WO2022197105A1 - 복수의 링크에서 동작하는 멀티 링크 장치 및 멀티 링크 장치의 동작 방법 - Google Patents

복수의 링크에서 동작하는 멀티 링크 장치 및 멀티 링크 장치의 동작 방법 Download PDF

Info

Publication number
WO2022197105A1
WO2022197105A1 PCT/KR2022/003704 KR2022003704W WO2022197105A1 WO 2022197105 A1 WO2022197105 A1 WO 2022197105A1 KR 2022003704 W KR2022003704 W KR 2022003704W WO 2022197105 A1 WO2022197105 A1 WO 2022197105A1
Authority
WO
WIPO (PCT)
Prior art keywords
twt
station
link
agreement
field
Prior art date
Application number
PCT/KR2022/003704
Other languages
English (en)
French (fr)
Inventor
김상현
고건중
손주형
곽진삼
Original Assignee
주식회사 윌러스표준기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 윌러스표준기술연구소 filed Critical 주식회사 윌러스표준기술연구소
Priority to KR1020237031011A priority Critical patent/KR20230144075A/ko
Priority to EP22771771.7A priority patent/EP4311302A1/en
Priority to CN202280021439.5A priority patent/CN116998184A/zh
Priority to JP2023557401A priority patent/JP2024510319A/ja
Publication of WO2022197105A1 publication Critical patent/WO2022197105A1/ko
Priority to US18/369,193 priority patent/US20240008119A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a multi-link device operating in a plurality of links and a method of operating the multi-link device.
  • Wireless LAN technology is a technology that enables mobile devices such as smart phones, smart pads, laptop computers, portable multimedia players, and embedded devices to wirelessly access the Internet in a home, business, or specific service area based on wireless communication technology in a short distance. to be.
  • IEEE 802.11b supports a communication speed of up to 11Mbps while using a frequency of the 2.4GHz band.
  • IEEE 802.11a commercialized after IEEE 802.11b, uses a frequency of 5 GHz band instead of 2.4 GHz band, thereby reducing the impact on interference compared to the fairly crowded 2.4 GHz band, and using OFDM (orthogonal frequency division multiplexing) technology. The communication speed was improved up to 54 Mbps.
  • IEEE 802.11a has a disadvantage in that the communication distance is shorter than that of IEEE 802.11b.
  • IEEE 802.11g uses a frequency of the 2.4 GHz band to achieve a communication speed of up to 54 Mbps, and has received considerable attention as it satisfies backward compatibility. have the upper hand
  • IEEE 802.11n is a technical standard established to overcome the limit on communication speed, which has been pointed out as a weakness in wireless LAN. IEEE 802.11n aims to increase the speed and reliability of the network and extend the operating distance of the wireless network. More specifically, IEEE 802.11n supports high throughput (HT) with a data processing rate of up to 540 Mbps or higher, and uses multiple antennas at both ends of the transmitter and receiver to minimize transmission errors and optimize data rates. It is based on MIMO (Multiple Inputs and Multiple Outputs) technology. In addition, this standard may use a coding method that transmits multiple duplicate copies to increase data reliability.
  • HT high throughput
  • MIMO Multiple Inputs and Multiple Outputs
  • IEEE 802.11ac supports a wide bandwidth (80 MHz to 160 MHz) at a frequency of 5 GHz.
  • the IEEE 802.11ac standard is defined only in the 5GHz band, but for backward compatibility with existing 2.4GHz band products, the initial 11ac chipsets will also support operation in the 2.4GHz band.
  • the wireless LAN speed of multiple stations is at least 1 Gbps, and the maximum single link speed is at least 500 Mbps.
  • IEEE 802.11ad is a transmission standard that provides a speed of up to 7 Gbps using beamforming technology, and is suitable for streaming large amounts of data or high bit rate video such as uncompressed HD video.
  • the 60 GHz frequency band has a disadvantage in that it is difficult to pass through obstacles and can only be used between devices in a short distance.
  • the IEEE 802.11ax High Efficiency WLAN, HEW
  • HEW High Efficiency WLAN
  • high-frequency-efficiency communication must be provided indoors and outdoors in the presence of high-density stations and access points (APs), and various technologies have been developed to implement this.
  • IEEE 802.11be Extremely High Throughput, EHT
  • EHT Extremely High Throughput
  • An embodiment of the present invention aims to provide a wireless communication method using a multi-link and a wireless communication terminal using the same.
  • a multi-link apparatus including a plurality of stations each operating in a plurality of links includes: a transceiver; and a processor.
  • the processor is one of a plurality of stations and transmits a target wake time (TWT) element from a first station coupled to a first AP in a first link to a second station operating in a second link and a second station coupled to the second station TWT agreement for the second AP is requested.
  • TWT target wake time
  • the TWT element may include a bitmap indicating information indicating a link to which the TWT agreement to be established by the TWT element is applied.
  • the TWT requesting station of the TWT agreement for the second station and the second AP may be the second station, and the TWT responding station of the TWT agreement for the second station and the second AP may be the second AP.
  • the processor may release the TWT agreement for the second station and the second AP when receiving the TWT release frame from the second AP or when the TWT release frame is successfully transmitted to the second AP .
  • the processor When the second link is deactivated, the processor establishes a TWT agreement for the second station and the second AP without receiving or transmitting a TWT release frame for canceling the TWT agreement for the second station and the second AP. can be turned off
  • the TWT element may request a plurality of TWT agreements established on a plurality of links including the second link.
  • Each of a plurality of TWT agreements established in the plurality of links may be identified based on a link ID of each of the plurality of links.
  • Each of the plurality of TWT agreements established in the plurality of links includes a link ID of each of the plurality of links, a medium access control (MAC) address of the multi-link device, and each TWT Flow of a plurality of TWT agreements established in the plurality of links. It can be identified based on the ID.
  • MAC medium access control
  • the processor may release at least one of a plurality of TWT agreements established in a plurality of links based on the link ID indicated by the TWT release frame. have.
  • the processor may release the TWT agreement for the second station and the second AP, and inherit the TWT agreement for the second station and the second AP to the first station and the first AP.
  • the processor When the processor succeeds the TWT agreement for the second station and the second AP to the first station and the first AP, the processor sets the TWT parameter of the TWT agreement for the second station and the second AP to the second station. It can be applied to TWT agreement for one station and the first AP.
  • a first station that is one of a plurality of stations and is coupled to a first AP in a first link (TWT (target target) and requesting a TWT agreement for a second station operating in a second link and a second AP associated with the second station by transmitting a wake time) element.
  • TWT target target
  • the TWT element may include a bitmap indicating information indicating a link to which the TWT agreement to be established by the TWT element is applied.
  • the TWT requesting station of the TWT agreement for the second station and the second AP may be the second station, and the TWT responding station of the TWT agreement for the second station and the second AP may be the second AP.
  • the method includes releasing a TWT agreement for the second station and the second AP when the TWT release frame is received from the second AP or when the TWT release frame is successfully transmitted to the second AP. may further include.
  • the method of operation includes, when the second link is deactivated, a TWT agreement for the second station and the second AP without receiving or transmitting a TWT release frame for canceling the TWT agreement for the second station and the second AP. It may further include the step of releasing.
  • the TWT element may request a plurality of TWT agreements established on a plurality of links including the second link.
  • Each of a plurality of TWT agreements established in the plurality of links may be identified based on a link ID of each of the plurality of links.
  • Each of the plurality of TWT agreements established in the plurality of links includes a link ID of each of the plurality of links, a medium access control (MAC) address of the multi-link device, and each TWT Flow of a plurality of TWT agreements established in the plurality of links. It can be identified based on the ID.
  • MAC medium access control
  • the operation method is to release at least one of a plurality of TWT agreements established in a plurality of links based on a link ID indicated by the TWT release frame when the TWT release frame is successfully transmitted or the TWT release frame is received. It may include further steps.
  • An embodiment of the present invention provides a multi-link device operating on a plurality of links.
  • an embodiment of the present invention provides a method for efficiently performing a TWT operation by a multi-link device.
  • FIG. 1 shows a wireless LAN system according to an embodiment of the present invention.
  • FIG. 2 shows a wireless LAN system according to another embodiment of the present invention.
  • FIG 3 shows the configuration of a station according to an embodiment of the present invention.
  • FIG 4 shows the configuration of an access point according to an embodiment of the present invention.
  • FIG. 5 schematically shows a process in which a station establishes a link with an access point.
  • FIG. 6 illustrates an example of a carrier sense multiple access (CSMA)/collision avoidance (CA) method used in wireless LAN communication.
  • CSMA carrier sense multiple access
  • CA collision avoidance
  • PPDU 7 shows an example of various standard generation-specific PLCP Protocol Data Unit (PPDU) formats.
  • EHT Extremely High Throughput
  • PPDU Physical Protocol Data Unit
  • FIG. 9 shows a multi-link device according to an embodiment of the present invention.
  • FIG. 10 shows that transmission of different links is simultaneously performed in a multi-link operation according to an embodiment of the present invention.
  • FIG. 11 shows a method of establishing a broadcast TWT between an AP and a station according to an embodiment of the present invention.
  • FIG. 13 illustrates a method for a station to configure a TXOP in consideration of a restricted service period according to an embodiment of the present invention.
  • 15 shows an operation in which the AP terminates the restricted service period early according to an embodiment of the present invention.
  • FIG. 16 shows a format of a TWT element according to an embodiment of the present invention.
  • FIG 17 shows that a multi-link device according to an embodiment of the present invention performs TWT agreement.
  • FIG. 18 shows that a station included in a multi-link device performs TWT agreement for another station included in a multi-link device including a station according to an embodiment of the present invention.
  • FIG. 19 shows an operation of releasing a TWT agreement by a multi-link device according to an embodiment of the present invention.
  • FIG. 20 shows a format of an Individual TWT parameter set field of a TWT element according to an embodiment of the present invention.
  • FIG. 21 shows the format of the remaining TWT Flow Identifier subfields except for the first TWT Flow Identifier subfield according to an embodiment of the present invention.
  • FIG 22 shows the format of the Control field included in the TWT element transmitted by the multi-link device according to an embodiment of the present invention.
  • FIG 23 shows the format of the Action field of the TWT release frame transmitted by the multi-link device according to an embodiment of the present invention.
  • FIG. 24 shows an MLD TWT Flow field according to an embodiment of the present invention.
  • 25 shows the format of the MLD TWT Flow field according to another embodiment of the present invention.
  • 26 shows a TWT release frame for releasing a TWT agreement established in a multi-link device according to an embodiment of the present invention.
  • a field and a subfield may be used interchangeably.
  • FIG. 1 shows a wireless LAN system according to an embodiment of the present invention.
  • the WLAN system includes one or more basic service sets (BSS), which indicate a set of devices that can communicate with each other by successfully synchronizing.
  • BSS basic service sets
  • the BSS may be divided into an infrastructure BSS (infrastructure BSS) and an independent BSS (IBSS), and FIG. 1 shows the infrastructure BSS among them.
  • infrastructure BSS infrastructure BSS
  • IBSS independent BSS
  • the infrastructure BSS (BSS1, BSS2) includes one or more stations (STA1, STA2, STA3, STA4, STA5), an access point (AP-1), which is a station providing a distribution service. , AP-2), and a distribution system (DS) for connecting a plurality of access points (AP-1, AP-2).
  • BSS1, BSS2 includes one or more stations (STA1, STA2, STA3, STA4, STA5), an access point (AP-1), which is a station providing a distribution service. , AP-2), and a distribution system (DS) for connecting a plurality of access points (AP-1, AP-2).
  • a station is an arbitrary device that includes a medium access control (MAC) and a physical layer interface for a wireless medium that conforms to the provisions of the IEEE 802.11 standard, and in a broad sense, a non-access point ( It includes both non-AP stations as well as access points (APs). Also, in this specification, the term 'terminal' may be used to refer to a non-AP STA, an AP, or both.
  • the station for wireless communication includes a processor and a communication unit, and may further include a user interface unit and a display unit according to an embodiment.
  • the processor may generate a frame to be transmitted through the wireless network or process a frame received through the wireless network, and may perform various other processes for controlling the station.
  • the communication unit is functionally connected to the processor and transmits and receives frames through a wireless network for the station.
  • a terminal may be used as a term including a user equipment (UE).
  • An access point is an entity that provides access to a distribution system (DS) via a wireless medium for a station associated with it.
  • DS distribution system
  • the AP is used as a concept including a PCP (Personal BSS Coordination Point), and broadly, a centralized controller, a base station (BS), a Node-B, a BTS (Base Transceiver System), or a site. It may include all concepts such as a controller.
  • the AP may also be referred to as a base wireless communication terminal
  • the base wireless communication terminal is a term including all of an AP, a base station, an eNB (eNodeB), and a transmission point (TP) in a broad sense.
  • the base wireless communication terminal may include various types of wireless communication terminals for allocating communication medium resources and performing scheduling in communication with a plurality of wireless communication terminals.
  • a plurality of infrastructure BSSs may be interconnected through a distribution system (DS).
  • DS distribution system
  • ESSs extended service sets
  • FIG. 2 illustrates an independent BSS as a wireless LAN system according to another embodiment of the present invention.
  • the same or corresponding parts to the embodiment of Fig. 1 will be omitted redundant description.
  • BSS3 shown in FIG. 2 is an independent BSS and does not include an AP, all stations STA6 and STA7 are not connected to the AP.
  • the independent BSS is not allowed to access the distribution system and forms a self-contained network.
  • each of the stations STA6 and STA7 may be directly connected to each other.
  • the station 100 may include a processor 110 , a communication unit 120 , a user interface unit 140 , a display unit 150 , and a memory 160 .
  • the communication unit 120 transmits and receives wireless signals such as wireless LAN packets, and may be built-in to the station 100 or provided externally.
  • the communication unit 120 may include at least one communication module using different frequency bands.
  • the communication unit 120 may include communication modules of different frequency bands such as 2.4 GHz, 5 GHz, 6 GHz, and 60 GHz.
  • the station 100 may include a communication module using a frequency band of 7.125 GHz or higher and a communication module using a frequency band of 7.125 GHz or lower.
  • Each communication module may perform wireless communication with an AP or an external station according to a wireless LAN standard of a frequency band supported by the corresponding communication module.
  • the communication unit 120 may operate only one communication module at a time or a plurality of communication modules simultaneously according to the performance and requirements of the station 100 .
  • each communication module may be provided in an independent form, or a plurality of modules may be integrated into one chip.
  • the communication unit 120 may represent an RF communication module that processes a radio frequency (RF) signal.
  • RF radio frequency
  • the user interface unit 140 includes various types of input/output means provided in the station 100 . That is, the user interface unit 140 may receive a user input using various input means, and the processor 110 may control the station 100 based on the received user input. Also, the user interface unit 140 may perform an output based on a command of the processor 110 using various output means.
  • the display unit 150 outputs an image on the display screen.
  • the display unit 150 may output various display objects such as content executed by the processor 110 or a user interface based on a control command of the processor 110 .
  • the memory 160 stores a control program used in the station 100 and various data corresponding thereto.
  • a control program may include an access program necessary for the station 100 to access an AP or an external station.
  • the processor 110 of the present invention may execute various commands or programs and process data inside the station 100 .
  • the processor 110 may control each unit of the above-described station 100 , and may control data transmission/reception between the units.
  • the processor 110 may execute a program for accessing the AP stored in the memory 160 and receive a communication setting message transmitted by the AP.
  • the processor 110 may read information on the priority condition of the station 100 included in the communication setup message, and request access to the AP based on the information on the priority condition of the station 100 .
  • the processor 110 of the present invention may refer to the main control unit of the station 100, and may refer to a control unit for individually controlling some components of the station 100, such as the communication unit 120, according to an embodiment.
  • the processor 110 may be a modem or a modulator and/or demodulator that modulates and demodulates a radio signal transmitted and received from the communication unit 120 .
  • the processor 110 controls various operations of wireless signal transmission and reception of the station 100 according to an embodiment of the present invention. Specific examples thereof will be described later.
  • the station 100 shown in FIG. 3 is a block diagram according to an embodiment of the present invention, and the separated blocks are logically divided into device elements. Accordingly, the elements of the above-described device may be mounted as one chip or a plurality of chips according to the design of the device. For example, the processor 110 and the communication unit 120 may be integrated into one chip or implemented as a separate chip. In addition, in the embodiment of the present invention, some components of the station 100 , such as the user interface unit 140 and the display unit 150 , may be selectively provided in the station 100 .
  • the AP 200 may include a processor 210 , a communication unit 220 , and a memory 260 .
  • the AP 200 in FIG. 4 redundant descriptions of parts identical to or corresponding to those of the station 100 of FIG. 3 will be omitted.
  • the AP 200 includes a communication unit 220 for operating the BSS in at least one frequency band.
  • the communication unit 220 of the AP 200 may also include a plurality of communication modules using different frequency bands. That is, the AP 200 according to an embodiment of the present invention may include two or more communication modules in different frequency bands, for example, 2.4 GHz, 5 GHz, 6 GHz, and 60 GHz.
  • the AP 200 may include a communication module using a frequency band of 7.125 GHz or higher and a communication module using a frequency band of 7.125 GHz or lower.
  • Each communication module may perform wireless communication with a station according to a wireless LAN standard of a frequency band supported by the corresponding communication module.
  • the communication unit 220 may operate only one communication module at a time or a plurality of communication modules simultaneously according to the performance and requirements of the AP 200 .
  • the communication unit 220 may represent an RF communication module that processes a radio frequency (RF) signal.
  • RF radio frequency
  • the memory 260 stores a control program used in the AP 200 and various data corresponding thereto.
  • the control program may include an access program for managing access of stations.
  • the processor 210 may control each unit of the AP 200 , and may control data transmission/reception between the units.
  • the processor 210 may execute a program for connection with a station stored in the memory 260 and transmit a communication setting message for one or more stations.
  • the communication setting message may include information on the access priority condition of each station.
  • the processor 210 performs connection establishment according to the connection request of the station.
  • the processor 210 may be a modem or a modulator and/or demodulator that modulates and demodulates a radio signal transmitted and received from the communication unit 220 .
  • the processor 210 controls various operations of wireless signal transmission and reception of the AP 200 according to an embodiment of the present invention. Specific examples thereof will be described later.
  • FIG. 5 schematically shows a process in which a station establishes a link with an access point.
  • the scanning step is a step in which the STA 100 acquires access information of the BSS operated by the AP 200 .
  • a passive scanning method in which information is obtained by using only a beacon message S101 periodically transmitted by the AP 200, and a probe request by the STA 100 to the AP
  • an active scanning method for transmitting a probe request (S103) and receiving a probe response from the AP (S105) to obtain access information.
  • the STA 100 successfully receiving the radio access information in the scanning step transmits an authentication request (S107a), receives an authentication response from the AP 200 (S107b), and performs the authentication step do.
  • the STA 100 transmits an association request (S109a), receives an association response from the AP 200 (S109b), and performs the association step.
  • association basically means wireless coupling, but the present invention is not limited thereto, and coupling in a broad sense may include both wireless coupling and wired coupling.
  • the authentication server 300 is a server that processes 802.1X-based authentication with the STA 100 , and may exist physically coupled to the AP 200 or exist as a separate server.
  • FIG. 6 illustrates an example of a carrier sense multiple access (CSMA)/collision avoidance (CA) method used in wireless LAN communication.
  • CSMA carrier sense multiple access
  • CA collision avoidance
  • a terminal performing wireless LAN communication checks whether a channel is busy by performing carrier sensing before transmitting data. If a radio signal of a predetermined strength or higher is detected, it is determined that the corresponding channel is busy, and the terminal delays access to the corresponding channel. This process is called clear channel assessment (CCA), and the level at which a corresponding signal is detected is called a CCA threshold. If a radio signal greater than or equal to the CCA threshold received by the terminal has the corresponding terminal as a receiver, the terminal processes the received radio signal. On the other hand, when no radio signal is detected in the corresponding channel or when a radio signal having an intensity smaller than the CCA threshold is detected, the channel is determined to be in an idle state.
  • CCA clear channel assessment
  • each terminal having data to transmit performs a backoff procedure after a time of Inter Frame Space (IFS), such as AIFS (Arbitration IFS), PIFS (PCF IFS), etc. according to the situation of each terminal. do.
  • IFS Inter Frame Space
  • the AIFS may be used as a configuration to replace the existing DIFS (DCF IFS).
  • DCF IFS DIFS
  • Each terminal waits while decreasing the slot time as much as a random number determined for the corresponding terminal during the interval of the idle state of the channel, and the terminal that has exhausted the slot time attempts access to the corresponding channel do. In this way, a period in which each terminal performs a backoff procedure is called a contention window period.
  • the random number may be referred to as a backoff counter. That is, the initial value of the backoff counter is set by an integer that is a random number obtained by the terminal.
  • the UE may decrement the backoff counter by 1.
  • the terminal may be allowed to perform channel access on the corresponding channel. Therefore, when the channel is idle during the AIFS time and the slot time of the backoff counter, the transmission of the terminal may be allowed.
  • the corresponding terminal may transmit data through the channel.
  • the collided terminals receive a new random number and perform the backoff procedure again.
  • the random number newly allocated to each terminal may be determined within a range (2*CW) twice the range of random numbers previously allocated to the corresponding terminal (contention window, CW).
  • each terminal attempts to access by performing the backoff procedure again in the next contention window period, and at this time, each terminal performs the backoff procedure from the remaining slot time in the previous contention window period. In this way, each terminal performing wireless LAN communication can avoid collision with each other for a specific channel.
  • FIG. 7 shows an example of various standard generation-specific PLCP Protocol Data Unit (PPDU) formats. More specifically, FIG. 7(a) shows an embodiment of a legacy PPDU format based on 802.11a/g, FIG. 7(b) shows an embodiment of an HE PPDU format based on 802.11ax, and FIG. 7(c) shows an embodiment of a non-legacy PPDU (ie, EHT PPDU) format based on 802.11be. Also, FIG. 7(d) shows the detailed field configuration of L-SIG and RL-SIG commonly used in the PPDU formats.
  • PPDU Protocol Data Unit
  • the preamble of the legacy PPDU includes a legacy short training field (L-STF), a legacy long training field (L-LTF), and a legacy signal field (L-SIG).
  • L-STF legacy short training field
  • L-LTF legacy long training field
  • L-SIG legacy signal field
  • the L-STF, L-LTF, and L-SIG may be referred to as a legacy preamble.
  • the preamble of the HE PPDU includes a Repeated Legacy Short Training field (RL-SIG), a High Efficiency Signal A field (HE-SIG-A), and a High Efficiency Signal (HE-SIG-B) in the legacy preamble.
  • B field a High Efficiency Short Training field (HE-STF), and a High Efficiency Long Training field (HE-LTF) are additionally included.
  • the RL-SIG, HE-SIG-A, HE-SIG-B, HE-STF and HE-LTF may be referred to as a HE preamble.
  • a specific configuration of the HE preamble may be modified according to the HE PPDU format. For example, HE-SIG-B may be used only in the HE MU PPDU format.
  • the preamble of the EHT PPDU is a Repeated Legacy Short Training field (RL-SIG), a Universal Signal field (U-SIG), and an Extremely High Throughput Signal A field (EHT-SIG-A) in the legacy preamble.
  • EHT-SIG-A Extremely High Throughput Signal B field
  • EHT-STF Extremely High Throughput Short Training field
  • EHT-LTF Extremely High Throughput Long Training field
  • the RL-SIG, EHT-SIG-A, EHT-SIG-B, EHT-STF and EHT-LTF may be referred to as an EHT preamble.
  • the specific configuration of the non-legacy preamble may be modified according to the EHT PPDU format. For example, EHT-SIG-A and EHT-SIG-B may be used only in some of the EHT PPDU formats.
  • the L-SIG includes an L_RATE field and an L_LENGTH field.
  • the L_RATE field consists of 4 bits and indicates an MCS used for data transmission.
  • the L_RATE field is a 6/9/12/18/24/ combination of modulation methods such as BPSK/QPSK/16-QAM/64-QAM and inefficiencies such as 1/2, 2/3, and 3/4. Indicates a value of one of the transmission rates of 36/48/54 Mbps.
  • the L_RATE field is set to the minimum rate of 6 Mbps.
  • the legacy terminal and the non-legacy terminal may interpret the L_LENGTH field in different ways.
  • a method for a legacy terminal or a non-legacy terminal to interpret the length of the corresponding PPDU by using the L_LENGTH field is as follows.
  • 3 bytes ie, 24 bits
  • 4us which is one symbol duration of 64FFT.
  • the number of 64FFT reference symbols after L-SIG is obtained.
  • the length of the corresponding PPDU that is, the reception time (RXTIME)
  • RXTIME reception time
  • the length of the PPDU may be set to a maximum of 5.484 ms.
  • the non-legacy terminal transmitting the corresponding PPDU should set the L_LENGTH field as shown in Equation 2 below.
  • TXTIME is the total transmission time constituting the corresponding PPDU, as shown in Equation 3 below.
  • TX represents the transmission time of X.
  • the U-SIG Universal SIG
  • the U-SIG is a 64FFT-based OFDM 2 symbol and can transmit a total of 52 bits of information. Among them, 43 bits excluding CRC/Tail 9 bits are largely divided into a VI (Version Independent) field and a VD (Version Dependent) field.
  • the VI bit maintains the current bit configuration in the future, so that even if a PPDU of a subsequent generation is defined, the current 11be UEs can obtain information about the corresponding PPDU through the VI fields of the corresponding PPDU.
  • the VI field consists of PHY version, UL/DL, BSS Color, TXOP, and Reserved fields.
  • the PHY version field is 3 bits and serves to sequentially classify 11be and subsequent generation WLAN standards into versions. 11be has a value of 000b.
  • the UL/DL field identifies whether the corresponding PPDU is an uplink/downlink PPDU.
  • BSS Color means an identifier for each BSS defined in 11ax, and has a value of 6 bits or more.
  • TXOP means the Transmit Opportunity Duration delivered in the MAC header. By adding it to the PHY header, the length of the TXOP including the corresponding PPDU can be inferred without the need to decode the MPDU, and has a value of 7 bits or more.
  • the VD field is signaling information useful only for the 11be version of the PPDU, and may be composed of a field commonly used for any PPDU format, such as a PPDU format and BW, and a field defined differently for each PPDU format.
  • the PPDU format is a delimiter that distinguishes EHT SU (Single User), EHT MU (Multiple User), EHT TB (Trigger-based), and EHT ER (Extended Range) PPDUs.
  • BW basic PPDU BW options of 20, 40, 80, 160 (80+80), 320 (160+160) MHz (BW that can be expressed in the form of an exponential power of 20*2 can be called basic BW) ) and various remaining PPDU BWs configured through Preamble Puncturing.
  • basic BW basic PPDU BW
  • 80 MHz may be signaled in a punctured form.
  • the punctured and modified channel type may be signaled directly in the BW field, or may be signaled using the BW field and a field appearing after the BW field (eg, a field in the EHT-SIG field).
  • the puncturing mode can signal up to 3 only. If the BW field is 4 bits, since a total of 16 BW signaling is possible, the puncturing mode can signal a maximum of 11.
  • the field located after the BW field varies depending on the type and format of the PPDU, the MU PPDU and the SU PPDU can be signaled in the same PPDU format, and a field for distinguishing the MU PPDU and the SU PPDU is located before the EHT-SIG field. and additional signaling for this may be performed.
  • both the SU PPDU and the MU PPDU include the EHT-SIG field
  • some fields not required in the SU PPDU may be compressed.
  • the information on the field to which compression is applied may be omitted or may have a size reduced from the size of the original field included in the MU PPDU.
  • the common field of the EHT-SIG may be omitted or replaced, or a user-specific field may be replaced or reduced to one, etc. may have a different configuration.
  • the SU PPDU may further include a compression field indicating whether compression is performed, and some fields (eg, RA field, etc.) may be omitted according to a value of the compression field.
  • some fields eg, RA field, etc.
  • the EHT-SIG field When a part of the EHT-SIG field of the SU PPDU is compressed, information to be included in the compressed field may be signaled together in an uncompressed field (eg, a common field, etc.). Since the MU PPDU is a PPDU format for simultaneous reception by multiple users, the EHT-SIG field must be transmitted after the U-SIG field, and the amount of signaled information may be variable. That is, since a plurality of MU PPDUs are transmitted to a plurality of STAs, each STA must recognize the location of the RU to which the MU PPDU is transmitted, the STA to which each RU is allocated, and whether the transmitted MU PPDU is transmitted to itself.
  • an uncompressed field eg, a common field, etc.
  • the AP must transmit the above information in the EHT-SIG field.
  • the U-SIG field signals information for efficiently transmitting the EHT-SIG field, which may be the number of symbols and/or the modulation method of the EHT-SIG field, MCS.
  • the EHT-SIG field may include size and location information of an RU allocated to each user.
  • a plurality of RUs may be allocated to an STA, and the plurality of RUs may or may not be consecutive. If the RUs allocated to the STA are not consecutive, the STA must recognize the RU punctured in the middle to efficiently receive the SU PPDU. Accordingly, the AP may transmit information on punctured RUs (eg, puncturing patterns of RUs, etc.) among RUs allocated to the STA in the SU PPDU.
  • punctured RUs eg, puncturing patterns of RUs, etc.
  • a puncturing mode field including information indicating whether a puncturing mode is applied and a puncturing pattern in a bitmap format may be included in the EHT-SIG field, and the puncturing mode field may appear within the bandwidth.
  • the form of a discontinuous channel may be signaled.
  • the type of the signaled discontinuous channel is limited, and it indicates the BW and discontinuous channel information of the SU PPDU in combination with the value of the BW field.
  • the STA can recognize the bandwidth allocated to it through the BW field included in the PPDU, and the U-SIG field or EHT-SIG field included in the PPDU.
  • a punctured resource among the allocated bandwidth can be recognized through the puncturing mode field of .
  • the terminal may receive the PPDU in the remaining resource units except for the specific channel of the punctured resource unit.
  • the plurality of RUs allocated to the STA may be configured with different frequency bands or tones.
  • the reason why only the limited type of discontinuous channel type is signaled is to reduce the signaling overhead of the SU PPDU. Since puncturing can be performed for each 20 MHz subchannel, if puncturing is performed on a BW having a large number of 20 MHz subchannels such as 80, 160, 320 MHz, in the case of 320 MHz, the remaining 20 MHz subchannels except for the primary channel.
  • the type of discontinuous channel (when only the edge 20 MHz punctured type is viewed as discontinuous) must be signaled by expressing whether or not 15 are used. As such, allocating 15 bits for signaling the discontinuous channel type of single-user transmission may act as an excessively large signaling overhead in consideration of the low transmission rate of the signaling part.
  • the present invention proposes a technique for signaling the discontinuous channel type of the SU PPDU, and shows the discontinuous channel type determined according to the proposed technique.
  • a scheme for signaling primary 160 MHz and secondary 160 MHz puncturing types is proposed.
  • an embodiment of the present invention proposes a scheme for differentiating the configuration of the PPDU indicated by the preamble puncturing BW values according to the PPDU format signaled in the PPDU Format field. It is assumed that the length of the BW field is 4 bits, and in case of EHT SU PPDU or TB PPDU, EHT-SIG-A of 1 symbol is additionally signaled after U-SIG or EHT-SIG-A is not signaled at all. Therefore, in consideration of this, it is necessary to completely signal up to 11 puncturing modes through only the BW field of the U-SIG.
  • the BW field may be set to 1 bit to signal whether the PPDU uses a 20 MHz or 10 MHz band.
  • SIG-B which is a signaling field for simultaneous reception by multiple users, is essential, and SIG-B may be transmitted without a separate SIG-A after the U-SIG.
  • the U-SIG needs to signal information for decoding the SIG-B.
  • These fields include the SIG-B MCS, SIG-B DCM, Number of SIG-B Symbols, SIG-B Compression, and Number of EHT-LTF Symbols fields.
  • EHT Extremely High Throughput
  • PPDU Physical Protocol Data Unit
  • the PPDU may be composed of a preamble and a data part, and the format of one type of EHT PPDU may be distinguished according to the U-SIG field included in the preamble. Specifically, based on the PPDU format field included in the U-SIG field, whether the format of the PPDU is an EHT PPDU may be indicated.
  • the EHT SU PPDU is a PPDU used for single user (SU) transmission between the AP and a single STA, and an EHT-SIG-A field for additional signaling may be located after the U-SIG field.
  • SU single user
  • EHT Trigger-based PPDU format that is an EHT PPDU transmitted based on a trigger frame.
  • the EHT Trigger-based PPDU is an EHT PPDU transmitted based on the trigger frame, and is an uplink PPDU used for a response to the trigger frame.
  • the EHT-SIG-A field is not located after the U-SIG field.
  • the EHT MU PPDU is a PPDU used to transmit a PPDU to one or more STAs.
  • the HE-SIG-B field may be located after the U-SIG field.
  • FIG. 8(d) shows an example of an EHT ER SU PPDU format used for single-user transmission with an STA in an extended range.
  • the EHT ER SU PPDU may be used for single-user transmission with an STA of a wider range than the EHT SU PPDU described in FIG. 8A , and the U-SIG field may be repeatedly located on the time axis.
  • the EHT MU PPDU described in (c) of FIG. 8 may be used by the AP for downlink transmission to a plurality of STAs.
  • the EHT MU PPDU may include scheduling information so that a plurality of STAs can simultaneously receive the PPDU transmitted from the AP.
  • the EHT MU PPDU may deliver AID information of the receiver and/or the sender of the PPDU transmitted through the user specific field of the EHT-SIG-B to the STA. Accordingly, the plurality of terminals receiving the EHT MU PPDU may perform a spatial reuse operation based on the AID information of the user-specific field included in the preamble of the received PPDU.
  • the resource unit allocation (RA) field of the HE-SIG-B field included in the HE MU PPDU is the configuration of the resource unit in a specific bandwidth (eg, 20 MHz, etc.) of the frequency axis (eg, , the division type of the resource unit). That is, the RA field may indicate the configuration of resource units divided in the bandwidth for transmission of the HE MU PPDU in order for the STA to receive the PPDU.
  • Information on the STA allocated (or designated) to each divided resource unit may be included in the user-specific field of the EHT-SIG-B and transmitted to the STA. That is, the user specific field may include one or more user fields corresponding to each divided resource unit.
  • a user field corresponding to at least one resource unit used for data transmission among a plurality of divided resource units may include an AID of a receiver or a sender, and the remaining resource units not performed for data transmission ( )), the user field may include a preset null STA ID.
  • a frame or a MAC frame may be used interchangeably with an MPDU.
  • the link is a physical path, and may be configured as one wireless medium that can be used to transmit a MAC service data unit (MSDU).
  • MSDU MAC service data unit
  • the wireless communication device can continue to communicate through the other link. In this way, the wireless communication device can effectively use a plurality of channels.
  • the wireless communication device simultaneously performs communication using a plurality of links, overall throughput may be increased.
  • a wireless communication method of a wireless communication device using a plurality of links will be described with reference to FIGS. 9 to 26 . First, a specific form of a wireless communication device using a plurality of links will be described with reference to FIG. 9 .
  • FIG. 9 shows a multi-link device according to an embodiment of the present invention.
  • a multi-link device may refer to a device having one or more affiliated stations.
  • a multi-link device may indicate a device having two or more affiliated stations.
  • the multi-link device can exchange multi-link elements.
  • the multi-link element includes information about one or more stations or one or more links.
  • the multi-link element may include a multi-link setup element, which will be described later.
  • the multi-link device may be a logical entity.
  • a multi-link device may have a plurality of associated stations.
  • the multi-link device may be referred to as a multi-link logical entity (MLLE) or a multi-link entity (MLE).
  • MLE multi-link logical entity
  • a multi-link device may have one MAC service access point (medium access control service access point, SAP) up to a logical link control (LLC).
  • SAP medium access control service access point
  • LLC logical link control
  • the MLD may have one MAC data service.
  • a plurality of stations included in the multi-link device may operate on a plurality of links. Also, a plurality of stations included in the multi-link device may operate on a plurality of channels. Specifically, a plurality of stations included in the multi-link device may operate on a plurality of different links or a plurality of different channels. For example, a plurality of stations included in the multi-link device may operate in a plurality of different channels of 2.4 GHz, 5 GHz, and 6 GHz.
  • the operation of the multi-link device may be referred to as a multi-link operation, an MLD operation, or a multi-band operation.
  • the multi-link device when the station affiliated with the far link device is an AP, the multi-link device may be referred to as an AP MLD. Also, when the station affiliated with the far link device is a non-AP station, the multi-link device may be referred to as a non-AP MLD.
  • non-AP MLD includes a first AP (AP1), a second AP (AP2), and a third AP (AP3).
  • the non-AP MLD includes a first non-AP STA (non-AP STA1), a second non-AP STA (non-AP STA2), and a third non-AP STA (non-AP STA3).
  • the first AP (AP1) and the first non-AP STA (non-AP STA1) communicate through a first link (Link1).
  • the second AP (AP2) and the second non-AP STA (non-AP STA2) communicate through a second link (Link2).
  • the third AP (AP3) and the third non-AP STA (non-AP STA3) communicate through a third link (Link3).
  • the multi-link operation may include a multi-link setup operation.
  • the multi-link configuration corresponds to the above-described association operation of the single-link operation, and may need to be preceded for frame exchange in the multi-link.
  • the multi-link device may obtain information necessary for multi-link setup from the multi-link setup element.
  • the multi-link setup element may include multi-link related capability information.
  • the capability information may include information indicating which one of a plurality of devices included in the multi-link device can transmit and the other device can simultaneously perform reception.
  • the capability information may include information about a link that can be used by each station included in the MLD.
  • the capability information may include information about a channel that can be used by each station included in the MLD.
  • Multi-link establishment may be established through negotiation between peer stations. Specifically, multi-link setup may be performed through communication between stations without communication with the AP. In addition, the multi-link setting may be set through any one link. For example, even when the first to third links are configured through the multi-link, the multi-link setup may be performed through the first link.
  • a mapping between a traffic identifier (TID) and a link may be established. Specifically, a frame corresponding to a TID of a specific value can be exchanged only through a predetermined link.
  • the mapping between the TID and the link may be set to be directional-based. For example, when a plurality of links are established between the first multi-link device and the second multi-link device, the first multi-link device is configured to transmit a frame of the first TID to the plurality of links and the second multi-link device The device may be configured to transmit the frame of the second TID on the first link.
  • there may be a default setting in the mapping between the TID and the link Specifically, when there is no additional configuration in the multi-link configuration, the multi-link device may exchange frames corresponding to the TID in each link according to the default configuration. In this case, the basic setting may be that all TIDs are exchanged in any one link.
  • TID is an ID that classifies traffic and data to support quality of service (QoS).
  • QoS quality of service
  • the TID may be used or allocated in a layer higher than the MAC layer.
  • the TID may indicate a traffic category (TC) and a traffic stream (TS).
  • TC traffic category
  • TS traffic stream
  • 16 TIDs can be distinguished.
  • the TID may be designated as any one of 0 to 15.
  • a TID value used may be differently designated according to an access policy, channel access, or medium access method. For example, when enhanced distributed channel access (EDCA) or hybrid coordination function contention based channel access (HCAF) is used, the value of the TID may be assigned from 0 to 7.
  • EDCA enhanced distributed channel access
  • HCAF hybrid coordination function contention based channel access
  • the TID may indicate user priority (UP).
  • UP may be designated according to TC or TS. UP may be allocated in a layer higher than MAC.
  • HCCA HCF controlled channel access
  • SPCA SPCA
  • the value of TID may be assigned from 8 to 15.
  • the TID may indicate the TSID.
  • HEMM or SEMM the value of TID may be assigned from 8 to 15.
  • the TID may indicate the TSID.
  • AC may be a label for providing QoS in EDCA.
  • AC may be a label for indicating the EDCA parameter set.
  • the EDCA parameter or EDCA parameter set is a parameter used in channel contention of EDCA.
  • QoS stations can use AC to guarantee QoS.
  • AC may include AC_BK, AC_BE, AC_VI, and AC_VO.
  • Each of AC_BK, AC_BE, AC_VI, and AC_VO may represent a background, a best effort, a video, and a voice.
  • AC_BK, AC_BE, AC_VI, and AC_VO may be classified into lower ACs.
  • AC_VI may be subdivided into AC_VI primary and AC_VI alternate.
  • AC_VO may be subdivided into AC_VO primary and AC_VO alternate.
  • UP or TID may be mapped to AC.
  • each of 1, 2, 0, 3, 4, 5, 6, and 7 of the UP or TID may be mapped to each of AC_BK, AC_BK, AC_BE, AC_BE, AC_VI, AC_VI, AC_VO, and AC_VO.
  • each of 1, 2, 0, 3, 4, 5, 6, and 7 of the UP or TID may be mapped to AC_BK, AC_BK, AC_BE, AC_BE, AC_VI alternate, AC_VI primary, AC_VO primary, and AC_VO alternate, respectively.
  • 1, 2, 0, 3, 4, 5, 6, and 7 of the UP or TID may have higher priorities in sequence.
  • page 1 may have a low priority
  • page 7 may have a high priority. Therefore, the priority may be increased in the order of AC_BK, AC_BE, AC_VI, and AC_VO.
  • each of AC_BK, AC_BE, AC_VI, and AC_VO may correspond to ACI (AC index) 0, 1, 2, and 3, respectively.
  • the mapping between TIDs and links may represent mappings between ACs and links. Also, the mapping between the link and the AC may indicate the mapping between the TID and the link.
  • a TID may be mapped to each of a plurality of links.
  • the mapping may be to designate a link through which traffic corresponding to a specific TID or AC can be exchanged.
  • a TID or AC that can be transmitted for each transmission direction in the link may be designated.
  • a default setting may exist in the mapping between the TID and the link. Specifically, when there is no additional configuration in the multi-link configuration, the multi-link device may exchange frames corresponding to the TID in each link according to the default configuration. In this case, the basic setting may be that all TIDs are exchanged in any one link. Any TID or AC can always be mapped to at least one link at any time. Management frames and control frames can be transmitted on all links.
  • the ACK may also be transmitted based on the link to which the TID or AC is mapped. For example, a block ACK agreement may be determined based on the mapping between the TID and the link. In another specific embodiment, the mapping between the TID and the link may be determined based on block ACK agreement. Specifically, a block ACK agreement may be established for a TID mapped to a specific link.
  • an AC or TID having a higher priority may be mapped to a link in which a relatively small number of stations operate or a link having a good channel state.
  • the station can be kept in the power saving state for a longer period of time.
  • FIG. 10 shows that transmission of different links is simultaneously performed in a multi-link operation according to an embodiment of the present invention.
  • simultaneous operation in the multi-link may not be supported. For example, it may not be supported for a multi-link device to perform transmission simultaneously on a plurality of links, simultaneously perform reception on a plurality of links, or perform transmission on one link and reception on another link at the same time. This is because reception or transmission performed on one link may affect reception or transmission performed on another link. Specifically, transmission in one link may act as interference in another link. Interference acting on another link in one link of one multi-link device may be referred to as internal leakage. The smaller the frequency spacing between the links, the greater the internal leakage can be. If the internal leak is not too large, when transmission is performed on one link, transmission may be performed on the other link.
  • simultaneous transmit and receive simultaneous transmission and reception
  • STR simultaneous transmission and reception
  • a multi-link device that transmits simultaneously on a plurality of links, performs transmission on one link and simultaneously performs reception on another link, or simultaneously performs reception on a plurality of links may be referred to as an STR.
  • the multi-link device may support the STR or may only support it limitedly. Specifically, the multi-link device can support STR only under specific conditions. For example, when the multi-link device operates as a single radio, the multi-link device may not perform STR. Also, when the multi-link device operates with a single antenna, the STR of the multi-link device may not be performed. In addition, when an internal leak is detected to be larger than a predetermined size, the multi-link device may not be able to perform STR.
  • Stations may exchange information about their STR capabilities with other stations.
  • the station may exchange information on whether the station's ability to simultaneously perform transmission on a plurality of links or simultaneously perform reception on a plurality of links is limited with other stations.
  • the information on whether the ability to perform transmission or reception in a plurality of links is limited may indicate whether transmission and reception can be performed simultaneously in a plurality of links, simultaneous transmission, or simultaneous reception.
  • the information on whether to limit the ability to perform transmission or reception in a plurality of links may be information indicated for each step.
  • the information on whether the ability to perform transmission or reception is limited in a plurality of links may be information indicating a step of indicating the size of internal leakage.
  • the information indicating the step of indicating the size of the internal outflow may be information indicating the step of indicating the size of the interference generated due to the internal outflow. In another specific embodiment, it may be information indicating a step of indicating a frequency interval between links that may have an influence on internal leakage. Also, the information indicating the step of indicating the size of the internal outflow may be information indicating the relationship between the frequency interval between links and the size of the internal outflow for each step.
  • a first station STA1 and a second station STA2 are affiliated with one non-AP multi-link device.
  • the first AP (AP1) and the second AP (AP2) may be associated with one non-AP multi-link device.
  • a first link (link 1) is established between the first AP (AP1) and the first station (STA1)
  • a second link (link 2) is established between the second AP (AP2) and the second station (STA2) do.
  • the non-AP multi-link device may restrictively perform STR.
  • the second station STA2 When the second station STA2 performs transmission on the second link Link 2, the reception of the first station STA1 on the first link Link 1 is the transmission performed on the second link Link 2 may be disturbed by For example, in the following case, the reception of the first station STA1 in the first link Link 1 may be interrupted by the transmission performed in the second link Link 2 .
  • the second station (STA2) transmits the first data (Data1)
  • the first AP (AP1) responds to the first data (Data1) (Ack for Data1) to the first station (STA1).
  • the second station STA2 transmits second data Data2.
  • the transmission time of the second data Data2 and the transmission time of the response Ack for Data1 to the first data Data1 may overlap.
  • interference may occur in the first link Link1 due to transmission from the second link Link2 to the second station STA2. Accordingly, the first station STA1 may not receive the response Ack for Data1 to the first data Data1.
  • a multi-link device may independently perform channel access on a plurality of links.
  • the channel access may be a backoff-based channel access.
  • the multi-link device may start transmitting simultaneously on the plurality of links.
  • the multi-link device has a back-off counter of 0 as well as in the link where the back-off counter reaches 0. Channel access can be performed on other links that are not.
  • the multi-link device may perform energy detection in other links for which the backoff counter does not reach 0.
  • the multi-link device may perform channel access not only in a link in which the backoff counter reaches 0 but also in a link in which energy is sensed. Through this, the multi-link device can start transmission on a plurality of links at the same time.
  • the threshold value used for energy sensing may be smaller than the threshold value used when determining whether to decrease the backoff counter.
  • the multi-link device may detect any type of signal as well as a wireless LAN signal.
  • the multi-link device may detect any type of signal as well as a wireless LAN signal. Internal leakage may not be detected as a wireless LAN signal. In this case, the multi-link device may sense a signal detected due to internal leakage as energy detection. Also, as described above, the threshold value used for energy sensing may be smaller than the threshold value used when determining whether to reduce the backoff counter. Therefore, even while transmission is being performed on one link, the multi-link device can decrease the backoff counter on the other link.
  • the multi-link device may determine whether a station operating in each link can operate independently.
  • the degree of interference between the links may be the amount of interference detected by another station of the multi-link device when any one station of the multi-link device performs transmission on any one link.
  • the operation of the second station may be restricted. Specifically, reception or channel access of the second station may be restricted. This is because, when interference occurs, the second station may fail to decode the signal it receives due to the interference.
  • the second station may determine that the channel is in use.
  • the first station and the second station can operate independently. Specifically, when transmission in the first link of the first station of the multi-link device causes interference less than a predetermined amount to the second station of the multi-link device operating in the second link, the first station and the second station Channel access can be performed independently. In addition, when transmission in the first link of the first station of the multi-link device causes interference of less than a predetermined amount to the second station of the multi-link device operating in the second link, the first station and the second station Transmission or reception can be performed independently.
  • the second station when interference of less than a predetermined magnitude occurs, the second station can succeed in decoding a received signal even in the presence of interference.
  • the second station when interference of less than a predetermined size occurs, when the second station accesses the channel using the backoff, the second station may determine that the channel is idle.
  • the degree of interference occurring between stations of the multi-link device may vary depending on the hardware characteristics of the multi-link device as well as the interval between frequency bands of links in which the stations operate. For example, internal interference generated in a multi-link device including an expensive radio frequency (RF) device may be smaller than internal interference generated in a multi-link device including a low-cost RF device. Accordingly, the degree of interference occurring between stations of the multi-link device may be determined based on the characteristics of the multi-link device.
  • RF radio frequency
  • the first multi-link device MLD#1 includes a first station STA1-1 operating on a first link Link1 and a second station STA1-operating on a second link Link2. 2) is included.
  • the second multi-link device MLD#2 includes a first station STA2-1 operating on a first link Link1 and a second station STA2-2 operating on a second link Link2.
  • the frequency interval between the first link Link1 and the second link Link2 in which the first multi-link device MLD#1 operates and the first link Link1 in which the second multi-link device MLD#2 operates The frequency interval between the and the second link Link2 is the same.
  • the magnitude of interference generated due to a difference between the characteristics of the first multi-link device MLD#1 and the characteristics of the second multi-link device MLD#2 is different.
  • the magnitude of the interference generated in the second multi-link device MLD#2 may be greater than the magnitude of the interference generated in the first multi-link device MLD#1.
  • the amount of interference generated according to the characteristics of the multi-link device may vary and whether or not STR is supported for each multi-link device may vary, information on whether STR is supported needs to be exchanged.
  • the multi-link device may signal whether a station included in the multi-link device supports STR.
  • the AP multi-link device and the non-AP multi-link device may exchange whether the AP included in the AP multi-link device supports STR and whether the STA includes the non-AP multi-link device.
  • an element indicating whether STR is supported may be used.
  • An element indicating whether STR is supported may be referred to as an STR support element.
  • the STR support element may indicate whether a station of a multi-link device that has transmitted the STR support element through 1 bit supports STR.
  • the STR support element may indicate whether each of the stations included in the multi-link device transmitting the STR support element supports STR by bit.
  • the value of the bit when the station supports the STR, the value of the bit may be 1, and when the station does not support the STR, the value of the bit may be 0.
  • the multi-link device transmitting the STR support element includes a first station (STA1), a second station (STA2), and a third station (STA3), and the first station (STA1) and the third station (STA3) use the STR If the STR support element is supported and the second station STA2 does not support the STR, the STR support element may include a field with 101 1b . It is assumed that stations operating in different frequency bands support STR, and the STR support element may omit signaling of whether STR is supported between stations operating in different frequency bands.
  • the first station STA1 operates on the first link of 2.4 GHz
  • the second station STA2 and the third station STA3 operate on the second link and the third link of 5 GHz, respectively.
  • the STR support element may indicate that STR is supported between the second station STA2 and the third station STA3 using 1 bit.
  • the STR support element may include only one bit when there are two stations signaled by the STR support element.
  • a relationship between a link located at 2.4 GHz and a link located at 5 GHz or 6 GHz among links of a multi-link device may always be determined as an STR. Accordingly, signaling may be omitted for the STR of the link located at 2.4 GHz and the link located at 5 GHz or 6 GHz.
  • the operation of the station of the multi-link device may be substituted with the operation of the multi-link device.
  • the operation of the AP may be replaced with the operation of the non-AP station, and the operation of the non-AP station may be replaced with the operation of the AP. Therefore, the operation of the AP of the non-STR multi-link device is replaced with the operation of the non-AP station of the non-STR multi-link device, and the operation of the non-AP station of the STR multi-link device is the operation of the AP of the STR multi-link device. may be substituted.
  • the operation of the non-AP station of the non-STR multi-link device is replaced with the operation of the AP of the non-STR multi-link device
  • the operation of the AP of the STR multi-link device is the operation of the non-AP station of the STR multi-link device.
  • the limited service period may be a time interval in which the transmission of low-latency traffic and the transmission of a response to low-delay traffic are allowed preferentially. Specifically, in the limited service period, it may be a time interval in which only the transmission of low-delay traffic and the transmission of a response to the low-delay traffic are allowed. In another specific embodiment, in the limited service period, the transmission of low-delay traffic and the transmission of the response to the low-delay traffic are performed, and after the transmission of the low-delay traffic and the transmission of the response to the low-delay traffic is completed, the low-latency traffic It may be a time interval in which the transmission of traffic is allowed.
  • the restricted service period may be established through the TWT of the existing WLAN.
  • the TWT sets the service period by agreement between the AP and the station, performs transmission/reception between the AP and the station in the service period period, and supports entry into the low power mode in a period other than the service period. This will be described in detail with reference to FIG. 11 .
  • the restricted service period is set through the TWT, and the operation of the AP and the station based on the restricted service period is referred to as the restricted TWT.
  • FIG. 11 shows a method of establishing a broadcast TWT between an AP and a station according to an embodiment of the present invention.
  • the service period may be set as follows.
  • the AP requests a station associated with the AP to participate in the TWT.
  • a station may participate in a broadcast TWT or may negotiate an individual TWT with an AP.
  • the AP may request the station to participate in the TWT by setting the value of the TWT Required subfield of the HE Operation element to 1.
  • the AP may transmit the Broadcast TWT element through a management frame, eg, a beacon frame, to transmit information necessary for participation in the broadcast TWT to the station.
  • the AP may signal that it supports broadcast TWT by setting dot11TWTOptionActivated to true and the Broadcast TWT Support field (of the element) of the HE Capabilities element to 1.
  • the AP may set the restricted service period similar to the service period of the TWT.
  • the first station STA1 requests the AP to configure the TWT.
  • the AP and the first station STA1 set TWT parameters, for example, the earliest TBTT, and a listen interval. Accordingly, the AP, the first station (STA1), and the second station (STA2) establish a broadcast TWT.
  • the AP indicates the broadcast TWT service period using the beacon frame.
  • the AP transmits a downlink (DL) physical layer protocol data unit (PPDU) to the first station STA1 and the second station STA2 or the first station STA1 and the second station STA2 ) to trigger UL (uplink) transmission by transmitting a trigger frame.
  • DL downlink
  • PPDU physical layer protocol data unit
  • the first station STA1 and the second station STA2 wake-up to receive the beacon frame.
  • the first station STA1 and the second station STA2 obtain information about the TWT from the received beacon frame.
  • the AP transmits a trigger frame to the first station STA1 and the second station STA2, the first station STA1 transmits a PS-Poll frame to the AP, and the second station STA2 sends a QoS null to the AP. transmit frame.
  • the AP receives the PS-Poll frame and the QoS Null frame transmitted by the first station STA1 and the second station STA2, and the first station STA1 and the second station STA2 are awake. judged to be
  • the AP transmits a multi-STA Block ACK frame to the first station STA1 and the second station STA2.
  • the AP transmits the DL PPDU to the first station STA1 and the second station STA2.
  • channel access by stations not participating in the restricted TWT may be restricted. Specifically, during the restricted service period, stations not participating in the restricted TWT may not be able to perform channel access.
  • the station may restart the channel access procedure without performing transmission. In this case, the station may restart the channel access procedure when the restricted service period ends.
  • the channel access of the station may indicate an EDCA backoff procedure. Completing channel access may indicate that the backoff counter of the EDCA backoff procedure has reached zero. Also, when the station restarts the channel access procedure, the station may randomly obtain an integer within the CW used for the previous channel access and use the acquired integer as a backoff counter.
  • the station may not double the size of the CW used for the previous channel access.
  • CW may be maintained for each AC.
  • This channel access restriction can only be applied to stations supporting restricted TWT. Specifically, these channel access restrictions are applied only to stations in which dot11RestrictedTWTOptionImplemented of the EHT Capabilities element is set to true among non-legacy (EHT) stations, and dot11RestrictedTWTOptionImplemented in the EHT Capabilities element of non-legacy (EHT) stations is set to false among non-legacy (EHT) stations.
  • a non-legacy station may refer to an EHT station and a station after the EHT station.
  • the legacy station may represent a non-HT station, an HT station, a VHT station, and an HE station as a station before the EHT station.
  • NAV may be configured for traffic other than low-latency traffic to non-legacy stations during the limited service period.
  • the station may stop the channel access procedure for the transmission of traffic other than low-latency traffic.
  • the NAV may be a NAV independent from the conventional NAV (basic NAV, Intra-BSS NAV).
  • the non-legacy station may be limited to a station supporting limited TWT.
  • the non-legacy station may be limited to a station participating in the restricted TWT.
  • the restricted service period may be included in the broadcast TWT service period. In another specific embodiment, the restricted service period may not be included in the broadcast TWT service period.
  • the limited service period may be repeated periodically designated by the AP. That is, the AP may designate a repetition period of the limited service period. Through this, the AP may not transmit the TWT element of the beacon frame every time to set the limited service period. At this time, the period of the service period can be set according to the characteristics of the low-delay service is used low-delay traffic. For example, the period of the low-delay service period in which low-latency traffic is generated every 50ms may be 50ms.
  • a quiet interval may be configured for a station that does not support the restricted TWT.
  • the quiet period is a period for supporting channel sensing. When a quiet interval is set, all stations stop transmitting. A limited service period can be protected by using the characteristics of this quiet section. This will be described with reference to FIG. 12 .
  • a station that does not support the restricted TWT may be limited to a legacy station.
  • An AP operating a restricted TWT may transmit a quiet element to set a quiet period.
  • the station stops accessing the channel.
  • the quiet period corresponding to the limited service period indicates a quiet period set to protect the limited service period of the limited TWT.
  • a station participating in the restricted TWT may consider a quiet period corresponding to the restricted service period as the restricted service period.
  • the AP operating the restricted TWT may not set the quiet period to match the restricted service period. This is because in the quiet element, the quiet period is set in units of TU (time unit, 1024us), and the TWT is set in units of 256us.
  • the quiet period not set for the limited service period may be disturbed. Therefore, it is necessary to distinguish a quiet interval configured for the limited service period, that is, a quiet interval corresponding to the limited service period. Therefore, a station participating in the restricted TWT may not be able to ignore the quiet period that does not correspond to the restricted service period. In the quiet period that does not correspond to the limited service period, the station cannot perform all transmissions. Specifically, a station participating in the restricted TWT may not be able to ignore the quiet period that does not overlap the restricted service period. In a specific embodiment, a station participating in the restricted TWT cannot perform any transmission in a quiet period that does not overlap with the restricted service period.
  • the station participating in the restricted TWT has the start time of the limited service period and the start time of the quiet period within a pre-specified time, and the start time of the service period and the start time of the quiet period are within the pre-specified time, It can be regarded as a quiet section corresponding to the limited service period. This is because, as described above, the AP operating the restricted TWT may not set the quiet period to match the restricted service period.
  • the AP transmits a beacon frame to set a quiet period and a limited service period.
  • the quiet period is set to the same time period as the limited service period. Therefore, the station participating in the restricted TWT in the quiet period performs channel access.
  • the quiet period is set from a time earlier than the start time of the limited service period to a time later than the end time of the limited service period.
  • channel access of a station participating in the restricted TWT is restricted in a quiet period that does not overlap with the restricted service period.
  • a station participating in the restricted TWT performs channel access in a quiet interval overlapping the restricted service period.
  • channel access may be restricted during the restricted service period. Accordingly, these restrictions may also be applied in relation to the TXOP setting. This will be described with reference to FIG. 13 .
  • FIG. 13 illustrates a method for a station to configure a TXOP in consideration of a restricted service period according to an embodiment of the present invention.
  • a station that obtained a TXOP before the restricted service period starts may have to end the TXOP before the restricted service period starts. This is because, even when the limited service period starts, if the frame exchange of the TXOP holder continues, the transmission of low-latency traffic may be disturbed.
  • the station may be a non-legacy station.
  • the station may be limited to a station supporting limited TWT. That is, this restriction may not be applied to a station that sets the value of the dot11RestrictedTWTOptionImplemented field to false.
  • frame exchange can be continued even after the limited service period starts
  • a station may establish a TXOP based on a limited service period. Specifically, the station may set the end time of the TXOP before the start of the limited service period. In this case, the station may set the duration of the start frame for initiating the frame exchange sequence to before the start of the limited service period. For example, if the time when the station succeeds in channel access is 3 m before the start of the restricted service period, the station may set the TXOP to 3 ms before.
  • the station may end the TXO by sending a CTS-to-Self frame. In this case, the station may transmit the CTS-to-Self frame at a basic transmission rate of 6 Mbps. This is because when a station transmits a frame at its base rate, many legacy stations can receive the frame.
  • the station may transmit a CF-End frame before the start of the limited service period. This allows the station to end the TXOP before the start of the limited service period.
  • the station may transmit the CF-End frame at a basic transmission rate of 6 Mbps. This is because when a station transmits a frame at its base rate, many legacy stations can receive the frame.
  • a station that is not a TXOP holder may release the NAV set before the restricted service period starts at the start of the restricted service period.
  • the station may be a station supporting limited TWT. That is, the station may be a station in which the value of the dot11RestrictedTWTOptionImplemented field is set to True.
  • a station that is not a TXOP holder but does not support the restricted TWT cannot release the NAV set before the restricted service period starts at the start of the restricted service period.
  • the station may not transmit the CF-End frame.
  • the station may consider that the TXOP is released at the start time of the limited service period. Specifically, the station may consider that the basic NAV is released at the start time of the limited service period.
  • the station may be limited to a station participating in the restricted TWT.
  • the AP transmits a beacon frame including a TWT element to signal that a limited service period is established.
  • the station transmits an RTS frame to configure a TXOP.
  • the station sets the value of the duration field of the RTS frame to before the limited service period.
  • the station performs frame exchange with the AP and completes the frame exchange before the start of the limited service period.
  • the station finally transmits a CTS-to-Self frame.
  • the station transmits an RTS frame to configure a TXOP.
  • the station sets the value of the duration field of the RTS frame without considering the limited service period.
  • the station performs frame exchange with the AP and completes the frame exchange before the start of the limited service period.
  • the station finally transmits the CF-end frame to release the TXOP.
  • an operation that can be transmitted beyond the TXOP limit is defined as an exception to the TXOP rule.
  • TXOP rule For example, retransmission of a single MPDU, single MSDU transmission under block ack agreement (not included in A-MSDU and A-MPDU composed of two or more MPDUs), control frame and QoS Null frame (consisting of two or more MPDUs)
  • the transmission of the A-MPDU (not included in the A-MPDU) may be transmitted beyond the TXOP limit. If this exception is granted even for the limited service period, the transmission of low-latency traffic may be delayed.
  • the station may determine that the TXOP is a TXOP obtained before the start of the restricted service period.
  • the predetermined time may be 100us.
  • the station may determine that the TXOP is a TXOP obtained before the start of the restricted service period.
  • the station may have to complete the frame exchange before the limited service period. Accordingly, the station may not be allowed to start the frame exchange when the completion time of the frame exchange is within the limited service period. In this case, the station may complete the frame exchange before the start of the limited service period by performing fragmentation.
  • the station may continue the frame exchange even after the start of the low-delay service period.
  • a channel access procedure in consideration of the limited service period will be described with reference to FIG. 14 .
  • the station may start the channel access procedure again without performing transmission.
  • the station may acquire the value of the backoff counter again.
  • the station may use the size of the CW used for the previous channel access procedure as it is. That is, the station may not double the size of the CW used in the previous channel access procedure, and may not initialize it to the minimum value among the possible values of the CW. Also, the station may not increase the number of retries, for example, a QoS STA Retry Counter (QSRC).
  • QSRC QoS STA Retry Counter
  • the station may start the channel access procedure again without performing transmission.
  • the station to transmit low-delay traffic may start the frame exchange after the completion of the channel access, even when the frame exchange completion time is after the start of the limited service period. This exception can be allowed only if the station that wants to transmit low-latency traffic is a station participating in the restricted TWT.
  • the station may operate as if the NAV is set in the AC of traffic other than low-latency traffic. Therefore, the station may determine that the CCA result for the transmission of the AC of traffic other than low-delay traffic is not idle (BUSY).
  • the AP transmits a beacon frame including a TWT element to signal that a restricted service period is established.
  • the value of the backoff counter of the station's channel access reaches zero before the start of the restricted service period.
  • the station determines that the frame exchange completion time including the traffic to be transmitted is after the service period start time. Therefore, the station acquires a backoff counter within the CW value used in the previous channel access procedure. The station performs the channel access procedure again using the acquired backoff counter. At this time, the station does not increment the retransmission counter.
  • All low-latency traffic transmissions may be completed before the completion of the limited service period. In this case, it may be inefficient to limit the transmission of traffic other than low-latency traffic due to the low-latency service period. Therefore, a method of terminating the limited service period early may be necessary. This will be described with reference to the embodiment of FIG. 15 .
  • 15 shows an operation in which the AP terminates the restricted service period early according to an embodiment of the present invention.
  • stations participating in the restricted TWT may signal whether to additionally transmit low-latency traffic in a frame to be transmitted. Specifically, the station may signal to additionally transmit low-delay traffic by setting the value of the More data subfield of the Frame Control field of the frame. At this time, if the value of the More data subfield of the Frame Control field of the frame transmitted in the limited service period is 1, the More data subfield indicates that additional transmission of low-delay traffic is required, and additional transmission of traffic other than low-delay traffic is It may not indicate whether it is necessary.
  • the station when a station participating in the restricted TWT does not store low-latency traffic in the transmission buffer and only stores traffic other than low-latency traffic, the station performs the More data subfield of the Frame Control field of the frame transmitted by the station in the restricted service period. can be set to 0.
  • the AP may terminate the restricted service period early on the basis that the value of the More data subfield of the Frame Control field of the frame is not 0 in the restricted service period for the stations participating in the restricted TWT.
  • the AP terminates the restricted service early. can do.
  • the AP may prematurely end the limited service period by sending a predetermined control frame.
  • the control frame may be a CF-End frame.
  • the AP may set the BSSID (TA) field of the CF-End frame to the MAC address or BSSID of the AP.
  • the AP may set the Individual/Group bit of the BSSID (TA) field of the CF-End frame to 1.
  • the AP may early end the limited service period by transmitting a predetermined management frame.
  • a station receiving a frame previously designated as ending the restricted service period within the restricted service period may determine that the restricted service period has ended.
  • the station receiving the predetermined frame may resume channel access without restrictions applied to the restricted service period.
  • the predetermined frame may be a CF-End frame.
  • the station determines as a CF-End frame ending the restricted service period can do.
  • a quiet period for the limited service period may be set.
  • the AP may transmit a CF-End frame to end the limited service period. This is because, when the AP transmits the CF-End frame, the silent period set for the legacy station can also be released.
  • stations participating in the restricted TWT may not be allowed to transmit a CF-End frame within the restricted service period.
  • the station participating in the restricted TWT may not be allowed to transmit the CF-End frame in the quiet period corresponding to the restricted service period. This is because, when a station participating in the restricted TWT transmits a CF-End frame, the NAV configured in the legacy station is released.
  • the AP may transmit the CF-End frame within the limited service period.
  • the AP transmits a beacon frame including a TWT element and a quiet element.
  • the station supporting the restricted TWT determines that the restricted service period is set, and the station that does not support the restricted TWT determines that the quiet period is set.
  • the AP determines that the transmission of all low-latency traffic within the limited service period is completed, the AP terminates the limited service period early by transmitting a CF-End frame, and releases the quiet period set for the legacy station. In this case, the station supporting the restricted TWT determines that the channel access restriction applied during the restricted service period is gone.
  • the station supporting the restricted TWT may determine that the NAV for the restricted service period is released.
  • the station that does not support the restricted TWT that has received the CF-End frame releases the NAV.
  • each of the stations included in the multi-link device may perform association with other stations. Therefore, each station included in the multi-link device can operate an individual TWT service period. That is, a separate TWT service period may be operated in each of a plurality of links in which the multi-link device operates. In order to operate an individual TWT service period in this way, an individual TWT agreement may be required.
  • the station of the multi-link device may transmit a TWT request frame, and the station receiving the TWT request frame may transmit a TWT response frame.
  • the TWT request frame may be a frame in which the value of the Command field of the TWT setup frame is 0 to 2.
  • the TWT response frame may be a frame in which the value of the Command field of the TWT setup frame is 3 to 7.
  • a specific TWT agreement method may be the same as defined in IEEE 802.11ax.
  • the station may perform power save. Therefore, in order to increase power saving efficiency, the multi-link device may set the TWT service period in a plurality of links in which the multi-link device operates. For example, a multi-link device including a first station and a second station establishes a TWT service period in a first link in which the first station operates and a second link in which the second station operates, and the first station and the second station It is possible to synchronize the operating states (awake state, doze state) of In this case, the first station may transmit the TWT request frame to the first AP to which the first station is coupled, and the second station may transmit the TWT request frame to the second AP to which the second station is coupled.
  • the first station may transmit the TWT request frame to the first AP to which the first station is coupled
  • the second station may transmit the TWT request frame to the second AP to which the second station is coupled.
  • the TWT parameter value indicated by the TWT request frame transmitted by the first station and the TWT request frame transmitted by the second station may be the same. Therefore, transmitting the TWT request frame individually in a plurality of links may reduce transmission efficiency.
  • a TWT request frame transmitted on one link may perform TWT agreement on a plurality of links. This will be described with reference to FIG. 16 .
  • FIG. 16 shows a format of a TWT element according to an embodiment of the present invention.
  • a TWT request frame for TWT agreement performed on a plurality of links may be transmitted on the first link.
  • the TWT request frame may include TWT parameters for TWT operations performed in a plurality of links.
  • a TWT request frame for TWT agreement performed on the second link may be transmitted on the first link.
  • the TWT request frame may include TWT parameters for a TWT operation performed in the second link. For example, when the multi-link device includes a first station operating in a first link and a second station operating in a second link, the first station may establish a TWT agreement for the second station.
  • the first station when the first station is coupled to the first AP, the second station is coupled to the second AP, and the first AP and the second AP are included in one multi-link device, the first station is coupled to the first AP TWT consensus can be established.
  • stations included in the multi-link device may share some functions of the MAC layer or may share some information.
  • a TWT element of a new format may be required for the above-described TWT consensus operation.
  • the TWT element may include information on a link on which TWT agreement is performed.
  • the information about the link may be information about the ID of the link operated by the AP.
  • the TWT element may indicate a plurality of links on which TWT agreement is performed.
  • the information about the link may be a bitmap. In this case, each bit of the bitmap may indicate whether the TWT element is performed in each of a plurality of links. The station may transmit this TWT element to perform TWT agreement on a plurality of links.
  • the bitmap described above may be referred to as a Link ID (identifier) bitmap.
  • the size of the Link ID bitmap may be 2 octets. For example, when the value of the Link ID bitmap is 1110 0000 0000 0000 2b , the Link ID bitmap is a first link corresponding to the first bit, a second link corresponding to the second bit, and a third link corresponding to the third bit. It may indicate that it is a TWT negotiation for a link.
  • a link element including information about a TWT parameter for only a link other than a link through which the link element is transmitted may be transmitted. Also, in these embodiments, one link element may be transmitted for TWT agreement performed on a plurality of links.
  • the TWT element may include a TWT flow ID indicating an identifier applied to the TWT agreement.
  • the TWT flow ID included in the TWT element may be a value not used for TWT agreement of all links on which the TWT element can perform TWT agreement.
  • the TWT element may include a field for indicating a plurality of TWT flow IDs.
  • the TWT element when the TWT element is to perform TWT agreement performed on a plurality of links, the TWT element may include a plurality of subfields indicating each of a plurality of TWT flow IDs.
  • the plurality of subfields may correspond to each of a plurality of links through which the TWT element can perform TWT agreement.
  • a TWT flow ID that is not used by a link corresponding to each subfield may be used.
  • the TWT flow ID previously used by the link corresponding to the subfield may be used for the subfield.
  • the station may be limited to using a TWT flow ID that does not correspond to the TWT flow ID of the existing TWT agreement for the TWT agreement.
  • the station may use the TWT flow ID corresponding to the TWT agreement to be changed for the TWT agreement.
  • FIG 16 (a) shows the format of the TWT element according to an embodiment of the present invention.
  • the TWT element may include an Element ID field, a Length field, a Control field, and a TWT Parameter Information field.
  • the Element ID field indicates that an element including the Element ID field is a TWT element.
  • the value of the Element ID field may be 216.
  • 16(b) shows a specific format of the control field of the TWT element.
  • the Control field includes an NDP Paging Indicator field, a Responder PM Mode field, a negotiation Type field, a TWT Information Frame Disabled field, a Wake Duration Unit field, a Link ID Bitmap Present field, and a Reserved field.
  • 16 (b) further includes a Link ID Bitmap Present field compared to the TWT element defined in IEEE 802.11ax. In this case, the Link ID Bitmap Present field indicates whether the TWT element includes the Link ID bitmap described above.
  • the TWT element when the value of the Link ID Bitmap Present field is 1, the TWT element includes the Link ID bitmap, and when the value of the Link ID Bitmap Present field is 0, the TWT element may not include the Link ID bitmap. .
  • the station receiving the TWT element may determine whether the TWT element includes the Link ID bitmap according to the value of the Link ID Bitmap Present field.
  • 16( c ) shows the format of the Individual TWT Parameter Set field included in the TWT element.
  • the Individual TWT Parameter Set field included in the TWT element is a Request Type field, Target Wake Time field, TWT Group Assignment field, Nominal Minimum TWT Wake Duration field, TWT Wake Interval Mantissa field, TWT Channel field, NDP Paging field, and Link ID Bitmap field. may include.
  • 16 (b) further includes a Link ID Bitmap field compared to the Individual TWT Parameter Set field defined in IEEE 802.11ax. When the TWT element includes the Link ID Bitmap field, the TWT element may indicate that a TWT Request is requested for the link indicated by the Link ID Bitmap field.
  • the station receiving the TWT request frame requests a TWT agreement for the link indicated by the Link ID Bitmap field in the TWT request frame. It can be judged that
  • the Request Type field of the TWT element may include a TWT Request field, a TWT Setup Command field, a Trigger field, an Implicit field, a Flow Type field, a TWT Flow Identifier field, a TWT Wake Interval Expnent field, and a TWT Protection field.
  • the TWT Flow Identifier field indicates a TWT Flow ID that identifies a TWT agreement performed by a TWT request frame including a TWT element. In this case, the TWT Flow ID may be set according to the above-described embodiments.
  • FIG 17 shows that a multi-link device according to an embodiment of the present invention performs TWT agreement.
  • the AP multi-link device includes a first AP (AP1), a second AP (AP2), and a third AP (AP3).
  • the non-AP multi-link device includes a first station STA1 , a second station STA2 , and a third station STA3 .
  • Each of the first AP (AP1), the second AP (AP2), and the third AP (AP3) operates in the first link (Link1), the second link (Link2), and the third link (Link3).
  • Each of the first station STA1 , the second station STA2 , and the third station STA3 operates in a first link Link1 , a second link Link2 , and a third Link Link3 .
  • the non-AP multi-link device may transmit a TWT request frame to perform TWT agreement in the first link (Link1) to the third link (Link3).
  • the TWT request frame may include one TWT element.
  • the TWT request frame may include one TWT element.
  • the TWT element may indicate the start time and end time of the TWT service period (service period).
  • the TWT element may include the Link ID bitmap described with reference to FIG. 16 .
  • the TWT element may indicate a first link (Link1), a second link (Link2), and a third link (Link3) in the Link ID Bitmap subfield.
  • the AP multi-link device Since the AP multi-link device indicates that the Link ID Bitmap subfield of the TWT element of the received TWT request frame indicates the first link (Link1), the second link (Link2) and the third link (Link3), the TWT signaling the TWT request frame It may be determined that the parameter is for the TWT service period of the first link (Link1), the second link (Link2), and the third link (Link3).
  • the AP multi-link device may accept the TWT setup by transmitting a TWT response frame to the non-AP multi-link device.
  • a TWT agreement is established in each of the first link (Link1) to the third link (Link3).
  • the TWT agreement in each link is the TWT agreement between the first station (STA1) and the first AP (AP1), the TWT agreement between the second station (STA2) and the second AP (AP2), and the third station (STA3). ) and a TWT agreement between the third AP (AP3).
  • FIG. 18 shows that a station included in a multi-link device performs TWT agreement for another station included in a multi-link device including a station according to an embodiment of the present invention.
  • a TWT request frame for TWT agreement performed on the second link may be transmitted on the first link.
  • the first station operating in the first link may transmit a TWT request frame in the first link.
  • the TWT element of the TWT request frame may include a TWT Link ID bitmap, and the TWT Link ID bitmap may indicate a second link.
  • the first AP operating in the first link may determine that the TWT request frame has been transmitted for TWT agreement in the second link based on the TWT Link ID bitmap.
  • the AP multi-link device includes a first AP (AP1) and a second AP (AP2).
  • the non-AP multi-link device includes a first station STA1 and a second station STA2.
  • Each of the first AP (AP1) and the second AP (AP2) operates in the first link (Link1) and the second link (Link2).
  • the first station STA1 and the second station STA2 operate in the first link Link1 and the second link Link2, respectively.
  • the first station STA1 transmits a TWT request frame for TWT agreement on the second link Link2 in the first link Link1.
  • the first AP (AP1) accepts the TWT agreement on the second link (Link2) by sending a TWT response frame to the first station (STA1). Accordingly, a TWT agreement is established between the second station STA2 and the second AP AP2.
  • the station that transmitted the TWT request frame and the station to which the TWT agreement is applied are different from each other.
  • one station transmits the TWT request frame, but the TWT agreement may be applied to a plurality of stations. Therefore, the station capable of releasing the TWT agreement may be a problem.
  • the 3-bit TWT Flow ID and the MAC addresses of the two stations that have reached the TWT agreement may be used.
  • the TWT agreement could be identified through the MAC address of the TWT requesting station, the MAC address of the TWT responding station, and the TWT Flow ID.
  • the station performing the TWT agreement and the station to which the TWT agreement is applied may be different.
  • the TWT requesting station is the first station and the TWT responding station is the first AP.
  • the TWT agreement is applied to the first station and the first AP, the second station and the second AP, and the third station and the third AP.
  • the TWT agreement is applied to the second station and the second AP.
  • one TWT Flow ID may be equally applied to the first station and the first AP, the second station and the second AP, and the third station and the third AP. Therefore, the TWT consensus cannot be identified. In order to solve this problem, the following embodiments may be applied.
  • the station capable of releasing the TWT agreement may be a station to which the TWT agreement is applied.
  • the TWT requesting station may be a station operating in a link to which the TWT agreement is applied, rather than the station transmitting the TWT request frame.
  • the TWT requesting station may be a station operating in a link to which a TWT agreement is applied among stations of a multi-link device that has transmitted the TWT request frame.
  • the TWT response station may be a station operating in a link to which the TWT agreement is applied, rather than the station transmitting the TWT response frame.
  • the TWT response station may be a station operating in a link to which the TWT agreement is applied among stations of a multi-link device that has transmitted the TWT response frame.
  • the TWT agreement may be identified based on the ID of the link. Specifically, the TWT agreement may be identified based on the TWT Flow ID, the MAC address of the TWT requesting station, the MAC address of the TWT responding station, and the ID of the link to which the TWT agreement is applied.
  • the first TWT agreement which is the TWT agreement established between the first station and the first AP, is to be identified by the TWT Flow ID, the MAC address of the first station, the MAC address of the first AP, and the ID of the first link.
  • the second TWT agreement which is a TWT agreement established between the second station and the second AP, may be identified by a TWT Flow ID, a MAC address of the first station, a MAC address of the first AP, and an ID of the second link.
  • the third TWT agreement which is the TWT agreement established between the third station and the third AP, may be identified by a TWT Flow ID, the MAC address of the first station, the MAC address of the first AP, and the ID of the third link.
  • the TWT Flow ID may be configured for each link.
  • the TWT agreement may be regarded as being performed for each multi-link device. Therefore, in order to identify the TWT agreement, the MAC address of the TWT requesting multi-link device instead of the MAC address of the TWT requesting station and the MAC address of the TWT responding multi-link device may be used instead of the MAC address of the TWT responding station.
  • the first TWT agreement which is a TWT agreement established between the first station and the first AP, includes a TWT Flow ID, a MAC address of a non-AP multi-link device, a MAC address of an AP multi-link device, and a first link. It can be identified by ID.
  • the second TWT agreement which is a TWT agreement established between the second station and the second AP, may be identified by a TWT Flow ID, a MAC address of a non-AP multi-link device, a MAC address of an AP multi-link device, and an ID of the second link.
  • the third TWT agreement which is the TWT agreement established between the third station and the third AP, may be identified by the TWT Flow ID, the MAC address of the non-AP multi-link device, the MAC address of the AP multi-link device, and the ID of the third link.
  • the TWT Flow ID may be configured for each link.
  • the TWT Flow ID may be configured for each link.
  • the TWT requesting station may be a station operating in a link to which the TWT agreement is applied, rather than the station transmitting the TWT request frame.
  • the TWT requesting station may be a station operating in a link to which a TWT agreement is applied among stations of a multi-link device that has transmitted the TWT request frame.
  • the TWT response station may be a station operating in a link to which the TWT agreement is applied, rather than the station transmitting the TWT response frame.
  • the TWT response station may be a station operating in a link to which the TWT agreement is applied among stations of a multi-link device that has transmitted the TWT response frame.
  • the first TWT agreement which is the TWT agreement established between the first station and the first AP, may be identified by a TWT Flow ID, the MAC address of the first station, and the MAC address of the first AP.
  • the second TWT agreement which is the TWT agreement established between the second station and the second AP, may be identified by the TWT Flow ID, the MAC address of the second station, and the MAC address of the second AP.
  • the third TWT agreement which is the TWT agreement established between the third station and the third AP, may be identified by the TWT Flow ID, the MAC address of the third station, and the MAC address of the third AP.
  • the TWT Flow ID may be configured for each link.
  • a TWT agreement may be identified based on the link transmitted in the TWT request frame. Specifically, the TWT agreement may be identified based on the TWT Flow ID, the MAC address of the TWT requesting station, the MAC address of the TWT responding station, and the ID of the link through which the TWT request frame is transmitted.
  • the first TWT agreement which is the TWT agreement established between the first station and the first AP, is to be identified by the TWT Flow ID, the MAC address of the first station, the MAC address of the first AP, and the ID of the first link.
  • the second TWT agreement which is a TWT agreement established between the second station and the second AP, may be identified by a TWT Flow ID, a MAC address of the first station, a MAC address of the first AP, and an ID of the first link.
  • the third TWT agreement which is a TWT agreement established between the third station and the third AP, may be identified by a TWT Flow ID, a MAC address of the first station, a MAC address of the first AP, and an ID of the first link.
  • the TWT Flow ID may be configured for each link.
  • a method for the multi-link device to establish a TWT agreement has been described above.
  • a method for the multi-link device to teardown the TWT agreement will be described with reference to FIG. 19 .
  • FIG. 19 shows an operation of releasing a TWT agreement by a multi-link device according to an embodiment of the present invention.
  • the multi-link device may release the TWT agreement applied to a plurality of links in one link.
  • a station transmits a TWT release frame to release a TWT agreement.
  • the TWT release frame may be transmitted by the TWT requesting station or the TWT responding station.
  • the TWT release frame includes a TWT Flow Identifier field indicating a TWT Flow ID.
  • the TWT Flow Identifier field may be a 3-bit field.
  • the station transmitting the TWT release frame may release the TWT agreement corresponding to the TWT Flow ID indicated by the TWT release frame. Therefore, the station to release the TWT agreement and the TWT agreement to be released can be identified based on the MAC address of the sender of the TWT release frame, the MAC address of the receiver of the TWT release frame, and the TWT Flow ID.
  • the station transmitting the TWT request frame and the station to which the TWT agreement is applied may be different from each other.
  • one station transmits the TWT request frame, but the TWT agreement may be applied to a plurality of stations. Therefore, there is a need for a TWT consensus release method that can be applied even in this case.
  • the TWT release frame may include information about the identifier of the link.
  • the station of the multi-link device may release at least one of a plurality of TWT agreements based on an identifier of a link indicated by the TWT release frame, for example, a link ID.
  • the station of the multi-link device operates on the first link and the station releases the TWT agreement performed on the second link, the station transmits a TWT release frame including information about the identifier of the link in the first link.
  • the identifier of the link may be the identifier of the link to which the TWT agreement to be released is applied.
  • the TWT release frame may include a TWT Flow Identifier field indicating a TWT Flow ID and a Link ID field indicating an identifier of a link to which the TWT agreement to be released is applied.
  • the TWT release frame may include one Link ID field.
  • the TWT release frame may include a plurality of Link ID fields.
  • the format of the TWT release frame transmitted by the station included in the multi-link device may be different from the format of the TWT release frame transmitted by the station not included in the multi-link device.
  • the format of the TWT release frame transmitted by the station included in the multi-link device may be the same as the format of the TWT release frame transmitted by the station not included in the multi-link device.
  • the first multi-link device and the second multi-link device When the first multi-link device transmits the TWT release frame on the first link to the second multi-link device and the second multi-link device successfully receives the TWT release frame, the first multi-link device and the second multi-link device Among the TWT agreements established between the first multi-link device and the second multi-link device, the TWT agreement corresponding to the TWT Flow ID indicated by the TWT release frame may be released.
  • the first multi-link device and the second multi-link device have a TWT agreement corresponding to link-related information indicated by the TWT release frame among TWT agreements established between the first multi-link device and the second multi-link device. can be turned off.
  • the first multi-link device and the second multi-link device are indicated by the TWT Flow ID and the TWT release frame indicated by the TWT release frame among the TWT agreement established between the first multi-link device and the second multi-link device. You can release the TWT agreement corresponding to information related to the link to
  • the first multi-link device and The second multi-link device corresponds to the MAC address of the station transmitting the TWT release frame and the MAC address of the station receiving the TWT release frame among TWT agreements established between the first multi-link device and the second multi-link device can release the TWT agreement.
  • the first multi-link device and The second multi-link device is a TWT corresponding to the MAC address of the station performing the TWT agreement and the MAC address of the station performing the TWT agreement among the TWT agreements established between the first multi-link device and the second multi-link device. agreement can be rescinded.
  • the station receiving the TWT release frame and the station transmitting the TWT release frame may release the TWT agreement corresponding to the TWT Flow ID indicated by the TWT release frame within the link in which the station operates.
  • the TWT agreement established in a plurality of links may be released by a single TWT release frame.
  • the TWT parameters of the TWT agreement set in the plurality of links may be the same.
  • TWT Flow IDs of TWT agreements set in a plurality of links may be the same.
  • the first multi-link device or the second multi-link device may release the TWT agreement established in the first link to the third link by sending a TWT release frame in any one of the first link to the third link.
  • the AP multi-link device includes a first AP (AP1), a second AP (AP2), and a third AP (AP3).
  • the non-AP multi-link device includes a first station (non-AP STA1), a second station (non-AP STA2), and a third station (non-AP STA3).
  • Each of the first AP (AP1), the second AP (AP2), and the third AP (AP3) operates in the first link (Link1), the second link (Link2), and the third link (Link3).
  • Each of the first station (non-AP STA1), the second station (non-AP STA2), and the third station (non-AP STA3) is a first link (Link1), a second link (Link2), and a third Link (Link3) ) works in
  • a first station (non-AP STA1) is associated with a first AP (AP1)
  • a second station (non-AP STA2) is associated with a second AP (AP2)
  • a third station (non-AP STA3) is It is coupled with a third AP (AP3).
  • a TWT agreement is established between the first station (non-AP STA1) and the first AP (AP1), and the TWT Flow ID of the TWT agreement is x.
  • a TWT agreement is established between the second station (non-AP STA2) and the second AP (AP2), and the TWT Flow ID of the TWT agreement is y.
  • a TWT agreement is established between the third station (non-AP STA3) and the third AP (AP3), and the TWT Flow ID of the TWT agreement is z.
  • the non-AP multi-link device includes a TWT agreement between a first station (non-AP STA1) and a first AP (AP1) and a TWT agreement between a third station (non-AP STA3) and a third AP (AP3).
  • a TWT release frame is transmitted.
  • the TWT release frame is the device x corresponding to the TWT Flow ID of the TWT agreement between the first station (non-AP STA1) and the first AP (AP1) and the third station (non-AP STA3) and the third AP It indicates z corresponding to the TWT Flow ID of the TWT agreement between (AP3).
  • the AP multi-link device transmits an ACK for the TWT release frame to the non-AP multi-link device. Thereafter, the AP multi-link device releases the TWT agreement between the first station (non-AP STA1) and the first AP (AP1) and the TWT agreement between the third station (non-AP STA3) and the third AP (AP3). .
  • the non-AP multi-link device receives an ACK for the TWT release frame. Thereafter, the non-AP multi-link device obtains the TWT agreement between the first station (non-AP STA1) and the first AP (AP1) and the TWT agreement between the third station (non-AP STA3) and the third AP (AP3). release
  • a TWT element for establishing and releasing a TWT agreement will be described with reference to FIG. 20 .
  • FIG. 20 shows a format of an Individual TWT parameter set field of a TWT element according to an embodiment of the present invention.
  • the Request Type field of the individual TWT parameter set field of the TWT element is a 1-bit field, TWT Request subfield, 3-bit field, TWT Setup Command subfield, 1-bit field, Trigger subfield, 1-bit field, Implicit subfield, 1 bit. It includes a Flow Type subfield, a TWT Flow Identifier subfield that is a 3-bit field, a TWT Wake Interval Exponent subfield that is a 5-bit field, and a TWT Protection subfield that is a 1-bit field.
  • the station transmitting the TWT element may be a TWT request station or a TWT scheduled station.
  • the station transmitting the TWT element may be a TWT responding station or a TWT scheduling AP.
  • the TWT Setup Command subfield may indicate the type of TWT command.
  • the value of the TWT Setup Command subfield may be set to 0 to 7.
  • the TWT Setup Command subfield indicates that the TWT element including the TWT Setup Command subfield is Request TWT, Suggest TWT, Demand TWT, TWT Grouping, Accept TWT, Alternate TWT, Dictate TWT, and Reject TWT may be indicated. This may be the same as the setting of the TWT Setup Command subfield used in the prior art.
  • the Trigger subfield may indicate that one or more trigger frames are transmitted in the TWT service period when a TWT agreement is established by the TWT element.
  • the Implicit subfield indicates whether the TWT element requests an implicit TWT. When the value of the implicit subfield is 1, the implicit subfield may indicate that the TWT element requests implicit TWT. When the value of the implicit subfield is 0, the implicit subfield may indicate that the TWT element requests explicit TWT.
  • the Flow Type subfield indicates the interaction method between the TWT requesting station and the TWT responding station within the TWT service period.
  • the value of the Flow Type subfield may be set as the value of the Flow Type subfield defined in the conventional WLAN standard.
  • the TWT Flow Identifier subfield indicates an ID value for distinguishing the TWT agreement.
  • the TWT element includes only one TWT Flow Identifier subfield.
  • the TWT element may include a plurality of TWT Flow Identifier subfields.
  • each of the plurality of TWT Flow Identifier subfields may indicate the TWT Flow ID of the TWT agreement established for each of the plurality of links.
  • the TWT wake interval subfield indicates an average interval between TWT service periods set by the TWT element.
  • the average interval is a predicted value.
  • the value of the TWT wake interval subfield may be set as the value defined in the conventional WLAN standard.
  • the TWT protection subfield indicates that the TWT requesting station requests the TWT responding station to support protection for the TWT service period.
  • the protection method of the TWT service period may be the same as defined in the conventional WLAN standard.
  • Target Wake Time field TWT Group Assignment field, Nominal Minimum TWT Wake Duration field, TWT Wake Interval Mantissa field, TWT Channel field, and NDP Paging field of the Individual TWT Parameter Set field can be set as defined in the conventional WLAN standard. have.
  • the Individual TWT Parameter Set field may include a Link ID Bitmap subfield as in the embodiment described with reference to FIG. 16 .
  • the TWT element may request TWT agreement in the plurality of links.
  • a TWT service period having the same TWT parameters may be applied to the plurality of links.
  • the TWT element may include a plurality of TWT Flow Identifier fields.
  • the TWT element may include a plurality of TWT Flow Identifier fields corresponding to each of a plurality of links to which TWT agreement is applied.
  • the number of TWT Flow Identifier fields included in the TWT element may be the same as the number of links indicated by the Link ID Bitmap subfield.
  • the TWT element including the Link ID Bitmap subfield may include two TWT Flow Identifier fields.
  • the first TWT Flow Identifier subfield among a plurality of TWT Flow Identifier fields included in the TWT element may be a TWT Flow ID included in the Request Type field.
  • Subfields other than the first TWT Flow Identifier subfield may be included in a separate field of the TWT element like the Additional TWT Flow ID field in FIG. 20 .
  • the first TWT Flow Identifier subfield may indicate the TWT Flow ID of the TWT agreement established in the link through which the TWT request frame is transmitted.
  • the remaining TWT Flow Identifier subfields other than the first TWT Flow Identifier subfield may indicate the TWT Flow ID of the TWT agreement established in the remaining links except for the link through which the TWT request frame is transmitted among the links in which the TWT agreement is established.
  • links other than the link through which the TWT request frame is transmitted among the links where the TWT agreement is established may be indicated by the Link ID Bitmap subfield.
  • the remaining TWT Flow Identifier subfields except for the first TWT Flow Identifier subfield may be mapped to a link according to the order of magnitude of Link ID values.
  • the first subfield is mapped to the link having the smallest link ID among the links other than the link through which the TWT request frame is transmitted
  • the second subfield is mapped to the link having the second smallest link ID among the links other than the link through which the TWT request frame is transmitted
  • the third subfield is the third smallest value among the links other than the link through which the TWT request frame is transmitted. It can be mapped to a link with a link ID.
  • the TWT element may not include the remaining TWT Flow Identifier subfields except for the first TWT Flow Identifier subfield.
  • the TWT element requests only TWT agreement on one link other than the link through which the TWT request frame is transmitted, the TWT element may not include the remaining TWT Flow Identifier subfields except for the first TWT Flow Identifier subfield.
  • the first TWT Flow Identifier subfield may indicate the TWT Flow ID corresponding to the TWT agreement requesting the TWT request frame.
  • FIG. 21 shows the format of the remaining TWT Flow Identifier subfields except for the first TWT Flow Identifier subfield according to an embodiment of the present invention.
  • the size of the Additional TWT Flow ID field may be determined according to the number of links indicated by the Link ID bitmap of the TWT element.
  • the maximum number of TWT agreements that a station can establish is eight. Therefore, in the conventional WLAN, the TWT Flow Identifier subfield is a 3-bit field. When the maximum number of TWT agreements that can be established by the multi-link device is 8, the TWT Flow Identifier subfield may be a 3-bit field.
  • the Additional TWT Flow ID field may include one or more subfields having a size of 3 bits.
  • the Additional TWT Flow ID field may include n-1 3-bit subfields.
  • the first TWT Flow Identifier subfield may be a TWT Flow ID included in the Request Type field.
  • the Additional TWT Flow ID field may include n 3-bit subfields.
  • a reserved field may be included in the Additional TWT Flow ID field so that the TWT Parameter Set field has a length in octets.
  • Figure 21 (a) shows this embodiment.
  • the Additional TWT Flow ID field includes two TWT Flow ID subfields in one octet. Specifically, when the TWT element requests three TWT agreements, the Additional TWT Flow ID field may include two TWT Flow ID subfields in one octet.
  • the Additional TWT Flow ID field indicates an odd number of TWT Flow IDs
  • the last octet included in the Additional TWT Flow ID field indicates one TWT Flow ID, and the remaining 5 bits may be set as a reserved field.
  • have. 22( b ) shows this embodiment.
  • the size of the TWT Flow ID subfield is 3 bits in the above-described embodiments, the above-described embodiment may be applied even when the size of the TWT Flow ID subfield is 4 bits.
  • one TWT element may request TWT agreement on a plurality of links. Therefore, it is necessary to additionally transmit information necessary for this. This will be described with reference to FIG. 22 .
  • FIG 22 shows the format of the Control field included in the TWT element transmitted by the multi-link device according to an embodiment of the present invention.
  • Additional information required when one TWT element requests TWT agreement on multiple links includes the Link ID bitmap, which is information indicating the link on which the TWT agreement is performed, and the Additional TWT Flow Identifier field, which is the TWT Flow ID corresponding to the TWT agreement. can do.
  • the station of the multi-link device transmits the TWT request frame to the station to which the station is coupled, the TWT element included in the TWT request frame may not include such additional information.
  • the TWT element may include a field indicating whether to include a Link ID Bitmap field and an Additional TWT Flow Identifier field.
  • the station receiving the TWT element may determine the format of the TWT element based on a field indicating whether it includes the Link ID Bitmap field and the Additional TWT Flow Identifier field.
  • the TWT requesting station may set the value of the Link ID Bitmap Present subfield of the Control field of the TWT element to 1.
  • the TWT response station receiving the TWT element receives a TWT request in which the TWT element includes the Link ID Bitmap subfield and includes a plurality of links or TWT elements. It may be determined to establish a TWT agreement on a link different from the link on which the frame was transmitted.
  • the TWT requesting station may set the value of the Additional TWT Flow ID Present subfield of the Control field of the TWT element to 1. If the value of the Additional TWT Flow ID Present subfield of the Control field of the TWT element is 1, the TWT responding station receiving the TWT element includes the TWT element in the Additional TWT Flow ID subfield and establishes TWT agreement in multiple links. can be considered for
  • the Additional TWT Flow ID Present subfield may be omitted.
  • the TWT response station receiving the TWT element may determine whether the TWT element includes the Additional TWT Flow ID subfield based on the Link ID Bitmap subfield.
  • the TWT response station receiving the TWT element may determine the size of the Additional TWT Flow ID subfield included in the TWT element based on the Link ID Bitmap subfield.
  • the multi-link device may transmit a TWT release frame for releasing the TWT agreement applied to the second link in the first link.
  • the multi-link device may release a TWT agreement applied to a plurality of links by transmitting a TWT release frame on one link.
  • the TWT release frame may also include additional information in the TWT release frame of the conventional WLAN. This will be described with reference to FIG. 23 .
  • FIG 23 shows the format of the Action field of the TWT release frame transmitted by the multi-link device according to an embodiment of the present invention.
  • the TWT release frame transmitted by the multi-link device may be defined as a new action frame.
  • the TWT release frame transmitted by the multi-link device is referred to as an MLD TWT release frame.
  • the MLD TWT release frame may be designated as Unprotected S1G among the categories of the Action field.
  • a value not used in the conventional WLAN may be allocated to the MLD TWT release frame.
  • 12 may be allocated to the MLD TWT release frame as in the embodiment of FIG. 23( a ).
  • the station may set the value of the category to 22 and the value of the Unprotected S1G Action field to 12 in the action frame.
  • the Action field of the MLD TWT release frame may include a field indicating the TWT agreement to be released by the TWT release frame.
  • This field may be referred to as an MLD TWT Flow field.
  • the MLD TWT Flow field may indicate the link ID of the link corresponding to the TWT agreement to be released by the TWT release frame and the TWT Flow ID corresponding to the TWT agreement to be released by the TWT release frame.
  • 23( b ) shows an example of the Action field included in the TWT release frame.
  • the MLD TWT Flow field may be indicated not only in the Unprotected S1G category, but also in the Action field of another category.
  • the MLD TWT release frame may be transmitted in the Protected Action frame format of the S1G category.
  • the Action field of the action frame of the S1G category may include the MLD TWT Flow field.
  • the TWT release frame may be used in a format different from the action frame described in this embodiment, and a frame other than the action frame may be used as the TWT release frame.
  • a detailed format of the MLD TWT Flow field will be described with reference to FIG. 24 .
  • FIG. 24 shows an MLD TWT Flow field according to an embodiment of the present invention.
  • the MLD TWT Flow field may include a field having a variable length.
  • the MLD TWT Flow field may include a variable-length field indicating the TWT Flow ID corresponding to the TWT agreement to be released by the MLD TWT release frame.
  • the MLD TWT Flow field may include an MLD TWT Flow Control field having a fixed length and an MLD TWT Flow IDs field having a variable length.
  • the MLD TWT Flow Control field may be a 1 octet field.
  • the MLD TWT Flow Control field may indicate information for parsing the MLD TWT Flow IDs field.
  • the MLD TWT Control field may indicate information about the size of the MLD TWT Flow IDs field.
  • the MLD TWT Flow IDs field may indicate a TWT Flow ID corresponding to the TWT agreement to be released.
  • the MLD TWT Flow IDs field may be omitted according to the setting of the MLD TWT Flow Control field.
  • Figure 24 (a) shows the MLD TWT Flow field according to this embodiment.
  • the MLD TWT Flow Control field may include a field indicating the length of the MLD TWT Flow IDs field. In this case, this field may be referred to as a Length of MLD Flow IDs field.
  • the Length of MLD Flow IDs field may indicate the length of the MLD TWT Flow IDs field in units of 1 octet. In this case, when the length of the MLD TWT Flow IDs field is 5 octets, the value of the Length of MLD Flow IDs field may be set to 5 or 4. 24(b) shows the MLD TWT Flow field according to this embodiment.
  • the TWT Flow Control field may include a subfield indicating that all TWT agreements established between the multi-link device transmitting the MLD TWT release frame and the multi-link device receiving the MLD TWT release frame are to be released. This subfield is referred to as a Teardown All TWT of All Link field.
  • the multi-link device may set the value of the Teardown All TWT of All Link subfield of the MLD TWT release frame to 1.
  • the MLD TWT Flow IDs field may repeatedly include a 3-bit TWT Identifier subfield, a 4-bit Link ID field, and a 1-bit Teardown All TWT subfield per 1 octet.
  • the continuous TWT Identifier subfield and Link ID field may identify the TWT agreement released by the MLD TWT release frame.
  • Figure 24 (c) shows the MLD TWT Flow IDs field according to this embodiment.
  • the Teardown All TWT subfield may indicate that all TWT agreements related to the link corresponding to the Teardown All TWT subfield are released.
  • the link corresponding to the Teardown All TWT subfield is a link corresponding to the Link Id field included in the same octet as the Teardown All TWT subfield.
  • the TWT Identifier subfield may be set as a reserved field.
  • Figure 24 (e) shows the MLD TWT Flow IDs field according to this embodiment.
  • the Teardown All TWT subfield may indicate that all TWT agreements corresponding to the TWT Flow ID corresponding to the Teardown All TWT subfield are released.
  • the link corresponding to the Teardown All TWT subfield is a TWT Flow ID corresponding to the TWT Flow Identifier subfield included in the same octet as the Teardown All TWT subfield.
  • the Link ID subfield may be set as a reserved field. 24(f) shows the MLD TWT Flow IDs field according to this embodiment.
  • the MLD TWT Flow IDs field may continuously include a plurality of TWT Identifier subfields, consecutively include a plurality of Link ID fields, and may include a Teardown All TWT subfield consecutively.
  • the TWT Identifier subfield and the Link ID field in the same order may identify the TWT agreement for releasing the MLD TWT release frame.
  • the combination of the first TWT Identifier subfield and the first Link ID field identifies the TWT agreement released by the MLD TWT release frame
  • the combination of the second TWT Identifier subfield and the second Link ID field indicates that the MLD TWT release frame is It is possible to identify the TWT agreement to release.
  • At least one of the number of TWT Flow Identifier subfields, the number of Link ID subfields, and the number of Teardown All TWT subfields included in the MLD TWT Flow IDs field may be proportional to the size of the MLD TWT Flow IDs field.
  • the Teardown All TWT subfield and the Link ID field may correspond sequentially.
  • the first Teardown All TWT subfield may correspond to the first Link ID field
  • the second Teardown All TWT subfield may correspond to the second Link ID field.
  • the Teardown All TWT subfield and the TWT Flow Identifier subfield may correspond sequentially.
  • the first Teardown All TWT subfield may correspond to the first TWT Flow Identifier subfield
  • the second Teardown All TWT subfield may correspond to the second TWT Flow Identifier subfield.
  • the MLD TWT release frame may include a Link ID bitmap for indicating a plurality of links. This may be the same as the format of the Link ID Bitmap field included in the TWT element described above.
  • the MLD TWT release frame may include a bitmap to signal information for releasing a plurality of TWT agreements. This will be described with reference to FIG. 25 .
  • 25 shows the format of the MLD TWT Flow field according to another embodiment of the present invention.
  • the MLD TWT release frame may have a variable length.
  • the MLD TWT release frame may include an MLD TWT Flow Control field and an MLD TWT Bitmap field of a fixed length. That is, the MLD TWT release frame may include the MLD TWT Bitmap field instead of the MLD TWT Flow IDs field mentioned in the embodiments described with reference to FIG. 24 .
  • the length of the MLD TWT Flow Control field may be 1 octet.
  • the MLD TWT Bitmap field may be omitted according to the value of the MLD TWT Flow Control field.
  • 25(a) shows the format of the MLD TWT Flow field according to this embodiment.
  • the MLD TWT Control field may include a subfield indicating information related to the size of the MLD TWT Bitmap field. This subfield is referred to as a Length of Bitmap subfield.
  • the Length of Bitmap field may indicate the size of the MLD TWT Bitmap field in units of 3 octets. For example, when the size of the MLD TWT Bitmap field is 9 octets, the value of the Length of Bitmap field may be set to 3 or 2.
  • the Length of Bitmap subfield may be a 3-bit field. In this case, the type of length that the MLD TWT Bitmap field can have may be limited to 8 or less. This is because the number of TWT Flow IDs is less than 8. 25(b) shows the format of the MLD TWT Control field according to this embodiment.
  • the MLD TWT Flow Control field is a subfield indicating that all TWT agreements established between the multi-link device transmitting the MLD TWT release frame and the multi-link device receiving the MLD TWT release frame are to be released as described with reference to FIG. 24 . may include. This subfield is referred to as a Teardown All TWT of All Link field.
  • the multi-link device may set the value of the Teardown All TWT of All Link subfield of the MLD TWT release frame to 1.
  • the TWT Bitmap field may repeatedly include a TWT Flow ID Bitmap subfield with a length of 1 octet and a Link ID Bitmap subfield with a length of 2 octets every 3 octets.
  • 25(d) shows the TWT Bitmap field according to this embodiment.
  • the TWT Flow ID Bitmap subfield may indicate the TWT Flow ID corresponding to the TWT agreement to be released by the TWT release frame. When the MLD TWT release frame releases the TWT agreement with TWT Flow IDs 1 to 3, the TWT Flow ID Bitmap subfield may be set to 1110 0000 2b .
  • each of the values 1 to 8 of the TWT Flow ID is mapped to the first bit to the eighth bit of the TWT Flow ID Bitmap subfield.
  • the Link ID Bitmap subfield TWT release frame may indicate the link ID of the link corresponding to the TWT agreement to be released.
  • the Link ID Bitmap subfield may be set to 1110 0000 2b .
  • each of the values 1 to 8 of the Link ID is mapped to the first bit to the eighth bit of the Link ID Bitmap subfield.
  • the TWT Flow ID may be indicated by 3 bits.
  • the TWT Flow ID bitmap may indicate the value of one TWT Flow ID as a 3-bit field.
  • 5 bits of the TWT Flow ID bitmap subfield may be a reserved field.
  • 25(e) shows the TWT Bitmap field according to this embodiment.
  • the TWT Bitmap field may continuously include the TWT Flow ID Bitmap subfield and may include the Link ID Bitmap subfield continuously. At least one of the length of the TWT Flow ID Bitmap subfield and the Link ID Bitmap subfield included in the TWT Bitmap field may be proportional to the size of the TWT Bitmap field.
  • the TWT agreement to be released by the TWT release frame is the TWT agreement corresponding to the TWT Flow ID indicated by the TWT Flow ID Bitmap subfield and the Link ID indicated by the Link ID Bitmap subfield.
  • the MLD TWT release frame described above is newly defined as a frame for releasing the TWT agreement established between multi-link devices, not the TWT release frame used in the conventional WLAN.
  • a method of releasing a TWT agreement established between multi-link devices using a conventional TWT release frame will be described. Specifically, 1) a method of releasing all TWT agreements established in a link through which a TWT release frame is transmitted, 2) a method of releasing all TWT agreements established in a specific link, 3) a TWT corresponding to a specific TWT Flow ID in all links It describes how to release consensus and 4) how to release all TWT agreements established on all links.
  • 26 shows a TWT release frame for releasing a TWT agreement established in a multi-link device according to an embodiment of the present invention.
  • the conventional TWT release frame includes a TWT Flow field of 1 octet length.
  • the first to third bits (B0-B2) of the TWT Flow field are TWT Flow Identifier subfields indicating the TWT Flow ID.
  • the fourth to fifth bits (B3-B4) of the TWT Flow field are reserved subfields.
  • the sixth to seventh bits (B5-B6) of the TWT Flow field are Negotiation Type subfields indicating the negotiation type.
  • the sixth to eighth bits (B7) of the TWT Flow field may be set as the Teardown All TWT subfield.
  • the Teardown All TWT subfield may indicate that all TWT agreements established between the station transmitting the TWT release frame and the station receiving the TWT release frame are to be released.
  • the format of the TWT Flow field described above may be a case in which the value of the Negotiation Type subfield is 0 or 1.
  • the TWT Flow Identifier subfield may be set as a reserved field, and the value of the TWT Flow Identifier subfield may be set to 0.
  • the multi-link device that transmitted the TWT release frame including the TWT Flow field and the multi-link device that received the Among all TWTs established between multi-link devices, all TWT agreements established in the link through which the TWT release frame is transmitted may be released.
  • the value of the Teardown all TWT subfield (B7) of the TWT release frame is set to 0, and the value of the Teardown Type subfield (B4) is set to 1.
  • the first bit to the fourth bit (B0-B3) of the TWT Flow field may be set as a Link ID field indicating a link corresponding to the TWT agreement released by the TWT release frame.
  • 26(b) shows the format of the TWT Flow field according to this embodiment.
  • the multi-link device that has transmitted the TWT release frame including the TWT Flow field and the multi-link device that received the link ID All TWT agreements established on the link indicated by the field may be released.
  • the value of the Teardown all TWT subfield (B7) of the TWT release frame is set to 0, and the value of the Teardown Type subfield (B4) is It may be set to 0, and the value of the All Link subfield B3 may be set to 1.
  • 26( c ) shows the format of the TWT Flow field according to this embodiment.
  • the multi-link in which the TWT release frame including the TWT Flow field is transmitted The device and the received multi-link device may release all TWT agreements corresponding to the TWT Flow ID indicated by the TWT Flow Identifier field among the TWT agreements established with the two multi-link devices.
  • the value of the Teardown all TWT subfield (B7) of the TWT release frame is set to 1, and the value of the Teardown Type subfield (B4) can be set to 1. have.
  • the TWT Flow field (B0-B3) may be set as a reserved field. 26 (d) shows the format of the TWT Flow field according to this embodiment.
  • the multi-link device that transmitted the TWT release frame including the TWT Flow field and the multi-link device that received the The TWT agreement established with the link device may be released.
  • the TWT agreement is released with the TWT release frame.
  • the TWT agreement may be released. This is referred to as implicit release. This will be described with reference to FIG. 27 .
  • the TWT agreement established between the AP and the non-AP station may be implicitly released.
  • the link in which the AP and the non-AP station are combined is deactivated, the TWT agreement established between the AP and the non-AP station may be implicitly released.
  • the deactivation of the link may include the disappearance of the TID mapped to the link.
  • a TWT agreement may be established in a plurality of links through one TWT element.
  • TWT Flow IDs of TWT agreements established in a plurality of links may be the same.
  • the requesting stations of the TWT agreement established in the plurality of links may be the same, and the responding stations of the TWT agreement established in the plurality of links may be the same. Therefore, it is difficult to distinguish the TWT agreements established in a plurality of links, and it may be necessary to release the TWT agreement at the same time even when releasing the TWT agreement.
  • the AP and the non-AP station when the AP and the non-AP station are released from the conventional WLAN standard, the AP and the non-AP station implicitly release the TWT agreement established between the AP and the non-AP station. In this case, the AP and the non-AP station delete information on the TWT agreement established therebetween.
  • TWT agreement When a TWT agreement is established on a plurality of links through one TWT element, the TWT Flow IDs of the TWT agreements established on the plurality of links are the same, and the TWT requesting station and the TWT responding station are disassociated, the plurality of TWT agreements are All can be implicitly turned off.
  • first station when a first station that is a station included in a multi-link device is disassociated from a second station associated with the first station, the first station is a TWT responding station or the first station is a TWT requesting station. Agreements may be tacitly waived. In this case, the first station operates on the first link. The released TWT agreement may be inherited by a station operating in a link other than the first link among links in which the multi-link device including the first station operates. In this case, signaling including Link ID may be performed for TWT consensus inheritance. In addition, signaling for the succession of the TWT consensus may be transmitted through a management frame.
  • inheritance of the TWT agreement can be applied even when any one station is not associated with a station associated with a station.
  • the TWT agreement established before the inheritance may be released.
  • inheritance of TWT consensus may indicate that a TWT parameter applied to a previously established TWT agreement is applied to a new TWT agreement.
  • a non-AP multi-link device includes a first station STA1 , a second station STA2 , and a third station STA3 .
  • Each of the first station STA1 , the second station STA2 , and the third station STA3 operates in a first link Link 1 , a second link Link 2 , and a third link Link 3 .
  • the AP multi-link device includes a first AP (AP1), a second AP (AP2), and a third AP (AP3).
  • Each of the first AP (AP1), the second AP (AP2), and the third AP (AP3) operates in the first link (Link 1), the second link (Link 2), and the third link (Link 3).
  • a first station (STA1) and a first AP (AP1) combine, and TWT agreement (TWT 1, TWT 2, TWT) in a first link (Link1), a second link (Link 2), and a third link (Link3) 3) is established.
  • the requesting station and the responding station of the TWT agreement (TWT 1, TWT 2, TWT 3) in the first link (Link1), the second link (Link 2), and the third link (Link3) are the first station (STA1) and the second link (Link3).
  • the non-AP multi-link device (non-AP MLD) and the AP multi-link device (AP MLD) perform a reassociation procedure so that the first station STA1 and the first AP AP1 may be disassociated.
  • Both the TWT agreement in which the first station STA1 and the first AP AP1 are a TWT responding station or a TWT requesting station may be implicitly released. Accordingly, the TWT agreements (TWT 1, TWT 2, and TWT 3) are all released in the first link (Link1), the second link (Link 2), and the third link (Link3).
  • the first station STA1 may be coupled to the fourth AP AP4 which is a different AP from the first AP AP1 of the AP multi-link device (AP MLD) to operate on a different link.
  • the TWT agreement between the first station STA1 and the first AP AP1 may be inherited by the first station STA1 and the fourth AP AP4. In this way, regardless of the link on which the initial TWT setup is performed, a TWT agreement may be established in a new link by TWT consensus inheritance.
  • the present invention has been described using wireless LAN communication as an example, but the present invention is not limited thereto and may be equally applied to other communication systems such as cellular communication. Further, although the method, apparatus and system of the present invention have been described with reference to specific embodiments, some or all of the components, operations of the present invention may be implemented using a computer system having a general-purpose hardware architecture.

Abstract

복수의 링크에서 각각 동작하는 복수의 스테이션을 포함하는 멀티 링크 장치가 개시된다. 상기 멀티 링크 동작 장치는 송수신부; 및 프로세서를 포함한다. 상기 프로세서는 복수의 스테이션 중 하나이며 제1 링크에서 제1 AP와 결합된 제1 스테이션에서 TWT(target wake time) 엘리멘트를 전송하여 제2 링크에서 동작하는 제2 스테이션과 상기 제2 스테이션과 결합된 제2 AP를 위한 TWT 합의를 요청한다.

Description

복수의 링크에서 동작하는 멀티 링크 장치 및 멀티 링크 장치의 동작 방법
본 발명은 복수의 링크에서 동작하는 멀티 링크 장치 및 멀티 링크 장치의 동작 방법에 관한 것이다.
최근 모바일 기기의 보급이 확대됨에 따라 이들에게 빠른 무선 인터넷 서비스를 제공할 수 있는 무선랜(Wireless LAN) 기술이 많은 각광을 받고 있다. 무선랜 기술은 근거리에서 무선 통신 기술을 바탕으로 스마트 폰, 스마트 패드, 랩탑 컴퓨터, 휴대형 멀티미디어 플레이어, 임베디드 기기 등과 같은 모바일 기기들을 가정이나 기업 또는 특정 서비스 제공지역에서 무선으로 인터넷에 접속할 수 있도록 하는 기술이다.
IEEE(Institute of Electrical and Electronics Engineers) 802.11은 2.4GHz 주파수를 이용한 초기의 무선랜 기술을 지원한 이래, 다양한 기술의 표준을 실용화 또는 개발 중에 있다. 먼저, IEEE 802.11b는 2.4GHz 밴드의 주파수를 사용하면서 최고 11Mbps의 통신 속도를 지원한다. IEEE 802.11b 이후에 상용화된 IEEE 802.11a는 2.4GHz 밴드가 아닌 5GHz 밴드의 주파수를 사용함으로써 상당히 혼잡한 2.4GHz 밴드의 주파수에 비해 간섭에 대한 영향을 줄였으며, OFDM(orthogonal frequency division multiplexing) 기술을 사용하여 통신 속도를 최대 54Mbps까지 향상시켰다. 그러나 IEEE 802.11a는 IEEE 802.11b에 비해 통신 거리가 짧은 단점이 있다. 그리고 IEEE 802.11g는 IEEE 802.11b와 마찬가지로 2.4GHz 밴드의 주파수를 사용하여 최대 54Mbps의 통신속도를 구현하며, 하위 호환성(backward compatibility)을 만족하고 있어 상당한 주목을 받았는데, 통신 거리에 있어서도 IEEE 802.11a보다 우위에 있다.
그리고 무선랜에서 취약점으로 지적되어온 통신 속도에 대한 한계를 극복하기 위하여 제정된 기술 규격으로서 IEEE 802.11n이 있다. IEEE 802.11n은 네트워크의 속도와 신뢰성을 증가시키고, 무선 네트워크의 운영 거리를 확장하는데 목적을 두고 있다. 보다 구체적으로, IEEE 802.11n에서는 데이터 처리 속도가 최대 540Mbps 이상인 고처리율(High Throughput, HT)을 지원하며, 또한 전송 에러를 최소화하고 데이터 속도를 최적화하기 위해 송신부와 수신부 양단 모두에 다중 안테나를 사용하는 MIMO(Multiple Inputs and Multiple Outputs) 기술에 기반을 두고 있다. 또한, 이 규격은 데이터 신뢰성을 높이기 위해 중복되는 사본을 여러 개 전송하는 코딩 방식을 사용할 수 있다.
무선랜의 보급이 활성화되고 또한 이를 이용한 어플리케이션이 다양화됨에 따라, IEEE 802.11n이 지원하는 데이터 처리 속도보다 더 높은 처리율(Very High Throughput, VHT)을 지원하기 위한 새로운 무선랜 시스템에 대한 필요성이 대두되었다. 이 중 IEEE 802.11ac는 5GHz 주파수에서 넓은 대역폭(80MHz~160MHz)을 지원한다. IEEE 802.11ac 표준은 5GHz 대역에서만 정의되어 있으나 기존 2.4GHz 대역 제품들과의 하위 호환성을 위해 초기 11ac 칩셋들은 2.4GHz 대역에서의 동작도 지원할 것이다. 이론적으로, 이 규격에 따르면 다중 스테이션의 무선랜 속도는 최소 1Gbps, 최대 싱글 링크 속도는 최소 500Mbps까지 가능하게 된다. 이는 더 넓은 무선 주파수 대역폭(최대 160MHz), 더 많은 MIMO 공간적 스트림(최대 8개), 다중 사용자 MIMO, 그리고 높은 밀도의 변조(최대 256 QAM) 등 802.11n에서 받아들인 무선 인터페이스 개념을 확장하여 이루어진다. 또한, 기존 2.4GHz/5GHz 대신 60GHz 밴드를 사용해 데이터를 전송하는 방식으로 IEEE 802.11ad가 있다. IEEE 802.11ad는 빔포밍 기술을 이용하여 최대 7Gbps의 속도를 제공하는 전송규격으로서, 대용량의 데이터나 무압축 HD 비디오 등 높은 비트레이트 동영상 스트리밍에 적합하다. 하지만 60GHz 주파수 밴드는 장애물 통과가 어려워 근거리 공간에서의 디바이스들 간에만 이용이 가능한 단점이 있다.
한편, 802.11ac 및 802.11ad 이후의 무선랜 표준으로서, AP와 단말들이 밀집한 고밀도 환경에서의 고효율 및 고성능의 무선랜 통신 기술을 제공하기 위한 IEEE 802.11ax(High Efficiency WLAN, HEW) 표준이 개발 완료단계에 있다. 802.11ax 기반 무선랜 환경에서는 고밀도의 스테이션들과 AP(Access Point)들의 존재 하에 실내/외에서 높은 주파수 효율의 통신이 제공되어야 하며, 이를 구현하기 위한 다양한 기술들이 개발되었다.
또한 고화질 비디오, 실시간 게임 등과 같은 새로운 멀티미디어 응용을 지원하기 위하여 최대 전송 속도를 높이기 위한 새로운 무선랜 표준 개발이 시작되었다. 7세대 무선랜 표준인 IEEE 802.11be(Extremely High Throughput, EHT)에서는 2.4/5/6 GHz의 대역에서 더 넓은 대역폭과 늘어난 공간 스트림 및 다중 AP 협력 등을 통해 최대 30Gbps의 전송율을 지원하는 것을 목표로 표준 개발을 진행 중이다.
본 발명의 일 실시 예는 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말을 제공하는 것을 목적으로 한다.
본 발명의 실시 예에 따른 복수의 링크에서 각각 동작하는 복수의 스테이션을 포함하는 멀티 링크 장치는 송수신부; 및 프로세서를 포함한다. 상기 프로세서는 복수의 스테이션 중 하나이며 제1 링크에서 제1 AP와 결합된 제1 스테이션에서 TWT(target wake time) 엘리멘트를 전송하여 제2 링크에서 동작하는 제2 스테이션과 상기 제2 스테이션과 결합된 제2 AP를 위한 TWT 합의를 요청한다.
상기 TWT 엘리멘트는 상기 TWT 엘리멘트가 수립하려는 TWT 합의가 적용될 링크를 지시하는 정보를 지시하는 비트맵을 포함할 수 있다.
상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 요청 스테이션은 상기 제2 스테이션이고, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 응답 스테이션은 상기 제2 AP일 수 있다.
상기 프로세서는 상기 제2 AP로부터 TWT 해제 프레임을 수신한 경우 또는 상기 제2 AP에게 상기 TWT 해제 프레임을 성공적으로 전송한 경우, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제할 수 있다.
상기 프로세서는 상기 제2 링크가 비활성화되는 경우, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는 TWT 해제 프레임의 수신 또는 전송 없이도 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제할 수 있다.
상기 TWT 엘리멘트는 제2 링크를 포함한 복수의 링크에 수립되는 복수의 TWT 합의를 요청할 수 있다.
상기 복수의 링크에 수립되는 복수의 TWT 합의 각각은 상기 복수의 링크 각각의 링크 ID를 기초로 식별될 수 있다.
상기 복수의 링크에 수립되는 복수의 TWT 합의 각각은 상기 복수의 링크 각각의 링크 ID, 상기 멀티 링크 장치의 MAC(medium access control) 주소, 상기 복수의 링크에 수립되는 복수의 TWT 합의 각각의 TWT Flow ID를 기초로 식별될 수 있다.
상기 프로세서는 TWT 해제 프레임을 성공적으로 전송하거나 상기 TWT 해제 프레임을 수신한 경우, 상기 TWT 해제 프레임이 지시하는 링크 ID를 기초로 복수의 링크에 수립되는 복수의 TWT 합의 중 적어도 어느 하나를 해제할 수 있다.
상기 프로세서는 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하고, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 상기 제1 스테이션과 상기 제1 AP에게 승계할 수 있다.
상기 프로세서는 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 상기 제1 스테이션과 상기 제1 AP에게 승계할 때, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 파라미터를 상기 제1 스테이션과 상기 제1 AP를 위한 TWT 합의에 적용할 수 있다.
본 발명의 실시 예에 따른 복수의 링크에서 각각 동작하는 복수의 스테이션을 포함하는 멀티 링크 장치의 동작 방법은 복수의 스테이션 중 하나이며 제1 링크에서 제1 AP와 결합된 제1 스테이션에서 TWT(target wake time) 엘리멘트를 전송하여 제2 링크에서 동작하는 제2 스테이션과 상기 제2 스테이션과 결합된 제2 AP를 위한 TWT 합의를 요청하는 단계를 포함한다.
상기 TWT 엘리멘트는 상기 TWT 엘리멘트가 수립하려는 TWT 합의가 적용될 링크를 지시하는 정보를 지시하는 비트맵을 포함할 수 있다.
상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 요청 스테이션은 상기 제2 스테이션이고, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 응답 스테이션은 상기 제2 AP일 수 있다.
상기 동작 방법은 상기 제2 AP로부터 TWT 해제 프레임을 수신한 경우 또는 상기 제2 AP에게 상기 TWT 해제 프레임을 성공적으로 전송한 경우, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는 단계를 더 포함할 수 있다.
상기 동작 방법은 상기 제2 링크가 비활성화되는 경우, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는 TWT 해제 프레임의 수신 또는 전송 없이도 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는 단계를 더 포함할 수 있다.
상기 TWT 엘리멘트는 제2 링크를 포함한 복수의 링크에 수립되는 복수의 TWT 합의를 요청할 수 있다.
상기 복수의 링크에 수립되는 복수의 TWT 합의 각각을 상기 복수의 링크 각각의 링크 ID를 기초로 식별될 수 있다.
상기 복수의 링크에 수립되는 복수의 TWT 합의 각각은 상기 복수의 링크 각각의 링크 ID, 상기 멀티 링크 장치의 MAC(medium access control) 주소, 상기 복수의 링크에 수립되는 복수의 TWT 합의 각각의 TWT Flow ID를 기초로 식별될 수 있다.
상기 동작 방법은 TWT 해제 프레임을 성공적으로 전송하거나 상기 TWT 해제 프레임을 수신한 경우, 상기 TWT 해제 프레임이 지시하는 링크 ID를 기초로 복수의 링크에 수립되는 복수의 TWT 합의 중 적어도 어느 하나를 해제하는 단계를 더 포함할 수 있다.
본 발명의 일 실시 예는 복수의 링크에서 동작하는 멀티 링크 장치를 제공한다. 또한, 본 발명의 일 실시 예는 멀티 링크 장치가 효율적으로 TWT 동작을 수행하는 방법을 제공한다.
도 1은 본 발명의 일 실시예에 따른 무선랜 시스템을 나타낸다.
도 2는 본 발명의 또 다른 일 실시예에 따른 무선랜 시스템을 나타낸다.
도 3은 본 발명의 일 실시예에 따른 스테이션의 구성을 나타낸다.
도 4는 본 발명의 일 실시예에 따른 액세스 포인트의 구성을 나타낸다.
도 5는 스테이션이 액세스 포인트와 링크를 설정하는 과정을 개략적으로 나타낸다.
도 6은 무선랜 통신에서 사용되는 CSMA(Carrier Sense Multiple Access)/CA(Collision Avoidance) 방법의 일 예를 나타낸다.
도 7은 다양한 표준 세대별 PPDU(PLCP Protocol Data Unit) 포맷의 일 예를 도시한다.
도 8은 본 발명의 실시예에 따른 다양한 EHT(Extremely High Throughput) PPDU(Physical Protocol Data Unit) 포맷 및 이를 지시하기 위한 방법의 일 예를 나타낸다.
도 9는 본 발명의 실시 예에 따른 멀티 링크 장치(multi-link device)를 보여준다.
도 10은 본 발명의 실시 예에 따라 멀티 링크 동작에서 서로 다른 링크의 전송이 동시에 수행되는 것을 보여준다.
도 11은 본 발명의 실시 예에 따라 AP와 스테이션 사이에 브로드캐스트 TWT를 설정하는 방법을 보여준다.
도 12는 본 발명의 실시 예에 따라 AP가 콰이어트 구간을 설정하는 것을 보여준다.
도 13은 본 발명의 실시 예에 따라 스테이션이 제한된 서비스 피리어드를 고려하여 TXOP를 설정하는 방법을 설명한다.
도 14는 본 발명의 실시 예에 따른 스테이션이 제한된 서비스 피리어드를 고려하여 채널 액세스 절차를 다시 수행하는 것을 보여준다.
도 15는 본 발명의 실시 예에 따라 AP가 제한된 서비스 피리어드를 조기에 종료하는 동작을 보여준다.
도 16은 본 발명의 실시 예에 따른 TWT 엘리멘트의 포맷을 보여준다.
도 17은 본 발명의 실시 예에 따른 멀티 링크 장치가 TWT 합의를 수행하는 것을 보여준다.
도 18은 본 발명의 실시 예에 따라 멀티 링크 장치에 포함된 스테이션이 스테이션이 포함된 멀티 링크 장치에 포함된 다른 스테이션을 위해 TWT 합의를 수행하는 것을 보여준다.
도 19는 본 발명의 실시 예에 따른 멀티 링크 장치가 TWT 합의를 해제하는 동작을 보여준다.
도 20은 본 발명의 실시 예에 따른 TWT 엘리멘트의 Individual TWT parameter set 필드의 포맷을 보여준다.
도 21은 본 발명의 실시 예에 따른 첫 번째 TWT Flow Identifier 서브필드를 제외한 나머지 TWT Flow Identifier 서브필드의 포맷을 보여준다.
도 22는 본 발명의 실시 예에 따른 멀티 링크 장치가 전송하는 TWT 엘리멘트가 포함하는 Control 필드의 포맷을 보여준다.
도 23은 본 발명의 실시 예에 따른 멀티 링크 장치가 전송하는 TWT 해제 프레임의 Action 필드의 포맷을 보여준다.
도 24는 본 발명의 실시 예에 따른 MLD TWT Flow 필드를 보여준다.
도 25는 본 발명의 또 다른 실시 예에 따른 MLD TWT Flow 필드의 포맷을 보여준다.
도 26은 본 발명의 실시 예에 따른 멀티 링크 장치에 수립된 TWT 합의 해제하는 TWT 해제 프레임을 보여준다.
도 27은 본 발명의 실시 예에 따른 멀티 링크 장치 사이에 수립된 TWT 합의가 묵시적으로 해제되는 것을 보여준다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한 특정 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 가진 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
명세서 전체에서, 어떤 구성이 다른 구성과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 구성요소를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 구성이 특정 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 이에 더하여, 특정 문턱값을 기준으로 "이상" 또는 "이하"라는 한정 사항은 실시예에 따라 각각 "초과" 또는 "미만"으로 적절하게 대체될 수 있다.
이하, 본 발명에서 필드와 서브 필드는 혼용되어 사용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선랜 시스템을 나타낸다.
무선랜 시스템은 하나 또는 그 이상의 베이직 서비스 세트(Basic Service Set, BSS)를 포함하는데, BSS는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 기기들의 집합을 나타낸다. 일반적으로 BSS는 인프라스트럭쳐 BSS(infrastructure BSS)와 독립 BSS(Independent BSS, IBSS)로 구분될 수 있으며, 도 1은 이 중 인프라스트럭쳐 BSS를 나타내고 있다.
도 1에 도시된 바와 같이 인프라스트럭쳐 BSS(BSS1, BSS2)는 하나 또는 그 이상의 스테이션(STA1, STA2, STA3, STA4, STA5), 분배 서비스(Distribution Service)를 제공하는 스테이션인 액세스 포인트(AP-1, AP-2), 및 다수의 액세스 포인트(AP-1, AP-2)를 연결시키는 분배 시스템(Distribution System, DS)을 포함한다.
스테이션(Station, STA)은 IEEE 802.11 표준의 규정을 따르는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리층(Physical Layer) 인터페이스를 포함하는 임의의 디바이스로서, 광의로는 비 액세스 포인트(non-AP) 스테이션뿐만 아니라 액세스 포인트(AP)를 모두 포함한다. 또한, 본 명세서에서 '단말'은 non-AP STA 또는 AP를 가리키거나, 양 자를 모두 가리키는 용어로 사용될 수 있다. 무선 통신을 위한 스테이션은 프로세서와 통신부를 포함하고, 실시예에 따라 유저 인터페이스부와 디스플레이 유닛 등을 더 포함할 수 있다. 프로세서는 무선 네트워크를 통해 전송할 프레임을 생성하거나 또는 상기 무선 네트워크를 통해 수신된 프레임을 처리하며, 그 밖에 스테이션을 제어하기 위한 다양한 처리를 수행할 수 있다. 그리고, 통신부는 상기 프로세서와 기능적으로 연결되어 있으며 스테이션을 위하여 무선 네트워크를 통해 프레임을 송수신한다. 본 발명에서 단말은 사용자 단말기(user equipment, UE)를 포함하는 용어로 사용될 수 있다.
액세스 포인트(Access Point, AP)는 자신에게 결합된(associated) 스테이션을 위하여 무선 매체를 경유하여 분배시스템(DS)에 대한 접속을 제공하는 개체이다. 인프라스트럭쳐 BSS에서 비 AP 스테이션들 사이의 통신은 AP를 경유하여 이루어지는 것이 원칙이지만, 다이렉트 링크가 설정된 경우에는 비AP 스테이션들 사이에서도 직접 통신이 가능하다. 한편, 본 발명에서 AP는 PCP(Personal BSS Coordination Point)를 포함하는 개념으로 사용되며, 광의적으로는 집중 제어기, 기지국(Base Station, BS), 노드-B, BTS(Base Transceiver System), 또는 사이트 제어기 등의 개념을 모두 포함할 수 있다. 본 발명에서 AP는 베이스 무선 통신 단말로도 지칭될 수 있으며, 베이스 무선 통신 단말은 광의의 의미로는 AP, 베이스 스테이션(base station), eNB(eNodeB) 및 트랜스미션 포인트(TP)를 모두 포함하는 용어로 사용될 수 있다. 뿐만 아니라, 베이스 무선 통신 단말은 복수의 무선 통신 단말과의 통신에서 통신 매개체(medium) 자원을 할당하고, 스케줄링(scheduling)을 수행하는 다양한 형태의 무선 통신 단말을 포함할 수 있다.
복수의 인프라스트럭쳐 BSS는 분배 시스템(DS)을 통해 상호 연결될 수 있다. 이때, 분배 시스템을 통하여 연결된 복수의 BSS를 확장 서비스 세트(Extended Service Set, ESS)라 한다.
도 2는 본 발명의 다른 실시예에 따른 무선랜 시스템인 독립 BSS를 도시하고 있다. 도 2의 실시예에서 도 1의 실시예와 동일하거나 상응하는 부분은 중복적인 설명을 생략하도록 한다.
도 2에 도시된 BSS3는 독립 BSS이며 AP를 포함하지 않기 때문에, 모든 스테이션(STA6, STA7)이 AP와 접속되지 않은 상태이다. 독립 BSS는 분배 시스템으로의 접속이 허용되지 않으며, 자기 완비적 네트워크(self-contained network)를 이룬다. 독립 BSS에서 각각의 스테이션들(STA6, STA7)은 다이렉트로 서로 연결될 수 있다.
도 3은 본 발명의 일 실시예에 따른 스테이션(100)의 구성을 나타낸 블록도이다. 도시된 바와 같이, 본 발명의 실시예에 따른 스테이션(100)은 프로세서(110), 통신부(120), 유저 인터페이스부(140), 디스플레이 유닛(150) 및 메모리(160)를 포함할 수 있다.
먼저, 통신부(120)는 무선랜 패킷 등의 무선 신호를 송수신 하며, 스테이션(100)에 내장되거나 외장으로 구비될 수 있다. 실시예에 따르면, 통신부(120)는 서로 다른 주파수 밴드를 이용하는 적어도 하나의 통신 모듈을 포함할 수 있다. 이를 테면, 상기 통신부(120)는 2.4GHz, 5GHz, 6GHz 및 60GHz 등의 서로 다른 주파수 밴드의 통신 모듈을 포함할 수 있다. 일 실시예에 따르면, 스테이션(100)은 7.125GHz 이상의 주파수 밴드를 이용하는 통신 모듈과, 7.125GHz 이하의 주파수 밴드를 이용하는 통신 모듈을 구비할 수 있다. 각각의 통신 모듈은 해당 통신 모듈이 지원하는 주파수 밴드의 무선랜 규격에 따라 AP 또는 외부 스테이션과 무선 통신을 수행할 수 있다. 통신부(120)는 스테이션(100)의 성능 및 요구 사항에 따라 한 번에 하나의 통신 모듈만을 동작시키거나 동시에 다수의 통신 모듈을 함께 동작시킬 수 있다. 스테이션(100)이 복수의 통신 모듈을 포함할 경우, 각 통신 모듈은 각각 독립된 형태로 구비될 수도 있으며, 복수의 모듈이 하나의 칩으로 통합되어 구비될 수도 있다. 본 발명의 실시예에서 통신부(120)는 RF(Radio Frequency) 신호를 처리하는 RF 통신 모듈을 나타낼 수 있다.
다음으로, 유저 인터페이스부(140)는 스테이션(100)에 구비된 다양한 형태의 입/출력 수단을 포함한다. 즉, 유저 인터페이스부(140)는 다양한 입력 수단을 이용하여 유저의 입력을 수신할 수 있으며, 프로세서(110)는 수신된 유저 입력에 기초하여 스테이션(100)을 제어할 수 있다. 또한, 유저 인터페이스부(140)는 다양한 출력 수단을 이용하여 프로세서(110)의 명령에 기초한 출력을 수행할 수 있다.
다음으로, 디스플레이 유닛(150)은 디스플레이 화면에 이미지를 출력한다. 상기 디스플레이 유닛(150)은 프로세서(110)에 의해 실행되는 컨텐츠 또는 프로세서(110)의 제어 명령에 기초한 유저 인터페이스 등의 다양한 디스플레이 오브젝트를 출력할 수 있다. 또한, 메모리(160)는 스테이션(100)에서 사용되는 제어 프로그램 및 그에 따른 각종 데이터를 저장한다. 이러한 제어 프로그램에는 스테이션(100)이 AP 또는 외부 스테이션과 접속을 수행하는데 필요한 접속 프로그램이 포함될 수 있다.
본 발명의 프로세서(110)는 다양한 명령 또는 프로그램을 실행하고, 스테이션(100) 내부의 데이터를 프로세싱 할 수 있다. 또한, 상기 프로세서(110)는 상술한 스테이션(100)의 각 유닛들을 제어하며, 유닛들 간의 데이터 송수신을 제어할 수 있다. 본 발명의 실시예에 따르면, 프로세서(110)는 메모리(160)에 저장된 AP와의 접속을 위한 프로그램을 실행하고, AP가 전송한 통신 설정 메시지를 수신할 수 있다. 또한, 프로세서(110)는 통신 설정 메시지에 포함된 스테이션(100)의 우선 조건에 대한 정보를 판독하고, 스테이션(100)의 우선 조건에 대한 정보에 기초하여 AP에 대한 접속을 요청할 수 있다. 본 발명의 프로세서(110)는 스테이션(100)의 메인 컨트롤 유닛을 가리킬 수도 있으며, 실시예에 따라 스테이션(100)의 일부 구성 이를 테면, 통신부(120) 등을 개별적으로 제어하기 위한 컨트롤 유닛을 가리킬 수도 있다. 즉, 프로세서(110)는 통신부(120)로부터 송수신되는 무선 신호를 변복조하는 모뎀 또는 변복조부(modulator and/or demodulator)일 수 있다. 프로세서(110)는 본 발명의 실시예에 따른 스테이션(100)의 무선 신호 송수신의 각종 동작을 제어한다. 이에 대한 구체적인 실시예는 추후 기술하기로 한다.
도 3에 도시된 스테이션(100)은 본 발명의 일 실시예에 따른 블록도로서, 분리하여 표시한 블록들은 디바이스의 엘리먼트들을 논리적으로 구별하여 도시한 것이다. 따라서 상술한 디바이스의 엘리먼트들은 디바이스의 설계에 따라 하나의 칩으로 또는 복수의 칩으로 장착될 수 있다. 이를테면, 상기 프로세서(110) 및 통신부(120)는 하나의 칩으로 통합되어 구현될 수도 있으며 별도의 칩으로 구현될 수도 있다. 또한, 본 발명의 실시예에서 상기 스테이션(100)의 일부 구성들, 이를 테면 유저 인터페이스부(140) 및 디스플레이 유닛(150) 등은 스테이션(100)에 선택적으로 구비될 수 있다.
도 4는 본 발명의 일 실시예에 따른 AP(200)의 구성을 나타낸 블록도이다. 도시된 바와 같이, 본 발명의 실시예에 따른 AP(200)는 프로세서(210), 통신부(220) 및 메모리(260)를 포함할 수 있다. 도 4에서 AP(200)의 구성 중 도 3의 스테이션(100)의 구성과 동일하거나 상응하는 부분에 대해서는 중복적인 설명을 생략하도록 한다.
도 4를 참조하면, 본 발명에 따른 AP(200)는 적어도 하나의 주파수 밴드에서 BSS를 운영하기 위한 통신부(220)를 구비한다. 도 3의 실시예에서 전술한 바와 같이, 상기 AP(200)의 통신부(220) 또한 서로 다른 주파수 밴드를 이용하는 복수의 통신 모듈을 포함할 수 있다. 즉, 본 발명의 실시예에 따른 AP(200)는 서로 다른 주파수 밴드, 이를 테면 2.4GHz, 5GHz, 6GHz 및 60GHz 중 두 개 이상의 통신 모듈을 함께 구비할 수 있다. 바람직하게는, AP(200)는 7.125GHz 이상의 주파수 밴드를 이용하는 통신 모듈과, 7.125GHz 이하의 주파수 밴드를 이용하는 통신 모듈을 구비할 수 있다. 각각의 통신 모듈은 해당 통신 모듈이 지원하는 주파수 밴드의 무선랜 규격에 따라 스테이션과 무선 통신을 수행할 수 있다. 상기 통신부(220)는 AP(200)의 성능 및 요구 사항에 따라 한 번에 하나의 통신 모듈만을 동작시키거나 동시에 다수의 통신 모듈을 함께 동작시킬 수 있다. 본 발명의 실시예에서 통신부(220)는 RF(Radio Frequency) 신호를 처리하는 RF 통신 모듈을 나타낼 수 있다.
다음으로, 메모리(260)는 AP(200)에서 사용되는 제어 프로그램 및 그에 따른 각종 데이터를 저장한다. 이러한 제어 프로그램에는 스테이션의 접속을 관리하는 접속 프로그램이 포함될 수 있다. 또한, 프로세서(210)는 AP(200)의 각 유닛들을 제어하며, 유닛들 간의 데이터 송수신을 제어할 수 있다. 본 발명의 실시예에 따르면, 프로세서(210)는 메모리(260)에 저장된 스테이션과의 접속을 위한 프로그램을 실행하고, 하나 이상의 스테이션에 대한 통신 설정 메시지를 전송할 수 있다. 이때, 통신 설정 메시지에는 각 스테이션의 접속 우선 조건에 대한 정보가 포함될 수 있다. 또한, 프로세서(210)는 스테이션의 접속 요청에 따라 접속 설정을 수행한다. 일 실시예에 따르면, 프로세서(210)는 통신부(220)로부터 송수신되는 무선 신호를 변복조하는 모뎀 또는 변복조부(modulator and/or demodulator)일 수 있다. 프로세서(210)는 본 발명의 실시예에 따른 AP(200)의 무선 신호 송수신의 각종 동작을 제어한다. 이에 대한 구체적인 실시예는 추후 기술하기로 한다.
도 5는 스테이션이 액세스 포인트와 링크를 설정하는 과정을 개략적으로 나타낸다.
도 5를 참조하면, STA(100)와 AP(200) 간의 링크는 크게 스캐닝(scanning), 인증(authentication) 및 결합(association)의 3단계를 통해 설정된다. 먼저, 스캐닝 단계는 AP(200)가 운영하는 BSS의 접속 정보를 STA(100)가 획득하는 단계이다. 스캐닝을 수행하기 위한 방법으로는 AP(200)가 주기적으로 전송하는 비콘(beacon) 메시지(S101)만을 활용하여 정보를 획득하는 패시브 스캐닝(passive scanning) 방법과, STA(100)가 AP에 프로브 요청(probe request)을 전송하고(S103), AP로부터 프로브 응답(probe response)을 수신하여(S105) 접속 정보를 획득하는 액티브 스캐닝(active scanning) 방법이 있다.
스캐닝 단계에서 성공적으로 무선 접속 정보를 수신한 STA(100)는 인증 요청(authentication request)을 전송하고(S107a), AP(200)로부터 인증 응답(authentication response)을 수신하여(S107b) 인증 단계를 수행한다. 인증 단계가 수행된 후, STA(100)는 결합 요청(association request)를 전송하고(S109a), AP(200)로부터 결합 응답(association response)을 수신하여(S109b) 결합 단계를 수행한다. 본 명세서에서 결합(association)은 기본적으로 무선 결합을 의미하나, 본 발명은 이에 한정되지 않으며 광의의 의미로의 결합은 무선 결합 및 유선 결합을 모두 포함할 수 있다.
한편, 추가적으로 802.1X 기반의 인증 단계(S111) 및 DHCP를 통한 IP 주소 획득 단계(S113)가 수행될 수 있다. 도 5에서 인증 서버(300)는 STA(100)와 802.1X 기반의 인증을 처리하는 서버로서, AP(200)에 물리적으로 결합되어 존재하거나 별도의 서버로서 존재할 수 있다.
도 6은 무선랜 통신에서 사용되는 CSMA(Carrier Sense Multiple Access)/CA(Collision Avoidance) 방법의 일 예를 나타낸다.
무선랜 통신을 수행하는 단말은 데이터를 전송하기 전에 캐리어 센싱(Carrier Sensing)을 수행하여 채널이 점유 상태(busy)인지 여부를 체크한다. 만약, 일정한 세기 이상의 무선 신호가 감지되는 경우 해당 채널이 점유 상태(busy)인 것으로 판별되고, 상기 단말은 해당 채널에 대한 액세스를 지연한다. 이러한 과정을 클리어 채널 할당(clear channel assessment, CCA) 이라고 하며, 해당 신호 감지 유무를 결정하는 레벨을 CCA 문턱값(CCA threshold)이라 한다. 만약 단말에 수신된 CCA 문턱값 이상의 무선 신호가 해당 단말을 수신자로 하는 경우, 단말은 수신된 무선 신호를 처리하게 된다. 한편, 해당 채널에서 무선 신호가 감지되지 않거나 CCA 문턱값보다 작은 세기의 무선 신호가 감지될 경우 상기 채널은 유휴 상태(idle)인 것으로 판별된다.
채널이 유휴 상태인 것으로 판별되면, 전송할 데이터가 있는 각 단말은 각 단말의 상황에 따른 IFS(Inter Frame Space) 이를테면, AIFS(Arbitration IFS), PIFS(PCF IFS) 등의 시간 뒤에 백오프 절차를 수행한다. 실시예에 따라, 상기 AIFS는 기존의 DIFS(DCF IFS)를 대체하는 구성으로 사용될 수 있다. 각 단말은 해당 단말에 결정된 난수(random number) 만큼의 슬롯 타임을 상기 채널의 유휴 상태의 간격(interval) 동안 감소시켜가며 대기하고, 슬롯 타임을 모두 소진한 단말이 해당 채널에 대한 액세스를 시도하게 된다. 이와 같이 각 단말들이 백오프 절차를 수행하는 구간을 경쟁 윈도우 구간이라고 한다. 이때, 난수를 백오프 카운터라 지칭할 수 있다. 즉, 단말이 획득한 난수인 정수에 의해 백오프 카운터의 초기값이 설정된다. 단말이 슬롯 타임동안 채널이 유휴한 것으로 감지한 경우, 단말은 백오프 카운터를 1만큼 감소시킬 수 있다. 또한, 백오프 카운터가 0에 도달한 경우, 단말은 해당 채널에서 채널 액세스를 수행하는 것이 허용될 수 있다. 따라서 AIFS 시간 및 백오프 카운터의 슬롯 시간 동안 채널이 유휴한 경우에 단말의 전송이 허용될 수 있다.
만약, 특정 단말이 상기 채널에 성공적으로 액세스하게 되면, 해당 단말은 상기 채널을 통해 데이터를 전송할 수 있다. 그러나, 액세스를 시도한 단말이 다른 단말과 충돌하게 되면, 충돌된 단말들은 각각 새로운 난수를 할당 받아 다시 백오프 절차를 수행한다. 일 실시예에 따르면, 각 단말에 새로 할당되는 난수는 해당 단말이 이전에 할당 받은 난수 범위(경쟁 윈도우, CW)의 2배의 범위(2*CW) 내에서 결정될 수 있다. 한편, 각 단말은 다음 경쟁 윈도우 구간에서 다시 백오프 절차를 수행하여 액세스를 시도하며, 이때 각 단말은 이전 경쟁 윈도우 구간에서 남게 된 슬롯 타임부터 백오프 절차를 수행한다. 이와 같은 방법으로 무선랜 통신을 수행하는 각 단말들은 특정 채널에 대한 서로간의 충돌을 회피할 수 있다.
<다양한 PPDU 포맷 실시예>
도 7은 다양한 표준 세대별 PPDU(PLCP Protocol Data Unit) 포맷의 일 예를 도시한다. 더욱 구체적으로, 도 7(a)는 802.11a/g에 기초한 레거시 PPDU 포맷의 일 실시예, 도 7(b)는 802.11ax에 기초한 HE PPDU 포맷의 일 실시예를 도시하며, 도 7(c)는 802.11be에 기초한 논-레거시 PPDU(즉, EHT PPDU) 포맷의 일 실시예를 도시한다. 또한, 도 7(d)는 상기 PPDU 포맷들에서 공통적으로 사용되는 L-SIG 및 RL-SIG의 세부 필드 구성을 나타낸다.
도 7(a)를 참조하면 레거시 PPDU의 프리앰블은 L-STF(Legacy Short Training field), L-LTF(Legacy Long Training field) 및 L-SIG(Legacy Signal field)를 포함한다. 본 발명의 실시예에서, 상기 L-STF, L-LTF 및 L-SIG는 레거시 프리앰블로 지칭될 수 있다.
도 7(b)를 참조하면 HE PPDU의 프리앰블은 상기 레거시 프리앰블에 RL-SIG(Repeated Legacy Short Training field), HE-SIG-A(High Efficiency Signal A field), HE-SIG-B(High Efficiency Signal B field), HE-STF(High Efficiency Short Training field), HE-LTF(High Efficiency Long Training field)를 추가적으로 포함한다. 본 발명의 실시예에서, 상기 RL-SIG, HE-SIG-A, HE-SIG-B, HE-STF 및 HE-LTF는 HE 프리앰블로 지칭될 수 있다. HE 프리앰블의 구체적인 구성은 HE PPDU 포맷에 따라 변형될 수 있다. 예를 들어, HE-SIG-B는 HE MU PPDU 포맷에서만 사용될 수 있다.
도 7(c)를 참조하면 EHT PPDU의 프리앰블은 상기 레거시 프리앰블에 RL-SIG(Repeated Legacy Short Training field), U-SIG(Universal Signal field), EHT-SIG-A(Extremely High Throughput Signal A field), EHT-SIG-A(Extremely High Throughput Signal B field), EHT-STF(Extremely High Throughput Short Training field), EHT-LTF(Extremely High Throughput Long Training field)를 추가적으로 포함한다. 본 발명의 실시예에서, 상기 RL-SIG, EHT-SIG-A, EHT-SIG-B, EHT-STF 및 EHT-LTF는 EHT 프리앰블로 지칭될 수 있다. 논-레거시 프리앰블의 구체적인 구성은 EHT PPDU 포맷에 따라 변형될 수 있다. 예를 들어, EHT-SIG-A와 EHT-SIG-B는 EHT PPDU 포맷들 중 일부 포맷에서만 사용될 수 있다.
PPDU의 프리앰블에 포함된 L-SIG 필드는 64FFT OFDM이 적용되며, 총 64개의 서브캐리어로 구성된다. 이 중 가드 서브캐리어, DC 서브캐리어 및 파일럿 서브캐리어를 제외한 48개의 서브캐리어들이 L-SIG의 데이터 전송용으로 사용된다. L-SIG에는 BPSK, Rate=1/2의 MCS(Modulation and Coding Scheme)가 적용되므로, 총 24비트의 정보를 포함할 수 있다. 도 7(d)는 L-SIG의 24비트 정보 구성을 나타낸다.
도 7(d)를 참조하면 L-SIG는 L_RATE 필드와 L_LENGTH 필드를 포함한다. L_RATE 필드는 4비트로 구성되며, 데이터 전송에 사용된 MCS를 나타낸다. 구체적으로, L_RATE 필드는 BPSK/QPSK/16-QAM/64-QAM 등의 변조방식과 1/2, 2/3, 3/4 등의 부효율을 조합한 6/9/12/18/24/36/48/54Mbps의 전송 속도들 중 하나의 값을 나타낸다. L_RATE 필드와 L_LENGTH 필드의 정보를 조합하면 해당 PPDU의 총 길이를 나타낼 수 있다. 논-레거시 PPDU 포맷에서는 L_RATE 필드를 최소 속도인 6Mbps로 설정한다.
L_LENGTH 필드의 단위는 바이트로 총 12비트가 할당되어 최대 4095까지 시그널링할 수 있으며, L_RATE 필드와의 조합으로 해당 PPDU의 길이를 나타낼 수 있다. 이때, 레거시 단말과 논-레거시 단말은 L_LENGTH 필드를 서로 다른 방법으로 해석할 수 있다.
먼저, 레거시 단말 또는 논-레거시 단말이 L_LENGTH 필드를 이용하여 해당 PPDU의 길이를 해석하는 방법은 다음과 같다. L_RATE 필드의 값이 6Mbps를 지시하도록 설정된 경우, 64FFT의 한 개의 심볼 듀레이션인 4us동안 3 바이트(즉, 24비트)가 전송될 수 있다. 따라서, L_LENGTH 필드 값에 SVC 필드 및 Tail 필드에 해당하는 3바이트를 더하고, 이를 한 개의 심볼의 전송량인 3바이트로 나누면 L-SIG 이후의 64FFT 기준 심볼 개수가 획득된다. 획득된 심볼 개수에 한 개의 심볼 듀레이션인 4us를 곱한 후 L-STF, L-LTF 및 L-SIG의 전송에 소요되는 20us를 더하면 해당 PPDU의 길이 즉, 수신 시간(RXTIME)이 획득된다. 이를 수식으로 표현하면 아래 수학식 1과 같다.
Figure PCTKR2022003704-appb-img-000001
이때,
Figure PCTKR2022003704-appb-img-000002
는 x보다 크거나 같은 최소의 자연수를 나타낸다. L_LENGTH 필드의 최대값은 4095이므로 PPDU의 길이는 최대 5.484ms까지로 설정될 수 있다. 해당 PPDU를 전송하는 논-레거시 단말은 L_LENGTH 필드를 아래 수학식 2와 같이 설정해야 한다.
Figure PCTKR2022003704-appb-img-000003
여기서 TXTIME은 해당 PPDU를 구성하는 전체 전송 시간으로서, 아래 수학식 3과 같다. 이때, TX는 X의 전송 시간을 나타낸다.
Figure PCTKR2022003704-appb-img-000004
상기 수식들을 참고하면, PPDU의 길이는 L_LENGTH/3의 올림 값에 기초하여 계산된다. 따라서, 임의의 k 값에 대하여 L_LENGTH={3k+1, 3k+2, 3(k+1)}의 3가지 서로 다른 값들이 동일한 PPDU 길이를 지시하게 된다.
도 7(e)를 참조하면 U-SIG(Universal SIG) 필드는 EHT PPDU 및 후속 세대의 무선랜 PPDU에서 계속 존재하며, 11be를 포함하여 어떤 세대의 PPDU인지를 구분하는 역할을 수행한다. U-SIG는 64FFT 기반의 OFDM 2 심볼로서 총 52비트의 정보를 전달할 수 있다. 이 중 CRC/Tail 9비트를 제외한 43비트는 크게 VI(Version Independent) 필드와 VD(Version Dependent) 필드로 구분된다.
VI 비트는 현재의 비트 구성을 향후에도 계속 유지하여 후속 세대의 PPDU가 정의되더라도 현재의 11be 단말들이 해당 PPDU의 VI 필드들을 통해서 해당 PPDU에 대한 정보를 얻을 수 있다. 이를 위해 VI 필드는 PHY version, UL/DL, BSS Color, TXOP, Reserved 필드들로 구성된다. PHY version 필드는 3비트로 11be 및 후속 세대 무선랜 표준들을 순차적으로 버전으로 구분하는 역할을 한다. 11be의 경우 000b의 값을 갖는다. UL/DL 필드는 해당 PPDU가 업링크/다운링크 PPDU인지를 구분한다. BSS Color는 11ax에서 정의된 BSS별 식별자를 의미하며, 6비트 이상의 값을 갖는다. TXOP은 MAC 헤더에서 전달되던 전송 기회 듀레이션(Transmit Opportunity Duration)을 의미하는데, PHY 헤더에 추가함으로써 MPDU를 디코딩 할 필요 없이 해당 PPDU가 포함된 TXOP의 길이를 유추할 수 있으며 7비트 이상의 값을 갖는다.
VD 필드는 11be 버전의 PPDU에만 유용한 시그널링 정보들로 PPDU 포맷, BW와 같이 어떤 PPDU 포맷에도 공통적으로 사용되는 필드와, PPDU 포맷별로 다르게 정의되는 필드로 구성될 수 있다. PPDU format은 EHT SU(Single User), EHT MU(Multiple User), EHT TB(Trigger-based), EHT ER(Extended Range) PPDU등을 구분하는 구분자이다. BW 필드는 크게 20, 40, 80, 160(80+80), 320(160+160) MHz의 5개의 기본 PPDU BW 옵션(20*2의 지수승 형태로 표현 가능한 BW를 기본 BW로 호칭할 수 있다.)들과, Preamble Puncturing을 통해 구성되는 다양한 나머지 PPDU BW들을 시그널링 한다. 또한, 320 MHz로 시그널링 된 후 일부 80 MHz가 펑처링된 형태로 시그널링 될 수 있다. 또한 펑처링되어 변형된 채널 형태는 BW 필드에서 직접 시그널링 되거나, BW 필드와 BW 필드 이후에 나타나는 필드(예를 들어 EHT-SIG 필드 내의 필드)를 함께 이용하여 시그널링 될 수 있다. 만약 BW 필드를 3비트로 하는 경우 총 8개의 BW 시그널링이 가능하므로, 펑처링 모드는 최대 3개만을 시그널링 할 수 있다. 만약 BW 필드를 4비트로 하는 경우 총 16개의 BW 시그널링이 가능하므로, 펑처링 모드는 최대 11개를 시그널링 할 수 있다.
BW 필드 이후에 위치하는 필드는 PPDU의 형태 및 포맷에 따라 달라지며, MU PPDU와 SU PPDU는 같은 PPDU 포맷으로 시그널링 될 수 있으며, EHT-SIG 필드 전에 MU PPDU와 SU PPDU를 구별하기 위한 필드가 위치할 수 있으며, 이를 위한 추가적인 시그널링이 수행될 수 있다. SU PPDU와 MU PPDU는 둘 다 EHT-SIG 필드를 포함하고 있지만, SU PPDU에서 필요하지 않은 일부 필드가 압축(compression)될 수있다. 이때, 압축이 적용된 필드의 정보는 생략되거나 MU PPDU에 포함되는 본래 필드의 크기보다 축소된 크기를 갖을 수 있다. 예를 들어 SU PPDU의 경우, EHT-SIG의 공통 필드가 생략 또는 대체되거나, 사용자 특정 필드가 대체되거나 1개로 축소되는 등 다른 구성을 갖을 수 있다.
또는, SU PPDU는 압축 여부를 나타내는 압축 필드를 더 포함할 수 있으며, 압축 필드의 값에 따라 일부 필드(예를 들면, RA 필드 등)가 생략될 수 있다.
SU PPDU의 EHT-SIG 필드의 일부가 압축된 경우, 압축된 필드에 포함될 정보는 압축되지 않은 필드(예를 들면, 공통 필드 등)에서 함께 시그널링될 수 있다. MU PPDU의 경우 다수의 사용자의 동시 수신을 위한 PPDU 포맷이기 때문에 U-SIG 필드 이후에 EHT-SIG 필드가 필수적으로 전송되어야 하며, 시그널링되는 정보의 양이 가변적일 수 있다. 즉, 복수 개의 MU PPDU가 복수 개의 STA에게 전송되기 때문에 각각의 STA은 MU PPDU가 전송되는 RU의 위치, 각각의 RU가 할당된 STA 및 전송된 MU PPDU가 자신에게 전송되었는지 여부를 인식해야 된다. 따라서, AP는 EHT-SIG 필드에 위와 같은 정보를 포함시켜서 전송해야 된다. 이를 위해, U-SIG 필드에서는 EHT-SIG 필드를 효율적으로 전송하기 위한 정보를 시그널링하며, 이는 EHT-SIG 필드의 심볼 수 및/또는 변조 방법인 MCS일 수 있다. EHT-SIG 필드는 각 사용자에게 할당 된 RU의 크기 및 위치 정보를 포함할 수 있다.
SU PPDU인 경우, STA에게 복수 개의 RU가 할당될 수 있으며, 복수 개의 RU들은 연속되거나 연속되지 않을 수 있다. STA에게 할당된 RU들이 연속하지 않은 경우, STA은 중간에 펑처링된 RU를 인식하여야 SU PPDU를 효율적으로 수신할 수 있다. 따라서, AP는 SU PPDU에 STA에게 할당된 RU들 중 펑처링된 RU들의 정보(예를 들면, RU 들의 펑처링 패턴 등)를 포함시켜 전송할 수 있다. 즉, SU PPDU의 경우 펑처링 모드의 적용 여부 및 펑처링 패턴을 비트맵 형식 등으로 나타내는 정보를 포함하는 펑처링 모드 필드가 EHT-SIG 필드에 포함될 수 있으며, 펑처링 모드 필드는 대역폭 내에서 나타나는 불연속한 채널의 형태를 시그널링할 수 있다.
시그널링되는 불연속 채널의 형태는 제한적이며, BW 필드의 값과 조합하여 SU PPDU의 BW 및 불연속 채널 정보를 나타낸다. 예를 들면, SU PPDU의 경우 단일 단말에게만 전송되는 PPDU이기 때문에 STA은 PPDU에 포함된 BW 필드를 통해서 자신에게 할당된 대역폭을 인식할 수 있으며, PPDU에 포함된 U-SIG 필드 또는 EHT-SIG 필드의 펑처링 모드 필드를 통해서 할당된 대역폭 중 펑처링된 자원을 인식할 수 있다. 이 경우, 단말은 펑처링된 자원 유닛의 특정 채널을 제외한 나머지 자원 유닛에서 PPDU를 수신할 수 있다. 이때, STA에게 할당된 복수 개의 RU들은 서로 다른 주파수 대역 또는 톤으로 구성될 수 있다.
제한된 형태의 불연속 채널 형태만이 시그널링되는 이유는 SU PPDU의 시그널링 오버헤드를 줄이기 위함이다. 펑처링은 20 MHz 서브채널 별로 수행될 수 있기 때문에 80, 160, 320 MHz과 같이 20 MHz 서브채널을 다수 가지고 있는 BW에 대해서 펑처링을 수행하면 320 MHz의 경우 primary 채널을 제외한 나머지 20 MHz 서브채널 15개의 사용여부를 각각 표현하여 불연속 채널(가장자리 20 MHz만 펑처링 된 형태도 불연속으로 보는 경우) 형태를 시그널링해야 한다. 이처럼 단일 사용자 전송의 불연속 채널 형태를 시그널링하기 위해 15 비트를 할애하는 것은 시그널링 부분의 낮은 전송 속도를 고려했을 때 지나치게 큰 시그널링 오버헤드로 작용할 수 있다.
본 발명은 SU PPDU의 불연속 채널 형태를 시그널링하는 기법을 제안하고, 제안한 기법에 따라 결정된 불연속 채널 형태를 도시한다. 또한, SU PPDU의 320 MHz BW 구성에서 Primary 160MHz와 Secondary 160 MHz의 펑처링 형태를 각각 시그널링하는 기법을 제안한다.
또한, 본 발명의 일 실시예에서는 PPDU Format 필드에 시그널링된 PPDU Format에 따라서 프리앰블 펑처링 BW 값들이 지시하는 PPDU의 구성을 다르게 하는 기법을 제안한다. BW 필드의 길이가 4 비트인 경우를 가정하며, EHT SU PPDU 또는 TB PPDU인 경우에는 U-SIG 이후에 1 심볼의 EHT-SIG-A를 추가로 시그널링 하거나 아예 EHT-SIG-A를 시그널링하지 않을 수 있으므로, 이를 고려하여 U-SIG의 BW 필드만을 통해 최대 11개의 펑처링 모드를 온전하게 시그널링할 필요가 있다. 그러나 EHT MU PPDU인 경우 U-SIG 이후에 EHT-SIG-B를 추가로 시그널링하므로, 최대 11개의 펑처링 모드를 SU PPDU와 다른 방법으로 시그널링할 수 있다. EHT ER PPDU의 경우 BW 필드를 1비트로 설정하여 20MHz 또는 10MHz 대역을 사용하는 PPDU인지를 시그널링할 수 있다.
도 7(f)는 U-SIG의 PPDU Format 필드에서 EHT MU PPDU로 지시된 경우, VD 필드의 Format-specific 필드의 구성을 도시한 것이다. MU PPDU의 경우 다수의 사용자의 동시 수신을 위한 시그널링 필드인 SIG-B가 필수적으로 필요하고, U-SIG 후에 별도의 SIG-A 없이 SIG-B가 전송될 수 있다. 이를 위해 U-SIG에서는 SIG-B를 디코딩하기 위한 정보를 시그널링해야 한다. 이러한 필드들로는 SIG-B MCS, SIG-B DCM, Number of SIG-B Symbols, SIG-B Compression, Number of EHT-LTF Symbols 필드 등이다.
도 8은 본 발명의 실시예에 따른 다양한 EHT(Extremely High Throughput) PPDU(Physical Protocol Data Unit) 포맷 및 이를 지시하기 위한 방법의 일 예를 나타낸다.
도 8을 참조하면, PPDU는 preamble과 데이터 부분으로 구성될 수 있으며, 하나의 타입인 EHT PPDU의 포맷은 preamble에 포함되어 있는 U-SIG 필드에 따라 구별될 수 있다. 구체적으로, U-SIG 필드에 포함되어 있는 PPDU 포맷 필드에 기초하여 PPDU의 포맷이 EHT PPDU인지 여부가 지시될 수 있다.
도 8의 (a)는 단일 STA를 위한 EHT SU PPDU 포맷의 일 예를 나타낸다. EHT SU PPDU는 AP와 단일 STA간의 단일 사용자(Single User, SU) 전송을 위해 사용되는 PPDU이며, U-SIG 필드 이후에 추가적인 시그널링을 위한 EHT-SIG-A필드가 위치할 수 있다.
도 8의 (b)는 트리거 프레임에 기초하여 전송되는 EHT PPDU인 EHT Trigger-based PPDU 포맷의 일 예를 나타낸다. EHT Trigger-based PPDU는 트리거 프레임에 기초하여 전송되는 EHT PPDU로 트리거 프레임에 대한 응답을 위해서 사용되는 상향링크 PPDU이다. EHT PPDU는 EHT SU PPDU와는 다르게 U-SIG 필드 이후에 EHT-SIG-A 필드가 위치하지 않는다.
도 8의 (c)는 다중 사용자를 위한 EHT PPDU인 EHT MU PPDU 포맷의 일 예를 나타낸다. EHT MU PPDU는 하나 이상의 STA에게 PPDU를 전송하기 위해 사용되는 PPDU이다. EHT MU PPDU 포맷은 U-SIG 필드 이후에 HE-SIG-B 필드가 위치할 수 있다.
도 8의 (d)는 확장된 범위에 있는 STA과의 단일 사용자 전송을 위해 사용되는 EHT ER SU PPDU 포맷의 일 예를 나타낸다. EHT ER SU PPDU는 도 8의 (a)에서 설명한 EHT SU PPDU보다 넓은 범위의 STA과의 단일 사용자 전송을 위해 사용될 수 있으며, 시간 축 상에서 U-SIG 필드가 반복적으로 위치할 수 있다.
도 8의 (c)에서 설명한 EHT MU PPDU는 AP가 복수 개의 STA들에게 하향링크 전송을 위해 사용할 수 있다. 이때, EHT MU PPDU는 복수 개의 STA들이 AP로부터 전송된 PPDU를 동시에 수신할 수 있도록 스케줄링 정보를 포함할 수 있다. EHT MU PPDU는 EHT-SIG-B의 사용자 특정(user specific) 필드를 통해서 전송되는 PPDU의 수신자 및/또는 송신자의 AID 정보를 STA에게 전달할 수 있다. 따라서, EHT MU PPDU를 수신한 복수 개의 단말들은 수신한 PPDU의 프리엠블에 포함된 사용자 특정 필드의 AID 정보에 기초하여 공간적 재사용(spatial reuse) 동작을 수행할 수 있다.
구체적으로, HE MU PPDU에 포함된 HE-SIG-B 필드의 자원 유닛 할당(resource unit allocation, RA) 필드는 주파수 축의 특정 대역폭(예를 들면, 20MHz 등)에서의 자원 유닛의 구성(예를 들면, 자원 유닛의 분할 형태)에 대한 정보를 포함할 수 있다. 즉, RA 필드는 STA이 PPDU를 수신하기 위해 HE MU PPDU의 전송을 위한 대역폭에서 분할된 자원 유닛들의 구성을 지시할 수 있다. 분할된 각 자원 유닛에 할당(또는 지정)된 STA의 정보는 EHT-SIG-B의 사용자 특정 필드에 포함되어 STA에게 전송될 수 있다. 즉, 사용자 특정 필드는 분할된 각 자원 유닛에 대응되는 하나 이상의 사용자 필드를 포함할 수 있다.
예를 들면, 분할된 복수 개의 자원 유닛들 중에서 데이터 전송을 위해 사용되는 적어도 하나의 자원 유닛에 대응되는 사용자 필드는 수신자 또는 송신자의 AID를 포함할 수 있으며, 데이터 전송에 수행되지 않는 나머지 자원 유닛(들)에 대응되는 사용자 필드는 기 설정된 널(Null) STA ID를 포함할 수 있다.
설명의 편의를 위해 본 명세서에서 프레임 또는 MAC 프레임은 MPDU와 혼용되어 사용될 수 있다.
하나의 무선 통신 장치가 복수의 링크를 사용하여 통신하는 경우, 무선 통신 장치의 통신 효율이 높아질 수 있다. 이때, 링크는 물리적 경로(path)로서, MSDU(MAC service data unit)를 전달하는데 사용할 수 있는 하나의 무선 매개체로 구성될 수 있다. 예컨대, 어느 하나의 링크의 주파수 대역이 다른 무선 통신 장치에 의해 사용 중인 경우, 무선 통신 장치는 다른 링크를 통해 통신을 계속 수행할 수 있다. 이와 같이 무선 통신 장치는 복수의 채널을 유용하게 사용할 수 있다. 또한, 무선 통신 장치가 복수의 링크를 사용해 동시에 통신을 수행하는 경우, 전체 쓰루풋(throughput)을 높일 수 있다. 다만, 기존 무선랜에서는 하나의 무선 통신 장치가 하나의 링크를 사용하는 것을 전제로 규정되었다. 따라서 복수의 링크를 사용하기 위한 무선랜 동작 방법이 필요하다. 도 9 내지 도 26을 통해 복수의 링크를 사용하는 무선 통신 장치의 무선 통신 방법에 대해 설명한다. 먼저, 도 9를 통해 복수의 링크를 사용하는 무선 통신 장치의 구체적인 형태에 대해 설명한다.
도 9는 본 발명의 실시 예에 따른 멀티 링크 장치(multi-link device)를 보여준다.
앞서 설명한 복수의 링크를 사용하는 무선 통신 방법을 위해 멀티 링크 장치(multi-link device, MLD)가 정의될 수 있다. 멀티 링크 장치는 하나 이상의 제휴된(affiliated) 스테이션을 갖는 장치를 나타낼 수 있다. 구체적인 실시 예에 따라 멀티 링크 장치는 두 개 이상의 제휴된 스테이션을 갖는 장치를 나타낼 수 있다. 또한, 멀티 링크 장치는 멀티 링크 엘리멘트를 교환할 수 있다. 멀티 링크 엘리멘트는 하나 이상의 스테이션 또는 하나 이상의 링크에 대한 정보를 포함한다. 멀티 링크 엘리멘트는 이후 설명될 multi-link setup 엘리멘트를 포함할 수 있다. 이때, 멀티 링크 장치는 논리적인 엔티티(entity)일 수 있다. 구체적으로 멀티 링크 장치는 복수의 제휴된 스테이션을 가질 수 있다. 멀티 링크 장치는 MLLE(multi-link logical entity) 또는 MLE(multi-link entity)라 지칭될 수 있다. 멀티 링크 장치는 로지컬 링크 제어 (logical link control, LLC)까지 하나의 MAC 서비스 액세스 포인트(medium access control service access point, SAP)를 가질 수 있다. 또한 MLD는 하나의 MAC data service를 가질 수 있다.
멀티 링크 장치에 포함된 복수의 스테이션은 복수의 링크에서 동작할 수 있다. 또한, 멀티 링크 장치에 포함된 복수의 스테이션은 복수의 채널에서 동작할 수 있다. 구체적으로 멀티 링크 장치에 포함된 복수의 스테이션은 서로 다른 복수의 링크 또는 서로 다른 복수의 채널에서 동작할 수 있다. 예컨대, 멀티 링크 장치에 포함된 복수의 스테이션은 2.4 GHz, 5 GHz, 및 6 GHz의 서로 다른 복수의 채널에서 동작할 수 있다.
멀티 링크 장치의 동작은 멀티 링크 오퍼레이션, MLD 동작, 또는 멀티-밴드 동작으로 지칭될 수 있다. 또한, 멀리 링크 장치에 제휴된 스테이션이 AP인 경우, 멀티 링크 장치는 AP MLD로 지칭될 수 있다. 또한, 멀리 링크 장치에 제휴된 스테이션이 논-AP 스테이션인 경우, 멀티 링크 장치는 non-AP MLD로 지칭될 수 있다.
도 9는 non-AP MLD와 AP-MLD가 통신하는 동작을 보여준다. 구체적으로 non-AP MLD와 AP-MLD는 각각 세 개의 링크를 사용하여 통신한다. AP MLD는 제1 AP(AP1), 제2 AP(AP2) 및 제3 AP(AP3)를 포함한다. non-AP MLD는 제1 non-AP STA(non-AP STA1), 제2 non-AP STA(non-AP STA2) 및 제3 non-AP STA(non-AP STA3)를 포함한다. 제1 AP(AP1)와 제1 non-AP STA(non-AP STA1)는 제1 링크(Link1)를 통해 통신한다. 또한, 제2 AP(AP2)와 제2 non-AP STA(non-AP STA2)는 제2 링크(Link2)를 통해 통신한다. 또한, 제3 AP(AP3)와 제3 non-AP STA(non-AP STA3)는 제3 링크(Link3)를 통해 통신한다.
멀티 링크 동작은 멀티 링크 설정(setup) 동작을 포함할 수 있다. 멀티 링크 설정은 앞서 설명한 싱글 링크 동작의 결합(association) 동작에 대응되는 것으로, 멀티 링크에서의 프레임 교환을 위해 먼저 선행되어야 할 수 있다. 멀티 링크 장치는 멀티 링크 설정을 위해 필요한 정보를 multi-link setup 엘리멘트로부터 획득할 수 있다. 구체적으로 multi-link setup 엘리멘트는 멀티링크와 관련된 능력 정보를 포함할 수 있다. 이때, 능력 정보는 멀티 링크 장치에 포함된 복수의 장치 중 어느 하나가 전송을 수행하고 동시에 다른 장치가 수신을 수행할 수 있는지 나타내는 정보를 포함할 수 있다. 또한, 능력 정보는 MLD에 포함된 각 스테이션이 사용할 수 있는 링크에 관한 정보를 포함할 수 있다. 또한, 능력 정보는 MLD에 포함된 각 스테이션이 사용할 수 있는 채널에 관한 정보를 포함할 수 있다.
멀티 링크 설정은 피어 스테이션 사이의 협상을 통해 설정될 수 있다. 구체적으로 AP와의 통신 없이 스테이션 사이의 통신을 통해 멀티 링크 설정이 수행될 수 있다. 또한, 멀티 링크 설정은 어느 하나의 링크를 통해 설정될 수 있다. 예컨대, 멀티 링크를 통해 제1 링크 내지 제3 링크가 설정되는 경우라도, 제1 링크를 통해 멀티 링크 설정이 수행될 수 있다.
또한, TID(traffic identifier)와 링크 사이의 매핑이 설정될 수 있다. 구체적으로 특정 값의 TID에 해당하는 프레임은 미리 지정된 링크를 통해서만 교환될 수 있다. TID와 링크 사이의 매핑은 방향 기반(directional-based)으로 설정될 수 있다. 예를 들어 제1 멀티 링크 장치와 제2 멀티 링크 장치 사이에 복수의 링크가 설정된 경우, 제1 멀티 링크 장치는 복수의 링크 제1 링크에 제1 TID의 프레임을 전송하도록 설정되고 제2 멀티 링크 장치는 제1 링크에 제2 TID의 프레임을 전송하도록 설정될 수 있다. 또한, TID와 링크 사이의 매핑에 기본 설정이 존재할 수 있다. 구체적으로 멀티 링크 설정에서 추가 설정이 없는 경우 멀티 링크 장치는 기본(default) 설정에 따라 각 링크에서 TID에 해당하는 프레임을 교환할 수 있다. 이때, 기본 설정은 어느 하나의 링크에서 모든 TID가 교환되는 것일 수 있다.
TID에 대해서 구체적으로 설명한다. TID는 QoS(quality of service)를 지원한기 위해 트래픽, 데이터를 분류하는 ID이다. 또한, TID는 MAC 레이어보다 상위 레이어에서 사용되거나 할당될 수 있다. 또한, TID는 트래픽 카테고리(traffic category, TC), 트래픽 스트림(traffic stream, TS)를 나타낼 수 있다. 또한, TID는 16개로 구별될 수 있다. 예컨대, TID는 0부터 15 중 어느 하나로 지정될 수 있다. 액세스 정책(access policy), 채널 액세스 또는 매체(medium) 액세스 방법에 따라 사용되는 TID 값이 달리 지정될 수 있다. 예컨대, EDCA(enhanced distributed channel access) 또는 HCAF(hybrid coordination function contention based channel access)가 사용되는 경우, TID의 값은 0부터 7에서 할당될 수 있다. EDCA가 사용되는 경우, TID는 사용자 우선순위(user priority, UP)를 나타낼 수 있다. 이때, UP는 TC 또는 TS에 따라 지정될 수 있다. UP는 MAC보다 상위 레이어에서 할당될 수 있다. 또한, HCCA(HCF controlled channel access) 또는 SPCA가 사용되는 경우, TID의 값은 8부터 15에서 할당될 수 있다. HCCA 또는 SPCA가 사용되는 경우, TID는 TSID를 나타낼 수 있다. 또한, HEMM 또는 SEMM이 사용되는 경우, TID의 값은 8부터 15에서 할당될 수 있다. HEMM 또는 SEMM이 사용되는 경우, TID는 TSID를 나타낼 수 있다.
UP와 AC는 매핑될 수 있다. AC는 EDCA에서 QoS를 제공하기 위한 라벨일 수 있다. AC는 EDCA 파라미터 셋을 지시하기 위한 라벨일 수 있다. EDCA 파라미터 또는 EDCA 파라미터 셋은 EDCA의 채널 경쟁(contention)에서 사용되는 파라미터이다. QoS 스테이션은 AC를 사용하여 QoS를 보장할 수 있다. 또한, AC는 AC_BK, AC_BE, AC_VI 및 AC_VO를 포함할 수 있다. AC_BK, AC_BE, AC_VI 및 AC_VO 각각은 백그라운드(background), 베스트 에포트(best effort), 비디오(video), 보이스(voice)를 나타낼 수 있다. 또한 AC_BK, AC_BE, AC_VI 및 AC_VO는 하위 AC로 분류될 수 있다. 예를 들어, AC_VI는 AC_VI primary와 AC_VI alternate로 세분화될 수 있다. 또한, AC_VO는 AC_VO primary와 AC_VO alternate로 세분화될 수 있다. 또한, UP 또는 TID는 AC에 매핑될 수 있다. 예를 들어, UP 또는 TID의 1, 2, 0, 3, 4, 5, 6, 7 각각은 AC_BK, AC_BK, AC_BE, AC_BE, AC_VI, AC_VI, AC_VO, AC_VO 각각에 매핑될 수 있다. 또한, UP 또는 TID의 1, 2, 0, 3, 4, 5, 6 및 7 각각은 AC_BK, AC_BK, AC_BE, AC_BE, AC_VI alternate, AC_VI primary, AC_VO primary, AC_VO alternate 각각에 매핑될 수 있다. 또한, UP 또는 TID의 1, 2, 0, 3, 4, 5, 6, 및 7는 차례대로 우선순위가 높은 것일 수 있다. 즉, 1 쪽이 낮은 우선순이고, 7 쪽이 높은 우선순위일 수 있다. 따라서 AC_BK, AC_BE, AC_VI, AC_VO 순서대로 우선순위가 높아질 수 있다. 또한, AC_BK, AC_BE, AC_VI, AC_VO 각각은 ACI (AC index) 0, 1, 2, 3 각각에 해당할 수 있다. 이러한 TID의 특성 때문에, TID와 링크 사이의 매핑은 AC와 링크 사이의 매핑을 나타낼 수 있다. 도한, 링크와 AC의 매핑은 TID와 링크 사이의 매핑을 나타낼 수 있다.
앞서 설명한 바와 같이 복수의 링크 각각에 TID가 매핑될 수 있다. 매핑은 특정 TID 또는 AC에 해당하는 트래픽이 교환될 수 있는 링크가 지정되는 것일 수 있다. 또한, 링크 내에서 전송 방향 별로 전송될 수 잇는 TID 또는 AC가 지정될 수 있다. 앞서 설명한 바와 같이 TID와 링크 사이의 매핑에 기본 설정이 존재할 수 있다. 구체적으로 멀티 링크 설정에서 추가 설정이 없는 경우 멀티 링크 장치는 기본(default) 설정에 따라 각 링크에서 TID에 해당하는 프레임을 교환할 수 있다. 이때, 기본 설정은 어느 하나의 링크에서 모든 TID가 교환되는 것일 수 있다. 항상 어느 시점에 어느 TID 또는 AC든 적어도 어느 하나의 링크와 매핑될 수 있다. 매니지먼트 프레임과 컨트롤 프레임은 모든 링크에서 전송될 수 있다.
링크가 TID 또는 AC에 매핑된 경우, 해당 링크에서 해당 링크에 매핑된 TID 또는 AC에 해당하는 데이터 프레임만이 전송될 수 있다. 따라서 링크가 TID 또는 AC에 매핑된 경우, 해당 링크에서 해당 링크에 매핑되지 TID 또는 AC에 해당하지 않은 프레임은 전송될 수 없다. 링크가 TID 또는 AC에 매핑된 경우, ACK도 TID 또는 AC가 매핑된 링크를 기초로 전송될 수 있다. 예컨대, 블락 ACK 합의(agreement)가 TID와 링크 사이의 매핑을 기초로 결정될 수 있다. 또 다른 구체적인 실시 예에서 TID와 링크 사이의 매핑이 블락 ACK 합의를 기초로 결정될 수 있다. 구체적으로 특정 링크에 매핑된 TID에 대해 블락 ACK 합의가 설정될 수 있다.
앞서 설명한 TID와 링크 사이의 매핑을 통해, QoS가 보장될 수 있다. 구체적으로 상대적으로 적은 수의 스테이션이 동작하거나 채널 상태가 좋은 링크에 우선순위가 높은 AC 또는 TID가 매핑될 수 있다. 또한, 앞서 설명한 TID와 링크 사이의 매핑을 통해, 스테이션이 더 많은 시간 동안 절전 상태를 유지하게 할 수 있다.
도 10은 본 발명의 실시 예에 따라 멀티 링크 동작에서 서로 다른 링크의 전송이 동시에 수행되는 것을 보여준다.
멀티 링크 장치의 구현에 따라, 멀티 링크에서 동시 동작이 지원되지 않을 수 있다. 예컨대, 멀티 링크 장치가 복수의 링크에서 동시에 전송을 수행하거나, 복수의 링크에서 동시에 수신을 수행하거나, 어느 하나의 링크에서 전송을 수행하고 동시에 다른 링크에서 수신을 수행하는 것이 지원되지 않을 수 있다. 어느 하나의 링크에서 수행되는 수신 또는 전송이 다른 링크에서 수행되는 수신 또는 전송에 영향을 미칠 수 있기 때문이다. 구체적으로 하나의 링크에서 전송이 다른 링크의 간섭으로 작용할 수 있다. 하나의 멀티 링크 장치의 하나의 링크에서 다른 링크에 작용하는 간섭을 내부 누출(internal leakage)이라 할 수 있다. 링크 사이의 주파수 간격이 작을수록 내부 누출이 커질 수 있다. 내부 누출이 너무 크지 않은 경우, 어느 하나의 링크에서의 전송이 수행될 때 다른 링크에서 전송이 수행될 수 있다. 내부 누출이 큰 경우, 어느 하나의 링크에서의 전송이 수행될 때 다른 링크에서 전송이 수행될 수 없다. 이와 같이 멀티 링크 장치가 복수의 링크에서 동시에 동작을 수행하는 것을 STR(simultaneous transmit and receive, simultaneous transmission and reception)이라 지칭할 수 있다. 예컨대, 멀티 링크 장치가 복수의 링크에서 동시에 전송하거나, 어느 하나의 링크에서 전송을 수행하고 동시에 다른 링크에서 수신을 수행하거나, 복수의 링크에서 동시에 수신을 수행하는 것을 STR이라할 수 있다.
앞서 언급한 바와 같이 멀티 링크 장치는 STR을 지원할 수도 있고, 제한적으로만 지원할 수도 있다. 구체적으로 멀티 링크 장치는 특정 조건하에서만 STR을 지원할 수 있다. 예컨대, 멀티 링크 장치가 단일 라디오(single radio)로 동작하는 경우, 멀티 링크 장치는 STR을 수행하지 못할 수 있다. 또한, 멀티 링크 장치가 단일 안테나로 동작하는 경우, 멀티 링크 장치의 STR이 수행될 수 없을 수 있다. 또한, 내부 누출이 미리 지정된 크기 이상으로 감지되는 경우, 멀티 링크 장치는 STR을 수행하지 못할 수 있다.
스테이션은 스테이션의 STR 능력에 관한 정보를 다른 스테이션과 교환할 수 있다. 구체적으로 스테이션은 스테이션이 복수의 링크에서 동시에 송신을 수행하거나 복수의 링크에서 동시에 수신을 수행하는 능력의 제한 여부에 대한 정보를 다른 스테이션과 교환할 수 있다. 구체적으로 복수의 링크에서 송신 또는 수신을 수행하는 능력의 제한 여부에 대한 정보는 복수의 링크에서 동시에 전송하거나, 동시에 수신하거나, 전송과 수신이 동시에 수행될 수 있는지를 나타낼 수 있다. 또한, 복수의 링크에서 송신을 수행하거나 수신을 수행하는 능력의 제한 여부에 대한 정보는 단계 별로 지시되는 정보일 수 있다. 구체적으로 복수의 링크에서 송신을 수행하거나 수신을 수행하는 능력의 제한 여부에 대한 정보는 내부 유출의 크기를 나타내는 단계를 지시하는 정보일 수 있다. 구체적인 실시 예에서 내부 유출의 크기를 나타내는 단계를 지시하는 정보는 내부 유출로 인해 발생되는 간섭의 크기를 나타내는 단계를 지시하는 정보일 수 있다. 또 다른 구체적인 실시 예에서 내부 유출 영향을 끼칠 수 있는 링크 사이의 주파수 간격을 나타내는 단계를 지시하는 정보일 수 있다. 또한, 내부 유출의 크기를 나타내는 단계를 지시하는 정보는 링크 사이의 주파수 간격과 내부 유출의 크기 사이의 관계를 단계 별로 지시하는 정보일 수 있다.
도 10에서 제1 스테이션(STA1)과 제2 스테이션(STA2)은 하나의 non-AP 멀티 링크 장치에 제휴(affiliate)된다. 또한, 제1 AP(AP1)와 제2 AP(AP2)는 하나의 non-AP 멀티 링크 장치에 제휴될 수 있다. 제1 AP(AP1)와 제1 스테이션(STA1) 사이에는 제1 링크(link 1)가 설정되고, 제2 AP(AP2)와 제2 스테이션(STA2) 사이에는 제2 링크(link 2)가 설정된다. 도 10에서 non-AP 멀티 링크 장치는 제한적으로 STR을 수행할 수 있다. 제2 스테이션(STA2)이 제2 링크(Link 2)에서 전송을 수행하는 경우, 제1 링크(Link 1)에서 제1 스테이션(STA1)의 수신은 제2 링크(Link 2)에서의 수행되는 전송에 의해 방해 받을 수 있다. 예컨대, 다음과 같은 경우, 제1 링크(Link 1)에서 제1 스테이션(STA1)의 수신은 제2 링크(Link 2)에서의 수행되는 전송에 의해 방해 받을 수 있다. 제2 링크(Link 2)에서 제2 스테이션(STA2)이 제1 데이터(Data1)를 전송하고, 제1 AP(AP1)가 제1 데이터(Data1)에 대한 응답(Ack for Data1)을 제1 스테이션(STA1)에게 전송한다. 제2 링크(Link2)에서 제2 스테이션(STA2)이 제2 데이터(Data2)를 전송한다. 이때, 제2 데이터(Data2)의 전송 시기와 제1 데이터(Data1)에 대한 응답(Ack for Data1)의 전송 시기가 겹칠 수 있다. 이때, 제2 링크(Link2)에서 제2 스테이션(STA2)로의 전송으로 인해 제1 링크(Link1)에 간섭이 발생할 수 있다. 따라서 제1 스테이션(STA1)이 제1 데이터(Data1)에 대한 응답(Ack for Data1)을 수신하지 못할 수 있다.
멀티 링크 장치가 채널 액세스를 수행하는 동작에 대해서 설명한다. 구체적인 설명이 없는 멀티 링크의 동작은 도 6을 통해 설명한 채널 액세스 절차를 따를 수 있다.
멀티 링크 장치는 복수의 링크에서 독립적으로 채널 액세스를 수행할 수 있다. 이때, 채널 액세스는 백오프 기반 채널 액세스일 수 있다. 멀티 링크 장치가 복수의 링크에서 독립적으로 채널 액세스를 수행하고 복수의 링크에서 백오프 카운터가 0에 도달하는 경우, 멀티 링크 장치는 복수의 링크에서 동시에 전송을 시작할 수 있다. 구체적인 실시 예에서 멀티 링크의 링크의 백오프 카운터 중 어느 하나가 0에 도달하고, 미리 지정된 조건을 만족하는 경우 멀티 링크 장치는 백오프 카운터가 0에 도달한 링크에서뿐만 아니라 백오프 카운터가 0에 도달하지 않은 다른 링크에서 채널 액세스를 수행할 수 있다. 구체적으로 멀티 링크의 링크의 백오프 카운터 중 어느 하나가 0에 도달한 경우, 멀티 링크 장치는 백오프 카운터가 0에 도달하지 않은 다른 링크에서 에너지 감지를 수행할 수 있다. 이때, 미리 지정된 크기 이상의 에너지가 감지되지 않는 경우, 멀티 링크 장치는 백오프 카운터가 0에 도달한 링크에서뿐만 아니라 에너지 감지를 수행한 링크에서 채널 액세스를 수행할 수 있다. 이를 통해 멀티 링크 장치는 복수의 링크에서 동시에 전송을 시작할 수 있다. 에너지 감지에 사용되는 문턱값의 크기는 백오프 카운터를 줄일 지 판단할 때 사용되는 문턱값의 크기보다 작을 수 있다. 또한, 백오프 카운터를 줄일 지 판단할 때, 멀티 링크 장치는 무선랜 신호뿐만 아니라 어떤 형태의 신호라도 감지할 수 있다. 또한, 앞서 설명한 에너지 감지에서 멀티 링크 장치는 무선랜 신호뿐만 아니라 어떤 형태의 신호라도 감지할 수 있다. 내부 유출은 무선랜 신호로 감지되지 않을 수 있다. 이러한 경우, 멀티 링크 장치는 내부 유출로 인해 감지되는 신호를 에너지 감지로 센싱할 수 있다. 또한, 앞서 설명한 바와 같이 에너지 감지에 사용되는 문턱값의 크기가 백오프 카운터를 줄일 지 판단할 때 사용되는 문턱값의 크기보다 작을 수 있다. 따라서 어느 하나의 링크에서 전송이 수행되는 중이라도 멀티 링크 장치는 다른 링크에서 백오프 카운터를 줄일 수 있다.
멀티 링크 장치가 사용하는 링크 사이의 간섭의 정도에 따라, 멀티 링크 장치는 각 링크에서 동작하는 스테이션이 독립적으로 동작할 수 있는지 결정될 수 있다. 이때, 링크 사이의 간섭 정도는 멀티 링크 장치의 어느 하나의 스테이션이 어느 하나의 링크에서 전송을 수행할 때 멀티 링크 장치의 다른 스테이션이 감지하는 간섭의 크기일 수 있다. 멀티 링크 장치의 제1 스테이션의 제1 링크에서의 전송이 제2 링크에서 동작하는 멀티 링크 장치의 제2 스테이션에게 미리 지정된 크기 이상의 간섭을 발생시키는 경우, 제2 스테이션의 동작이 제한될 수 있다. 구체적으로 제2 스테이션의 수신 또는 채널 액세스가 제한될 수 있다. 간섭이 발생하는 경우, 제2 스테이션은 간섭으로 인해 수신하는 신호의 디코딩에 실패할 수 있기 때문이다. 또한, 간섭이 발생하는 경우, 제2 스테이션이 백오프를 이용한 채널 액세스 시 제2 스테이션은 채널이 사용 중이라고 판단할 수 있기 때문이다.
또한, 멀티 링크 장치의 제1 스테이션의 제1 링크에서의 전송이 제2 링크에서 동작하는 멀티 링크 장치의 제2 스테이션에게 미리 지정된 크기 미만의 간섭을 발생시키는 경우, 제1 스테이션과 제2 스테이션은 독립적으로 동작할 수 있다. 구체적으로 멀티 링크 장치의 제1 스테이션의 제1 링크에서의 전송이 제2 링크에서 동작하는 멀티 링크 장치의 제2 스테이션에게 미리 지정된 크기 미만의 간섭을 발생시키는 경우, 제1 스테이션과 제2 스테이션은 독립적으로 채널 액세스를 수행할 수 있다. 또한, 멀티 링크 장치의 제1 스테이션의 제1 링크에서의 전송이 제2 링크에서 동작하는 멀티 링크 장치의 제2 스테이션에게 미리 지정된 크기 미만의 간섭을 발생시키는 경우, 제1 스테이션과 제2 스테이션은 독립적으로 전송 또는 수신을 수행할 수 있다. 미리 지정된 크기 미만의 간섭이 발생하는 경우, 제2 스테이션은 간섭이 존재하는 경우에도 수신하는 신호의 디코딩에 성공할 수 있기 때문이다. 또한, 미리 지정된 크기 미만의 간섭이 발생하는 경우, 제2 스테이션이 백오프를 이용한 채널 액세스 시 제2 스테이션은 채널이 유휴하다고 판단할 수 있기 때문이다.
멀티 링크 장치의 스테이션 사이에 발생하는 간섭 정도는 스테이션이 동작하는 링크의 주파수 대역 사이의 간격뿐만 아니라 멀티 링크 장치의 하드웨어 특성에 따라 달라질 수 있다. 예컨대, 고가 RF(radio frequency) 장치를 포함하는 멀티 링크 장치에서 발생하는 내부 간섭은 저가 RF 장치를 포함하는 멀티 링크 장치에서 발생하는 내부 간섭보다 작을 수 있다. 따라서 멀티 링크 장치의 스테이션 사이에 발생하는 간섭 정도는 멀티 링크 장치의 특성을 기초로 판단될 수 있다.
도 10은 링크의 주파수 대역 사이의 간격과 멀티 링크 장치의 특성에 따라 발생하는 간섭의 크기가 달라지는 것을 보여준다. 도 10의 실시 예에서 제1 멀티 링크 장치(MLD#1)는 제1 링크(Link1)에서 동작하는 제1 스테이션(STA1-1)과 제2 링크(Link2)에서 동작하는 제2 스테이션(STA1-2)을 포함한다. 제2 멀티 링크 장치(MLD#2)는 제1 링크(Link1)에서 동작하는 제1 스테이션(STA2-1)과 제2 링크(Link2)에서 동작하는 제2 스테이션(STA2-2)을 포함한다. 제1 멀티 링크 장치(MLD#1)가 동작하는 제1 링크(Link1)와 제2 링크(Link2) 사이의 주파수 간격과 제2 멀티 링크 장치(MLD#2)가 동작하는 제1 링크(Link1)와 제2 링크(Link2) 사이의 주파수 간격은 같다. 다만, 제1 멀티 링크 장치(MLD#1)의 특성과 제2 멀티 링크 장치(MLD#2)의 특성 차이로 인해 발생하는 간섭의 크기가 다르다. 구체적으로 제1 멀티 링크 장치(MLD#1)에서 발생되는 간섭의 크기보다 제2 멀티 링크 장치(MLD#2)에서 발생되는 간섭의 크기가 클 수 있다. 이와 같이 멀티 링크 장치의 특성에 따라 발생하는 간섭의 크기가 달라질 수 있고, 멀티 링크 장치 별로 STR 지원 여부가 달라질 수 있음을 고려할 때 STR 지원 여부에 대한 정보가 교환될 필요가 있다.
멀티 링크 장치는 멀티 링크 장치가 포함하는 스테이션의 STR 지원 여부를 시그널링할 수 있다. 구체적으로 AP 멀티 링크 장치와 non-AP 멀티 링크 장치는 AP 멀티 링크 장치가 포함하는 AP의 STR 지원 여부와 non-AP 멀티 링크 장치가 포함하는 STA의 STR 지원 여부를 교환할 수 있다. 이러한 실시 예들에서 STR 지원 여부를 나타내는 엘리멘트가 사용될 수 있다. STR 지원 여부를 나타내는 엘리멘트는 STR support 엘리멘트로 지칭될 수 있다. STR support 엘리멘트는 1비트를 통해 STR support 엘리멘트를 전송한 멀티 링크 장치의 스테이션의 STR 지원 여부를 나타낼 수 있다. 구체적으로 STR support 엘리멘트는 STR support 엘리멘트를 전송하는 멀티 링크 장치가 포함하는 스테이션 각각의 STR 지원 여부를 1비트 별로 나타낼 수 있다. 이때, 스테이션이 STR을 지원하는 경우, 비트의 값은 1이고, 스테이션이 STR을 지원하지 않는 경우, 비트의 값은 0일 수 있다. STR support 엘리멘트를 전송한 멀티 링크 장치가 제1 스테이션(STA1), 제2 스테이션(STA2) 및 제3 스테이션(STA3)을 포함하고, 제1 스테이션(STA1)과 제3 스테이션(STA3)은 STR을 지원하고, 제2 스테이션(STA2)은 STR을 지원하지 않는 경우, STR support 엘리멘트는 1011b을 갖는 필드를 포함할 수 있다. 서로 다른 주파수 밴드에서 동작하는 스테이션은 STR을 지원하는 것으로 가정되고, STR support 엘리멘트는 서로 다른 주파수 밴드에서 동작하는 스테이션 사이의 STR 지원 여부에 대한 시그널링을 생략할 수 있다. 예컨대, 제1 스테이션(STA1)이 2.4GHz의 제1 링크에서 동작하고, 제2 스테이션(STA2)과 제3 스테이션(STA3) 각각이 5GHz의 제2 링크와 제3 링크에서 동작한다. 이때, STR support 엘리멘트는 1비트를 사용하여 제2 스테이션(STA2)과 제3 스테이션(STA3) 사이에 STR이 지원됨을 나타낼 수 있다. 또한, STR support 엘리멘트는 STR support 엘리멘트가 시그널링하는 스테이션이 2개인 경우 1비트만을 포함할 수 있다.
구체적인 실시 예에서 멀티 링크 장치의 링크 중 2.4 GHz에 위치한 링크와 5GHz 또는 6GHz에 위치한 링크의 관계는 항상 STR로 판단될 수 있다. 따라서 2.4 GHz에 위치한 링크와 5GHz 또는 6GHz에 위치한 링크의 STR 여부에 대해서는 시그널링이 생략될 수 있다.
앞서 설명한 실시 예들에서 멀티 링크 장치의 스테이션의 동작으로 설명한 것은 멀티 링크 장치의 동작으로 치환될 수 있다. 또한, 앞서 설명한 실시 예들에서 AP의 동작은 non-AP 스테이션의 동작으로 치환되고, non-AP 스테이션의 동작은 AP의 동작으로 치환될 수 있다. 따라서 non-STR 멀티 링크 장치의 AP의 동작은 non-STR 멀티 링크 장치의 non-AP 스테이션의 동작으로 치환되고, STR 멀리 링크 장치의 non-AP 스테이션의 동작은 STR 멀티 링크 장치의 AP의 동작으로 치환될 수 있다. 또한, non-STR 멀티 링크 장치의 non-AP 스테이션의 동작은 non-STR 멀티 링크 장치의 AP의 동작으로 치환되고, STR 멀리 링크 장치의 AP의 동작은 STR 멀티 링크 장치의 non-AP 스테이션의 동작으로 치환될 수 있다.
저지연 트래픽 전송을 위한 스케줄링에 대해서는 도 11 내지 도 도 15를 통해 설명한다. 종래 무선랜 통신에서는 EDCA(enhanced distributed channel access)를 통해 각 AC 별로 채널 액세스 파라미터를 설정하고, 설정된 채널 액세스 파라미터를 이용하여 각 AC 별 우선순위에 따라 트래픽이 처리될수록 지원한다. 다만, 기존 EDCA는 확률적으로 우선순위가 높은 채널 액세스를 제공하는 것이어서 저지연 트래픽의 전송을 지원하기에는 부족한 면이 있었다. 이러한 점을 보완하기 위해 저지연 트래픽을 우선적으로 전송될 수 있는 시간 구간이 설정될 수 있다. 설명의 편의를 위해 저지연 트래픽이 우선적으로 전송되는 시간 구간을 제한된 서비스 피리어드라 지칭한다. VR/AR 등의 저지연 트래픽 전송이 필요한 대부분의 서비스가 주기적인 트래픽 전송이 필요하므로, 제한된 서비스 피리어드로인한 저지연 트래픽의 전송 지연 감소 효과가 크다.
제한된 서비스 피리어드는 저지연 트래픽의 전송과 저지연 트래픽에 응답의 전송이 우선적으로 허용되는 시간 구간일 수 있다. 구체적으로 제한된 서비스 피리어드에서는 저지연 트래픽의 전송 및 저지연 트래픽에 대한 응답의 전송만이 허용되는 시간 구간일 수 있다. 또 다른 구체적인 실시 예에서 제한된 서비스 피리어드에서는 저지연 트래픽의 전송 및 저지연 트래픽에 대한 응답의 전송이 수행되고, 저지연 트래픽의 전송 및 저지연 트래픽에 대한 응답의 전송이 완료된 후 저지연 트래픽 이외의 트래픽의 전송이 허용되는 시간 구간일 수 있다.
먼저, 제한된 서비스 피리어드의 설정 방법에 대해 설명한다. 제한된 서비스 피리어드는 기존 WLAN의 TWT를 통해 설정될 수 있다. TWT는 AP와 스테이션의 협의에 의해 서비스 피리어드를 설정하고, 서비스 피리어드 구간에서 AP와 스테이션이 송수신을 수행하고, 서비스 피리어드 이외의 구간에 저전력 모드에 진입하는 것을 지원한다. 이에 대해서는 도 11을 통해 구체적으로 설명한다. 설명의 편의를 위해 제한된 서비스 피리어드를 TWT를 통해 설정하고, AP와 스테이션이 제한된 서비스 피리어드를 기초로 동작하는 것을 제한된 TWT로 지칭한다.
도 11은 본 발명의 실시 예에 따라 AP와 스테이션 사이에 브로드캐스트 TWT를 설정하는 방법을 보여준다.
TWT에서 서비스 피리어드는 다음과 같이 설정될 수 있다. AP는 AP에 연결된(associated) 스테이션에게 TWT에 참여할 것을 요청한다. 스테이션은 브로드캐스트 TWT에 참여하거나 또는 AP와 개별(individual) TWT에 대해 협의할 수 있다. 이때, AP는 HE Operation 엘리멘트의 TWT Required 서브필드의 값을 1로 설정하여 스테이션에게 TWT의 참여를 요청할 수 있다. 또한, AP는 Broadcast TWT 엘리멘트를 매니지먼트 프레임, 예컨대 비콘 프레임을 통해 전송하여, 스테이션에게 브로드캐스트 TWT의 참여에 필요한 정보를 전달할 수 있다. 이때, AP는 dot11TWTOptionActivated가 true이고, HE Capabilities 엘리멘트의 Broadcast TWT Support 필드 (element의)를 1로 설정하여, 브로드캐스트 TWT를 지원함을 시그널링할 수 있다. AP는 제한된 서비스 피리어드를 TWT의 서비스 피리어드와 유사하게 설정할 수 있다.
도 11의 실시 예에서, 제1 스테이션(STA1)은 AP에게 TWT 설정을 요청한다. AP와 제1 스테이션(STA1)은 TWT 파라미터, 예컨대 최조 TBTT, 리슨 구간(listen interval)을 설정한다. 이에 따라 AP와 제1 스테이션(STA1) 및 제2 스테이션(STA2)은 브로트캐스트 TWT를 설정된다. AP는 비콘 프레임을 사용하여 브로드캐스트 TWT 서비스 피리어드를 지시한다. 브로드캐스트 TWT 서비스 피리어드에서, AP는 제1 스테이션(STA1)과 제2 스테이션(STA2)에게 DL(downlink) PPDU(physical layer protocol data unit)를 전송하거나 제1 스테이션(STA1)과 제2 스테이션(STA2)에게 트리거 프레임을 전송하여 UL(uplink) 전송을 트리거할 수 있다. 브로드캐스트 TWT 서비스 피리어드에서 제1 스테이션(STA1) 및 제2 스테이션(STA2)은 비콘 프레임을 수신하기 위해 웨이크-업한다. 제1 스테이션(STA1) 및 제2 스테이션(STA2)은 수신한 비콘 프레임으로부터 TWT에 관한 정보를 획득한다. AP는 제1 스테이션(STA1) 및 제2 스테이션(STA2)에게 트리거 프레임을 전송하고, 제1 스테이션(STA1)은 AP에게 PS-Poll 프레임을 전송하고, 제2 스테이션(STA2)은 AP에게 QoS Null 프레임을 전송한다. AP는 제1 스테이션(STA1) 및 제2 스테이션(STA2)이 전송한 PS-Poll 프레임과 QoS Null 프레임을 수신하고, 제1 스테이션(STA1) 및 제2 스테이션(STA2)이 어웨이크(awake) 상태인 것으로 판단한다. AP는 제1 스테이션(STA1) 및 제2 스테이션(STA2)에게 multi-STA Block ACK 프레임을 전송한다. AP는 제1 스테이션(STA1) 및 제2 스테이션(STA2)에게 DL PPDU를 전송한다.
기존 TWT의 서비스 피리어드에 TWT에 참여하지 않는 스테이션이 채널 액세스를 수행하거나 전송을 수행하는 것을 제한하지 않는다. TWT는 TWT에 참여하는 스테이션이 절전 상태(doze state)에 진입하는 것을 돕기 위한 것이기 때문이다. 다만, 저지연 트래픽의 전송 지연을 방지하기 위한 제한된 서비스 피리어드는 저지연 트래픽의 우선적인 전송을 보장하여야 하므로 제한된 서비스 피리어드를 보호하기 위한 방법이 필요하다.
제한된 서비스 피리어드 동안, 제한된 TWT에 참여하지 않는 스테이션이 채널 액세스하는 것이 제한될 수 있다. 구체적으로 제한된 서비스 피리어드 동안, 제한된 TWT에 참여하지 않는 스테이션이 채널 액세스를 수행하지 못할 수 있다. 제한된 서비스 피리어드 동안, 제한된 TWT에 참여하지 않는 스테이션이 채널 액세스를 완료한 경우, 해당 스테이션은 전송을 수행하지 않고 채널 액세스 절차를 재시작할 수 있다. 이때, 스테이션은 제한된 서비스 피리어드가 종료된 때, 채널 액세스 절차를 재시작할 수 있다. 또한, 스테이션의 채널 액세스는 EDCA 백오프 절차를 나타낼 수 있다. 채널 액세스를 완료한 것은 EDCA 백오프 절차의 백오프 카운터가 0에 도달한 것을 나타낼 수 있다. 또한, 스테이션이 채널 액세스 절차를 재시작할 때, 스테이션은 직전의 채널 액세스에 사용한 CW 내에서 무작위로 정수를 획득하고 획득한 정수를 백오프 카운터로 사용할 수 있다. 즉, 스테이션은 직전의 채널 액세스에 사용한 CW의 크기를 2배로 늘리지 않을 수 있다. 이때, CW는 AC 별로 유지될 수 있다. 이러한 채널 액세스 제한은 제한된 TWT를 지원하는 스테이션에게만 적용될 수 있다. 구체적으로 이러한 채널 액세스 제한은 논-레거시(EHT) 스테이션 중 EHT Capabilities 엘리멘트의 dot11RestrictedTWTOptionImplemented가 true로 설정된 스테이션에게만 적용되고, 논-레거시(EHT) 스테이션 중 EHT Capabilities 엘리멘트의 dot11RestrictedTWTOptionImplemented가 false로 설정된 스테이션에게는 적용되지 않을 수 있다. 본 명세서에서 논-레거시 스테이션은 EHT 스테이션 및 EHT 스테이션 이후 스테이션을 나타낼 수 있다. 또한, 레거시 스테이션은 EHT 스테이션 이전 스테이션으로 non-HT 스테이션, HT 스테이션, VHT 스테이션 및 HE 스테이션을 나타낼 수 있다.
또한, 제한된 서비스 피리어드 동안 논-레거시 스테이션에게 저지연 트래픽 외의 트래픽에 NAV가 설정될 수 있다. 구체적으로 저지연 트래픽 외의 트래픽에 NAV가 설정된 것과 같이 스테이션은 저지연 트래픽 외의 트래픽의 전송을 위한 채널 액세스 절차를 중지할 수 있다. 이러한 실시 예에서 NAV는 종래 NAV(베이직 NAV, Intra-BSS NAV)와 독립된 NAV일 수 있다. 이때, 논-레거시 스테이션은 제한된 TWT를 지원하는 스테이션으로 한정될 수 있다. 또 다른 구체적인 실시 예에서 논-레거시 스테이션은 제한된 TWT에 참여하는 스테이션으로 한정될 수 있다.
제한된 서비스 피리어드는 브로드캐스트 TWT 서비스 피리어드 내에 포함될 수 있다. 또 다른 구체적인 실시 예에서 제한된 서비스 피리어드는 브로드캐스트 TWT 서비스 피리어드 내에 포함되지 않을 수 있다.
또한, 제한된 서비스 피리어드는 AP가 지정한 주기적으로 반복될 수 있다. 즉, AP는 제한된 서비스 피리어드의 반복 주기를 지정할 수 있다. 이를 통해, AP는 제한된 서비스 피리어드를 설정하기 위해 매번 비컨 프레임의 TWT 엘리멘트을 전송하지 않을 수 있다. 이때, 서비스 피리어드의 주기는 저지연 트래픽이 사용되는 저지연 서비스의 특성에 따라 설정될 수 있다. 예컨대, 저지연 트래픽이 50ms마다 생성되는 저지연 서비스 피리어드의 주기는 50ms일 수 있다.
또한, 제한된 TWT를 지원하지 않는 스테이션에게는 콰이어트 구간(Quiet Interval)이 설정될 수 있다. 종래 무선랜에서 콰이어트 구간은 채널 센싱을 지원하기 위한 구간이다. 콰이어트 구간이 설정되는 경우, 모든 스테이션은 전송을 중단한다. 이러한 콰이어트 구간의 특징을 이용해서 제한된 서비스 피리어드를 보호할 수 있다. 이에 대해서는 도 12를 통해 설명한다. 이때, 제한된 TWT를 지원하지 않는 스테이션은 레거시 스테이션으로 한정될 수 있다.
도 12는 본 발명의 실시 예에 따라 AP가 콰이어트 구간을 설정하는 것을 보여준다.
제한된 TWT를 운영하는 AP는 Quiet 엘리멘트를 전송하여, 콰이어트 구간을 설정할 수 있다. 콰이어트 구간 동안 스테이션은 채널 액세스를 중단한다. 다만, 제한된 TWT에 참여하는 스테이션의 채널 액세스까지 제한되는 경우, 저지연 트래픽의 전송이 수행될 수 없다. 따라서 제한된 TWT에 참여하는 스테이션은 제한된 서비스 피리어드에 대응하는 콰이어트 구간을 무시할 수 있다. 이때, 제한된 서비스 피리어드에 대응하는 콰이어트 구간은 제한된 TWT의 제한된 서비스 피리어드를 보호하기 위해 설정된 콰이어트 구간을 나타낸다. 구체적으로 제한된 TWT에 참여하는 스테이션은 제한된 서비스 피리어드에 대응하는 콰이어트 구간을 제한된 서비스 피리어드로 간주할 수 있다. 제한된 TWT를 운영하는 AP는 콰이어트 구간을 제한된 서비스 피리어드와 일치하게 설정하지 않을 수 있다. Quiet 엘리멘트에서 콰이어트 구간은 TU(time unit, 1024us) 단위로 설정되고, TWT는 256us 단위로 설정되기 때문이다.
다만, 제한된 서비스 피리어드를 위해 설정되지 않은 콰이어트 구간이 아닌 콰이어트 구간에서 채널 액세스를 수행하는 경우, 제한된 서비스 피리어드를 위해 설정되지 않은 콰이어트 구간을 방해할 수 있다. 따라서 제한된 서비스 피리어드를 위해 설정된 콰이어트 구간, 즉 제한된 서비스 피리어드에 대응하는 콰이어트 구간을 구별할 필요가 있다. 따라서 제한된 TWT에 참여하는 스테이션은 제한된 서비스 피리어드에 대응하지 않는 콰이어트 구간을 무시하지 못할 수 있다. 제한된 서비스 피리어드에 대응하지 않는 콰이어트 구간에서 스테이션은 모든 전송을 수행할 수 없다. 구체적으로 제한된 TWT에 참여하는 스테이션은 제한된 서비스 피리어드와 겹치지 않는 콰이어트 구간을 무시하지 못할 수 있다. 구체적인 실시 예에서 제한된 TWT에 참여하는 스테이션은 제한된 서비스 피리어드와 겹치지 않는 콰이어트 구간에서는 모든 전송을 수행할 수 없다.
또한, 앞선 실시 예들에서 제한된 TWT에 참여하는 스테이션은 제한된 서비스 피리어드의 시작 시점과 콰이어트 구간의 시작 시점이 미리 지정된 시간 내이고, 서비스 피리어드의 시작 시점과 콰이어트 구간의 시작 시점이 미리 지정된 시간 내인 경우, 제한된 서비스 피리어드에 대응하는 콰이어트 구간으로 간주할 수 있다. 앞서 설명한 바와 같이 제한된 TWT를 운영하는 AP는 콰이어트 구간을 제한된 서비스 피리어드와 일치하게 설정하지 않을 수 있기 때문이다.
도 12의 실시 예에서 AP는 비콘 프레임을 전송하여 콰이어트 구간과 제한된 서비스 피리어드를 설정한다. 도 12(a)에서 콰이어트 구간은 제한된 서비스 피리어드와 동일한 시간 구간으로 설정된다. 따라서 콰이어트 구간에서 제한된 TWT에 참여하는 스테이션은 채널 액세스를 수행한다. 도 12(b)에서 콰이어트 구간은 제한된 서비스 피리어드의 시작 시점보다 빠른 시점부터 제한된 서비스 피리어드의 종료 시점보다 늦은 시점까지 설정된다. 도 12(b)에서 제한된 서비스 피리어드와 오버랩되지 않은 콰이어트 구간에서 제한된 TWT에 참여하는 스테이션의 채널 액세스가 제한된다. 제한된 서비스 피리어드에 오버랩된 콰이어트 구간에서 제한된 TWT에 참여하는 스테이션은 채널 액세스를 수행한다.
앞서 설명한 바와 같이 제한된 서비스 피리어드 동안 채널 액세스가 제한될 수 있다. 이에 따라 TXOP 설정 관련해서도 이러한 제한이 적용될 수 있다. 이에 대해서는 도 13을 통해 설명한다.
도 13은 본 발명의 실시 예에 따라 스테이션이 제한된 서비스 피리어드를 고려하여 TXOP를 설정하는 방법을 설명한다.
제한된 서비스 피리어드가 시작되기 전에 TXOP를 획득한 스테이션, 즉 TXOP 홀더인 스테이션이 제한된 서비스 피리어드 시작 전에 TXOP를 종료해야 할 수 있다. 이는 제한된 서비스 피리어드가 시작된 경우에도 TXOP 홀더의 프레임 교환이 계속될 경우, 저지연 트래픽의 전송에 방해될 수 있기 때문이다. 이때, 스테이션은 논-레거시 스테이션일 수 있다. 또 다른 구체적인 실시 예에서 스테이션은 제한된 TWT를 지원하는 스테이션으로 한정될 수 있다. 즉, dot11RestrictedTWTOptionImplemented의 필드의 값을 false로 설정한 스테이션은 이러한 제한이 적용되지 않을 수 있다.
구체적인 실시 예에서 TXOP 홀더인 스테이션이 저지연 트래픽을 전송하는 경우, 제한된 서비스 피리어드가 시작된 이후에도 프레임 교환을 지속할 수 있다
스테이션이 제한된 서비스 피리어드 전에 TXOP를 종료하는 구체적인 방법에 대해서 설명한다.
스테이션은 제한된 서비스 피리어드를 기초로 TXOP을 설정할 수 있다. 구체적으로 스테이션은 제한된 서비스 피리어드 시작 전으로 TXOP의 종료 시점을 설정할 수 있다. 이때, 스테이션은 프레임 교환 시퀀스를 개시하는 개시 프레임의 듀레이션을 제한된 서비스 피리어드 시작 전으로 설정할 수 있다. 예컨대, 스테이션이 채널 액세스에 성공한 시점이 제한된 서비스 피리어드가 시작하기 3m전이라면, 스테이션은 TXOP을 3ms 이전으로 설정할 수 있다. 또한, 스테이션은 CTS-to-Self 프레임을 전송하여 TXO을 종료할 수 있다. 이때, 스테이션은 CTS-to-Self 프레임을 기본 전송 속도, 6 Mbps로 전송할 수 있다. 스테이션이 기본 전송 속도로 프레임을 전송할 때, 많은 레거시 스테이션이 프레임을 수신할 수 있기 때문이다.
또 다른 구체적인 실시 예에서 스테이션은 제한된 서비스 피리어드 시작 전에 CF-End 프레임을 전송할 수 있다. 이를 통해 스테이션은 제한된 서비스 피리어드 시작 전에 TXOP를 종료할 수 있다. 이때, 스테이션은 CF-End 프레임을 기본 전송 속도, 6 Mbps로 전송할 수 있다. 스테이션이 기본 전송 속도로 프레임을 전송할 때, 많은 레거시 스테이션이 프레임을 수신할 수 있기 때문이다.
또한, TXOP 홀더가 아닌 스테이션은 제한된 서비스 피리어드 시작 시점에, 제한된 서비스 피리어드 시작 전에 설정된 NAV를 해제할 수 있다. 이때, 스테이션은 제한된 TWT를 지원하는 스테이션일 수 있다. 즉, 스테이션은 dot11RestrictedTWTOptionImplemented의 필드의 값을 True로 설정한 스테이션일 수 있다. TXOP 홀더가 아닌 스테이션이지만 제한된 TWT를 지원하지 않는 스테이션은 제한된 서비스 피리어드 시작 시점에, 제한된 서비스 피리어드 시작 전에 설정된 NAV를 해제할 수 없다. 다만, 스테이션이 프레임 교환을 완료하고 TXOP의 남은 듀레이션이 CF-End 프레임의 전송에 소요되는 시간과 SIFS의 합의 2배 미만인 경우, 스테이션은 CF-End 프레임을 전송하지 않을 수 있다. 이때, 스테이션은 제한된 서비스 피리어드 시작 시점에 TXOP 해제된 것으로 간주할 수 있다. 구체적으로 스테이션은 제한된 서비스 피리어드 시작 시점에 베이직 NAV가 해제된 것으로 간주할 수 있다.
또 다른 구체적인 실시 예에서 스테이션은 제한된 TWT에 참여하는 스테이션으로 제한될 수 있다.
도 13의 실시 예에서 AP는 TWT 엘리멘트를 포함하는 비콘 프레임을 전송하여 제한된 서비스 피리어드가 설정됨을 시그널링한다. 도 13(a)의 실시 예에서 스테이션은 RTS 프레임을 전송하여 TXOP를 설정한다. 이때, 스테이션은 RTS 프레임의 duration 필드의 값을 제한된 서비스 피리어드 전까지로 설정한다. 스테이션은 AP와 프레임 교환을 수행하고 제한된 서비스 피리어드 시작 전에 프레임 교환을 완료한다. 이때, 스테이션은 마지막으로 CTS-to-Self 프레임을 전송한다. 도 13(b)의 실시 예에서 스테이션은 RTS 프레임을 전송하여 TXOP를 설정한다. 이때, 스테이션은 RTS 프레임의 duration 필드의 값을 제한된 서비스 피리어드를 고려하지 않고 설정한다. 스테이션은 AP와 프레임 교환을 수행하고 제한된 서비스 피리어드 시작 전에 프레임 교환을 완료한다. 이때, 스테이션은 마지막으로 CF-end 프레임을 전송하여 TXOP을 해제한다.
종래 무선랜 동작에서는 TXOP 규칙의 예외로 TXOP 리밋(limit)을 넘어 전송될 수 있는 동작을 정의한다. 예컨대, 단일 MPDU의 재전송, Block ack 합의(agreement) 하에서 단일 MSDU 전송 (A-MSDU 및 2개 이상의 MPDU로 구성된 A-MPDU에 포함되지 않은), 제어 프레임 및 QoS Null 프레임 (2개 이상의 MPDU로 구성된 A-MPDU에 포함되지 않은)의 전송은 TXOP 리밋(limit)을 넘어 전송될 수 있다. 제한된 서비스 피리어드에 대해서도 이러한 예외가 인정될 경우, 저지연 트래픽의 전송이 지연될 수 있다. 이러한 TXOP 리밋의 예외는 제한된 서비스 피리어드를 침범하여 적용될 수 없다.
TXOP의 종료 시점과 제한된 서비스 피리어드의 시작 시점이 미리 지정된 시간 차이 내인 경우, 스테이션은 TXOP이 제한된 서비스 피리어드의 시작 전에 획득된 TXOP로 판단할 수 있다. 미리 지정된 시간은 100us일 수 있다. 또 다른 구체적인 실시 예에서 TXOP의 종료 시점이 제한된 서비스 피리어드의 내인 경우, 스테이션은 TXOP이 제한된 서비스 피리어드의 시작 전에 획득된 TXOP로 판단할 수 있다.
앞서 설명한 바와 같이 스테이션은 제한된 서비스 피리어드 전에 프레임 교환을 완료해야할 수 있다. 이에 따라 스테이션은 프레임 교환의 완료 시점이 제한된 서비스 피리어드 내인 경우 프레임 교환을 시작하는 것이 허용되지 않을 수 있다. 이때, 스테이션은 프래그멘테이션을 수행하여 제한된 서비스 피리어드 시작 전에 프레임 교환을 완료할 수 있다.
또한, TXOP 홀더인 스테이션이 수행하는 프레임 교환에서 저지연 트래픽을 전송되는 경우, 스테이션은 저지연 서비스 피리어드 시작 이후에도 프레임 교환을 지속할 수 있다.
제한된 서비스 피리어드를 고려한 채널 액세스 절차에 대해서는 도 14를 통해 설명한다.
도 14는 본 발명의 실시 예에 따른 스테이션이 제한된 서비스 피리어드를 고려하여 채널 액세스 절차를 다시 수행하는 것을 보여준다.
앞서 설명한 바와 같이 스테이션이 제한된 서비스 피리어드 전에 채널 액세스를 완료하더라도 프레임 교환 완료 시점이 제한된 서비스 피리어드 시작 이후인 경우, 스테이션은 전송을 수행하지 않고 다시 채널 액세스 절차를 시작할 수 있다. 이때, 스태이션은 백오프 카운터의 값을 다시 획득할 수 있다. 이때, 스테이션은 직전 채널 액세스 절차에 사용한 CW의 크기를 그대로 사용할 수 있다. 즉, 스테이션은 직전 채널 액세스 절차에 사용한 CW의 크기를 2배로 증가시키지 않고, CW가 가질 수 있는 값 중 최솟값으로 초기화하지 않을 수 있다. 또한, 스테이션은 재시도(retry) 횟수, 예컨대 QSRC (QoS STA Retry Counter)를 증가시키지 않을 수 있다.
또한, 스테이션이 채널 액세스를 완료한 시점이 제한된 서비스 피리어드 시작 시점으로부터 미리 지정된 시간 이내인 경우, 스테이션은 전송을 수행하지 않고 다시 채널 액세스 절차를 시작할 수 있다.
앞선 실시 예들에서 저지연 트래픽을 전송하려는 스테이션은 프레임 교환 완료 시점이 제한된 서비스 피리어드 시작 이후인 경우에도 채널 액세스 완료 이후 프레임 교환을 시작할 수 있다. 이러한 예외는 저지연 트래픽을 전송하려는 스테이션이 제한된 TWT에 참여하는 스테이션인 경우에만 허용될 수 있다.
또한, 앞서 설명한 바와 같이 스테이션은 저지연 트래픽 이외의 트래픽의 AC에 NAV가 설정된 것처럼 동작할 수 있다. 따라서 스테이션은 저지연 트래픽 이외의 트래픽의 AC의 전송을 위한 CCA 결과가 유휴하지 않은(BUSY) 것으로 판단할 수 있다.
도 14의 실시 예에서 AP는 TWT 엘리멘트를 포함하는 비콘 프레임을 전송하여 제한된 서비스 피리어드가 설정됨을 시그널링한다. 제한된 서비스 피리어드 시작 전에 스테이션의 채널 액세스의 백오프 카운터 값이 0에 도달한다. 스테이션은 전송하려는 트래픽을 포함하는 프레임 교환 완료 시점이 서비스 피리어드 시작 시점 이후인 것으로 판단한다. 따라서 스테이션은 직전 채널 액세스 절차에서 사용한 CW 값 내에서 백오프 카운터를 획득한다. 스테이션은 획득한 백오프 카운터를 사용하여 다시 채널 액세스 절차를 수행한다. 이때, 스테이션은 재전송 카운터를 증가시키지 않는다.
제한된 서비스 피리어드 완료 전에 모든 저지연 트래픽 전송이 완료될 수 있다. 이러한 경우, 저지연 서비스 피리어드로 인해 저지연 트래픽 이외의 트래픽의 전송이 제한되는 것은 비효율적일 수 있다. 따라서 제한된 서비스 피리어드를 조기에 종료하는 방법이 필요할 수 있다. 이에 대해서는 도 15의 실시 예를 통해 설명한다.
도 15는 본 발명의 실시 예에 따라 AP가 제한된 서비스 피리어드를 조기에 종료하는 동작을 보여준다.
AP가 제한된 서비스 피리어드를 조기 종료하기 위해서는 제한된 TWT에 참여하는 스테이션의 모든 저지연 트래픽 전송이 완료되었음을 판단할 수 있어야 한다. 이를 위해 제한된 TWT에 참여하는 스테이션은 전송하는 프레임에 저지연 트래픽을 추가로 전송할지 시그널링할 수 있다. 구체적으로 스테이션은 프레임의 Frame Control 필드의 More data 서브필드의 값을 설정하여 저지연 트래픽을 추가로 전송할 것을 시그널링할 수 있다. 이때, 제한된 서비스 피리어드에서 전송되는 프레임의 Frame Control 필드의 More data 서브필드의 값이 1인 경우, More data 서브필드는 저지연 트래픽이 추가 전송이 필요함을 나타내고 저지연 트래픽 이외의 트래픽의 추가 전송이 필요한지는 나타내지 않을 수 있다. 예컨대, 제한된 TWT에 참여하는 스테이션이 전송 버퍼에 저지연 트래픽을 저장하지 않고 저지연 트래픽 이외의 트래픽만을 저장하는 경우, 스테이션은 제한된 서비스 피리어드에서 스테이션이 전송하는 프레임의 Frame Control 필드의 More data 서브필드의 값을 0으로 설정할 수 있다. AP는 제한된 TWT에 참여하는 스테이션이 제한된 서비스 피리어드에서 프레임의 Frame Control 필드의 More data 서브필드의 값이 0이 없는지를 기초로 제한된 서비스 피리어드를 조기에 종료할 수 있다. 구체적으로 AP의 전송 버퍼에 전송할 저지연 트래픽이 없고 제한된 TWT에 참여하는 스테이션이 제한된 서비스 피리어드에서 프레임의 Frame Control 필드의 More data 서브필드의 값이 0이 없는 경우, AP는 제한된 서비스를 조기에 종료할 수 있다.
AP는 미리 지정된 제어 프레임을 전송하여 제한된 서비스 피리어드를 조기에 종료할 수 있다. 이때, 컨트롤 프레임은 CF-End 프레임일 수 있다. 이때, AP는 CF-End 프레임의 BSSID(TA) 필드를 AP의 MAC address 또는 BSSID로 설정할 수 있다. 또한, AP는 CF-End 프레임의 BSSID(TA) 필드의 Individual/Group 비트를 1로 설정할 수 있다. 또 다른 구체적인 실시 예에서 AP는 미리 지정된 매니지먼트 프레임을 전송하여 제한된 서비스 피리어드를 조기에 종료할 수 있다.
제한된 서비스 피리어드 내에서 제한된 서비스 피리어드를 종료하는 것으로 미리 지정된 프레임을 수신한 스테이션은 제한된 서비스 피리어드가 종료한 것으로 판단할 수 있다. 이때, 미리 지정된 프레임을 수신한 스테이션은 제한된 서비스 피리어드에 적용되는 제한없이 채널 액세스를 재개할 수 있다. 앞서 설명한 바와 같이 미리 지정된 프레임이 CF-End 프레임일 수 있다. 이때, 스테이션이 제한된 서비스 피리어드에서 수신한 CF-End 프레임의 TA(BSSID) 필드의 값이 스테이션이 연결된(associated) AP의 MAC 주소인 경우, 스테이션은 제한된 서비스 피리어드를 종료하는 CF-End 프레임으로 판단할 수 있다.
앞서 설명한 바와 같이 레거시 무선 통신 단말로부터 제한된 서비스 피리어드를 보호하기 위해 제한된 서비스 피리어드를 위한 콰이어트 구간이 설정될 수 있다. 이때, AP는 제한된 서비스 피리어드를 종료하기 위해 CF-End 프레임을 전송할 수 있다. AP가 CF-End 프레임을 전송할 경우, 레거시 스테이션에게 설정된 콰이어트 구간도 해제할 수 있기 때문이다.
앞서 설명한 실시 예들에서 CF-End 프레임은 Frame Control 필드의 Type이 제어 프레임이고 (Type value B3 B2 == 01) 이고, Subtype이 CF-End 프레임 (Subtype value B7 B6 B4 B4 == 1110) 프레임일 수 있다.
제한된 서비스 피리어드를 위한 콰이어트 구간이 설정될 때, 제한된 TWT에 참여하는 스테이션은 제한된 서비스 피리어드 내에서 CF-End 프레임을 전송하는 것이 허용되지 않을 수 있다. 구체적인 실시 예에서 제한된 TWT에 참여하는 스테이션은 제한된 서비스 피리어드에 대응하는 콰이어트 구간에서 CF-End 프레임을 전송하는 것이 허용되지 않을 수 있다. 제한된 TWT에 참여하는 스테이션이 CF-End 프레임을 전송하는 경우, 레거시 스테이션에 설정된 NAV가 해제되기 때문이다. 다만, 앞서 설명한 바와 같이 CF-End 프레임이 제한된 서비스 피리어드를 조기에 종료하기 위해 사용되는 경우, AP는 제한된 서비스 피리어드 내에서 CF-End 프레임을 전송할 수 있다.
도 15의 실시 예에서 AP는 TWT 엘리멘트와 Quiet 엘리멘트를 포함하는 비콘 프레임을 전송한다. 제한된 TWT를 지원하는 스테이션은 제한된 서비스 피리어드가 설정된 것을 판단하고, 제한된 TWT를 지원하지 않는 스테이션은 콰이어트 구간이 설정된 것으로 판단한다. AP가 제한된 서비스 피리어드 내에서 모든 저지연 트래픽의 전송이 완료된 것으로 판단한 경우, AP는 CF-End 프레임을 전송하여 제한된 서비스 피리어드를 조기에 종료하고, 레거시 스테이션에게 설정된 콰이어트 구간을 해제한다. 이때, 제한된 TWT를 지원하는 스테이션은 제한된 서비스 피리어드 동안 적용되던 채널 액세스 제한이 없어진 것으로 판단한다. 구체적으로 앞서 설명한 것과 같이 제한된 서비스 피리어드 동안 NAV가 설정되는 실시 예가 적용된 경우, 제한된 TWT를 지원하는 스테이션은 제한된 서비스 피리어드를 위한 NAV가 해제된 것으로 판단할 수 있다. 또한, CF-End 프레임을 수신한 제한된 TWT를 지원하지 않는 스테이션은 NAV를 해제한다.
앞서 설명한 것과 같이 멀티 링크 장치에 포함된 스테이션 각각은 다른 스테이션과 결합(association)을 수행할 수 있다. 따라서 멀티 링크 장치에 포함된 스테이션 각각은 개별적인 TWT 서비스 피리어드를 운영할 수 있다. 즉, 멀티 링크 장치가 동작하는 복수의 링크 각각에서 개별적은 TWT 서비스 피리어드가 운영될 수 있다. 이와 같이 개별적인 TWT 서비스 피리어드가 운영되기 위해 개별적인 TWT 합의(agreement)가 필요할 수 있다. 이를 위해 멀티 링크 장치의 스테이션은 TWT 요청(request) 프레임을 전송하고, TWT 요청 프레임을 수신한 스테이션이 TWT 응답 프레임을 전송할 수 있다. TWT 요청 프레임은 TWT 설정(setup) 프레임의 Command 필드의 값이 0~2인 프레임일 수 있다. 또한, TWT 응답 프레임은 TWT 설정(setup) 프레임의 Command 필드의 값이 3~7인 프레임일 수 있다. 구체적인 TWT 합의 방법은 IEEE 802.11ax에서 정의된 것과 동일할 수 있다.
TWT 동작을 통해 스테이션은 절전(power save)을 수행할 수 있다. 따라서 절전 효율을 높이기 위해, 멀티 링크 장치는 멀티 링크 장치가 동작하는 복수의 링크에 TWT 서비스 피리어드를 설정할 수 있다. 예컨대, 제1 스테이션과 제2 스테이션을 포함하는 멀티 링크 장치는 제1 스테이션이 동작하는 제1 링크와 제2 스테이션이 동작하는 제2 링크에서 TWT 서비스 피리어드를 설정하고, 제1 스테이션과 제2 스테이션의 동작 상태(어웨이크 상태, 절전(doze) 상태)를 동기화할 수 있다. 이때, 제1 스테이션은 제1 스테이션이 결합된 제1 AP에게 TWT 요청 프레임을 전송하고, 제2 스테이션은 제2 스테이션이 결합된 제2 AP에게 TWT 요청 프레임을 전송할 수 있다. 이때, 제1 스테이션이 전송한 TWT 요청 프레임과 제2 스테이션이 전송한 TWT 요청 프레임이 나타내는 TWT 파라미터 값은 동일할 수 있다. 따라서 복수의 링크에서 개별적으로 TWT 요청 프레임을 전송하는 것이 전송 효율을 저하시킬 수 있다. 본 발명의 구체적인 실시 예에서는 하나의 링크에서 전송되는 TWT 요청 프레임이 복수의 링크에 대한 TWT 합의를 수행할 수 있다. 이에 대해서는 도 16을 통해 설명한다.
도 16은 본 발명의 실시 예에 따른 TWT 엘리멘트의 포맷을 보여준다.
복수의 링크에서 수행되는 TWT 합의를 위한 TWT 요청 프레임이 제1 링크에서 전송될 수 있다. 이때, TWT 요청 프레임은 복수의 링크에서 수행되는 TWT 동작에 대한 TWT 파라미터를 포함할 수 있다. 또한, 제2 링크에서 수행되는 TWT 합의를 위한 TWT 요청 프레임이 제1 링크에서 전송될 수 있다. 이때, TWT 요청 프레임은 제2 링크에서 수행되는 TWT 동작에 대한 TWT 파라미터를 포함할 수 있다. 예컨대, 멀티 링크 장치가 제1 링크에서 동작하는 제1 스테이션과 제2 링크에서 동작하는 제2 스테이션을 포함할 때, 제1 스테이션은 제2 스테이션을 위한 TWT 합의를 설정할 수 있다. 이때, 제1 스테이션은 제1 AP와 결합되고, 제2 스테이션은 제2 AP와 결합되고, 제1 AP와 제2 AP가 하나의 멀티 링크 장치에 포함되는 경우, 제1 스테이션은 제1 AP와 TWT 합의를 설정할 수 있다. 이는 멀티 링크 장치에 포함된 스테이션들은 MAC 레이어의 일부 기능을 공유하거나 일부 정보를 공유할 수 있기 때문이다. 앞서 설명한 TWT 합의 동작을 위해 새로운 포맷의 TWT 엘리멘트가 필요할 수 있다.
구체적으로 TWT 엘리멘트는 TWT 합의가 수행되는 링크에 대한 정보를 포함할 수 있다. 이때, 링크에 대한 정보는 AP가 운영하는 링크의 ID에 관한 정보일 수 있다. 구체적인 실시 예에서 TWT 엘리멘트는 TWT 합의가 수행되는 복수의 링크를 지시할 수 있다. 예컨대, 링크에 대한 정보는 비트맵일 수 있다. 이때, 비트맵 각각의 비트가 복수의 링크 각각에서 TWT 엘리멘트가 수행되는지 나타낼 수 있다. 스테이션은 이러한 TWT 엘리멘트를 전송하여 복수의 링크에서 TWT 합의를 수행할 수 있다.
앞서 설명한 비트맵을 Link ID(identifier) 비트맵으로 지칭될 수 있다. Link ID 비트맵의 크기는 2옥텟일 수 있다. 예컨대, Link ID 비트맵의 값이 1110 0000 0000 0000 2b 인 경우, Link ID 비트맵은 첫 번째 비트에 해당하는 제1 링크, 두 번째 비트에 해당하는 제2 링크 및 세 번째 비트에 해당하는 제3 링크를 위한 TWT 협상임을 나타낼 수 있다. 이러한 실시 예들에서 링크 엘리멘트가 전송되는 링크 이외의 링크만을 위한 TWT 파라미터에 관한 정보를 포함하는 링크 엘리멘트가 전송될 수 있다. 또한, 이러한 실시 예들에서 하나의 링크 엘리멘트가 복수의 링크에서 수행되는 TWT 합의를 위해 전송될 수 있다.
또한, TWT 엘리멘트는 TWT 합의에 적용되는 식별자를 나타내는 TWT 플로우(flow) ID를 포함할 수 있다. TWT 엘리멘트가 복수의 링크에서 수행되는 TWT 합의를 수행하기 위한 경우, TWT 엘리멘트가 포함하는 TWT 플로우 ID는 TWT 엘리멘트가 TWT 합의를 수행할 수 있는 모든 링크의 TWT 합의에 사용되지 않는 값일 수 있다. 또 다른 구체적인 실시 예에서 TWT 엘리멘트가 복수의 링크에서 수행되는 TWT 합의를 수행하기 위한 경우, TWT 엘리멘트는 복수의 TWT 플로우 ID를 지시하기 위한 필드를 포함할 수 있다. 예컨대, TWT 엘리멘트가 복수의 링크에서 수행되는 TWT 합의를 수행하기 위한 경우, TWT 엘리멘트는 복수의 TWT 플로우 ID 각각을 지시하는 복수의 서브 필드를 포함할 수 있다. 이때, 복수의 서브필드는 TWT 엘리멘트가 TWT 합의를 수행할 수 있는 복수의 링크 각각에 대응할 수 있다. 이러한 실시 예들에서 각 서브필드에 해당하는 링크가 사용하지 않는 TWT 플로우 ID가 사용될 수 있다. 또한, TWT 엘리멘트가 서브필드에 해당하는 링크의 TWT 합의를 변경하려는 경우, 서브필드에 해당하는 링크가 기존에 사용한 TWT 플로우 ID가 서브필드에 사용될 수 있다. 이는 기존에 TWT 플로우 ID가 사용된 TWT 합의가 존재하기 때문이다. 따라서 스테이션이 새로운 TWT 합의를 수행하려할 때, 스테이션은 현존하는 TWT 합의의 TWT 플로우 ID에 해당하지 않는 TWT 플로우 ID를 TWT 합의에 사용하는 것으로 제한될 수 있다. 이때, 스테이션 현존하는 TWT 합의를 변경하려는 경우, 스테이션은 변경 하려는 TWT 합의에 해당하는 TWT 플로우 ID를 TWT 합의에 사용할 수 있다.
도 16(a)는 본 발명의 실시 예에 따른 TWT 엘리멘트의 포맷을 보여준다. TWT 엘리멘트는 Element ID 필드, Length 필드, Control 필드 및 TWT Parameter Information 필드를 포함할 수 있다. 이때, Element ID 필드 Element ID 필드가 포함되는 엘리멘트가 TWT 엘리멘트임을 나타낸다. Element ID 필드의 값은 216일 수 있다.
도 16(b)는 TWT 엘리멘트의 control 필드의 구체적인 포맷을 보여준다. Control 필드는 NDP Paging Indicator 필드, Responder PM Mode 필드, Negotiation Type 필드, TWT Information Frame Disabled 필드, Wake Duration Unit 필드, Link ID Bitmap Present 필드 및 Reserved 필드를 포함한다. 도 16(b)는 IEEE 802.11ax에서 정의하는 TWT 엘리멘트에 비해 Link ID Bitmap Present 필드를 더 포함한다. 이때, Link ID Bitmap Present 필드는 TWT 엘리멘트가 앞서 설명한 Link ID 비트맵을 포함하는지 나타낸다. 구체적으로 Link ID Bitmap Present 필드의 값이 1인 경우, TWT 엘리멘트는 Link ID 비트맵을 포함하고, Link ID Bitmap Present 필드의 값이 0인 경우, TWT 엘리멘트는 Link ID 비트맵을 포함하지 않을 수 있다. TWT 엘리멘트를 수신한 스테이션은 Link ID Bitmap Present 필드의 값에 따라 TWT 엘리멘트가 Link ID 비트맵을 포함하는지 판단할 수 있다.
도 16(c)는 TWT 엘리멘트가 포함하는 Individual TWT Parameter Set 필드의 포맷을 보여준다. TWT 엘리멘트가 포함하는 Individual TWT Parameter Set 필드는 Request Type 필드, Target Wake Time 필드, TWT Group Assignment 필드, Nominal Minimum TWT wake Duration 필드, TWT Wake Interval Mantissa 필드, TWT Channel 필드, NDP Paging 필드 및 Link ID Bitmap 필드를 포함할 수 있다. 도 16(b)는 IEEE 802.11ax에서 정의하는 Individual TWT Parameter Set 필드에 비해 Link ID Bitmap 필드를 더 포함한다. TWT 엘리멘트가 Link ID Bitmap 필드를 포함하는 경우, TWT 엘리멘트는 Link ID Bitmap 필드가 지시하는 링크에 대해 TWT Request를 요청하는 것을 나타낼 수 있다. TWT 요청 프레임이 포함하는 TWT 엘리멘트를 포함하고, TWT 엘리멘트가 Link ID Bitmap 필드를 포함하는 경우, TWT 요청 프레임을 수신한 스테이션은 TWT 요청 프레임이 Link ID Bitmap 필드가 지시하는 링크에 대한 TWT 합의를 요청하는 것으로 판단할 수 있다.
도 16(d)는 본 발명의 실시 예에 따른 TWT 엘리멘트의 Request Type 필드를 보여준다. TWT 엘리멘트의 Request Type 필드는 TWT Request 필드, TWT Setup Command 필드, Trigger 필드, Implicit 필드, Flow Type 필드, TWT Flow Identifier 필드, TWT Wake Interval Expnent 필드 및 TWT Protection 필드를 포함할 수 있다. TWT Flow Identifier 필드는 TWT 엘리멘트를 포함하는 TWT 요청 프레임이 수행하는 TWT 합의를 식별하는 TWT Flow ID를 지시한다. 이때, TWT Flow ID는 앞서 설명한 실시 예들에 따라 설정될 수 있다.
도 17은 본 발명의 실시 예에 따른 멀티 링크 장치가 TWT 합의를 수행하는 것을 보여준다.
AP 멀티 링크 장치는 제1 AP(AP1), 제2 AP(AP2) 및 제3 AP(AP3)를 포함한다. Non-AP 멀티 링크 장치는 제1 스테이션(STA1), 제2 스테이션(STA2) 및 제3 스테이션(STA3)을 포함한다. 제1 AP(AP1), 제2 AP(AP2) 및 제3 AP(AP3) 각각은 제1 링크(Link1), 제2 링크(Link2) 및 제3 Link(Link3)에서 동작한다. 제1 스테이션(STA1), 제2 스테이션(STA2) 및 제3 스테이션(STA3) 각각은 제1 링크(Link1), 제2 링크(Link2) 및 제3 Link(Link3)에서 동작한다. non-AP 멀티 링크 장치는 제1 링크(Link1) 내지 제3 링크(Link3)에서 TWT 합의를 수행하기 위해 TWT 요청 프레임을 전송할 수 있다. 이때, TWT 요청 프레임은 하나의 TWT 엘리멘트를 포함할 수 있다. 구체적으로 non-AP 멀티 링크 장치가 동일한 TWT 파라미터가 사용되는 TWT 서비스 피리어드를 운영하려는 경우, TWT 요청 프레임은 하나의 TWT 엘리멘트를 포함할 수 있다.
구체적으로 TWT 엘리멘트는 TWT 서비스 피리어드(service period)의 시작 시점 및 종료 시점을 지시할 수 있다. 또한, TWT 엘리멘트는 도 16을 통해 설명한 Link ID 비트맵을 포함할 수 있다. 구체적으로 TWT 엘리멘트는 Link ID Bitmap 서브필드에서 제1 링크(Link1), 제2 링크(Link2) 및 제3 링크(Link3)를 지시할 수 있다.
AP 멀티 링크 장치는 수신한 TWT 요청 프레임의 TWT 엘리멘트의 Link ID Bitmap 서브필드가 제1 링크(Link1), 제2 링크(Link2) 및 제3 링크(Link3)를 지시하므로, TWT 요청 프레임 시그널링하는 TWT 파라미터가 제1 링크(Link1), 제2 링크(Link2) 및 제3 링크(Link3)의 TWT 서비스 피리어드에 대한 것으로 판단할 수 있다.
AP 멀티 링크 장치는 non-AP 멀티 링크 장치에게 TWT 응답 프레임을 전송하여 TWT 설정(setup)을 승낙할 수 있다. 이때, 제1 링크(Link1) 내지 제3 링크(Link3) 각각에서 TWT 합의가 수립된다. 이때, 각 링크에서의 TWT 합의는 제1 스테이션(STA1)과 제1 AP(AP1) 사이의 TWT 합의, 제2 스테이션(STA2)과 제2 AP(AP2) 사이의 TWT 합의 및 제3 스테이션(STA3)과 제3 AP(AP3) 사이의 TWT 합의를 나타낼 수 있다.
도 18은 본 발명의 실시 예에 따라 멀티 링크 장치에 포함된 스테이션이 스테이션이 포함된 멀티 링크 장치에 포함된 다른 스테이션을 위해 TWT 합의를 수행하는 것을 보여준다.
앞서 설명한 바와 같이 제2 링크에서 수행되는 TWT 합의를 위한 TWT 요청 프레임이 제1 링크에서 전송될 수 있다. 이를 위해 제1 링크에서 동작하는 제1 스테이션은 제1 링크에서 TWT 요청 프레임을 전송할 수 있다. 이때, TWT 요청 프레임의 TWT 엘리멘트는 TWT Link ID 비트맵을 포함하고, TWT Link ID 비트맵은 제2 링크를 지시할 수 있다. 제1 링크에서 동작하는 제1 AP는 TWT Link ID 비트맵을 기초로 TWT 요청 프레임이 제2 링크에서의 TWT 합의 위해 전송된 것으로 판단할 수 있다.
도 18의 실시 예에서 AP 멀티 링크 장치는 제1 AP(AP1) 및 제2 AP(AP2)를 포함한다. non-AP 멀티 링크 장치는 제1 스테이션(STA1) 및 제2 스테이션(STA2)을 포함한다. 제1 AP(AP1) 및 제2 AP(AP2) 각각은 제1 링크(Link1) 및 제2 링크(Link2)에서 동작한다. 제1 스테이션(STA1) 및 제2 스테이션(STA2) 각각은 제1 링크(Link1) 및 제2 링크(Link2)에서 동작한다. 제1 스테이션(STA1)은 제2 링크(Link2)에서의 TWT 합의를 위한 TWT 요청 프레임을 제1 링크(Link1)에서 전송한다. 제1 AP(AP1)는 제1 스테이션(STA1)에게 TWT 응답 프레임을 전송하여 제2 링크(Link2)에서의 TWT 합의를 수락한다. 이에 따라 제2 스테이션(STA2)과 제2 AP(AP2) 사이에 TWT 합의가 설정된다.
이러한 경우, TWT 요청 프레임을 전송한 스테이션과 TWT 합의가 적용되는 스테이션이 서로 다르다. 또한, 앞서 설명한 바와 같이 TWT 요청 프레임을 전송한 스테이션은 하나의 스테이션이나 TWT 합의는 복수의 스테이션에게 적용될 수 있다. 따라서 TWT 합의를 해제할 수 있는 스테이션이 문제될 수 있다.
기존 TWT 동작에서 TWT 합의를 식별하기 위해 3비트의 TWT Flow ID와 TWT 합의를 맺은 두 스테이션의 MAC 주소가 사용될 수 있다. 구체적으로 TWT 요청 스테이션의 MAC 주소, TWT 응답 스테이션의 MAC 주소 및 TWT Flow ID를 통해 TWT 합의가 식별될 수 있었다. 멀티 링크 장치가 설정한 TWT 합의는 앞서 설명한 바와 같이 TWT 합의를 수행한 스테이션과 TWT 합의가 적용되는 스테이션이 다를 수 있기 때문에 TWT 합의를 식별하기 힘들 수 있다. 예컨대 도 17과 도 18의 실시 예에서 TWT 요청 스테이션은 제1 스테이션이고 TWT 응답 스테이션은 제1 AP이다. 다만, 도 17의 실시 예에서 TWT 합의는 제1 스테이션과 제1 AP, 제2 스테이션과 제2 AP, 및 제3 스테이션과 제3 AP에게 적용된다. 도 18의 실시 예에서 TWT 합의는 제2 스테이션과 제2 AP에게 적용된다. 또한, 도 17의 실시 예에서 하나의 TWT Flow ID가 제1 스테이션과 제1 AP, 제2 스테이션과 제2 AP, 및 제3 스테이션과 제3 AP에게 동일하게 적용될 수 있다. 따라서 TWT 합의가 식별될 수 없다. 이러한 문제점을 해결하기 위해 다음과 같은 실시 예들이 적용될 수 있다.
TWT 합의를 해제할 수 있는 스테이션은 TWT 합의가 적용되는 스테이션일 수 있다. 이를 위해 TWT 요청 스테이션은 TWT 요청 프레임을 전송한 스테이션이 아니라 TWT 합의가 적용되는 링크에서 동작하는 스테이션일 수 있다. 구체적으로 TWT 요청 스테이션은 TWT 요청 프레임을 전송한 멀티 링크 장치의 스테이션 중 TWT 합의가 적용되는 링크에서 동작하는 스테이션일 수 있다. 또한, TWT 응답 스테이션은 TWT 응답 프레임을 전송한 스테이션이 아니라 TWT 합의가 적용되는 링크에서 동작하는 스테이션일 수 있다. 구체적으로 TWT 응답 스테이션은 TWT 응답 프레임을 전송한 멀티 링크 장치의 스테이션 중 TWT 합의가 적용되는 링크에서 동작하는 스테이션일 수 있다.
또한, TWT 합의를 식별하기 위한 방법으로 다음과 같은 실시 예들이 적용될 수 있다.
구체적인 실시 예에서 TWT 합의는 링크의 ID를 기초로 식별될 수 있다. 구체적으로 TWT 합의는 TWT Flow ID, TWT 요청 스테이션의 MAC 주소, TWT 응답 스테이션의 MAC 주소 및 TWT 합의가 적용되는 링크의 ID를 기초로 식별될 수 있다. 도 17의 실시 예에서 제1 스테이션과 제1 AP 사이에 설정된 TWT 합의인 제1 TWT 합의는 TWT Flow ID, 제1 스테이션의 MAC 주소, 제1 AP의 MAC 주소 및 제1 링크의 ID로 식별될 수 있다. 제2 스테이션과 제2 AP 사이에 설정된 TWT 합의인 제2 TWT 합의는 TWT Flow ID, 제1 스테이션의 MAC 주소, 제1 AP의 MAC 주소 및 제2 링크의 ID로 식별될 수 있다. 제3 스테이션과 제3 AP 사이에 설정된 TWT 합의인 제3 TWT 합의는 TWT Flow ID, 제1 스테이션의 MAC 주소, 제1 AP의 MAC 주소 및 제3 링크의 ID로 식별될 수 있다. 구체적인 실시 예에 따라서 TWT Flow ID는 각 링크 별로 설정될 수 있다.
또한, TWT 합의는 멀티 링크 장치 별로 수행된 것으로 간주될 수 있다. 따라서 TWT 합의를 식별하기 위해 TWT 요청 스테이션의 MAC 주소 대신 TWT 요청 멀티 링크 장치의 MAC 주소, TWT 응답 스테이션의 MAC 주소 대신 TWT 응답 멀티 링크 장치의 MAC 주소가 사용될 수 있다. 도 17의 실시 예에서 제1 스테이션과 제1 AP 사이에 설정된 TWT 합의인 제1 TWT 합의는 TWT Flow ID, non-AP 멀티 링크 장치의 MAC 주소, AP 멀티 링크 장치의 MAC 주소 및 제1 링크의 ID로 식별될 수 있다. 제2 스테이션과 제2 AP 사이에 설정된 TWT 합의인 제2 TWT 합의는 TWT Flow ID, non-AP 멀티 링크 장치의 MAC 주소, AP 멀티 링크 장치의 MAC 주소 및 제2 링크의 ID로 식별될 수 있다. 제3 스테이션과 제3 AP 사이에 설정된 TWT 합의인 제3 TWT 합의는 TWT Flow ID, non-AP 멀티 링크 장치의 MAC 주소, AP 멀티 링크 장치의 MAC 주소 및 제3 링크의 ID로 식별될 수 있다. 구체적인 실시 예에 따라서 TWT Flow ID는 각 링크 별로 설정될 수 있다. 구체적인 실시 예에 따라서 TWT Flow ID는 각 링크 별로 설정될 수 있다.
또한, TWT 요청 스테이션은 TWT 요청 프레임을 전송한 스테이션이 아니라 TWT 합의가 적용되는 링크에서 동작하는 스테이션일 수 있다. 구체적으로 TWT 요청 스테이션은 TWT 요청 프레임을 전송한 멀티 링크 장치의 스테이션 중 TWT 합의가 적용되는 링크에서 동작하는 스테이션일 수 있다. 또한, TWT 응답 스테이션은 TWT 응답 프레임을 전송한 스테이션이 아니라 TWT 합의가 적용되는 링크에서 동작하는 스테이션일 수 있다. 구체적으로 TWT 응답 스테이션은 TWT 응답 프레임을 전송한 멀티 링크 장치의 스테이션 중 TWT 합의가 적용되는 링크에서 동작하는 스테이션일 수 있다. 도 17의 실시 예에서 제1 스테이션과 제1 AP 사이에 설정된 TWT 합의인 제1 TWT 합의는 TWT Flow ID, 제1 스테이션의 MAC 주소 및 제1 AP의 MAC 주소로 식별될 수 있다. 제2 스테이션과 제2 AP 사이에 설정된 TWT 합의인 제2 TWT 합의는 TWT Flow ID, 제2 스테이션의 MAC 주소 및 제2 AP의 MAC 주소로 식별될 수 있다. 제3 스테이션과 제3 AP 사이에 설정된 TWT 합의인 제3 TWT 합의는 TWT Flow ID, 제3 스테이션의 MAC 주소 및 제3 AP의 MAC 주소로 식별될 수 있다. 구체적인 실시 예에 따라서 TWT Flow ID는 각 링크 별로 설정될 수 있다.
또한, TWT 합의는 TWT 요청 프레임 전송된 링크를 기초로 식별될 수 있다. 구체적으로 TWT 합의는 TWT Flow ID, TWT 요청 스테이션의 MAC 주소, TWT 응답 스테이션의 MAC 주소 및 TWT 요청 프레임이 전송되는 링크의 ID를 기초로 식별될 수 있다. 도 17의 실시 예에서 제1 스테이션과 제1 AP 사이에 설정된 TWT 합의인 제1 TWT 합의는 TWT Flow ID, 제1 스테이션의 MAC 주소, 제1 AP의 MAC 주소 및 제1 링크의 ID로 식별될 수 있다. 제2 스테이션과 제2 AP 사이에 설정된 TWT 합의인 제2 TWT 합의는 TWT Flow ID, 제1 스테이션의 MAC 주소, 제1 AP의 MAC 주소 및 제1 링크의 ID로 식별될 수 있다. 제3 스테이션과 제3 AP 사이에 설정된 TWT 합의인 제3 TWT 합의는 TWT Flow ID, 제1 스테이션의 MAC 주소, 제1 AP의 MAC 주소 및 제1 링크의 ID로 식별될 수 있다. 구체적인 실시 예에 따라서 TWT Flow ID는 각 링크 별로 설정될 수 있다.
앞서서 멀티 링크 장치가 TWT 합의를 설정하는 방법에 대해 설명하였다. 멀티 링크 장치가 TWT 합의를 해제(teardown)하는 방법에 대해 도 19를 통해 설명한다.
도 19는 본 발명의 실시 예에 따른 멀티 링크 장치가 TWT 합의를 해제하는 동작을 보여준다.
본 발명의 실시 예에서 멀티 링크 장치는 하나의 링크에서 복수의 링크에 적용된 TWT 합의를 해제할 수 있다. 종래 무선랜에서 스테이션은 TWT 합의를 해제하기 위해 TWT 해제 프레임을 전송한다. 이때, TWT 해제 프레임은 TWT 요청 스테이션 또는 TWT 응답 스테이션이 전송할 수 있다. TWT 해제 프레임은 TWT Flow ID를 지시하는 TWT Flow Identifier 필드를 포함한다. 이때, TWT Flow Identifier 필드는 3비트 필드일 수 있다. TWT 합의가 적용되는 스테이션이 TWT 해제 프레임을 수신한 경우, 스테이션은 TWT 해제 프레임이 지시하는 TWT Flow ID에 해당하는 TWT 합의를 해제할 수 있다. TWT 해제 프레임이 성공적으로 전송된 경우, TWT 해제 프레임을 전송한 스테이션은 TWT 해제 프레임이 지시하는 TWT Flow ID에 해당하는 TWT 합의를 해제할 수 있다. 따라서 TWT 합의를 해제할 스테이션과 해제의 대상이 되는 TWT 합의는 TWT 해제 프레임의 전송자의 MAC 주소, TWT 해제 프레임의 수신자의 MAC 주소 및 TWT Flow ID를 기초로 식별될 수 있다.
다만, 앞서 설명한 바와 같이 멀티 링크 장치의 스테이션에게 TWT 합의 수립되는 경우, TWT 요청 프레임을 전송한 스테이션과 TWT 합의가 적용되는 스테이션이 서로 다를 수 있다. 또한, 앞서 설명한 바와 같이 TWT 요청 프레임을 전송한 스테이션은 하나의 스테이션이나 TWT 합의는 복수의 스테이션에게 적용될 수 있다. 따라서 이러한 경우에도 적용될 수 있는 TWT 합의 해제 방법이 필요하다.
TWT 해제 프레임은 링크의 식별자에 관한 정보를 포함할 수 있다. 이때, 멀티 링크 장치의 스테이션은 TWT 해제 프레임이 지시하는 링크의 식별자, 예컨대 링크 ID를 기초로 복수의 TWT 합의 중 적어도 어느 하나를 해제할 수 있다. 구체적으로 멀티 링크 장치의 스테이션이 제1 링크에서 동작하고, 스테이션이 제2 링크에서 수행된 TWT 합의를 해제하는 경우, 스테이션은 제1 링크에서 링크의 식별자에 관한 정보를 포함하는 TWT 해제 프레임을 전송할 수 있다. 이러한 실시 예들에서 링크의 식별자는 해제되는 TWT 합의가 적용되는 링크의 식별자일 수 있다. 예컨대, TWT 해제 프레임은 TWT Flow ID를 지시하는 TWT Flow Identifier 필드와 해제되는 TWT 합의가 적용되는 링크의 식별자를 지시하는 Link ID 필드를 포함할 수 있다. 또한, TWT 해제 프레임은 한 개의 Link ID 필드를 포함할 수 있다. 또한, TWT 해제 프레임은 복수의 Link ID 필드를 포함할 수 있다. 이를 위해 멀티 링크 장치에 포함된 스테이션이 전송하는 TWT 해제 프레임의 포맷은 멀티 링크 장치에 포함되지 않은 스테이션이 전송하는 TWT 해제 프레임의 포맷과 다를 수 있다. 또 다른 구체적인 실시 예에서 멀티 링크 장치에 포함된 스테이션이 전송하는 TWT 해제 프레임의 포맷은 멀티 링크 장치에 포함되지 않은 스테이션이 전송하는 TWT 해제 프레임의 포맷과 같을 수 있다.
제1 멀티 링크 장치가 제2 멀티 링크 장치에게 제1 링크에서 TWT 해제 프레임을 전송하고 제2 멀티 링크 장치가 TWT 해제 프레임을 성공적으로 수신한 경우, 제1 멀티 링크 장치와 제2 멀티 링크 장치는 제1 멀티 링크 장치와 제2 멀티 링크 장치 사이에 수립된(establish) TWT 합의 중 TWT 해제 프레임이 지시하는 TWT Flow ID에 해당하는 TWT 합의가 해제될 수 있다. 이때, 제1 멀티 링크 장치와 제2 멀티 링크 장치는 제1 멀티 링크 장치와 제2 멀티 링크 장치 사이에 수립된(establish) TWT 합의 중 TWT 해제 프레임이 지시하는 링크와 관련된 정보에 해당하는 TWT 합의를 해제할 수 있다. 구체적으로 제1 멀티 링크 장치와 제2 멀티 링크 장치는 제1 멀티 링크 장치와 제2 멀티 링크 장치 사이에 수립된(establish) TWT 합의 중 TWT 해제 프레임이 지시하는 TWT Flow ID와 TWT 해제 프레임이 지시하는 링크와 관련된 정보에 해당하는 TWT 합의를 해제할 수 있다.
또 다른 구체적인 실시 예에서 제1 멀티 링크 장치가 제2 멀티 링크 장치에게 제1 링크에서 TWT 해제 프레임을 전송하고 제2 멀티 링크 장치가 TWT 해제 프레임을 성공적으로 수신한 경우, 제1 멀티 링크 장치와 제2 멀티 링크 장치는 제1 멀티 링크 장치와 제2 멀티 링크 장치 사이에 수립된(establish) TWT 합의 중 TWT 해제 프레임을 전송한 스테이션의 MAC 주소 및 TWT 해제 프레임을 수신한 스테이션의 MAC 주소에 해당하는 TWT 합의를 해제할 수 있다. 또 다른 구체적인 실시 예에서 제1 멀티 링크 장치가 제2 멀티 링크 장치에게 제1 링크에서 TWT 해제 프레임을 전송하고 제2 멀티 링크 장치가 TWT 해제 프레임을 성공적으로 수신한 경우, 제1 멀티 링크 장치와 제2 멀티 링크 장치는 제1 멀티 링크 장치와 제2 멀티 링크 장치 사이에 수립된(establish) TWT 합의 중 TWT 합의를 수행한 스테이션의 MAC 주소 및 TWT 합의를 수행한 스테이션의 MAC 주소에 해당하는 TWT 합의를 해제할 수 있다. 또 다른 구체적인 실시 예에서 TWT 해제 프레임을 수신한 스테이션과 TWT 해제 프레임을 전송한 스테이션은 스테이션이 동작하는 링크 내에서 TWT 해제 프레임이 지시하는 TWT Flow ID에 해당하는 TWT 합의를 해제할 수 있다.
또한, 하나의 TWT 엘리멘트에 의해 복수의 링크에 TWT 합의가 설정되는 경우, 하나의 TWT 해제 프레임에 의해 복수의 링크에 설정된 TWT 합의가 해제될 수 있다. 이때, 복수의 링크에 설정된 TWT 합의의 TWT 파라미터는 서로 같을 수 있다. 또한, 복수의 링크에 설정된 TWT 합의의 TWT Flow ID는 서로 같을 수 있다. 예컨대, 제1 멀티 링크 장치와 제2 멀티 링크 장치 사이에 한 번에, 예컨대 하나의 TWT 엘리멘트에 의해 제1 링크 내지 제3 링크에 TWT 합의가 수립된 경우, 제1 멀티 링크 장치 또는 제2 멀티 링크 장치는 제1 링크 내지 제3 링크 중 어느 하나에서 TWT 해제 프레임을 전송하여 제1 링크 내지 제3 링크에 수립된 TWT 합의를 해제할 수 있다.
AP 멀티 링크 장치는 제1 AP(AP1), 제2 AP(AP2) 및 제3 AP(AP3)를 포함한다. Non-AP 멀티 링크 장치는 제1 스테이션(non-AP STA1), 제2 스테이션(non-AP STA2) 및 제3 스테이션(non-AP STA3)을 포함한다. 제1 AP(AP1), 제2 AP(AP2) 및 제3 AP(AP3) 각각은 제1 링크(Link1), 제2 링크(Link2) 및 제3 Link(Link3)에서 동작한다. 제1 스테이션(non-AP STA1), 제2 스테이션(non-AP STA2) 및 제3 스테이션(non-AP STA3) 각각은 제1 링크(Link1), 제2 링크(Link2) 및 제3 Link(Link3)에서 동작한다. 제1 스테이션(non-AP STA1)은 제1 AP(AP1)와 결합되고, 제2 스테이션(non-AP STA2)은 제2 AP(AP2)와 결합되고, 제3 스테이션(non-AP STA3)은 제3 AP(AP3)와 결합된다. 제1 스테이션(non-AP STA1)과 제1 AP(AP1) 사이에 TWT 합의가 성립되고 해당 TWT 합의의 TWT Flow ID는 x 이다. 제2 스테이션(non-AP STA2)과 제2 AP(AP2) 사이에 TWT 합의가 성립되고 해당 TWT 합의의 TWT Flow ID는 y 이다. 제3 스테이션(non-AP STA3)과 제3 AP(AP3) 사이에 TWT 합의가 성립되고 해당 TWT 합의의 TWT Flow ID는 z 이다.
이때, non-AP 멀티 링크 장치는 제1 스테이션(non-AP STA1)과 제1 AP(AP1) 사이의 TWT 합의와 제3 스테이션(non-AP STA3)과 제3 AP(AP3) 사이에 TWT 합의를 해제하기 위해 TWT 해제 프레임을 전송한다. 이때, TWT 해제 프레임은 장치는 제1 스테이션(non-AP STA1)과 제1 AP(AP1) 사이의 TWT 합의의 TWT Flow ID에 해당하는 x와 제3 스테이션(non-AP STA3)과 제3 AP(AP3) 사이의 TWT 합의의 TWT Flow ID에 해당하는 z를 지시한다.
AP 멀티 링크 장치는 non-AP 멀티 링크 장치에게 TWT 해제 프레임에 대한 ACK을 전송한다. 이후 AP 멀티 링크 장치는 제1 스테이션(non-AP STA1)과 제1 AP(AP1) 사이의 TWT 합의와 제3 스테이션(non-AP STA3)과 제3 AP(AP3) 사이의 TWT 합의를 해제한다. non-AP 멀티 링크 장치는 TWT 해제 프레임에 대한 ACK을 수신한다. 이후 non-AP 멀티 링크 장치는 제1 스테이션(non-AP STA1)과 제1 AP(AP1) 사이의 TWT 합의와 제3 스테이션(non-AP STA3)과 제3 AP(AP3) 사이의 TWT 합의를 해제한다.
앞서 설명한 실시 예들에 따라 TWT 합의를 설정하고 해제하기 위한 TWT 엘리멘트에 대해서는 도 20을 통해 설명한다.
도 20은 본 발명의 실시 예에 따른 TWT 엘리멘트의 Individual TWT parameter set 필드의 포맷을 보여준다.
TWT 엘리멘트의 Individual TWT parameter set 필드의 Request Type 필드는 1비트 필드인 TWT Request 서브필드, 3비트 필드인 TWT Setup Command 서브필드, 1비트 필드인 Trigger 서브필드, 1비트 필드인 Implicit 서브필드, 1비트 Flow Type 서브필드, 3비트 필드인 TWT Flow Identifier 서브필드, 5비트 필드인 TWT Wake Interval Exponent 서브필드, 및 1비트 필드인 TWT Protection 서브필드를 포함한다.
TWT Request 서브필드의 값이 1인 경우, TWT 엘리멘트를 전송하는 스테이션은 TWT 요청 스테이션 또는 TWT 스케줄드 스테이션일 수 있다. 또한, TWT Request 서브필드의 값이 0인 경우, TWT 엘리멘트를 전송하는 스테이션은 TWT 응답 스테이션 또는 TWT 스케줄링 AP 일 수 있다.
TWT Setup Command 서브필드는 TWT 커맨드의 타입을 지시할 수 있다. TWT Setup Command 서브필드의 값은 0 내지 7로 설정될 수 있다. TWT Setup Command 서브필드의 값이 0 내지 7인 경우, TWT Setup Command 서브필드는 TWT Setup Command 서브필드를 포함하는 TWT 엘리멘트가 요청(Request) TWT, 제안(Suggest) TWT, 요구(Demand) TWT, TWT 그룹핑(Grouping), 수용(Accept) TWT, 변경(Alternate) TWT, 명령(Dictate) TWT, 및 거절(Reject) TWT임을 나타낼 수 있다. 이는 종래에서 사용되는 TWT Setup Command 서브필드의 설정과 동일할 수 있다.
Trigger 서브필드의 값이 1인 경우, Trigger 서브필드는 TWT 엘리멘트에 의해 TWT 합의가 수립될 경우 TWT 서비스 피리어드에는 1개 이상의 트리거 프레임(trigger frame)이 전송됨을 지시할 수 있다.
Implicit 서브필드는 TWT 엘리멘트가 묵시적(implicit) TWT를 요청(request)하는지 나타낸다. Implicit 서브필드의 값이 1인 경우, Implicit 서브필드는 TWT 엘리멘트가 묵시적 TWT를 요청함을 나타낼 수 있다. Implicit 서브필드의 값이 0인 경우, Implicit 서브필드는 TWT 엘리멘트가 명시적(explicit) TWT를 요청함을 나타낼 수 있다.
Flow Type 서브필드는 TWT 서비스 피리어드 내에서의 TWT 요청 스테이션과 TWT 응답 스테이션 사이의 상호작용 방식을 나타낸다. Flow Type 서브필드의 값은 종래 무선랜 표준에서 정의되는 Flow Type 서브필드의 값과 같이 설정될 수 있다.
TWT Flow Identifier 서브필드는 TWT 합의를 구분하기 위한 ID 값을 지시한다. 종래 무선랜 표준에서 TWT 엘리멘트는 한 개의 TWT Flow Identifier 서브필드만을 포함한다. 다만, 앞서 설명한 바와 같이 하나의 TWT 엘리멘트를 통해 복수의 링크에 TWT 합의가 설정되는 경우, TWT 엘리멘트는 복수의 TWT Flow Identifier 서브필드를 포함할 수 있다. 이때, 복수의 TWT Flow Identifier 서브필드 각각은 복수의 링크 각각에 설정된 TWT 합의의 TWT Flow ID를 지시할 수 있다.
TWT wake interval 서브필드는 TWT 엘리멘트에 의해 설정되는 TWT 서비스 피리어드 사이의 평균 인터벌(interval)을 지시한다. 이때, 평균 인터벌은 예측 값이다. TWT wake interval 서브필드의 값은 종래 무선랜 표준에서 정의되는 값과 같이 설정될 수 있다.
TWT protection 서브필드의 값이 1인 경우, TWT protection 서브필드는 TWT 요청 스테이션이 TWT 응답 스테이션에게 TWT 서비스 피리어드에 대한 보호(protection)를 지원하도록 요청하는 것을 나타낸다. 이때, TWT 서비스 피리어드의 보호 방법은 종래 무선랜 표준에서 정의되는 것과 같을 수 있다.
Individual TWT Parameter Set 필드의 Target Wake Time 필드, TWT Group Assignment 필드, Nominal Minimum TWT Wake Duration 필드, TWT Wake Interval Mantissa 필드, TWT Channel 필드, 및 NDP Paging 필드는 종래 무선랜 표준에서 정의되는 것과 같이 설정될 수 있다.
Individual TWT Parameter Set 필드는 도 16을 통해 설명한 실시 예와 같이 Link ID Bitmap 서브필드를 포함할 수 있다. Link ID Bitmap 서브필드가 복수의 링크를 지시하는 경우, TWT 엘리멘트는 복수의 링크에서 TWT 합의를 요청할 수 있다. 이때 복수의 링크에서 TWT 합의가 성립되는 경우, 복수의 링크에 서로 같은 TWT 파라미터를 갖는 TWT 서비스 피리어드가 적용될 수 있다.
또한, 하나의 TWT 엘리멘트를 통해 복수의 링크에 TWT 합의가 설정되더라도 복수의 링크에 설정된 복수의 TWT 합의는 서로 다른 TWT Flow ID를 가질 수 있다. TWT 합의가 한 번에 설정되더라도 서로 다른 링크에 적용되고, 서로 다른 스테이션과 AP에 적용되기 때문이다. TWT 엘리멘트는 복수의 TWT Flow Identifier 필드를 포함할 수 있다. 구체적으로 TWT 엘리멘트는 TWT 합의가 적용되는 복수의 링크 각각에 해당하는 복수의 TWT Flow Identifier 필드를 포함할 수 있다. 이때, TWT 엘리멘트가 포함하는 TWT Flow Identifier 필드의 개수는 Link ID Bitmap 서브필드가 지시하는 링크의 개수와 동일할 수 있다. 예컨대, Link ID Bitmap 서브필드가 2개의 링크를 지시하는 경우, Link ID Bitmap 서브필드를 포함하는 TWT 엘리멘트는 2개의 TWT Flow Identifier 필드를 포함할 수 있다. TWT 엘리멘트가 포함하는 복수의 TWT Flow Identifier 필드 중 첫 번째 TWT Flow Identifier 서브필드는 Request Type 필드에 포함된 TWT Flow ID일 수 있다. 첫 번째 TWT Flow Identifier 서브필드를 제외한 나머지 서브필드는 도 20에서의 Additional TWT Flow ID 필드와 같이 TWT 엘리멘트의 별도의 필드에 포함될 수 있다. 또한, 첫 번째 TWT Flow Identifier 서브필드는 TWT 요청 프레임이 전송되는 링크에 수립되는 TWT 합의의 TWT Flow ID를 지시할 수 있다. 첫 번째 TWT Flow Identifier 서브필드를 제외한 나머지 TWT Flow Identifier 서브필드는 TWT 합의가 수립되는 링크 중 TWT 요청 프레임이 전송되는 링크를 제외한 나머지 링크에 수립되는 TWT 합의의 TWT Flow ID를 지시할 수 있다. 앞서 설명한 바와 같이 TWT 합의가 수립되는 링크 중 TWT 요청 프레임이 전송되는 링크를 제외한 나머지 링크는 Link ID Bitmap 서브필드에 의해 지시될 수 있다. 또한, 첫 번째 TWT Flow Identifier 서브필드를 제외한 나머지 TWT Flow Identifier 서브필드는 Link ID의 값의 크기 순서에 따라 링크에 매핑될 수 있다. 첫 번째 TWT Flow Identifier 서브필드를 제외한 나머지 TWT Flow Identifier 서브필드 중 첫 번째 서브필드는 TWT 요청 프레임이 전송되는 링크를 제외한 나머지 링크 중 가장 작은 값의 링크 ID를 갖는 링크에 매핑되고, 두 번째 서브필드는 TWT 요청 프레임이 전송되는 링크를 제외한 나머지 링크 중 두 번째 작은 값의 링크 ID를 갖는 링크에 매핑되고, 세 번째 서브필드는 TWT 요청 프레임이 전송되는 링크를 제외한 나머지 링크 중 세 번째로 작은 값의 링크 ID를 갖는 링크에 매핑될 수 있다.
TWT 엘리멘트가 하나의 TWT 합의만을 요청하는 경우, TWT 엘리멘트는 첫 번째 TWT Flow Identifier 서브필드를 제외한 나머지 TWT Flow Identifier 서브필드를 포함하지 않을 수 있다. TWT 엘리멘트가 TWT 요청 프레임이 전송되는 링크 이외의 하나의 링크에서의 TWT 합의만을 요청하는 경우, TWT 엘리멘트는 첫 번째 TWT Flow Identifier 서브필드를 제외한 나머지 TWT Flow Identifier 서브필드를 포함하지 않을 수 있다. 이때, 첫 번째 TWT Flow Identifier 서브필드는 TWT 요청 프레임 요청하는 TWT 합의에 해당하는 TWT Flow ID를 지시할 수 있다.
도 21은 본 발명의 실시 예에 따른 첫 번째 TWT Flow Identifier 서브필드를 제외한 나머지 TWT Flow Identifier 서브필드의 포맷을 보여준다.
앞서 설명한 바와 같이 Additional TWT Flow ID 필드의 크기는 TWT 엘리멘트의 Link ID 비트맵에 의해 지시되는 링크의 개수에 따라 결정될 수 있다. 종래 무선랜에서 스테이션이 수립할 수 있는 TWT 합의의 최대 개수는 8개이다. 따라서 종래 무선랜에서 TWT Flow Identifier 서브필드는 3비트 필드이다. 멀티 링크 장치가 수립할 수 있는 TWT 합의의 최대 개수는 8개인 경우, TWT Flow Identifier 서브필드는 3비트 필드일 수 있다. 또한, Additional TWT Flow ID 필드는 3비트 크기를 갖는 서브필드를 1개 이상 포함할 수 있다. TWT 엘리멘트가 n개의 TWT 합의를 요청하는 경우, Additional TWT Flow ID 필드는 3비트의 서브필드를 n-1개 포함할 수 있다. 이때, 앞서 설명한 바와 같이 첫 번째 TWT Flow Identifier 서브필드는 Request Type 필드에 포함된 TWT Flow ID일 수 있다. 또 다른 구체적인 실시 예에서 TWT 엘리멘트가 n개의 TWT 합의를 요청하는 경우, Additional TWT Flow ID 필드는 3비트의 서브필드를 n개 포함할 수 있다. 또한, TWT Parameter Set 필드가 옥텟(octec) 단위의 길이를 갖게 하기 위해 Additional TWT Flow ID 필드에 리저브드 필드가 포함될 수 있다. 도 21(a)는 이러한 실시 예를 보여준다.
도 21(a)의 Per-octet 포맷에서 Additional TWT Flow ID 필드는 1 옥텟에 2개의 TWT Flow ID 서브필드를 포함한다. 구체적으로 TWT 엘리멘트가 3개의 TWT 협약을 요청하는 경우, Additional TWT Flow ID 필드는 1개의 옥텟에 2개의 TWT Flow ID 서브필드를 포함할 수 있다.
또한, Additional TWT Flow ID 필드가 홀 수개의 TWT Flow ID를 지시하는 경우, Additional TWT Flow ID 필드가 포함하는 마지막 옥텟은 1개의 TWT Flow ID를 지시하고, 나머지 5비트는 리저브드 필드로 설정될 수 있다. 도 22(b)는 이러한 실시 예를 보여준다.
앞서 설명한 실시 예들에서 TWT Flow ID 서브필드의 크기가 3비트인 것으로 설명하였으나 TWT Flow ID 서브필드의 크기가 4비트인 경우에도 앞서 설명한 실시 예가 적용될 수 있다.
앞서 설명한 바와 같이 하나의 TWT 엘리멘트가 복수의 링크에서 TWT 합의를 요청할 수 있다. 따라서 이에 필요한 정보를 추가로 전송할 필요가 있다. 이에 대해서는 도 22를 통해 설명한다.
도 22는 본 발명의 실시 예에 따른 멀티 링크 장치가 전송하는 TWT 엘리멘트가 포함하는 Control 필드의 포맷을 보여준다.
하나의 TWT 엘리멘트가 복수의 링크에서 TWT 합의를 요청할 때 필요한 추가 정보는 TWT 합의가 수행되는 링크를 지시하는 정보인 Link ID 비트맵과 TWT 합의에 해당하는 TWT Flow ID인 Additional TWT Flow Identifier 필드를 포함할 수 있다. 다만, 멀티 링크 장치의 스테이션이 스테이션이 결합된 스테이션에게 TWT 요청 프레임을 전송하는 경우, TWT 요청 프레임에 포함되는 TWT 엘리멘트는 이러한 추가 정보를 포함하지 않을 수 있다. TWT 엘리먼트는 Link ID Bitmap 필드 및 Additional TWT Flow Identifier 필드를 포함하는지 지시하는 필드를 포함할 수 있다. TWT 엘리멘트를 수신한 스테이션은 Link ID Bitmap 필드 및 Additional TWT Flow Identifier 필드를 포함하는지 지시하는 필드를 기초로 TWT 엘리멘트의 포맷을 판단할 수 있다.
TWT 요청 스테이션이 전송한 TWT 엘리멘트가 Link ID Bitmap 서브필드를 포함하는 경우, TWT 요청 스테이션은 TWT 엘리멘트의 Control 필드의 Link ID Bitmap Present 서브필드의 값을 1로 설정할 수 있다. TWT 엘리멘트의 Control 필드의 Link ID Bitmap Present 서브필드의 값을 1인 경우, TWT 엘리멘트를 수신한 TWT 응답 스테이션은 TWT 엘리멘트가 Link ID Bitmap 서브필드를 포함하고 복수의 링크 또는 TWT 엘리멘트를 포함하는 TWT 요청 프레임이 전송된 링크와 다른 링크에서 TWT 합의를 수립하기 위한 것으로 판단할 수 있다.
TWT 요청 스테이션이 전송한 TWT 엘리멘트가 Additional TWT Flow ID 서브필드를 포함하는 경우, TWT 요청 스테이션은 TWT 엘리멘트의 Control 필드의 Additional TWT Flow ID Present 서브필드의 값을 1로 설정할 수 있다. TWT 엘리멘트의 Control 필드의 Additional TWT Flow ID Present 서브필드의 값을 1인 경우, TWT 엘리멘트를 수신한 TWT 응답 스테이션은 TWT 엘리멘트가 Additional TWT Flow ID 서브필드를 포함하고 복수의 링크 에서 TWT 합의를 수립하기 위한 것으로 판단할 수 있다.
또 다른 구체적인 실시 예에서 Additional TWT Flow ID Present 서브필드는 생략될 수 있다. 이때, TWT 엘리멘트를 수신한 TWT 응답 스테이션은 Link ID Bitmap 서브필드를 기초로 TWT 엘리멘트가 Additional TWT Flow ID 서브필드를 포함하는지 판단할 수 있다. 또한, TWT 엘리멘트를 수신한 TWT 응답 스테이션은 Link ID Bitmap 서브필드를 기초로 TWT 엘리멘트가 포함하는 Additional TWT Flow ID 서브필드의 크기를 판단할 수 있다.
앞서 설명한 바와 같이 멀티 링크 장치는 제1 링크에서 제2 링크에 적용되는 TWT 합의를 해제하기 위한 TWT 해제 프레임을 전송할 수 있다. 또한, 멀티 링크 장치는 하나의 링크에 TWT 해제 프레임을 전송하여 복수의 링크에 적용되는 TWT 합의를 해제할 수 있다.
TWT 해제 프레임 역시 종래 무선랜의 TWT 해제 프레임에 추가적인 정보를 포함할 수 있다. 이에 대해서는 도 23을 통해 설명한다.
도 23은 본 발명의 실시 예에 따른 멀티 링크 장치가 전송하는 TWT 해제 프레임의 Action 필드의 포맷을 보여준다.
멀티 링크 장치가 전송하는 TWT 해제 프레임은 새로운 액션 프레임으로 정의될 수 있다. 설명의 편의를 위해 멀티 링크 장치가 전송하는 TWT 해제 프레임을 MLD TWT 해제 프레임으로 지칭한다. MLD TWT 해제 프레임은 Action 필드의 카테고리 중 Unprotected S1G로 지정될 수 있다. Unprotected S1G의 Action 필드의 값 중 종래 무선랜에서 사용되지 않는 값이 MLD TWT 해제 프레임에게 할당될 수 있다. 예컨대, 도 23(a)의 실시 예에서와 같이 12가 MLD TWT 해제 프레임에게 할당될 수 있다. 이때, 스테이션이 MLD TWT 해제 프레임을 전송하려는 경우, 스테이션은 액션 프레임에서 카테고리의 값을 22로 설정하고 Unprotected S1G Action 필드의 값을 12로 설정할 수 있다.
또한, MLD TWT 해제 프레임의 Action 필드는 TWT 해제 프레임이 해제하려는 TWT 합의를 지시하는 필드를 포함할 수 있다. 이 필드를 MLD TWT Flow 필드로 지칭할 수 있다. MLD TWT Flow 필드는 TWT 해제 프레임이 해제하려는 TWT 합의에 해당하는 링크의 링크 ID와 TWT 해제 프레임이 해제하려는 TWT 합의에 해당하는 TWT Flow ID를 지시할 수 있다. 도 23(b)는 TWT 해제 프레임이 포함하는 Action 필드의 일 예를 보여준다.
MLD TWT Flow 필드는 Unprotected S1G 카테고리뿐만 아니라, 다른 카테고리의 Action 필드를 통해서도 지시될 수 있다. 예컨대, MLD TWT 해제 프레임은 S1G 카테고리의 Protected Action 프레임 포맷으로 전송될 수 있다. 이때, S1G 카테고리의 액션 프레임의 Action 필드가 MLD TWT Flow 필드를 포함할 수 있다.
TWT 해제 프레임은 본 실시 예에서 설명한 액션 프레임과 다른 포맷으로 사용될 수 있고, TWT 해제 프레임으로 액션 프레임 이외의 프레임이 사용될 수 있다. 구체적인 MLD TWT Flow 필드의 포맷에 대해서는 도 24를 통해 설명한다.
도 24는 본 발명의 실시 예에 따른 MLD TWT Flow 필드를 보여준다.
MLD TWT Flow 필드는 가변길이를 갖는 필드를 포함할 수 있다. 구체적으로 MLD TWT Flow 필드는 MLD TWT 해제 프레임이 해제하려는 TWT 합의에 해당하는 TWT Flow ID를 지시하는 가변 길이의 필드를 포함할 수 있다. 구체적인 실시 예에서 MLD TWT Flow 필드는 고정된 길이를 갖는 MLD TWT Flow Control 필드와 가변 길이를 갖는 MLD TWT Flow IDs 필드를 포함할 수 있다. MLD TWT Flow Control 필드는 1 옥텟 필드일 수 있다. 또한, MLD TWT Flow Control 필드는 MLD TWT Flow IDs 필드를 파싱하기 위한 정보를 지시할 수 있다. 구체적으로 MLD TWT Control 필드는 MLD TWT Flow IDs 필드의 크기에 관한 정보를 지시할 수 있다. MLD TWT Flow IDs 필드는 해제하려는 TWT 합의에 해당하는 TWT Flow ID를 지시할 수 있다. 또한, MLD TWT Flow Control 필드의 설정에 따라 MLD TWT Flow IDs 필드는 생략될 수 있다. 도 24(a)는 이러한 실시 예에 따른 MLD TWT Flow 필드를 보여준다.
MLD TWT Flow Control 필드는 MLD TWT Flow IDs 필드의 길이를 지시하는 필드를 포함할 수 있다. 이때, 이 필드를 Length of MLD Flow IDs 필드로 지칭될 수 있다. Length of MLD Flow IDs 필드는 1 옥텟 단위로 MLD TWT Flow IDs 필드의 길이를 지시할 수 있다. 이때, MLD TWT Flow IDs 필드의 길이가 5 옥텟인 경우 Length of MLD Flow IDs 필드의 값은 5 또는 4로 설정될 수 있다. 도 24(b)는 이러한 실시 예에 따른 MLD TWT Flow 필드를 보여준다.
또한, TWT Flow Control 필드는 MLD TWT 해제 프레임을 전송하는 멀티 링크 장치와 MLD TWT 해제 프레임을 수신하는 멀티 링크 장치 사이에 수립된 모든 TWT 합의를 해제하려 함을 지시하는 서브필드를 포함할 수 있다. 이러한 서브필드를 Teardown All TWT of All Link 필드로 지칭한다. 멀티 링크 장치가 MLD TWT 해제 프레임의 수신자와 사이에 수립된 모든 TWT 합의를 해제하려고 하는 경우, 멀티 링크 장치는 MLD TWT 해제 프레임의 Teardown All TWT of All Link 서브필드의 값을 1로 설정할 수 있다. Teardown All TWT of All Link 서브필드가 1로 설정된 MLD TWT 해제 프레임이 성공적으로 수신된 경우, MLD TWT 해제 프레임을 전송한 멀티 링크 장치와 MLD TWT 해제 프레임을 수신한 멀티 링크 장치 사이에 수립된 모든 TWT 합의가 해제된다. Teardown All TWT of All Link 서브필드가 1인 경우, Length of MLD Flow IDs 필드는 리저브드 필드로 설정될 수 있다. 따라서 Teardown All TWT of All Link 서브필드가 1인 경우, MLD TWT Flow 필드는 MLD TWT Flow IDs를 포함하지 않을 수 있다. 도 24(b)는 이러한 실시 예에 따른 TWT Flow Control 필드를 보여준다.
MLD TWT Flow IDs 필드는 1 옥텟 마다 3비트의 TWT Identifier 서브필드, 4비트의 Link ID 필드, 및 1비트의 Teardown All TWT 서브필드를 반복적으로 포함할 수 있다. 이때, 연속한 TWT Identifier 서브필드, Link ID 필드가 MLD TWT 해제 프레임이 해제하는 TWT 합의를 식별할 수 있다. 도 24(c)는 이러한 실시 예에 따른 MLD TWT Flow IDs 필드를 보여준다.
또한, Teardown All TWT 서브필드는 Teardown All TWT 서브필드에 해당하는 링크와 관련된 TWT 합의가 모두 해제됨을 지시할 수 있다. 이때, Teardown All TWT 서브필드에 해당하는 링크는 Teardown All TWT 서브필드와 동일한 옥텟에 포함된 Link Id 필드에 해당하는 링크이다. 또한, Teardown All TWT 서브필드의 값이 1인 경우 TWT Identifier 서브필드는 리저브드 필드로 설정될 수 있다. 도 24(e)는 이러한 실시 예에 따른 MLD TWT Flow IDs 필드를 보여준다.
또 다른 구체적인 실시 예에서 Teardown All TWT 서브필드는 Teardown All TWT 서브필드에 해당하는 TWT Flow ID에 해당하는 TWT 합의가 모두 해제됨을 지시할 수 있다. 이때, Teardown All TWT 서브필드에 해당하는 링크는 Teardown All TWT 서브필드와 동일한 옥텟에 포함된 TWT Flow Identifier 서브필드에 해당하는 TWT Flow ID이다. 도한, Teardown All TWT 서브필드의 값이 1인 경우 Link ID 서브필드는 리저브드 필드로 설정될 수 있다. 도 24(f)는 이러한 실시 예에 따른 MLD TWT Flow IDs 필드를 보여준다.
또 다른 구체적인 실시 예에서 MLD TWT Flow IDs 필드는 복수의 TWT Identifier 서브필드를 연속적으로 포함하고, 복수의 Link ID를 필드를 연속적으로 포함하고, Teardown All TWT 서브필드를 연속적으로 포함할 수 있다. 이러한 실시 예에서 동일한 순서의 TWT Identifier 서브필드와 Link ID 필드가 MLD TWT 해제 프레임 해제하는 TWT 합의를 식별할 수 있다. 예컨대, 첫 번째 TWT Identifier 서브필드와 첫 번째 Link ID 필드의 조합이 MLD TWT 해제 프레임이 해제하는 TWT 합의를 식별하고, 두 번째 TWT Identifier 서브필드와 두 번째 Link ID 필드의 조합이 MLD TWT 해제 프레임이 해제하는 TWT 합의를 식별할 수 있다. MLD TWT Flow IDs 필드에 포함되는 TWT Flow Identifier 서브필드의 개수, Link ID 서브필드의 개수, 및 Teardown All TWT 서브필드의 개수 중 적어도 하나는 MLD TWT Flow IDs 필드의 크기에 비례할 수 있다. 또한, Teardown All TWT 서브필드와 Link ID 필드는 순차적으로 대응될 수 있다. 예컨대 첫 번째 Teardown All TWT 서브필드는 첫 번째 Link ID 필드에 해당하고, 두 번째 Teardown All TWT 서브필드는 두 번째 Link ID 필드에 해당할 수 있다. 또한, Teardown All TWT 서브필드와 TWT Flow Identifier 서브필드는 순차적으로 대응될 수 있다. 예컨대 첫 번째 Teardown All TWT 서브필드는 첫 번째 TWT Flow Identifier 서브필드에 해당하고, 두 번째 Teardown All TWT 서브필드는 두 번째 TWT Flow Identifier 서브필드에 해당할 수 있다.
또 다른 구체적인 실시 예에서 MLD TWT 해제 프레임은 복수의 링크를 지시하기 위한 Link ID 비트맵을 포함할 수 있다. 이는 앞서 설명한 TWT 엘리멘트가 포함하는 Link ID Bitmap 필드의 포맷과 동일할 수 있다. 이외에 MLD TWT 해제 프레임은 복수의 TWT 합의를 해제하기 위한 정보를 시그널링하기 위해 비트맵을 포함할 수 있다. 이에 대해서는 도25를 통해 설명한다.
도 25는 본 발명의 또 다른 실시 예에 따른 MLD TWT Flow 필드의 포맷을 보여준다.
앞서 설명한 바와 같이 MLD TWT 해제 프레임은 가변 길이를 가질 수 있다. 이때, MLD TWT 해제 프레임은 고정된 길이의 MLD TWT Flow Control 필드와 MLD TWT Bitmap 필드를 포함할 수 있다. 즉, MLD TWT 해제 프레임은 도 24를 통해 설명한 실시 예들에서 언급된 MLD TWT Flow IDs 필드 대신 MLD TWT Bitmap 필드를 포함할 수 있다. 이때, MLD TWT Flow Control 필드의 길이는 1옥텟일 수 있다. 또한, MLD TWT 해제 프레임에서 MLD TWT Bitmap 필드는 MLD TWT Flow Control 필드의 값에 따라 생략될 수 있다. 도 25(a)는 이러한 실시 예에 따른 MLD TWT Flow 필드의 포맷을 보여준다.
MLD TWT Control 필드는 MLD TWT Bitmap 필드의 크기와 관련된 정보를 나타내는 서브필드를 포함할 수 있다. 이러한 서브필드를 Length of Bitmap 서브필드라 지칭한다. Length of Bitmap 필드는 3 옥텟 단위로 MLD TWT Bitmap 필드의 크기를 지시할 수 있다. 예컨대, MLD TWT Bitmap 필드의 크기가 9 옥텟인 경우, Length of Bitmap 필드의 값은 3 또는 2로 설정될 수 있다. Length of Bitmap 서브필드는 3비트의 필드일 수 있다. 이때, MLD TWT Bitmap 필드가 가질 수 있는 길이의 종류가 8개이하로 제한될 수 있다. 이는 TWT Flow ID의 개수가 8개 이하기 때문이다. 도 25(b)는 이러한 실시 예에 따른 MLD TWT Control 필드의 포맷을 보여준다.
MLD TWT Flow Control 필드는 도 24를 통해 설명한 것과 같이 MLD TWT 해제 프레임을 전송하는 멀티 링크 장치와 MLD TWT 해제 프레임을 수신하는 멀티 링크 장치 사이에 수립된 모든 TWT 합의를 해제하려 함을 지시하는 서브필드를 포함할 수 있다. 이러한 서브필드를 Teardown All TWT of All Link 필드로 지칭한다. 멀티 링크 장치가 MLD TWT 해제 프레임의 수신자와 사이에 수립된 모든 TWT 합의를 해제하려고 하는 경우, 멀티 링크 장치는 MLD TWT 해제 프레임의 Teardown All TWT of All Link 서브필드의 값을 1로 설정할 수 있다. Teardown All TWT of All Link 서브필드가 1로 설정된 MLD TWT 해제 프레임이 성공적으로 수신된 경우, MLD TWT 해제 프레임을 전송한 멀티 링크 장치와 MLD TWT 해제 프레임을 수신한 멀티 링크 장치 사이에 수립된 모든 TWT 합의가 해제된다. Teardown All TWT of All Link 서브필드가 1인 경우, Length of TWT Bitmap 필드는 리저브드 필드로 설정될 수 있다. 따라서 Teardown All TWT of All Link 서브필드가 1인 경우, MLD TWT Flow 필드는 TWT Bitmap 필드를 포함하지 않을 수 있다. 도 25(c)는 이러한 실시 예에 따른 TWT Flow Control 필드를 보여준다.
TWT Bitmap 필드는 3옥텟 마다 1옥텟 길이의 TWT Flow ID Bitmap 서브필드와 2옥텟 길이의 Link ID Bitmap 서브필드를 반복적으로 포함할 수 있다. 도 25(d)는 이러한 실시 예에 따른 TWT Bitmap 필드를 보여준다. TWT Flow ID Bitmap 서브필드는 TWT 해제 프레임이 해제하려는 TWT 합의에 해당하는 TWT Flow ID를 지시할 수 있다. MLD TWT 해제 프레임이 TWT Flow ID가 1 내지 3인 TWT 합의를 해제하는 경우, TWT Flow ID Bitmap 서브필드는 1110 00002b로 설정될 수 있다. 이때, TWT Flow ID의 값 1 내지 8 각각은 TWT Flow ID Bitmap 서브필드의 첫 번째 비트부터 여덟 번째 비트에 매핑된다. 또한, Link ID Bitmap 서브필드 TWT 해제 프레임이 해제하려는 TWT 합의에 해당하는 링크의 링크 ID를 지시할 수 있다. MLD TWT 해제 프레임이 Link ID가 1 내지 3에 대응하는 링크에 설정된 TWT 합의를 해제하는 경우, Link ID Bitmap 서브필드는 1110 00002b로 설정될 수 있다. 이때, Link ID의 값 1 내지 8 각각은 Link ID Bitmap 서브필드의 첫 번째 비트부터 여덟 번째 비트에 매핑된다. 또한, 앞서 설명한 것과 TWT Flow ID는 3비트로 지시될 수 있다. 따라서 TWT Flow ID 비트맵은 3비트 크기의 필드로 하나의 TWT Flow ID의 값을 지시할 수 있다. 이러한 경우, TWT Flow ID 비트맵 서브필드의 5비트는 리저브드 필드일 수 있다. 도 25(e)는 이러한 실시 예에 따른 TWT Bitmap 필드를 보여준다.
또 다른 구체적인 실시 예에서 TWT Bitmap 필드는 TWT Flow ID Bitmap 서브필드를 연속하여 포함하고, Link ID Bitmap 서브필드를 연속하여 포함할 수 있다. TWT Bitmap 필드에 포함되는 TWT Flow ID Bitmap 서브필드의 길이 및 Link ID Bitmap 서브필드의 길이 중 적어도 하나는 TWT Bitmap 필드의 크기에 비례할 수 있다.
TWT 해제 프레임이 해제하려는 TWT 합의는 TWT Flow ID Bitmap 서브필드에 의해 지시되는 TWT Flow ID에 해당하고 Link ID Bitmap 서브필드에 의해 지시되는 Link ID에 해당하는 TWT 합의다.
앞서 설명한 MLD TWT 해제 프레임은 종래 무선랜에서 사용된 TWT 해제 프레임이 아닌 멀티 링크 장치 사이에 수립된 TWT 합의를 해제하기 위한 프레임으로 새롭게 정의된 것이다. 종래 TWT 해제 프레임을 사용하여 멀티 링크 장치 사이에 수립된 TWT 합의를 해제하는 방법에 대해 설명한다. 구체적으로 1) TWT 해제 프레임이 전송되는 링크에서 수립되었던 모든 TWT 합의를 해제하는 방법, 2) 특정 링크에서 수립되었던 모든 TWT 합의를 해제하는 방법, 3) 모든 링크에서 특정 TWT Flow ID에 해당하는 TWT 합의를 해제하는 방법 및 4) 모든 링크에 설정된 모든 TWT 합의를 해제하는 방법에 대해 설명한다.
도 26은 본 발명의 실시 예에 따른 멀티 링크 장치에 수립된 TWT 합의 해제하는 TWT 해제 프레임을 보여준다.
종래 TWT 해제 프레임은 1 옥텟 길이의 TWT Flow 필드를 포함한다. 이때, TWT Flow 필드의 첫 번째 비트부터 세 번째 비트(B0-B2)는 TWT Flow ID를 지시하는 TWT Flow Identifier 서브필드이다. TWT Flow 필드의 네 번째 비트부터 다섯 번째 비트(B3-B4)는 리저브드 서브필드이다. TWT Flow 필드의 여섯 번째 비트부터 일곱 번째 비트(B5-B6)는 네고시에션 타입을 나타내는 Negotiation Type 서브필드이다. 이때, TWT Flow 필드의 여섯 번째 비트부터 여덟 번째 비트(B7)는 Teardown All TWT 서브필드로 설정될 수 있다. Teardown All TWT 서브필드는 TWT 해제 프레임을 전송하는 스테이션과 TWT 해제 프레임을 수신하는 스테이션 사이에 수립된 모든 TWT 합의를 해제하려는 것임을 지시할 수 있다. 앞서 설명한 TWT Flow 필드의 포맷은 Negotiation Type 서브필드의 값이 0 또는 1인 경우일 수 있다. Teardown All TWT 서브필드의 값이 1인 경우, TWT Flow Identifier 서브필드는 리저브드 필드로 설정되어, TWT Flow Identifier 서브필드의 값은 0으로 설정될 수 있다.
먼저, TWT 해제 프레임이 전송되는 링크에서 수립되었던 모든 TWT 합의를 해제하는 방법에 대해 설명한다. TWT 해제 프레임이 전송되는 링크에서 수립되었던 모든 TWT 합의를 해제함을 시그널링하기 위해, TWT 해제 프레임의 Teardown all TWT 서브필드(B7)의 값은 1로 설정되고, Teardown Type 서브필드(B4)의 값은 0으로 설정될 수 있다. 이때, TWT Flow 필드의 첫 번째 비트부터 네 번째 비트까지(B0-B3)는 리저브드 필드로 설정될 수 있다. 도 26(a)는 이러한 실시 예에 따른 TWT Flow 필드의 포맷을 보여준다. TWT Flow 필드의 Teardown all TWT 서브필드의 값이 1이 고, Teardown Type 서브필드의 값은 0인 경우, TWT Flow 필드를 포함하는 TWT 해제 프레임을 전송한 멀티 링크 장치와 수신한 멀티 링크 장치는 두 멀티 링크 장치 사이에 수립된 모든 TWT 중 TWT 해제 프레임이 전송되는 링크에서 수립되었던 모든 TWT 합의를 해제할 수 있다.
특정 링크에서 수립되었던 모든 TWT 합의를 해제하는 방법에 대해 설명한다. 특정 링크에서 수립되었던 모든 TWT 합의를 해제함을 시그널링하기 위해, TWT 해제 프레임의 Teardown all TWT 서브필드(B7)의 값은 0으로 설정되고, Teardown Type 서브필드(B4)의 값은 1으로 설정될 수 있다. 이때, TWT Flow 필드의 첫 번째 비트부터 네 번째 비트까지(B0-B3)는 TWT 해제 프레임이 해제하는 TWT 합의에 해당하는 링크를 지시하는 Link ID 필드로 설정될 수 있다. 도 26(b)는 이러한 실시 예에 따른 TWT Flow 필드의 포맷을 보여준다. TWT Flow 필드의 Teardown all TWT 서브필드의 값은 0이고, Teardown Type 서브필드의 값은 1인 경우, TWT Flow 필드를 포함하는 TWT 해제 프레임을 전송한 멀티 링크 장치와 수신한 멀티 링크 장치는 Link ID 필드가 지시한 링크에서 수립된 모든 TWT 합의를 해제할 수 있다.
모든 링크에서 특정 TWT Flow ID에 해당하는 TWT 합의를 해제하는 방법에 대해 설명한다. 모든 링크에서 특정 TWT Flow ID에 해당하는 TWT 합의를 해제함을 시그널링하기 위해, TWT 해제 프레임의 Teardown all TWT 서브필드(B7)의 값은 0으로 설정되고, Teardown Type 서브필드(B4)의 값은 0으로 설정되고, All Link 서브필드(B3)의 값은 1로 설정될 수 있다. 도 26(c)는 이러한 실시 예에 따른 TWT Flow 필드의 포맷을 보여준다. TWT 해제 프레임의 Teardown all TWT 서브필드의 값이 0이고, Teardown Type 서브필드의 값이 0이고, All Link 서브필드의 값이 1인 경우, TWT Flow 필드를 포함하는 TWT 해제 프레임을 전송한 멀티 링크 장치와 수신한 멀티 링크 장치는 두 멀티 링크 장치와 수립된 TWT 합의 중 TWT Flow Identifier 필드가 지시하는 TWT Flow ID에 해당하는 모든 TWT 합의를 해제할 수 있다.
모든 링크에 설정된 모든 TWT 합의를 해제하는 방법에 대해 설명한다. 모든 링크에 설정된 모든 TWT 합의를 해제함을 시그널링하기 위해, TWT 해제 프레임의 Teardown all TWT 서브필드(B7)의 값은 1로 설정되고, Teardown Type 서브필드(B4)의 값은 1로 설정될 수 있다. 이때, TWT Flow 필드(B0-B3)는 리저브드 필드로 설정될 수 있다. 도 26(d)는 이러한 실시 예에 따른 TWT Flow 필드의 포맷을 보여준다. TWT 해제 프레임의 Teardown all TWT 서브필드의 값이 1이고, Teardown Type 서브필드의 값이 1인 경우, TWT Flow 필드를 포함하는 TWT 해제 프레임을 전송한 멀티 링크 장치와 수신한 멀티 링크 장치는 두 멀티 링크 장치와 수립된 TWT 합의를 해제할 수 있다.
앞서 설명한 실시 예들에서 TWT 합의는 TWT 해제 프레임으로 인행 해제되었다. 다만, TWT 해제 프레임이 전송되거나 수신되지 않는 경우에도 TWT 합의는 해제될 수 있다. 이를 묵시적 해제로 지칭한다. 이에 대해서는 도 27을 통해 설명한다.
도 27은 본 발명의 실시 예에 따른 멀티 링크 장치 사이에 수립된 TWT 합의가 묵시적으로 해제되는 것을 보여준다.
AP와 non-AP 스테이션 사이의 결합이 해제되는 경우, AP와 non-AP 스테이션 사이에 수립된 TWT 합의가 묵시적으로 해제될 수 있다. 또한, AP와 non-AP 스테이션이 결합이 수행된 링크가 비활성화(disable)되는 경우, AP와 non-AP 스테이션 사이에 수립된 TWT 합의가 묵시적으로 해제될 수 있다. 이때, 링크가 비활성화 되는 것은 링크에 매핑된 TID가 없어지는 것을 포함할 수 있다. 이후 설명에서 설명의 편의를 위해 AP와 non-AP 스테이션 사이의 결합이 해제(disassociate)되는 경우를 예시하여 설명하나 이는 AP와 non-AP 스테이션이 결합이 수행된 링크가 비활성화(disable)되는 경우에도 적용될 수 있다.
앞서 설명한 바와 하나의 TWT 엘리멘트를 통하여 복수의 링크에 TWT 합의 수립될 수 있다. 이때, 복수의 링크에 수립된 TWT 합의들의 TWT Flow ID는 동일할 수 있다. 또한, 복수의 링크에 수립된 TWT 합의의 요청 스테이션들이 동일하고, 복수의 링크에 수립된 TWT 합의의 응답 스테이션들이 동일할 수 있다. 따라서 복수의 링크에 수립된 TWT 합의가 서로 구별되기 힘들며, TWT 합의를 해제할 때에도 동시에 해제되어야 할 수 있다. 또한, 종래 무선랜 표준에서 AP와 non-AP 스테이션이 결합 해제되는 경우, AP와 non-AP 스테이션은 AP와 non-AP 스테이션 사이에 수립된 TWT 합의를 묵시적으로 해제한다. 이때, AP와 non-AP 스테이션은 사이에 수립된 TWT 합의에 관한 정보를 삭제한다.
하나의 TWT 엘리멘트를 통하여 복수의 링크에 TWT 합의가 수립되고, 복수의 링크에 수립된 TWT 합의들의 TWT Flow ID는 동일하고, TWT 요청 스테이션과 TWT 응답 스테이션이 결합 해제되는 경우, 복수의 TWT 합의는 모두 묵시적으로 해제될 수 있다.
또 다른 구체적인 실시 예에서 멀티 링크 장치에 포함된 스테이션인 제1 스테이션이 제1 스테이션과 결합된 제2 스테이션과 결합 해제되는 경우, 제1 스테이션이 TWT 응답 스테이션이거나 제1 스테이션이 TWT 요청 스테이션인 TWT 합의는 묵시적으로 해제될 수 있다. 이때, 제1 스테이션이 제1 링크에서 동작한다. 해제되는 TWT 합의는 제1 스테이션이 포함된 멀티 링크 장치가 동작하는 링크 중 제1 링크 이외의 링크에서 동작하는 스테이션에게 계승될 수 있다. 이때, TWT 합의 계승을 위해 Link ID를 포함한 시그널링이 수행될 수 있다. 또한, TWT 합의의 계승을 위한 시그널링은 매니지먼트 프레임을 통해 전송될 수 있다. 또한, 이러한 TWT 합의의 계승은 어느 하나의 스테이션이 스테이션과 결합된 스테이션과 결합되지 않는 경우에도 적용될 수 있다. TWT 합의의 계승이 수행되는 경우, 계승 전에 수립되었던 TWT 합의는 해제될 수 있다. 앞서 설명한 실시 예들에서 TWT 합의 계승은 이전에 수립된 TWT 합의에 적용되는 TWT 파라미터가 새로운 TWT 합의에 적용되는 것을 나타낼 수 있다.
도 27의 실시 예에서 non-AP 멀티 링크 장치(non-AP MLD)는 제1 스테이션(STA1), 제2 스테이션(STA2) 및 제3 스테이션(STA3)을 포함한다. 제1 스테이션(STA1), 제2 스테이션(STA2) 및 제3 스테이션(STA3) 각각은 제1 링크(Link 1), 제2 링크(Link 2), 및 제3 링크(Link 3)에서 동작한다. AP 멀티 링크 장치(AP MLD)는 제1 AP(AP1), 제2 AP(AP2) 및 제3 AP(AP3)를 포함한다. 제1 AP(AP1), 제2 AP(AP2) 및 제3 AP(AP3) 각각은 제1 링크(Link 1), 제2 링크(Link 2), 및 제3 링크(Link 3)에서 동작한다. 제1 스테이션(STA1)과 제1 AP(AP1)는 결합하고, 제1 링크(Link1), 제2 링크(Link 2), 및 제3 링크(Link3)에서 TWT 합의(TWT 1, TWT 2, TWT 3)를 수립한다. 제1 링크(Link1), 제2 링크(Link 2), 및 제3 링크(Link3)에서 TWT 합의(TWT 1, TWT 2, TWT 3)의 요청 스테이션과 응답 스테이션은 제1 스테이션(STA1) 및 제1 AP(AP1)이다. non-AP 멀티 링크 장치(non-AP MLD)와 AP 멀티 링크 장치(AP MLD)가 재결합(reassociation) 절차를 수행하여 제1 스테이션(STA1)과 제1 AP(AP1)가 결합 해제될 수 있다. 제1 스테이션(STA1) 및 제1 AP(AP1)가 TWT 응답 스테이션 또는 TWT 요청 스테이션인 TWT 합의는 모두 묵시적으로 해제될 수 있다. 따라서 제1 링크(Link1), 제2 링크(Link 2), 및 제3 링크(Link3)에서 TWT 합의(TWT 1, TWT 2, TWT 3)가 모두 해제된다.
재결합에 의해 제1 스테이션(STA1)이 AP 멀티 링크 장치(AP MLD)의 제1 AP(AP1)와 다른 AP인 제4 AP(AP4)에 결합되어 다른 링크에서 동작할 수 있다. 이때, 제1 스테이션(STA1)과 제1 AP(AP1) 사이의 TWT 합의는 제1 스테이션(STA1)과 제4 AP(AP4)에 계승될 수 있다. 이와 같이 최초 TWT 설정이 수행된 링크와 관계없이 TWT 합의 계승에 의해 새로운 링크에 TWT 합의가 설정될 수 있다.
상기와 같이 무선랜 통신을 예로 들어 본 발명을 설명하였지만, 본 발명은 이에 한정하지 않으며 셀룰러 통신 등 다른 통신 시스템에서도 동일하게 적용될 수 있다. 또한 본 발명의 방법, 장치 및 시스템은 특정 실시 예와 관련하여 설명되었지만, 본 발명의 구성 요소, 동작의 일부 또는 전부는 범용 하드웨어 아키텍처를 갖는 컴퓨터 시스템을 사용하여 구현될 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 복수의 링크에서 각각 동작하는 복수의 스테이션을 포함하는 멀티 링크 장치에서,
    송수신부; 및
    프로세서를 포함하고,
    상기 프로세서는
    복수의 스테이션 중 하나이며 제1 링크에서 제1 AP와 결합된 제1 스테이션에서 TWT(target wake time) 엘리멘트를 전송하여 제2 링크에서 동작하는 제2 스테이션과 상기 제2 스테이션과 결합된 제2 AP를 위한 TWT 합의를 요청하는
    멀티 링크 장치.
  2. 제1항에서,
    상기 TWT 엘리멘트는 상기 TWT 엘리멘트가 수립하려는 TWT 합의가 적용될 링크를 지시하는 정보를 지시하는 비트맵을 포함하는
    멀티 링크 장치.
  3. 제1항에서,
    상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 요청 스테이션은 상기 제2 스테이션이고,
    상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 응답 스테이션은 상기 제2 AP인
    멀티 링크 장치.
  4. 제3항에서,
    상기 프로세서는
    상기 제2 AP로부터 TWT 해제 프레임을 수신한 경우 또는 상기 제2 AP에게 상기 TWT 해제 프레임을 성공적으로 전송한 경우, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는
    멀티 링크 장치.
  5. 제1항에서,
    상기 프로세서는
    상기 제2 링크가 비활성화되는 경우, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는 TWT 해제 프레임의 수신 또는 전송 없이도 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는
    멀티 링크 장치.
  6. 제1항에서,
    상기 TWT 엘리멘트는 제2 링크를 포함한 복수의 링크에 수립되는 복수의 TWT 합의를 요청하는
    멀티 링크 장치.
  7. 제6항에서,
    상기 복수의 링크에 수립되는 복수의 TWT 합의 각각은 상기 복수의 링크 각각의 링크 ID를 기초로 식별되는
    멀티 링크 장치.
  8. 제7항에서,
    상기 복수의 링크에 수립되는 복수의 TWT 합의 각각은 상기 복수의 링크 각각의 링크 ID, 상기 멀티 링크 장치의 MAC(medium access control) 주소, 상기 복수의 링크에 수립되는 복수의 TWT 합의 각각의 TWT Flow ID를 기초로 식별되는
    멀티 링크 장치.
  9. 제7항에서,
    상기 프로세서는
    TWT 해제 프레임을 성공적으로 전송하거나 상기 TWT 해제 프레임을 수신한 경우, 상기 TWT 해제 프레임이 지시하는 링크 ID를 기초로 복수의 링크에 수립되는 복수의 TWT 합의 중 적어도 어느 하나를 해제하는
    멀티 링크 장치.
  10. 제1항에서,
    상기 프로세서는
    상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하고,
    상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 상기 제1 스테이션과 상기 제1 AP에게 승계하는
    멀티 링크 장치.
  11. 제10항에서,
    상기 프로세서는
    상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 상기 제1 스테이션과 상기 제1 AP에게 승계할 때, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 파라미터를 상기 제1 스테이션과 상기 제1 AP를 위한 TWT 합의에 적용하는
    멀티 링크 장치.
  12. 복수의 링크에서 각각 동작하는 복수의 스테이션을 포함하는 멀티 링크 장치의 동작 방법에서,
    복수의 스테이션 중 하나이며 제1 링크에서 제1 AP와 결합된 제1 스테이션에서 TWT(target wake time) 엘리멘트를 전송하여 제2 링크에서 동작하는 제2 스테이션과 상기 제2 스테이션과 결합된 제2 AP를 위한 TWT 합의를 요청하는 단계를 포함하는
    동작 방법.
  13. 제12항에서,
    상기 TWT 엘리멘트는 상기 TWT 엘리멘트가 수립하려는 TWT 합의가 적용될 링크를 지시하는 정보를 지시하는 비트맵을 포함하는
    동작 방법.
  14. 제12항에서,
    상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 요청 스테이션은 상기 제2 스테이션이고,
    상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의의 TWT 응답 스테이션은 상기 제2 AP인
    동작 방법.
  15. 제14항에서,
    상기 동작 방법은
    상기 제2 AP로부터 TWT 해제 프레임을 수신한 경우 또는 상기 제2 AP에게 상기 TWT 해제 프레임을 성공적으로 전송한 경우, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는 단계를 더 포함하는
    동작 방법.
  16. 제12항에서,
    상기 동작 방법은
    상기 제2 링크가 비활성화되는 경우, 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는 TWT 해제 프레임의 수신 또는 전송 없이도 상기 제2 스테이션과 상기 제2 AP를 위한 TWT 합의를 해제하는 단계를 더 포함하는
    동작 방법.
  17. 제12항에서,
    상기 TWT 엘리멘트는 제2 링크를 포함한 복수의 링크에 수립되는 복수의 TWT 합의를 요청하는
    동작 방법.
  18. 제17항에서,
    상기 복수의 링크에 수립되는 복수의 TWT 합의 각각을 상기 복수의 링크 각각의 링크 ID를 기초로 식별되는
    동작 방법.
  19. 제18항에서,
    상기 복수의 링크에 수립되는 복수의 TWT 합의 각각은 상기 복수의 링크 각각의 링크 ID, 상기 멀티 링크 장치의 MAC(medium access control) 주소, 상기 복수의 링크에 수립되는 복수의 TWT 합의 각각의 TWT Flow ID를 기초로 식별되는
    동작 방법.
  20. 제18항에서,
    상기 동작 방법은
    TWT 해제 프레임을 성공적으로 전송하거나 상기 TWT 해제 프레임을 수신한 경우, 상기 TWT 해제 프레임이 지시하는 링크 ID를 기초로 복수의 링크에 수립되는 복수의 TWT 합의 중 적어도 어느 하나를 해제하는 단계를 더 포함하는
    동작 방법.
PCT/KR2022/003704 2021-03-17 2022-03-16 복수의 링크에서 동작하는 멀티 링크 장치 및 멀티 링크 장치의 동작 방법 WO2022197105A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237031011A KR20230144075A (ko) 2021-03-17 2022-03-16 복수의 링크에서 동작하는 멀티 링크 장치 및 멀티링크 장치의 동작 방법
EP22771771.7A EP4311302A1 (en) 2021-03-17 2022-03-16 Multi-link device operating in multiple links and method for operating multi-link device
CN202280021439.5A CN116998184A (zh) 2021-03-17 2022-03-16 在多个链路上操作的多链路装置和操作该多链路装置的方法
JP2023557401A JP2024510319A (ja) 2021-03-17 2022-03-16 複数のリンクで動作するマルチリンク装置及びマルチリンク装置の動作方法
US18/369,193 US20240008119A1 (en) 2021-03-17 2023-09-17 Multi-link device operating in multiple links and method for operating multi-link device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2021-0034964 2021-03-17
KR20210034964 2021-03-17
KR20210036273 2021-03-19
KR10-2021-0036273 2021-03-19
KR10-2021-0038379 2021-03-24
KR20210038379 2021-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/369,193 Continuation US20240008119A1 (en) 2021-03-17 2023-09-17 Multi-link device operating in multiple links and method for operating multi-link device

Publications (1)

Publication Number Publication Date
WO2022197105A1 true WO2022197105A1 (ko) 2022-09-22

Family

ID=83321190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003704 WO2022197105A1 (ko) 2021-03-17 2022-03-16 복수의 링크에서 동작하는 멀티 링크 장치 및 멀티 링크 장치의 동작 방법

Country Status (5)

Country Link
US (1) US20240008119A1 (ko)
EP (1) EP4311302A1 (ko)
JP (1) JP2024510319A (ko)
KR (1) KR20230144075A (ko)
WO (1) WO2022197105A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230239788A1 (en) * 2021-09-07 2023-07-27 Ofinno, Llc Quiet interval termination
WO2024082099A1 (zh) * 2022-10-17 2024-04-25 北京小米移动软件有限公司 通信方法、电子设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268846A1 (en) * 2018-02-27 2019-08-29 Qualcomm Incorporated Suspend, resume, and teardown of twt sessions and memberships

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268846A1 (en) * 2018-02-27 2019-08-29 Qualcomm Incorporated Suspend, resume, and teardown of twt sessions and memberships

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALFRED ASTERJADHI (QUALCOMM INC.): "MAC-CR-Misc TWT", IEEE DRAFT; 11-19-0561-02-00AX-MAC-CR-MISC-TWT, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11ax, no. 2, 13 June 2019 (2019-06-13), Piscataway, NJ USA , pages 1 - 5, XP068151485 *
MING GAN (HUAWEI): "TWT for MLD", IEEE DRAFT; 11-20-1680-00-00BE-TWT-FOR-MLD, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 0, 30 November 2020 (2020-11-30), Piscataway, NJ USA , pages 1 - 7, XP068175307 *
MING GAN (HUAWEI): "TWT for MLD", IEEE DRAFT; 11-21-0080-04-00BE-TWT-FOR-MLD, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 4, 15 March 2021 (2021-03-15), Piscataway, NJ USA , pages 1 - 6, XP068179182 *
RUBAYET SHAFIN (SAMSUNG RESEARCH AMERICA): "Broadcast TWT for MLDS", IEEE DRAFT; 11-21-0394-00-00BE-BROADCAST-TWT-FOR-MLDS, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 0, 7 March 2021 (2021-03-07), Piscataway, NJ USA , pages 1 - 10, XP068179891 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230239788A1 (en) * 2021-09-07 2023-07-27 Ofinno, Llc Quiet interval termination
WO2024082099A1 (zh) * 2022-10-17 2024-04-25 北京小米移动软件有限公司 通信方法、电子设备及存储介质

Also Published As

Publication number Publication date
EP4311302A1 (en) 2024-01-24
JP2024510319A (ja) 2024-03-06
KR20230144075A (ko) 2023-10-13
US20240008119A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2021112644A1 (ko) 무선 통신 시스템에서 자원 할당을 통한 시그널링 방법 및 무선 통신 단말
WO2018021779A1 (ko) 웨이크-업 라디오를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2018190697A1 (ko) Bss 식별자를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2018038532A1 (ko) 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법
WO2018124725A1 (ko) Ofdma 랜덤 액세스를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2021225367A1 (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2017069543A1 (ko) 중첩된 베이직 서비스 세트를 포함하는 고밀도 환경에서의 무선 통신 방법 및 무선 통신 단말
WO2017150954A1 (ko) 다른 베이직 서비스 세트와 중첩된 베이직 서비스 세트에서의 무선 통신 방법 및 무선 통신 단말
WO2016167438A1 (ko) 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2022075821A1 (ko) 무선 통신 시스템에서 프레임을 송수신하기 위한 방법 및 무선 통신 단말
WO2019103452A1 (ko) 무선 랜에서 프레임을 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2017034081A1 (ko) 무선 통신 시스템의 데이터 전송 방법 및 장치
WO2016195402A1 (ko) 무선랜 시스템에서 전력 저감 모드로 동작하는 방법 및 이를 위한 장치
WO2018208058A1 (ko) 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법
WO2021172919A1 (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2021182902A1 (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2022164293A1 (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2022050802A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 무선 통신 단말
WO2019194361A1 (ko) 무선랜 시스템에서 프레임을 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2022025629A1 (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2021225388A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 무선 통신 단말
WO2022197105A1 (ko) 복수의 링크에서 동작하는 멀티 링크 장치 및 멀티 링크 장치의 동작 방법
WO2016021994A1 (ko) 무선 통신 방법 및 무선 통신 단말
WO2022035291A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 무선 통신 단말
WO2019083346A1 (ko) 웨이크-업 라디오를 이용하는 무선 통신 방법 및 무선 통신 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237031011

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031011

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280021439.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023557401

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022771771

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771771

Country of ref document: EP

Effective date: 20231017