WO2022198598A1 - 并离网模式切换的方法和储能系统 - Google Patents

并离网模式切换的方法和储能系统 Download PDF

Info

Publication number
WO2022198598A1
WO2022198598A1 PCT/CN2021/083099 CN2021083099W WO2022198598A1 WO 2022198598 A1 WO2022198598 A1 WO 2022198598A1 CN 2021083099 W CN2021083099 W CN 2021083099W WO 2022198598 A1 WO2022198598 A1 WO 2022198598A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
output voltage
voltage
relationship
apparent power
Prior art date
Application number
PCT/CN2021/083099
Other languages
English (en)
French (fr)
Inventor
董明轩
辛凯
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202180095340.5A priority Critical patent/CN116998083A/zh
Priority to EP21932223.7A priority patent/EP4304039A1/en
Priority to PCT/CN2021/083099 priority patent/WO2022198598A1/zh
Priority to AU2021435844A priority patent/AU2021435844A1/en
Publication of WO2022198598A1 publication Critical patent/WO2022198598A1/zh
Priority to US18/471,694 priority patent/US20240022082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present application relates to the technical field of energy storage, and in particular, to a method and an energy storage system for switching between on-grid and off-grid modes.
  • the energy storage system can be used to store the electricity generated by wind power or photovoltaic power generation, which can avoid the problem of abandoning wind and light.
  • the energy storage system can switch from the grid-connected mode to the off-grid mode to supply power to the loads in the grid of the energy storage system.
  • the inverter takes a long time to control the output voltage, there is a mechanical delay in disconnecting the on-grid mode switch, and there is a transmission delay in the state feedback of the on-grid mode switch, etc.
  • the switching process is long, and voltage distortion or frequency distortion may occur during the switching process, which affects the power supply to the load.
  • the embodiment of the present application discloses a method and an energy storage system for switching between on-grid and off-grid modes, which freezes the output frequency of the inverter to avoid the occurrence of frequency distortion events.
  • the occurrence of voltage distortion events can be avoided, and the control efficiency of the inverter is improved compared with the direct control of the output voltage.
  • the inverter After the inverter receives the switching instruction sent by the controller and determines that the output voltage of the inverter meets the preset range of the rated voltage, it switches to the voltage source mode to realize the switching between on-grid and off-grid modes, which improves the stability of the load operation. .
  • an embodiment of the present application discloses an energy storage system.
  • the energy storage system includes a controller, an inverter connected to the controller, an on-grid and off-grid mode switch, and a load connected to the on-grid and off-grid mode switch, wherein,
  • the inverter In response to determining that the energy storage system is in an island state, the inverter sends an island state message to the controller, and freezes the output frequency of the inverter according to a preset frequency, and according to the inverter There is a negative correlation between the output voltage of the inverter and the apparent power of the inverter, and the output current of the inverter is controlled so that the output voltage of the inverter satisfies the preset rated voltage. scope;
  • the controller is configured to send a disconnection instruction to the on-grid mode switch based on the island status message, where the disconnection instruction is used to instruct the on-grid and off-grid mode switch to correspond to the grid connected to the off-grid mode switch Disconnecting; in response to receiving a disconnection completion message from the on-grid mode switch, sending a switching instruction to the inverter, and the disconnection completion message is used to instruct the on-grid and off-grid mode switch to communicate with all the power grid is disconnected, and the switching instruction is used to instruct the inverter to switch to a voltage source mode;
  • the inverter is further configured to switch to the voltage source mode in response to receiving the switching instruction and determining that the output voltage of the inverter meets a preset range of the rated voltage.
  • the output frequency of the inverter is frozen according to the preset frequency, so as to avoid the occurrence of frequency distortion.
  • the occurrence of voltage distortion events can be avoided, and the control efficiency of the inverter is improved compared with the direct control of the output voltage.
  • the inverter is specifically configured to, according to a first correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated, perform a The output current of the inverter is controlled to obtain the first stable output voltage of the inverter and the first apparent power corresponding to the first stable output voltage, and the variation range of the first stable output voltage is less than or equal to the the preset range; according to the second correlation relationship that is positively correlated between the output voltage of the inverter and the apparent power of the load, and the magnitude relationship between the first stable output voltage and the rated voltage
  • the first correlation relationship is adjusted to obtain a third correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated; according to the third correlation relationship and the rated voltage
  • the output current of the inverter is controlled so that the output voltage of the inverter satisfies the preset range of the rated voltage.
  • the first correlation between the output voltage of the inverter and the apparent power of the inverter is adjusted to obtain The third correlation relationship, so that the output current of the inverter is controlled according to the third correlation relationship and the rated voltage, the efficiency and accuracy of the control can be improved, and the stability of the load operation can be further improved.
  • the inverter is specifically configured to adjust the first correlation relationship according to the magnitude relationship between the first stable output voltage and the rated voltage to obtain the output of the inverter a fourth correlation relationship in which the voltage and the apparent power of the inverter are negatively correlated; the output current of the inverter is controlled according to the fourth correlation relationship, and the second correlation relationship of the inverter is obtained.
  • the stable output voltage and the second apparent power corresponding to the second stable output voltage, and the variation range of the second stable output voltage is less than or equal to the preset range; according to the first stable output voltage, the first stable output voltage an apparent power, the second stable output voltage and the second apparent power to obtain a second correlation relationship in which the output voltage of the inverter and the apparent power of the load are positively correlated; according to the The second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage are adjusted to the fourth correlation relationship to obtain the output voltage of the inverter and the apparent voltage of the inverter.
  • the third relationship is a negative correlation between the powers.
  • the fourth correlation relationship obtained by adjusting the first correlation relationship through the magnitude relationship between the first stable output voltage and the rated voltage controls the output current of the inverter to obtain the second stable output voltage, which can be obtained.
  • the second stable output voltage which is closer to the rated voltage, is convenient to improve the efficiency of controlling the output voltage.
  • the second correlation relationship is obtained according to the first stable output voltage, the first apparent power, the second stable output voltage and the second apparent power, which can improve the accuracy of obtaining the second correlation relationship.
  • the fourth correlation relationship is adjusted according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage to obtain the third correlation relationship, which can improve the efficiency of controlling the output voltage.
  • the inverter is further configured to calculate the minimum output voltage and the maximum output voltage of the inverter within the preset range of the rated voltage, and the maximum output voltage corresponding to the minimum output voltage.
  • the first correlation relationship is obtained from the apparent power and the minimum apparent power corresponding to the maximum output voltage. It can be understood that the output voltage of the inverter has a negative correlation with the apparent power, so that the maximum apparent power corresponding to the minimum output voltage and the minimum output voltage of the inverter within the preset range of the rated voltage, and the maximum apparent power at the rated voltage can be obtained.
  • the maximum output voltage within the preset voltage range and the minimum apparent power corresponding to the maximum output voltage obtain the first correlation relationship, which improves the accuracy of obtaining the first correlation relationship.
  • the first association relationship includes a first formula:
  • the PN is the rated power of the inverter
  • the U L is the minimum output voltage
  • the U H is the maximum output voltage
  • the U i is the output of the inverter voltage
  • the S 1 (U i ) is the apparent power of the inverter when the output voltage of the inverter is U i .
  • the fourth correlation relationship is used to indicate that when the first stable output voltage is less than the rated voltage, in the fourth correlation relationship, the inverter is within the rated voltage
  • the maximum apparent power corresponding to the preset range is greater than the maximum apparent power corresponding to the inverter within the preset range of the rated voltage in the first correlation relationship; when the first stable output voltage is greater than or When it is equal to the rated voltage, the maximum apparent power corresponding to the inverter within the preset range of the rated voltage in the fourth relationship is smaller than that of the inverter in the first relationship.
  • the maximum apparent power corresponding to the preset range of the rated voltage is used to indicate that when the first stable output voltage is less than the rated voltage, in the fourth correlation relationship, the inverter is within the rated voltage
  • the maximum apparent power corresponding to the preset range is greater than the maximum apparent power corresponding to the inverter within the preset range of the rated voltage in the first correlation relationship; when the first stable output voltage is greater than or When it is equal to the
  • the fourth association relationship includes the second formula:
  • the PN is the rated power of the inverter
  • the U L is the minimum output voltage of the inverter within the preset range of the rated voltage
  • the U H is the inverter is the maximum output voltage of the inverter within the preset range of the rated voltage
  • the U i is the output voltage of the inverter
  • the S 1 * (U i ) is the output voltage of the inverter U
  • the U 1 is the first stable output voltage
  • the U N is the rated voltage
  • the k 1 is the first stable output voltage less than the The correlation coefficient when the rated voltage is used
  • the k 2 is the correlation coefficient when the first stable output voltage is greater than or equal to the rated voltage.
  • the second association relationship includes a third formula:
  • the U i is the output voltage of the inverter
  • the U 1 is the first stable output voltage
  • the U 2 is the second stable output voltage
  • the S 1 (U 1 ) is the first apparent power
  • the S 1 * (U 2 ) is the second apparent power
  • S 1 (U i ) is the inverter when the output voltage of the inverter is U i is the apparent power of the inverter
  • S 2 (U i ) is the apparent power of the load when the output voltage of the inverter is U i .
  • the inverter is specifically configured to determine the fourth correlation relationship according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage The value of the correlation coefficient; the fourth correlation relationship is updated according to the value of the correlation coefficient to obtain the first negative correlation between the output voltage of the inverter and the apparent power of the inverter.
  • Three relationships It can be understood that updating the relational coefficient in the fourth relational relation through the magnitude relation between the second relational relation, the first stable output voltage and the rated voltage can improve the accuracy of obtaining the third relational relation and facilitate the control of the output voltage. s efficiency.
  • the formula for calculating the value k of the relationship coefficient includes the fourth formula:
  • the PN is the rated power of the inverter
  • the U L is the minimum output voltage of the inverter within the preset range of the rated voltage
  • the U H is the inverter is the maximum output voltage of the inverter within the preset range of the rated voltage
  • the U 1 is the first stable output voltage
  • S 2 (U i ) is the output voltage of the inverter when the output voltage is U N Apparent power of the load.
  • the inverter is specifically configured to obtain the target apparent power corresponding to the rated voltage according to the third association relationship; and the output to the inverter according to the target apparent power The current is controlled so that the output voltage of the inverter satisfies the preset range of the rated voltage.
  • the third correlation relationship is used to describe the correlation relationship between the output voltage of the inverter and the apparent power, and the target apparent power corresponding to the rated voltage can be obtained according to the third correlation relationship.
  • the apparent power is related to the output voltage and output current
  • the current output current of the inverter can be tracked according to the target apparent power, and the drive signal corresponding to the rated voltage can be obtained, and then the inverter can be controlled to operate based on the drive signal. Therefore, by controlling the output voltage of the inverter, the output voltage of the inverter can meet the preset range of the rated voltage, and the control efficiency and the stability of the inverter operation are improved, thereby improving the stability of the load operation.
  • the inverter is specifically configured to determine whether the energy storage system is in an island state according to the output voltage of the inverter in response to the operating mode being the current source mode. In this way, whether the energy storage system is in the island state is determined by the output voltage of the inverter, which can improve the efficiency and accuracy of determining the island state.
  • an embodiment of the present application discloses a method for switching between on-grid and off-grid modes, which is applied to an energy storage system.
  • the energy storage system includes a controller, an inverter, a switch in on-grid and off-grid modes, and a load, wherein:
  • the inverter In response to determining that the energy storage system is in an island state, the inverter sends an island state message to the controller, and freezes the output frequency of the inverter according to a preset frequency, and according to the inverter There is a negative correlation between the output voltage of the inverter and the apparent power of the inverter, and the output current of the inverter is controlled so that the output voltage of the inverter satisfies the preset rated voltage. scope;
  • the controller sends a disconnection instruction to the on-grid mode switch, where the disconnection instruction is used to instruct the on-grid and off-grid mode switch to disconnect from the power grid;
  • the controller In response to receiving a disconnection completion message from the on-grid mode switch, the controller sends a switching instruction to the inverter, and the disconnection completion message is used to instruct the on-grid and off-grid mode switch to communicate with the inverter.
  • the grid disconnection has been completed, and the switching instruction is used to instruct the inverter to switch to the voltage source mode;
  • the inverter switches to the voltage source mode in response to receiving the switching instruction and determining that the output voltage of the inverter meets a preset range of the rated voltage.
  • the output frequency of the inverter is frozen according to the preset frequency, so as to avoid the occurrence of frequency distortion.
  • the occurrence of voltage distortion events can be avoided, and the control efficiency of the inverter is improved compared with the direct control of the output voltage.
  • the output current of the inverter is controlled according to the negative correlation relationship between the output voltage of the inverter and the apparent power of the inverter, include:
  • the inverter controls the output current of the inverter according to the first correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated to obtain the The first stable output voltage of the inverter and the first apparent power corresponding to the first stable output voltage, and the variation range of the first stable output voltage is less than or equal to the preset range.
  • the method further includes:
  • the second correlation relationship that is positively correlated between the output voltage of the inverter and the apparent power of the load, and the magnitude relationship between the first stable output voltage and the rated voltage Adjusting the first correlation relationship to obtain a third correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated;
  • the inverter controls the output current of the inverter according to the third correlation relationship and the rated voltage, so that the output voltage of the inverter meets a preset range of the rated voltage.
  • the first correlation between the output voltage of the inverter and the apparent power of the inverter is adjusted to obtain The third correlation relationship, so that the output current of the inverter is controlled according to the third correlation relationship and the rated voltage, the efficiency and accuracy of the control can be improved, and the stability of the load operation can be further improved.
  • the second correlation according to the positive correlation between the output voltage of the inverter and the apparent power of the load, the relationship between the first stable output voltage and the rated voltage
  • the magnitude relationship adjusts the first correlation relationship to obtain a third correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated, including:
  • the inverter adjusts the first correlation relationship according to the magnitude relationship between the first stable output voltage and the rated voltage to obtain the output voltage of the inverter and the apparent power of the inverter
  • the fourth relationship is negatively correlated
  • the inverter controls the output current of the inverter according to the fourth correlation relationship, so as to obtain a second stable output voltage of the inverter and a second apparent voltage corresponding to the second stable output voltage. power, the variation range of the second stable output voltage is less than or equal to the preset range.
  • the fourth correlation relationship obtained by adjusting the first correlation relationship through the magnitude relationship between the first stable output voltage and the rated voltage controls the output current of the inverter to obtain the second stable output voltage, which can be obtained.
  • the second stable output voltage which is closer to the rated voltage, is convenient to improve the efficiency of controlling the output voltage.
  • the method further includes:
  • the inverter obtains the output voltage of the inverter and the load according to the first stable output voltage, the first apparent power, the second stable output voltage and the second apparent power
  • the second correlation relationship that is positively correlated between the apparent powers
  • the inverter adjusts the fourth correlation relationship according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage to obtain the output voltage of the inverter and
  • the apparent powers of the inverters have a third correlation relationship in which they are negatively correlated.
  • the fourth correlation relationship is adjusted according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage to obtain the third correlation relationship, which can improve the efficiency of controlling the output voltage.
  • the method further includes:
  • the inverter is based on the minimum output voltage and the maximum output voltage of the inverter within the preset range of the rated voltage, and the maximum apparent power corresponding to the minimum output voltage and the maximum output voltage.
  • the minimum apparent power obtains the first association relationship.
  • the output voltage of the inverter has a negative correlation with the apparent power, so that the maximum apparent power corresponding to the minimum output voltage and the minimum output voltage of the inverter within the preset range of the rated voltage, and the maximum apparent power at the rated voltage can be obtained.
  • the maximum output voltage within the preset voltage range and the minimum apparent power corresponding to the maximum output voltage obtain the first correlation relationship, which improves the accuracy of obtaining the first correlation relationship.
  • the first association relationship includes a first formula:
  • the PN is the rated power of the inverter
  • the U L is the minimum output voltage
  • the U H is the maximum output voltage
  • the U i is the output of the inverter voltage
  • the S 1 (U i ) is the apparent power of the inverter when the output voltage of the inverter is U i .
  • the fourth correlation relationship is used to indicate that when the first stable output voltage is less than the rated voltage, in the fourth correlation relationship, the inverter is within the rated voltage
  • the maximum apparent power corresponding to the preset range is greater than the maximum apparent power corresponding to the inverter within the preset range of the rated voltage in the first correlation relationship; when the first stable output voltage is greater than or When it is equal to the rated voltage, the maximum apparent power corresponding to the inverter within the preset range of the rated voltage in the fourth relationship is smaller than that of the inverter in the first relationship.
  • the maximum apparent power corresponding to the preset range of the rated voltage is used to indicate that when the first stable output voltage is less than the rated voltage, in the fourth correlation relationship, the inverter is within the rated voltage
  • the maximum apparent power corresponding to the preset range is greater than the maximum apparent power corresponding to the inverter within the preset range of the rated voltage in the first correlation relationship; when the first stable output voltage is greater than or When it is equal to the
  • the fourth association relationship includes the second formula:
  • the PN is the rated power of the inverter
  • the U L is the minimum output voltage of the inverter within the preset range of the rated voltage
  • the U H is the inverter is the maximum output voltage of the inverter within the preset range of the rated voltage
  • the U i is the output voltage of the inverter
  • the S 1 * (U i ) is the output voltage of the inverter U
  • the U 1 is the first stable output voltage
  • the U N is the rated voltage
  • the k 1 is the first stable output voltage less than the The correlation coefficient when the rated voltage is used
  • the k 2 is the correlation coefficient when the first stable output voltage is greater than or equal to the rated voltage.
  • the second association relationship includes a third formula:
  • the U i is the output voltage of the inverter
  • the U 1 is the first stable output voltage
  • the U 2 is the second stable output voltage
  • the S 1 (U 1 ) is the first apparent power
  • the S 1 * (U 2 ) is the second apparent power
  • S 1 (U i ) is the inverter when the output voltage of the inverter is U i is the apparent power of the inverter
  • S 2 (U i ) is the apparent power of the load when the output voltage of the inverter is U i .
  • the fourth correlation relationship is adjusted according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage to obtain the inverter
  • the third correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated including:
  • the inverter determines the value of the correlation coefficient in the fourth correlation relationship according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage;
  • the inverter updates the fourth association relationship according to the value of the association coefficient to obtain the third association relationship.
  • the formula for calculating the value k of the relationship coefficient includes the fourth formula:
  • the PN is the rated power of the inverter
  • the U L is the minimum output voltage of the inverter within the preset range of the rated voltage
  • the U H is the inverter is the maximum output voltage of the inverter within the preset range of the rated voltage
  • the U 1 is the first stable output voltage
  • S 2 (U i ) is the output voltage of the inverter when the output voltage is U N Apparent power of the load.
  • controlling the output current of the inverter according to the third correlation relationship and the rated voltage includes:
  • the inverter controls the output current of the inverter according to the target apparent power.
  • the third correlation relationship is used to describe the correlation relationship between the output voltage of the inverter and the apparent power, and the target apparent power corresponding to the rated voltage can be obtained according to the third correlation relationship.
  • the apparent power is related to the output voltage and output current
  • the current output current of the inverter can be tracked according to the target apparent power, and the drive signal corresponding to the rated voltage can be obtained, and then the inverter can be controlled to operate based on the drive signal. Therefore, by controlling the output voltage of the inverter, the output voltage of the inverter can meet the preset range of the rated voltage, and the control efficiency and the stability of the inverter operation are improved, thereby improving the stability of the load operation.
  • the method further includes: in response to the operating mode of the inverter being a current source mode, determining whether the energy storage system is in an island state according to an output voltage of the inverter. In this way, whether the energy storage system is in the island state is determined by the output voltage of the inverter, which can improve the efficiency and accuracy of determining the island state.
  • the preset frequency includes a rated frequency of the load, or an output frequency of the inverter when the energy storage system is in an island state.
  • the rated frequency of the load is the frequency suitable for the load to work, and the rated frequency of the load is used as the preset frequency, and the output frequency of the inverter is frozen, so that the output frequency of the inverter is the rated frequency of the load.
  • the stability of the load to work The output frequency of the inverter when the energy storage system is in the island state is used as the preset frequency, and the output frequency of the inverter is frozen according to the preset frequency, so that the output frequency of the inverter is the reverse when the energy storage system is in the island state.
  • the output frequency of the inverter can be adjusted so that the input frequency of the load does not change in a short period of time, which can improve the stability of the load operation.
  • FIG. 1 is a schematic structural diagram of an energy storage system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an inverter provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another energy storage system provided by an embodiment of the present application.
  • FIG. 5 is a characteristic curve diagram between a wasteful power and an output voltage provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for switching between on-grid and off-grid modes provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another method for switching between on-grid and off-grid modes provided by an embodiment of the present application.
  • the present application provides an energy storage system, which integrates the functions of charging, storing electricity and discharging.
  • the type of energy storage it can include systems such as wind power generation systems and photovoltaic power generation systems, and can be applied to large-scale, small and medium-sized distributed, micro-grid or user-side scenarios according to the type of scenarios, which is not limited here.
  • the power grid involved in this application is also called the power grid, including substations and transmission and distribution lines of various voltages in the power system, that is, three units of substation, transmission, and distribution, which are used to transmit and distribute electric energy, change voltage, etc. , which is not limited here.
  • the embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application.
  • the energy storage system 100 may include a controller 101 , an on/off grid mode switch 102 , an inverter 103 , an energy storage subsystem 104 , a power grid 105 , a load 106 , etc., which are not limited herein.
  • the energy storage subsystem 104 can be connected to at least one inverter 103 directly or by DC coupling
  • the inverter 103 and the on-off-grid mode switch 102 can be connected to the controller 101
  • the controller 101 can also be connected to the grid 105
  • the grid 105 may connect at least one load 106 .
  • the energy storage subsystem 104 may be an energy storage system (Energy Storage System, ESS), which may include a battery module, a DC/DC converter, and the like.
  • ESS Energy Storage System
  • the ESS may also include photovoltaic power generation modules, etc., which are not limited here.
  • the above-mentioned battery modules and photovoltaic power generation modules can both be used to provide the DC voltage on the power generation side of the energy storage system 100 .
  • a DC/DC converter can be used to convert the DC voltage on the power generation side into a voltage form required by the inverter 103 .
  • the inverter 103 may include an energy storage inverter (Power Conditioning System, PCS), and the PCS may also be referred to as an energy storage converter, an energy conversion system, an energy converter, a grid-connected inverter, or a power inverter, etc. This is not limited.
  • the inverter 103 is a converter that converts the received DC voltage (eg, electric charges transmitted by batteries, storage batteries, photovoltaic modules, etc.) into constant-frequency constant-voltage or frequency-modulated and voltage-regulated AC power, and is used for the power grid 105 or the power grid.
  • the load 106 to which 105 is connected supplies power.
  • the inverter 103 In the grid-connected mode, the inverter 103 operates in the current source mode, the internal impedance characteristic is high impedance, and the frequency and phase of the grid voltage are actively detected to control the output current. In the off-grid mode, the internal impedance characteristic is low impedance, and the inverter 103 operates in the voltage source mode, actively determines the frequency, amplitude and phase information of the output voltage, and controls the output voltage.
  • FIG. 2 is a schematic structural diagram of an inverter according to an embodiment of the present application. That is, the inverter 103 in FIG. 1 can be implemented by the structure in FIG. 2 .
  • the inverter 103 may include an inverter circuit 107, a sampling circuit 108, a control circuit 109, a storage circuit 110, and the like.
  • the inverter circuit 107 , the sampling circuit 108 , the control circuit 109 and the storage circuit 110 may be connected through a communication bus.
  • the communication bus can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc. limited.
  • the communication bus can be divided into an address bus, a data bus, a control bus, etc., for example, a 485 bus.
  • the functions of the inverter circuit 107, the sampling circuit 108, the control circuit 109 and the storage circuit 110 can be implemented by integrated circuits, for example, the inverter circuit 107, the sampling circuit 108, the control circuit 109 and the storage circuit 110 are integrated on a printed circuit board (Printed Circuit Board, PCB).
  • PCB also known as printed circuit board, is an important electronic component, a support for electronic components, and a carrier for electrical connection of electronic components.
  • the inverter circuit 107 is used to realize the main function of the inverter 103 , that is, to convert the DC voltage into a constant-frequency constant-voltage or a frequency-modulated and voltage-regulated AC power.
  • the sampling circuit 108 is electrically connected to the inverter circuit 107 for detecting the output voltage and output current of each inverter circuit 107 , or the output voltage and output current of the entire inverter 103 .
  • the sampling circuit 108 may include a sensor, for example, a current sensor and the like.
  • the control circuit 109 may be electrically connected to the storage circuit 110 .
  • the control circuit 109 refers to a component that can coordinate the work of each component according to the functional requirements of the instruction, and is the nerve center and command center of the inverter 103. It is composed of three components and an operation controller (OC), which is extremely important for coordinating the orderly work of the entire system.
  • Control circuitry 109 herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • control circuit 109 may be a processor, or may be a collective term for multiple processing elements.
  • the processor may be a general-purpose central processing unit (Central Processing Unit, CPU), or may be an application-specific integrated circuit (application-specific Integrated Circuit, ASIC), or one or more processors for controlling the execution of the programs of the present application.
  • Integrated circuit for example, one or more microprocessors (Digital Signal Processor, DSP), or, one or more Field Programmable Gate Array (Field Programmable Gate Array, FPGA).
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the processor may include one or more CPUs.
  • the storage circuit 110 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type of static storage device that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Type of dynamic storage device it can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by Any other medium accessed by the computer, but not limited to this.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • CD-ROM compact disc Read-Only Memory
  • CD-ROM storage including compact discs, laser discs, compact
  • the storage circuit 110 may be used to store data such as current, voltage, and power of the inverter circuit 107 .
  • the storage circuit 110 is further used to store the application program code for executing the solution of the present application, and the control circuit 109 controls the execution. That is, the control circuit 109 is used to execute the application program code stored in the storage circuit 110 .
  • the inverter 103 may include an inverter circuit 107 , a sampling circuit 108 , an islanding judgment unit 111 , a frequency freezing unit 112 , a voltage-frequency-power calculating unit 113 , and an apparent power-voltage amplitude model building unit 114, a load characteristic calculation unit 115, a parameter adaptation unit 116, a drive unit 117, a mode switching unit 118, and the like.
  • the switching units 118 can be connected through a communication bus, and the functions of the above units can be implemented by an integrated circuit, which can be used as the control circuit 109 in FIG. 2 after integration.
  • the island determination unit 111 may be used to determine whether the energy storage system 100 is in an island state.
  • the frequency freezing unit 112 can be used to freeze the output frequency of the inverter 103 .
  • the voltage-frequency-power calculation unit 113 may be used to calculate the output voltage, output current and output frequency of the inverter 103 .
  • the apparent power-voltage magnitude model building unit 114 may be used to build a correlation model between the output voltage of the inverter 103 and the apparent power, for example, the difference between the output voltage of the inverter 103 and the apparent power of the inverter 103. relationship between.
  • the load characteristic calculation unit 115 can be used to calculate the full load characteristic of the load 106 , for example, the relationship between the output voltage of the inverter 103 and the apparent power of the load 106 .
  • the adaptation unit 116 may be used to adjust the correlation parameters in the correlation model constructed by the apparent power-voltage amplitude model construction unit 114 .
  • the driving unit 117 can be used to obtain a drive signal, so that the drive signal controls the output current of the inverter 103, so as to obtain the output voltage corresponding to the output current after the control.
  • the mode switching unit 118 can be used to switch the current source mode and the voltage source mode.
  • the controller 101 may be a control circuit for controlling on/off-grid mode switching, such as a power plant controller (Power Plant Controller, PPC), etc., or may be other controllers, such as a system controller (System Control Unit, SCU), etc., which are not limited here.
  • a power plant controller Power Plant Controller, PPC
  • PPC Power Plant Controller
  • SCU System Control Unit
  • the on-grid mode switch 102 is used to connect to the grid 105 in the grid-connected mode and disconnect from the grid 105 in the off-grid mode. That is, the energy storage subsystem 104 is used to power the load 106 after the on-off-grid mode switch 102 is disconnected from the grid 105 . After the on-grid mode switch 102 is connected to the grid 105, the grid 105 supplies power to the load 106. It should be noted that the grid 105 and the energy storage subsystem 104 can supply power to the loads in the grid 105 at the same time.
  • This application does not limit the switch state of the on-grid mode switch 102, which can be connected to the power grid 105 when turned on and disconnected from the power grid 105 when turned off; or disconnected from the power grid 105 when turned on, and connected to the power grid 105 when turned off.
  • Grid 105 is connected.
  • the load 106 involved in this application may be an electric appliance such as an air conditioner, a mobile phone, a computer, an electric water heater, an electric kettle, and an electric vehicle, and the type of the load 106 is not limited in this application. And the number of the loads 106 is not limited. In FIG. 1 , one load is used as an example for illustration.
  • the active power has a parabolic relationship with the voltage amplitude. As shown in Equation 1 and FIG. 4 , when the line segments corresponding to points N1 and N2 indicate that the output voltage satisfies a small variation range of the rated voltage U N , the parabola is approximately a straight line.
  • U rlc is the output voltage of the load
  • R rlc is the resistance of the load
  • P rlc (U rlc ) is the active power of the load
  • the active power of the load changes with the output voltage of the load.
  • reactive power has a two-dimensional nonlinear relationship with voltage amplitude and frequency. As shown in Equation 2, reactive power, voltage amplitude, and frequency are a three-dimensional relationship.
  • U rlc is the output voltage of the load
  • fr rlc is the frequency of the load
  • C rlc is the capacitance of the load
  • L rlc is the inductance of the load
  • Q rlc (U rlc , fr rlc ) is the reactive power of the load
  • the working power changes with the output voltage and frequency of the load.
  • the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the energy storage system 100 .
  • the energy storage system 100 may include more or less components than shown, or combine some components, or separate some components, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the energy storage system 100 may further include a transformer not shown in FIG. 1 , the secondary side of the transformer may be connected to the inverter 103 independently or by AC coupling, and the primary side of the transformer may be connected to the on-grid mode switch 102 .
  • the transformer may include a DC/DC converter that may be used to convert the AC voltage output by the inverter 103 into a voltage form required by the load 106 .
  • the DC/DC circuit 10 may be configured with a circuit according to a specific application environment, for example, a buck circuit, a boost circuit, or a buck-boost circuit and the like.
  • the inverter 103 is used to determine whether the energy storage system 100 is in an island state.
  • the island state refers to a state in which the energy storage system 100 supplies power to the load 106 alone, that is, the power grid does not supply power to the load 106 .
  • the present application does not limit the method for determining that the energy storage system 100 is in the island state.
  • the inverter 103 is specifically configured to determine the energy storage system according to the output voltage of the inverter in response to the working mode being the current source mode. Whether the energy system is in an island state.
  • the operating mode of the inverter 103 when the operating mode of the inverter 103 is the current source mode, it means that the energy storage system 100 is in the grid-connected mode.
  • the inverter 103 can acquire the output voltage and output current of the inverter 103 in real time.
  • the output voltage of the inverter 103 is an AC voltage
  • the output current of the inverter 103 is an AC current. Since the inverter 103 is used as the output terminal of the energy storage system 100 to supply power to the load 106, the output voltage and output current of the inverter 103 can also be referred to as the voltage and current on the grid-connected side of the inverter 103.
  • the inverter 103 may include at least one of the harmonic impedance method, the reactive power scrambling method, and the voltage-frequency distortion method, and determine whether the energy storage system 100 is not based on the output voltage of the inverter 103 . in an island state.
  • the harmonic impedance method is based on two different working conditions: grid-connected mode and off-grid mode.
  • the grid impedance detected by the inverter 103 will change, so that the harmonic impedance can be detected to assist in determining whether the grid jumps. , that is, whether the energy storage system 100 is in an island state is determined by detecting the harmonic impedance. Specifically, it can detect the change of even-order harmonics in the output voltage of the inverter 103.
  • the harmonics output by the AC port of the inverter 103 will flow into the grid.
  • the internal impedance of the grid is very small, so the total harmonic distortion rate of the AC port of the inverter 103 is usually relatively low.
  • the inverter 103 is still working based on the grid-connected mode, that is, the energy storage system 100 is still in the grid-connected mode. If a grid jump event occurs, since the impedance of the local load is usually much larger than the impedance of the grid, the AC port of the inverter 103 will generate large harmonics, resulting in the occurrence of harmonics at the AC port of the inverter 103 mutation. Therefore, when the variation of the even harmonics in the output voltage of the inverter 103 is too large, it is determined that the inverter 103 may be disconnected from the grid, and it is determined that the energy storage system 100 is in an island state.
  • the reactive power winding method is a more traditional anti-islanding protection method.
  • the reactive power winding method is based on the fact that the greater the reactive power in the island state, the greater the frequency offset. Therefore, the frequency offset of the inverter 103 can be determined according to the output voltage of the inverter 103 by injecting reactive power into the energy storage system 100 . When it is determined that the frequency offset of the inverter 103 is too large, it is determined that the energy storage system 100 is in an island state.
  • the voltage-frequency distortion method is based on determining that an abnormal event occurs in the power grid when the amplitude, frequency, and phase of the output voltage of the inverter 103 have a large sudden change, thereby determining that the energy storage system 100 is in an island state.
  • harmonic impedance method and the voltage-frequency distortion method may lead to misjudgments, while using the reactive power winding method takes a long time, and voltage distortion, frequency distortion or The sudden change of phase affects the power supply to the load.
  • the above harmonic impedance method, voltage frequency distortion method and reactive power winding method do not constitute limitations on the embodiments of the present application. In practical applications, other methods or a combination of the above methods may be used. Determine that the energy storage system is in an islanded state. It can be understood that using at least two of the above harmonic impedance method, voltage frequency distortion method and reactive power winding method to determine whether the energy storage system is in an islanding state can improve the accuracy of islanding judgment.
  • the inverter 103 is further configured to send an island state message to the controller 101 in response to determining that the energy storage system 100 is in an island state, so that the controller 101 sends a disconnection command to the on-grid mode switch 102 , and send a switching instruction to the inverter 103 .
  • the island state message is used to instruct the inverter 103 to determine that the energy storage system 100 is in the island state, and may include indication information indicating that the energy storage system 100 is in the island state, and may also include parameters for determining that the energy storage system 100 is in the island state, etc. limited.
  • the disconnection command is used to instruct the on-grid mode switch 102 to disconnect from the grid 105, and the switch command is used to instruct the inverter 103 to switch to the voltage source mode.
  • the current energy storage system 100 can enter the off-grid mode, and the off-grid mode switch 102 needs to be notified to disconnect from the power grid 105, and the inverter 103 needs to be notified from the current source.
  • the mode is switched to voltage source mode.
  • the on-grid and off-grid mode switch 102 has a mechanical delay, and after the on-grid and off-grid mode switch 102 is turned off There is a transmission delay in sending the disconnection completion message to the controller 101 , which leads to a long process of switching between on-grid and off-grid modes, and voltage distortion or frequency distortion may occur during the switching process, which affects the power supply to the load 106 .
  • the inverter 103 is further configured to freeze the output frequency of the inverter 103 according to the preset frequency in response to the energy storage system 100 being in the island state, and according to the output voltage of the inverter 103 According to the relationship proportional to the apparent power of the inverter 103, the output current of the inverter 103 is controlled so that the output voltage of the inverter 103 satisfies the preset range of the rated voltage.
  • the preset frequency may be the rated frequency of the load 106 .
  • the rated frequency of the load 106 is a frequency set for the load 106 in advance, and may be 50 Hz or the like. It can be understood that the rated frequency of the load 106 is a frequency suitable for the operation of the load 106, and the rated frequency of the load 106 is used as the preset frequency, and the output frequency of the inverter 103 is frozen, so that the output frequency of the inverter 103 is the load
  • the rated frequency of 106 improves the stability of the load 106 to work.
  • the preset frequency may also be the frequency of the inverter 103 when the energy storage system 100 is in an island state, etc., which is not limited herein.
  • the frequency of the inverter 103 when the energy storage system 100 is in the island state is taken as The preset frequency is to freeze the output frequency of the inverter 103 according to the preset frequency, so that the output frequency of the inverter 103 is the frequency of the inverter 103 when the energy storage system 100 is in the island state, so that the input frequency of the load 106 There is no change in a short time, and the stability of the load 106 can be improved.
  • This application does not limit the rated voltage, which can be 220V or others.
  • the present application does not limit the preset range, which may be ⁇ 10% or the like.
  • the correlation relationship may be represented by a correlation function between the output voltage of the inverter 103 and the apparent power of the inverter 103 .
  • frlc in Equation 2 can be regarded as a fixed value, and the fixed value is the preset frequency.
  • the reactive power has a parabolic relationship with the voltage amplitude of the output voltage, and when the line segments corresponding to points N3 and N4 are the smaller variation range of the output voltage satisfying the rated voltage U N , the parabola approximates for a straight line.
  • U rlc is the output voltage of the load
  • fr rlc is the frequency of the load
  • C rlc is the capacitance of the load
  • L rlc is the inductance of the load
  • Q rlc (U rlc ) is the reactive power of the load
  • the reactive power of the load follows the The output voltage of the load varies.
  • the load characteristic is the voltage amplitude of the power and the output voltage.
  • the full load characteristics of the load are shown in Equation 4 and Figure 6.
  • the apparent power and the voltage amplitude of the output voltage have a parabolic relationship, and the line segment corresponding to the point N5 and the point N6 is the smaller one where the output voltage meets the rated voltage U N.
  • the parabola approximates a straight line.
  • U rlc is the output voltage of the load
  • P rlc (U rlc ) is the active power of the load
  • Q rlc (U rlc ) is the reactive power of the load
  • S rlc (U rlc ) is the apparent power of the load.
  • the output voltage of the inverter 103 and the apparent voltage of the inverter 103 can be obtained.
  • the line segment L1 is used to describe the relationship between the output voltage of the inverter 103 and the apparent power of the inverter 103
  • the line segment L2 is used to describe the output voltage of the inverter 103 and the apparent power of the load 106 .
  • intersection point there is an intersection point between the line segment L1 and the line segment L2, and the intersection point can be regarded as the point where the energy storage system 100 operates stably under the action of the two correlations, and it can also be understood as a voltage where the output voltage of the inverter 103 will not be distorted, In other words, when the inverter 103 operates with the output voltage and apparent power corresponding to the intersection point, the occurrence of voltage distortion events can be avoided. It should be noted that the amplitude of the output voltage corresponding to the intersection is between the minimum output voltage UL and the maximum output voltage UH of the inverter 103 within the preset range of the rated voltage.
  • the above-mentioned U L and U H can also be regarded as the maximum output voltage and the minimum output voltage of the load 106 within the preset range of the rated voltage.
  • the present application does not limit the sizes of UL and UH .
  • the range between UL and UH is relatively small.
  • the load 106 is sensitive to changes in voltage
  • the rated voltage is 800Vac
  • the rated voltage is 800Vac
  • the output frequency of the inverter 103 can also be frozen according to the preset frequency, so as to avoid the occurrence of frequency distortion events, and according to the preset range of the rated voltage , there is a negative correlation between the output voltage of the inverter 103 and the apparent power of the inverter 103 , and the output current of the inverter 103 can be controlled to make the inverter 103 run stably and the output voltage Stable to meet the preset range of rated voltage. In this way, the occurrence of voltage distortion events can be avoided, and the output voltage can be controlled by controlling the output current. Compared with directly controlling the output voltage, the control efficiency of the inverter 103 is improved, and the operation stability of the load 106 is improved. .
  • the present application does not limit the method for obtaining the correlation between the output voltage of the inverter 103 and the apparent power of the inverter 103 .
  • the range of apparent power of the inverter 103 is mapped to the operating range of the output voltage, that is to say, the maximum output voltage U H of the inverter 103 corresponds to the minimum apparent power of the inverter 103 , and the The minimum output voltage UL corresponds to the maximum apparent power corresponding to the inverter 103 .
  • the inverter 103 is further configured to:
  • the maximum apparent power and the minimum apparent power corresponding to the maximum output voltage U H obtain the first correlation relationship in which the output voltage of the inverter 103 and the apparent power of the inverter 103 are negatively correlated.
  • the maximum apparent power corresponding to the minimum output voltage UL and the minimum output voltage UL of the inverter 103 within the preset range of the rated voltage, and the maximum output of the inverter 103 within the preset range of the rated voltage obtains a first correlation relationship (for example, a binary solution is performed according to the minimum output voltage U L , the maximum apparent power, the maximum output voltage U H and the minimum apparent power. equation to obtain the linear equation corresponding to the first correlation relationship), which improves the accuracy of obtaining the first correlation relationship.
  • the maximum apparent power may be the rated power P N of the inverter 103 , and the minimum apparent power may be 0.
  • the linear equation corresponding to the first correlation relationship includes the first formula, and the first formula is shown in formula (5):
  • the inverter 103 is specifically configured to control the output current of the inverter according to the first correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated , obtain the first stable output voltage of the inverter and the first apparent power corresponding to the first stable output voltage, and the variation range of the first stable output voltage is less than or equal to the preset range;
  • the second correlation relationship in which the apparent power is positively correlated, the magnitude relationship between the first stable output voltage and the rated voltage is adjusted to adjust the first correlation relationship to obtain the difference between the output voltage of the inverter and the apparent power of the inverter.
  • the third correlation relationship is negatively correlated; the output current of the inverter is controlled according to the third correlation relationship and the rated voltage, so that the output voltage of the inverter meets the preset range of the rated voltage.
  • the variation range of the first stable output voltage is less than or equal to the preset range, that is, when the output voltage of the inverter 103 is between the minimum output voltage U L and the maximum output voltage U H , and the When the variation range of the output voltage is less than or equal to the preset range, the corresponding output voltage is , and it can be determined that the output voltage is the first stable output voltage.
  • the first correlation relationship in which the output voltage of the inverter 103 and the apparent power of the inverter 103 are negatively correlated can be determined according to the first correlation relationship, and The output current of the inverter 103 controls the output voltage of the inverter 103, so that the first stable output voltage and the first apparent power corresponding to the first stable output voltage can be obtained, so that frequency distortion and voltage distortion of the load 106 can be avoided. , which can ensure that the load 106 can run stably within a relatively short period of time.
  • the above-mentioned first stable output voltage may not be equal to the rated voltage, and the first correlation relationship does not take into account the load characteristics of the load 106, and the output current of the inverter 103 is controlled based on the first correlation relationship, so it is difficult to obtain a voltage for continuous and stable operation. .
  • the point of intersection between the correlation between the output voltage of the inverter 103 and the apparent power of the inverter 103 and the correlation between the output voltage of the inverter 103 and the apparent power of the load 106 is stable point, the first correlation can be optimized based on the correlation between the output voltage of the inverter 103 and the apparent power of the load 106 .
  • the relationship between the output voltage of the inverter 103 and the apparent power of the load 106 is referred to as the second relationship, and the second relationship is used to describe when the inverter is adjusted according to the preset frequency.
  • the full load characteristic of the load 106 after the output frequency of the converter 103 is frozen.
  • the third correlation is the correlation obtained after the first correlation is adjusted, and is obtained by adjusting the second correlation between the output voltage of the inverter 103 and the apparent power of the load 106 . Since the second correlation is used to describe the full load characteristic after the output frequency of the inverter 103 is frozen according to the preset frequency, the third correlation can be improved to describe the relationship between the output voltage and the apparent power of the inverter 103 The accuracy of the association relationship.
  • the accuracy and efficiency that the output voltage of the inverter 103 meets the preset range of the rated voltage can be improved, thereby improving the operating efficiency of the load 106 stability.
  • the present application does not limit the method for obtaining the second association relationship.
  • Two points at which the load 106 can run stably can be determined first, and then a straight line can be determined based on the two points, so as to obtain the output voltage of the inverter 103 and the output voltage of the inverter.
  • the first stable operating voltage and the first apparent power are a point on the second relationship.
  • the present application does not limit the method for obtaining another point on the second correlation relationship.
  • the inverter 103 is further configured to perform a A correlation relationship is adjusted to obtain a fourth correlation relationship in which the output voltage of the inverter 103 and the apparent power of the inverter 103 are negatively correlated; according to the fourth correlation relationship and the output current of the inverter 103, the inverter The output voltage of the inverter 103 is controlled to obtain the second stable output voltage of the inverter 103 and the second apparent power corresponding to the second stable output voltage.
  • the fourth correlation is the correlation obtained after the first correlation is adjusted, and the fourth correlation is also used to describe the negative correlation between the output voltage of the inverter 103 and the apparent power of the inverter 103 connection relation.
  • the variation range of the second stable output voltage is less than or equal to the preset range. That is to say, the second stable output voltage is the stable output voltage obtained when the output voltage of the inverter 103 is controlled according to the second relationship, and the stable output voltage is between the minimum output voltage U L and the maximum output voltage U H , the variation range is less than or equal to the preset range.
  • the present application does not limit the method for obtaining the fourth association relationship, and the slope and intercept of the line segment corresponding to the first association relationship can be adjusted.
  • the fourth correlation relationship is used to indicate that when the first stable output voltage is less than the rated voltage, in the fourth correlation relationship.
  • the maximum apparent power corresponding to the inverter 103 within the preset range of the rated voltage is greater than the maximum apparent power corresponding to the inverter 103 within the preset range of the rated voltage in the first relationship; when the first stable output voltage is greater than or equal to the rated voltage, the maximum apparent power corresponding to the inverter 103 within the preset range of the rated voltage in the fourth relationship is smaller than the maximum apparent power corresponding to the inverter 103 within the preset range of the rated voltage in the first relationship. inspecting power.
  • the line segment L1 , the line segment L3 and the line segment L4 respectively describe the relationship between the output voltage of the inverter 103 and the apparent power of the inverter 103
  • the line segment L2 describes the output voltage of the inverter 103 and the apparent power of the inverter 103
  • the relationship between the apparent powers of the loads 106 (ie, the second relationship), and the line segment L1 may be the line segment corresponding to the first relationship relationship
  • the line segment L3 and the line segment L4 may be respectively different line segments corresponding to the fourth relationship relationship.
  • the line segment L1, the line segment L3 and the line segment L4 respectively have an intersection point with the line segment L2, and the intersection points are M1, M2 and M3 respectively.
  • the intersection between the line segment corresponding to the output voltage of the inverter 103 and the apparent power of the inverter 103 and the line segment corresponding to the output voltage of the inverter 103 and the apparent power of the load 106 is the inverter 103
  • the first correlation relationship needs to be adjusted to obtain the fourth correlation relationship.
  • the line segment L1 can be adjusted to the line segment L4, so that the line segment L4 corresponding to the fourth relationship and the line segment L2 corresponding to the intersection point M3
  • the output voltage is greater than the first stable output voltage
  • the maximum apparent power corresponding to the intersection point M5 of the line segment L4 and the vertical axis is greater than the maximum apparent power corresponding to the intersection point M4 of the line segment L1 and the vertical axis
  • the line segment L1 can be adjusted to the line segment L3, so that the output voltage corresponding to the intersection point M2 between the line segment L3 and the line segment L2 corresponding to the fourth relationship is smaller than the first stable output voltage, the line segment L3 and the intersection point M6 of the vertical axis
  • the corresponding maximum apparent power is smaller than the maximum apparent power corresponding to the intersection point M4 of the line segment L1 and the vertical axis
  • the fourth association relationship includes a second formula, and the second formula is shown in formula (6):
  • PN is the rated power of the inverter 103
  • U L is the minimum output voltage of the inverter 103
  • U H is the maximum output voltage of the inverter 103 within the preset range of the rated voltage
  • U i is the inverter is the output voltage of the inverter 103
  • S 1 * (U i ) is the apparent power of the inverter 103 when the output voltage of the inverter 103 is U i
  • U 1 is the first stable output voltage
  • U N is the rated voltage
  • k 1 is the correlation coefficient in the second formula when the first stable output voltage is less than the rated voltage
  • k 2 is the correlation coefficient in the second formula when the first stable output voltage is greater than or equal to the rated voltage.
  • the slope and intercept of the line segment corresponding to the first correlation relationship are adjusted based on the correlation coefficient k 1 , so that the line segment corresponding to the fourth correlation relationship can be
  • the intersection point between the line segments corresponding to the second association relationship is located to the right of the intersection point between the line segment corresponding to the first association relationship and the line segment corresponding to the second association relationship, so that the second stable output voltage is greater than the first stable output voltage.
  • the slope and intercept of the line segment corresponding to the first correlation relationship are adjusted based on the correlation coefficient k 2 , so that the line segment corresponding to the fourth correlation relationship can be
  • the intersection point between the line segments corresponding to the association relationship is located to the left of the intersection point between the line segment corresponding to the first association relationship and the line segment corresponding to the second association relationship, so that the second stable output voltage is smaller than the first stable output voltage.
  • the inverter 103 After acquiring the second point in the second correlation relationship (that is, the point corresponding to the second stable operating voltage and the second apparent power), in a possible example, the inverter 103 is further configured to The stable output voltage, the first apparent power, the second stable output voltage, and the second apparent power obtain a second correlation relationship in which there is a positive correlation between the output voltage of the inverter 103 and the apparent power of the load. In this way, the accuracy of acquiring the second association relationship is improved.
  • the second association relationship includes a third formula
  • the third formula is shown in formula (7):
  • U i is the output voltage of the inverter
  • U 1 is the first stable output voltage
  • U 2 is the second stable output voltage
  • S 1 (U 1 ) is the first apparent power
  • S 1 * (U 2 ) is the second apparent power
  • S 1 (U i ) is the apparent power of the inverter when the output voltage of the inverter is U i
  • S 2 (U i ) is the load when the output voltage of the inverter is U i the apparent power.
  • the inverter 103 is specifically configured to adjust the fourth correlation relationship according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage, A third correlation relationship in which the output voltage of the inverter 103 and the apparent power of the inverter 103 are negatively correlated is obtained. In this way, the accuracy of acquiring the third association relationship can be improved.
  • the inverter 103 is specifically configured to determine the first correlation relationship according to the magnitude relationship between the second correlation relationship, the first stable output voltage and the rated voltage. The value of the correlation coefficient in the four correlation relationships; according to the value of the correlation coefficient, the fourth correlation relationship is updated to obtain the third correlation relationship.
  • the correlation coefficient is used to adjust the slope and intercept of the correlation relationship as mentioned above, that is, after updating the correlation coefficient, the line segment corresponding to the fourth correlation relationship can be adjusted, so that the third correlation relationship and the second correlation relationship can be adjusted.
  • the output voltage at the intersection of the corresponding line segments between the relationships is the rated voltage.
  • the calculation formula for the value k of the correlation coefficient includes a fourth formula, and the fourth formula is shown in formula (8):
  • PN is the rated power of the inverter
  • U L is the minimum output voltage of the inverter
  • U H is the maximum output voltage of the inverter
  • U 1 is the first stable output voltage
  • S 2 (U i ) is The output voltage of the inverter is the apparent power of the load when U N.
  • the output voltage of the inverter 103 may be controlled based on the current output current and rated voltage of the inverter 103 so that the output voltage satisfies the preset range of the rated voltage.
  • the present application does not limit the method for controlling the output voltage of the inverter 103 to meet the preset range of the rated voltage.
  • the inverter 103 is specifically configured to obtain the target corresponding to the rated voltage according to the third association relationship Apparent power rate; according to the target apparent power and the output current of the inverter, the output voltage of the inverter is controlled.
  • the third correlation relationship is used to describe the correlation relationship between the output voltage of the inverter 103 and the apparent power, and the target apparent power corresponding to the rated voltage can be obtained according to the third correlation relationship.
  • the apparent power is related to the output voltage and output current, so the current output current of the inverter 103 can be tracked according to the target apparent power to obtain the drive signal corresponding to the rated voltage, and then the inverter 103 can be controlled based on the drive signal. Therefore, by controlling the output voltage of the inverter 103, the output voltage of the inverter 103 can meet the preset range of the rated voltage, the control efficiency and the stability of the inverter 103 operation are improved, and the load 106 is improved. Operational stability.
  • the controller 101 is further configured to send a disconnection instruction to the on-grid mode switch 102; in response to receiving the disconnection completion message from the on-grid and off-grid mode switch 102, send a switch instruction to the inverter 103 .
  • the disconnection instruction is used to instruct the on-grid mode switch 102 to disconnect from the power grid 105
  • the disconnect completion message is used to indicate that the disconnection of the on-grid mode switch 102 from the power grid 105 has been completed
  • the switch instruction is used to instruct the inverter
  • the controller 103 switches to the voltage source mode. That is to say, after the on-grid mode switch 102 is disconnected from the grid, it sends a disconnection completion message to the controller 101 to indicate that the on-grid mode switch 102 has been disconnected from the grid, and then informs the inverter 103 to perform Mode switching to achieve and off-grid mode switching.
  • the output frequency of the inverter 103 can be frozen by the inverter 103 before the mode switching of the inverter 103, and then the output frequency of the inverter 103 can be frozen by the inverter 103.
  • the output current is controlled to realize the control of the output voltage, which can avoid the occurrence of frequency distortion and voltage distortion, and improve the stability of the operation of the load 106 .
  • the inverter 103 is further configured to switch to the voltage source mode in response to receiving the switching instruction and determining that the output voltage of the inverter 103 meets the preset range of the rated voltage. That is, after the inverter 103 receives the disconnection completion message from the grid-connected and off-grid mode switch 102, and after it is determined that the inverter 103 operates stably, and the output voltage of the inverter 103 meets the preset range of the rated voltage After that, it is switched to the voltage source mode, which further improves the stability of the operation of the load 106 .
  • FIG. 9 shows a method for switching between on-grid and off-grid modes provided by an embodiment of the present application.
  • the method is applied to an energy storage system, and the energy storage system includes a controller, an inverter, and an on-grid and off-grid mode switch. , grid and load.
  • the method includes but is not limited to the following steps S901-S908, wherein:
  • the inverter determines whether the energy storage system is in an island state.
  • step S901 if it is determined in step S901 that the energy storage system is in an island state, then steps S902 and S903 are executed. Otherwise, continue to step S901.
  • step S901 includes: in response to the operating mode of the inverter being the current source mode, determining whether the energy storage system is in an island state according to the output voltage of the inverter. In this way, whether the energy storage system is in the island state is determined by the output voltage of the inverter, which can improve the efficiency and accuracy of determining the island state.
  • S903 The inverter freezes the output frequency of the inverter according to the preset frequency.
  • the inverter controls the output current of the inverter according to the negative correlation relationship between the output voltage of the inverter and the apparent power of the inverter, so that the output voltage of the inverter meets the rated voltage preset range.
  • step S904 includes: the inverter controls the output current of the inverter according to a first correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated , to obtain the first stable output voltage of the inverter and the first apparent power corresponding to the first stable output voltage.
  • the variation range of the first stable output voltage is less than or equal to the preset range.
  • the method further includes: the inverter according to the second correlation relationship in which the output voltage of the inverter and the apparent power of the load are positively correlated, and the magnitude relationship between the first stable output voltage and the rated voltage Adjust the second correlation relationship to obtain a third correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated;
  • the output current is controlled so that the inverter operates stably, and the output voltage of the inverter satisfies the preset range of the rated voltage.
  • the output current of the inverter is controlled according to the first correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated to obtain the output current of the inverter.
  • the method further includes: according to the minimum output voltage and the maximum output voltage of the inverter within the preset range of the rated voltage, and the corresponding minimum output voltage. The first correlation relationship is obtained from the maximum apparent power and the minimum apparent power corresponding to the maximum output voltage.
  • the output voltage of the inverter has a negative correlation with the apparent power, so that the maximum apparent power corresponding to the minimum output voltage and the minimum output voltage of the inverter within the preset range of the rated voltage, and the maximum apparent power at the rated voltage can be obtained.
  • the maximum output voltage within the preset voltage range and the minimum apparent power corresponding to the maximum output voltage obtain the first correlation relationship, which improves the accuracy of obtaining the first correlation relationship.
  • the first association relationship includes the first formula:
  • P N is the rated power of the inverter
  • U L is the minimum output voltage of the inverter within the preset range of the rated voltage
  • U H is the maximum output voltage of the inverter within the preset range of the rated voltage
  • U i is the output voltage of the inverter
  • S 1 (U i ) is the apparent power of the inverter when the output voltage of the inverter is U i .
  • the second correlation relationship is carried out according to the second correlation relationship in which the output voltage of the inverter and the apparent power of the load are positively correlated, and the magnitude relationship between the first stable output voltage and the rated voltage. Adjusting to obtain a third correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated, including: performing the first correlation relationship according to the magnitude relationship between the first stable output voltage and the rated voltage Adjust to obtain a fourth correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated; control the output voltage of the inverter according to the fourth correlation relationship and the output current of the inverter, Obtain the second stable output voltage of the inverter and the second apparent power corresponding to the second stable output voltage; obtain the inverse according to the first stable output voltage, the first apparent power, the second stable output voltage and the second apparent power.
  • the variation range of the second stable output voltage is less than or equal to the preset range.
  • the load corresponding to the energy storage system can be considered to remain unchanged or change little, and there is a negative correlation between the output voltage of the inverter and the apparent power, and it is related to the inverter. There is a stable operation intersection between the positive correlation between the output voltage of the load and the apparent power of the load.
  • the first correlation relationship is adjusted to obtain the fourth correlation relationship, and then according to the corresponding first correlation relationship and the fourth correlation relationship
  • the line segment controls the output voltage of the inverter to obtain the first apparent power corresponding to the first stable output voltage and the first stable output voltage, and the second apparent power corresponding to the second stable output voltage and the second stable output voltage. power, so as to obtain two points on the line segment corresponding to the output voltage of the inverter and the apparent power of the load.
  • the second correlation relationship between the output voltage of the inverter and the apparent power of the load can be obtained, and the obtained The accuracy of the second association relationship.
  • the three correlation relationship can improve the accuracy of obtaining the third correlation relationship, and is convenient to improve the stability of the load operation.
  • the fourth correlation relationship obtained by adjusting the first correlation relationship through the magnitude relationship between the first stable output voltage and the rated voltage controls the output current of the inverter to obtain the second stable output voltage, which can be obtained.
  • the second stable output voltage which is closer to the rated voltage, is convenient to improve the efficiency of controlling the output voltage.
  • the second correlation relationship is obtained according to the first stable output voltage, the first apparent power, the second stable output voltage and the second apparent power, which can improve the accuracy of obtaining the second correlation relationship.
  • the fourth correlation relationship is adjusted according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage to obtain the third correlation relationship, which can improve the efficiency of controlling the output voltage.
  • the fourth relationship is used to indicate that when the first stable output voltage is less than the rated voltage, the maximum apparent power corresponding to the inverter within the preset range of the rated voltage in the fourth relationship is greater than the first The maximum apparent power corresponding to the inverter within the preset range of the rated voltage in a relationship; when the first stable output voltage is greater than or equal to the rated voltage, the inverter in the fourth relationship is within the preset range of the rated voltage The corresponding maximum apparent power is smaller than the maximum apparent power corresponding to the inverter within the preset range of the rated voltage in the first correlation relationship. In this way, the second stable output voltage obtained by the control through the fourth correlation relationship is closer to the rated voltage than the first stable output voltage, which is convenient to improve the efficiency of controlling the output voltage.
  • the fourth association relationship includes the second formula:
  • P N is the rated power of the inverter
  • U L is the minimum output voltage of the inverter within the preset range of the rated voltage
  • U H is the maximum output voltage of the inverter within the preset range of the rated voltage
  • U i is the output voltage of the inverter
  • S 1 * (U i ) is the apparent power of the inverter when the output voltage of the inverter is U i
  • U 1 is the first stable output voltage
  • U N is the rated voltage
  • k 1 is the correlation coefficient when the first stable output voltage is less than the rated voltage
  • k 2 is the correlation coefficient when the first stable output voltage is greater than or equal to the rated voltage.
  • the second association relationship includes a third formula:
  • U i is the output voltage of the inverter
  • U 1 is the first stable output voltage
  • U 2 is the second stable output voltage
  • S 1 (U 1 ) is the first apparent power
  • S 1 * (U 2 ) is the second apparent power
  • S 1 (U i ) is the apparent power of the inverter when the output voltage of the inverter is U i
  • S 2 (U i ) is the load when the output voltage of the inverter is U i the apparent power.
  • the fourth correlation relationship is adjusted according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage to obtain the output voltage of the inverter and the apparent power of the inverter
  • the third correlation relationship that is negatively correlated between them includes: determining the value of the correlation coefficient in the fourth correlation relationship according to the second correlation relationship, the magnitude relationship between the first stable output voltage and the rated voltage; value to update the fourth relationship to obtain the third relationship.
  • the formula for calculating the value k of the relationship coefficient includes the fourth formula:
  • P N is the rated power of the inverter
  • U L is the minimum output voltage of the inverter within the preset range of the rated voltage
  • U H is the maximum output voltage of the inverter within the preset range of the rated voltage
  • U 1 is the first stable output voltage
  • S 2 (U i ) is the apparent power of the load when the output voltage of the inverter is UN.
  • controlling the output current of the inverter according to the third correlation relationship and the rated voltage includes: obtaining the target apparent power corresponding to the rated voltage according to the third correlation relationship; The output current of the inverter is controlled.
  • the third correlation relationship is used to describe the correlation relationship between the output voltage of the inverter and the apparent power, and the target apparent power corresponding to the rated voltage can be obtained according to the third correlation relationship.
  • the apparent power is related to the output voltage and output current
  • the current output current of the inverter can be tracked according to the target apparent power, and the drive signal corresponding to the rated voltage can be obtained, and then the inverter can be controlled to operate based on the drive signal. Therefore, by controlling the output voltage of the inverter, the output voltage of the inverter can meet the preset range of the rated voltage, and the control efficiency and the stability of the inverter operation are improved, thereby improving the stability of the load operation.
  • the preset frequency includes the rated frequency of the load or the output frequency of the inverter when the energy storage system is in an island state.
  • the rated frequency of the load is the frequency suitable for the load to work, and the rated frequency of the load is used as the preset frequency, and the output frequency of the inverter is frozen, so that the output frequency of the inverter is the rated frequency of the load.
  • the stability of the load to work The output frequency of the inverter when the energy storage system is in the island state is used as the preset frequency, and the output frequency of the inverter is frozen according to the preset frequency, so that the output frequency of the inverter is the reverse when the energy storage system is in the island state.
  • the output frequency of the inverter can be adjusted so that the input frequency of the load does not change in a short period of time, which can improve the stability of the load operation.
  • S905 The controller sends a disconnection command to the on-grid mode switch.
  • the disconnection instruction is used to instruct the on-grid mode switch to disconnect from the grid corresponding to the on-grid mode switch.
  • S906 The on-grid mode switch sends a disconnection completion message to the controller.
  • the disconnection completion message is used to indicate that the disconnection of the on-grid mode switch from the grid has been completed.
  • S907 The controller sends a switching instruction to the inverter.
  • the switching instruction is used to instruct the inverter to switch to the voltage source mode.
  • the inverter determines that the energy storage system is in an islanding state, it sends an islanding state message to the controller to disconnect the grid-connected and off-grid mode switch from the grid corresponding to the grid-connected and off-grid mode switch.
  • the output frequency of the inverter can also be frozen according to the preset frequency, so as to avoid the occurrence of frequency distortion. There is a negative correlation between the output voltage and the apparent power of the inverter, and the output current of the inverter can be controlled so that the inverter operates stably and the output voltage stably meets the preset range of the rated voltage.
  • the controller can send a switching command to the inverter, and the inverter can receive the switching command and determine that it operates stably, and the output voltage meets the pre-specified rated voltage. After setting the range, switch to the voltage source mode to realize the switch between on-grid and off-grid mode, which further improves the stability of the load operation.
  • FIG. 10 is another method for switching between on-grid and off-grid modes provided by an embodiment of the present application.
  • the method is applied to an energy storage system, and the energy storage system further includes a control Inverter, grid, load, inverter and off-grid mode switch.
  • the method includes but is not limited to the following steps S1001-S1010, wherein:
  • the inverter determines whether the energy storage system is in an island state.
  • step S1001 if it is determined in step S1001 that the energy storage system is in an island state, steps S1002 and S1003 are executed. Otherwise, continue to step S1001.
  • S1003 The inverter freezes the output frequency of the inverter according to the preset frequency.
  • the inverter controls the output current of the inverter according to the first correlation relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated to obtain a first stable output of the inverter The voltage and the first apparent power corresponding to the first stable output voltage.
  • the inverter adjusts the second correlation relationship according to the second correlation relationship in which the output voltage of the inverter and the apparent power of the load are positively correlated, and the magnitude relationship between the first stable output voltage and the rated voltage, to obtain A third relationship in which the output voltage of the inverter and the apparent power of the inverter are negatively correlated.
  • the inverter controls the output current of the inverter according to the third correlation relationship and the rated voltage, so that the inverter operates stably, and the output voltage of the inverter meets the preset range of the rated voltage.
  • S1007 The controller sends a disconnection command to the on-grid mode switch.
  • the disconnection instruction is used to instruct the on-grid mode switch to disconnect from the grid corresponding to the on-grid mode switch.
  • S1008 The on-grid mode switch sends a disconnection completion message to the controller.
  • the disconnection completion message is used to indicate that the disconnection of the on-grid mode switch from the grid has been completed.
  • S1009 The controller sends a switching instruction to the inverter.
  • the switching instruction is used to instruct the inverter to switch to the voltage source mode.
  • the inverter determines that the energy storage system is in an islanding state, it sends an islanding state message to the controller to disconnect the grid-connected and off-grid mode switch from the grid corresponding to the grid-connected and off-grid mode switch. And after it is determined that the energy storage system is in the island state, the output frequency of the inverter can also be frozen according to the preset frequency, so as to avoid the occurrence of frequency distortion events, and according to the preset range of the rated voltage, the inverter The output voltage of the inverter is negatively correlated with the apparent power of the inverter, and the output current of the inverter is controlled to obtain the first stable output voltage of the inverter and the corresponding first stable output voltage.
  • the inverter adjusts the second correlation relationship according to the second correlation relationship in which the output voltage of the inverter and the apparent power of the load are positively correlated, and the magnitude relationship between the first stable output voltage and the rated voltage, to obtain
  • the output voltage of the inverter and the apparent power of the inverter are negatively correlated with a third correlation relationship, and then the output current of the inverter is controlled according to the third correlation relationship and the rated voltage, so that the inverter's output current is controlled.
  • the output voltage meets the preset range of the rated voltage.
  • the first relationship between the output voltage of the inverter and the apparent power of the inverter is adjusted to Improve control efficiency and accuracy.
  • the control of the output voltage is realized by controlling the output current, which can further improve the stability of the load operation compared with the direct control of the output voltage.
  • the controller can send a switching command to the inverter, and the inverter can receive the switching command and determine that it operates stably, and the output voltage meets the pre-specified rated voltage.
  • switch to the voltage source mode to realize the switch between on-grid and off-grid mode, which further improves the stability of the load operation.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions when loaded and executed on a computer, result in whole or in part of the processes or functions described herein.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk), and the like.

Abstract

本申请实施例提供一种储能系统,包括控制器、逆变器、并离网模式开关和负载,其中,逆变器用于响应于确定储能系统处于孤岛状态,向控制器发送孤岛状态消息,并根据预设频率对逆变器的输出频率进行冻结,根据逆变器的输出电压和逆变器的视在功率之间成负相关的关联关系对逆变器的输出电流进行控制;控制器用于向并离网模式开关发送断开指令;控制器还用于响应于接收到来自并离网模式开关的断开完成消息,向逆变器发送切换指令;逆变器还用于在接收到切换指令,且确定逆变器的输出电压满足额定电压的预设范围时,切换为电压源模式。采用本申请实施例,可避免发生频率畸变和电压畸变的事件,提高了逆变器的控制效率,便于提高负载运行的稳定性。

Description

并离网模式切换的方法和储能系统 技术领域
本申请涉及储能技术领域,尤其涉及一种并离网模式切换的方法和储能系统。
背景技术
随着新能源产业飞速发展,可采用储能系统对风力发电或光伏发电的电量进行储存,可避免出现弃风弃光问题。当储能系统出现计划性或非计划性的电网跳网事件发生时,储能系统可以从并网模式切换到离网模式,为储能系统的电网中的负载供电。
目前,在切换的过程中,逆变器对输出电压进行控制所需的时间较长、断开并离网模式开关存在机械延时,以及并离网模式开关状态反馈存在传输延时等,导致切换过程较长,在切换的过程中可能会发生电压畸变或频率畸变,影响对负载的供电。
发明内容
本申请实施例公开了一种并离网模式切换的方法和储能系统,对逆变器的输出频率进行冻结,可避免发生频率畸变的事件。且通过对输出电流进行控制实现对输出电压的控制,可避免发生电压畸变的事件,相比直接对输出电压进行控制,提高了逆变器的控制效率。在逆变器接收到控制器发送的切换指令,以及确定逆变器的输出电压满足额定电压的预设范围之后,切换为电压源模式,实现并离网模式切换,提高了负载运行的稳定性。
第一方面,本申请实施例公开了一种储能系统,储能系统包括控制器、与控制器连接的逆变器和并离网模式开关、与并离网模式开关连接的负载,其中,
所述逆变器响应于确定所述储能系统处于孤岛状态,向所述控制器发送孤岛状态消息,并根据预设频率对所述逆变器的输出频率进行冻结,根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的关联关系,对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足额定电压的预设范围;
所述控制器用于基于所述孤岛状态消息向所述并离网模式开关发送断开指令,所述断开指令用于指示所述并离网模式开关与所述并离网模式开关对应的电网断开连接;响应于接收到来自所述并离网模式开关的断开完成消息,向所述逆变器发送切换指令,所述断开完成消息用于指示所述并离网模式开关与所述电网断开连接,所述切换指令用于指示所述逆变器切换为电压源模式;
所述逆变器还用于响应于接收到所述切换指令,且确定所述逆变器的输出电压满足额定电压的预设范围,切换为所述电压源模式。
可以理解,在逆变器确定储能系统处于孤岛状态之后,根据预设频率对逆变器的输出频率进行冻结,可避免发生频率畸变的事件。且通过对输出电流进行控制实现对输出电压的控制,可避免发生电压畸变的事件,相比直接对输出电压进行控制,提高了逆变器的控制效率。在逆变器接收到控制器发送的切换指令,以及确定逆变器的输出电压满足额定电压的预设范围之后,切换为电压源模式,实现并离网模式切换,提高了负载运行的稳定性。
在一种可能的示例中,所述逆变器具体用于根据所述逆变器的输出电压和所述逆变器 的视在功率之间成负相关的第一关联关系,对所述逆变器的输出电流进行控制,得到所述逆变器的第一稳定输出电压和所述第一稳定输出电压对应的第一视在功率,所述第一稳定输出电压的变化范围小于或等于所述预设范围;根据所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系、所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系;根据所述第三关联关系和所述额定电压对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足所述额定电压的预设范围。如此,考虑了逆变器的输出电压和负载的视在功率之间的第二关联关系,对逆变器的输出电压和逆变器的视在功率之间的第一关联关系进行调整,得到第三关联关系,从而根据第三关联关系和额定电压对逆变器的输出电流进行控制,可提高控制的效率和准确率,可进一步提高负载运行的稳定性。
在一种可能的示例中,所述逆变器具体用于根据所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第四关联关系;根据所述第四关联关系对所述逆变器的输出电流进行控制,得到所述逆变器的第二稳定输出电压和所述第二稳定输出电压对应的第二视在功率,所述第二稳定输出电压的变化范围小于或等于所述预设范围;根据所述第一稳定输出电压、所述第一视在功率、所述第二稳定输出电压和所述第二视在功率获取所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系;根据所述第二关联关系、所述第一稳定输出电压和所述额定电压之间的大小关系对所述第四关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系。
可以理解,通过第一稳定输出电压和额定电压之间的大小关系对第一关联关系进行调整得到的第四关联关系,对逆变器的输出电流进行控制,得到第二稳定输出电压,可获取相比第一稳定输出电压更接近额定电压的第二稳定输出电压,便于提高控制输出电压的效率。再根据第一稳定输出电压、第一视在功率、第二稳定输出电压和第二视在功率获取第二关联关系,可提高获取第二关联关系的准确率。再根据第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系进行调整得到第三关联关系,可提高控制输出电压的效率。
在一种可能的示例中,所述逆变器还用于根据所述逆变器在所述额定电压的预设范围内的最小输出电压和最大输出电压,以及所述最小输出电压对应的最大视在功率和所述最大输出电压对应的最小视在功率获取所述第一关联关系。可以理解,逆变器的输出电压和视在功率成负相关关系,从而可通过逆变器在额定电压的预设范围内的最小输出电压和最小输出电压对应的最大视在功率,以及在额定电压的预设范围内的最大输出电压和最大输出电压对应的最小视在功率获取第一关联关系,提高了获取第一关联关系的准确率。
在一种可能的示例中,所述第一关联关系包括第一公式:
Figure PCTCN2021083099-appb-000001
其中,所述P N为所述逆变器的额定功率,所述U L为所述最小输出电压,所述U H为所述最大输出电压,所述U i为所述逆变器的输出电压,所述S 1(U i)为所述逆变器的输出电压为U i 时所述逆变器的视在功率。如此,通过第一公式描述第一关联关系,可提高获取第一关联关系的准确率。
在一种可能的示例中,所述第四关联关系用于指示当所述第一稳定输出电压小于所述额定电压时,所述第四关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率大于所述第一关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率;当所述第一稳定输出电压大于或等于所述额定电压时,所述第四关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率小于所述第一关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率。如此,通过第四关联关系进行控制得到的第二稳定输出电压相比第一稳定输出电压,更接近额定电压,便于提高控制输出电压的效率。
在一种可能的示例中,所述第四关联关系包括第二公式:
Figure PCTCN2021083099-appb-000002
其中,所述P N为所述逆变器的额定功率,所述U L为所述逆变器在所述额定电压的预设范围内的最小输出电压,所述U H为所述逆变器在所述额定电压的预设范围内的最大输出电压,所述U i为所述逆变器的输出电压,所述S 1 *(U i)为所述逆变器的输出电压为U i时所述逆变器的视在功率,所述U 1为所述第一稳定输出电压,所述U N为所述额定电压,所述k 1为所述第一稳定输出电压小于所述额定电压时的关联系数,所述k 2为所述第一稳定输出电压大于或等于所述额定电压时的关联系数。如此,通过第二公式描述第四关联关系,可提高获取第四关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,所述第二关联关系包括第三公式:
Figure PCTCN2021083099-appb-000003
其中,所述U i为所述逆变器的输出电压,所述U 1为所述第一稳定输出电压,所述U 2为所述第二稳定输出电压,所述S 1(U 1)为所述第一视在功率,所述S 1 *(U 2)为所述第二视在功率,S 1(U i)为所述逆变器的输出电压为U i时所述逆变器的视在功率,S 2(U i)为所述逆变器的输出电压为U i时所述负载的视在功率。如此,通过第三公式描述第二关联关系,可提高获取第二关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,所述逆变器具体用于根据所述第二关联关系、所述第一稳定输出电压和所述额定电压之间的大小关系确定所述第四关联关系中的关联系数的取值;根据所述关联系数的取值对所述第四关联关系进行更新,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系。可以理解,通过第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系中的关系系数进行更新,可提高获取第三关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,所述关系系数的取值k的计算公式包括第四公式:
Figure PCTCN2021083099-appb-000004
其中,所述P N为所述逆变器的额定功率,所述U L为所述逆变器在所述额定电压的预设范围内的最小输出电压,所述U H为所述逆变器在所述额定电压的预设范围内的最大输出电压,所述U 1为所述第一稳定输出电压,S 2(U i)为所述逆变器的输出电压为U N时所述负载的视在功率。如此,通过第四公式获取第四关联关系中关联系数的取值,可提高更新第四关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,所述逆变器具体用于根据所述第三关联关系获取所述额定电压对应的目标视在功率;根据所述目标视在功率对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足所述额定电压的预设范围。
可以理解,第三关联关系用于描述逆变器的输出电压和视在功率之间的关联关系,则可根据第三关联关系获取额定电压对应的目标视在功率。而视在功率与输出电压和输出电流相关,则可根据目标视在功率对逆变器当前的输出电流进行跟踪,得到额定电压对应的驱动信号,再控制逆变器基于该驱动信号进行运行,从而通过对逆变器的输出电压进行控制,实现逆变器的输出电压满足额定电压的预设范围,提高了控制效率和逆变器运行的稳定性,从而提高了负载运行的稳定性。
在一种可能的示例中,所述逆变器具体用于响应于工作模式为电流源模式,根据所述逆变器的输出电压确定所述储能系统是否处于孤岛状态。如此,通过逆变器的输出电压确定储能系统是否处于孤岛状态,可提高确定孤岛状态的效率和准确率。
第二方面,本申请实施例公开了一种并离网模式切换的方法,应用于储能系统中,储能系统包括控制器、逆变器、并离网模式开关和负载,其中:
所述逆变器响应于确定所述储能系统处于孤岛状态,向所述控制器发送孤岛状态消息,并根据预设频率对所述逆变器的输出频率进行冻结,根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的关联关系,对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足额定电压的预设范围;
所述控制器向所述并离网模式开关发送断开指令,所述断开指令用于指示所述并离网模式开关与所述电网断开连接;
所述控制器响应于接收到来自所述并离网模式开关的断开完成消息,向所述逆变器发送切换指令,所述断开完成消息用于指示所述并离网模式开关与所述电网断开连接已完成,所述切换指令用于指示所述逆变器切换为所述电压源模式;
所述逆变器响应于接收到所述切换指令,且确定所述逆变器的输出电压满足额定电压的预设范围,切换为所述电压源模式。
可以理解,在逆变器确定储能系统处于孤岛状态之后,根据预设频率对逆变器的输出频率进行冻结,可避免发生频率畸变的事件。且通过对输出电流进行控制实现对输出电压的控制,可避免发生电压畸变的事件,相比直接对输出电压进行控制,提高了逆变器的控制效率。在逆变器接收到控制器发送的切换指令,以及确定逆变器的输出电压满足额定电 压的预设范围之后,切换为电压源模式,实现并离网模式切换,提高了负载运行的稳定性。
在一种可能的示例中,所述根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的关联关系,对所述逆变器的输出电流进行控制,包括:
所述逆变器根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第一关联关系,对所述逆变器的输出电流进行控制,得到所述逆变器的第一稳定输出电压和所述第一稳定输出电压对应的第一视在功率,所述第一稳定输出电压的变化范围小于或等于所述预设范围。
在一种可能的示例中,所述方法还包括:
所述逆变器根据所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系、所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系;
所述逆变器根据所述第三关联关系和所述额定电压对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足所述额定电压的预设范围。
如此,考虑了逆变器的输出电压和负载的视在功率之间的第二关联关系,对逆变器的输出电压和逆变器的视在功率之间的第一关联关系进行调整,得到第三关联关系,从而根据第三关联关系和额定电压对逆变器的输出电流进行控制,可提高控制的效率和准确率,可进一步提高负载运行的稳定性。
在一种可能的示例中,所述根据所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系、所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系,包括:
所述逆变器根据所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第四关联关系;
所述逆变器根据所述第四关联关系对所述逆变器的输出电流进行控制,得到所述逆变器的第二稳定输出电压和所述第二稳定输出电压对应的第二视在功率,所述第二稳定输出电压的变化范围小于或等于所述预设范围。
可以理解,通过第一稳定输出电压和额定电压之间的大小关系对第一关联关系进行调整得到的第四关联关系,对逆变器的输出电流进行控制,得到第二稳定输出电压,可获取相比第一稳定输出电压更接近额定电压的第二稳定输出电压,便于提高控制输出电压的效率。
在一种可能的示例中,所述方法还包括:
所述逆变器根据所述第一稳定输出电压、所述第一视在功率、所述第二稳定输出电压和所述第二视在功率获取所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系;
所述逆变器根据所述第二关联关系、所述第一稳定输出电压和所述额定电压之间的大小关系对所述第四关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系。
可以理解,根据第一稳定输出电压、第一视在功率、第二稳定输出电压和第二视在功率获取第二关联关系,可提高获取第二关联关系的准确率。再根据第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系进行调整得到第三关联关系,可提高控制输出电压的效率。
在一种可能的示例中,在所述根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第一关联关系,对所述逆变器的输出电流进行控制之前,所述方法还包括:
所述逆变器根据所述逆变器在所述额定电压的预设范围内的最小输出电压和最大输出电压,以及所述最小输出电压对应的最大视在功率和所述最大输出电压对应的最小视在功率获取所述第一关联关系。
可以理解,逆变器的输出电压和视在功率成负相关关系,从而可通过逆变器在额定电压的预设范围内的最小输出电压和最小输出电压对应的最大视在功率,以及在额定电压的预设范围内的最大输出电压和最大输出电压对应的最小视在功率获取第一关联关系,提高了获取第一关联关系的准确率。
在一种可能的示例中,所述第一关联关系包括第一公式:
Figure PCTCN2021083099-appb-000005
其中,所述P N为所述逆变器的额定功率,所述U L为所述最小输出电压,所述U H为所述最大输出电压,所述U i为所述逆变器的输出电压,所述S 1(U i)为所述逆变器的输出电压为U i时所述逆变器的视在功率。如此,通过第一公式描述第一关联关系,可提高获取第一关联关系的准确率。
在一种可能的示例中,所述第四关联关系用于指示当所述第一稳定输出电压小于所述额定电压时,所述第四关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率大于所述第一关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率;当所述第一稳定输出电压大于或等于所述额定电压时,所述第四关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率小于所述第一关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率。如此,通过第四关联关系进行控制得到的第二稳定输出电压相比第一稳定输出电压,更接近额定电压,便于提高控制输出电压的效率。
在一种可能的示例中,所述第四关联关系包括第二公式:
Figure PCTCN2021083099-appb-000006
其中,所述P N为所述逆变器的额定功率,所述U L为所述逆变器在所述额定电压的预设范围内的最小输出电压,所述U H为所述逆变器在所述额定电压的预设范围内的最大输出电压,所述U i为所述逆变器的输出电压,所述S 1 *(U i)为所述逆变器的输出电压为U i时所述逆变器的视在功率,所述U 1为所述第一稳定输出电压,所述U N为所述额定电压,所述k 1为所 述第一稳定输出电压小于所述额定电压时的关联系数,所述k 2为所述第一稳定输出电压大于或等于所述额定电压时的关联系数。如此,通过第二公式描述第四关联关系,可提高获取第四关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,所述第二关联关系包括第三公式:
Figure PCTCN2021083099-appb-000007
其中,所述U i为所述逆变器的输出电压,所述U 1为所述第一稳定输出电压,所述U 2为所述第二稳定输出电压,所述S 1(U 1)为所述第一视在功率,所述S 1 *(U 2)为所述第二视在功率,S 1(U i)为所述逆变器的输出电压为U i时所述逆变器的视在功率,S 2(U i)为所述逆变器的输出电压为U i时所述负载的视在功率。如此,通过第三公式描述第二关联关系,可提高获取第二关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,所述根据所述第二关联关系、所述第一稳定输出电压和所述额定电压之间的大小关系对所述第四关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系,包括:
所述逆变器根据所述第二关联关系、所述第一稳定输出电压和所述额定电压之间的大小关系确定所述第四关联关系中的关联系数的取值;
所述逆变器根据所述关联系数的取值对所述第四关联关系进行更新,得到所述第三关联关系。
可以理解,通过第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系中的关系系数进行更新,可提高获取第三关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,所述关系系数的取值k的计算公式包括第四公式:
Figure PCTCN2021083099-appb-000008
其中,所述P N为所述逆变器的额定功率,所述U L为所述逆变器在所述额定电压的预设范围内的最小输出电压,所述U H为所述逆变器在所述额定电压的预设范围内的最大输出电压,所述U 1为所述第一稳定输出电压,S 2(U i)为所述逆变器的输出电压为U N时所述负载的视在功率。如此,通过第四公式获取第四关联关系中关联系数的取值,可提高更新第四关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,所述根据所述第三关联关系和所述额定电压对所述逆变器的输出电流进行控制,包括:
所述逆变器根据所述第三关联关系获取所述额定电压对应的目标视在功率;
所述逆变器根据所述目标视在功率对所述逆变器的输出电流进行控制。
可以理解,第三关联关系用于描述逆变器的输出电压和视在功率之间的关联关系,则可根据第三关联关系获取额定电压对应的目标视在功率。而视在功率与输出电压和输出电流相关,则可根据目标视在功率对逆变器当前的输出电流进行跟踪,得到额定电压对应的 驱动信号,再控制逆变器基于该驱动信号进行运行,从而通过对逆变器的输出电压进行控制,实现逆变器的输出电压满足额定电压的预设范围,提高了控制效率和逆变器运行的稳定性,从而提高了负载运行的稳定性。
在一种可能的示例中,所述方法还包括:所述逆变器响应于工作模式为电流源模式,根据所述逆变器的输出电压确定所述储能系统是否处于孤岛状态。如此,通过逆变器的输出电压确定储能系统是否处于孤岛状态,可提高确定孤岛状态的效率和准确率。
结合第一方面,或者第二方面,在一种可能的示例中,所述预设频率包括所述负载的额定频率,或所述储能系统处于孤岛状态时所述逆变器的输出频率。
可以理解,负载的额定频率为适合负载进行工作的频率,将负载的额定频率作为预设频率,对逆变器的输出频率进行冻结,以使逆变器的输出频率为负载的额定频率,提高了负载进行工作的稳定性。将储能系统处于孤岛状态时逆变器的输出频率作为预设频率,根据预设频率对逆变器的输出频率进行冻结,以使逆变器的输出频率为储能系统处于孤岛状态时逆变器的输出频率,使得负载的输入频率在短时间内不发生变化,可提高负载进行工作的稳定性。
附图说明
图1是本申请实施例提供的一种储能系统的结构示意图;
图2是本申请实施例提供的一种逆变器的结构示意图;
图3是本申请实施例提供的另一种储能系统的结构示意图;
图4是本申请实施例提供的一种有用功率和输出电压之间的特性曲线图;
图5是本申请实施例提供的一种无用功率和输出电压之间的特性曲线图;
图6是本申请实施例提供的一种视在功率与输出电压之间的特性曲线图;
图7是本申请实施例提供的另一种视在功率与输出电压之间的特性曲线图;
图8是本申请实施例提供的另一种视在功率与输出电压之间的特性曲线图;
图9是本申请实施例提供的一种并离网模式切换的方法的流程示意图;
图10是本申请实施例提供的另一种并离网模式切换的方法的流程示意图。
具体实施方式
本申请提供一种储能系统,集充电、存储电和放电功能于一体。按照储能类型可包括风力发电系统和光伏发电系统等系统中,按照场景类型可应用于大型、中小型分布式、微网或用户侧等场景中,在此不做限定。
本申请所涉及的电网还称为电力网,包括电力系统中各种电压的变电所及输配电线路,即变电、输电、配电三个单元,用于输送与分配电能,改变电压等,在此不做限定。下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1,图1是本申请实施例提供的一种储能系统的结构示意图。如图1所示,储能系统100可包括控制器101、并离网模式开关102、逆变器103、能量存储子系统104、电网105、负载106等,在此不做限定。其中,能量存储子系统104可直接或直流耦合的 与至少一个逆变器103连接,逆变器103和并离网模式开关102可与控制器101连接,控制器101还可与电网105连接,电网105可连接至少一个负载106。
在本申请实施例中,能量存储子系统104可以为能量存储系统(Energy Storage System,ESS),可包括电池模块和DC/DC转换器等。在ESS为光伏储能类型时,还可包括光伏发电模块等,在此不做限定。上述的电池模块和光伏发电模块均可用于提供储能系统100发电侧的直流电压。DC/DC转换器可用于将发电侧的直流电压转换为逆变器103所需的电压形式。
逆变器103可以包括储能逆变器(Power Conditioning System,PCS),PCS还可称为储能变流器、能量转换系统、能量转换器、并网逆变器或功率逆变器等,在此不做限定。逆变器103是一种将接收到的直流电压(例如,电池、蓄电瓶、光伏组件等传输的电荷)转变成定频定压或调频调压交流电的转换器,用于为电网105或电网105所连接的负载106供电。在并网模式下,逆变器103运行在电流源模式,内阻抗特性体现为高阻抗,主动侦测电网电压的频率和相位,从而对输出电流进行控制。而在离网模式下,内阻抗特性体现为低阻抗,逆变器103运行在电压源模式,主动决定输出电压的频率、幅值和相位信息,对进行输出电压控制。
请参照图2,图2为本申请实施例提供的一种逆变器的结构示意图。也就是说,图1中的逆变器103可以通过图2中的结构来实现。如图2所示,逆变器103可包括逆变电路107、采样电路108、控制电路109和存储电路110等。其中,逆变电路107、采样电路108、控制电路109和存储电路110之间可通过通信总线连接。该通信总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等,在此不做限定。该通讯总线可以分为地址总线、数据总线、控制总线等,例如,485总线。
逆变电路107、采样电路108、控制电路109和存储电路110的功能可以用集成电路来实现,例如,将逆变电路107、采样电路108、控制电路109和存储电路110集成在印制电路板(Printed Circuit Board,PCB)上。PCB又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。
逆变电路107用于实现逆变器103的主要功能,也就是说,将直流电压转变成定频定压或调频调压交流电。采样电路108与逆变电路107电连接,用于检测每个逆变电路107的输出电压和输出电流,或整个逆变器103的输出电压和输出电流。在具体的实际应用中,采样电路108可以包括传感器,例如,电流传感器等。
控制电路109可与存储电路110电连接。控制电路109是指能够将各个部件按照指令的功能要求协调工作的部件,是逆变器103的神经中枢和指挥中心,通常由指令寄存器(Instruction Register,IR)、程序计数器(Program Counter,PC)和操作控制器(Operation Controller,OC)三个部件组成,对协调整个系统有序工作极为重要。这里的控制电路109可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其他实施例中,控制电路109可以是一个处理器,也可以是多个处理元件的统称。例如,处理器可以是一个通用中央处理器(Central Processing Unit,CPU),也可以是特定应 用集成电(application-specific Integrated Circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路,例如,一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。在具体实现中,作为一种实施例,处理器可以包括一个或多个CPU。
存储电路110可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储电路110可以用于存储逆变电路107的电流、电压及功率等数据。本申请实施例中,存储电路110还用于存储执行本申请方案的应用程序代码,并由控制电路109来控制执行。也就是说,控制电路109用于执行存储电路110中存储的应用程序代码。
请参照图3,图3是本申请实施例提供的另一种储能系统的结构示意图。如图3所示,逆变器103可包括逆变电路107、采样电路108、孤岛判断单元111、频率冻结单元112、电压-频率-功率计算单元113、视在功率-电压幅值模型构建单元114、负载特性计算单元115、参数自适应单元116、驱动单元117、模式切换单元118等。其中,孤岛判断单元111、频率冻结单元112、电压-频率-功率计算单元113和视在功率-电压幅值模型构建单元114、负载特性计算单元115、参数自适应单元116、驱动单元117和模式切换单元118之间可通过通信总线连接,且以上各个单元的功能可以用集成电路来实现,在集成之后可作为图2中的控制电路109。
其中,孤岛判断单元111可用于确定储能系统100是否处于孤岛状态。频率冻结单元112可用于对逆变器103的输出频率进行冻结。电压-频率-功率计算单元113可用于计算逆变器103的输出电压、输出电流和输出频率。视在功率-电压幅值模型构建单元114可用于构建逆变器103的输出电压和视在功率之间的关联模型,例如,逆变器103的输出电压和逆变器103的视在功率之间的关联关系。负载特性计算单元115可用于计算负载106的全负载特性,例如,逆变器103的输出电压和负载106的视在功率之间的关联关系。自适应单元116可用于调整视在功率-电压幅值模型构建单元114构建的关联模型中的关联参数。驱动单元117可用于获取驱动信号,以使驱动信号对逆变器103的输出电流进行控制,从而获取控制之后的输出电流对应的输出电压。模式切换单元118可用于对电流源模式和电压源模式进行切换。
在本申请实施例中,控制器101可以是用于控制并离网模式切换的控制电路,例如,电站控制器(Power Plant Controller,PPC)等,还可以是其他控制器,例如,系统控制器(System Control Unit,SCU)等,在此不做限定。
并离网模式开关102用于在并网模式下与电网105连接,在离网模式下与电网105断开连接。也就是说,能量存储子系统104用于在并离网模式开关102与电网105断开连接之后为负载106供电。而在并离网模式开关102与电网105连接之后,由电网105为负载 106供电。需要说明的是,电网105和能量存储子系统104可同时为电网105中的负载供电。本申请对于并离网模式开关102的开关状态不做限定,可以在开启时与电网105连接,在关闭时与电网105断开连接;或者在开启时与电网105断开连接,在关闭时与电网105连接。
本申请所涉及的负载106可以是空调、手机、计算机、电热水器、电热水壶、电动汽车等电器,本申请对于负载106的类型不做限定。且对于负载106的数量不做限定,在图1中,以一个负载进行举例说明。
对于阻性负载的负载特性,有功功率与电压幅值成抛物线关系。如式1和图4所示,当点N1和点N2对应的线段表示输出电压满足额定电压U N的较小的变化范围时,抛物线近似为一条直线。
Figure PCTCN2021083099-appb-000009
其中,U rlc为负载的输出电压,R rlc为负载的电阻,P rlc(U rlc)为负载的有功功率,负载的有功功率跟随负载的输出电压变化。
对于容性和感性负载特性曲线,无功功率与电压的幅值和频率成二维非线性关系。如式2所示,无功功率、电压幅值、频率是一个三维关系。
Figure PCTCN2021083099-appb-000010
其中,U rlc为负载的输出电压,f rlc为负载的频率,C rlc为负载的电容,L rlc为负载的电感,Q rlc(U rlc,f rlc)为负载的无功功率,负载的无功功率跟随负载的输出电压和频率变化。
需要说明的是,本申请实施例示意的结构并不构成对储能系统100的具体限定。在本申请另一些实施例中,储能系统100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
例如,储能系统100还可包括图1中未示出的变压器,变压器的副边可独立或交流耦合的连接到逆变器103,变压器的原边可与并离网模式开关102连接。变压器可以包括DC/DC转换器,可用于将逆变器103输出的交流电压转换为负载106所需的电压形式。在具体的实际应用中,DC/DC电路10可以根据具体应用环境进行电路设置,例如,设置buck电路、boost电路或者buck-boost电路等。
在本申请实施例中,逆变器103用于确定储能系统100是否处于孤岛状态。
其中,孤岛状态是指储能系统100单独为负载106供电的状态,也就是说,电网不向负载106供电。本申请对于确定储能系统100处于孤岛状态的方法不做限定,在一种可能的示例中,逆变器103具体用于响应于工作模式为电流源模式,根据逆变器的输出电压确定储能系统是否处于孤岛状态。
其中,在逆变器103的工作模式为电流源模式时,表示储能系统100处于并网模式。逆变器103可实时获取逆变器103的输出电压和输出电流。逆变器103的输出电压为交流电压,逆变器103的输出电流为交流电流。由于逆变器103作为储能系统100的输出端,用于为负载106供电,则逆变器103的输出电压和输出电流又可以称为逆变器103入网侧 的电压和电流。
在一种可能的示例中,逆变器103可以包括谐波阻抗法、无功扰频法、电压频率畸变法中的至少一种方法,根据逆变器103的输出电压确定储能系统100是否处于孤岛状态。
其中,谐波阻抗法是基于并网模式和离网模式两种不同的工况下,逆变器103检测到的电网阻抗会发生变化,从而可通过检测谐波阻抗来辅助判断电网是否跳网,也就是说,通过检测谐波阻抗确定储能系统100是否处于孤岛状态。具体可为检测逆变器103的输出电压里的偶次谐波的变化,在逆变器103接入电网时,逆变器103的交流端口输出的谐波会流入电网,由于并网模式下电网的内阻抗很小,所以逆变器103的交流端口的总谐波畸变率通常比较低。因此,当逆变器103的输出电压里的偶次谐波的变化偏小时,确定逆变器103仍基于并网模式进行工作,即储能系统100仍处于并网模式。如果发生电网跳网事件,由于本地负载的阻抗通常要比电网的阻抗大的多,所以逆变器103的交流端口将产生很大的谐波,导致逆变器103的交流端口的谐波发生突变。因此,当逆变器103的输出电压里的偶次谐波的变化偏大时,确定逆变器103可能与电网断开,则确定为储能系统100处于孤岛状态。
无功绕频法是比较传统的防孤岛保护方法。无功绕频法是根据孤岛状态下无功功率越大,频率偏移越大。因此,可通过向储能系统100注入无功功率,根据逆变器103的输出电压确定逆变器103的频率偏移。在确定逆变器103的频率偏移偏大时,确定储能系统100处于孤岛状态。
电压频率畸变法是基于当逆变器103的输出电压的幅值、频率、相位发生较大突变时,来确定电网出现异常事件,从而确定储能系统100处于孤岛状态。
采用谐波阻抗法和电压频率畸变法可能存在误判断,而采用无功绕频法所需的时间较长,在确定储能系统100处于孤岛状态之前,可能已会发生电压畸变、频率畸变或相位突变,影响对负载的供电。
需要说明的是,上述的谐波阻抗法、电压频率畸变法和无功绕频法并不构成对本申请实施例的限定,实际应用中,可以采用其他的方法或上述的方式之间的组合方式确定储能系统处于孤岛状态。可以理解,采用上述的谐波阻抗法、电压频率畸变法和无功绕频法中的至少两种方法确定储能系统是否处于孤岛状态,可提高孤岛判断的准确率。
在本申请实施例中,逆变器103还用于响应于确定储能系统100处于孤岛状态,向控制器101发送孤岛状态消息,以使控制器101向并离网模式开关102发送断开指令,向逆变器103发送切换指令。
其中,孤岛状态消息用于指示逆变器103确定储能系统100处于孤岛状态,可包括指示处于孤岛状态的指示信息,还可包括确定储能系统100处于孤岛状态的参数等,在此不做限定。断开指令用于指示并离网模式开关102与电网105断开连接,切换指令用于指示逆变器103切换为电压源模式。
可以理解,若确定储能系统100处于孤岛状态,则当前储能系统100可进入离网模式,需通知并离网模式开关102与电网105断开连接,且需通知逆变器103从电流源模式切换为电压源模式。然而,在并离网模式切换的过程中,逆变器103对输出电压进行控制所需的时间较长、并离网模式开关102存在机械延时,以及在并离网模式开关102断开之后向 控制器101发送断开完成消息存在传输延时等,导致并离网模式切换的过程较长,在切换的过程中可能会发生电压畸变或频率畸变,影响对负载106的供电。
基于此,在本申请实施例中,逆变器103还用于响应于储能系统100处于孤岛状态,根据预设频率对逆变器103的输出频率进行冻结,根据逆变器103的输出电压和逆变器103的视在功率之间成比例的关联关系,对逆变器103的输出电流进行控制,以使逆变器103的输出电压满足额定电压的预设范围。
其中,预设频率可以为负载106的额定频率。负载106的额定频率为预先为负载106设置的频率,可以为50Hz等。可以理解,负载106的额定频率为适合负载106进行工作的频率,将负载106的额定频率作为预设频率,对逆变器103的输出频率进行冻结,以使逆变器103的输出频率为负载106的额定频率,提高了负载106进行工作的稳定性。
预设频率还可以为储能系统100处于孤岛状态时逆变器103的频率等,在此不做限定。为了提高并离网模式切换的效率,可假设并离网模式切换的时间较短,负载106可认为不变或变化较小,则将储能系统100处于孤岛状态时逆变器103的频率作为预设频率,根据预设频率对逆变器103的输出频率进行冻结,以使逆变器103的输出频率为储能系统100处于孤岛状态时逆变器103的频率,使得负载106的输入频率在短时间内不发生变化,可提高负载106进行工作的稳定性。
本申请对于额定电压不做限定,可以为220V或其他等。且本申请对于预设范围不做限定,可以为±10%等。
在本申请实施例中,关联关系可以通过逆变器103的输出电压和逆变器103的视在功率之间的关联函数进行表示。在负载106不变或变化较小的前提下,根据预设频率对逆变器103的输出频率进行冻结之后,式2中的f rlc可以认为为固定值,且该固定值为预设频率。如式3和图5所示,无功功率与输出电压的电压幅值成抛物线关系,且当点N3和N4对应的线段为输出电压满足额定电压U N的较小的变化范围时,抛物线近似为一条直线。
Figure PCTCN2021083099-appb-000011
其中,U rlc为负载的输出电压,f rlc为负载的频率,C rlc为负载的电容,L rlc为负载的电感,Q rlc(U rlc)为负载的无功功率,负载的无功功率跟随负载的输出电压变化。
由式1和式3,可以看到,在根据预设频率对逆变器的输出频率进行冻结之后,无论是阻性还是感性和容性负载,其负载特性都是功率与输出电压的电压幅值的近似的线性关系。负载的全负载特性如式4和图6所示,视在功率与输出电压的电压幅值成抛物线关系,且当点N5和点N6对应的线段为输出电压满足额定电压U N的较小的变化范围时,抛物线近似为一条直线。
Figure PCTCN2021083099-appb-000012
其中,U rlc为负载的输出电压,P rlc(U rlc)为负载的有功功率,Q rlc(U rlc)为负载的无功功率,S rlc(U rlc)为负载的视在功率。
可以看出,在负载106不变或变化较小的前提下,在根据预设频率对逆变器的输出频率进行冻结之后,可获取视在功率和输出电压之间成正相关的近似线性的关联关系。所以,动态的改变逆变器103输出的视在功率,就可以动态的调节负载106的输出电压的幅值。 也就是说,当检测到负载106的输出电压较大时,可减小逆变器103的输出功率;当检测到负载106的输出电压较小时,可增大逆变器103的输出功率。
基于此,在负载106不变或变化较小的前提下,在根据预设频率对逆变器103的输出频率进行冻结之后,可获取逆变器103的输出电压和逆变器103的视在功率之间成负相关的近似线性的关联关系,以及逆变器103的输出电压和负载106的视在功率之间成正相关的近似线性的关联关系。如图7所示,线段L1用于描述逆变器103的输出电压和逆变器103的视在功率之间的关联关系,线段L2用于描述逆变器103的输出电压和负载106的视在功率之间的关联关系。线段L1和线段L2存在一个交点,且该交点可以看作两个关联关系的作用下,储能系统100稳定运行的点,也可以理解为逆变器103的输出电压不会发生畸变的电压,或者说逆变器103以该交点对应的输出电压和视在功率进行工作时,可避免发生电压畸变的事件。需要说明的是,该交点对应的输出电压的幅值位于逆变器103在额定电压的预设范围内的最小输出电压U L和最大输出电压U H之间。
上述的U L和U H还可以看作是负载106在额定电压的预设范围内的最大输出电压和最小输出电压。本申请对于U L和U H的大小不做限定,当负载106对于电压的变化敏感时,U L和U H之间的范围较小。例如,当负载106对于电压的变化敏感时,额定电压为800Vac,U L可以为800*0.85=680Vac,U H可以为800*1.1=920Vac。负载106对于电压的变化不敏感时,额定电压为800Vac,U L可以为800*0.8=640Vac,U H可以为800*1.2=960Vac。
可以理解,在确定储能系统100处于孤岛状态之后,还可根据预设频率对逆变器103的输出频率进行冻结,从而可避免发生频率畸变的事件,且根据在额定电压的预设范围内,逆变器103的输出电压和逆变器103的视在功率之间成负相关的关联关系,可以对逆变器103的输出电流进行控制,以使逆变器103稳定运行,且输出电压稳定满足额定电压的预设范围。如此,可避免发生电压畸变的事件,且通过对输出电流进行控制实现输出电压的控制,相比直接对输出电压进行控制,提高了逆变器103的控制效率,提高了负载106运行的稳定性。
本申请对于获取逆变器103的输出电压和逆变器103的视在功率之间的关联关系的方法不做限定,在负载106的大小不会超过逆变器103的额定功率的前提下,将逆变器103的视在功率的范围与输出电压的运行范围进行映射,也就是说,逆变器103的最大输出电压U H对应逆变器103的最小视在功率,逆变器103的最小输出电压U L对应逆变器103对应的最大视在功率。则在一种可能的示例中,逆变器103还用于根据逆变器103在额定电压的预设范围内的最小输出电压U L和最大输出电压U H,以及最小输出电压U L对应的最大视在功率和最大输出电压U H对应的最小视在功率获取逆变器103的输出电压和逆变器103的视在功率之间成负相关的第一关联关系。
如此,通过逆变器103在额定电压的预设范围内的最小输出电压U L和最小输出电压U L对应的最大视在功率,以及逆变器103在额定电压的预设范围内的最大输出电压U H和最大输出电压U H对应的最小视在功率获取第一关联关系(例如,根据最小输出电压U L、最大视在功率、最大输出电压U H和最小视在功率进行解二元一次方程,得到第一关联关系对应的线性方程式),提高了获取第一关联关系的准确率。
最大视在功率可以为逆变器103的额定功率P N,最小视在功率可以为0,第一关联关 系对应的线性方程式包括第一公式,该第一公式如式(5)所示:
Figure PCTCN2021083099-appb-000013
在一种可能的示例中,逆变器103具体用于根据逆变器的输出电压和逆变器的视在功率之间成负相关的第一关联关系,对逆变器的输出电流进行控制,得到逆变器的第一稳定输出电压和第一稳定输出电压对应的第一视在功率,第一稳定输出电压的变化范围小于或等于预设范围;根据逆变器的输出电压和负载的视在功率之间成正相关的第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第一关联关系进行调整,得到逆变器的输出电压和逆变器的视在功率之间成负相关的第三关联关系;根据第三关联关系和额定电压对逆变器的输出电流进行控制,以使逆变器的输出电压满足额定电压的预设范围。
其中,第一稳定输出电压的变化范围小于或等于预设范围,也就是说,在逆变器103的输出电压在最小输出电压U L和最大输出电压U H之间,且逆变器103的输出电压的变化范围小于或等于预设范围时对应的输出电压为,可确定该输出电压为第一稳定输出电压。
可以理解,在根据预设频率对逆变器103的输出频率进行冻结之后,可根据逆变器103的输出电压和逆变器103的视在功率之间成负相关的第一关联关系,以及逆变器103的输出电流对逆变器103的输出电压进行控制,可得到第一稳定输出电压和第一稳定输出电压对应的第一视在功率,从而可避免负载106发生频率畸变和电压畸变,可保证在较小的一段时间内负载106可稳定运行。
上述的第一稳定输出电压可能与额定电压不等,且第一关联关系没有考虑负载106的负载特性,基于第一关联关系对逆变器103的输出电流进行控制,难以得到持续稳定运行的电压。如前,逆变器103的输出电压和逆变器103的视在功率之间的关联关系和逆变器103的输出电压和负载106的视在功率之间的关联关系之间的交点为稳定点,则可基于逆变器103的输出电压和负载106的视在功率之间的关联关系对第一关联关系进行优化。
在本申请实施例中,将逆变器103的输出电压和负载106的视在功率之间的关联关系称为第二关联关系,且第二关联关系用于描述在根据预设频率对逆变器103的输出频率进行冻结之后负载106的全负载特性。第三关联关系是第一关联关系进行调整之后得到的关联关系,且是经过逆变器103的输出电压和负载106的视在功率之间的第二关联关系进行调整得到的。由于第二关联关系用于描述在根据预设频率对逆变器103的输出频率进行冻结之后的全负载特性,则可提高第三关联关系描述逆变器103的输出电压和视在功率之间的关联关系的准确率。在根据第三关联关系和额定电压对逆变器103的输出电流进行控制之后,可提高逆变器103的输出电压满足额定电压的预设范围的准确率和效率,从而提高了负载106运行的稳定性。
本申请对于获取第二关联关系的方法不做限定,可先确定负载106能稳定运行的两个点,再基于两个点可确定一条直线,从而获取逆变器103的输出电压和逆变器103的视在功率之间的关联关系。
如前,第一稳定运行电压和第一视在功率为第二关联关系上的一个点。本申请对于获取第二关联关系上的另一个点的方法不做限定,在一种可能的示例中,逆变器103还用于根据第一稳定输出电压和额定电压之间的大小关系对第一关联关系进行调整,得到逆变器 103的输出电压和逆变器103的视在功率之间成负相关的第四关联关系;根据第四关联关系和逆变器103的输出电流对逆变器103的输出电压进行控制,得到逆变器103的第二稳定输出电压和第二稳定输出电压对应的第二视在功率。
其中,第四关联关系是第一关联关系进行调整之后得到的关联关系,则第四关联关系也用于描述逆变器103的输出电压和逆变器103的视在功率之间成负相关的关联关系。第二稳定输出电压的变化范围小于或等于预设范围。也就是说,第二稳定输出电压是根据第二关联关系对逆变器103的输出电压进行控制时得到的稳定输出电压,且该稳定输出电压在最小输出电压U L和最大输出电压U H之间,其变化范围小于或等于预设范围。
本申请对于获取第四关联关系的方法不做限定,可以调节第一关联关系对应的线段的斜率和截距。为了使第二稳定输出电压相比第一稳定输出电压更接近额定电压,在一种可能的示例中,第四关联关系用于指示当第一稳定输出电压小于额定电压时,第四关联关系中逆变器103在额定电压的预设范围内对应的最大视在功率大于第一关联关系中逆变器103在额定电压的预设范围内对应的最大视在功率;当第一稳定输出电压大于或等于额定电压时,第四关联关系中逆变器103在额定电压的预设范围内对应的最大视在功率小于第一关联关系中逆变器103在额定电压的预设范围内对应的最大视在功率。
如图8所示,线段L1、线段L3和线段L4分别描述逆变器103的输出电压和逆变器103的视在功率之间的关联关系,线段L2描述了逆变器103的输出电压和负载106的视在功率之间的关联关系(即第二关联关系),且线段L1可以为第一关联关系对应的线段,线段L3和线段L4可以分别为第四关联关系对应的不同线段。可以看出,线段L1、线段L3和线段L4分别和线段L2存在一个交点,且交点分别为M1、M2和M3。如前,逆变器103的输出电压和逆变器103的视在功率对应的线段和逆变器103的输出电压和负载106的视在功率对应的线段之间的交点,为逆变器103稳定运行时的输出电压和视在功率对应的点。为了使负载106稳定运行于额定电压,则需要对第一关联关系进行调整,得到第四关联关系。也就是说,当交点M1对应的第一稳定输出电压小于额定电压时,可对线段L1进行调整至线段L4,以使作为第四关联关系对应的线段L4和线段L2之间的交点M3对应的输出电压大于第一稳定输出电压,线段L4和纵轴的交点M5对应的最大视在功率大于线段L1和纵轴的交点M4对应的最大视在功率;当第一稳定输出电压大于或等于额定电压时,可对线段L1进行调整至线段L3,以使作为第四关联关系对应的线段L3和线段L2之间的交点M2对应的输出电压小于第一稳定输出电压,线段L3和纵轴的交点M6对应的最大视在功率小于线段L1和纵轴的交点M4对应的最大视在功率。如此,通过调整之后的第二关联关系和逆变器103的输出电流,对逆变器103的输出电压进行控制,可得到相比第一稳定输出电压更接近额定电压的第二稳定输出电压。
在一种可能的示例中,第四关联关系包括第二公式,该第二公式如式(6)所示:
Figure PCTCN2021083099-appb-000014
其中,P N为逆变器103的额定功率,U L为逆变器103的最小输出电压,U H为逆变器103在额定电压的预设范围内的最大输出电压,U i为逆变器103的输出电压,S 1 *(U i)为逆变器 103的输出电压为U i时逆变器103的视在功率,U 1为第一稳定输出电压,U N为额定电压,k 1为第一稳定输出电压小于额定电压时的第二公式中的关联系数,k 2为第一稳定输出电压大于或等于额定电压时的第二公式中的关联系数。
也就是说,当第一稳定输出电压U 1小于额定电压U N时,基于关联系数k 1对第一关联关系对应的线段的斜率和截距进行调整,可使第四关联关系对应的线段与第二关联关系对应的线段之间的交点位于第一关联关系对应的线段与第二关联关系对应的线段之间的交点的右侧,以使第二稳定输出电压大于第一稳定输出电压。当第一稳定输出电压U 1大于或等于额定电压U N时,基于关联系数k 2对第一关联关系对应的线段的斜率和截距进行调整,可使第四关联关系对应的线段与第二关联关系对应的线段之间的交点位于第一关联关系对应的线段与第二关联关系对应的线段之间的交点的左侧,以使第二稳定输出电压小于第一稳定输出电压。
在获取了第二关联关系中的第二点(即,第二稳定运行电压和第二视在功率对应的点)之后,在一种可能的示例中,逆变器103还用于根据第一稳定输出电压、第一视在功率、第二稳定输出电压和第二视在功率获取逆变器103的输出电压和负载的视在功率之间成正相关的第二关联关系。如此,提高了获取第二关联关系的准确率。
在一种可能的示例中,第二关联关系包括第三公式,该第三公式如式(7)所示:
Figure PCTCN2021083099-appb-000015
其中,U i为逆变器的输出电压,U 1为第一稳定输出电压,U 2为第二稳定输出电压,S 1(U 1)为第一视在功率,S 1 *(U 2)为第二视在功率,S 1(U i)为逆变器的输出电压为U i时逆变器的视在功率,S 2(U i)为逆变器的输出电压为U i时负载的视在功率。
在获取第二关联关系之后,在一种可能的示例中,逆变器103具体用于根据第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系进行调整,得到逆变器103的输出电压和逆变器103的视在功率之间成负相关的第三关联关系。如此,可提高获取第三关联关系的准确率。
本申请对于调整第四关联关系的方法不做限定,在一种可能的示例中,逆变器103具体用于根据第二关联关系、第一稳定输出电压和额定电压之间的大小关系确定第四关联关系中的关联系数的取值;根据关联系数的取值,对第四关联关系进行更新,得到第三关联关系。
其中,关联系数如前所述,用于调整关联关系的斜率和截距,也就是说,在更新关联系数之后,可调整第四关联关系对应的线段,以使第三关联关系和第二关联关系之间对应的线段的交点的输出电压为额定电压。
本申请对于确定关联系数的取值的方法不做限定,在一种可能的示例中,关联系数的取值k的计算公式包括第四公式,该第四公式如式(8)所示:
Figure PCTCN2021083099-appb-000016
其中,P N为逆变器的额定功率,U L为逆变器的最小输出电压,U H为逆变器的最大输出 电压,U 1为第一稳定输出电压,S 2(U i)为逆变器的输出电压为U N时负载的视在功率。
在获取第四关联关系之后,可基于逆变器103当前的输出电流和额定电压,对逆变器103的输出电压进行控制,以使输出电压满足额定电压的预设范围。本申请对于控制逆变器103的输出电压满足额定电压的预设范围的方法不做限定,在一种可能的示例中,逆变器103具体用于根据第三关联关系获取额定电压对应的目标视在功率率;根据目标视在功率和逆变器的输出电流,对逆变器的输出电压进行控制。
可以理解,第三关联关系用于描述逆变器103的输出电压和视在功率之间的关联关系,则可根据第三关联关系获取额定电压对应的目标视在功率。而视在功率与输出电压和输出电流相关,则可根据目标视在功率对逆变器103当前的输出电流进行跟踪,得到额定电压对应的驱动信号,再控制逆变器103基于该驱动信号进行运行,从而通过对逆变器103的输出电压进行控制,实现逆变器103的输出电压满足额定电压的预设范围,提高了控制效率和逆变器103运行的稳定性,从而提高了负载106运行的稳定性。
在本申请实施例中,控制器101还用于向并离网模式开关102发送断开指令;响应于接收到来自并离网模式开关102的断开完成消息,向逆变器103发送切换指令。
其中,断开指令用于指示并离网模式开关102与电网105断开连接,断开完成消息用于指示并离网模式开关102与电网105断开连接已完成,切换指令用于指示逆变器103切换为电压源模式。也就是说,当并离网模式开关102与电网断开连接之后,向控制器101发送断开完成消息,以指示并离网模式开关102已与电网断开连接,再通知逆变器103进行模式切换,以实现并离网模式切换。由于并离网模式开关102存在机械延时和传输延时,可在逆变器103进行模式切换之前,通过逆变器103对逆变器103的输出频率进行冻结,然后通过对逆变器103的输出电流进行控制实现对输出电压进行控制,可避免发生频率畸变和电压畸变的事件,提高了负载106运行的稳定性。
在本申请实施例中,逆变器103还用于响应于接收到切换指令,且确定逆变器103的输出电压满足额定电压的预设范围,切换为电压源模式。也就是说,逆变器103在接收到来自并离网模式开关102的断开完成消息之后,以及在确定逆变器103稳定运行,且逆变器103的输出电压满足额定电压的预设范围之后,才切换为电压源模式,进一步提高了负载106运行的稳定性。
请参见图9,图9是本申请实施例提供的一种并离网模式切换的方法,该方法应用于储能系统中,该储能系统包括控制器、逆变器、并离网模式开关、电网和负载。该方法包括但不限于如下步骤S901~S908,其中:
S901:逆变器确定储能系统是否处于孤岛状态。
在本申请实施例中,若步骤S901确定储能系统处于孤岛状态,则执行步骤S902和步骤S903。否则,继续执行步骤S901。
在一种可能的示例中,步骤S901包括:逆变器响应于工作模式为电流源模式,根据所述逆变器的输出电压确定所述储能系统是否处于孤岛状态。如此,通过逆变器的输出电压确定储能系统是否处于孤岛状态,可提高确定孤岛状态的效率和准确率。
S902:逆变器向控制器发送孤岛状态消息。
S903:逆变器根据预设频率对逆变器的输出频率进行冻结。
S904:逆变器根据逆变器的输出电压和逆变器的视在功率之间成负相关的关联关系,对逆变器的输出电流进行控制,以使逆变器的输出电压满足额定电压的预设范围。
在一种可能的示例中,步骤S904包括:逆变器根据逆变器的输出电压和逆变器的视在功率之间成负相关的第一关联关系,对逆变器的输出电流进行控制,得到逆变器的第一稳定输出电压和第一稳定输出电压对应的第一视在功率。其中,第一稳定输出电压的变化范围小于或等于预设范围。
在一种可能的示例中,还包括:逆变器根据逆变器的输出电压和负载的视在功率之间成正相关的第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第二关联关系进行调整,得到逆变器的输出电压和逆变器的视在功率之间成负相关的第三关联关系;逆变器根据第三关联关系和额定电压对逆变器的输出电流进行控制,以使逆变器稳定运行,且逆变器的输出电压满足额定电压的预设范围。
在一种可能的示例中,在根据逆变器的输出电压和逆变器的视在功率之间成负相关的第一关联关系,对逆变器的输出电流进行控制,得到逆变器的第一稳定输出电压和第一稳定输出电压对应的第一视在功率之前,还包括:根据逆变器在额定电压的预设范围内的最小输出电压和最大输出电压,以及最小输出电压对应的最大视在功率和最大输出电压对应的最小视在功率获取第一关联关系。
可以理解,逆变器的输出电压和视在功率成负相关关系,从而可通过逆变器在额定电压的预设范围内的最小输出电压和最小输出电压对应的最大视在功率,以及在额定电压的预设范围内的最大输出电压和最大输出电压对应的最小视在功率获取第一关联关系,提高了获取第一关联关系的准确率。
在一种可能的示例中,第一关联关系包括第一公式:
Figure PCTCN2021083099-appb-000017
其中,P N为逆变器的额定功率,U L为逆变器在额定电压的预设范围内的最小输出电压,U H为逆变器在额定电压的预设范围内的最大输出电压,U i为逆变器的输出电压,S 1(U i)为逆变器的输出电压为U i时逆变器的视在功率。如此,通过第一公式描述第一关联关系,可提高获取第一关联关系的准确率。
在一种可能的示例中,根据逆变器的输出电压和负载的视在功率之间成正相关的第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第二关联关系进行调整,得到逆变器的输出电压和逆变器的视在功率之间成负相关的第三关联关系,包括:根据第一稳定输出电压和额定电压之间的大小关系对第一关联关系进行调整,得到逆变器的输出电压和逆变器的视在功率之间成负相关的第四关联关系;根据第四关联关系和逆变器的输出电流对逆变器的输出电压进行控制,得到逆变器的第二稳定输出电压和第二稳定输出电压对应的第二视在功率;根据第一稳定输出电压、第一视在功率、第二稳定输出电压和第二视在功率获取逆变器的输出电压和负载的视在功率之间成正相关的第二关联关系;根据第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系进行调整,得到逆变器的输出电压和逆变器的视在功率之间成负相关的第三关联关系。
其中,第二稳定输出电压的变化范围小于或等于预设范围。
假设并离网模式切换的时间较短,储能系统对应的负载可认为不变或变化较小,逆变器的输出电压和视在功率之间成负相关的关联关系,且与逆变器的输出电压和负载的视在功率对之间成正相关的关联关系之间存在一个稳定运行的交点。因此,在该示例中,先根据第一稳定输出电压和额定电压之间的大小关系,对第一关联关系进行调整得到第四关联关系,再分别根据第一关联关系和第四关联关系对应的线段,对逆变器的输出电压进行控制,得到第一稳定输出电压和第一稳定输出电压对应的第一视在功率,以及第二稳定输出电压和第二稳定输出电压对应的第二视在功率,从而得到逆变器的输出电压和负载的视在功率对应的线段上的两个点。然后,根据第一稳定输出电压、第一视在功率、第二稳定输出电压和第二视在功率获取逆变器的输出电压和负载的视在功率之间的第二关联关系,可提高获取第二关联关系的准确率。再根据第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系进行调整,得到逆变器的输出电压和逆变器的视在功率之间成负相关的第三关联关系,可提高获取第三关联关系的准确率,便于提高负载运行的稳定性。
可以理解,通过第一稳定输出电压和额定电压之间的大小关系对第一关联关系进行调整得到的第四关联关系,对逆变器的输出电流进行控制,得到第二稳定输出电压,可获取相比第一稳定输出电压更接近额定电压的第二稳定输出电压,便于提高控制输出电压的效率。再根据第一稳定输出电压、第一视在功率、第二稳定输出电压和第二视在功率获取第二关联关系,可提高获取第二关联关系的准确率。再根据第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系进行调整得到第三关联关系,可提高控制输出电压的效率。
在一种可能的示例中,第四关联关系用于指示当第一稳定输出电压小于额定电压时,第四关联关系中逆变器在额定电压的预设范围内对应的最大视在功率大于第一关联关系中逆变器在额定电压的预设范围内对应的最大视在功率;当第一稳定输出电压大于或等于额定电压时,第四关联关系中逆变器在额定电压的预设范围内对应的最大视在功率小于第一关联关系中逆变器在额定电压的预设范围内对应的最大视在功率。如此,通过第四关联关系进行控制得到的第二稳定输出电压相比第一稳定输出电压,更接近额定电压,便于提高控制输出电压的效率。
在一种可能的示例中,第四关联关系包括第二公式:
Figure PCTCN2021083099-appb-000018
其中,P N为逆变器的额定功率,U L为逆变器在额定电压的预设范围内的最小输出电压,U H为逆变器在额定电压的预设范围内的最大输出电压,U i为逆变器的输出电压,S 1 *(U i)为逆变器的输出电压为U i时逆变器的视在功率,U 1为第一稳定输出电压,U N为额定电压,k 1为第一稳定输出电压小于额定电压时的关联系数,k 2为第一稳定输出电压大于或等于额定电 压时的关联系数。如此,通过第二公式描述第四关联关系,可提高获取第四关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,第二关联关系包括第三公式:
Figure PCTCN2021083099-appb-000019
其中,U i为逆变器的输出电压,U 1为第一稳定输出电压,U 2为第二稳定输出电压,S 1(U 1)为第一视在功率,S 1 *(U 2)为第二视在功率,S 1(U i)为逆变器的输出电压为U i时逆变器的视在功率,S 2(U i)为逆变器的输出电压为U i时负载的视在功率。如此,通过第三公式描述第二关联关系,可提高获取第二关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,根据第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系进行调整,得到逆变器的输出电压和逆变器的视在功率之间成负相关的第三关联关系,包括:根据第二关联关系、第一稳定输出电压和额定电压之间的大小关系确定第四关联关系中的关联系数的取值;根据关联系数的取值对第四关联关系进行更新,得到第三关联关系。
可以理解,通过第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第四关联关系中的关系系数进行更新,可提高获取第三关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,关系系数的取值k的计算公式包括第四公式:
Figure PCTCN2021083099-appb-000020
其中,P N为逆变器的额定功率,U L为逆变器在额定电压的预设范围内的最小输出电压,U H为逆变器在额定电压的预设范围内的最大输出电压,U 1为第一稳定输出电压,S 2(U i)为逆变器的输出电压为U N时负载的视在功率。如此,通过第四公式获取第四关联关系中关联系数的取值,可提高更新第四关联关系的准确率,便于提高控制输出电压的效率。
在一种可能的示例中,根据第三关联关系和额定电压对逆变器的输出电流进行控制,包括:根据第三关联关系获取额定电压对应的目标视在功率;根据目标视在功率对逆变器的输出电流进行控制。
可以理解,第三关联关系用于描述逆变器的输出电压和视在功率之间的关联关系,则可根据第三关联关系获取额定电压对应的目标视在功率。而视在功率与输出电压和输出电流相关,则可根据目标视在功率对逆变器当前的输出电流进行跟踪,得到额定电压对应的驱动信号,再控制逆变器基于该驱动信号进行运行,从而通过对逆变器的输出电压进行控制,实现逆变器的输出电压满足额定电压的预设范围,提高了控制效率和逆变器运行的稳定性,从而提高了负载运行的稳定性。
在一种可能的示例中,预设频率包括负载的额定频率或储能系统处于孤岛状态时的逆变器的输出频率。
可以理解,负载的额定频率为适合负载进行工作的频率,将负载的额定频率作为预设 频率,对逆变器的输出频率进行冻结,以使逆变器的输出频率为负载的额定频率,提高了负载进行工作的稳定性。将储能系统处于孤岛状态时逆变器的输出频率作为预设频率,根据预设频率对逆变器的输出频率进行冻结,以使逆变器的输出频率为储能系统处于孤岛状态时逆变器的输出频率,使得负载的输入频率在短时间内不发生变化,可提高负载进行工作的稳定性。
S905:控制器向并离网模式开关发送断开指令。
其中,断开指令用于指示并离网模式开关与并离网模式开关对应的电网断开连接。
S906:并离网模式开关向控制器发送断开完成消息。
其中,断开完成消息用于指示并离网模式开关与电网断开连接已完成。
S907:控制器向逆变器发送切换指令。
其中,切换指令用于指示逆变器切换为电压源模式。
S908:逆变器切换为电压源模式。
在图9所描述的方法中,在逆变器确定储能系统处于孤岛状态之后,向控制器发送孤岛状态消息,以使并离网模式开关与并离网模式开关对应的电网断开连接。在确定储能系统处于孤岛状态之后,还可根据预设频率对逆变器的输出频率进行冻结,从而可避免发生频率畸变的事件,且根据在额定电压的预设范围内,逆变器的输出电压和逆变器的视在功率之间成负相关的关联关系,可以对逆变器的输出电流进行控制,以使逆变器稳定运行,且输出电压稳定满足额定电压的预设范围。如此,可避免发生电压畸变的事件,且通过对输出电流进行控制实现输出电压的控制,相比直接对输出电压进行控制,提高了逆变器的控制效率,提高了负载运行的稳定性。在并离网模式开关向控制器发送断开完成消息之后,控制器可向逆变器发送切换指令,则逆变器可在接收到切换指令,且确定稳定运行,输出电压满足额定电压的预设范围之后,切换为电压源模式,实现并离网模式切换,进一步提高了负载运行的稳定性。
与图9的实施例一致的,请参见图10,图10是本申请实施例提供的另一种并离网模式切换的方法,该方法应用于储能系统中,该储能系统还包括控制器、电网、负载、逆变器和并离网模式开关。该方法包括但不限于如下步骤S1001~S1010,其中:
S1001:逆变器确定储能系统是否处于孤岛状态。
在本申请实施例中,若步骤S1001确定储能系统处于孤岛状态,则执行步骤S1002和步骤S1003。否则,继续执行步骤S1001。
S1002:逆变器向控制器发送孤岛状态消息。
S1003:逆变器根据预设频率对逆变器的输出频率进行冻结。
S1004:逆变器根据逆变器的输出电压和逆变器的视在功率之间成负相关的第一关联关系,对逆变器的输出电流进行控制,得到逆变器的第一稳定输出电压和第一稳定输出电压对应的第一视在功率。
S1005:逆变器根据逆变器的输出电压和负载的视在功率之间成正相关的第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第二关联关系进行调整,得到逆变器的输出电压和逆变器的视在功率之间成负相关的第三关联关系。
S1006:逆变器根据第三关联关系和额定电压对逆变器的输出电流进行控制,以使逆变器稳定运行,且逆变器的输出电压满足额定电压的预设范围。
S1007:控制器向并离网模式开关发送断开指令。
其中,断开指令用于指示并离网模式开关与并离网模式开关对应的电网断开连接。
S1008:并离网模式开关向控制器发送断开完成消息。
其中,断开完成消息用于指示并离网模式开关与电网断开连接已完成。
S1009:控制器向逆变器发送切换指令。
其中,切换指令用于指示逆变器切换为电压源模式。
S1010:逆变器切换为电压源模式。
在图10所描述的方法中,在逆变器确定储能系统处于孤岛状态之后,向控制器发送孤岛状态消息,以使并离网模式开关与并离网模式开关对应的电网断开连接。且在确定储能系统处于孤岛状态之后,还可根据预设频率对逆变器的输出频率进行冻结,从而可避免发生频率畸变的事件,且根据在额定电压的预设范围内,逆变器的输出电压和逆变器的视在功率之间成负相关的第一关联关系,对逆变器的输出电流进行控制,得到逆变器的第一稳定输出电压和第一稳定输出电压对应的第一视在功率。然后,逆变器根据逆变器的输出电压和负载的视在功率之间成正相关的第二关联关系、第一稳定输出电压和额定电压之间的大小关系对第二关联关系进行调整,得到逆变器的输出电压和逆变器的视在功率之间成负相关的第三关联关系,再根据第三关联关系和额定电压对逆变器的输出电流进行控制,以使逆变器的输出电压满足额定电压的预设范围。如此,考虑了逆变器的输出电压和负载的视在功率之间的第二关联关系,对逆变器的输出电压和逆变器的视在功率之间的第一关联关系进行调整,以提高控制的效率和准确率。且通过对输出电流进行控制实现输出电压的控制,相比直接对输出电压进行控制,可进一步提高负载运行的稳定性。在并离网模式开关向控制器发送断开完成消息之后,控制器可向逆变器发送切换指令,则逆变器可在接收到切换指令,且确定稳定运行,输出电压满足额定电压的预设范围之后,切换为电压源模式,实现并离网模式切换,进一步提高了负载运行的稳定性。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请的各实施方式可以任意进行组合,以实现不同的技术效果。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和各个单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言, 由于其与实施例公开的装置相对应,所以描述的比较简单,相关之处参见装置部分说明即可。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
总之,以上所述仅为本申请技术方案的实施例而已,并非用于限定本申请的保护范围。凡根据本申请的揭露,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种储能系统,其特征在于,所述储能系统包括控制器、与所述控制器连接的逆变器和并离网模式开关、与所述并离网模式开关连接的负载,其中:
    所述逆变器,用于响应于确定所述储能系统处于孤岛状态,向所述控制器发送孤岛状态消息,并根据预设频率对所述逆变器的输出频率进行冻结,根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的关联关系,对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足额定电压的预设范围;
    所述控制器,用于基于所述孤岛状态消息向所述并离网模式开关发送断开指令,所述断开指令用于指示所述并离网模式开关与所述并离网模式开关对应的电网断开连接;
    所述控制器,还用于响应于接收到来自所述并离网模式开关的断开完成消息,向所述逆变器发送切换指令,所述断开完成消息用于指示所述并离网模式开关与所述电网断开连接,所述切换指令用于指示所述逆变器切换为电压源模式;
    所述逆变器,还用于响应于接收到所述切换指令,且确定所述逆变器的输出电压满足额定电压的预设范围,切换为所述电压源模式。
  2. 根据权利要求1所述的储能系统,其特征在于,所述逆变器具体用于根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第一关联关系,对所述逆变器的输出电流进行控制,得到所述逆变器的第一稳定输出电压和所述第一稳定输出电压对应的第一视在功率,所述第一稳定输出电压的变化范围小于或等于所述预设范围;根据所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系、所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系;根据所述第三关联关系和所述额定电压对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足所述额定电压的预设范围。
  3. 根据权利要求2所述的储能系统,其特征在于,所述逆变器具体用于根据所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第四关联关系;根据所述第四关联关系对所述逆变器的输出电流进行控制,得到所述逆变器的第二稳定输出电压和所述第二稳定输出电压对应的第二视在功率,所述第二稳定输出电压的变化范围小于或等于所述预设范围;根据所述第一稳定输出电压、所述第一视在功率、所述第二稳定输出电压和所述第二视在功率获取所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系;根据所述第二关联关系、所述第一稳定输出电压和所述额定电压之间的大小关系对所述第四关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系。
  4. 根据权利要求2或3所述的储能系统,其特征在于,所述逆变器还用于根据所述逆 变器在所述额定电压的预设范围内的最小输出电压和最大输出电压,以及所述最小输出电压对应的最大视在功率和所述最大输出电压对应的最小视在功率获取所述第一关联关系。
  5. 根据权利要求4所述的储能系统,其特征在于,所述第一关联关系包括第一公式:
    Figure PCTCN2021083099-appb-100001
    其中,所述P N为所述逆变器的额定功率,所述U L为所述最小输出电压,所述U H为所述最大输出电压,所述U i为所述逆变器的输出电压,所述S 1(U i)为所述逆变器的输出电压为U i时所述逆变器的视在功率。
  6. 根据权利要求3所述的储能系统,其特征在于,所述第四关联关系用于指示当所述第一稳定输出电压小于所述额定电压时,所述第四关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率大于所述第一关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率;当所述第一稳定输出电压大于或等于所述额定电压时,所述第四关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率小于所述第一关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率。
  7. 根据权利要求6所述的储能系统,其特征在于,所述第四关联关系包括第二公式:
    Figure PCTCN2021083099-appb-100002
    其中,所述P N为所述逆变器的额定功率,所述U L为所述逆变器在所述额定电压的预设范围内的最小输出电压,所述U H为所述逆变器在所述额定电压的预设范围内的最大输出电压,所述U i为所述逆变器的输出电压,所述S 1 *(U i)为所述逆变器的输出电压为U i时所述逆变器的视在功率,所述U 1为所述第一稳定输出电压,所述U N为所述额定电压,所述k 1为所述第一稳定输出电压小于所述额定电压时的关联系数,所述k 2为所述第一稳定输出电压大于或等于所述额定电压时的关联系数。
  8. 根据权利要求3所述的储能系统,其特征在于,所述第二关联关系包括第三公式:
    Figure PCTCN2021083099-appb-100003
    其中,所述U i为所述逆变器的输出电压,所述U 1为所述第一稳定输出电压,所述U 2为所述第二稳定输出电压,所述S 1(U 1)为所述第一视在功率,所述S 1 *(U 2)为所述第二视在功率,S 1(U i)为所述逆变器的输出电压为U i时所述逆变器的视在功率,S 2(U i)为所述逆变器的输出电压为U i时所述负载的视在功率。
  9. 根据权利要求3所述的储能系统,其特征在于,所述逆变器具体用于根据所述第二关联关系、所述第一稳定输出电压和所述额定电压之间的大小关系确定所述第四关联关系中的关联系数的取值;根据所述关联系数的取值对所述第四关联关系进行更新,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系。
  10. 根据权利要求9所述的储能系统,其特征在于,所述关系系数的取值k的计算公式包括第四公式:
    Figure PCTCN2021083099-appb-100004
    其中,所述P N为所述逆变器的额定功率,所述U L为所述逆变器在所述额定电压的预设范围内的最小输出电压,所述U H为所述逆变器在所述额定电压的预设范围内的最大输出电压,所述U 1为所述第一稳定输出电压,S 2(U i)为所述逆变器的输出电压为U N时所述负载的视在功率。
  11. 根据权利要求2所述的储能系统,其特征在于,所述逆变器具体用于根据所述第三关联关系获取所述额定电压对应的目标视在功率;根据所述目标视在功率对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足所述额定电压的预设范围。
  12. 根据权利要求1-11中任一项所述的储能系统,其特征在于,所述预设频率包括所述负载的额定频率,或所述储能系统处于孤岛状态时所述逆变器的输出频率。
  13. 根据权利要求1-12中任一项所述的储能系统,其特征在于,所述逆变器具体用于响应于工作模式为电流源模式,根据所述逆变器的输出电压确定所述储能系统是否处于孤岛状态。
  14. 一种并离网模式切换的方法,其特征在于,应用于储能系统中,所述储能系统包括控制器、逆变器、并离网模式开关、电网和负载,所述方法包括:
    所述逆变器响应于确定所述储能系统处于孤岛状态,向所述控制器发送孤岛状态消息,并根据预设频率对所述逆变器的输出频率进行冻结,根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的关联关系,对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足额定电压的预设范围;
    所述控制器向所述并离网模式开关发送断开指令,所述断开指令用于指示所述并离网模式开关与所述电网断开连接;
    所述控制器响应于接收到来自所述并离网模式开关的断开完成消息,向所述逆变器发送切换指令,所述断开完成消息用于指示所述并离网模式开关与所述电网断开连接已完成,所述切换指令用于指示所述逆变器切换为电压源模式;
    所述逆变器响应于接收到所述切换指令,且确定所述逆变器的输出电压满足额定电压的预设范围,切换为所述电压源模式。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的关联关系,对所述逆变器的输出电流进行控制,包括:
    所述逆变器根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第一关联关系,对所述逆变器的输出电流进行控制,得到所述逆变器的第一稳定输出电压和所述第一稳定输出电压对应的第一视在功率,所述第一稳定输出电压的变化范围小于或等于所述预设范围。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:所述逆变器根据所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系、所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系;
    所述逆变器根据所述第三关联关系和所述额定电压对所述逆变器的输出电流进行控制,以使所述逆变器的输出电压满足所述额定电压的预设范围。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系、所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系,包括:
    所述逆变器根据所述第一稳定输出电压和额定电压之间的大小关系对所述第一关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第四关联关系;
    所述逆变器根据所述第四关联关系对所述逆变器的输出电流进行控制,得到所述逆变器的第二稳定输出电压和所述第二稳定输出电压对应的第二视在功率,所述第二稳定输出电压的变化范围小于或等于所述预设范围。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述逆变器根据所述第一稳定输出电压、所述第一视在功率、所述第二稳定输出电压和所述第二视在功率获取所述逆变器的输出电压和所述负载的视在功率之间成正相关的第二关联关系;
    所述逆变器根据所述第二关联关系、所述第一稳定输出电压和所述额定电压之间的大小关系对所述第四关联关系进行调整,得到所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第三关联关系。
  19. 根据权利要求15-18中任一项所述的方法,其特征在于,在所述根据所述逆变器的输出电压和所述逆变器的视在功率之间成负相关的第一关联关系,对所述逆变器的输出电 流进行控制之前,所述方法还包括:
    所述逆变器根据所述逆变器在所述额定电压的预设范围内的最小输出电压和最大输出电压,以及所述最小输出电压对应的最大视在功率和所述最大输出电压对应的最小视在功率获取所述第一关联关系。
  20. 根据权利要求17所述的方法,其特征在于,所述第四关联关系用于指示当所述第一稳定输出电压小于所述额定电压时,所述第四关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率大于所述第一关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率;当所述第一稳定输出电压大于或等于所述额定电压时,所述第四关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率小于所述第一关联关系中所述逆变器在所述额定电压的预设范围内对应的最大视在功率。
PCT/CN2021/083099 2021-03-25 2021-03-25 并离网模式切换的方法和储能系统 WO2022198598A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180095340.5A CN116998083A (zh) 2021-03-25 2021-03-25 并离网模式切换的方法和储能系统
EP21932223.7A EP4304039A1 (en) 2021-03-25 2021-03-25 Method for switching grid-tied mode and off-grid mode, and energy storage system
PCT/CN2021/083099 WO2022198598A1 (zh) 2021-03-25 2021-03-25 并离网模式切换的方法和储能系统
AU2021435844A AU2021435844A1 (en) 2021-03-25 2021-03-25 Method for switching grid-tied mode and off-grid mode, and energy storage system
US18/471,694 US20240022082A1 (en) 2021-03-25 2023-09-21 On-grid/off-grid mode switching method and energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083099 WO2022198598A1 (zh) 2021-03-25 2021-03-25 并离网模式切换的方法和储能系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/471,694 Continuation US20240022082A1 (en) 2021-03-25 2023-09-21 On-grid/off-grid mode switching method and energy storage system

Publications (1)

Publication Number Publication Date
WO2022198598A1 true WO2022198598A1 (zh) 2022-09-29

Family

ID=83396271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083099 WO2022198598A1 (zh) 2021-03-25 2021-03-25 并离网模式切换的方法和储能系统

Country Status (5)

Country Link
US (1) US20240022082A1 (zh)
EP (1) EP4304039A1 (zh)
CN (1) CN116998083A (zh)
AU (1) AU2021435844A1 (zh)
WO (1) WO2022198598A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160308465A1 (en) * 2015-04-14 2016-10-20 Lsis Co., Ltd. Apparatus for controlling grid-connected inverter
CN106058910A (zh) * 2016-01-13 2016-10-26 万向钱潮股份有限公司 储能逆变器双模无缝智能切换系统及其切换方法
CN109638895A (zh) * 2019-02-01 2019-04-16 阳光电源股份有限公司 一种储能逆变器并/离网切换控制方法和微网系统
CN110021963A (zh) * 2019-05-29 2019-07-16 广西师范大学 一种并离网双模式合并的微电网平滑切换控制的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160308465A1 (en) * 2015-04-14 2016-10-20 Lsis Co., Ltd. Apparatus for controlling grid-connected inverter
CN106058910A (zh) * 2016-01-13 2016-10-26 万向钱潮股份有限公司 储能逆变器双模无缝智能切换系统及其切换方法
CN109638895A (zh) * 2019-02-01 2019-04-16 阳光电源股份有限公司 一种储能逆变器并/离网切换控制方法和微网系统
CN110021963A (zh) * 2019-05-29 2019-07-16 广西师范大学 一种并离网双模式合并的微电网平滑切换控制的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZENG LIU, JINJUN LIU: "A Control Method for 3-Phase Inverters Enabling Smooth Transferring of the Operation Modes of Distributed Generation System", TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, vol. 26, no. 5, 1 May 2011 (2011-05-01), pages 52 - 61, XP055969485, ISSN: 1000-6753, DOI: 10.19595/j.cnki.1000-6753.tces.2011.05.009 *

Also Published As

Publication number Publication date
AU2021435844A1 (en) 2023-10-12
US20240022082A1 (en) 2024-01-18
CN116998083A (zh) 2023-11-03
EP4304039A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
Morstyn et al. Model predictive control for distributed microgrid battery energy storage systems
US9882386B2 (en) Consensus-based distributed cooperative control for microgrid voltage regulation and reactive power sharing
US9240687B2 (en) Smart microgrid
Vinayagam et al. PV based microgrid with grid-support grid-forming inverter control-(simulation and analysis)
TWI774142B (zh) 交流負荷供電系統和方法
Sahoo et al. A novel centralized energy management approach for power quality improvement
Bhargavi et al. A new control strategy for plug-in electric vehicle of DC microgrid with PV and wind power integration
Xiao et al. Flat tie-line power scheduling control of grid-connected hybrid microgrids
JP2014171359A (ja) 電力変換装置
Boujoudar et al. Intelligent controller based energy management for stand‐alone power system using artificial neural network
Wang et al. Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building
Çimen et al. Voltage sensitivity‐based demand‐side management to reduce voltage unbalance in islanded microgrids
JP2017200307A (ja) 蓄電制御装置
Eydi et al. Control strategy to improve load/power sharing, DC bus voltage restoration, and batteries SOC balancing in a DC microgrid
Boghdady et al. Reactive power compensation using STATCOM in a PV grid connected system with a modified MPPT method
CN114583735A (zh) 一种储能系统调度控制方法及系统
WO2022198598A1 (zh) 并离网模式切换的方法和储能系统
CN116404683A (zh) 一种柔直互联系统的能量调控方法、装置、终端和介质
US11699905B2 (en) Power system and control method
WO2022107583A1 (ja) 電力システム及び電力システムの制御方法
CN115549191A (zh) 一种储能系统及孤岛检测方法
Khodadoost Arani et al. Decentralised primary and secondary control strategies for islanded microgrids considering energy storage systems characteristics
CN111934307B (zh) 一种用于直流配电网的扁平化运行控制方法及系统
CN109474027B (zh) 一种下垂控制方法、装置及变流器
Liu et al. Control of a lithium-ion battery interfacing input-voltage-controlled boost converter with virtual impedance compensation technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095340.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021435844

Country of ref document: AU

Ref document number: AU2021435844

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2021932223

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021435844

Country of ref document: AU

Date of ref document: 20210325

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021932223

Country of ref document: EP

Effective date: 20231004

NENP Non-entry into the national phase

Ref country code: DE