorus resources to a certain extent, and convert phosphorus in sewage into phosphorus fertilizer, which has certain economic value.
  • FIG. 1 shows a schematic diagram of an electrochemical denitrification and phosphorus removal device provided in Embodiment 1 of the present invention.
  • FIG. 2 shows a schematic diagram of a three-dimensional electrocatalytic oxidation unit reactor of an electrochemical denitrification and phosphorus removal device provided in Example 1 of the present invention.
  • FIG. 3 shows a schematic diagram of a three-dimensional electro-biological coupling unit reactor of an electrochemical denitrification and phosphorus removal device provided in Example 1 of the present invention.
  • Example 4 shows a schematic diagram of a light filter material filter unit reactor of an electrochemical denitrification and phosphorus removal device provided in Example 1 of the present invention.
  • Example 5 shows a schematic diagram of a three-dimensional electroflocculation phosphorus removal unit reactor of an electrochemical nitrogen and phosphorus removal device provided in Example 1 of the present invention.
  • Three power sources 14- the first lower filter plate, 15- filter basket support, 16- filter basket, 17- total water inlet pipe, 18- return pipe, 19- aeration pipe, 20- vent pipe, 21- return Pump, 22-check valve, 23-second anode plate, 24-second cathode plate, 25-third anode plate, 26-third cathode plate, 27-total outlet pipe, 28-three-dimensional electrocatalytic oxidation unit reaction
  • One aspect of the present invention provides an electrochemical denitrification and phosphorus removal device, which includes a three-dimensional electrocatalytic oxidation unit reactor, a three-dimensional electro-biological coupling unit reactor, a light filter material filter unit reactor, and a three-dimensional electro-flocculation phosphorus removal unit unit reactor;
  • the general water inlet pipe, the three-dimensional electrocatalytic oxidation unit reactor, the three-dimensional electro-biological coupling unit reactor, and the light filter material filter unit reactor are connected in sequence;
  • the water outlet pipe of the light filter material filter unit reactor is respectively connected with the general water outlet pipe and the water inlet pipe of the three-dimensional electroflocculation phosphorus removal unit reactor;
  • a pump and a check valve are connected to the inlet pipe of the light filter media filter unit reactor.
  • the bottom of the tank body of the three-dimensional electrocatalytic oxidation unit reactor, the three-dimensional electro-biological coupling unit reactor, the light filter material filter unit reactor and the three-dimensional electro-flocculation phosphorus removal unit reactor are all provided with an aeration pipe and a vent. Tube.
  • the body materials of the three-dimensional electrocatalytic oxidation unit reactor, the three-dimensional electro-biological coupling unit reactor, the light filter material filter unit reactor and the three-dimensional electro-flocculation phosphorus removal unit reactor are high Molecular insulating material.
  • the water inlet pipe of the three-dimensional electrocatalytic oxidation unit reactor is arranged at the upper or lower part of the body of the three-dimensional electrocatalytic oxidation unit reactor, and the water outlet pipe of the three-dimensional electrocatalytic oxidation unit reactor is connected to the three-dimensional electrocatalytic oxidation unit.
  • the inlet pipe of the reactor is arranged diagonally;
  • a plurality of groups of first cathode plates, a plurality of groups of first anode plates, a first particle electrode and a first lower filter plate are arranged between the water inlet pipe and the water outlet pipe of the three-dimensional electrocatalytic oxidation unit reactor; Cathode plates and multiple groups of first anode plates are crossed and connected to the negative and positive electrodes of the first power supply respectively with cables; the first particle electrodes are distributed and arranged on the multiple groups of first cathode plates and the multiple groups of first anode plates between; the first lower filter plate is arranged on the lower ends of the plurality of groups of first cathode plates and the plurality of groups of first anode plates.
  • the water inlet pipe of the three-dimensional electro-biological coupling unit reactor is arranged at the upper or lower part of the tank body of the three-dimensional electro-biological coupling unit reactor, and the water outlet pipe of the three-dimensional electro-biological coupling unit reactor is connected to the three-dimensional electro-biological coupling unit.
  • the inlet pipe of the reactor is arranged diagonally;
  • a plurality of groups of second cathode plates, a plurality of groups of second anode plates, a second particle electrode and a second lower filter plate are arranged between the water inlet pipe and the water outlet pipe of the three-dimensional electro-biological coupling unit reactor;
  • the cathode plate and the plurality of groups of second anode plates are crossed and connected to the negative and positive electrodes of the second power supply respectively with cables;
  • the second particle electrodes are distributed and arranged on the plurality of groups of the second cathode plates and the plurality of groups of the second anode plates between;
  • the second lower filter plate is arranged on the lower ends of the plurality of groups of second cathode plates and the plurality of groups of second anode plates.
  • the water outlet pipe of the light filter material filter tank unit reactor is connected to the water inlet pipe of the three-dimensional electroflocculation phosphorus removal unit reactor through a return pipe;
  • the water inlet pipe of the light filter material filter unit reactor is arranged on the upper or lower part of the light filter material filter unit reactor body, and the water outlet pipe of the light filter material filter unit reactor is connected with the water outlet pipe of the light filter material filter unit reactor.
  • the water inlet pipe of the light filter material filter unit reactor is arranged diagonally;
  • a third lower filter plate and a first upper filter plate are arranged between the water inlet pipe and the water outlet pipe of the light filter material filter unit reactor, and a third lower filter plate and a first upper filter plate are arranged between the third lower filter plate and the first upper filter plate. Lightweight filter media between.
  • the water inlet pipe and the water outlet pipe of the three-dimensional electro-flocculation phosphorus removal unit reactor are respectively arranged on both sides of the upper part of the tank body of the three-dimensional electro-flocculation phosphorus removal unit reactor;
  • a filter material basket is movably arranged in the tank body of the unit reactor near the water inlet pipe of the three-dimensional electro-flocculation phosphorus removal unit reactor;
  • a third particle electrode is arranged in the filter material basket; two opposite sides of the filter material basket are arranged.
  • a plurality of groups of third cathode plates and a plurality of groups of third anode plates are arranged on the side, and the plurality of groups of third cathode plates and the plurality of groups of third anode plates are respectively connected with the negative and positive electrodes of the third power supply by cables; the filter basket , The bottom edges of the plurality of groups of third cathode plates and the plurality of groups of third anode plates form a liquid channel with the bottom of the three-dimensional electro-flocculation phosphorus removal unit reactor body through the filter basket support.
  • the first cathode plate, the second cathode plate and the third cathode plate are independently selected from titanium electrodes, titanium-based metal oxide coated electrodes or stainless steel electrodes;
  • An anode plate, the second anode plate and the third anode plate are independently selected from titanium electrodes or titanium-based metal oxide coated electrodes; At least two of zinc, titanium dioxide and rare earth metal oxides.
  • the electrode spacing between the first cathode plate and the first anode plate and the electrode spacing between the second cathode plate and the second anode plate are independently 10- 200mm.
  • the first cathode plate, the second cathode plate, the third cathode plate, the first anode plate, the second anode plate and the third anode plate are independent of each other
  • the ground is selected from flat plate, mesh plate, perforated plate or grid plate.
  • the first particle electrode is a composite catalytic three-dimensional particle electrode, preferably, the composite catalytic three-dimensional particles are biomass activated carbon or coal-based activated carbon particles loaded or doped with multiple catalysts, more preferably Preferably, the catalyst is at least two kinds of tin dioxide, zinc oxide, titanium dioxide and rare earth metal oxide; the particle size of the first particle electrode is 3-5mm.
  • the second particle electrode is biomass activated carbon particles or coal-based activated carbon particles, and the particle size of the second particle electrode is 5-10 mm.
  • the material of the lightweight filter material is at least one of polyurethane, polypropylene and polyethylene, the particle size of the lightweight filter material is 15-25mm, and the void density is 10-40PPI, The specific surface area is 500-2000 m 2 /m 3 .
  • the third particle electrode is metal particles, preferably at least one of magnesium, aluminum, iron and their alloy particles; the particle size of the third particle electrode is 10-20 mm.
  • the filter basket is a polymer insulating orifice plate.
  • the filter basket can be taken out from the three-dimensional electroflocculation phosphorus removal unit reactor to supplement and replace the third particle electrode, and clean the filter basket and the third particle electrode in it to recover phosphorus resource.
  • Another aspect of the present invention provides an electrochemical denitrification and phosphorus removal method.
  • the method adopts the electrochemical denitrification and phosphorus removal treatment device, comprising the following steps:
  • S1 start the three-dimensional electrocatalytic oxidation unit reactor, the three-dimensional electro-biological coupling unit reactor, the light filter material filter unit reactor and the three-dimensional electro-flocculation phosphorus removal unit reactor; start the three-dimensional electrocatalytic oxidation unit reactor , the aeration pipe of the three-dimensional electro-biological coupling unit reactor and the three-dimensional electro-flocculation phosphorus removal unit reactor; start the first power source, the second power source and the third power source;
  • S2 The sewage is sent from the main water inlet pipe to the electrochemical denitrification and phosphorus removal treatment device and sequentially passes through the three-dimensional electrocatalytic oxidation unit reactor, the three-dimensional electro-biological coupling unit reactor and the light filter material filter pool unit reactor;
  • S3 discharging a part of the effluent of the light filter unit reactor from the general water outlet pipe to the electrochemical denitrification and phosphorus removal treatment device; The other part of the effluent is sent to the three-dimensional electro-flocculation phosphorus removal unit reactor; the effluent of the three-dimensional electro-flocculation phosphorus removal unit reactor is returned to the light filter material through the reflux pump and the check valve Filter unit reactor.
  • the ammonia nitrogen removal rate in the effluent of the three-dimensional electrocatalytic oxidation unit reactor is 40-60%.
  • the operating parameters of the three-dimensional electrocatalytic oxidation unit reactor are determined according to the ammonia nitrogen removal rate in the effluent of the three-dimensional electrocatalytic oxidation unit reactor.
  • the method further includes flushing the three-dimensional electrocatalytic oxidation unit reactor, and the flushing frequency is once every 3-7 days to maintain smooth hydraulic power, and the flushing method includes: When the three-dimensional electrocatalytic oxidation unit reactor is operating, the aeration amount is adjusted to a gas-water ratio (10-20):1.
  • sewage is fed into the three-dimensional electrocatalytic oxidation unit reactor from the main water inlet pipe, and under the action of catalytic oxidation, ammonia nitrogen in sewage is oxidized and mainly converted into nitrogen gas and is directly removed, and difficult biodegradable organic matter is converted into easily biodegradable organic matter Degrade organic matter, thereby improving the biodegradability of sewage.
  • the start-up procedure of the three-dimensional electro-biological coupling unit reactor includes film hanging and acclimation.
  • the method for hanging the film comprises sending the inoculum into the three-dimensional electro-biological coupling unit reactor, and passing the three-dimensional electro-catalytic oxidation into the three-dimensional electro-biological coupling unit reactor The effluent of the unit reactor, until a stable biofilm is formed on the surface of the second particle electrode; preferably, the inoculum is a special electroactive biological agent that has been cultivated and/or an aeration tank of a municipal sewage treatment plant that removes impurities Activated sludge; preferably, the flora in the three-dimensional electro-biological coupling unit reactor is Enterobacter and/or Pseudomonas.
  • the acclimation method includes intermittently feeding the effluent of the three-dimensional electro-biological coupling unit reactor into the three-dimensional electro-biological coupling unit reactor, and measuring the three-dimensional electro-biological coupling unit reactor on time.
  • the water quality of the effluent changes, and the color of the biofilm formed on the surface of the second particle electrode is observed until it becomes dark brown;
  • the working voltage of the second power supply is 12-36V, and the protection voltage of the second power supply when the water supply to the three-dimensional electro-biological coupling unit reactor is stopped is 5-12V, so as to save energy consumption.
  • ammonia nitrogen in the effluent of the three-dimensional electro-biological coupling unit reactor is less than 1.5 mg/L, and COD is less than 30 mg/L.
  • the operating parameters of the three-dimensional electro-biological coupling unit reactor are determined according to the ammonia nitrogen concentration in the effluent of the three-dimensional electro-biological coupling unit reactor.
  • the method further includes flushing the three-dimensional electro-biological coupling unit reactor, the flushing frequency is once every 1-3 days, and the flushing method includes flushing the three-dimensional electro-biological coupling unit reactor.
  • the aeration rate of the bio-coupling unit reactor was increased to the ratio of air to water (10-20): 1.
  • the purpose of the flushing is to maintain biofilm renewal.
  • sewage enters the three-dimensional electro-biological coupling unit reactor from the three-dimensional electrocatalytic oxidation unit reactor, and electroactive microorganisms grow inside the particles of the second particle electrode, and maintain the biological structure through electron production and electron phagocytosis. While being active, the pollutants in the effluent of the three-dimensional electrocatalytic oxidation unit reactor are degraded.
  • the method further includes backwashing the light filter material filter unit reactor, the frequency of the backwashing is once every 1-3 days, and the method of backwashing
  • the method includes sequentially opening the aeration pipe and the venting pipe of the light filter material filter unit reactor after the sewage treatment is completed. After the venting pipe is completely vented, the venting pipe and the aeration pipe are closed, and the water starts to be re-introduced.
  • the running time of the aeration pipe of the light filter material filter unit reactor is 10-15 min.
  • the total phosphorus concentration in the effluent of the electrochemical denitrification and phosphorus removal treatment device is less than 0.5 mg/L
  • the operating parameters of the three-dimensional electro-flocculation and phosphorus-removal unit reactor (including the three-dimensional electro-flocculation and phosphorus removal The aeration amount during the operation of the phosphorus unit reactor) is determined according to the concentration of total phosphorus in the total effluent of the electrochemical denitrification and phosphorus removal treatment device.
  • the method further includes cleaning the three-dimensional electro-flocculation phosphorus removal unit reactor, the frequency of the cleaning is once every 7-14 days, and the cleaning method includes cleaning the three-dimensional electro-flocculation phosphorus removal unit reactor.
  • the filter basket of the flocculation phosphorus removal unit reactor and the third particle electrode therein are taken out, cleaned by an ultrasonic cleaning machine, and the cleaned crystalline solid is obtained; preferably, the cleaned crystalline solid is MgNH 4 PO 4. At least one of 6H 2 O, Mg 3 (PO 4 ) 2 and Mg(OH) 2 . Among them, MgNH 4 PO 4 ⁇ 6H 2 O and/or Mg 3 (PO 4 ) 2 can be used as phosphate fertilizer.
  • the metal ions with flocculation effect are dissolved out by the third particle electrode, and flocculation reaction occurs with pollutants in the sewage, so that phosphorus and colloids in the sewage are released.
  • Insoluble matter is formed, which is trapped in the filter basket, and one of its reaction substrates is NH 4 + , which can further remove the residual NH 4 + -N in the sewage, and another part of the dissolved metal ions passes through the reflux pump.
  • the effluent of the three-dimensional electro-flocculation phosphorus removal unit reactor is returned to the light filter material filter unit reactor to improve the removal efficiency of the light filter material filter unit reactor.
  • the light filter material filter unit reactor removes various suspended solids through rapid flocculation reaction and filtration.
  • the first power source, the second power source and the third power source are independently a constant voltage source, a constant current source, a unidirectional pulse source or a bidirectional pulse source; preferably, the The duty cycle of the bidirectional pulse source is 50%-90%, the pulse frequency is 0.01-0.1Hz, the voltage is 5-36V, the power-on time is ⁇ 5min, and the reverse time is ⁇ 10min; preferably, the constant voltage source or The voltages of the constant current sources are independently 5-36V.
  • the power supply of the three-dimensional electrocatalytic oxidation unit reactor is a two-way pulse power supply, and the operation method of the two-way pulse power supply of the three-dimensional electrocatalytic oxidation unit reactor is to work when the water is in, and when the water is stopped Standby to save energy consumption;
  • the power supply of the three-dimensional electro-biological coupling unit reactor is a DC regulated power supply;
  • the power supply of the three-dimensional electro-flocculation phosphorus removal unit reactor is a bidirectional pulse power supply, and the three-dimensional electro-flocculation phosphorus removal unit reactor
  • the operation method of the two-way pulse power supply is to work when the water is in, and stand by when the water is stopped, so as to save energy consumption.
  • This embodiment provides an electrochemical denitrification and phosphorus removal device, as shown in Figures 1-5, the device includes a three-dimensional electrocatalytic oxidation unit reactor 1, a three-dimensional electro-biological coupling unit reactor 2, and a light filter material filter unit Reactor 3 and three-dimensional electro-flocculation phosphorus removal unit reactor 4;
  • the general water inlet pipe 17, the three-dimensional electrocatalytic oxidation unit reactor 1, the three-dimensional electro-biological coupling unit reactor 2, and the light filter material filter unit reactor 3 are connected in sequence; the light filter material filter
  • the water outlet pipe 33 of the unit reactor is respectively connected with the general water outlet pipe 17 and the water inlet pipe 34 of the three-dimensional electroflocculation phosphorus removal unit reactor;
  • the return valve 22 is connected to the water inlet pipe 32 of the light filter material filter unit reactor.
  • the bottom of the tank body of the three-dimensional electrocatalytic oxidation unit reactor 1, the three-dimensional electro-biological coupling unit reactor 2, the light filter material filter unit reactor 3 and the three-dimensional electro-flocculation phosphorus removal unit reactor 4 are all provided with aeration.
  • the three-dimensional electrocatalytic oxidation unit reactor 1, the three-dimensional electro-biological coupling unit reactor 2, the light filter material filter unit reactor 3 and the three-dimensional electro-flocculation phosphorus removal unit reactor 4 are made of polymer insulation. material.
  • the three-dimensional electrocatalytic oxidation unit reactor 1 adopts downward flow, and the water inlet pipe 28 of the three-dimensional electrocatalytic oxidation unit reactor is arranged on the upper part of the pool body of the three-dimensional electrocatalytic oxidation unit reactor 1.
  • the water outlet pipe 29 of the oxidation unit reactor is arranged at the lower part of the tank body of the three-dimensional electrocatalytic oxidation unit reactor 1; between the water inlet pipe 28 and the water outlet pipe 29 of the three-dimensional electrocatalytic oxidation unit reactor, there are multiple groups of first Cathode plates 6, multiple groups of first anode plates 5, first particle electrodes 7 and first lower filter plates 14; the multiple groups of first cathode plates 6 and multiple groups of first anode plates 5 are arranged crosswise, and are respectively connected with the first The negative electrode and the positive electrode of the power supply 11 are connected with a cable; the first particle electrodes 7 are distributed among the multiple groups of the first cathode plates 6 and the multiple groups of the first anode plates 5; the first lower filter plate 14 is arranged in the The lower ends of the multiple groups of first cathode plates 6 and the multiple groups of first anode plates 5; the electrode spacing between the first cathode plates 6 and the first anode plates 5 is 200 mm; the first cath
  • the three-dimensional electro-biological coupling unit reactor 2 adopts downward flow, and the water inlet pipe 30 of the three-dimensional electro-biological coupling unit reactor is arranged on the upper part of the tank body of the three-dimensional electro-biological coupling unit reactor 2.
  • the water outlet pipe 31 of the coupling unit reactor is arranged at the lower part of the tank body of the three-dimensional electro-biological coupling unit reactor 2; between the water inlet pipe 30 and the water outlet pipe 31 of the three-dimensional electro-biological coupling unit reactor, there are multiple sets of second Cathode plates 24, multiple groups of second anode plates 25, second particle electrodes 8 and second lower filter plates 36; the multiple groups of second cathode plates 24 and multiple groups of second anode plates 25 are crossed and are respectively connected with the second
  • the negative electrode and the positive electrode of the power supply 12 are connected by cables; the second particle electrodes 8 are distributed among the plurality of groups of second cathode plates 24 and the plurality of groups of second anode plates 25; the second lower filter plate 36 is
  • the light filter material filter unit reactor 3 is an upward flow, and the water outlet pipe 33 of the light filter material filter unit reactor is connected to the water inlet pipe of the three-dimensional electroflocculation phosphorus removal unit reactor through the return pipe 18 34; the water inlet pipe 32 of the light filter material filter unit reactor is arranged at the lower part of the body of the light filter material filter unit reactor 3, and the water outlet pipe of the light filter material filter unit reactor 33 is arranged on the upper part of the pond body of the light filter material filter unit reactor 3; between the water inlet pipe 32 and the water outlet pipe 33 of the light filter material filter unit reactor, a third lower filter plate 37 and The first upper filter plate 38, and the light filter material 9 arranged between the third lower filter plate 37 and the first upper filter plate 38; the material of the light filter material 9 is polyurethane sponge, and the particle size is 25mm;
  • the water inlet pipe 34 and the water outlet pipe 35 of the three-dimensional electric flocculation phosphorus removal unit reactor are respectively arranged on both sides of the upper part of the tank body of the three-dimensional electric flocculation phosphorus removal unit reactor 4; the three-dimensional electric flocculation phosphorus removal unit reactor 4
  • a filter material basket 16 is movably arranged in the tank body near the water inlet pipe 34 of the three-dimensional electroflocculation phosphorus removal unit reactor; the filter material basket 16 is provided with a third particle electrode 10 ; the opposite side of the filter material basket 16
  • the third cathode plate 26 is a stainless steel electrode mesh plate, the third anode plate 25 is a titanium-based titanium dioxide coated mesh plate; the third particle electrode 10 is made of magnesium-aluminum alloy particles with a particle size of 20 mm; the filter material
  • the basket 16 is an orifice plate of polymer insulating material.
  • This embodiment provides an electrochemical denitrification and phosphorus removal method.
  • the method adopts the electrochemical denitrification and phosphorus removal treatment device described in Embodiment 1.
  • the method is used to treat distributed domestic sewage in a high-speed service area.
  • the method includes the following steps:
  • S1 start the three-dimensional electrocatalytic oxidation unit reactor 1, the three-dimensional electro-biological coupling unit reactor 2, the light filter material filter unit reactor 3 and the three-dimensional electro-flocculation phosphorus removal unit reactor 4; start the three-dimensional electrocatalysis The aeration pipe 19 of the oxidation unit reactor 1, the three-dimensional electro-biological coupling unit reactor 2 and the three-dimensional electro-flocculation phosphorus removal unit reactor 3; start the first power source 11, the second power source 12 and the third power source 13;
  • the first power supply 11 is a bidirectional pulse power supply, and its operating parameters include: duty cycle 40%, frequency 0.04Hz, and voltage 20V;
  • the second power supply 12 is a DC regulated power supply, and its voltage is 24V;
  • the power supply 13 is a bidirectional pulse power supply, and its operating parameters include: duty cycle 40%, frequency 0.04Hz, voltage 20V;
  • the start-up procedure of the three-dimensional electro-biological coupling unit reactor 2 includes film hanging and acclimation.
  • the method of hanging the film includes sending the inoculum into the three-dimensional electro-biological coupling unit reactor 2, and passing the three-dimensional electro-catalytic oxidation unit reactor 2 into the three-dimensional electro-biological coupling unit reactor 2.
  • the water is discharged until a stable biofilm is formed on the surface of the second particle electrode 8;
  • the inoculum is the activated sludge of the aeration tank of the urban sewage treatment plant for removing impurities;
  • the method of domestication includes intermittently coupling the three-dimensional electro-biological
  • the effluent of the three-dimensional electrocatalytic oxidation unit reactor 2 is passed into the unit reactor 2, the water quality change of the effluent of the three-dimensional electro-biological coupling unit reactor 2 is measured on time, and the biological formation on the surface of the second particle electrode 8 is observed.
  • the color of the film until it becomes dark brown; wherein, the working voltage of the second power supply 12 when water is fed into the three-dimensional electro-biological coupling unit reactor 2 is 12-36V, and the three-dimensional electro-biological coupling is stopped.
  • the protection voltage of the second power source 12 when the unit reactor 2 is fed with water is 5-12V, so as to save energy consumption.
  • S3 discharge a part of the effluent from the light filter material filter unit reactor 3 from the general water outlet pipe 27 to the electrochemical denitrification and phosphorus removal treatment device; react the light filter material filter unit The other part of the effluent from the device 3 is sent to the three-dimensional electro-flocculation phosphorus removal unit reactor 4; to the light filter material filter unit reactor 3.
  • the method further includes: (1) flushing the three-dimensional electrocatalytic oxidation unit reactor 1, the flushing frequency is once every 3-7 days to maintain smooth hydraulic power, and the flushing method includes flushing the When the three-dimensional electrocatalytic oxidation unit reactor 1 is operating, the aeration volume is adjusted to a ratio of 10:1 to air and water. (2) flushing the three-dimensional electro-biological coupling unit reactor 2, the flushing frequency is once every 1-3 days, and the flushing method includes running the three-dimensional electro-biological coupling unit reactor 2 during operation. The aeration rate is increased to an air-water ratio of 10:1. The purpose of the flushing is to maintain biofilm renewal.
  • the frequency of the backwashing is once every 1-3 days, and the method of the backwashing comprises that after the sewage treatment is completed , and sequentially open the aeration pipe 19 and the vent pipe 20 of the light filter material filter unit reactor 3 . After the venting pipe 20 is completely vented, the venting pipe 20 and the aeration pipe 19 are closed, and the water starts to be fed again.
  • the running time of the aeration pipe 19 of the light filter material filter unit reactor 3 is 10 minutes.
  • the cleaning method includes cleaning the filter material of the three-dimensional electro-flocculation phosphorus removal unit reactor
  • the basket and the third particle electrode in it are taken out, cleaned with an ultrasonic cleaning machine, and the cleaned crystalline solid is obtained.
  • the crystalline solid under the washing is at least one of MgNH 4 PO 4 .6H 2 O, Mg 3 (PO 4 ) 2 and Mg(OH) 2 , wherein MgNH 4 PO 4 .6H 2 O, Mg 3 (PO 4 . 4 ) 2 can be used as phosphate fertilizer.
  • the effluent quality of the electrochemical denitrification and phosphorus removal treatment device the average value of COD is 28mg/L, the average removal rate is 90%, the average value of NH4 + -N is 0.8mg/L, the average removal rate is 99%, and the average value of TN is 13mg/L , the average removal rate is 89%, the average TP average is 0.4mg/L, and the average removal rate is 97%.
  • the effluent of the electrochemical denitrification and phosphorus removal treatment device can stably meet the Beijing local standard (DB11/1612) except for the impact load of pollutants.
  • the electrochemical denitrification and phosphorus removal technology of the present invention can save power consumption by more than 40% compared with the two-dimensional electrocatalytic oxidation technology, and the treatment cost of the present invention is basically the same as that of the traditional biochemical treatment method.
  • the control is simple, and the sludge production is reduced by more than 60%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明属于废水处理技术领域,公开了一种电化学脱氮除磷装置及方法。该装置包括三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器;总进水管、三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器依次连接;轻质滤料滤池单元反应器的出水管分别与总出水管和三维电絮凝除磷单元反应器的进水管连接;三维电絮凝除磷单元反应器的出水管通过回流泵和止回阀与轻质滤料滤池单元反应器的进水管连接。各个反应器的池体的底部均设置有曝气管和放空管。本发明可通过电化学絮凝、电催化氧化和电活性微生物共同作用达到污水高效处理的目的,具有脱氮除磷效率高等优势。

Description

一种电化学脱氮除磷装置及方法 技术领域
本发明属于废水处理技术领域,具体地,涉及一种电化学脱氮除磷装置及方法。
背景技术
目前,各地污水处理排放标准日趋严格,敏感区水源地污染问题突出,治理需求紧迫。传统生物法脱氮除磷只有当原污水BOD5/TN值大于4~6,且BOD5/TP值大于20时才能同时满足生物脱氮除磷对碳源的需求,通常将COD<200mg/L,COD/TN<8的污水称为低碳源污水。对于氨氮含量很高且C/N比极低的高氨氮低碳源生活污水,应用生物脱氮除磷工艺会存在停留时间较长、碳源和碱度等药剂投加成本较高、污泥产量和耗氧量增加等问题,进一步增加分散污水处理工程投资运行成本和运维难度。因此,针对该种低碳源分散式生活污水开发一种经济高效的同步脱氮除磷污水处理工艺具有非常好的应用前景。
电化学氧化法由于占地面积少、可提高B/C、具有灭菌消毒的功能、受温度影响小、操作简单、易于控制、不产生污泥、不用外加药剂、产泥少以及绝大部分氨氮直接氧化为氮气等优点而引起广泛关注。其中二维电氧化因大多依靠阳极的间接氧化作用达到去除氨氮的目的,存在电流效率低和耗能大的缺点。现有研究中通过添加氯盐降低能耗的方法不能转化应用,而针对三维电极的研究逐步引起国内外重视。相对于传统的二维电极,三维电极法由于引入粒子电极,有效的增加了电极表面积和反应速率,反应速度更快,占地更小,且无需外加盐即可实现较低的能耗效率比,避免了二次污染,可单独或与其它技术联合使用,易于标准产品化。目前,优化三维电催化氧化技术的方法主要集中于开发高效的粒子电极、催化剂、极板板材和反应装置等,对运行控制系统的优化不够重视。而通过适当的手段,优化运行控制系统,使电催化氧化反应保持在高效段进行,在实际工程应用中具有更大的可操作性,因此,基于三维电催化氧化脱氨技术开发 一种经济高效的分散式污水预处理脱氨的装置及方法具有重要现实意义。
电生物耦合工艺是将电化学作用以及生物作用相互结合,外加电场强化环境下,随着场强的适当增加,微生物酶系统活性将被增强,酶促反应速率提高,有利于提高微生物对污染物的处理能力;细胞有丝分裂周期缩短、增殖速率加快、生物群落中微生物生长繁殖速度加快;细胞膜通透性增强,适当的电场强度增强了基质流体的传质作用;电解过程中产生的H 2还可被氢自养反硝化细菌利用发生反硝化反应。同时,系统中有机碳源还可以作为异养反硝化菌的电子供体。因此,该工艺运行可以节省碳源,适用于低C/N再生水的深度脱氮。国内外对电极-生物膜反应器处理污水进行了大量理论和应用研究,尚未进行产品化和工程化。因此,基于三维电生物耦合技术开发一种经济高效的分散式污水处理装置及方法具有重要现实意义。
二维电絮凝已经开始逐步在分散式污水除磷领域开始应用,然而其仍然存在能耗高,出水总磷无法达到较高的排放标准等问题。相比之下,三维电絮凝具有更高的电极比表面积,更低的能耗,更高的去除效率等优势。因此,基于三维电絮凝技术开发一种经济高效的污水处理除磷装置及方法具有重要现实意义。且磷在生物圈中大部分是单向流动的,而磷矿石的储量十分有限,我国磷矿储量中杂质含量低、品味高的磷矿预计将在未来的10~15年被开采完。因此开发污水中磷资源回收技术具有重要现实意义。
因此,基于目前的上述技术的发展现状,亟待提出一种具有良好应用前景的新型电化学脱氮除磷装置及方法。
发明内容
本发明的目的是针对现有技术的缺陷,提出一种电化学脱氮除磷装置及方法。本发明可通过电化学絮凝、电催化氧化和电活性微生物共同作用达到污水高效处理的目的,特别适用于高氨氮、低C/N比生活污水处理,具有脱氮除磷效率高、水力停留时间短、投资运行成本低、运行控制简单、受温度影响较小、节能环保等优势。
为了实现上述目的,本发明一方面提供了一种电化学脱氮除磷装置,该装置包括三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器;
总进水管、所述三维电催化氧化单元反应器、所述三维电生物耦合单元反应器、所述轻质滤料滤池单元反应器依次连接;
所述轻质滤料滤池单元反应器的出水管分别与总出水管和所述三维电絮凝除磷单元反应器的进水管连接;所述三维电絮凝除磷单元反应器的出水管通过回流泵和止回阀与所述轻质滤料滤池单元反应器的进水管连接。
所述三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器的池体的底部均设置有曝气管和放空管。
本发明另一方面提供了一种电化学脱氮除磷方法,该方法采用所述的电化学脱氮除磷处理装置,包括如下步骤:
S1:启动所述三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器;启动所述三维电催化氧化单元反应器、三维电生物耦合单元反应器和三维电絮凝除磷单元反应器的曝气管;启动所述第一电源、所述第二电源和所述第三电源;
S2:将污水从总进水管送入所述电化学脱氮除磷处理装置并依次经过所述三维电催化氧化单元反应器、所述三维电生物耦合单元反应器和所述轻质滤料滤池单元反应器;
S3:将所述轻质滤料滤池单元反应器的出水中的一部分从所述总出水管排出所述电化学脱氮除磷处理装置;将所述轻质滤料滤池单元反应器的出水中的另一部分送入所述三维电絮凝除磷单元反应器;将所述三维电絮凝除磷单元反应器的出水通过所述回流泵和所述止回阀回流至所述轻质滤料滤池单元反应器。
本发明的技术方案具有如下有益效果:
1、本发明通过电化学絮凝、电催化氧化和电活性微生物共同作用达到污水高效处理的目的,特别适用于高氨氮、低C/N比生活污水处理,相比传统生化工艺可显著降低碳源和碱度等药剂的消耗,可节约运行成本30~40%。
2、本发明采用电化学与生物作用耦合脱氮除磷工艺可使得总水力停留时间降低至10h以内,显著降低工程建设成本。
3、本发明可采用双向脉冲电源,其不仅有效防止电极钝化,而且相比普通电源可降低15-35%电耗。
4、本发明的三维电絮凝除磷单元反应器牺牲的电极为粒子电极,相比消耗电极板的电絮凝系统,具有处理效果好,能耗低,粒子电极易于补充更换等优点。
5、本发明的总氮及总磷去除效率高,工程建设和运行成本较低,通过采用电化学絮凝、电催化氧化和电活性微生物共同作用,可显著增强对分散式高氨氮低碳源生活污水的除磷脱氮效果,同时用本发明的装置和方法处理污水后的污泥产量少,可节省剩余污泥处理费用。
6.本发明可在一定程度上回收磷资源,使污水中的磷转化为磷肥,具有一定的经济价值。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施方式中,相同的参考标号通常代表相同部件。
图1示出了本发明实施例1提供的一种电化学脱氮除磷装置的示意图。
图2示出了本发明实施例1提供的一种电化学脱氮除磷装置的三维电催化氧化单元反应器的示意图。
图3示出了本发明实施例1提供的一种电化学脱氮除磷装置的三维电生物耦合单元反应器的示意图。
图4示出了本发明实施例1提供的一种电化学脱氮除磷装置的轻质滤料滤池单元反应器的示意图。
图5示出了本发明实施例1提供的一种电化学脱氮除磷装置的三维电絮凝除磷单元反应器的示意图。
附图标记说明如下:
1-三维电催化氧化单元反应器,2-三维电生物耦合单元反应器,3-轻质滤料滤池单元反应器,4-三维电絮凝除磷单元反应器,5-第一阳极板,6-第一阴极板,7-第一粒子电极,8-第二粒子电极,9-轻质滤料,10-第三粒子电极,11-第一电源,12-第二电源,13-第三电源,14-第一下滤板,15-滤料筐支架,16-滤料筐,17-总进水管,18-回流管,19-曝气管,20-放空管,21-回流泵,22-止回阀,23-第二阳极板,24-第二阴极板,25-第三阳极板,26- 第三阴极板,27-总出水管,28-三维电催化氧化单元反应器的进水管,29-三维电催化氧化单元反应器的出水管,30-三维电生物耦合单元反应器的进水管,31-三维电生物耦合单元反应器的出水管,32-轻质滤料滤池单元反应器的进水管,33-轻质滤料滤池单元反应器的出水管,34-三维电絮凝除磷单元反应器的进水管,35-三维电絮凝除磷单元反应器的出水管,36-第二下滤板,37-第三下滤板,38-第一上滤板。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
本发明一方面提供了一种电化学脱氮除磷装置,该装置包括三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器;
总进水管、所述三维电催化氧化单元反应器、所述三维电生物耦合单元反应器、所述轻质滤料滤池单元反应器依次连接;
所述轻质滤料滤池单元反应器的出水管分别与总出水管和所述三维电絮凝除磷单元反应器的进水管连接;所述三维电絮凝除磷单元反应器的出水管通过回流泵和止回阀与所述轻质滤料滤池单元反应器的进水管连接。
所述三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器的池体的底部均设置有曝气管和放空管。
根据本发明,优选地,所述三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器的池体材质均为高分子类绝缘材质。
根据本发明,优选地,
所述三维电催化氧化单元反应器的进水管设置于所述三维电催化氧化单元反应器池体的上部或下部,所述三维电催化氧化单元反应器的出水管与所述三维电催化氧化单元反应器的进水管呈对角线设置;
所述三维电催化氧化单元反应器的进水管与出水管之间设有多组第一 阴极板、多组第一阳极板、第一粒子电极和第一下滤板;所述多组第一阴极板和多组第一阳极板交叉设置,并分别与第一电源的负极和正极用电缆连接;所述第一粒子电极分布设置于所述多组第一阴极板和多组第一阳极板之间;所述第一下滤板设置于所述多组第一阴极板和多组第一阳极板的下端。
根据本发明,优选地,
所述三维电生物耦合单元反应器的进水管设置于所述三维电生物耦合单元反应器池体的上部或下部,所述三维电生物耦合单元反应器的出水管与所述三维电生物耦合单元反应器的进水管呈对角线设置;
所述三维电生物耦合单元反应器的进水管与出水管之间设有多组第二阴极板、多组第二阳极板、第二粒子电极和第二下滤板;所述多组第二阴极板和多组第二阳极板交叉设置,并分别与第二电源的负极和正极用电缆连接;所述第二粒子电极分布设置于所述多组第二阴极板和多组第二阳极板之间;所述第二下滤板设置于所述多组第二阴极板和多组第二阳极板的下端。
根据本发明,优选地,
所述轻质滤料滤池单元反应器的出水管通过回流管连接所述三维电絮凝除磷单元反应器的进水管;
所述轻质滤料滤池单元反应器的进水管设置于所述轻质滤料滤池单元反应器池体的上部或下部,所述轻质滤料滤池单元反应器的出水管与所述轻质滤料滤池单元反应器的进水管呈对角线设置;
所述轻质滤料滤池单元反应器的进水管与出水管之间设有第三下滤板和第一上滤板,以及设置于所述第三下滤板和第一上滤板之间的轻质滤料。
根据本发明,优选地,所述三维电絮凝除磷单元反应器的进水管与出水管分别设置于所述三维电絮凝除磷单元反应器池体上部的两侧;所述三维电絮凝除磷单元反应器池体内靠近所述三维电絮凝除磷单元反应器的进水管的位置活动设置有滤料筐;所述滤料筐内设置有第三粒子电极;所述滤料筐的相对的两侧设置有多组第三阴极板和多组第三阳极板,所述多组第三阴极板和多组第三阳极板分别与第三电源的负极和正极用电缆连接;所述滤料筐、多组第三阴极板和多组第三阳极板的底沿通过滤料筐支架与所述三维电絮凝除磷单元反应器池体底部形成液体通道。
根据本发明,优选地,所述第一阴极板、所述第二阴极板和所述第三阴极板各自独立地选自钛电极、钛基金属氧化物涂层电极或不锈钢电极;所述第一阳极板、所述第二阳极板和所述第三阳极板各自独立地选自钛电极或钛基金属氧化物涂层电极;优选地,所述金属氧化物涂层为二氧化锡、氧化锌、二氧化钛和稀土金属氧化物中的至少两种。
根据本发明,优选地,所述第一阴极板与所述第一阳极板之间的电极间距和所述第二阴极板与所述第二阳极板之间的电极间距各自独立地为10-200mm。
根据本发明,优选地,所述第一阴极板、所述第二阴极板、所述第三阴极板、所述第一阳极板、所述第二阳极板和所述第三阳极板各自独立地选自平板、网板、穿孔板或栅条板。
根据本发明,优选地,所述第一粒子电极为复合型催化三维粒子电极,优选地,所述复合型催化三维粒子为负载或掺杂多元催化剂的生物质活性炭或煤质活性炭颗粒,进一步优选地,所述催化剂为二氧化锡、氧化锌、二氧化钛和稀土金属氧化物中的至少两种;所述第一粒子电极的粒径为3-5mm。
根据本发明,优选地,所述第二粒子电极为生物质活性炭颗粒或煤质活性炭颗粒,所述第二粒子电极的粒径为5-10mm。
根据本发明,优选地,所述轻质滤料的材质为聚氨酯、聚丙烯和聚乙烯中的至少一种,所述轻质滤料的粒径为15-25mm,空隙密度为10-40PPI,比表面积为500-2000m 2/m 3
根据本发明,优选地,所述第三粒子电极为金属颗粒,优选为镁、铝、铁和它们的合金颗粒中的至少一种;所述第三粒子电极的粒径为10-20mm。
根据本发明,优选地,所述滤料筐为高分子绝缘材质孔板。
在本发明中,所述滤料筐可从所述三维电絮凝除磷单元反应器中取出,以补充、更换第三粒子电极,以及清洗滤料筐和其内的第三粒子电极以回收磷资源。
本发明另一方面提供了一种电化学脱氮除磷方法,该方法采用所述的电化学脱氮除磷处理装置,包括如下步骤:
S1:启动所述三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器;启动所述三 维电催化氧化单元反应器、三维电生物耦合单元反应器和三维电絮凝除磷单元反应器的曝气管;启动所述第一电源、所述第二电源和所述第三电源;
S2:将污水从总进水管送入所述电化学脱氮除磷处理装置并依次经过所述三维电催化氧化单元反应器、所述三维电生物耦合单元反应器和所述轻质滤料滤池单元反应器;
S3:将所述轻质滤料滤池单元反应器的出水中的一部分从所述总出水管排出所述电化学脱氮除磷处理装置;将所述轻质滤料滤池单元反应器的出水中的另一部分送入所述三维电絮凝除磷单元反应器;将所述三维电絮凝除磷单元反应器的出水通过所述回流泵和所述止回阀回流至所述轻质滤料滤池单元反应器。
根据本发明,优选地,所述三维电催化氧化单元反应器的出水中氨氮去除率为40-60%。所述三维电催化氧化单元反应器的运行参数(包括所述三维电催化氧化单元反应器运行时的曝气量)根据所述三维电催化氧化单元反应器的出水中氨氮去除率确定。
根据本发明,优选地,所述方法还包括对所述三维电催化氧化单元反应器的冲洗,所述冲洗的频率为每3-7天冲洗一次,维持水力通畅,所述冲洗的方法包括将所述三维电催化氧化单元反应器运行时的曝气量调高至气水比(10-20):1。
在本发明中,污水从总进水管送入所述三维电催化氧化单元反应器,在催化氧化作用下,污水中的氨氮得到氧化主要转变为氮气而直接去除,难生物降解有机物转变为易生物降解有机物,从而提高了污水可生化性。
根据本发明,优选地,所述三维电生物耦合单元反应器的启动的程序包括挂膜和驯化。
根据本发明,优选地,所述挂膜的方法包括将接种物送入所述三维电生物耦合单元反应器内,并向所述三维电生物耦合单元反应器中通入所述三维电催化氧化单元反应器的出水,直至所述第二粒子电极表面形成稳定的生物膜;优选地,所述接种物为经培育的特殊电活性生物菌剂和/或去除杂质的城镇污水处理厂曝气池活性污泥;优选地,所述三维电生物耦合单元反应器内的菌群为肠杆菌和/或假单胞菌。
根据本发明,优选地,所述驯化的方法包括间歇向所述三维电生物耦合单元反应器中通入所述三维电催化氧化单元反应器的出水,按时测定所 述三维电生物耦合单元反应器的出水水质变化,并观察所述第二粒子电极表面形成的生物膜的颜色,直至其变为深棕色;优选地,向所述三维电生物耦合单元反应器进水时的所述第二电源的工作电压为12-36V,停止向所述三维电生物耦合单元反应器进水时的所述第二电源的保护电压为5-12V,以节约能耗。
根据本发明,优选地,所述三维电生物耦合单元反应器的出水中氨氮<1.5mg/L,COD<30mg/L。所述三维电生物耦合单元反应器的运行参数(包括所述三维电生物耦合单元反应器运行时的曝气量)根据所述三维电生物耦合单元反应器的出水中氨氮浓度确定。
根据本发明,优选地,所述方法还包括对所述三维电生物耦合单元反应器的冲洗,所述冲洗的频率为每1-3天冲洗一次,所述冲洗的方法包括将所述三维电生物耦合单元反应器运行时的曝气量调高至气水比(10-20):1。所述冲洗的目的在于维持生物膜更新。
在本发明中,污水从所述三维电催化氧化单元反应器进入所述三维电生物耦合单元反应器,所述第二粒子电极的颗粒内部生长有电活性微生物,通过产电子、噬电子维持生物活性的同时降解所述三维电催化氧化单元反应器出水中的污染物。
根据本发明,优选地,所述方法还包括对所述轻质滤料滤池单元反应器的反洗,所述反洗的频率为每1-3天反洗一次,所述反洗的方法包括将所述污水处理完成后,依次开启所述轻质滤料滤池单元反应器的曝气管、放空管。待所述放空管放空完毕后,关闭放空管和曝气管,开始重新进水。优选地,所述轻质滤料滤池单元反应器的曝气管的运行时间为10-15min。
根据本发明,优选地,所述电化学脱氮除磷处理装置的出水中总磷浓度小于0.5mg/L,所述三维电絮凝除磷单元反应器的运行参数(包括所述三维电絮凝除磷单元反应器运行时的曝气量)根据所述电化学脱氮除磷处理装置的总出水中总磷的浓度确定。
根据本发明,优选地,所述方法还包括对所述三维电絮凝除磷单元反应器的清洗,所述清洗的频率每7-14天清洗一次,所述清洗的方法包括将所述三维电絮凝除磷单元反应器的滤料筐和其内的第三粒子电极取出,使用超声波清洗机对其进行清洗并获得清洗下的结晶固体;优选地,所述清洗下的结晶固体为MgNH 4PO 4·6H 2O、Mg 3(PO 4) 2和Mg(OH) 2中的至少一种。 其中MgNH 4PO 4·6H 2O和/或Mg 3(PO 4) 2可作为磷肥使用。
在本发明中,所述三维电絮凝除磷单元反应器在电流作用下,第三粒子电极溶出有絮凝作用的金属离子,与污水中污染物产生絮凝反应,从而使污水中的磷和胶体等形成不溶物,将其截留在滤料筐内,并且其反应底物之一为NH 4 +,可进一步去除污水中残留的NH 4 +-N,另一部分溶出的金属离子通过所述回流泵随所述三维电絮凝除磷单元反应器的出水回流至所述轻质滤料滤池单元反应器,提高所述轻质滤料滤池单元反应器的去除效率。所述轻质滤料滤池单元反应器通过快速絮凝反应和过滤作用去除各种悬浮物。
根据本发明,优选地,所述第一电源、所述第二电源和所述第三电源各自独立地为恒压源、恒流源、单向脉冲源或双向脉冲源;优选地,所述双向脉冲源的占空比为50%-90%,脉冲频率为0.01-0.1Hz,电压为5-36V,通电时间为≥5min,倒极时间为≤10min;优选地,所述恒压源或恒流源的电压各自独立地为5-36V。
本发明中,作为优选方案,所述三维电催化氧化单元反应器的电源为双向脉冲电源,所述三维电催化氧化单元反应器的双向脉冲电源的运行方法为进水时工作,停止进水时待机以节约能耗;所述三维电生物耦合单元反应器的电源为直流稳压电源;所述三维电絮凝除磷单元反应器的电源为双向脉冲电源,所述三维电絮凝除磷单元反应器的双向脉冲电源的运行方法为进水时工作,停止进水时待机,以节约能耗。
以下通过实施例具体说明本发明。
实施例1
本实施例提供一种电化学脱氮除磷装置,如图1-5所示,该装置包括三维电催化氧化单元反应器1、三维电生物耦合单元反应器2、轻质滤料滤池单元反应器3和三维电絮凝除磷单元反应器4;
总进水管17、所述三维电催化氧化单元反应器1、所述三维电生物耦合单元反应器2、所述轻质滤料滤池单元反应器3依次连接;所述轻质滤料滤池单元反应器的出水管33分别与总出水管17和所述三维电絮凝除磷单元反应器的进水管34连接;所述三维电絮凝除磷单元反应器的出水管35通过回流泵21和止回阀22与所述轻质滤料滤池单元反应器的进水管32连 接。所述三维电催化氧化单元反应器1、三维电生物耦合单元反应器2、轻质滤料滤池单元反应器3和三维电絮凝除磷单元反应器4的池体的底部均设置有曝气管19和放空管20。所述三维电催化氧化单元反应器1、三维电生物耦合单元反应器2、轻质滤料滤池单元反应器3和三维电絮凝除磷单元反应器4的池体材质均为高分子类绝缘材质。
所述三维电催化氧化单元反应器1采用下向流,所述三维电催化氧化单元反应器的进水管28设置于所述三维电催化氧化单元反应器1池体的上部,所述三维电催化氧化单元反应器的出水管29设置于所述三维电催化氧化单元反应器1池体的下部;所述三维电催化氧化单元反应器的进水管28与出水管29之间设有多组第一阴极板6、多组第一阳极板5、第一粒子电极7和第一下滤板14;所述多组第一阴极板6和多组第一阳极板5交叉设置,并分别与第一电源11的负极和正极用电缆连接;所述第一粒子电极7分布设置于所述多组第一阴极板6和多组第一阳极板5之间;所述第一下滤板14设置于所述多组第一阴极板6和多组第一阳极板5的下端;所述第一阴极板6与所述第一阳极板5之间的电极间距为200mm;所述第一阴极板6为不锈钢电极网板,所述第一阳极板5为钛基二氧化钛涂层网板;所述第一粒子电极7采用负载二氧化钛的杏壳活性碳颗粒,其粒径为5mm;
所述三维电生物耦合单元反应器2采用下向流,所述三维电生物耦合单元反应器的进水管30设置于所述三维电生物耦合单元反应器2池体的上部,所述三维电生物耦合单元反应器的出水管31设置于所述三维电生物耦合单元反应器2池体的下部;所述三维电生物耦合单元反应器的进水管30与出水管31之间设有多组第二阴极板24、多组第二阳极板25、第二粒子电极8和第二下滤板36;所述多组第二阴极板24和多组第二阳极板25交叉设置,并分别与第二电源12的负极和正极用电缆连接;所述第二粒子电极8分布设置于所述多组第二阴极板24和多组第二阳极板25之间;所述第二下滤板36设置于所述多组第二阴极板24和多组第二阳极板25的下端;所述第二阴极板24与所述第二阳极板25之间的电极间距为200mm;所述第二阴极板24为不锈钢网板,所述第二阳极板25为钛基二氧化钛涂层网板;所述第二粒子电极8采用为煤质活性炭颗粒,其粒径为10mm;
所述轻质滤料滤池单元反应器3为上向流,所述轻质滤料滤池单元反应器的出水管33通过回流管18连接所述三维电絮凝除磷单元反应器的进 水管34;所述轻质滤料滤池单元反应器的进水管32设置于所述轻质滤料滤池单元反应器3池体的下部,所述轻质滤料滤池单元反应器的出水管33设置于所述轻质滤料滤池单元反应器3池体的上部;所述轻质滤料滤池单元反应器的进水管32与出水管33之间设有第三下滤板37和第一上滤板38,以及设置于所述第三下滤板37和第一上滤板38之间的轻质滤料9;所述轻质滤料9的材质为聚氨酯海绵,粒径为25mm;
所述三维电絮凝除磷单元反应器的进水管34与出水管35分别设置于所述三维电絮凝除磷单元反应器4池体上部的两侧;所述三维电絮凝除磷单元反应器4池体内靠近所述三维电絮凝除磷单元反应器的进水管34的位置活动设置有滤料筐16;所述滤料筐16内设置有第三粒子电极10;所述滤料筐16的相对的两侧设置有多组第三阴极板26和多组第三阳极板25,所述多组第三阴极板26和多组第三阳极板25分别与第三电源13的负极和正极用电缆连接;所述滤料筐16、多组第三阴极板26和多组第三阳极板25的底沿通过滤料筐支架15与所述三维电絮凝除磷单元反应器4池体底部形成液体通道。所述第三阴极板26为不锈钢电极网板,所述第三阳极板25为钛基二氧化钛涂层网板;所述第三粒子电极10采用镁铝合金颗粒,粒径20mm;所述滤料筐16为高分子绝缘材质孔板。
实施例2
本实施例提供一种电化学脱氮除磷方法,该方法采用实施例1所述的电化学脱氮除磷处理装置,该方法用于处理某高速服务区分散式生活污水,所述某高速服务区分散式生活污水是一类排放水量小和生化成本较高的分散式生活污水,其典型水质特征为:COD=300mg/L、NH4 +-N=80mg/L、TN=120mg/L、TP=15mg/L,COD/TN=2.5。
该方法包括如下步骤:
S1:启动所述三维电催化氧化单元反应器1、三维电生物耦合单元反应器2、轻质滤料滤池单元反应器3和三维电絮凝除磷单元反应器4;启动所述三维电催化氧化单元反应器1、三维电生物耦合单元反应器2和三维电絮凝除磷单元反应器3的曝气管19;启动所述第一电源11、所述第二电源12和所述第三电源13;
所述第一电源11为双向脉冲电源,其运行参数包括:占空比40%,频 率0.04Hz,电压20V;所述第二电源12为直流稳压电源,其电压为24V;所述第三电源13为双向脉冲电源,其运行参数包括:占空比40%,频率0.04Hz,电压20V;
S2:将污水从总进水管27送入所述电化学脱氮除磷处理装置并依次经过所述三维电催化氧化单元反应器1、所述三维电生物耦合单元反应器2和所述轻质滤料滤池单元反应器3;
所述三维电生物耦合单元反应器2的启动程序包括挂膜和驯化。所述挂膜的方法包括将接种物送入所述三维电生物耦合单元反应器2内,并向所述三维电生物耦合单元反应器2中通入所述三维电催化氧化单元反应器2的出水,直至所述第二粒子电极8表面形成稳定的生物膜;所述接种物为去除杂质的城镇污水处理厂曝气池活性污泥;所述驯化的方法包括间歇向所述三维电生物耦合单元反应器2中通入所述三维电催化氧化单元反应器2的出水,按时测定所述三维电生物耦合单元反应器2的出水水质变化,并观察所述第二粒子电极8表面形成的生物膜的颜色,直至其变为深棕色;其中,向所述三维电生物耦合单元反应器2进水时的所述第二电源12的工作电压为12-36V,停止向所述三维电生物耦合单元反应器2进水时的所述第二电源12的保护电压为5-12V,以节约能耗。
S3:将所述轻质滤料滤池单元反应器3的出水中的一部分从所述总出水管27排出所述电化学脱氮除磷处理装置;将所述轻质滤料滤池单元反应器3的出水中的另一部分送入所述三维电絮凝除磷单元反应器4;将所述三维电絮凝除磷单元反应器4的出水通过所述回流泵21和所述止回阀22回流至所述轻质滤料滤池单元反应器3。
所述方法还包括:(1)对所述三维电催化氧化单元反应器1的冲洗,所述冲洗的频率为每3-7天冲洗一次,维持水力通畅,所述冲洗的方法包括将所述三维电催化氧化单元反应器1运行时的曝气量调高至气水比10:1。(2)对所述三维电生物耦合单元反应器2的冲洗,所述冲洗的频率为每1-3天冲洗一次,所述冲洗的方法包括将所述三维电生物耦合单元反应器2运行时的曝气量调高至气水比10:1。所述冲洗的目的在于维持生物膜更新。(3)对所述轻质滤料滤池单元反应器3的反洗,所述反洗的频率为每1-3天反洗一次,所述反洗的方法包括将所述污水处理完成后,依次开启所述轻质滤料滤池单元反应器3的曝气管19、放空管20。待所述放空管20放 空完毕后,关闭放空管20和曝气管19,开始重新进水。所述轻质滤料滤池单元反应器3的曝气管19的运行时间为10min。(4)对所述三维电絮凝除磷单元反应器的清洗,所述清洗的频率每7-14天清洗一次,所述清洗的方法包括将所述三维电絮凝除磷单元反应器的滤料筐和其内的第三粒子电极取出,使用超声波清洗机对其进行清洗并获得清洗下的结晶固体。所述清洗下的结晶固体为MgNH 4PO 4·6H 2O、Mg 3(PO 4) 2和Mg(OH) 2中的至少一种,其中MgNH 4PO 4·6H 2O、Mg 3(PO 4) 2可作为磷肥使用。
所述电化学脱氮除磷处理装置的出水水质:COD平均值28mg/L,平均去除率90%,NH4 +-N均值为0.8mg/L,平均去除率99%,TN平均值13mg/L,平均去除率89%,TP平均值0.4mg/L,平均去除率97%,所述电化学脱氮除磷处理装置的出水除污染物冲击负荷外,可稳定达到北京地方标准(DB11/1612-2019)中一级A,本发明的电化学脱氮除磷技术相比二维电催化氧化技术可节约电耗40%以上,本发明的处理成本与传统生化处理方式相比基本持平,运行控制简单,污泥产量减少60%以上。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

  1. 一种电化学脱氮除磷装置,其特征在于,该装置包括三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器;
    总进水管、所述三维电催化氧化单元反应器、所述三维电生物耦合单元反应器、所述轻质滤料滤池单元反应器依次连接;
    所述轻质滤料滤池单元反应器的出水管分别与总出水管和所述三维电絮凝除磷单元反应器的进水管连接;所述三维电絮凝除磷单元反应器的出水管通过回流泵和止回阀与所述轻质滤料滤池单元反应器的进水管连接。
    所述三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器的池体的底部均设置有曝气管和放空管。
  2. 根据权利要求1所述的电化学脱氮除磷装置,其中,所述三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器的池体材质均为高分子类绝缘材质。
  3. 根据权利要求1或2所述的电化学脱氮除磷装置,其中,
    所述三维电催化氧化单元反应器的进水管设置于所述三维电催化氧化单元反应器池体的上部或下部,所述三维电催化氧化单元反应器的出水管与所述三维电催化氧化单元反应器的进水管呈对角线设置;
    所述三维电催化氧化单元反应器的进水管与出水管之间设有多组第一阴极板、多组第一阳极板、第一粒子电极和第一下滤板;所述多组第一阴极板和多组第一阳极板交叉设置,并分别与第一电源的负极和正极用电缆连接;所述第一粒子电极分布设置于所述多组第一阴极板和多组第一阳极板之间;所述第一下滤板设置于所述多组第一阴极板和多组第一阳极板的下端;
    所述三维电生物耦合单元反应器的进水管设置于所述三维电生物耦合单元反应器池体的上部或下部,所述三维电生物耦合单元反应器的出水管与所述三维电生物耦合单元反应器的进水管呈对角线设置;
    所述三维电生物耦合单元反应器的进水管与出水管之间设有多组第二阴极板、多组第二阳极板、第二粒子电极和第二下滤板;所述多组第二阴极板和多组第二阳极板交叉设置,并分别与第二电源的负极和正极用电缆连接;所述第二粒子电极分布设置于所述多组第二阴极板和多组第二阳极板之间;所述第二下滤板设置于所述多组第二阴极板和多组第二阳极板的下端;
    所述轻质滤料滤池单元反应器的出水管通过回流管连接所述三维电絮凝除磷单元反应器的进水管;
    所述轻质滤料滤池单元反应器的进水管设置于所述轻质滤料滤池单元反应器池体的上部或下部,所述轻质滤料滤池单元反应器的出水管与所述轻质滤料滤池单元反应器的进水管呈对角线设置;
    所述轻质滤料滤池单元反应器的进水管与出水管之间设有第三下滤板和第一上滤板,以及设置于所述第三下滤板和第一上滤板之间的轻质滤料;
    所述三维电絮凝除磷单元反应器的进水管与出水管分别设置于所述三维电絮凝除磷单元反应器池体上部的两侧;所述三维电絮凝除磷单元反应器池体内靠近所述三维电絮凝除磷单元反应器的进水管的位置活动设置有滤料筐;所述滤料筐内设置有第三粒子电极;所述滤料筐的相对的两侧设置有多组第三阴极板和多组第三阳极板,所述多组第三阴极板和多组第三阳极板分别与第三电源的负极和正极用电缆连接;所述滤料筐、多组第三阴极板和多组第三阳极板的底沿通过滤料筐支架与所述三维电絮凝除磷单元反应器池体底部形成液体通道。
  4. 根据权利要求3所述的电化学脱氮除磷装置,其中,
    所述第一阴极板、所述第二阴极板和所述第三阴极板各自独立地选自钛电极、钛基金属氧化物涂层电极或不锈钢电极;所述第一阳极板、所述第二阳极板和所述第三阳极板各自独立地选自钛电极或钛基金属氧化物涂层电极;优选地,所述金属氧化物涂层为二氧化锡、氧化锌、二氧化钛和稀土金属氧化物中的至少两种;
    所述第一阴极板与所述第一阳极板之间的电极间距和所述第二阴极板与所述第二阳极板之间的电极间距各自独立地为10-200mm;
    所述第一阴极板、所述第二阴极板、所述第三阴极板、所述第一阳极 板、所述第二阳极板和所述第三阳极板各自独立地选自平板、网板、穿孔板或栅条板;
    所述第一粒子电极为复合型催化三维粒子电极,优选地,所述复合型催化三维粒子为负载或掺杂多元催化剂的生物质活性炭或煤质活性炭颗粒,进一步优选地,所述催化剂为二氧化锡、氧化锌、二氧化钛和稀土金属氧化物中的至少两种;所述第一粒子电极的粒径为3-5mm;
    所述第二粒子电极为生物质活性炭颗粒或煤质活性炭颗粒,所述第二粒子电极的粒径为5-10mm;
    所述轻质滤料的材质为聚氨酯海绵、聚丙烯海绵和聚乙烯海绵中的至少一种,所述轻质滤料的粒径为15-25mm,空隙密度为10-40PPI,比表面积为500-2000m 2/m 3
    所述第三粒子电极为金属颗粒,优选为镁、铝、铁和它们的合金颗粒中的至少一种;所述第三粒子电极的粒径为10-20mm;
    所述滤料筐为高分子绝缘材质孔板。
  5. 一种电化学脱氮除磷方法,其特征在于,该方法采用权利要求1-4中任意一项所述的电化学脱氮除磷处理装置,包括如下步骤:
    S1:启动所述三维电催化氧化单元反应器、三维电生物耦合单元反应器、轻质滤料滤池单元反应器和三维电絮凝除磷单元反应器;启动所述三维电催化氧化单元反应器、三维电生物耦合单元反应器和三维电絮凝除磷单元反应器的曝气管;启动所述第一电源、所述第二电源和所述第三电源;
    S2:将污水从总进水管送入所述电化学脱氮除磷处理装置并依次经过所述三维电催化氧化单元反应器、所述三维电生物耦合单元反应器和所述轻质滤料滤池单元反应器;
    S3:将所述轻质滤料滤池单元反应器的出水中的一部分从所述总出水管排出所述电化学脱氮除磷处理装置;将所述轻质滤料滤池单元反应器的出水中的另一部分送入所述三维电絮凝除磷单元反应器;将所述三维电絮凝除磷单元反应器的出水通过所述回流泵和所述止回阀回流至所述轻质滤料滤池单元反应器。
  6. 根据权利要求5所述的电化学脱氮除磷方法,其中,
    所述三维电催化氧化单元反应器的出水中氨氮去除率为40-60%;
    所述方法还包括对所述三维电催化氧化单元反应器的冲洗,所述冲洗的频率为每3-7天冲洗一次,所述冲洗的方法包括将所述三维电催化氧化单元反应器运行时的曝气量调高至气水比(10-20):1。
  7. 根据权利要求5所述的电化学脱氮除磷方法,其中,
    所述三维电生物耦合单元反应器的启动的程序包括挂膜和驯化;
    所述挂膜的方法包括将接种物送入所述三维电生物耦合单元反应器内,并向所述三维电生物耦合单元反应器中通入所述三维电催化氧化单元反应器的出水,直至所述第二粒子电极表面形成稳定的生物膜;
    优选地,所述接种物为经培育的特殊电活性生物菌剂和/或去除杂质的城镇污水处理厂曝气池活性污泥;
    优选地,所述三维电生物耦合单元反应器内的菌群为肠杆菌和/或假单胞菌;
    所述驯化的方法包括间歇向所述三维电生物耦合单元反应器中通入所述三维电催化氧化单元反应器的出水,按时测定所述三维电生物耦合单元反应器的出水水质变化,并观察所述第二粒子电极表面形成的生物膜的颜色,直至其变为深棕色;优选地,向所述三维电生物耦合单元反应器进水时的所述第二电源的工作电压为12-36V,停止向所述三维电生物耦合单元反应器进水时的所述第二电源的保护电压为5-12V;
    所述三维电生物耦合单元反应器的出水中氨氮<1.5mg/L,COD<30mg/L;
    所述方法还包括对所述三维电生物耦合单元反应器的冲洗,所述冲洗的频率为每1-3天冲洗一次,所述冲洗的方法包括将所述三维电生物耦合单元反应器运行时的曝气量调高至气水比(10-20):1。
  8. 根据权利要求5所述的电化学脱氮除磷方法,其中,所述方法还包括对所述轻质滤料滤池单元反应器的反洗,所述反洗的频率为每1-3天反洗一次,所述反洗的方法包括将所述污水处理完成后,依次开启所述轻质滤料滤池单元反应器的曝气管、放空管;优选地,所述轻质滤料滤池单元反应器的曝气管的运行时间为10-15min。
  9. 根据权利要求5所述的电化学脱氮除磷方法,其中,
    所述方法还包括对所述三维电絮凝除磷单元反应器的清洗,所述清洗的频率每7-14天清洗一次,所述清洗的方法包括将所述三维电絮凝除磷单元反应器的滤料筐和其内的第三粒子电极取出,使用超声波清洗机对其进行清洗并获得清洗下的结晶固体;
    优选地,所述清洗下的结晶固体为MgNH 4PO 4·6H 2O、Mg 3(PO 4) 2和Mg(OH) 2中的至少一种;
    所述电化学脱氮除磷处理装置的出水中总磷浓度小于0.5mg/L,所述三维电絮凝除磷单元反应器的运行参数根据所述电化学脱氮除磷处理装置的总出水中总磷的浓度确定。
  10. 根据权利要求5所述的电化学脱氮除磷方法,其中,所述第一电源、所述第二电源和所述第三电源各自独立地为恒压源、恒流源、单向脉冲源或双向脉冲源;
    优选地,所述双向脉冲源的占空比为40%-90%,脉冲频率为0.01-0.1Hz,电压为5-36V,通电时间为≥5min,倒极时间为≤10min;
    优选地,所述恒压源或恒流源的电压各自独立地为5-36V。
PCT/CN2021/133132 2021-03-26 2021-11-25 一种电化学脱氮除磷装置及方法 WO2022199096A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/548,274 US20240140848A1 (en) 2021-03-26 2021-11-25 Electrochemical nitrogen and phosphorus removal device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110326660.9 2021-03-26
CN202110326660.9A CN113149343B (zh) 2021-03-26 2021-03-26 一种电化学脱氮除磷装置及方法

Publications (1)

Publication Number Publication Date
WO2022199096A1 true WO2022199096A1 (zh) 2022-09-29

Family

ID=76884918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133132 WO2022199096A1 (zh) 2021-03-26 2021-11-25 一种电化学脱氮除磷装置及方法

Country Status (3)

Country Link
US (1) US20240140848A1 (zh)
CN (1) CN113149343B (zh)
WO (1) WO2022199096A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504637A (zh) * 2022-11-14 2022-12-23 江苏方天电力技术有限公司 一种一体化生活污水处理设备
CN116750860A (zh) * 2023-05-31 2023-09-15 山东建筑大学 一种深度处理低碳氮比废水同步脱氮除磷的装置
CN117326678A (zh) * 2023-11-20 2024-01-02 华北电力大学 一种电化学强化多级食物链型生物膜体系构建及其在医药废水中的应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149343B (zh) * 2021-03-26 2022-05-17 北京城市排水集团有限责任公司 一种电化学脱氮除磷装置及方法
CN113998847A (zh) * 2021-12-13 2022-02-01 北京城市排水集团有限责任公司 一种电化学预处理的sbr污水处理装置及方法
CN115432804A (zh) * 2022-08-17 2022-12-06 河南永泽环境科技有限公司 一种稀土强化生物膜电极耦合人工湿地及水处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110174742A1 (en) * 2008-06-24 2011-07-21 Holger Blum Method and device for water renovation
CN105271615A (zh) * 2015-10-29 2016-01-27 长江大学 电化学复合式膜生物反应器
CN107500399A (zh) * 2017-09-19 2017-12-22 华东师范大学 一种三维电化学偶联三维电生物污水处理装置
CN108249529A (zh) * 2018-02-08 2018-07-06 上海船研环保技术有限公司 一种电絮凝除磷装置
CN111253003A (zh) * 2020-01-20 2020-06-09 华东师范大学 一种三维电化学偶联三维电生物焦化废水处理系统
CN113149343A (zh) * 2021-03-26 2021-07-23 北京城市排水集团有限责任公司 一种电化学脱氮除磷装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471873B1 (en) * 2000-01-26 2002-10-29 Bernard Greenberg Electrolytic process and apparatus for purifying contaminated aqueous solutions and method for using same to remediate soil
DE10143600A1 (de) * 2001-09-05 2003-03-20 Bernd Diering Verfahren zur biologischen Aufbereitung von farbstoffhaltigen Abwässern aus der Textil- und Lederindustrie
CN100494101C (zh) * 2007-02-01 2009-06-03 深圳市碧宝环保科技有限公司 一种光电磁集成的废水高级氧化方法及其装置
CN102329055A (zh) * 2011-09-08 2012-01-25 集美大学 一种水产养殖污水处理方法
CN104118966B (zh) * 2014-07-03 2016-01-20 济南大学 一种气水异向流三维电生物耦合净水系统及净水方法
CN104118931B (zh) * 2014-07-03 2016-06-22 济南大学 一种电生物耦合净水系统及净水方法
KR20190063585A (ko) * 2017-11-30 2019-06-10 한국해양대학교 산학협력단 소립자 분산전극을 이용한 생물전기화학 혐기성소화 반응조 및 이를 이용한 유기물 제거 및 메탄생성 방법
CN110127941A (zh) * 2019-05-20 2019-08-16 北京市高速公路交通工程有限公司 一种生物和化学法耦合作用脱氮除磷工艺及处理设备
CN111960611B (zh) * 2020-07-30 2021-12-21 山东建筑大学 基于三维多孔电极填料的污水深度处理工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110174742A1 (en) * 2008-06-24 2011-07-21 Holger Blum Method and device for water renovation
CN105271615A (zh) * 2015-10-29 2016-01-27 长江大学 电化学复合式膜生物反应器
CN107500399A (zh) * 2017-09-19 2017-12-22 华东师范大学 一种三维电化学偶联三维电生物污水处理装置
CN108249529A (zh) * 2018-02-08 2018-07-06 上海船研环保技术有限公司 一种电絮凝除磷装置
CN111253003A (zh) * 2020-01-20 2020-06-09 华东师范大学 一种三维电化学偶联三维电生物焦化废水处理系统
CN113149343A (zh) * 2021-03-26 2021-07-23 北京城市排水集团有限责任公司 一种电化学脱氮除磷装置及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504637A (zh) * 2022-11-14 2022-12-23 江苏方天电力技术有限公司 一种一体化生活污水处理设备
CN116750860A (zh) * 2023-05-31 2023-09-15 山东建筑大学 一种深度处理低碳氮比废水同步脱氮除磷的装置
CN116750860B (zh) * 2023-05-31 2024-03-26 山东建筑大学 一种深度处理低碳氮比废水同步脱氮除磷的装置
CN117326678A (zh) * 2023-11-20 2024-01-02 华北电力大学 一种电化学强化多级食物链型生物膜体系构建及其在医药废水中的应用
CN117326678B (zh) * 2023-11-20 2024-03-26 华北电力大学 一种电化学强化多级食物链型生物膜体系构建及其在医药废水中的应用

Also Published As

Publication number Publication date
CN113149343B (zh) 2022-05-17
US20240140848A1 (en) 2024-05-02
CN113149343A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022199096A1 (zh) 一种电化学脱氮除磷装置及方法
CN102603119B (zh) 垃圾渗滤液的处理装置及其处理方法
CN106044960B (zh) 一种利用三维电极处理垃圾渗滤液浓缩液的方法
CN105355950B (zh) 一种大型生物阴极微生物燃料电池堆装置
CN103848539A (zh) 一种耦合微生物燃料电池低能耗膜生物反应器的有机废水处理装置
CN110240367B (zh) 一种碳氮磷同步高效去除的污水处理系统及方法
CN107698037A (zh) 三维电化学偶联三维电生物深度处理垃圾渗滤液反渗透浓水的方法
CN108585379A (zh) 一种提高难降解有机废水处理效果的装置与方法
CN114084998A (zh) 一种垃圾中转站废水与生活污水协同处理系统
CN103496789A (zh) 一种生物电化学辅助膜生物反应器污水处理装置和方法
CN109912145B (zh) 一种好氧颗粒污泥产电装置
CN107381811B (zh) 微生物双源电化学污水反应器及对低c/n城市污水处理方法
CN113045115A (zh) 基于电催化氧化耦合生化的垃圾渗滤液处理方法
CN108217917A (zh) 电化学膜生物污水处理器
CN107601788A (zh) 一种城市污水处理装置及污水处理方法
CN109231673B (zh) 一种A/O联合微电场-Fe/C强化除磷装置及其应用
CN107010729B (zh) 一种气水异向流渐变式全程自养脱氮系统及其处理方法
CN212269773U (zh) 基于muct-mber的生物脱氮除磷耦合膜污染控制装置
CN210012687U (zh) 一种粪便污水处理设备
CN210505741U (zh) 一种膜生物反应器及污水处理系统
CN210140521U (zh) 一种印刷工业废水处理系统
CN209957483U (zh) 一种分体式湿地植物-微生物燃料电池耦合装置
CN111573973A (zh) 一种低温低c/n条件下深度脱氮方法
CN106673297A (zh) 一种利用abr‑土地渗滤组合技术处理高氨氮工业废水的方法
CN202440378U (zh) 一种用于处理难降解化工废水的三维电极—生物膜反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18548274

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932704

Country of ref document: EP

Kind code of ref document: A1