WO2022198987A1 - 污浊度检测方法及清洁设备 - Google Patents

污浊度检测方法及清洁设备 Download PDF

Info

Publication number
WO2022198987A1
WO2022198987A1 PCT/CN2021/124190 CN2021124190W WO2022198987A1 WO 2022198987 A1 WO2022198987 A1 WO 2022198987A1 CN 2021124190 W CN2021124190 W CN 2021124190W WO 2022198987 A1 WO2022198987 A1 WO 2022198987A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
electrical signal
turbidity
cleaning
detection
Prior art date
Application number
PCT/CN2021/124190
Other languages
English (en)
French (fr)
Inventor
樊康
王远
邵校
孙建
Original Assignee
添可智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 添可智能科技有限公司 filed Critical 添可智能科技有限公司
Priority to CN202180091169.0A priority Critical patent/CN117015699A/zh
Publication of WO2022198987A1 publication Critical patent/WO2022198987A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties

Definitions

  • the present application relates to the technical field of household appliances, and in particular, to a method for detecting turbidity and a cleaning device.
  • cleaning equipment has been widely used in daily life. People can use cleaning equipment with different functions to complete corresponding cleaning operations, such as washing clothes with a washing machine, cleaning glasses with a glasses washing machine, and cleaning the ground with a floor washing machine.
  • the cleanliness of the object to be cleaned can be determined by detecting the turbidity of the dirty fluid recovered by the cleaning equipment.
  • the light transmittance of liquid, solid-liquid mixed fluid or solid-liquid-gas mixed fluid can be used to detect the turbidity of the fluid.
  • Various aspects of the present application provide a turbidity detection method and a cleaning device to improve the accuracy of fluid turbidity detection.
  • the embodiment of the present application provides a cleaning device, including: a cleaning brush, a suction channel, and a recovery bucket connected in sequence; the cleaning device further includes: a detection device and a control module; the detection device is disposed on the flow path of the dirty fluid ;
  • the control module is configured to determine the air bubble concentration and the initial contamination degree in the dirty fluid based on the detection signal of the detecting device; and use the air bubble concentration in the dirty fluid to correct the initial contamination degree to obtain The turbidity of the turbid fluid.
  • the embodiment of the present application also provides a method for detecting turbidity, which is suitable for cleaning equipment, including:
  • the initial fouling degree is corrected using the bubble concentration in the foul fluid to obtain the fouling degree of the foul fluid.
  • a detection device is added to the flow path of the dirty fluid sucked by the cleaning device, and a detection device is added to the cleaning device.
  • the detection device can detect the dirty fluid to obtain a detection signal.
  • the control module can determine the concentration of air bubbles in the dirty fluid and the initial turbidity of the dirty fluid based on the detection signal of the detection device; and use the concentration of air bubbles in the dirty fluid to correct the initial turbidity to obtain the turbidity of the dirty fluid.
  • the influence of the air bubbles in the fluid on the physical properties of the fluid is taken into account, which helps to reduce the influence of the air bubbles in the turbid fluid on the accuracy of the turbidity detection, which in turn helps Improve the accuracy of fluid turbidity detection.
  • 1a is a schematic structural diagram of a cleaning device provided by an embodiment of the application.
  • FIG. 1b to 1f are schematic diagrams of the arrangement of the detection device provided by the embodiment of the present application.
  • 1g is a schematic diagram of the structure and principle of a turbidity detection circuit provided by an embodiment of the application;
  • FIG. 2 is a schematic flowchart of a method for detecting turbidity provided by an embodiment of the present application.
  • a detection device is added to the flow path of the dirty fluid absorbed by the cleaning device, and a detection device is added to the cleaning device.
  • the detection device can detect the dirty fluid to obtain a detection signal.
  • the control module can determine the air bubble concentration in the dirty fluid and the initial contamination degree of the dirty fluid based on the detection signal of the detection device, and use the air bubble concentration in the dirty fluid to correct the initial contamination degree to obtain the contamination degree of the dirty fluid.
  • the influence of the air bubbles in the fluid on the physical properties of the fluid is taken into account, which helps to reduce the influence of the air bubbles in the turbid fluid on the accuracy of the turbidity detection, which in turn helps To improve the accuracy of fluid turbidity detection.
  • FIG. 1a is a schematic structural diagram of a cleaning device provided by an embodiment of the present application.
  • the cleaning device S10 includes: a cleaning brush 11, a suction channel 12 and a recovery bucket 13 connected in sequence; the dirty fluid on the cleaning object is sucked by the suction nozzle 11a on the cleaning brush 11 and passes through the suction channel 12 into the recycling bucket 13.
  • the cleaning device S10 further includes: a water outlet pipe and a solution bucket 17 which are sequentially connected with the nozzles of the cleaning brush 11 .
  • the clean fluid in the solution bucket 17 is sent to the nozzle through the water outlet pipe so that the nozzle can spray the cleaning object.
  • the main motor in the cleaning device S10 can drive the cleaning brush 11 to work, so as to perform the cleaning operation on the cleaning object.
  • the clean fluid may be mixed with dirt on the cleaning object to generate dirty fluid.
  • the dirty fluid flows from the suction nozzle 11a on the cleaning brush 11 through the suction channel 12 into the recovery tub 13, forming a flow path for the dirty fluid.
  • the foul fluid may be a fluid, or a solid-liquid mixed fluid, or a solid-liquid-gas three-state mixed fluid.
  • the implementation form of the cleaning device S10 shown in FIG. 1a is only an exemplary illustration.
  • the cleaning device S10 may be an autonomous mobile cleaning device or a handheld cleaning device as shown in FIG. 1a. Further, the cleaning device S10 may be a cleaning machine for cleaning areas such as ground, floor, carpet, wall, ceiling or glass, but is not limited thereto.
  • the physical properties of the fluids are different.
  • the physical properties of the fluid can be optical or electrical.
  • the optical properties of the fluid may be one or more of light transmittance, refraction property and light reflection property of the fluid.
  • the transmittance, refractive index and reflectivity of fluids with different turbidity levels are different.
  • the electrical properties of the fluid can be the dielectric constant, conductivity, or resistance of the fluid. Different turbidity fluids have different electrical properties.
  • the cleaning device S10 may include: a control module 20 and a detection device 15 .
  • the detection device 15 is disposed on the flow path of the dirty fluid.
  • the detection device 15 is electrically connected to the control module 20 .
  • the detection device 15 can detect the dirty fluid to obtain a detection signal, and provide the detection signal to the control module 20 .
  • the control module 20 can determine the initial turbidity of the filthy fluid based on the detection signal of the detection device 15 .
  • the control module 20 may determine the bubble concentration of the foul fluid based on the detection signal.
  • control module 20 may correct the initial turbidity of the turbid fluid by using the bubble concentration of the turbid fluid to obtain the turbidity of the turbid fluid. Since this embodiment takes into account the influence of air bubbles in the fluid on the physical properties of the fluid when detecting the turbidity of the turbid fluid, it helps to reduce the influence of the air bubbles in the turbid fluid on the accuracy of turbidity detection, thereby helping to improve the accuracy of the turbidity detection. The accuracy of fluid turbidity detection.
  • the specific implementation form of the detection device 15 is not limited.
  • the detection device 15 can detect the optical property value of the dirty fluid, and convert the optical property value into an electrical signal and provide it to the control module 20 .
  • the detection device 15 may be disposed in the cavity of the cleaning brush 11 , the suction nozzle 11 a of the cleaning brush 11 , the suction channel 12 or the recovery bucket 13 , or may be disposed in a plurality of these parts. In the embodiments of the present application, multiple refers to two or more.
  • the detection device 15 may be provided in the suction nozzle 11a and the suction channel 12 of the cleaning brush 11, or at least one detection device 15 may be provided in the cavity of the cleaning brush 11 and the recovery tub 13, etc., but not limited thereto.
  • FIG. 1a only exemplifies that the detection device 15 is disposed in the suction channel 12, and does not limit the installation position thereof.
  • the number of detection devices 15 provided at each location may be one or more.
  • the detection device 15 includes: a light transmitter 15a and a light receiver 15b.
  • the light signal emitted by the light transmitter 15a reaches the light receiver 15b after passing through the dirty fluid;
  • the wavelength of the light generated by the light transmitter 15a is within the wavelength range of light detectable by the light receiver 15b.
  • the light transmitter 15a may be a light transmitter with various light wavelengths, and correspondingly, the light receiver 15b may be a light receiver capable of receiving the light wavelengths of the light emitted by the light transmitter 15a.
  • the light receiver 15b can be an infrared receiver tube; if the light transmitter 15a is a laser transmitter, the light receiver 15b can be a laser diode; 15a is an LED light emitter, and the light receiver 15b can be a color sensor or the like; but not limited thereto.
  • the light signal emitted by the light transmitter 15a can reach the light receiver 15b after passing through the dirty fluid.
  • the light transmitter 15a and the light receiver 15b may be disposed opposite to each other.
  • the arrangement of the light transmitter 15a and the light receiver 15b opposite to the light receiver 15b means that the light receiving surface of the light receiver 15b is opposite to the light transmitter 15a through the dirty fluid, that is, the light emitted by the light transmitter 15a is transmitted through the dirty fluid and reaches the light receiver. device 15b. In this way, the light signal emitted by the light transmitter 15a can be transmitted through the dirty fluid to reach the light receiver 15b.
  • the light transmitter 15a and the light receiver 15b may be disposed on the same side.
  • the light transmitter 15a and the light receiver 15b are arranged opposite to each other, which means that the light receiving surface of the light receiver 15b and the light transmitter 15a are located on the same side of the dirty fluid, that is, the light emitted by the light transmitter 15a is reflected by the dirty fluid and arrives Optical receiver 15b.
  • the light signal emitted by the light transmitter 15a can be reflected by the dirty fluid to reach the light receiver 15b.
  • the position pointed by the direction of the center of gravity of each component is defined as the bottom of the component.
  • the portion of the recovery bucket 13 to which the center of gravity of the recovery bucket 13 points is defined as the bottom of the recovery bucket 13 .
  • the part pointed by the advancing direction of the cleaning device S10 in each component is defined as the front A of the component; correspondingly, the side opposite to the advancing direction of the cleaning device S10 in each component is defined as is the back side B of the component; and then defines the left and right sides of each component.
  • the light transmitter 15a and the light receiver 15b are arranged opposite to each other, it can be understood that the light transmitter 15a and the light receiver 15b are respectively arranged on the front and back of the suction channel; Set to the left and right of the suction channel.
  • the light transmitter 15a and the light receiver 15b are arranged on the same side, which can be understood as the light transmitter 15a and the light receiver 15b are both arranged on the front, back, left or right side of the suction channel.
  • the light transmitter 15a and the light receiver 15b can be respectively arranged on the front and back of the recovery bucket 13 (shown in FIG. 1d); and the right side (shown in Figure 1e).
  • the light transmitter 15a and the light receiver 15b are arranged on the same side, it can be understood that the light transmitter 15a and the light receiver 15b are both arranged on the front, back, left or right side of the recycling bucket 13.
  • FIG. 1f only the light transmitter 15a and the light receiver are used.
  • 15b are provided on the left side of the recycling tub 13 for example.
  • both the light transmitter 15a and the light receiver 15b are arranged at the bottom of the recovery tub 13, which helps to improve the detection rate of the optical property value of the dirty fluid.
  • the structural form of the recycling bucket 13 is only illustrative, and is not limited thereto.
  • the optical signal emitted by the optical transmitter 15a can reach the optical receiver 15b after passing through the dirty fluid.
  • the optical receiver 15b converts the arriving optical signal into an electrical signal, and can output the electrical signal as a detection signal to the control module 20.
  • the electrical signal output by the light receiver 15b is an analog signal, such as an analog voltage.
  • the optical properties of fluids differ due to fluids of different turbidity.
  • the intensity of the optical signal emitted by the optical transmitter 15a is stable, the intensity of the optical signal reaching the optical receiver 15b by the optical transmitter 15a after different turbidity levels is also different, and then the light received by the optical receiver 15b is different.
  • the strength of the signal is different, and the value of the converted electrical signal is also different.
  • the control module 20 may determine the initial turbidity of the filthy fluid according to the electrical signal.
  • the bubbles in the fluid will affect the optical properties of the fluid.
  • the air bubbles in the fluid will block the light, reduce the transmittance of the fluid, and improve the reflectivity of the fluid.
  • the fluctuation of the optical property value of the fluid is small, therefore, the fluctuation of the optical signal received by the optical receiver 15b is small, and the subsequent optical receiver 15b converts the received optical signal into an electrical signal. fluctuations are also smaller.
  • the optical property value of the optical signal emitted by the optical transmitter 15b after passing through the bubbles changes greatly, resulting in a larger fluctuation of the optical signal received by the optical receiver 15b.
  • the fluctuation of the electrical signal converted into the received optical signal by the subsequent optical receiver 15b is also relatively large. Since for a fluid with bubbles, the intensity of the optical signal received by the optical receiver 15b fluctuates greatly in a period of time, and accordingly, the electrical signal output by the optical receiver 15b also fluctuates greatly, and the visible light receiver 15b outputs a large fluctuation in the intensity of the signal.
  • the electrical signal can reflect the bubble concentration in the fluid to a certain extent. Based on this, the control module 20 may determine the bubble concentration of the foul fluid based on the electrical signal.
  • control module 20 may correct the initial turbidity of the turbid liquid by using the bubble concentration of the turbid liquid to obtain the turbidity of the turbid fluid.
  • the cleaning device provided in this embodiment takes into account the influence of air bubbles in the fluid on the optical properties of the fluid when detecting the turbidity of the turbid fluid, which helps to reduce the influence of the air bubbles in the turbid fluid on the accuracy of turbidity detection, and further Helps improve the accuracy of fluid turbidity detection.
  • the control module 20 may include a detection circuit 16 and a processing system 14 .
  • the detection circuit 16 is electrically connected between the optical receiver 15b and the processing system 14, and the processing system 14 is also electrically connected with the optical receiver 15b.
  • Optical receiver 15b may output electrical signals to detection circuit 16 and processing system 14 .
  • the detection circuit 16 can convert the electrical signal output by the light receiver 15b into a digital signal and output it to the processing system 14 .
  • the processing system 14 may include a processor and peripheral circuits.
  • the processor may be any hardware processing device that can execute the logic of the above method.
  • the processor may be a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphics Processing Unit, GPU) or a microcontroller unit (Microcontroller Unit, MCU); it may also be a field programmable gate array (Field -Programmable Gate Array (FPGA), Programmable Array Logic (PAL), General Array Logic (GAL), Complex Programmable Logic Device (CPLD) and other programmable devices ; or an advanced reduced instruction set (RISC) processor (Advanced RISC Machines, ARM) or a system on a chip (System on Chip, SoC), etc., but not limited thereto.
  • RISC advanced reduced instruction set
  • the detection circuit 16 may include a voltage comparator.
  • one input terminal of the voltage comparator (only one input terminal is shown in FIG. 1g ) can be electrically connected to the optical receiver 15b respectively; the other input terminal can input a set voltage threshold.
  • the voltage comparator When the voltage value of the electrical signal output by the light receiver 15b is greater than the set voltage threshold, the voltage comparator outputs a high level; when the voltage value of the electrical signal output by the light receiver 15b is less than the set voltage threshold, the voltage comparator The converter outputs a low level, thereby converting the electrical signal into a digital signal.
  • the resistor R1 is a voltage sampling resistor, and the processing system 14 can collect the voltage across the resistor R1 as the electrical signal output by the above-mentioned optical receiver 15b.
  • the intensity of the optical signal received by the optical receiver 15b fluctuates greatly within a period of time, and accordingly, the electrical signal output by the optical receiver 15b also fluctuates greatly, and the fluctuating electrical signal is detected by Circuit 16 can convert to a square wave signal.
  • the pulses included in the square wave are generated by the passage of the light signal through the bubble.
  • the digital signal can reflect the bubble concentration in the fluid to a certain extent. Based on this, the bubble concentration in the dirty fluid can be determined according to the digital signal per unit time.
  • the processing system 14 may count pulses of the digital signal per unit time to determine the number of pulses contained in the digital signal per unit time; wherein the number of pulses may reflect the concentration of air bubbles in the foul fluid. The greater the number of pulses, the greater the bubble concentration in the dirty fluid; the less the number of pulses, the smaller the bubble concentration in the dirty fluid. If the number of pulses is 0, the air bubble concentration in the dirty fluid is 0, that is, there are no air bubbles in the dirty fluid.
  • the unit time refers to the detection unit time, and the unit time can be determined by the flow rate of the dirty fluid. In this embodiment, the specific value of the unit time is not limited, for example, the unit time may be 30s, 1min, 2min, 5min, or 10min, etc., but is not limited thereto.
  • the processing system 14 can also determine the initial fouling degree of the foul fluid according to the electrical signal per unit time.
  • the processing system 14 may calculate the average electrical signal value of the electrical signal per unit time; and use the average electrical signal value to quantify the turbidity of the dirty fluid to obtain the pollution The initial turbidity of the fluid.
  • the flow path of the dirty fluid will also have a certain degree of contamination, and this contamination affects the intensity of the optical signal received by the optical receiver 15b to a certain extent, resulting in subsequent damage to the dirty fluid. There is a certain error in the determination of turbidity.
  • the cleaning device in order to reduce the influence of the contamination existing in the circulation path of the dirty fluid on the detection result, the cleaning device can be calibrated before the cleaning device S10 performs the cleaning task on the cleaning object; The electrical signal output by the receiver 15b is used as the first calibration electrical signal.
  • a cleaning fluid test can also be performed on the cleaning object.
  • the cleaning fluid may be the same fluid as the cleaning fluid in the solution tank 17 of the cleaning device.
  • the cleaning fluid can be clean water or cleaning fluid.
  • the cleaning fluid test refers to using the suction nozzle on the cleaning brush of the cleaning device to suck the cleaning fluid and send it into the recovery bucket 13 through the suction channel.
  • the optical signal generated by the optical transmitter 15a reaches the optical receiver 15b after being pumped through the fluid.
  • the optical receiver 15b converts the arriving optical signal into an electrical signal and outputs it to the processing system 14 .
  • the processing system 14 may acquire the electrical signal output by the light receiver 15b during the clean fluid test as the second calibration electrical signal.
  • the processing system 14 can use the first calibration electrical signal and the second calibration electrical signal to normalize the average electrical signal value of the electrical signals in the unit time, so as to obtain the initial fouling degree of the foul fluid.
  • the calculation formula of initial turbidity can be expressed as:
  • D1 represents the initial turbidity of the dirty fluid
  • V1 represents the electrical signal value output by the optical receiver during the calibration process of the cleaning device before the cleaning device S10 performs the cleaning task on the cleaning object, that is, the first Calibration electrical signal
  • V2 represents the electrical signal output by the optical receiver during the clean fluid test, that is, the second calibration electrical signal
  • V3 represents the average electrical signal value of the electrical signal per unit time during the actual fluid turbidity measurement.
  • the processing system 14 may use the bubble concentration in the foul fluid to correct the initial fouling degree to obtain the fouling degree of the foul fluid.
  • the processing system 14 can use the pulse number N included in the digital signal per unit time to correct the initial turbidity to obtain the turbidity of the turbid fluid and reduce the influence of air bubbles in the fluid on the detection of turbidity.
  • the initial turbidity may be subtracted by a set proportion of the number of pulses as the turbidity of the dirty fluid; and/or, the initial turbidity may be divided by the set proportion of the number of pulses as the turbidity of the dirty fluid.
  • the calculation formula of the turbidity of the dirty fluid can be expressed as:
  • D represents the turbidity of the dirty fluid
  • N represents the number of pulses contained in the digital signal per unit time
  • a represents the proportionality coefficient.
  • ⁇ and ⁇ respectively represent the weights occupied by the correction methods of the above-mentioned formulas (2) and (3) when the pollution degree is corrected.
  • the turbidity of the dirty fluid recovered from the cleaning object reflects the cleanliness of the cleaning object to a certain extent. The higher the turbidity of the dirty fluid recovered by the cleaning equipment from the cleaning object, the more dirty the cleaning object is. Based on this, the processing system 14 can determine the cleanliness of the cleaning object according to the dirtyness of the dirty fluid.
  • the processing system 14 may match the turbidity of the dirty fluid in the known correspondence between the turbidity and the cleaning level of the cleaning object, and determine the cleaning level corresponding to the turbidity of the dirty fluid as the cleaning object. level of cleanliness. Among them, the cleaning level of the cleaning object can reflect its cleanliness.
  • the processing system 14 can also adjust the working state of the cleaning device S10 according to the cleanliness of the cleaning object.
  • the processing system 14 may adjust the power of the water pump of the cleaning device to a power suitable for the cleanliness of the cleaning object according to the cleanliness of the cleaning object.
  • the processing system 14 may preset a correspondence between the cleanliness level and the power of the water pump, and based on the correspondence, the processing system 14 may determine the power of the water pump according to the cleanliness level of the cleaning object.
  • the higher the cleaning level the smaller the power of the water pump and the smaller the water output of the cleaning device, indicating that the cleaning object is cleaner.
  • the processing system 14 may further adjust the power of the main motor and/or the floor brush motor of the cleaning device to a power suitable for the cleanliness of the cleaning object according to the cleanliness of the cleaning object.
  • the processing system 14 may preset the correspondence between the cleanliness level and the power of the main motor and/or the brush motor, and based on the correspondence, the processing system 14 may determine the main motor and/or the/or the cleaning object according to the cleanliness level of the cleaning object. Or the power of the brush motor.
  • the higher the cleaning level the lower the power of the main motor and/or the floor brush motor, and the lower the water absorption capacity of the cleaning device, indicating that the cleaning object is cleaner.
  • the main motor sucks the dirty fluid from the suction nozzle 11a on the floor brush of the cleaning device and sends it into the recovery bucket of the cleaning device through the suction channel on the cleaning device, and the floor brush motor drives the cleaning brush Clean the object to be cleaned.
  • the processing system 14 may further adjust the task execution time of the cleaning equipment to a time suitable for the cleanliness of the cleaning object according to the cleanliness of the cleaning object.
  • the processing system 14 may preset a correspondence between the cleanliness level and the cleaning time, and based on the correspondence, the processing system 14 may determine the cleaning time according to the cleanliness level of the cleaning object.
  • the higher the cleaning level the lower the power of the main motor and/or the floor brush motor, and the shorter the cleaning time, indicating that the cleaning object is cleaner.
  • the processing system 14 may control the cleaning device S10 to stop working.
  • the cleanliness of the cleaning object meets the standard may be that the cleanliness level of the cleaning object is the highest cleanliness level.
  • the processing system 14 may control the water pump, the main motor and/or the floor brush motor to stop rotating, and the like.
  • the processing system 14 may also output the cleanliness of the cleaning object.
  • the cleaning apparatus S10 may include: a display assembly. Then the processing system 14 can display the cleanliness of the cleaning object through the display component.
  • the display assembly may include: an LED display screen, an OLED display screen or a thin film LED display screen, and the like.
  • the display assembly may include: a plurality of display tubes. If the colors of the plurality of display tubes are different, then under the control of the processing system 14, the plurality of display tubes can display different combinations of colors, brightness and shapes (or patterns).
  • the shapes displayed by the plurality of display tubes here can also be understood as patterns. Among them, the combination of different colors, brightness and shapes characterize the cleanliness of cleaning equipment.
  • combinations of different colors, brightnesses and shapes include: different colors, but the same shape; the same color, but different shapes; the same color, but different brightness; the same shape, but different brightness; The shapes are all different.
  • the shapes displayed by the plurality of first display tubes mainly depend on the number and distribution positions of the first display tubes in the lighting state.
  • the cleanliness of the cleaning objects can also be represented simply by the number of display tubes in the lighted state.
  • the cleanliness of the cleaning object is represented by the number of display tubes in the lighted state. For example, the greater the number of display tubes in the lighted state among the plurality of display tubes, the lower the cleanliness of the cleaning object; and so on.
  • the cleaning device S10 may also include communication components, rollers, driving components, etc. according to application requirements, which are not shown in Figs. 1a-1g.
  • Figures 1a-1g only schematically show some components, which does not mean that the cleaning device S10 must include all the components shown in Figures 1a-1g, nor does it mean that the cleaning device S10 can only include those shown in Figures 1a-1g components.
  • the embodiments of the present application also provide a method for detecting turbidity. From the perspective of the processing system, the method for detecting turbidity provided by the embodiments of the present application will be exemplarily described below.
  • FIG. 2 is a schematic flowchart of a method for detecting turbidity according to an embodiment of the present application. As shown in Figure 2, the method includes:
  • the cleaning device may be a cleaning machine for cleaning areas such as ground, floor, carpet, wall, ceiling or glass, but is not limited thereto.
  • the dirty fluid is sucked by the suction nozzle on the cleaning brush of the cleaning device and sent into the recovery bucket of the cleaning device through the suction channel on the cleaning device.
  • the detection device is arranged on the flow path of the dirty fluid.
  • a detection device is added to the flow path of the dirty fluid sucked by the cleaning device, and a detection device is added to the cleaning device.
  • the detection device detects the dirty fluid to obtain a detection signal.
  • the detection signal can be acquired, and based on the detection signal, the concentration of air bubbles in the dirty fluid and the initial turbidity of the dirty fluid can be determined, and the initial turbidity can be corrected by using the concentration of air bubbles in the dirty fluid to obtain the turbidity of the dirty fluid.
  • the influence of the bubbles in the fluid on the physical properties of the fluid is taken into consideration, which helps to reduce the influence of the bubbles in the turbid fluid on the accuracy of the turbidity detection, which in turn helps Improve the accuracy of fluid turbidity detection.
  • the detection device includes: a light transmitter and a light receiver.
  • the light signal emitted by the light transmitter reaches the light receiver after passing through the dirty fluid; the light receiver can convert the arriving light signal into an electrical signal.
  • the optical transmitter can be controlled to emit an optical signal; the optical signal reaches the optical receiver after passing through the dirty fluid; further, the electrical signal converted by the optical receiver into the arriving optical signal can be obtained as the above detection Signal.
  • the cleaning device is augmented with detection circuitry.
  • the detection circuit can receive the electrical signal output by the light receiver; and convert the electrical signal into a digital signal.
  • step 202 can be implemented as: using the detection circuit to convert the electrical signal into a digital signal; according to the digital signal per unit time, determine the bubble concentration in the dirty fluid; Initial turbidity.
  • an optional implementation of determining the bubble concentration in the dirty fluid is: counting the pulses of the digital signal in the unit time to determine the pulses included in the digital signal in the unit time. number; where the number of pulses reflects the bubble concentration in the dirty fluid. The greater the number of pulses, the greater the bubble concentration in the dirty fluid; the less the number of pulses, the smaller the bubble concentration in the dirty fluid. If the number of pulses is 0, the air bubble concentration in the dirty fluid is 0, that is, there are no air bubbles in the dirty fluid.
  • an optional implementation of determining the initial turbidity of the foul fluid according to the electrical signal per unit time is: calculating the average electrical signal value of the electrical signal per unit time; The fouling degree of the fouling fluid is quantified to obtain the initial fouling degree of the foul fluid.
  • the flow path of the foul fluid will also have a certain degree of fouling, and this fouling will affect the intensity of the optical signal received by the optical receiver to a certain extent, resulting in subsequent fouling of the foul fluid. There is a certain error in the determination of the degree.
  • the cleaning device in order to reduce the influence of the contamination existing in the flow path of the dirty fluid on the detection result, the cleaning device can be calibrated before the cleaning device performs the cleaning task on the cleaning object; and the light reception during the calibration process can be obtained.
  • the electrical signal output by the detector is used as the first calibration electrical signal.
  • a cleaning fluid test can also be performed on the cleaning object.
  • the cleaning fluid may be the same fluid as the cleaning fluid in the solution tank of the cleaning device.
  • the cleaning fluid can be clean water or cleaning fluid.
  • the cleaning fluid test refers to using the suction nozzle on the cleaning brush of the cleaning equipment to suck the cleaning fluid and send it into the recovery bucket through the suction channel.
  • the light signal generated by the light transmitter reaches the light receiver after being pumped through the fluid.
  • the optical receiver converts the incoming optical signal into an electrical signal and outputs it to the processing system.
  • the electrical signal output by the optical receiver during the cleaning fluid test can be acquired as the second calibration electrical signal.
  • the average electrical signal value of the electrical signals in the unit time can be normalized by using the first calibration electrical signal and the second calibration electrical signal, so as to obtain the initial turbidity of the dirty fluid.
  • the initial fouling degree can be corrected by using the bubble concentration in the foul fluid to obtain the fouling degree of the foul fluid.
  • the initial turbidity may be corrected by using the number N of pulses included in the digital signal per unit time, so as to obtain the turbidity of the turbid fluid and reduce the influence of air bubbles in the fluid on the detection of turbidity.
  • the initial turbidity may be subtracted by a set proportion of the number of pulses as the turbidity of the dirty fluid; and/or, the initial turbidity may be divided by the set proportion of the number of pulses as the turbidity of the dirty fluid; etc. Wait.
  • the turbidity of the dirty fluid recovered from the cleaning object reflects the cleanliness of the cleaning object to a certain extent. The higher the turbidity of the dirty fluid recovered by the cleaning equipment from the cleaning object, the more dirty the cleaning object is. Based on this, the cleanliness of the cleaning object can be determined according to the turbidity of the dirty fluid. Further, the working state of the cleaning equipment can also be adjusted according to the cleanliness of the cleaning object. Regarding the specific implementation manner of adjusting the working state of the cleaning device according to the cleanliness of the cleaning object, reference may be made to the relevant content of the above-mentioned device embodiments, which will not be repeated here.
  • the cleanliness of the cleaning object may also be output, optionally, the cleanliness of the cleaning object may be displayed through a display component.
  • the display manner of the cleanliness of the cleaning object reference may be made to the relevant content of the above-mentioned device embodiments, which will not be repeated here.
  • the execution subject of each step of the method provided in the above-mentioned embodiments may be the same device, or the method may also be executed by different devices.
  • the execution body of steps 201 and 202 may be device A; for another example, the execution body of step 201 may be device A, and the execution body of step 202 may be device B; and so on.
  • the embodiments of the present application also provide a computer-readable storage medium storing computer instructions.
  • the computer instructions are executed by one or more processors, the one or more processors are caused to execute the steps in the above-mentioned turbidity detection method. step.
  • the cleaning device provided in the embodiments of the present application may be implemented as a cleaning machine for cleaning areas such as floors, floors, carpets, walls, ceilings, or glass, but is not limited thereto.
  • the turbidity detection method provided by the embodiment of the present application is exemplarily described below with reference to specific application scenarios.
  • the cleaning equipment can be implemented as a floor washer.
  • the floor cleaning machine further includes: a water outlet pipe and a solution bucket sequentially connected to the nozzle of the floor brush. Among them, the clean fluid in the solution tank is sent to the nozzle through the water outlet pipe, so that the nozzle can be sprayed on the ground.
  • the motor in the floor brush can drive the floor brush to clean the ground, and the clean fluid on the ground forms a dirty fluid during the cleaning process.
  • the dirty fluid on the ground can be sucked by the suction nozzle on the floor brush and sent into the recovery bucket through the suction channel.
  • the detection device arranged on the flow path of the dirty fluid includes: a light transmitter and a light receiver.
  • the light signal sent by the light transmitter reaches the light receiver after passing through the dirty fluid; the light receiver can convert the arriving light signal into an electrical signal and output it to the processing system and detection circuit in the floor cleaning machine.
  • the detection circuit can convert the received electrical signal into a digital signal.
  • the initial turbidity of the dirty fluid can be determined according to the electrical signal per unit time; and the bubble concentration in the dirty fluid can be determined according to the digital signal per unit time; further, the dirty fluid can be used The concentration of air bubbles in the fluid is corrected for the initial fouling degree to obtain the fouling degree of the foul fluid.
  • the cleanliness of the floor can also be determined based on the turbidity of the dirty fluid. Since the influence of air bubbles in the fluid on the optical properties of the fluid is taken into account when detecting the turbidity of the turbid fluid, it helps to reduce the influence of the air bubbles in the turbid fluid on the accuracy of turbidity detection, thereby helping to improve the fluid turbidity. It can improve the accuracy of floor cleanliness detection, which in turn helps to improve the accuracy of subsequent floor cleanliness detection.
  • the cleaning device can be implemented as a window cleaning robot.
  • the window cleaning robot further includes: a water outlet pipe and a solution bucket sequentially connected with the nozzle of the glass cleaning assembly. Among them, the clean fluid in the solution tank is sent to the nozzle through the water outlet pipe, so that the nozzle can be sprayed on the glass.
  • the motor in the glass cleaning assembly can drive the glass cleaning assembly to clean the glass, and the clean fluid on the glass forms a dirty fluid during the cleaning process.
  • the dirty fluid on the glass can be sucked by the suction nozzle on the cleaning brush and sent into the recovery bucket through the suction channel.
  • the detection device arranged on the flow path of the dirty fluid includes: a light transmitter and a light receiver.
  • the light signal sent by the light transmitter reaches the light receiver after passing through the dirty fluid; the light receiver can convert the arriving light signal into an electrical signal and output it to the processing system and detection circuit in the floor cleaning machine.
  • the detection circuit can convert the received electrical signal into a digital signal.
  • the initial turbidity of the dirty fluid can be determined according to the electrical signal per unit time; and the bubble concentration in the dirty fluid can be determined according to the digital signal per unit time; The concentration of air bubbles in the fluid is corrected for the initial fouling degree to obtain the fouling degree of the foul fluid.
  • the cleanliness of the glass can also be determined based on the turbidity of the dirty fluid. Since the influence of air bubbles in the fluid on the optical properties of the fluid is taken into account when detecting the turbidity of the turbid fluid, it helps to reduce the influence of the air bubbles in the turbid fluid on the accuracy of turbidity detection, thereby helping to improve the fluid turbidity. It can improve the accuracy of glass cleanliness detection, which in turn helps to improve the accuracy of subsequent glass cleanliness detection.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include forms of non-persistent memory, random access memory (RAM) and/or non-volatile memory in computer readable media, such as read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridges, magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种污浊度检测方法及清洁设备。在清洁设备吸取的污浊流体的流通路径上增设检测器件,并在清洁设备上增设检测器件,检测器件可对污浊流体进行检测得到检测信号,控制模块可基于检测器件的检测信号,确定污浊流体中的气泡浓度和污浊流体的初始污浊度;并利用污浊流体中的气泡浓度对初始污浊度进行校正,得到污浊流体的污浊度。在对流体污浊度检测时,兼顾了流体中的气泡对流体物理属性的影响,有助于降低污浊流体中的气泡对污浊度检测准确度的影响,进而有助于提高流体污浊度检测的准确度。

Description

污浊度检测方法及清洁设备
交叉引用
本申请引用于2021年03月23日递交的名称为“污浊度检测方法及清洁设备”的第2021103088758号中国专利申请,上述专利通过引用被全部并入本申请。
技术领域
本申请涉及家用家电技术领域,尤其涉及一种污浊度检测方法及清洁设备。
背景技术
目前,清洁设备已被人们广泛应用于日常生活中。人们可以利用不同功能的清洁设备完成相应的清洗作业,例如利用洗衣机清洗衣物、利用眼镜清洗机清洗眼镜、利用地面清洗机清洗地面等。
在实际应用中,可通过检测清洁设备回收的污浊流体的污浊度,确定被清洁对象的洁净程度。在现有技术中,可利用液体、固液混合流体或固液气混合流体的透光性来检测流体的污浊度,但是,发明人发现在实际应用中,不仅流体中的杂质会影响流体的透光性,流体中的气泡也会影响流体的透光性,导致利用流体的透光性来检测流体的污浊度的检测准确度较低。
发明内容
本申请的多个方面提供一种污浊度检测方法及清洁设备,用以提高流体污浊度检测的准确度。
本申请实施例提供一种清洁设备,包括:依次连接的清洁刷、抽吸通道和回收桶;所述清洁设备还包括:检测器件和控制模块;所述检测器件设置于污浊流体的流通路径上;
所述控制模块,用于基于所述检测器件的检测信号,确定所述污浊流体中的气泡浓度和初始污浊度;利用所述污浊流体中的气泡浓度对所述初始污浊度进行校正,以得到所述污浊流体的污浊度。
本申请实施例还提供一种污浊度检测方法,适用于清洁设备,包括:
获取部署于所述清洁设备回收的污浊流体的流通路径上的检测器件的检测信号;所
基于所述检测信号,确定所述污浊流体的气泡浓度和初始污浊度;
利用所述污浊流体中的气泡浓度对所述初始污浊度进行校正,以得到所述污浊流体的污浊度。
在本申请实施例中,在清洁设备吸取的污浊流体的流通路径上增设检测器件,并在清洁设备上增设检测器件。检测器件可对污浊流体进行检测得到检测信号。控制模块可基于检测器件的检测信号,确定污浊流体中的气泡浓度和污浊流体的初始污浊度;并利用污浊流体中的气泡浓度对初始污浊度进行校正,以得到污浊流体的污浊度。在本申请实施例中,在对流体污浊度检测时,兼顾了流体中的气泡对流体物理属性的影响,有助于降低污浊流体中的气泡对污浊度检测准确度的影响,进而有助于提高流体污浊度检测的准确度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1a为本申请实施例提供的清洁设备的结构示意图;
图1b-图1f为本申请实施例提供的检测器件的设置方式示意图;
图1g为本申请实施例提供的污浊度检测电路的结构原理示意图;
图2为本申请实施例提供的污浊度检测方法的流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
针对现有流体污浊度检测准确度较低的技术问题,在本申请一些实施例中,在清洁设备吸取的污浊流体的流通路径上增设检测器件,并在清洁设备上增设检测器件。其中,检测器件可对污浊流体进行检测得到检测信号。控制模块可基于检测器件的检测信号,确定污浊流体中的气泡浓度和污浊流体的初始污浊度,并利用污浊流体中的气泡浓度对初始污浊度进行校正,以得到污浊流体的污浊度。在本申请实施例中,在对流体污浊度检测时,兼顾了流体中的气泡对流体的物理属性的影响,有助于降低污浊流体中的气泡对污浊度检测准确度的影响,进而有助于提高流体污浊度检测的准确度。
以下结合附图,详细说明本申请各实施例提供的技术方案。
应注意到:相同的标号在下面的附图以及实施例中表示同一物体,因此,一旦某一物体在一个附图或实施例中被定义,则在随后的附图和实施例中不需要对其进行进一步讨论。
图1a为本申请实施例提供的一种清洁设备的结构示意图。如图1a所示,该清洁设备S10包括:依次连接的清洁刷11、抽吸通道12和回收桶13;清洁对象上的污浊流体由清洁刷11上的吸嘴11a抽吸并经抽吸通道12送入回收桶13内。
清洁设备S10还包括:与清洁刷11的喷嘴依次连接的出水管道和溶液桶17。其中,溶液桶17内的干净流体经出水管道送入喷嘴以供喷嘴喷洒至清洁对象上。清洁设备S10中的主电机可带动清洁刷11进行工作,以对清洁对象执行清洁作业。干净流体在清洁刷11对清洁对象执行清洁任务的过程中,可能夹杂清洁对象上的脏污而产生污浊流体。如图1a中虚线所示,污浊流体从清洁刷11上的吸嘴11a经抽吸通道12至回收桶13内,形成污浊流体的流通路径。其中,本申请实施例中,污浊流体可为流体,或者为固液混合流体,或者为固液气三态混合流体。
在本实施例中,图1a所示的清洁设备S10的实现形态仅为示例性说明。其中,清洁设备S10可为自主移动式清洁设备,也可为图1a中所示的手持式清洁设备。进一步,清洁设备S10可以为用于清洗地面、地板、地毯、墙壁、天花板或玻璃等区域的清洗机,但不限于此。
在本实施例中,考虑到不同污浊度的流体,流体的物理属性不同。流体的物理属性可为光学属性或电学属性。其中,流体的光学属性可为流体的透光性、折光性及反光性中的一种或多种。相应地,不同污浊度的流体的透射率、折射率及反射率不同。例如,流体的污浊度越高,其透光度越低等。流体的电学属性可为流体的介电常数、电导率或阻值等。不同污浊度的流体的电学属性不同。基于此,清洁设备S10可包括:控制模块20和检测器件15。
在本实施例中,检测器件15设置于污浊流体的流通路径上。检测器件15与控制模块20电连接。检测器件15可对污浊流体进行检测得到检测信号,并将检测信号提供给控制模块20。
对于检测器件15来说,污浊流体的污浊度不同,其物理属性不同,导致检测器件15检测得到的检测信号的强度也就不同。基于此,控制模块20可基于检测器件15的检测信号,确定污浊流体的初始污浊度。
在实际应用中,流体中经常有气泡存在,流体中的气泡会影响流体的物理属性。例如,对于流体中的气泡会挡住光线,降低流体的透光度、提高流体的反射度等。对于无气泡存在的流体,检测信号波动较小。对于存在气泡的流体,气泡会影响流体的物理属性,导致检测信号的波动较大。由于对于有气泡存在的流体来说,一段时间内检测信号的强度波动较大,可见检测器件15检测到的检测信号在一定程度上可反映污浊流体中气泡浓度。基于此,控制模块20可基于检测信号确定污浊流体的气泡浓度。
进一步,控制模块20可利用污浊流体的气泡浓度对污浊流体的初始污浊度进行校正,得到污浊流体的污浊度。由于本实施例在检测污浊流体的污浊度时,兼顾了流体中的气泡对流体的物理属性的影响,有助于降低污浊流体中的气泡对污浊度检测准确度的影响,进而有助于提高流体污浊度检测的准确度。
在本申请实施例中,不限定检测器件15的具体实现形式。在一些实施例中,检测器件15可检测污浊流体的光学属性值,并将光学属性值转换为电信号提供给控制模块20。
可选地,检测器件15可设置于清洁刷11的腔体、清洁刷11的吸嘴11a、抽吸通道12 或回收桶13中,也可设置于这些部位中的多个部位中。在本申请实施例中,多个指2个或2个以上。例如,可在清洁刷11的吸嘴11a和抽吸通道12中设置检测器件15,或者,清洁刷11的腔体和回收桶13中设置至少一个检测器件15,等等,但不限于此。图1a仅以检测器件15设置于抽吸通道12内进行示例,并不对其设置位置进行限定。可选地,每个部位设置的检测器件15的数量可为1个或多个。
如图1b所示,检测器件15包括:光发射器15a和光接收器15b。光发射器15a发出的光信号经污浊流体后到达光接收器15b;光接收器15b可将到达的光信号转换成电信号,作为检测信号输出至控制模块20。
其中,光发射器15a发生的光的波长处于光接收器15b可检测的光波长范围内。其中,光发射器15a可为各种光波长的光发射器,相应地,光接收器15b可为可接收光发射器15a发出的光的光波长的光接收器。可选地,若光发射器15a为红外光发射器,则光接收器15b可为红外接收管;若光发射器15a为激光发射器,则光接收器15b可为激光二极管;若光发射器15a为LED光发射器,则光接收器15b可为色彩传感器等等;但不限于此。
其中,光发射器15a发出的光信号可经污浊流体后到达光接收器15b。可选地,如图1b所示,光发射器15a与光接收器15b可相对设置。其中,光发射器15a与光接收器15b相对设置,是指:光接收器15b的光接收面通过污浊流体与光发射器15a相对,即光发射器15a发出的光经污浊流体透射到达光接收器15b。这样,光发射器15a发出的光信号可经污浊流体透射后到达光接收器15b。
或者,如图1c所示,光发射器15a与光接收器15b可同侧设置。其中,光发射器15a与光接收器15b相对设置,是指:光接收器15b的光接收面与光发射器15a位于污浊流体的同一侧,即光发射器15a发出的光经污浊流体反射到达光接收器15b。这样,光发射器15a发出的光信号可经污浊流体反射后到达光接收器15b。
在本申请实施例中,为了便于描述和区分,将清洁设备S10正立工作(图1a所示的工作状态)时,各组件的重心方向所指向的部位,定义为该组件的底部。例如,对于回收桶13重心方向所指向的回收桶13的部位,定义为回收桶13的底部。进一步,将清洁设备S10工作时,各组件中清洁设备S10的前进方向所指向的部位,定义为该组件的前面A;相应地,将各组件中与清洁设备S10的前进方向相反的一面,定义为该组件的背面B;进而也就定义了各组件的左面和右面。
基于上述各组件的前后左右方向,对于抽吸通道12,光发射器15a和光接收器15b相对设置,可理解为光发射器15a和光接收器15b分别设置于抽吸通道的前面和背面;或者分别设置于抽吸通道的左面和右面。光发射器15a和光接收器15b同侧设置,可理解为光发射器15a和光接收器15b均设置于抽吸通道的前面、背面、左面或右面。
对于回收桶13,可分别将光发射器15a和光接收器15b设置于回收桶13的前面和背面(图1d所示);或者将光发射器15a和光接收器15b分别设置于回收桶13的左面和右面(图1e所示)。光发射器15a和光接收器15b同侧设置,可理解为光发射器15a和光接 收器15b均设置于回收桶13的前面、背面、左面或右面,图1f中仅以光发射器15a和光接收器15b均设置于回收桶13的左面进行示例。优选地,光发射器15a和光接收器15b均设置于回收桶13的底部,这样有助于提高对污浊流体的光学属性值的检测速率。其中,回收桶13的结构形式仅为示例性说明,并不对其进行限定。
在本实施例中,光发射器15a发出的光信号可经污浊流体后到达光接收器15b,光接收器15b将到达的光信号转换成电信号,可将电信号作为检测信号输出至控制模块20。光接收器15b输出的电信号为模拟信号,如模拟电压等。由于不同污浊度的流体,流体的光学属性不同。相应地,在光发射器15a发出的光信号强度稳定的情况下,光发射器15a经不同污浊度后到达光接收器15b的光信号的强度也就不同,进而光接收器15b接收到的光信号的强度不同,转换为的电信号的值也就不同。基于此,控制模块20可根据电信号,确定污浊流体的初始污浊度。
在实际应用中,流体中经常有气泡存在,流体中的气泡会影响流体的光学属性。例如,对于流体中的气泡会挡住光线,降低流体的透光度、提高流体的反射度等。对于无气泡存在的流体,流体的光学属性值的波动较小,因此,光接收器15b接收到的光信号的波动较小,进而后续光接收器15b将接收到的光信号转换为的电信号的波动也较小。对于存在气泡的流体,由于流体中的气泡也会遮挡光线,在光发射器15b发出的光信号经气泡后的光学属性值发射较大变化,导致光接收器15b接收到的光信号的波动较大,进而后续光接收器15b将接收到的光信号转换为的电信号的波动也较大。由于对于有气泡存在的流体来说,一段时间内光接收器15b接收到的光信号的强度波动较大,相应地,光接收器15b输出的电信号的波动也大,可见光接收器15b输出的电信号在一定程度上可反映流体中气泡浓度。基于此,控制模块20可基于电信号确定污浊流体的气泡浓度。
进一步,控制模块20可利用污浊液体的气泡浓度对其初始污浊度进行校正,得到污浊流体的污浊度。
本实施例提供的清洁设备,在检测污浊流体的污浊度时,兼顾了流体中的气泡对流体的光学属性的影响,有助于降低污浊流体中的气泡对污浊度检测准确度的影响,进而有助于提高流体污浊度检测的准确度。
在一些实施例中,如图1a和图1g所示,控制模块20可包括:检测电路16和处理系统14。其中,检测电路16电连接于光接收器15b与处理系统14之间,处理系统14还与光接收器15b电连接。光接收器15b可将电信号输出至检测电路16和处理系统14。检测电路16可将光接收器15b输出的电信号转换为数字信号并输出至处理系统14。
其中,处理系统14可包括处理器及外围电路。其中,处理器可为处理器可以为任意可执行上述方法逻辑的硬件处理设备。可选地,处理器可以为中央处理器(Central Processing Unit,CPU)、图形处理器(Graphics Processing Unit,GPU)或微控制单元(Microcontroller Unit,MCU);也可以为现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程阵列逻辑器件(Programmable Array Logic,PAL)、通用阵列逻辑器件(General Array Logic,GAL)、复杂可编程逻辑器件(Complex Programmable Logic  Device,CPLD)等可编程器件;或者为先进精简指令集(RISC)处理器(Advanced RISC Machines,ARM)或系统芯片(System on Chip,SoC)等等,但不限于此。图1g中仅以处理系统14包括微处理单元(MCU)进行图示,并不构成限定。
在本申请实施例中,不限定检测电路的具体实现形式。可选地,如图1g所示,检测电路16可包括电压比较器。其中,电压比较器的一个输入端(图1g仅以一个输入端进行图示),可分别与光接收器15b电连接;另一个输入端可输入设定的电压阈值。当光接收器15b输出的电信号的电压值大于设定的电压阈值时,电压比较器输出高电平;当光接收器15b输出的电信号的电压值小于设定的电压阈值时,电压比较器输出低电平,从而将电信号转换为数字信号。另外在图1g中,电阻R1为电压采样电阻,处理系统14可采集电阻R1两端的电压,作为上述光接收器15b输出的电信号。
由于对于有气泡存在的流体来说,一段时间内光接收器15b接收到的光信号的强度波动较大,相应地,光接收器15b输出的电信号的波动也大,波动的电信号经过检测电路16可转换为方波信号。方波中包括的脉冲即为光信号经过气泡所产生的。其中,数字信号在一定程度上可反映流体中的气泡浓度。基于此,可根据单位时间内的数字信号,确定污浊流体中的气泡浓度。
可选地,处理系统14可对单位时间内的数字信号进行脉冲计数,以确定单位时间内的数字信号包含的脉冲数量;其中,脉冲数量可反映污浊流体中的气泡浓度。脉冲数量越多,污浊流体中的气泡浓度越大;脉冲数量越少,污浊流体中的气泡浓度越小。若脉冲数量为0,则污浊流体中的气泡浓度为0,即污浊流体中不存在气泡。其中,单位时间是指检测单位时间,单位时间可由污浊流体的流速进行确定。在本实施例中,不限定单位时间的具体取值,如单位时间可以为30s、1min、2min、5min或10min等,但不限于此。
相应地,处理系统14还可根据单位时间内的电信号,确定污浊流体的初始污浊度。
可选地,处理系统14在确定污浊流体的初始污浊度时,可计算单位时间内的电信号的平均电信号值;并利用平均电信号值对污浊流体的污浊度进行量化处理,以得到污浊流体的初始污浊度。
在实际应用中,考虑到污浊流体的流通路径本身也会存在一定程度的脏污,而这种脏污在一定程度上影响光接收器15b接收的光信号的强度,而导致后续对污浊流体的污浊度的判定存在一定的误差。在本申请实施例中,为了降低污浊流体的流通路径本身存在的脏污对检测结果的影响,可在清洁设备S10对清洁对象执行清洁任务之前,对清洁设备进行校准;并获取校准过程中光接收器15b输出的电信号,作为第一校准电信号。
进一步,为了降低检测误差,还可对清洁对象进行清洁流体测试。其中,清洁流体可为与清洁设备的溶液桶17内的清洗液相同的流体。清洗液可为清水或清洁液。清洁流体测试,是指利用清洁设备的清洁刷上的吸嘴抽吸清洁流体,并经抽吸通道送入回收桶13内。在该过程中,光发射器15a发生的光信号经抽吸的流体后到达光接收器15b。光接收器15b将到达的光信号转换为电信号,并输出至处理系统14。处理系统14可获取清洁 流体测试过程中光接收器15b输出的电信号,作为第二校准电信号。
进一步,处理系统14可利用第一校准电信号和第二校准电信号,对上述单位时间内的电信号的平均电信号值进行归一化处理,以得到污浊流体的初始污浊度。其中,初始污浊度的计算公式可表示为:
Figure PCTCN2021124190-appb-000001
在式(1)中,D1表示污浊流体的初始污浊度;V1表示在清洁设备S10对清洁对象执行清洁任务之前,对清洁设备进行校准过程中,光接收器输出的电信号值,即第一校准电信号;V2表示清洁流体测试过程中光接收器输出的电信号,即第二校准电信号;V3表示上述实际流体污浊度测量时,单位时间内电信号的平均电信号值。
进一步,处理系统14可利用污浊流体中的气泡浓度对初始污浊度进行校正,得到污浊流体的污浊度。可选地,处理系统14可利用单位时间内的数字信号包含的脉冲数量N对初始污浊度进行校正,以得到污浊流体的污浊度,降低流体中的气泡对污浊度检测的影响。可选地,可将初始污浊度减去设定比例的脉冲数量,作为污浊流体的污浊度;和/或,将初始污浊度除以设定比例的脉冲数量,作为污浊流体的污浊度。其中,污浊流体的污浊度的计算公式可表示为:
D=D1-a*N  (2),或者,
D=D1/(a*N)  (3),或者,
D=α(D1-a*N)+β*D1/(a*N)  (4)
其中,D表示污浊流体的污浊度,N表示单位时间内数字信号包含的脉冲数量;a表示比例系数。在式(4)中,α和β分别表示在污浊度校正时,上述式(2)和式(3)的校正方式所占的权重。
其中,上述式(2)、(3)和(4)中利用污浊流体中的气泡浓度对污浊流体的污浊度进行校正的计算公式仅为示例性说明,在实际应用中还可能采用其它的计算公式。
对于清洁设备来说,从清洁对象上回收的污浊流体的污浊度,在一定程度上反映了清洁对象的洁净度。清洁设备从清洁对象上回收的污浊流体的污浊度越高,说明清洁对象越脏。基于此,处理系统14可根据污浊流体的污浊度,确定清洁对象的洁净度。
可选地,处理系统14可将污浊流体的污浊度在已知的污浊度与清洁对象的清洁等级的对应关系中进行匹配,并将与污浊流体的污浊度对应的清洁等级,确定为清洁对象的清洁等级。其中,清洁对象的清洁等级,可反映其洁净度。
进一步,处理系统14还可根据清洁对象的洁净度,调整清洁设备S10的工作状态。例如,处理系统14可根据清洁对象的洁净度,将清洁设备的水泵的功率调节至与清洁对象的洁净度适配的功率。相应地,处理系统14可预设洁净度等级与水泵功率之间的对应关系,基于该对应关系,处理系统14可根据清洁对象的洁净度等级,确定水泵的功率。优选地,清洁等级越高,水泵的功率越小,清洁设备的出水量越小,说明清洁对象越干净。
又例如,处理系统14还可根据清洁对象的洁净度,将清洁设备的主电机和/或地刷电机的功率调整至与清洁对象的洁净度适配的功率。相应地,处理系统14可预设洁净度等级与主电机和/或地刷电机功率之间的对应关系,基于该对应关系,处理系统14可根据清洁对象的洁净度等级,确定主电机和/或地刷电机的功率。优选地,清洁等级越高,主电机和/或地刷电机的功率越小,清洁设备的吸水能力越小,说明清洁对象越干净。在本申请的实施例中,主电机将污浊流体由清洁设备的地刷上的吸嘴11a抽吸并经清洁设备上的抽吸通道送入清洁设备的回收桶内,地刷电机带动清洁刷对清洁对象进行清洁。
又例如,处理系统14还可根据清洁对象的洁净度,将清洁设备的任务执行时间调整至与清洁对象的洁净度适配的时间。相应地,处理系统14可预设洁净度等级与清洁时间之间的对应关系,基于该对应关系,处理系统14可根据清洁对象的洁净度等级,确定清洁时间。优选地,清洁等级越高,主电机和/或地刷电机的功率越小,清洁时间越短,说明清洁对象越干净。
可选地,若处理系统14确定清洁对象的洁净度达标,则可控制清洁设备S10停止工作。其中,清洁对象的洁净度达标可为清洁对象的洁净度等级为最高洁净度等级。可选地,若清洁对象的洁净度等级为最高洁净度等级,处理系统14可控制水泵、主电机和/或地刷电机停转等等。
在另一些实施例中,处理系统14还可输出清洁对象的洁净度。清洁设备S10可包括:显示组件。则处理系统14可通过显示组件显示清洁对象的洁净度。
可选地,显示组件可包括:LED显示屏、OLED显示屏或薄膜LED显示屏等等。可选地,显示组件可包括:多个显示管。多个显示管的颜色不同,则在处理系统14的控制下,多个显示管可以显示不同颜色、亮度和形状(或图案)的组合。这里由多个显示管显示出的形状也可以理解为图案。其中,不同颜色、亮度和形状的组合表征清洁设备的洁净度。在本申请实施例中,不同颜色、亮度和形状的组合包括:颜色不同,但形状相同;颜色相同,但形状不同;颜色相同,但亮度不同;形状相同,但亮度不同;或者颜色、亮度和形状均不相同。其中,多个第一显示管展示的形状主要取决于处于亮灯状态的第一显示管的数量和分布位置。当然,除了可以通过多个第一显示管显示出的颜色、亮度和形状的组合表征清洁对象的洁净度之外,也可以单纯采用处于亮灯状态的显示管的数量表示清洁对象的洁净度。在一可选实施例中,以处于亮灯状态的显示管的数量表示清洁对象的洁净度。例如,多个第示管中处于亮灯状态的显示管的数量越多,表示清洁对象的洁净度越低;等等。
值得说明的是,上述本实施例图1a-1g中所提供的清洁设备的结构及实现形式、以及清洁设备各组件的形态及设置位置只是示例性的,而非限制性的。另外,除图1a-1g所示组件之外,清洁设备S10还可以根据应用需求包含通信组件、滚轮、驱动组件等,图1a-图1g中未示出。图1a-图1g中仅示意性给出部分组件,并不意味着清洁设备S10必须包含图1a-图1g所示全部组件,也不意味着清洁设备S10只能包括图1a-图1g所示组件。
除了上述实施例提供的清洁设备之外,本申请实施例还提供污浊度检测方法。下面从处理系统的角度,对本申请实施例提供的污浊度检测方法进行示例性说明。
图2为本申请实施例提供的一种污浊度检测方法的流程示意图。如图2所示,该方法包括:
201、获取部署于清洁设备回收的污浊流体的流通路径上的检测器件的检测信号。
202、基于检测信号,确定污浊流体的气泡浓度和初始污浊度。
203、利用污浊流体中的气泡浓度对初始污浊度进行校正,以得到污浊流体的污浊度。
在本实施例中,清洗设备可以为用于清洗地面、地板、地毯、墙壁、天花板或玻璃等区域的清洗机,但不限于此。污浊流体由清洁设备的清洁刷上的吸嘴抽吸并经清洁设备上的抽吸通道送入清洁设备的回收桶内。其中,检测器件设置于污浊流体的流通路径上。其中,关于检测器件的结构以及设置方式的描述,均可参见上述实施例的相关内容,在此不再赘述。
在本实施例中,在清洁设备吸取的污浊流体的流通路径上增设检测器件,并在清洁设备上增设检测器件。其中,检测器件对污浊流体进行检测得到检测信号。相应地,可获取该检测信号,并基于检测信号,确定污浊流体中的气泡浓度和污浊流体的初始污浊度,利用污浊流体中的气泡浓度对初始污浊度进行校正,以得到污浊流体的污浊度。在本实施例中,在对流体污浊度检测时,兼顾了流体中的气泡对流体的物理属性的影响,有助于降低污浊流体中的气泡对污浊度检测准确度的影响,进而有助于提高流体污浊度检测的准确度。
在一些实施例中,检测器件包括:光发射器和光接收器。光发射器发出的光信号经污浊流体后到达光接收器;光接收器可将到达的光信号转换成电信号。相应地,在步骤201中,可控制光发射器发出光信号;该光信号经污浊流体后到达光接收器;进一步,可获取光接收器将到达的光信号转换成的电信号,作为上述检测信号。
在一些实施例中,清洁设备增设有检测电路。其中,关于检测电路的实现结构和连接方式可参见上述设备实施例的相关内容。在该实施例中,检测电路可接收光接收器输出的电信号;并将电信号转换为的数字信号。相应地,步骤202可实现为:利用检测电路将电信号转换为的数字信号;根据单位时间内的数字信号,确定污浊流体中的气泡浓度;并根据单位时间内的电信号,确定污浊流体的初始污浊度。
可选地,根据单位时间内的数字信号,确定污浊流体中的气泡浓度的一种可选实施方式为:对单位时间内的数字信号进行脉冲计数,以确定单位时间内的数字信号包含的脉冲数量;其中,脉冲数量可反映污浊流体中的气泡浓度。脉冲数量越多,污浊流体中的气泡浓度越大;脉冲数量越少,污浊流体中的气泡浓度越小。若脉冲数量为0,则污浊流体中的气泡浓度为0,即污浊流体中不存在气泡。
可选地,根据单位时间内的电信号,确定污浊流体的初始污浊度的一种可选实施方式为:计算单位时间内的电信号的平均电信号值;并利用平均电信号值对污浊流体的污 浊度进行量化处理,以得到污浊流体的初始污浊度。
在实际应用中,考虑到污浊流体的流通路径本身也会存在一定程度的脏污,而这种脏污在一定程度上影响光接收器接收的光信号的强度,而导致后续对污浊流体的污浊度的判定存在一定的误差。在本申请实施例中,为了降低污浊流体的流通路径本身存在的脏污对检测结果的影响,可在清洁设备对清洁对象执行清洁任务之前,对清洁设备进行校准;并获取校准过程中光接收器输出的电信号,作为第一校准电信号。
进一步,为了降低检测误差,还可对清洁对象进行清洁流体测试。其中,清洁流体可为与清洁设备的溶液桶内的清洗液相同的流体。清洗液可为清水或清洁液。清洁流体测试,是指利用清洁设备的清洁刷上的吸嘴抽吸清洁流体,并经抽吸通道送入回收桶内。在该过程中,光发射器发生的光信号经抽吸的流体后到达光接收器。光接收器将到达的光信号转换为电信号,并输出至处理系统。相应地,可获取清洁流体测试过程中光接收器输出的电信号,作为第二校准电信号。
进一步,可利用第一校准电信号和第二校准电信号,对上述单位时间内的电信号的平均电信号值进行归一化处理,以得到污浊流体的初始污浊度。
进一步,可利用污浊流体中的气泡浓度对初始污浊度进行校正,得到污浊流体的污浊度。可选地,可利用单位时间内的数字信号包含的脉冲数量N对初始污浊度进行校正,以得到污浊流体的污浊度,降低流体中的气泡对污浊度检测的影响。可选地,可将初始污浊度减去设定比例的脉冲数量,作为污浊流体的污浊度;和/或,将初始污浊度除以设定比例的脉冲数量,作为污浊流体的污浊度;等等。
对于清洁设备来说,从清洁对象上回收的污浊流体的污浊度,在一定程度上反映了清洁对象的洁净度。清洁设备从清洁对象上回收的污浊流体的污浊度越高,说明清洁对象越脏。基于此,可根据污浊流体的污浊度,确定清洁对象的洁净度。进一步,还可根据清洁对象的洁净度,调整清洁设备的工作状态。关于根据清洁对象的洁净度,调整清洁设备的工作状态的具体实施方式,可参见上述设备实施例的相关内容,在此不再赘述。
在另一些实施例中,还可输出清洁对象的洁净度,可选地,可通过显示组件显示清洁对象的洁净度。关于清洁对象的洁净度的显示方式可参见上述设备实施例的相关内容,在此不再赘述。
需要说明的是,上述实施例所提供方法的各步骤的执行主体均可以是同一设备,或者,该方法也由不同设备作为执行主体。比如,步骤201和202的执行主体可以为设备A;又比如,步骤201的执行主体可以为设备A,步骤202的执行主体可以为设备B;等等。
另外,在上述实施例及附图中的描述的一些流程中,包含了按照特定顺序出现的多个操作,但是应该清楚了解,这些操作可以不按照其在本文中出现的顺序来执行或并行执行,操作的序号如201、202等,仅仅是用于区分开各个不同的操作,序号本身不代表任何的执行顺序。另外,这些流程可以包括更多或更少的操作,并且这些操作可以按顺序执行或并行执行。
相应地,本申请实施例还提供一种存储有计算机指令的计算机可读存储介质,当计算机指令被一个或多个处理器执行时,致使一个或多个处理器执行上述污浊度检测方法中的步骤。
本申请实施例提供的清洁设备可实现为可以为用于清洗地面、地板、地毯、墙壁、天花板或玻璃等区域的清洗机,但不限于此。下面结合具体应用场景,对本申请实施例提供的污浊度检测方法进行示例性说明。
应用场景1:清洁设备可实现为地面清洗机。在该应用场景中,地面清洁机还包括:与地刷的喷嘴依次连接的出水管道和溶液桶。其中,溶液桶内的干净流体经出水管道送入喷嘴,以供喷嘴喷洒至地面上。
地刷中的电机可带动地刷对地面进行清洁,地面上的干净流体在清洁过程中形成污浊流体。地面上的污浊流体可由地刷上的吸嘴抽吸并经抽吸通道送入回收桶内。
设置于污浊流体的流通路径上的检测器件包括:光发射器和光接收器。光发射器发出的光信号经污浊流体后到达光接收器;光接收器可将到达的光信号转换成电信号并输出至地面清洗机中的处理系统和检测电路。其中,检测电路可将接收到的电信号转换为数字信号。
对于地面清洗机中的处理系统来说,可根据单位时间内的电信号,确定污浊流体的初始污浊度;并根据单位时间内的数字信号,确定污浊流体中的气泡浓度;进一步,可利用污浊流体中的气泡浓度对初始污浊度进行校正,得到污浊流体的污浊度。对于处理系统来说,还可根据污浊流体的污浊度,确定地面的清洁度。由于在在检测污浊流体的污浊度时,兼顾了流体中的气泡对流体的光学属性的影响,有助于降低污浊流体中的气泡对污浊度检测准确度的影响,进而有助于提高流体污浊度检测的准确度,进而有助于提高后续地面清洁度检测的准确度。
应用场景2:清洁设备可实现为擦窗机器人。在该应用场景中,在该应用场景中,擦窗机器人还包括:与玻璃清洁组件的喷嘴依次连接的出水管道和溶液桶。其中,溶液桶内的干净流体经出水管道送入喷嘴,以供喷嘴喷洒至玻璃上。
玻璃清洁组件中的电机可带动玻璃清洁组件对玻璃进行清洁,玻璃上的干净流体在清洁过程中形成污浊流体。玻璃上的污浊流体可由清洁刷上的吸嘴抽吸并经抽吸通道送入回收桶内。
设置于污浊流体的流通路径上的检测器件包括:光发射器和光接收器。光发射器发出的光信号经污浊流体后到达光接收器;光接收器可将到达的光信号转换成电信号并输出至地面清洗机中的处理系统和检测电路。其中,检测电路可将接收到的电信号转换为数字信号。
对于擦窗机器人中的处理系统来说,可根据单位时间内的电信号,确定污浊流体的初始污浊度;并根据单位时间内的数字信号,确定污浊流体中的气泡浓度;进一步,可利用污浊流体中的气泡浓度对初始污浊度进行校正,得到污浊流体的污浊度。对于处理系统来说,还可根据污浊流体的污浊度,确定玻璃的清洁度。由于在在检测污浊 流体的污浊度时,兼顾了流体中的气泡对流体的光学属性的影响,有助于降低污浊流体中的气泡对污浊度检测准确度的影响,进而有助于提高流体污浊度检测的准确度,进而有助于提高后续玻璃清洁度检测的准确度。
需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的消息、设备、模块等,不代表先后顺序,也不限定“第一”和“第二”是不同的类型。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁盘存储或其他 磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 一种清洁设备,其特征在于,包括:依次连接的清洁刷、抽吸通道和回收桶;所述清洁设备还包括:检测器件和控制模块;所述检测器件设置于污浊流体的流通路径上;
    所述控制模块,用于基于所述检测器件的检测信号,确定所述污浊流体中的气泡浓度和所述污浊流体的初始污浊度;利用所述污浊流体中的气泡浓度对所述初始污浊度进行校正,以得到所述污浊流体的污浊度。
  2. 根据权利要求1所述的清洁设备,其特征在于,所述检测器件包括:光发射器和光接收器;其中,所述光发射器发出的光信号经所述污浊流体后到达所述光接收器;所述光接收器将到达的光信号转换成电信号,作为所述检测信号输出至所述控制模块。
  3. 根据权利要求2所述的清洁设备,其特征在于,所述控制模块包括:检测电路和处理系统;所述光接收器将所述电信号输出至所述检测电路和所述处理系统;
    所述检测电路用于:将所述电信号转换为数字信号并输出至所述处理系统;
    所述处理系统用于:根据单位时间内的数字信号,确定所述污浊流体中的气泡浓度;根据所述单位时间内的电信号,确定污浊流体的初始污浊度。
  4. 根据权利要求3所述的清洁设备,其特征在于,所述处理系统,在确定所述污浊流体中气泡浓度时,具体用于:
    对单位时间内的数字信号进行脉冲计数,以确定所述单位时间内的数字信号包含的脉冲数量;其中,所述脉冲数量反映所述污浊流体中的气泡浓度。
  5. 根据权利要求4所述的清洁设备,其特征在于,所述处理系统,在利用所述污浊流体中的气泡浓度对所述初始污浊度进行校正时,具体用于:
    将所述初始污浊度减去设定比例的脉冲数量,作为所述污浊流体的污浊度;
    和/或,将所述初始污浊度除以设定比例的脉冲数量,作为所述污浊流体的污浊度。
  6. 根据权利要求3所述的清洁设备,其特征在于,所述处理系统,在确定所述污浊流体的初始污浊度时,具体用于:
    计算所述单位时间内的电信号的平均电信号值;
    利用所述平均电信号值对所述污浊流体的污浊度进行量化处理,以得到所述污浊流体的初始污浊度。
  7. 根据权利要求6所述的清洁设备,其特征在于,所述处理系统,还用于:
    在所述清洁设备对所述清洁对象执行作业任务之前,对所述清洁设备进行校准;并获取校准过程中所述光接收器输出的电信号,作为第一校准电信号;以及,获取清洁流体测试过程中,所述光接收器输出的电信号,作为第二校准电信号;
    所述处理系统,在利用所述平均电信号值对所述污浊流体的污浊度进行量化处理时,具体用于:
    利用所述第一校准电信号和所述第二校准电信号,对所述平均电信号值进行归一化处理,以得到所述污浊流体的初始污浊度。
  8. 一种污浊度检测方法,适用于清洁设备,其特征在于,包括:
    获取部署于所述清洁设备回收的污浊流体的流通路径上的检测器件的检测信号;
    基于所述检测信号,确定所述污浊流体的气泡浓度和初始污浊度;
    利用所述污浊流体中的气泡浓度对所述初始污浊度进行校正,以得到所述污浊流体的污浊度。
  9. 根据权利要求8所述的方法,其特征在于,所述获取部署于所述清洁设备回收的污浊流体的流通路径上的检测器件的检测信号,包括:
    控制所述检测器件中的光发射器发出光信号;所述光信号经过经所述污浊流体后到达所述检测器件中的光接收器;
    获取所述光接收器将到达的光信号转换成的电信号,作为所述检测信号。
  10. 根据权利要求9所述的方法,其特征在于,所述基于所述检测信号,确定所述污浊流体的气泡浓度和初始污浊度,包括:
    利用检测电路将所述电信号转换为的数字信号;
    根据单位时间内的数字信号,确定所述污浊流体中气泡浓度;
    根据所述单位时间内的电信号,确定污浊流体的初始污浊度。
  11. 根据权利要求10所述的方法,其特征在于,所述根据单位时间内的数字信号,确定所述污浊流体中气泡浓度,包括:
    根据单位时间内的数字信号进行脉冲计数,以确定所述单位时间内的数字信号包含的脉冲数量,其中,所述脉冲数量反映所述污浊流体中的气泡浓度;
    所述利用所述污浊流体中的气泡浓度对所述初始污浊度进行校正,包括:
    将所述初始污浊度减去设定比例的脉冲数量,作为所述污浊流体的污浊度;
    和/或,将所述初始污浊度除以设定比例的脉冲数量,作为所述污浊流体的污浊度。
  12. 根据权利要求10所述的方法,其特征在于,所述根据所述单位时间内的电信号,确定污浊流体的初始污浊度,包括:
    计算所述单位时间内的电信号的平均电信号值;
    利用所述平均电信号值对所述污浊流体的污浊度进行量化,得到所述污浊流体的初始污浊度。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    在所述清洁设备对所述清洁对象执行作业任务之前,对所述清洁设备进行校准;并获取校准过程中所述光接收器输出的电信号,作为第一校准电信号;以及,获取清洁流体测试过程中所述光接收器输出的电信号,作为第二校准电信号;
    所述利用所述平均电信号值对所述污浊流体的污浊度进行量化,包括:
    利用所述第一校准电信号和所述第二校准电信号,对所述平均电信号值进行归一化处理,以得到所述污浊流体的初始污浊度。
PCT/CN2021/124190 2021-03-23 2021-10-15 污浊度检测方法及清洁设备 WO2022198987A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180091169.0A CN117015699A (zh) 2021-03-23 2021-10-15 污浊度检测方法及清洁设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110308875.8A CN113030023A (zh) 2021-03-23 2021-03-23 污浊度检测方法及清洁设备
CN202110308875.8 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022198987A1 true WO2022198987A1 (zh) 2022-09-29

Family

ID=76472832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124190 WO2022198987A1 (zh) 2021-03-23 2021-10-15 污浊度检测方法及清洁设备

Country Status (2)

Country Link
CN (2) CN113030023A (zh)
WO (1) WO2022198987A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030023A (zh) * 2021-03-23 2021-06-25 添可智能科技有限公司 污浊度检测方法及清洁设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713743A (en) * 1970-11-25 1973-01-30 Agricultural Control Syst Forward scatter optical turbidimeter apparatus
US5453832A (en) * 1990-03-06 1995-09-26 Alfa Laval Separation Inc. Turbidity measurement
CN103575705A (zh) * 2013-11-19 2014-02-12 苏州热工研究院有限公司 一种浊度仪和水的浊度的测量方法
CN203643333U (zh) * 2013-11-19 2014-06-11 苏州热工研究院有限公司 一种浊度仪
CN111358342A (zh) * 2020-02-17 2020-07-03 添可智能科技有限公司 清洁设备的自清洁控制方法、清洁设备及存储介质
CN113030023A (zh) * 2021-03-23 2021-06-25 添可智能科技有限公司 污浊度检测方法及清洁设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713743A (en) * 1970-11-25 1973-01-30 Agricultural Control Syst Forward scatter optical turbidimeter apparatus
US5453832A (en) * 1990-03-06 1995-09-26 Alfa Laval Separation Inc. Turbidity measurement
CN103575705A (zh) * 2013-11-19 2014-02-12 苏州热工研究院有限公司 一种浊度仪和水的浊度的测量方法
CN203643333U (zh) * 2013-11-19 2014-06-11 苏州热工研究院有限公司 一种浊度仪
CN111358342A (zh) * 2020-02-17 2020-07-03 添可智能科技有限公司 清洁设备的自清洁控制方法、清洁设备及存储介质
CN113030023A (zh) * 2021-03-23 2021-06-25 添可智能科技有限公司 污浊度检测方法及清洁设备

Also Published As

Publication number Publication date
CN117015699A (zh) 2023-11-07
CN113030023A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2017129067A1 (zh) 一种洗涤剂投放控制方法及洗衣机
US11982771B2 (en) Method for identification of a noise point used for LiDAR, and LiDAR system
CN102224288B (zh) 浑浊度传感器
CN111366546B (zh) 清洁度检测方法、清洁设备及存储介质
WO2022198987A1 (zh) 污浊度检测方法及清洁设备
WO2023005058A1 (zh) 相机盖板的脏污检测方法及检测装置
KR20090098453A (ko) 탁도센서와 이를 갖는 가전기기
CN203785742U (zh) 水位检测装置及液体容器
CN104919302B (zh) 光度测量单元
EP4349236A1 (en) Cleaning device and dirt detection method
EP2644079B1 (en) Method of and device for detecting detergent in the process water of a household appliance by analysing the turbidity of the process water
JP2018531395A (ja) 液体中または空気中の粒子検出システムおよび方法
WO2022179237A1 (zh) 拖擦组件清洁程度检测方法、检测电路及相关设备
US9671339B2 (en) Method for determining a turbidity and turbidity sensor for implementing the method
WO2023005057A1 (zh) 相机盖板清洁度检测方法及检测装置
JP4365804B2 (ja) 管内の詰まり状態判定装置及び方法
CN105092308B (zh) 一种定量取样装置
CN211651751U (zh) 一种液位检测装置及容量设备
CN115919216A (zh) 水箱装置、清洁设备以及流体参数检测方法
CN210166520U (zh) 一种高精度的红外光学雨量传感器
DK2727460T3 (en) A device for the treatment of dairy animals
CN116183511A (zh) 污水检测方法及系统
CN108489936A (zh) 一种家用型胱抑素c浓度快速测定仪及其测定方法
CN220018666U (zh) 一种用于lotus卧式洗管机的光纤传感液位检测装置
CN103792209B (zh) 奶液折射率检测装置及其检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932596

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091169.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932596

Country of ref document: EP

Kind code of ref document: A1