WO2022198768A1 - 一种微型金属器件精密成形装置及方法 - Google Patents

一种微型金属器件精密成形装置及方法 Download PDF

Info

Publication number
WO2022198768A1
WO2022198768A1 PCT/CN2021/093740 CN2021093740W WO2022198768A1 WO 2022198768 A1 WO2022198768 A1 WO 2022198768A1 CN 2021093740 W CN2021093740 W CN 2021093740W WO 2022198768 A1 WO2022198768 A1 WO 2022198768A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
metal workpiece
mold
field shaper
area
Prior art date
Application number
PCT/CN2021/093740
Other languages
English (en)
French (fr)
Inventor
李亮
王紫叶
赖智鹏
韩小涛
曹全梁
李昌兴
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2022198768A1 publication Critical patent/WO2022198768A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/14Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces

Definitions

  • the invention belongs to the field of micro metal precision forming, and more particularly relates to a micro metal device precision forming device and method.
  • Micro precision metal parts are mostly used in high-end fields such as military and medical. Most of these parts have very strict requirements on forming quality, and the forming quality of micro precision parts does not decrease with the reduction of part size.
  • the traditional forming technology provides the metal workpiece with a contact driving force to promote its forming by means of collision and fit of the concave-convex die, which amplifies the forming quality defects of the micro parts.
  • electromagnetic forming technology can effectively improve the quality of metal forming, and can greatly improve the metal forming limit and forming efficiency with its advantages of high speed and low loss. It can be seen that electromagnetic forming technology is used in the field of micro-precision metal forming. Has certain development prospects.
  • the forming depth of the workpiece after a single discharge is limited, but when multiple discharges are performed, the distance between the workpiece and the coil is often will increase, resulting in insufficient electromagnetic force on the workpiece, and it is difficult to drive it to continue to deform, affecting the forming accuracy of the workpiece; 3. Because the spatial distribution of the magnetic field during the forming process of the workpiece is difficult to accurately control, the workpiece is subjected to relatively single force, and its material flow is small. Limiting the forming limit of the workpiece, it is difficult to realize the forming process with small size and complex structure (such as the forming of small deep cavity shell parts).
  • the method of using a special shape to drive the coil will increase the difficulty of coil design, increase the manufacturing cost, and have poor flexibility and limited application scope, which cannot effectively solve the problem of limited application fields of electromagnetic forming technology caused by the coil winding process. .
  • the purpose of the present invention is to provide a precision forming device and method for a micro metal device, which aims to solve the difficulty in reducing the forming force field area due to the limitation of the coil manufacturing process, the coil structure and the strength in the traditional electromagnetic forming method. , the problem that the force field distribution cannot be flexibly controlled.
  • the present invention provides a micro-metal device precision forming device, comprising: a first driving coil, a second driving coil, a first magnetic field shaper, a second magnetic field shaper and a mold;
  • the metal workpiece to be formed is placed above the mold;
  • the first magnetic field shaper is placed above the to-be-deformed area in the metal workpiece, and the distance between the bottom of the first magnetic field shaper and the to-be-deformed area is less than a preset distance threshold; the first drive coil is wound outside the first magnetic field shaper , after the first drive coil is energized, the induced magnetic field generated by the energization is concentrated in the bottom area of the first magnetic field shaper, providing axial electromagnetic force for the to-be-deformed area, driving the to-be-deformed area to concave into the mold direction deformation;
  • the second magnetic field shaper is placed on the periphery of the mold, surrounds the mold, and its inner contour matches the contour of the metal workpiece, and its inner contour is bent toward the metal workpiece;
  • the second driving coil is wound around the second Outside the magnetic field shaper, after the second drive coil is energized, the induced magnetic field generated by the energization is concentrated and distributed in the inner area of the inner contour of the second magnetic field shaper, providing radial electromagnetic force for both ends of the metal workpiece to push the metal workpiece It deforms to the mold, and provides axial electromagnetic force for both ends of the metal workpiece as the blank holder force at both ends of the metal workpiece;
  • the discharge energy of the first drive coil is transferred to the to-be-deformed area of the metal workpiece through the first magnetic field shaper, and the discharge energy of the second drive coil is transferred to both ends of the metal workpiece through the second magnetic field shaper, so as to realize the Precise control of metal workpiece forming.
  • the bottom region of the first magnetic field shaper faces the chamfered region of the mold; the metal workpiece is moved to the surface of the mold under the action of axial electromagnetic force and radial electromagnetic force. The concave area is deformed and formed;
  • the current passing through the first drive coil is increased to increase the axial electromagnetic force provided by the first drive coil to the metal workpiece to drive the metal workpiece to the mold. Further deformation of the concave area; or
  • the current passing through the second driving coil is increased to increase the radial electromagnetic force provided by the second driving coil to the metal workpiece to drive the metal workpiece to the mold. Further deformation of the concave area; or
  • the current flowing into the first driving coil is increased, the axial electromagnetic force provided by the first driving coil to the metal workpiece is increased, and the second driving coil is increased.
  • the current of the coil increases the radial electromagnetic force provided by the second driving coil to the metal workpiece, so as to drive the metal workpiece to further deform toward the concave area of the mold.
  • the bottom region of the first magnetic field shaper faces the concave region of the mold; the cross-sectional area of the bottom region of the first magnetic field shaper is smaller than the cross-sectional area of the concave region of the mold; The metal workpiece is deformed into the concave area of the mold under the action of the axial electromagnetic force and the radial electromagnetic force;
  • first magnetic field shaper and the second magnetic field shaper are both rotating body structures with a through hole in the center;
  • the contour of the lower surface of the rotating body structure of the first magnetic field shaper matches the contour of the concave area of the mold; the inner contour of the rotating body structure of the second magnetic field shaper matches the outer contour of the metal workpiece; the first magnetic field
  • the lower surface area of the shaper rotating body structure is smaller than the area of the central through hole of the second magnetic field shaper.
  • the present invention provides a method for precise forming of a micro metal device, comprising the following steps:
  • the metal workpiece to be formed is placed above the mold; a first magnetic field shaper is arranged above the region to be deformed in the metal workpiece, and the distance between the bottom of the first magnetic field shaper and the region to be deformed is less than a preset distance threshold A first drive coil is wound on the outside of the first magnetic field shaper; a second magnetic field shaper is arranged on the periphery of the mold, and the second magnetic field shaper surrounds the mold, and its inner contour is the same as that of the metal workpiece. The contours are matched, and the inner contour is bent toward the metal workpiece; the outer portion of the second magnetic field shaper is wound with a second driving coil;
  • the induced magnetic field generated by the energization is concentrated and distributed in the bottom area of the first magnetic field shaper, which provides axial electromagnetic force for the to-be-deformed area, and drives the to-be-deformed area to deform in the concave direction of the mold. ;
  • the induced magnetic field generated by the energization is concentrated in the inner area of the inner contour of the second magnetic field shaper, providing radial electromagnetic force for both ends of the metal workpiece, pushing the metal workpiece to deform toward the mold, and is a metal workpiece.
  • Both ends of the workpiece provide axial electromagnetic force as the blank holder force at both ends of the metal workpiece;
  • the discharge energy of the first drive coil is transmitted to the to-be-deformed area of the metal workpiece through the first magnetic field shaper, and the second drive coil
  • the discharge energy is transmitted to both ends of the metal workpiece through the second magnetic field shaper, so as to realize the precise control of the forming of the metal workpiece.
  • the bottom region of the first magnetic field shaper faces the chamfered region of the mold; the metal workpiece is moved to the surface of the mold under the action of axial electromagnetic force and radial electromagnetic force. The concave area is deformed and formed;
  • the current passing through the first drive coil is increased to increase the axial electromagnetic force provided by the first drive coil to the metal workpiece to drive the metal workpiece to the mold. Further deformation of the concave area; or
  • the current passing through the second driving coil is increased to increase the radial electromagnetic force provided by the second driving coil to the metal workpiece to drive the metal workpiece to the mold. Further deformation of the concave area; or
  • the current flowing into the first driving coil is increased, the axial electromagnetic force provided by the first driving coil to the metal workpiece is increased, and the second driving coil is increased.
  • the current of the coil increases the radial electromagnetic force provided by the second driving coil to the metal workpiece, so as to drive the metal workpiece to further deform toward the concave area of the mold.
  • the current value of the first driving coil or the second driving coil can also be reduced, so as to further regulate the forming of the metal workpiece.
  • the bottom region of the first magnetic field shaper faces the concave region of the mold; the cross-sectional area of the bottom region of the first magnetic field shaper is smaller than the cross-sectional area of the concave region of the mold; The metal workpiece is deformed into the concave area of the mold under the action of the axial electromagnetic force and the radial electromagnetic force;
  • first magnetic field shaper and the second magnetic field shaper are both rotating body structures with a through hole in the center;
  • the contour of the lower surface of the rotating body structure of the first magnetic field shaper matches the contour of the concave area of the mold; the inner contour of the rotating body structure of the second magnetic field shaper matches the outer contour of the metal workpiece; the first magnetic field
  • the lower surface area of the shaper rotating body structure is smaller than the area of the central through hole of the second magnetic field shaper.
  • the invention provides a precision forming device and method for a micro metal device.
  • a magnetic field shaper By adding a magnetic field shaper to the two driving coils respectively, the discharge energy in the driving coil and the magnetic field shaper can be transmitted to the workpiece to be formed through the cooperation of the driving coil and the magnetic field shaper.
  • the local area of the surface of the plate so as to generate electromagnetic force on the plate forming area to drive the plate deformation, which greatly improves the utilization efficiency of the discharge energy of the driving coil; it is difficult to design and manufacture the coil structure during the electromagnetic forming of the miniature deep cavity shell.
  • the geometric size of the magnetic field shaper can be adjusted to reduce the size of the coil structure to ensure that the coil can exert sufficient electromagnetic driving force in the deformation area of the workpiece and expand the application range of electromagnetic forming.
  • the relative positions of the two sets of coils and the magnetic field shaper system and the workpiece and the geometry of the magnetic field shaper will be optimally designed according to the forming requirements of the workpiece, so as to meet the requirements of the size and distribution of the electromagnetic force in the forming area of the workpiece, and more effectively.
  • the electromagnetic forming of the workpiece is realized, the forming limit and forming quality of the workpiece are improved, and the tedious process of redesigning the winding coil is avoided, and it is especially suitable for the forming and processing of the small special-shaped workpiece that is difficult to meet the forming requirements through the coil design; the invention makes the electromagnetic forming technology It has a wider range of applications and provides a high-quality, high-efficiency non-contact forming technology for the precise forming of micro metal devices.
  • Fig. 1 is the schematic diagram of the electromagnetic forming method of micro-miniature plate in the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a magnetic field shaper according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a current waveform provided to a drive coil by a capacitor energy storage type power supply system in an embodiment of the present invention
  • Fig. 4 is the principle schematic diagram of axial electromagnetic force and radial electromagnetic force in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method for electromagnetic flanging of a plate with tiny circular holes in the second embodiment of the present invention
  • FIG. 6 is a schematic diagram of an electromagnetic forming method for a non-axisymmetric part in a third embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a multi-step electromagnetic incremental forming method in a fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a multi-step moving electromagnetic incremental forming method in a fifth embodiment of the present invention.
  • 1 is axial force coil
  • 2 is radial force coil
  • 3 is axial magnetic field shaper
  • 4 is radial magnetic field shaping device
  • 5 is the power supply system
  • 6 is the workpiece
  • 7 is the mold.
  • the invention discloses a precise forming device and method of a micro metal device.
  • the device includes two driving coils, two magnetic field shapers, a power source, a mold, and a metal workpiece.
  • the metal workpiece is placed above the die, the two magnetic field shapers are respectively placed on the top and side of the deformation area of the workpiece, and the two driving coils are placed outside the two magnetic field shapers respectively.
  • the power switch is closed, the pulse current generated by the power system will pass through the two driving coils, generate a pulsed magnetic field around the driving coils, and induce eddy currents on the surfaces of the two magnetic field shapers, so that the pulsed magnetic field is focused under the action of the magnetic field shaper.
  • the current induced on the surface of the workpiece and the current induced in the metal workpiece will then act together with the pulsed magnetic fields of the two magnetic field shapers close to the metal workpiece area to generate axial and radial electromagnetic forces applied to the metal workpiece to flexibly control the workpiece. deformation behavior, and finally realize the non-contact forming of micro metal devices.
  • the invention utilizes the combination of double driving coils and double magnetic field shapers, and flexibly and accurately controls the force field distribution and size of the micro workpiece during the forming process by optimizing the design of the magnetic field shaper, so as to improve the performance of the micro workpiece under the traditional forming process.
  • the present invention provides a precision forming device and method for a micro metal device.
  • the structural position between the magnetic field shaper and the workpiece can precisely control the discharge process of the two driving coils, so that the two sets of coils and the magnetic field shaper system cooperate with each other, and the advantages are complementary.
  • Two magnetic field shapers are used to fill the driving coil and
  • the air gap between the workpieces improves and enhances the magnetic field distribution and size in the electromagnetic forming process, regulates and increases the direction and size of the electromagnetic force in the workpiece forming area, reduces the coil structure requirements, increases the workpiece forming limit, and expands the application range of electromagnetic forming technology.
  • a device and method for precise forming of micro metal parts including: two driving coils, a power supply, two magnetic field shapers and a mold; the metal workpiece and the mold
  • the two drive coils are respectively placed above and outside the metal workpiece; the two drive coils are respectively placed outside the two magnetic field shapers, and the two cooperate to discharge the discharge in the drive coil through electromagnetic induction.
  • the energy is transferred to the surface of the plate to be formed, so as to generate electromagnetic force on the plate forming area to drive the deformation of the plate; the power supply system is used for supplying power to the driving coil.
  • the geometric size of the magnetic field shaper can be adjusted to make the coil structure size smaller and larger to ensure that the coil is deformed when the workpiece is deformed.
  • the area can apply enough electromagnetic driving force to expand the application range of electromagnetic forming.
  • the two sets of coils and the magnetic field shaper system can be used to cooperate with each other in time and space, and the device can be improved by performing multiple discharges.
  • the forming ability of the two sets of coils and the magnetic field shaper system respectively provides the electromagnetic driving force of pushing and pressing to the workpiece, which is equivalent to a punch without contact with the workpiece, driving the workpiece to stretch and controlling the flow of the workpiece material, no more complicated
  • the high-quality formed parts can be obtained by the forming process, breaking the forming limit of the existing forming technology.
  • the relative positions of the two sets of coils and the magnetic field shaper system and the workpiece and the geometry of the magnetic field shaper will be optimally designed according to the forming requirements of the workpiece, so as to meet the requirements of the size and distribution of the electromagnetic force in the forming area of the workpiece. Effectively realize the electromagnetic forming of the workpiece, improve the forming limit and forming quality of the workpiece.
  • the drive coil and the magnetic field shaper are independent of each other.
  • the forming device based on the combination of the two sets of driving coils and the magnetic field shaper is not only limited to the electromagnetic forming of miniature plates, but can also be extended to other fields of electromagnetic forming such as electromagnetic flanging of miniature workpieces, electromagnetic orthosis of miniature workpieces, etc. Or rely on the traditional forming coil to control the occasions where it is difficult to meet the workpiece forming requirements, such as the electromagnetic forming of special-shaped parts.
  • the forming device of the present invention can also combine or integrate a plurality of magnetic field shapers or driving coils, and by optimizing the cooperation between the power supply, driving coils and magnetic field shapers, more precise regulation of the temporal and spatial distribution of the forming magnetic field can be realized, to meet more complex forming requirements.
  • a method for precise forming of a micro metal device comprising the following steps:
  • Step (1) the workpiece is placed on the mold
  • Step (2) place the two magnetic field shapers above and on the side of the workpiece respectively;
  • Step (3) nesting the two drives outside the magnetic field shaper and electrically connecting with the power supply;
  • Step (4) discharge the two drive coils through the power supply, generate a pulse current, excite a pulsed strong magnetic field around the drive coil, and then the space magnetic field gathers on the surface of the workpiece under the action of the magnetic field shaper, and then interacts with the workpiece induced eddy currents.
  • a multi-directional controllable electromagnetic force is formed in the forming area of the workpiece, which drives the high-speed deformation of the workpiece, and finally completes the precise forming of micro metal workpieces.
  • the two driving coils and the two magnetic field shapers can be respectively called as axial force coils, radial force coils, axial magnetic field shapers and radial magnetic field shapers according to their functions. , no special instructions will be given below.
  • the present invention provides an electromagnetic forming device, taking the electromagnetic forming of a small plate as an example, as shown in FIG. 1 , including: an axial force coil 1 , a radial force coil 2 , an axial magnetic field shaper 3 , and a radial magnetic field shaper 4, power supply system 5 and mold 7.
  • the workpiece 6 to be formed is placed above the die 7, the axial magnetic field shaper 3 and the radial magnetic field shaper 4 are respectively placed on the top and side of the deformation area of the workpiece 6; the axial force coil 1 and the radial force coil 2 are respectively Placed outside the axial magnetic field shaper 3 and the radial magnetic field shaper 4, the two magnetic field shapers 3, 4 are closely connected with the corresponding driving coils 1, 3, and the driving coils 1, 3 are connected to the power supply.
  • the driving coils 1 and 3 that are fed with pulsed current form a pulsed magnetic field in the space, and the two magnetic field shapers 3 and 4 shape the space magnetic field, so that the pulsed magnetic field is focused on the area to be formed of the workpiece, so that the induced eddy current in the workpiece interacts with the magnetic field
  • the axial electromagnetic force and the radial electromagnetic force are generated to drive the workpiece 6 to complete the deformation.
  • the structure of the radial magnetic field shaper is bent toward the workpiece 6 as shown in FIG. 1 , wherein the magnetic field direction of the radial magnetic field shaper on the side part of the mold is perpendicular to both ends of the metal workpiece, and the magnetic field acting on both ends of the metal workpiece is The electromagnetic force is in the radial direction, which pushes the metal workpiece to deform in the direction of the mold.
  • the magnetic field direction of the radial magnetic field shaper above both ends of the metal workpiece is parallel to the two ends of the metal workpiece, and the electromagnetic force acting on both ends of the metal workpiece is axial. direction, to provide blank holder force for both ends of the metal workpiece.
  • the electromagnetic force transmitted by the radial force coil 2 not only provides radial force for the workpiece 6, but also provides a blank holder force for the workpiece 6 to control the radial flow of the flange area of the workpiece 6 to the concave mold cavity mold 7, preventing the workpiece 6.
  • power supply system 5 is used to supply power to axial force coil 1 and radial force coil 2.
  • the type and quantity of power supply are not limited. Capacitor type power supply can be used, and battery pack pulse power supply can also be used.
  • the above-mentioned two drive coils 1 and 2 and the two magnetic field shapers 3 and 4 are independent in structure and size.
  • FIG. 2 The cross-sectional and top views of the axial magnetic field shaper 3 and the radial magnetic field shaper 4 are shown in FIG. 2 , and (a)-(d) in FIG. 2 represent the cross-sectional views of the axial magnetic field shaper and the radial magnetic field shaper, respectively.
  • the axial magnetic field shaper 3 is a rotating body structure with a through hole in the center
  • the radial magnetic field shaper 4 is a rotating body structure with a through hole in the center
  • both magnetic field shapers have longitudinal slits along the radial direction.
  • the outer side of the axial magnetic field shaper 3 has the same shape as the inner side of the axial force coil 1 and is closely connected with it; the lower surface of the axial magnetic field shaper 3 is parallel to the upper surface of the workpiece 6, so that the chamfered area of the workpiece can receive sufficient axial electromagnetic force , to improve the drawing depth of the workpiece and obtain good mold placement accuracy; the shape and size of the inner side of the axial magnetic field shaper 3 can be optimized according to the shape and size of the drive coil to make full use of the drive coil energy.
  • the outside of the radial magnetic field shaper 4 has the same shape as the inside of the radial force coil 2 and is closely connected with it; the inner chamfer of the radial magnetic field shaper 4 has the same shape as the chamfered area of the mold 7, so that the workpiece 6 and the radial magnetic field shaper have the same shape. 4 More fit for greater electromagnetic force and better control of the radial flow of the workpiece.
  • the shape and size of the inner side of the radial magnetic field shaper 4 can be optimized according to the shape and size of the lower surface of the axial magnetic field shaper 3, so that the two sets of driving coils and the magnetic field shaper system cooperate more efficiently.
  • the material selection of the two magnetic field shapers needs to consider the conductivity and strength, and copper or aluminum alloy can be selected.
  • the function of the magnetic field shaper is to precisely control the spatial distribution of the magnetic field by shaping the spatial magnetic field generated by the driving coil, so that the pulsed magnetic field is focused on the area to be formed of the workpiece, so that the interaction between the induced eddy current in the workpiece and the magnetic field generates enough electromagnetic force to drive the magnetic field.
  • the workpiece completes plastic deformation and ensures its good forming quality.
  • the present invention can not only effectively focus the electromagnetic force exerted by the large-size coil on the small area to be formed by the magnetic field shaper, but also realize the formation of the micro workpiece through the two sets of coils and the magnetic field shaper system in time and time.
  • the mutual cooperation of the space can improve the forming limit of the micro workpiece, and effectively solve the influence of the traditional forming process on the forming quality of the workpiece by applying non-contact force.
  • the present invention also provides a method for precision forming of a micro metal device, comprising the following steps:
  • the axial force coil is placed outside the axial magnetic field shaper and placed above the workpiece to be formed together, and the radial force coil is placed outside the radial magnetic field shaper and placed together on the side of the workpiece to be formed.
  • the gap between the magnetic field shaper and the workpiece should be as small as possible;
  • the gap value needs to consider the following factors: the smaller the gap, the greater the electromagnetic force induced by the workpiece, which is conducive to the deformation of the workpiece.
  • insulation treatment between the magnetic field shaper and the workpiece needs to be done to prevent the magnetic field shaper and the workpiece during the forming process. discharge occurs between.
  • the two driving coils are passed into the rapidly changing current to form a pulsed magnetic field in the space, and the two magnetic field shapers shape the space magnetic field, so that the pulsed magnetic field is focused on the to-be-shaped area of the workpiece, so that in the workpiece
  • the interaction between the induced eddy current and the magnetic field generates axial electromagnetic force and radial electromagnetic force, which drives the deformation of the workpiece.
  • Icoil1 and Icoil2 represent the currents flowing into the two coils, respectively. In practical applications, the amplitude and frequency.
  • FIG. 4 is a schematic diagram of the principle of axial electromagnetic force and radial electromagnetic force in the embodiment of the present invention.
  • (a) and (b) represent schematic diagrams of axial electromagnetic force and radial electromagnetic force, respectively, wherein B represents induction Magnetic field, f represents the electromagnetic force.
  • the shape of the workpiece to be formed is not limited, it can be a plate with a round hole or a plate without a round hole, and the shape of the plate can be irregular and so on.
  • FIG. 5 is a schematic diagram of an electromagnetic flanging device for a plate with a circular hole according to the second embodiment of the present invention.
  • the main components include: an axial force coil 1, a radial force coil 2, an axial magnetic field shaper 3, and a radial magnetic field shaper 4.
  • the workpiece 6 is a plate with a circular hole, which is placed above the mold 7; the axial magnetic field shaper 3 and the radial magnetic field shaper 4 are respectively placed on the top and side of the deformation area of the workpiece 6; the axial force coil 1 and the radial The force coil 2 is placed outside the axial magnetic field shaper 3 and the radial magnetic field shaper 4 respectively.
  • the two sets of magnetic field shapers 3 and 4 are closely connected with the corresponding driving coils 1 and 3 to reduce the loss of the magnetic field.
  • the driving coil 1 , 3 is connected to the power supply.
  • the driving coils 1 and 3 that are fed with pulsed current form a pulsed magnetic field in the space, and the two magnetic field shapers 3 and 4 shape the space magnetic field, so that the pulsed magnetic field is focused on the area to be formed of the workpiece, so that the induced eddy current in the workpiece interacts with the magnetic field
  • the radial flow of the blue area to the concave mold cavity mold 7 prevents the workpiece 6 from wrinkling; the power supply system 5 is used to supply power to the axial force coil 1 and the radial force coil 2.
  • FIG. 6 is a schematic diagram of an electromagnetic forming device for non-axisymmetric parts according to a third embodiment of the present invention, wherein the cross-sectional views of the device are shown in FIG. 6(a) and FIG. 6(b), and the top view of the magnetic field shaper of the device is shown in FIG. 6(c).
  • the main components include: axial force coil 1 , radial force coil 2 , axial magnetic field shaper 3 , radial magnetic field shaper 4 , power supply system 5 and mold 7 .
  • the contours of the lower surfaces of the axial magnetic field shaper 3 and the radial magnetic field shaper 4 are consistent with the shape of the upper edge of the mold.
  • the shape of the upper edge of the mold is elliptical, and the contour of the metal workpiece is usually the same as that of the mold.
  • the shape of the upper edge is the same.
  • the left side of (c) in Figure 6 is a top view of the axial magnetic field shaper, and its lower surface contour is consistent with the shape of the mold (ellipse), and the right side of (c) in Figure 6 is the radial magnetic field shaper.
  • the top view shows that the inner contour is consistent with the shape of the mold (ellipse), and the specific size is optimized according to the electromagnetic force distribution required by the workpiece, which ultimately ensures the uniformity of workpiece deformation and good mold placement accuracy.
  • the device mainly includes: an axial force coil 1, a radial force coil 2, an axial magnetic field shaper 3, a radial magnetic field shaper 4, a power supply System 5 and mold 7.
  • the multi-step electromagnetic incremental forming method is shown in (a)-(c) in Fig. 7, which includes the following steps:
  • the axial force coil 1 is placed outside the axial magnetic field shaper 3 and placed above the workpiece to be formed together, and the radial force coil 2 is placed outside the radial magnetic field shaper 4 and placed together on the workpiece to be formed
  • the side of the two magnetic field shapers and the workpiece should be as small as possible;
  • step (3) Repeat step (3) until the workpiece is completely moulded.
  • the device mainly includes: an axial force coil 1, a radial force coil 2, an axial magnetic field shaper 3, a radial magnetic field shaper 4, Power supply system 5 and mold 7 .
  • the multi-step moving electromagnetic incremental forming method is shown in (a)-(c) in Fig. 8, which includes the following steps:
  • the axial force coil 1 is placed outside the axial magnetic field shaper 3 and placed above the workpiece to be formed together, and the radial force coil 2 is placed outside the radial magnetic field shaper 4 and placed together on the workpiece to be formed
  • the side of the two magnetic field shapers and the workpiece should be as small as possible;
  • step (3) Repeat step (3) until the workpiece is completely moulded.
  • the invention discloses a precision forming device and method for a micro metal device.
  • the device includes two driving coils, two magnetic field shapers, a power source, a mold, and a metal workpiece.
  • the metal workpiece is placed above the die, the two magnetic field shapers are respectively placed on the top and side of the deformation area of the workpiece, and the two driving coils are placed outside the two magnetic field shapers respectively.
  • the power switch is closed, the pulse current generated by the power system will pass through the two driving coils, generate a pulsed magnetic field around the driving coils, and induce eddy currents on the surfaces of the two magnetic field shapers, so that the pulsed magnetic field is focused under the action of the magnetic field shaper.
  • the current induced on the surface of the workpiece and the current induced in the metal workpiece will then act together with the pulsed magnetic fields of the two magnetic field shapers close to the metal workpiece to generate axial electromagnetic force and radial electromagnetic force applied to the metal workpiece, and flexibly control the workpiece. deformation behavior, and finally realize the non-contact forming of micro metal devices.
  • the invention utilizes the combination of double drive coils and double magnetic field shapers, and flexibly and accurately controls the force field distribution and size of the micro workpiece during the forming process by optimizing the design of the magnetic field shaper, so as to improve the performance of the micro workpiece under the traditional forming process. Compared with designing and manufacturing special-shaped micro coils to meet the requirements of electromagnetic forming of micro metal workpieces, it can effectively reduce the design difficulty and manufacturing cost of forming devices, and greatly expand the application range of electromagnetic forming technology.

Abstract

本发明提供一种微型金属器件精密成形装置及方法,包括:待成形的金属工件置于模具上方;第一磁场整形器置于金属工件中待变形区域上方,其底部相对待变形区域的距离小于预设距离阈值;第一驱动线圈绕制在第一磁场整形器外部,第一驱动线圈通电后,其通电产生的感应磁场集中分布在第一磁场整形器底部区域,为待变形区域提供轴向电磁力;第二磁场整形器置于模具外围,其内围轮廓与金属工件的轮廓相匹配,且其内轮廓朝向工件弯折;第二驱动线圈绕制在第二磁场整形器的外部,第二驱动线圈通电后,其通电产生的感应磁场集中分布在第二磁场整形器内轮廓内部,为金属工件的两端提供径向电磁力。本发明提供高质量、高效率的微型金属器件精密成形技术。

Description

一种微型金属器件精密成形装置及方法 【技术领域】
本发明属于微型金属精密成形领域,更具体地,涉及一种微型金属器件精密成形装置及方法。
【背景技术】
微型精密金属零件多用于军用、医疗等高端领域,绝大部分此类零件对成形质量都有相当严苛的要求,而微型精密零件的成形质量并不会随着零件尺寸的减小而减小,相反而言,传统成形技术利用凹凸模具碰撞配合的方式给金属工件提供接触驱动力促进其成形,使微型零件的成形质量缺陷放大。而电磁成形技术作为一种非接触式成形技术能有效改善金属成形质量,并以其高速率、低损耗的优势能大大提升金属成形极限与成形效率,可见,电磁成形技术在微型精密金属成形领域具有一定发展前景。
对于金属零件的加工成形,使用电磁成形技术是一种行之有效的方法。但在微型金属工件电磁成形过程中,存在如下的常见问题:1、受限于目前线圈绕制工艺的瓶颈,线圈结构难以制作太小,从而线圈在板件上产生的电磁力范围较大,难以聚集在半径较小的区域内,这使电磁成形加工的目标零件尺寸受限;2、由于线圈结构的限制,单次放电后工件成形深度有限,但多次放电时,工件和线圈间距往往会增大,导致工件所受电磁力不足,难以驱动其继续变形,影响工件成形精度;3、由于工件成形过程中磁场的空间分布难以精确控制,工件受力较为单一,其材料流动较小,限制工件成形极限,难以实现尺寸微小、结构复杂的成形工艺(如微小深腔壳体件的成形)。
对于上述问题,使用特殊形状驱动线圈的方法会使线圈设计难度增大,制造成本增加,且灵活性差,适用范围有限,无法有效解决线圈绕制工艺所导致电磁成形技术的应用领域受限的问题。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供一种微型金属器件精密成形装置及方法,旨在解决传统电磁成形方法中由于线圈制作工艺、线圈结构及强度的限制,成形力场区域难以缩小,力场分布不能灵活调控的问题。
为实现上述目的,第一方面,本发明提供了一种微型金属器件精密成形装置,包括:第一驱动线圈、第二驱动线圈、第一磁场整形器、第二磁场整形器以及模具;
待成形的金属工件置于模具上方;
所述第一磁场整形器置于金属工件中待变形区域的上方,其底部相对所述待变形区域的距离小于预设距离阈值;所述第一驱动线圈绕制在第一磁场整形器的外部,所述第一驱动线圈通电后,其通电产生的感应磁场集中分布在第一磁场整形器底部区域,为所述待变形区域提供轴向的电磁力,驱动所述待变形区域向模具内凹方向变形;
所述第二磁场整形器置于模具的外围,将模具包围,其内围轮廓与金属工件的轮廓相匹配,且其内轮廓朝向所述金属工件弯折;第二驱动线圈绕制在第二磁场整形器的外部,所述第二驱动线圈通电后,其通电产生的感应磁场集中分布在第二磁场整形器内轮廓内部区域,为金属工件的两端提供径向的电磁力,推动金属工件向模具变形,且为金属工件的两端提供轴向的电磁力以作为金属工件两端的压边力;
所述第一驱动线圈的放电能量经第一磁场整形器传递到金属工件的待变形区域,所述第二驱动线圈的放电能量经第二磁场整形器传递到金属工件的两端,以实现对金属工件成形的精密控制。
在一个可选的示例中,所述第一磁场整形器的底部区域正对所述模具的倒角区域;所述金属工件在轴向电磁力和径向电磁力的作用下向所述模具的内凹区域变形成形;
当所述金属工件向模具内凹区域变形至预设程度时,增加通入第一驱动线圈的电流,以增大第一驱动线圈向金属工件提供的轴向电磁力,以驱动金属工件向模具内凹区域进一步变形;或
当所述金属工件向模具内凹区域变形至预设程度时,增加通入第二驱动线圈的电流,以增大第二驱动线圈向金属工件提供的径向电磁力,以驱动金属工件向模具内凹区域进一步变形;或
当所述金属工件向模具内凹区域变形至预设程度时,增加通入第一驱动线圈的电流,增大第一驱动线圈向金属工件提供的轴向电磁力,且增加通入第二驱动线圈的电流,增大第二驱动线圈向金属工件提供的径向电磁力,以驱动金属工件向模具内凹区域进一步变形。
在一个可选的示例中,所述第一磁场整形器的底部区域正对所述模具的内凹区域;所述第一磁场整形器底部区域的截面积小于模具内凹区域的截面积;所述金属工件在轴向电磁力和径向电磁力的作用下向所述模具的内凹区域变形成形;
当所述金属工件向模具内凹区域变形至预设程度时,向金属工件变形的方向移动第一磁场整形器,使得第一磁场整形器的底部区域靠近金属工件变形的区域,控制通入第一驱动线圈和第二驱动线圈的电流,以驱动金属工件向模具内凹区域进一步变形。
在一个可选的示例中,所述第一磁场整形器和第二磁场整形器均为中心带通孔的旋转体结构;
第一磁场整形器的旋转体结构的下表面轮廓与模具内凹区域的轮廓相匹配;第二磁场整形器的旋转体结构的内围轮廓与金属工件的外轮廓相匹配;所述第一磁场整形器旋转体结构的下表面面积小于所述第二磁场整形器中心通孔的面积。
第二方面,本发明提供了一种微型金属器件精密成形方法,包括如下步骤:
将待成形的金属工件置于模具上方;所述金属工件中待变形区域的上方设置有第一磁场整形器,所述第一磁场整形器底部相对所述待变形区域的距离小于预设距离阈值;所述第一磁场整形器的外部绕制有第一驱动线圈;所述模具的外围设置有第二磁场整形器,所述第二磁场整形器将模具包围,其内围轮廓 与金属工件的轮廓相匹配,且其内轮廓朝向所述金属工件弯折;第二磁场整形器的外部绕制有第二驱动线圈;
对第一驱动线圈通电后,其通电产生的感应磁场集中分布在第一磁场整形器底部区域,为所述待变形区域提供轴向的电磁力,驱动所述待变形区域向模具内凹方向变形;
对第二驱动线圈通电后,其通电产生的感应磁场集中分布在第二磁场整形器内轮廓内部区域,为金属工件的两端提供径向的电磁力,推动金属工件向模具变形,且为金属工件的两端提供轴向的电磁力以作为金属工件两端的压边力;所述第一驱动线圈的放电能量经第一磁场整形器传递到金属工件的待变形区域,所述第二驱动线圈的放电能量经第二磁场整形器传递到金属工件的两端,以实现对金属工件成形的精密控制。
在一个可选的示例中,所述第一磁场整形器的底部区域正对所述模具的倒角区域;所述金属工件在轴向电磁力和径向电磁力的作用下向所述模具的内凹区域变形成形;
当所述金属工件向模具内凹区域变形至预设程度时,增加通入第一驱动线圈的电流,以增大第一驱动线圈向金属工件提供的轴向电磁力,以驱动金属工件向模具内凹区域进一步变形;或
当所述金属工件向模具内凹区域变形至预设程度时,增加通入第二驱动线圈的电流,以增大第二驱动线圈向金属工件提供的径向电磁力,以驱动金属工件向模具内凹区域进一步变形;或
当所述金属工件向模具内凹区域变形至预设程度时,增加通入第一驱动线圈的电流,增大第一驱动线圈向金属工件提供的轴向电磁力,且增加通入第二驱动线圈的电流,增大第二驱动线圈向金属工件提供的径向电磁力,以驱动金属工件向模具内凹区域进一步变形。
另外,根据实际需要,通入第一驱动线圈或通入第二驱动线圈中的电流值也可以减小,以进一步调控金属工件成形。
在一个可选的示例中,所述第一磁场整形器的底部区域正对所述模具的内 凹区域;所述第一磁场整形器底部区域的截面积小于模具内凹区域的截面积;所述金属工件在轴向电磁力和径向电磁力的作用下向所述模具的内凹区域变形成形;
当所述金属工件向模具内凹区域变形至预设程度时,向金属工件变形的方向移动第一磁场整形器,使得第一磁场整形器的底部区域靠近金属工件变形的区域,控制通入第一驱动线圈和第二驱动线圈的电流,以驱动金属工件向模具内凹区域进一步变形。
在一个可选的示例中,所述第一磁场整形器和第二磁场整形器均为中心带通孔的旋转体结构;
第一磁场整形器的旋转体结构的下表面轮廓与模具内凹区域的轮廓相匹配;第二磁场整形器的旋转体结构的内围轮廓与金属工件的外轮廓相匹配;所述第一磁场整形器旋转体结构的下表面面积小于所述第二磁场整形器中心通孔的面积。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下
有益效果:
本发明提供一种微型金属器件精密成形装置及方法,通过在两个驱动线圈中分别加入磁场整形器的方式,通过驱动线圈和磁场整形器的配合将驱动线圈中的放电能量传递到待成形的板件表面的局部区域,从而在板件成形区域上产生电磁力驱动板件形变,大大提高了驱动线圈放电能量的利用效率;针对微型深腔壳体件在电磁成形时线圈结构设计及制作难度较大的问题,可通过调整磁场整形器的几何尺寸,使线圈结构尺寸由小化大,保证线圈在工件变形区域能施加足够的电磁驱动力,拓展电磁成形的应用范围。进一步,两套线圈与磁场整形器系统与工件的相对位置及磁场整形器的几何形状将根据所述工件的成形要求进行优化设计,以满足工件成形区域的电磁力大小和分布要求,更有效地实现工件的电磁成形,提高工件的成形极限与成形质量,避免了重新设计绕制线圈的繁琐过程,尤其适用于难以通过线圈设计满足成形要求的微小异形工件的成形加工;本发明使电磁成形技术的应用范围更加广泛,为微型金属器件精 密成形提供了一种高质量、高效率的非接触式成形技术。
【附图说明】
图1是本发明第一实施例中的微小型板件电磁成形方法示意图;
图2是根据本发明第一实施例的磁场整形器示意图;
图3是本发明实施例中采用电容储能型电源系统提供给驱动线圈的电流波形示意图;
图4是本发明实施例中轴向电磁力和径向电磁力的原理示意图;
图5是本发明第二实施例中的带微小圆孔板件电磁翻边方法示意图;
图6是本发明第三实施例中的非轴对称零件的电磁成形方法示意图;
图7是本发明第四实施例中的多步电磁渐进成形方法示意图;
图8是本发明第五实施例中的多步移动电磁渐进成形方法示意图;
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1为轴向力线圈、2为径向力线圈、3为轴向磁场整形器、4为径向磁场整形器、5为电源系统、6为工件以及7为模具。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明公开了一种微型金属器件精密成形装置及方法。该装置包括两个驱动线圈、两个磁场整形器、电源、模具、金属工件。将金属工件置于凹模上方,两个磁场整形器分别置于工件变形区域上面和侧面,两个驱动线圈分别置于所述两个磁场整形器外。当电源开关闭合后,电源系统产生的脉冲电流将通过两个驱动线圈,在驱动线圈周围产生脉冲磁场,并在两个磁场整形器表面感应出涡流,从而脉冲磁场在磁场整形器的作用下聚焦于工件表面,并在金属工件中感应出的电流,继而与两个磁场整形器贴近金属工件区域的脉冲磁场共同作用,产生施加于金属工件的轴向电磁力与径向电磁力,灵活调控工件的变形行为,最终实现微型金属器件的非接触成形。
本发明利用双驱动线圈与双磁场整形器相结合的方式,通过对磁场整形器的优化设计灵活、精准地调控微型工件在成形过程中的力场分布与大小,提升微型工件在传统成形工艺下的成形极限,并与设计制造特殊形状的微型线圈以达到微型金属工件电磁成形的要求相比,能够有效降低成形装置的设计难度和制造成本,同时极大地扩展了电磁成形技术的应用范围。
针对现有技术的以上缺陷与改良需求,本发明提供了一种微型金属器件精密成形装置及方法,在板件电磁成形过程或多次成形的后续成形过程中,通过调整两个驱动线圈、两个磁场整形器与工件这三者之间的结构位置,精确控制两个驱动线圈的放电过程,使两套线圈与磁场整形器系统相互配合,优势互补,利用两个磁场整形器填充驱动线圈与工件间的气隙,改善与增强电磁成形过程中的磁场分布与大小,调控与提高工件成形区域的电磁力方向与大小,降低线圈结构要求,提升工件成形极限,拓展电磁成形技术的应用范围。
为实现上述目的,按照本发明的一个方面,提供了一种微型金属器件精密成形装置及方法,包括:两个驱动线圈、电源、两个磁场整形器以及模具;所述金属工件与所述模具相对放置;所述两个驱动线圈分别放置在所述金属工件上方和外侧;所述两个驱动线圈分别置于所述两个磁场整形器外部,二者配合通过电磁感应将驱动线圈中的放电能量传递到待成形的板件表面,从而在板件成形区域上产生电磁力驱动板件形变;所述电源系统用于为所述驱动线圈供电。
更进一步地,针对微型深腔壳体件在电磁成形时线圈结构设计及制作难度较大的问题,可通过调整磁场整形器的几何尺寸,使线圈结构尺寸由小化大,保证线圈在工件变形区域能施加足够的电磁驱动力,拓展电磁成形的应用范围。
更进一步地,对于单步电磁成形工件的贴模精度等不满足成形质量要求的情况,可利用两套线圈与磁场整形器系统在时间与空间的相互配合,并进行多次放电的方式提高装置的成形能力,即两套线圈与磁场整形器系统分别给工件提供推、压的电磁驱动力,相当于一个与工件无接触的凸模,驱动工件拉伸与控制工件材料流动,不再需要复杂的成形工艺就可获得高质量的成形件,突破现有成形技术的成形极限。
更进一步地,两套线圈与磁场整形器系统与工件的相对位置及磁场整形器的几何形状将根据所述工件的成形要求进行优化设计,以满足工件成形区域的电磁力大小和分布要求,更有效地实现工件的电磁成形,提高工件的成形极限与成形质量。
更进一步地,驱动线圈和磁场整形器相互独立,对于不同成形形状的工件,只需更换不同的磁场整形器,即可满足更复杂的成形需求,避免了重新设计绕制线圈的繁琐过程,尤其适用于难以通过线圈设计满足成形要求的微小异形工件的成形加工。
更进一步地,所述基于两套驱动线圈与磁场整形器结合的成形装置不仅局限于微型板件电磁成形,亦可拓展到电磁成形的其他领域如微型工件电磁翻边、微型工件电磁矫形等,或者依靠传统成形线圈调控难以满足工件成形要求的场合如异形件的电磁成形。
更进一步地,本发明的成形装置还可以组合或整合多个磁场整形器或驱动线圈,通过优化电源、驱动线圈、磁场整形器之间的配合,实现对成形磁场的时空分布更精准的调控,以满足更复杂的成形要求。
按照本发明的另一方面,提供了一种微型金属器件精密成形方法,包括以下步骤:
步骤(1):将所述工件置于所述模具上;
步骤(2):将所述两个磁场整形器分别置于工件上方和侧面;
步骤(3):将所述两个驱动嵌套在磁场整形器外部并与所述电源进行电气连接;
步骤(4):通过所述电源对两个驱动线圈放电,产生脉冲电流,在驱动线圈周围激发脉冲强磁场,进而空间磁场在磁场整形器的作用下聚集于工件表面,再与工件感应涡流相互作用,在工件成形区域形成多向可控的电磁力,驱动工件高速变形,最终完成微型金属工件精密成形。
本领域技术人员可以理解的是,可以按照两个驱动线圈和两个磁场整形器的功能将其分别称为:轴向力线圈、径向力线圈、轴向磁场整形器以及径向磁 场整形器,以下将不再做特别说明。
本发明提供了一种电磁成形装置,以小型板件电磁成形为例,如图1所示,包括:轴向力线圈1、径向力线圈2、轴向磁场整形器3、径向磁场整形器4、电源系统5以及模具7。其中,待成形的工件6置于模具7上方,轴向磁场整形器3和径向磁场整形器4分别置于工件6变形区域的上面和侧面;轴向力线圈1和径向力线圈2分别置于轴向磁场整形器3和径向磁场整形器4外部,两个磁场整形器3、4与相应的驱动线圈1、3紧密相连,驱动线圈1、3连接于电源。通入脉冲电流的驱动线圈1、3在空间形成脉冲磁场,两个磁场整形器3、4对空间磁场进行整形,使脉冲磁场聚焦于工件的待成形区域,从而工件中感应涡流与磁场相互作用产生轴向电磁力与径向电磁力,驱动工件6完成变形。
具体地,径向磁场整形器的结构如图1所示朝向工件6的方向弯折,其中模具侧面部分的径向磁场整形器的磁场方向垂直于金属工件的两端,作用在金属工件两端的电磁力是径向方向,推动金属工件朝向模具方向变形,另外,金属工件两端上方的径向磁场整形器的磁场方向平行于金属工件的两端,作用在金属工件两端的电磁力是轴向方向,为金属工件两端提供压边力。因此,径向力线圈2所传递的电磁力不仅为工件6提供径向力,还为工件6提供压边力,控制工件6法兰区域向凹模型腔模具7的径向流动量,防止工件6起皱;电源系统5用于为轴向力线圈1和径向力线圈2供电,电源类型与数量不受限制,可以采用电容器型电源,也可采用蓄电池组脉冲电源等。上述两个驱动线圈1、2与两个磁场整形器3、4结构尺寸相互独立。
其中,轴向磁场整形器3和径向磁场整形器4的剖视图和俯视图如图2所示,图2中(a)-(d)分别表示轴向磁场整形器的剖视图、径向磁场整形器的剖视图、轴向磁场整形器的俯视图、径向磁场整形器的俯视图;轴向磁场整形器3为中心带通孔的旋转体结构,径向磁场整形器4为中心带通孔的旋转体结构,两磁场整形器都在沿半径方向开有纵切缝。轴向磁场整形器3外侧与轴向力线圈1内侧形状相同并与之紧密相连;轴向磁场整形器3下表面与工件6上表面平行,使工件倒角区域能受到足够的轴向电磁力,提高工件拉伸深度,获 得良好的贴模精度;轴向磁场整形器3内侧形状尺寸可根据驱动线圈形状尺寸进行优化设计,以充分利用驱动线圈能量。径向磁场整形器4外侧与径向力线圈2内侧形状相同并与之紧密相连;径向磁场整形器4内倒角处与模具7倒角区域形状相同,使工件6与径向磁场整形器4更加贴合,以获得更大的电磁力,更好地控制工件径向流动。径向磁场整形器4内侧形状尺寸可根据轴向磁场整形器3下表面形状尺寸进行优化设计,使两套驱动线圈与磁场整形器系统配合更加高效。两个磁场整形器的材料选择需要考虑电导率和强度大小,可选择铜或铝合金。磁场整形器的功能是通过对驱动线圈产生的空间磁场进行整形,精准调控磁场空间分布,使脉冲磁场聚焦于工件的待成形区域,从而工件中感应涡流与磁场相互作用产生足够的电磁力,驱动工件完成塑性变形,并保证其良好的成形质量。
更进一步地,本发明不仅能通过磁场整形器将大尺寸线圈所施加的电磁力有效聚焦于待成形的小区域范围内实现微型工件成形,还能通过两套线圈与磁场整形器系统在时间与空间的相互配合以提升微型工件的成形极限,并通过施加非接触力的方式有效解决传统成形工艺对工件成形质量的影响。
按照本发明的另一个方面,本发明还提供了一种微型金属器件精密成形方法,包括以下步骤:
(1)将待成形的工件和模具相对放置;
(2)将轴向力线圈置于轴向磁场整形器外侧并一起置于待成形工件的上方,将径向力线圈置于径向磁场整形器外侧并一起置于待成形工件的侧面,两套磁场整形器与工件间的间隙尽量小;
其中,间隙值需要考虑如下因素:间隙越小,工件感应的电磁力越大,有利于工件变形,但是,磁场整形器和工件间需要做好绝缘处理,防止成形过程中,磁场整形器和工件之间发生放电。
(3)启动电源系统,两个驱动线圈通入快速变化的电流,在空间中形成脉冲磁场,两个磁场整形器对空间磁场进行整形,使脉冲磁场聚焦于工件的待成形区域,从而工件中感应涡流与磁场相互作用产生轴向电磁力与径向电磁力, 驱动工件变形。
对于电源系统5而言,可采用电容器组电源,其电流随时间变化曲线如图3所示,Icoil1与Icoil2分别表示通入两线圈的电流,在实际应用中可根据成形目标调控其幅值与频率。
图4是本发明实施例中轴线电磁力和径向电磁力的原理示意图,如图4中(a)和(b)分别表示轴向电磁力和径向电磁力的示意图,其中,B表示感应磁场,f表示电磁力。
可以理解的是,待成形工件的形状不限,可以是带圆孔的板件或者不带圆孔的板件,板件的形状可以无规则等等。
图5为根据本发明第二实施例的带圆孔板件电磁翻边装置示意图,主要构件包括:轴向力线圈1、径向力线圈2、轴向磁场整形器3、径向磁场整形器4、电源系统5以及模具7。其中,工件6为带圆孔板件,置于模具7上方;轴向磁场整形器3和径向磁场整形器4分别置于工件6变形区域的上面和侧面;轴向力线圈1和径向力线圈2分别置于轴向磁场整形器3和径向磁场整形器4外部,两套磁场整形器3、4与相应的驱动线圈1、3紧密相连,以减小磁场的损耗,驱动线圈1、3连接于电源。通入脉冲电流的驱动线圈1、3在空间形成脉冲磁场,两个磁场整形器3、4对空间磁场进行整形,使脉冲磁场聚焦于工件的待成形区域,从而工件中感应涡流与磁场相互作用产生轴向电磁力与径向电磁力,驱动工件6完成翻边,径向力线圈2所传递的电磁力不仅为工件6提供径向力,还为工件6提供压边力,控制工件6法兰区域向凹模型腔模具7的径向流动量,防止工件6起皱;电源系统5用于为轴向力线圈1和径向力线圈2供电。
图6为根据本发明第三实施例的非轴对称零件电磁成形装置示意图,其中,该装置的剖视图如图6中(a)、图6中(b),该装置的磁场整形器俯视图如图6中(c)。主要构件包括:轴向力线圈1、径向力线圈2、轴向磁场整形器3、径向磁场整形器4、电源系统5以及模具7。其中,轴向磁场整形器3和径向磁场整形器4下表面轮廓与模具上边沿形状一致,如图6中(c)所示,模具上边沿形状为椭圆形,通常金属工件的轮廓与模具上边沿形状一致,图6中(c)的 左侧为轴向磁场整形器俯视图,其下表面轮廓与模具形状(椭圆形)一致,图6中(c)的右侧为径向磁场整形器俯视图,其内围轮廓与模具形状(椭圆形)一致,具体尺寸根据工件所需电磁力分布进行优化设计,最终保证工件变形的均匀性和良好的贴模精度。
图7为根据本发明第四实施例的多步电磁渐进成形方法示意图,装置主要包括:轴向力线圈1、径向力线圈2、轴向磁场整形器3、径向磁场整形器4、电源系统5以及模具7。
多步电磁渐进成形方法如图7中的(a)-(c)所示,包括以下步骤:
(1)将待成形的工件6放置于凹模7上;
(2)将轴向力线圈1置于轴向磁场整形器3外侧并一起置于待成形工件的上方,将径向力线圈2置于径向磁场整形器4外侧并一起置于待成形工件的侧面,两个磁场整形器与工件间的间隙尽量小;
(3)根据金属工件的成形目标,选择合适的放电能量,精准控制两线圈的放电时序,通过电源5对轴向力线圈1和径向力线圈2放电,产生电磁力驱动工件变形,以驱动金属工件向模具内凹区域进一步变形。同时,将上一步金属工件的成形结果与目标形状进行对比,可考虑增大或减少作用于轴向力线圈1或径向力线圈2的能量,以改变轴向电磁力或径向电磁力大小,调控工件成形过程中的变形行为,以便于最终实现更高的贴膜精度;
(4)重复步骤(3),直到工件完全贴模。
图8为根据本发明第五实施例的多步移动电磁渐进成形方法示意图,装置主要包括:轴向力线圈1、径向力线圈2、轴向磁场整形器3、径向磁场整形器4、电源系统5以及模具7。
多步移动电磁渐进成形方法如图8中的(a)-(c)所示,包括以下步骤:
(1)将待成形的工件6放置于凹模7上;
(2)将轴向力线圈1置于轴向磁场整形器3外侧并一起置于待成形工件的上方,将径向力线圈2置于径向磁场整形器4外侧并一起置于待成形工件的侧面,两个磁场整形器与工件间的间隙尽量小;
(3)在每一步放电前,轴向调整轴向磁场整形器3位置,使其与工件保持最小间隙。选择合适的放电能量,精准控制两线圈的放电时序,通过电源5对轴向力线圈1和径向力线圈2放电,产生轴向和径向电磁力驱动工件变形;
(4)重复步骤(3),直到工件完全贴模。
本发明公开了一种微型金属器件精密成形装置及方法。该装置包括两个驱动线圈、两个磁场整形器、电源、模具、金属工件。将金属工件置于凹模上方,两个磁场整形器分别置于工件变形区域上面和侧面,两个驱动线圈分别置于所述两个磁场整形器外。当电源开关闭合后,电源系统产生的脉冲电流将通过两个驱动线圈,在驱动线圈周围产生脉冲磁场,并在两个磁场整形器表面感应出涡流,从而脉冲磁场在磁场整形器的作用下聚焦于工件表面,并在金属工件中感应出的电流,继而与两个磁场整形器贴近金属工件区域的脉冲磁场共同作用,产生施加于金属工件的轴向电磁力与径向电磁力,灵活调控工件的变形行为,最终实现微型金属器件的非接触成形。本发明利用双驱动线圈与双磁场整形器相结合的方式,通过对磁场整形器的优化设计灵活、精准地调控微型工件在成形过程中的力场分布与大小,提升微型工件在传统成形工艺下的成形极限,并与设计制造特殊形状的微型线圈以达到微型金属工件电磁成形的要求相比,能够有效降低成形装置的设计难度和制造成本,同时极大地扩展了电磁成形技术的应用范围。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种微型金属器件精密成形装置,其特征在于,包括:第一驱动线圈、第二驱动线圈、第一磁场整形器、第二磁场整形器以及模具;
    待成形的金属工件置于模具上方;
    所述第一磁场整形器置于金属工件中待变形区域的上方,其底部相对所述待变形区域的距离小于预设距离阈值;所述第一驱动线圈绕制在第一磁场整形器的外部,所述第一驱动线圈通电后,其通电产生的感应磁场集中分布在第一磁场整形器底部区域,为所述待变形区域提供轴向的电磁力,驱动所述待变形区域向模具内凹方向变形;
    所述第二磁场整形器置于模具的外围,将模具包围,其内围轮廓与金属工件的轮廓相匹配,且其内轮廓朝向所述金属工件弯折;第二驱动线圈绕制在第二磁场整形器的外部,所述第二驱动线圈通电后,其通电产生的感应磁场集中分布在第二磁场整形器内轮廓内部区域,为金属工件的两端提供径向的电磁力,推动金属工件向模具变形,且为金属工件的两端提供轴向的电磁力以作为金属工件两端的压边力;
    所述第一驱动线圈的放电能量经第一磁场整形器传递到金属工件的待变形区域,所述第二驱动线圈的放电能量经第二磁场整形器传递到金属工件的两端,以实现对金属工件成形的精密控制。
  2. 根据权利要求1所述的微型金属器件精密成形装置,其特征在于,所述第一磁场整形器的底部区域正对所述模具的倒角区域;所述金属工件在轴向电磁力和径向电磁力的作用下向所述模具的内凹区域变形成形;
    当所述金属工件向模具内凹区域变形至预设程度时,增加通入第一驱动线圈的电流,以增大第一驱动线圈向金属工件提供的轴向电磁力,以驱动金属工件向模具内凹区域进一步变形;或
    当所述金属工件向模具内凹区域变形至预设程度时,增加通入第二驱动线圈的电流,以增大第二驱动线圈向金属工件提供的径向电磁力,以驱动金属工 件向模具内凹区域进一步变形;或
    当所述金属工件向模具内凹区域变形至预设程度时,增加通入第一驱动线圈的电流,增大第一驱动线圈向金属工件提供的轴向电磁力,且增加通入第二驱动线圈的电流,增大第二驱动线圈向金属工件提供的径向电磁力,以驱动金属工件向模具内凹区域进一步变形。
  3. 根据权利要求1所述的微型金属器件精密成形装置,其特征在于,所述第一磁场整形器的底部区域正对所述模具的内凹区域;所述第一磁场整形器底部区域的截面积小于模具内凹区域的截面积;所述金属工件在轴向电磁力和径向电磁力的作用下向所述模具的内凹区域变形成形;
    当所述金属工件向模具内凹区域变形至预设程度时,向金属工件变形的方向移动第一磁场整形器,使得第一磁场整形器的底部区域靠近金属工件变形的区域,控制通入第一驱动线圈和第二驱动线圈的电流,以驱动金属工件向模具内凹区域进一步变形。
  4. 根据权利要求1所述的微型金属器件精密成形装置,其特征在于,所述第一磁场整形器和第二磁场整形器均为中心带通孔的旋转体结构;
    第一磁场整形器的旋转体结构的下表面轮廓与模具内凹区域的轮廓相匹配;第二磁场整形器的旋转体结构的内围轮廓与金属工件的外轮廓相匹配;所述第一磁场整形器旋转体结构的下表面面积小于所述第二磁场整形器中心通孔的面积。
  5. 一种微型金属器件精密成形方法,其特征在于,包括如下步骤:
    将待成形的金属工件置于模具上方;所述金属工件中待变形区域的上方设置有第一磁场整形器,所述第一磁场整形器底部相对所述待变形区域的距离小于预设距离阈值;所述第一磁场整形器的外部绕制有第一驱动线圈;所述模具的外围设置有第二磁场整形器,所述第二磁场整形器将模具包围,其内围轮廓与金属工件的轮廓相匹配,且其内轮廓朝向所述金属工件弯折;第二磁场整形器的外部绕制有第二驱动线圈;
    对第一驱动线圈通电后,其通电产生的感应磁场集中分布在第一磁场整形器底部区域,为所述待变形区域提供轴向的电磁力,驱动所述待变形区域向模具内凹方向变形;
    对第二驱动线圈通电后,其通电产生的感应磁场集中分布在第二磁场整形器内轮廓内部区域,为金属工件的两端提供径向的电磁力,推动金属工件向模具变形,且为金属工件的两端提供轴向的电磁力以作为金属工件两端的压边力;所述第一驱动线圈的放电能量经第一磁场整形器传递到金属工件的待变形区域,所述第二驱动线圈的放电能量经第二磁场整形器传递到金属工件的两端,以实现对金属工件成形的精密控制。
  6. 根据权利要求5所述的微型金属器件精密成形方法,其特征在于,所述第一磁场整形器的底部区域正对所述模具的倒角区域;所述金属工件在轴向电磁力和径向电磁力的作用下向所述模具的内凹区域变形成形;
    当所述金属工件向模具内凹区域变形至预设程度时,增加通入第一驱动线圈的电流,以增大第一驱动线圈向金属工件提供的轴向电磁力,以驱动金属工件向模具内凹区域进一步变形;或
    当所述金属工件向模具内凹区域变形至预设程度时,增加通入第二驱动线圈的电流,以增大第二驱动线圈向金属工件提供的径向电磁力,以驱动金属工件向模具内凹区域进一步变形;或
    当所述金属工件向模具内凹区域变形至预设程度时,增加通入第一驱动线圈的电流,增大第一驱动线圈向金属工件提供的轴向电磁力,且增加通入第二驱动线圈的电流,增大第二驱动线圈向金属工件提供的径向电磁力,以驱动金属工件向模具内凹区域进一步变形。
  7. 根据权利要求5所述的微型金属器件精密成形方法,其特征在于,所述第一磁场整形器的底部区域正对所述模具的内凹区域;所述第一磁场整形器底部区域的截面积小于模具内凹区域的截面积;所述金属工件在轴向电磁力和径向电磁力的作用下向所述模具的内凹区域变形成形;
    当所述金属工件向模具内凹区域变形至预设程度时,向金属工件变形的方 向移动第一磁场整形器,使得第一磁场整形器的底部区域靠近金属工件变形的区域,控制通入第一驱动线圈和第二驱动线圈的电流,以驱动金属工件向模具内凹区域进一步变形。
  8. 根据权利要求5所述的微型金属器件精密成形方法,其特征在于,所述第一磁场整形器和第二磁场整形器均为中心带通孔的旋转体结构;
    第一磁场整形器的旋转体结构的下表面轮廓与模具内凹区域的轮廓相匹配;第二磁场整形器的旋转体结构的内围轮廓与金属工件的外轮廓相匹配;所述第一磁场整形器旋转体结构的下表面面积小于所述第二磁场整形器中心通孔的面积。
PCT/CN2021/093740 2021-03-23 2021-05-14 一种微型金属器件精密成形装置及方法 WO2022198768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110309023.0A CN113059048B (zh) 2021-03-23 2021-03-23 一种微型深腔壳体件精密成形装置及方法
CN202110309023.0 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022198768A1 true WO2022198768A1 (zh) 2022-09-29

Family

ID=76563100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093740 WO2022198768A1 (zh) 2021-03-23 2021-05-14 一种微型金属器件精密成形装置及方法

Country Status (2)

Country Link
CN (1) CN113059048B (zh)
WO (1) WO2022198768A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2086382C1 (ru) * 1994-03-29 1997-08-10 Александр Абрамович Певзнер Способ сборки соединений деталей
CN102248059A (zh) * 2011-06-16 2011-11-23 华中科技大学 多级多向电磁成形方法及装置
CN103894468A (zh) * 2014-04-02 2014-07-02 华中科技大学 一种用于金属板材成形的材料流动性控制方法
CN106825192A (zh) * 2017-03-07 2017-06-13 华中科技大学 一种电磁深成形装置及方法
US20170297077A1 (en) * 2014-09-04 2017-10-19 Temper Ip, Llc Forming process using magnetic fields
CN209491227U (zh) * 2018-07-24 2019-10-15 广东工业大学 一种合金板材内孔电磁翻边成形装置
CN109865760B (zh) * 2018-12-19 2020-09-18 华中科技大学 一种基于模块化集磁器的电磁成形装置及方法
CN112439827A (zh) * 2020-12-08 2021-03-05 华中科技大学 一种电磁翻边成形装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050120A (en) * 1998-08-17 2000-04-18 The Ohio State University Hybrid matched tool-electromagnetic forming apparatus
JP5244063B2 (ja) * 2009-09-30 2013-07-24 株式会社神戸製鋼所 アルミニウム材の電磁成形方法
CN101905262B (zh) * 2010-07-29 2011-10-26 哈尔滨工业大学 一种磁脉冲成形用集磁器结构
CN103861930B (zh) * 2014-04-01 2015-08-19 哈尔滨工业大学 一种铝合金板材小直径翻边孔的磁脉冲成形装置及方法
CN107186039B (zh) * 2017-05-02 2019-09-24 三峡大学 一种改善电磁成形工件贴模性的装置及方法
CN107584001B (zh) * 2017-10-11 2023-07-25 华中科技大学 一种金属板件的电磁成形方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2086382C1 (ru) * 1994-03-29 1997-08-10 Александр Абрамович Певзнер Способ сборки соединений деталей
CN102248059A (zh) * 2011-06-16 2011-11-23 华中科技大学 多级多向电磁成形方法及装置
CN103894468A (zh) * 2014-04-02 2014-07-02 华中科技大学 一种用于金属板材成形的材料流动性控制方法
US20170297077A1 (en) * 2014-09-04 2017-10-19 Temper Ip, Llc Forming process using magnetic fields
CN106825192A (zh) * 2017-03-07 2017-06-13 华中科技大学 一种电磁深成形装置及方法
CN209491227U (zh) * 2018-07-24 2019-10-15 广东工业大学 一种合金板材内孔电磁翻边成形装置
CN109865760B (zh) * 2018-12-19 2020-09-18 华中科技大学 一种基于模块化集磁器的电磁成形装置及方法
CN112439827A (zh) * 2020-12-08 2021-03-05 华中科技大学 一种电磁翻边成形装置及方法

Also Published As

Publication number Publication date
CN113059048B (zh) 2022-01-04
CN113059048A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2022048198A1 (zh) 一种电磁矫形装置及矫形方法
CN106694681B (zh) 一种金属管件的电磁成形装置及方法
CN107584001B (zh) 一种金属板件的电磁成形方法及装置
CN103586325B (zh) 一种深冲性构件电磁成形方法
US20120074132A1 (en) Induction heating device and method for controlling the same
CN106270104B (zh) 一种壳体件的磁脉冲翻孔成形方法
CN109865760B (zh) 一种基于模块化集磁器的电磁成形装置及方法
CN106807825B (zh) 一种电磁渐进柔性复合成形方法
CN108655252B (zh) 一种金属成形装置及方法
CN108723164B (zh) 一种传热板成形装置和成形方法
US11471926B2 (en) Electromagnetic manufacturing method and forming device of mesoscale plate
CN109647963A (zh) 一种电磁矫形装置及矫形方法
WO2022236849A1 (zh) 一种基于导电通道的电磁成形装置及成形方法
WO2022198768A1 (zh) 一种微型金属器件精密成形装置及方法
CN207577198U (zh) 一种无需置于管件内部的管件非接触扩口或翻边装置
CN209664052U (zh) 一种电磁矫形装置
CN110102608B (zh) 一种板料高精度u形弯曲的成形装置及方法
CN109967592A (zh) 一种采用径向电磁拉力减小板件起皱的装置及方法
CN112439827B (zh) 一种电磁翻边成形装置及方法
CN106964684A (zh) 一种适用于板材工件的复合多步局部塑性电磁成形方法
CN107096815B (zh) 一种径向-轴向电磁力分时加载的管件电磁翻边装置及方法
CN208099018U (zh) 一种电磁拉深装置
CN108057769A (zh) 冲压与磁脉冲成形协同控制复杂曲面件回弹与破裂的方法
CN208099019U (zh) 一种电磁内孔翻边装置
CN111185553B (zh) 一种侧模辅助动态调控晶粒细化的电镦成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932385

Country of ref document: EP

Kind code of ref document: A1