WO2022196983A1 - 전지 모듈 및 이를 포함하는 전지팩 - Google Patents

전지 모듈 및 이를 포함하는 전지팩 Download PDF

Info

Publication number
WO2022196983A1
WO2022196983A1 PCT/KR2022/002992 KR2022002992W WO2022196983A1 WO 2022196983 A1 WO2022196983 A1 WO 2022196983A1 KR 2022002992 W KR2022002992 W KR 2022002992W WO 2022196983 A1 WO2022196983 A1 WO 2022196983A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
cover
module
venting
Prior art date
Application number
PCT/KR2022/002992
Other languages
English (en)
French (fr)
Inventor
김광모
정혜미
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to DE212022000137.0U priority Critical patent/DE212022000137U1/de
Priority to CN202290000322.4U priority patent/CN220553552U/zh
Publication of WO2022196983A1 publication Critical patent/WO2022196983A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • H01M50/333Spring-loaded vent valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery pack including the same, and more particularly, to a battery module with enhanced safety and a battery pack including the same.
  • a rechargeable battery capable of charging and discharging is a measure to solve air pollution such as conventional gasoline vehicles using fossil fuels, and electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles ( P-HEV) is being used as a power source, and the need for the development of secondary batteries is increasing.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • P-HEV plug-in hybrid electric vehicles
  • lithium secondary batteries do not have much memory effect compared to nickel-based secondary batteries, so charging and discharging are possible freely. , the self-discharge rate is very low and the energy density is high.
  • Such a lithium secondary battery mainly uses a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively.
  • a lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate to which the positive electrode active material and the negative electrode active material are respectively applied with a separator interposed therebetween, and a battery case for sealingly accommodating the electrode assembly together with an electrolyte.
  • a lithium secondary battery may be classified into a can-type secondary battery in which the electrode assembly is embedded in a metal can and a pouch-type secondary battery in which the electrode assembly is embedded in a pouch of an aluminum laminate sheet according to the shape of the exterior material.
  • a battery module in which a plurality of battery cells are electrically connected this is used In such a battery module, a plurality of battery cells are connected in series or parallel to each other to form a battery cell stack, thereby improving capacity and output.
  • One or more battery modules may be mounted together with various control and protection systems such as a Battery Disconnect Unit (BDU), a Battery Management System (BMS), and a cooling system to form a battery pack.
  • BDU Battery Disconnect Unit
  • BMS Battery Management System
  • a cooling system to form a battery pack.
  • FIG. 1 is a perspective view showing a conventional battery module.
  • the battery cell stack (not shown) is accommodated in the module frame 20 , and then the end plate 40 is bonded to the open part of the module frame 20 .
  • a terminal bus bar opening 41H through which a part of the terminal bus bar is exposed and a module connector opening 42H through which a part of the module connector is exposed may be formed in the end plate 40 .
  • the terminal bus bar opening 41H is for guiding the high voltage (HV) connection of the battery module 10
  • the terminal bus bar exposed through the terminal bus bar opening 41H is another battery module or BDU (Battery Disconnect Unit).
  • the module connector opening 42H is for guiding the LV (Low voltage) connection of the battery module 10, and the module connector exposed through the module connector opening 42H is connected to the BMS (Battery Management System) to Voltage information or temperature information can be transmitted.
  • BMS Battery Management System
  • FIG. 2 is a view showing a state when the battery module is ignited in the conventional battery pack in which the battery module of FIG. 1 is mounted.
  • 3 is a cross-sectional view taken along the cutting line I-I' of FIG. 2, and is a cross-sectional view showing a flame affecting an adjacent battery module when the conventional battery module is ignited.
  • the conventional battery module 10 includes a battery cell stack in which a plurality of battery cells 11 are stacked, a module frame 20 for accommodating the battery cell stack, and a battery cell stack. It includes an end plate 40 formed on the front and rear surfaces.
  • the internal pressure of the battery cell 11 increases and exceeds the fusion strength limit of the battery cell 11, the high-temperature heat generated in the battery cell 11; Gas and flame may be discharged to the outside of the battery cell (11).
  • high-temperature heat, gas, and flame may be discharged through the openings 41H and 42H formed in the end plate 40 , and a battery pack for disposing a plurality of battery modules 10 so that the end plates 40 face each other.
  • high-temperature heat, gas, and flame ejected from the battery module 10 may affect the neighboring battery module 10 . Accordingly, the terminal bus bar formed on the end plate 40 of the neighboring battery module, etc. may be damaged, and the opening formed in the end plate 40 of the neighboring battery module 10 with high temperature heat, gas and flame It may enter the inside of the battery module 10 through the battery module 10 and may damage other electronic components including the plurality of battery cells 11 . In addition, this leads to heat propagation of the neighboring battery modules 10, resulting in a chain ignition within the battery pack.
  • An object of the present invention is to provide a battery module capable of rapidly discharging a large amount of gas and blocking the inflow of oxygen when an ignition phenomenon occurs in the battery module, and a battery pack including the same.
  • a battery module includes a battery cell stack in which a plurality of battery cells are stacked; a module frame for accommodating the battery cell stack; and end plates disposed on both sides of the battery cell stack.
  • a venting part for discharging gas in one direction is formed in at least one of the module frame and the end plate. The opening and closing of the venting part are controlled according to an increase in pressure inside the module frame.
  • the venting unit may include: a through hole; a cover part blocking the through hole; an outer part located outside the cover part and having an open part formed thereon; and a spring part positioned between the cover part and the outer part.
  • the outer portion may be in the form of a frame connected to the end plate or the module frame, and the spring portion may be fixed between the cover portion and the outer portion.
  • the through-hole blocked by the cover part may be opened while the spring part is compressed.
  • the venting unit may include: a through hole; a cover part blocking the through hole; and a hinge portion positioned at one side of the cover portion to enable opening and closing of the cover portion.
  • the cover part When gas is generated inside the battery module, the cover part may be opened outwardly of the battery module.
  • the hinge part may open the cover part outwardly of the battery module.
  • a step portion may be formed in the through hole, and the other side of the cover portion may be blocked by the step portion, so that the cover portion may be opened only in an outer direction of the battery module.
  • the venting part may further include an inner spring part connected to the other side of the cover part and each of the step part.
  • An elastic force of the inner spring part may act in a direction opposite to a direction in which the cover part is opened.
  • the venting part may further include a protrusion formed on an inner wall of the through hole, and the protrusion may be located outside the cover part.
  • the battery module may further include an insulating cover positioned between the battery cell stack and the end plate.
  • the venting part may be formed in the end plate, and an insulating cover opening may be formed in a position of the insulating cover corresponding to the venting part.
  • a large amount of gas can be quickly discharged by the venting unit configured to discharge the gas in one direction, and the inflow of oxygen can be blocked at the same time.
  • FIG. 1 is a perspective view showing a conventional battery module.
  • FIG. 2 is a view showing a state when the battery module is ignited in the conventional battery pack in which the battery module of FIG. 1 is mounted.
  • FIG. 3 is a cross-sectional view showing a cross-section taken along the cutting line I-I' of FIG.
  • FIG. 4 is a perspective view showing a battery module according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view of the battery module of FIG. 4 .
  • FIG. 6 is a perspective view illustrating a battery cell included in the battery module of FIG. 5 .
  • FIG. 7 is a perspective view showing the second end plate of the battery module of FIG. 4 at different angles to be seen from the front.
  • FIG. 8 is a perspective view illustrating an end plate and an insulating cover according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional perspective view showing a state cut along the cutting line A-A' of FIG.
  • FIG. 10 is a cross-sectional view of the end plate and the insulating cover of FIG. 9 viewed in the -y-axis direction on the xz plane.
  • FIG. 11 is a cross-sectional view illustrating a state in which gas is discharged when the internal pressure of the battery module increases with respect to the end plate and the insulating cover of FIG. 10 .
  • FIG. 12 is a perspective view showing a battery module according to another embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing a cross-section taken along the cutting line B-B' of FIG. 12 .
  • FIG. 14 is a perspective view illustrating an end plate and an insulating cover according to a modified embodiment of the present invention.
  • 15 is a cross-sectional view showing a state cut along the cutting line C-C' of FIG.
  • 16 is a cross-sectional view illustrating a state in which gas is discharged when the internal pressure of the battery module increases with respect to the end plate and the insulating cover of FIG. 15 .
  • 17 and 18 are cross-sectional views of an end plate and an insulating cover according to a modified embodiment of the present invention.
  • a part of a layer, film, region, plate, etc. when a part of a layer, film, region, plate, etc. is said to be “on” or “on” another part, it includes not only cases where it is “directly on” another part, but also cases where another part is in between. . Conversely, when we say that a part is “just above” another part, we mean that there is no other part in the middle.
  • the reference part means to be located above or below the reference part, and it means to be located “on” or “on” in the direction opposite to the gravity. not.
  • planar view it means when the target part is viewed from above, and when it is referred to as “cross-section”, it means when the cross-section obtained by cutting the target part vertically is viewed from the side.
  • FIG. 4 is a perspective view showing a battery module according to an embodiment of the present invention.
  • 5 is an exploded perspective view of the battery module of FIG. 4 .
  • 6 is a perspective view illustrating a battery cell included in the battery module of FIG. 5 .
  • the battery module 100a includes a battery cell stack 120 in which a plurality of battery cells 110 are stacked; a module frame 200 for accommodating the battery cell stack 120; and end plates 410 and 420 disposed on both sides of the battery cell stack 120 .
  • the battery cell 110 is preferably a pouch-type battery cell.
  • the two electrode leads 111 and 112 are opposite to each other and protrude from one end 114a and the other end 114b of the cell body 113, respectively. has a structure in In more detail, the electrode leads 111 and 112 are connected to an electrode assembly (not shown) and protrude from the electrode assembly (not shown) to the outside of the battery cell 110 .
  • both ends 114a and 114b of the cell case 114 and one side 114c connecting them are adhered in a state in which an electrode assembly (not shown) is accommodated in the cell case 114 .
  • the battery cell 110 according to the present embodiment has a total of three sealing portions 114sa, 114sb, 114sc, and the sealing portions 114sa, 114sb, 114sc are sealed by a method such as thermal fusion.
  • the other one side may be formed of a connection part 115 .
  • the cell case 114 may be formed of a laminate sheet including a resin layer and a metal layer.
  • connection part 115 may extend long along one edge of the battery cell 110 , and a protruding part 110p of the battery cell 110 called a bat-ear is provided at an end of the connection part 115 . can be formed.
  • a terrace portion 116 is formed between the electrode leads 111 and 112 and the cell body 113 .
  • the battery cell 110 includes a terrace portion 116 formed to extend from the cell case 114 in a direction in which the electrode leads 111 and 112 protrude.
  • the battery cells 110 may be configured in plurality, and the plurality of battery cells 110 may be stacked to be electrically connected to each other to form the battery cell stack 120 .
  • the battery cells 110 may be stacked along the y-axis direction to form the battery cell stack 120 .
  • the first bus bar frame 310 may be positioned on one surface of the battery cell stack 120 in the direction in which the electrode leads 111 protrude (x-axis direction).
  • the second bus bar frame may be positioned on the other surface of the battery cell stack 120 in the direction in which the electrode leads 112 protrude (-x-axis direction).
  • the battery cell stack 120 and the first bus bar frame 310 may be accommodated together in the module frame 200 .
  • the module frame 200 may protect the battery cell stack 120 accommodated in the module frame 200 and the electrical components connected thereto from external physical impact.
  • the module frame 200 may be opened, and end plates on both open sides of the module frame 200 , respectively. (410, 420) may be located.
  • the two end plates 410 and 420 are referred to as a first end plate 410 and a second end plate 420, respectively.
  • the first end plate 410 may be joined to the module frame 200 while covering the first bus bar frame 310
  • the second end plate 420 may cover the second bus bar frame (not shown) while the second end plate 420 covers the second bus bar frame (not shown). It may be bonded to the module frame 200 .
  • first bus bar frame 310 may be positioned between the first end plate 410 and the battery cell stack 120 , and between the second end plate 420 and the battery cell stack 120 .
  • a second bus bar frame (not shown) may be positioned.
  • an insulating cover 800 (refer to FIG. 4 ) for electrical insulation may be positioned between the first end plate 410 and the first bus bar frame 310 .
  • the first end plate 410 and the second end plate 420 are positioned to cover the one surface and the other surface of the battery cell stack 120 , respectively.
  • the first end plate 410 and the second end plate 420 can protect the first bus bar frame 310 and various electrical components connected thereto from external impact, and for this, they must have a predetermined strength, such as aluminum It may contain a metal.
  • the first end plate 410 and the second end plate 420 may be joined to the corresponding edge of the module frame 200 by welding or the like, respectively.
  • the first bus bar frame 310 is positioned on one surface of the battery cell stack 120 to cover the battery cell stack 120 and guide the connection between the battery cell stack 120 and external devices at the same time.
  • at least one of a bus bar, a terminal bus bar, and a module connector may be mounted on the first bus bar frame 310 .
  • at least one of a bus bar, a terminal bus bar, and a module connector may be mounted on a surface opposite to the surface of the first bus bar frame 310 facing the battery cell stack.
  • the bus bar 510 and the terminal bus bar 520 are mounted on the first bus bar frame 310 .
  • the electrode lead 111 of the battery cell 110 may be bent to be bonded to the bus bar 510 or the terminal bus bar 520 .
  • the battery cells 110 constituting the battery cell stack 120 may be connected in series or in parallel by the bus bar 510 or the terminal bus bar 520 .
  • the battery cells 110 may be electrically connected to an external device or circuit through the terminal bus bar 520 exposed to the outside of the battery module 100a.
  • the first bus bar frame 310 may include an electrically insulating material.
  • the bus bar 510 or the terminal bus bar 520 is a battery except for a portion in which the bus bar 510 or the terminal bus bar 520 is bonded to the electrode lead 111 .
  • a second bus bar frame may be positioned on the other surface of the battery cell stack 120 , and at least one of a bus bar, a terminal bus bar, and a module connector may be mounted on the second bus bar frame.
  • An electrode lead 112 may be bonded to such a bus bar.
  • An opening through which at least one of a terminal bus bar and a module connector is exposed may be formed in the first end plate 410 according to the present embodiment.
  • the opening may be a terminal busbar opening or a module connector opening.
  • a terminal bus bar opening 410H through which the terminal bus bar 520 is exposed may be formed in the first end plate 410 .
  • the terminal bus bar 520 further includes an upwardly protruding portion, which is to be exposed to the outside of the battery module 100a through the terminal busbar opening 410H.
  • the terminal bus bar 520 exposed through the terminal bus bar opening 410H may be connected to another battery module or a battery disconnect unit (BDU) to form a high voltage (HV) connection.
  • BDU battery disconnect unit
  • FIG. 7 is a perspective view showing the second end plate of the battery module of FIG. 4 at different angles to be seen from the front.
  • a module connector opening 420H through which the module connector 600 is exposed may be formed in the second end plate 420 .
  • the module connector 600 may be connected to a temperature sensor or a voltage measuring member provided inside the battery module 100a.
  • This module connector 600 is connected to an external BMS (Battery Management System) to form an LV (Low voltage) connection. responsible for the function
  • the first end plate 410 and the second end plate 420 shown in Figs. 4, 5 and 7 are exemplary structures, and the module is mounted on the first bus bar frame 310 according to another embodiment of the present invention.
  • a connector may be mounted and a terminal busbar may be mounted on the second busbar frame. Accordingly, the module connector opening may be formed in the first end plate, and the terminal bus bar opening may be formed in the second end plate.
  • the end plates 410 and 420 cover the front and rear surfaces of the battery cell stack 120
  • the module frame 200 includes the upper surface, lower surface and both sides of the battery cell stack 120 .
  • the front surface means the surface of the battery cell stack 120 in the x-axis direction
  • the rear surface means the surface of the battery cell stack 120 in the -x-axis direction.
  • the upper surface means the surface of the battery cell stack 120 in the z-axis direction
  • the lower surface means the surface in the -z-axis direction of the battery cell stack 120
  • both sides are the battery cell stack 120 , respectively. of the y-axis and -y-axis directions.
  • the front and rear surfaces of the battery cell stack 120 may be surfaces on which the protruding electrode leads 111 and 112 of the battery cell 110 are located.
  • At least one of the module frame 200 and the end plates 410 and 420 may include a venting part 700a for discharging gas in one direction.
  • a venting portion formed on the first end plate will be described in detail.
  • the description is based on the first end plate 410 , but the same or similar structure may be applied to the second end plate 420 .
  • FIG. 8 is a perspective view illustrating an end plate and an insulating cover according to an embodiment of the present invention.
  • 9 is a cross-sectional perspective view showing a state cut along the cutting line A-A' of FIG. 10 is a cross-sectional view of the end plate and the insulating cover of FIG. 9 viewed in the -y-axis direction on the xz plane.
  • the venting part 700a according to the present embodiment is opened and closed according to an increase in the pressure inside the module frame 200 , and when the pressure inside the module frame 200 increases, in one direction exhaust gas.
  • the venting portion 700a includes a through hole 710a, a cover portion 720a for blocking the through hole 710a, and an outer portion 730a positioned outside the cover portion 720a and having an open portion OP formed therein. ) and a spring portion 740a positioned between the cover portion 720a and the outer portion 730a.
  • the through hole 710a may be a portion formed on one surface of the first end plate 410 and perforated to penetrate the first end plate 410 .
  • the cover portion 720a may be disposed to block the entire hole of the through hole 710a from the outside. In a normal operating state, the cover part 720a blocks the through hole 710a to maintain the sealed state of the battery module 100a, thereby preventing foreign substances from entering in the assembly process, transfer process, and normal operation process. .
  • the outer portion 730a may be in the form of a frame connected to the first end plate 410 .
  • the outer portion 730a may have a cross-shaped frame disposed on one surface of the first end plate 410 . Because of the frame shape, an open portion OP is naturally formed between the frames.
  • the outer portion 730a is located outside the cover portion 720a and may be in the form of covering the cover portion 720a, but since the open portion OP is provided between the frames, the outer portion 730a It is not sealed.
  • the outer portion 730a may have a straight frame shape.
  • it is structurally not particularly limited as long as it is positioned outside the cover portion 720a to form an open portion, and a spring portion 740a to be described later can be fixed therebetween.
  • the spring part 740a is an elastic member positioned between the cover part 720a and the outer part 730a, and is preferably disposed so that an elastic force acts in the same direction as the opening direction of the through hole 710a.
  • the opening direction of the through hole 710a means a direction parallel to the x-axis.
  • the spring portion 740a which is a coil-shaped spring, may be disposed parallel to the opening direction of the through hole 710a.
  • the spring part 740a may be fixed between the cover part 720a and the outer part 730a.
  • the spring part 740a may be positioned between the cover part 720a and the outer part 730a in a slightly compressed state. Due to the elastic force of the spring part 740a, the cover part 720a may maintain a state in which the through hole 710a is blocked in normal times.
  • the outer portion 730a may have a frame shape as described above.
  • a portion in contact with the spring portion 740a may be bent to protrude outward.
  • the spring part 740a is mounted to fit the bent part, so that the spring part 740a can be more stably fixed between the cover part 720a and the outer part 730a.
  • FIG. 11 is a cross-sectional view illustrating a state in which gas is discharged when the internal pressure of the battery module increases with respect to the end plate and the insulating cover of FIG. 10 .
  • the increased internal pressure pushes the cover part 720a and the spring part (740a) can be compressed. That is, when gas is generated inside the battery module 100a, the through-hole 710a blocked by the cover part 720a may be opened while the spring part 740a is compressed. Accordingly, a large amount of gas may be rapidly discharged through the through hole 710a and the open portion OP of the outer portion 730a. It is possible to limit a sudden increase in the pressure inside the battery module 100a.
  • the through hole 710a is again blocked by the cover part 720a by the elastic force of the spring part 740a. Only gas is discharged, and external oxygen (air) can be blocked from flowing into the inside. While the through hole 710a is open, since the pressure inside the battery module 100a is very high, it is difficult for external oxygen (air) to flow in. That is, the venting unit 700a according to the present embodiment can rapidly discharge a large amount of gas and block the inflow of oxygen at the same time.
  • the cover part 720a blocking the through hole 710a is configured to directly receive the pressure of the internal gas of the battery module 100a, and the through hole 710a) and the spring part 740a for controlling the opening and closing of the cover part 720a is located outside the cover part 720a.
  • the area of the cover part 720a to which the internal pressure acts may be set to be larger than when the spring part 740a is positioned inside the cover part 720a. That is, since the area where the internal pressure acts can be provided large, the venting part 700a according to the present embodiment more sensitively responds to changes in the internal pressure of the battery module 100a, so that the opening/closing operation can be smoothly operated. have an advantage When the spring part 740a is located inside the battery module, the area receiving the pressure of the internal gas of the battery module 100a is reduced, so there is a possibility that the opening/closing operation may not be performed properly.
  • venting parts 700a there is no particular limitation on the number of such venting parts 700a, and may be arranged in a single number or a plurality. As an example, it is shown that three venting parts 700a are provided in FIG. 8 .
  • an insulating cover 800 for electrical insulation may be positioned between the first end plate 410 and the first bus bar frame 310 (refer to FIG. 5 ). As long as it is an electrically insulating material, it may be applied as the insulating cover 800 without limitation. At this time, as shown in FIGS. 10 and 11 , an insulating cover opening 800H may be formed at a position corresponding to the venting part 700a of the insulating cover 800 . Gas inside the battery module may sequentially pass through the insulating cover opening 800H and the venting part 700a to be discharged to the outside.
  • FIG. 12 is a perspective view showing a battery module according to another embodiment of the present invention.
  • 13 is a cross-sectional view showing a cross-section taken along the cutting line B-B' of FIG. 12 .
  • the battery module 100b according to another embodiment of the present invention includes a module frame 200 for accommodating the battery cell stack 120 and a venting part formed in the module frame 200 . (700b).
  • the venting portion 700b includes the through hole 710b, the cover portion 720b that blocks the through hole 710b, the outer portion 730b positioned outside the cover portion 720b and formed with an open portion, and the cover.
  • a spring portion 740b positioned between the portion 720b and the outer portion 730b may be included.
  • the through hole 710b may be a portion formed on one surface of the module frame 200 to penetrate through the module frame 200 .
  • the cover portion 720b may be disposed to block the entire hole of the through hole 710b from the outside.
  • the outer part 730b may be in the form of a frame connected to the module frame 200 .
  • the outer portion 730b may have a cross-shaped frame disposed on one surface of the module frame 200 . Since it is in the form of a frame, an open part is naturally formed between the frames.
  • the spring part 740b is an elastic member positioned between the cover part 720b and the outer part 730b, and may be disposed to apply an elastic force in the same direction as the opening direction of the through hole 710b.
  • the venting part 700b has a structure similar to that of the venting part 700a formed on the end plates 410 and 420 .
  • the venting part 700b may have a structure in which opening and closing is controlled according to an increase in pressure inside the module frame 200 , and exhaust gas in one direction when the pressure inside the module frame 200 increases.
  • venting part 700b is illustrated as being formed on the upper surface of the module frame 200, there is no particular limitation on the position thereof, and it is also possible to be formed on the lower surface or both sides. However, in the case of the lower surface, there may be restrictions on gas emission.
  • the module frame 200 may have a relatively larger area than the end plates 410 and 420 , the number of venting parts 700b may be increased compared to the case where the module frame 200 is formed on the end plates 410 and 420 . Also, the opening area of the through hole 710b may be increased. The increased number of venting portions 700b or the opening area of the through-holes 710b is more effective in dispersing gas or flame.
  • venting part 700b is formed on one surface of the module frame 200, it is possible to reduce the gas or flame itself discharged in the direction in which the end plate is located.
  • the venting parts 700b may be formed on the upper surface of the module frame 200 .
  • the discharge of gas or flame may be induced to occur at the top of the battery module 100b. Therefore, it is possible to reduce damage to other battery modules mainly arranged on the side.
  • the battery module according to another embodiment of the present invention includes the end plate Both the venting part 700a formed in the 410 and 420 and the venting part 700b formed in the module frame 200 may be included.
  • venting unit according to a modified embodiment of the present invention will be described in detail with reference to FIGS. 14 to 16 .
  • the description is based on the first end plate 410 , but the same or similar structure may be applied to the second end plate 420 .
  • FIG. 14 is a perspective view illustrating an end plate and an insulating cover according to a modified embodiment of the present invention.
  • 15 is a cross-sectional view showing a state cut along the cutting line C-C' of FIG. 16 is a cross-sectional view illustrating a state in which gas is discharged when the internal pressure of the battery module increases with respect to the end plate and the insulating cover of FIG. 15 .
  • the venting portion 700c includes a through hole 710c, a cover portion 720c that blocks the through hole 710c, and a cover portion 720c. It may include a hinge portion 730c positioned at one side of the cover portion 720c to enable opening and closing of the cover portion 720c.
  • the through hole 710c may be a portion formed on one surface of the first end plate 410 to penetrate through the first end plate 410 .
  • the shape of the through hole 710c There is no particular limitation on the shape of the through hole 710c, and all of a circular shape, a polygonal shape, an oval shape, and the like are possible. However, in consideration of the configuration of the hinge portion 730c, a rectangular through hole 710c as shown may be preferable.
  • the cover part 720c may be disposed to block the entire perforated portion of the through hole 710c. In a normal operating state, the cover part 720c blocks the through hole 710c to maintain the sealed state of the battery module, thereby preventing foreign substances from entering in the assembly process, transfer process, and normal operation process.
  • the hinge part 730c is a structure located on one side of the cover part 720c, and enables opening and closing of the cover part 720c. In particular, when gas is generated inside the battery module, the cover part 720c may be opened outwardly of the battery module. The hinge part 730c may open the cover part 720c outwardly of the battery module.
  • a stepped portion 740c may be formed in the through hole 710c according to the present embodiment.
  • the stepped portion 740c may be located inside the cover portion 720c.
  • the other side of the cover portion 720c opposite to one side of the cover portion 720c provided with the hinge portion 730c is blocked by the step portion 740c, and as shown in FIG. 16, the cover portion 720c is the battery module. can only be opened in the outward direction of
  • the venting part 700c may include a protrusion 750c formed on the inner wall of the through hole 710c.
  • This protrusion 750c may be located outside the cover part 720c. More specifically, when the cover portion 720c is opened, the protrusion 750c is positioned so that the other side of the cover portion 720c opposite to the one side of the cover portion 720c can contact the protrusion 750c. can do.
  • a plurality of protrusions 750c may be formed, and each of the protrusions 750c may be disposed while being spaced apart along a direction parallel to one surface of the cover portion 720c. A space may be provided between each of the protrusions 750c.
  • the cover part 720c is closed, and the through hole 710c is blocked again. Only gas is discharged, and external oxygen (air) can be blocked from flowing into the inside.
  • the rotation range of the cover part 720c is limited, and the through hole 710c may be opened only enough to discharge gas. Since the cover part 720c is opened only at a small interval, when the pressure inside the battery module is lowered, the cover part 720c is closed again.
  • the through hole 710c is open, since the pressure inside the battery module is very high, it is difficult for external oxygen (air) to flow in.
  • the venting unit 700c can quickly discharge a large amount of gas and block the inflow of oxygen. Accordingly, by limiting the supply of oxygen (air) during the explosive condition of the combustible gas while solving the increase in the pressure inside the battery module, even if the battery module is placed in an abnormal operating state, it is possible to prevent an explosion or flame development. can
  • venting parts 700c there is no particular limitation on the number of such venting parts 700c, and may be arranged in a single number or a plurality. As an example, it is shown that three venting parts 700c are provided in FIG. 14 .
  • FIG. 17 and 18 are cross-sectional views of an end plate and an insulating cover according to a modified embodiment of the present invention. Specifically, FIG. 17 shows a state before the internal pressure rises, and FIG. 18 shows a state after the internal pressure rises.
  • a venting part 700d may be formed in the end plate 410 .
  • the venting part 700d according to this embodiment is located on one side of the through-hole 710d, the cover part 720d for blocking the through-hole 710d, and the cover part 720d to enable opening and closing of the cover part 720d. It may include a hinge portion 730d.
  • a step portion 740d located inside the cover portion 720d may be formed in the through hole 710d.
  • the insulating cover opening 800H may be formed at a position corresponding to the venting portion 700d of the insulating cover 800 . A detailed description of each configuration is omitted because it overlaps with the contents described in the previous venting unit 700c.
  • the venting part 700d may further include an inner spring part 750d connected to the other side of the cover part 720d and the stepped part 740d, respectively.
  • the other side of the cover portion 720d may be a portion opposite to the one side of the cover portion 720d on which the hinge portion 730d is located.
  • the other side of the cover portion 720d is blocked by the step portion 740d, so that the cover portion 720d may be opened only in the outer direction of the battery module.
  • the elastic force of the inner spring portion 750d acts in a direction d2 opposite to the opening direction d1 of the cover portion 720d.
  • the cover part 720d is maintained in a closed state by the elastic force of the inner spring part 750d.
  • the internal pressure increases than the elastic force of the inner spring part 750d, and pushes the cover part 720d.
  • the through hole 710d is opened, and a large amount of gas may be rapidly discharged through the through hole 710d.
  • the cover portion 720d may be opened larger than that shown in FIG. 18 .
  • the cover part 720d When the gas is discharged and the internal pressure is reduced, the cover part 720d is maintained in a closed state again by the elastic force of the inner spring part 750d. Only gas is discharged, and external oxygen (air) can be blocked from flowing into the inside. While the through hole 710d is open, since the pressure inside the battery module is very high, it is difficult for external oxygen (air) to flow in. That is, the venting unit 700d according to the present embodiment can rapidly discharge a large amount of gas and block the inflow of oxygen. Accordingly, by limiting the supply of oxygen (air) during the explosive condition of the combustible gas while solving the increase in the pressure inside the battery module, even if the battery module is placed in an abnormal operating state, it is possible to prevent an explosion or flame development. can
  • the venting part 700d having the inner spring part 750d has a structure in which opening and closing is adjusted according to the increase in pressure inside the battery module, and the gas is discharged in one direction when the pressure inside the battery module increases.
  • One or more battery modules according to the present embodiment described above may be mounted together with various control and protection systems such as a battery management system (BMS), a battery disconnect unit (BDU), and a cooling system to form a battery pack.
  • BMS battery management system
  • BDU battery disconnect unit
  • the battery module or battery pack may be applied to various devices. Specifically, it may be applied to transportation means such as electric bicycles, electric vehicles, hybrids, etc., but is not limited thereto and may be applied to various devices that can use secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지셀이 적층된 전지셀 적층체; 상기 전지셀 적층체를 수납하는 모듈 프레임; 및 상기 전지셀 적층체의 양 측에 배치되는 엔드 플레이트를 포함한다. 상기 모듈 프레임 및 상기 엔드 플레이트 중 적어도 하나에 일 방향으로 가스를 배출하는 벤팅부가 형성된다. 상기 벤팅부는 상기 모듈 프레임 내부의 압력 상승에 따라 개폐가 조절된다.

Description

전지 모듈 및 이를 포함하는 전지팩
관련 출원(들)과의 상호 인용
본 출원은 2021년 3월 16일자 한국 특허 출원 제10-2021-0034064호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 이를 포함하는 전지팩에 관한 것으로서, 보다 구체적으로는 안전성이 강화된 전지 모듈 및 이를 포함하는 전지팩에 관한 것이다.
현대 사회에서는 휴대폰, 노트북, 캠코더, 디지털 카메라 등의 휴대형 기기의 사용이 일상화되면서, 상기와 같은 모바일 기기와 관련된 분야의 기술에 대한 개발이 활발해지고 있다. 또한, 충방전이 가능한 이차 전지는 화석 연료를 사용하는 기존의 가솔린 차량 등의 대기 오염 등을 해결하기 위한 방안으로, 전기 자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(P-HEV) 등의 동력원으로 이용되고 있는바, 이차 전지에 대한 개발의 필요성이 높아지고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충, 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체 및 전극 조립체를 전해액과 함께 밀봉 수납하는 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
소형 기기들에 이용되는 이차 전지의 경우, 2-3개의 전지셀들이 배치되나, 자동차 등과 같은 중대형 디바이스에 이용되는 이차 전지의 경우는, 다수의 전지셀을 전기적으로 연결한 전지 모듈(Battery module)이 이용된다. 이러한 전지 모듈은 다수의 전지셀이 서로 직렬 또는 병렬로 연결되어 전지셀 적층체를 형성함으로써 용량 및 출력이 향상된다. 하나 이상의 전지 모듈은 BDU(Battery Disconnect Unit), BMS(Battery Management System), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지팩을 형성할 수 있다.
도 1은 종래의 전지 모듈을 나타낸 사시도이다.
도 1을 참고하면, 종래의 전지 모듈(10)은, 전지셀 적층체(미도시)를 모듈 프레임(20)에 수납한 후 모듈 프레임(20)의 개방된 부분에 엔드 플레이트(40)를 접합하여 제조될 수 있다. 이때, 엔드 플레이트(40)에는 터미널 버스바의 일부가 노출되는 터미널 버스바 개구부(41H) 및 모듈 커넥터의 일부가 노출되는 모듈 커넥터 개구부(42H)가 형성될 수 있다. 터미널 버스바 개구부(41H)는 전지 모듈(10)의 HV(High voltage) 연결을 안내하기 위한 것으로, 터미널 버스바 개구부(41H)를 통해 노출된 터미널 버스바가 다른 전지 모듈이나 BDU(Battery Disconnect Unit)와 연결될 수 있다. 모듈 커넥터 개구부(42H)는 전지 모듈(10)의 LV(Low voltage) 연결을 안내하기 위한 것으로, 모듈 커넥터 개구부(42H)를 통해 노출된 모듈 커넥터가 BMS(Battery Management System)와 연결되어 전지셀의 전압 정보나 온도 정보 등을 전달할 수 있다.
도 2은 도 1의 전지 모듈이 장착된 종래의 전지팩에서, 전지 모듈의 발화시 모습을 나타낸 도면이다. 도 3는 도 2의 절단선 I-I’를 따라 자른 단면으로, 종래의 전지 모듈의 발화시 인접한 전지 모듈에 영향을 미치는 화염의 모습을 나타낸 단면도이다.
도 1 내지 도 3을 참조하면, 종래의 전지 모듈(10)은 복수의 전지셀(11)이 적층된 전지셀 적층체, 전지셀 적층체를 수용하는 모듈 프레임(20), 전지셀 적층체의 전후면에 형성된 엔드 플레이트(40)를 포함한다.
과충전을 비롯하여 전지셀에 물리적, 열적, 전기적 손상이 발생할 시 전지셀(11)의 내부 압력이 증가하여 전지셀(11)의 융착 강도 한계치를 넘는 경우, 전지셀(11)에서 발생한 고온의 열, 가스 및 화염이 전지셀(11)의 외부로 배출될 수 있다.
이때 고온의 열, 가스 및 화염은 엔드 플레이트(40)에 형성된 개구부(41H, 42H)들을 통해 배출될 수 있는데, 엔드 플레이트(40)끼리 서로 마주보도록 복수의 전지 모듈(10)을 배치하는 전지팩 구조에서, 전지 모듈(10)로부터 분출된 고온의 열, 가스 및 화염 등이 이웃하는 전지 모듈(10)에 영향을 미칠 수 있다. 이에 따라, 이웃하는 전지 모듈의 엔드 플레이트(40)에 형성된 터미널 버스바 등이 손상될 수 있으며, 고온의 열, 가스 및 화염이 이웃하는 전지 모듈(10)의 엔드 플레이트(40)에 형성된 개구부를 통해 전지 모듈(10)의 내부로 들어가 복수의 전지셀(11)을 비롯한 기타 전장품에 손상을 입힐 수 있다. 뿐만 아니라, 이는 이웃하는 전지 모듈(10)의 열 전파로 이어져, 전지팩 내에서의 연쇄적인 발화가 발생하게 된다.
이에, 전지 모듈 내에서 열 전파(Thermal propagation)가 발생할 때, 이웃한 전지 모듈에 미치는 영향을 최소화할 수 있도록, 고온의 화염을 제어할 수 있는 기술 개발이 요구되는 실정이다.
본 발명이 해결하고자 하는 과제는, 전지 모듈 내에서 발화 현상이 발생할 경우, 다량의 가스는 신속하게 배출가능하고 동시에 산소의 유입을 차단할 수 있는 전지 모듈 및 이를 포함하는 전지팩을 제공하는 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지셀이 적층된 전지셀 적층체; 상기 전지셀 적층체를 수납하는 모듈 프레임; 및 상기 전지셀 적층체의 양 측에 배치되는 엔드 플레이트를 포함한다. 상기 모듈 프레임 및 상기 엔드 플레이트 중 적어도 하나에 일 방향으로 가스를 배출하는 벤팅부가 형성된다. 상기 벤팅부는 상기 모듈 프레임 내부의 압력 상승에 따라 개폐가 조절된다.
상기 벤팅부는, 관통구; 상기 관통구를 막는 커버부; 상기 커버부의 외측에 위치하고 개방된 부분이 형성된 외곽부; 및 상기 커버부와 상기 외곽부 사이에 위치한 스프링부를 포함할 수 있다.
상기 외곽부는, 상기 엔드 플레이트 또는 상기 모듈 프레임과 연결되는 프레임 형태일 수 있고, 상기 스프링부는 상기 커버부와 상기 외곽부 사이에서 고정될 수 있다.
상기 전지 모듈 내부에서 가스 발생 시, 상기 스프링부가 압축되면서 상기 커버부에 의해 막혀있던 상기 관통구가 개방될 수 있다.
상기 벤팅부는, 관통구; 상기 관통구를 막는 커버부; 및 상기 커버부의 일측에 위치하여 상기 커버부의 개폐를 가능케 하는 힌지부를 포함할 수 있다. 상기 전지 모듈 내부에서 가스 발생 시, 상기 커버부는 상기 전지 모듈의 외측 방향으로 열릴 수 있다.
상기 힌지부는 상기 커버부를 상기 전지 모듈의 외측 방향으로 개방시킬 수 있다.
상기 관통구에 단차부가 형성될 수 있고, 상기 커버부의 다른 일측이 상기 단차부에 의해 막혀, 상기 커버부가 상기 전지 모듈의 외측 방향으로만 열릴 수 있다.
상기 벤팅부는, 상기 커버부의 상기 다른 일측 및 상기 단차부 각각과 연결된 내측 스프링부를 더 포함할 수 있다.
상기 커버부가 열리는 방향과 반대 방향으로 상기 내측 스프링부의 탄성력이 작용할 수 있다.
상기 벤팅부는 상기 관통구의 내벽에 형성된 돌출부를 더 포함할 수 있고, 상기 돌출부는 상기 커버부의 외측에 위치할 수 있다.
상기 전지 모듈은, 상기 전지셀 적층체와 상기 엔드 플레이트 사이에 위치하는 절연 커버를 더 포함할 수 있다. 상기 벤팅부가 상기 엔드 플레이트에 형성될 수 있고, 상기 절연 커버 중 상기 벤팅부와 대응하는 위치에 절연 커버 개구부가 형성될 수 있다.
본 발명의 실시예들에 따르면, 전지 모듈 내에서 발화 현상이 발생할 경우, 일 방향으로 가스를 배출하도록 구성된 벤팅부에 의해 다량의 가스는 신속하게 배출가능하고 동시에 산소의 유입을 차단할 수 있다.
이에 따라, 전지 모듈 내부의 압력이 상승하는 것을 해소함과 동시에 가연성 가스의 폭발 조건 중 산소(공기)의 공급을 제한함으로써 전지 모듈의 폭발 및 화염 발달을 억제할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 전지 모듈을 나타낸 사시도이다.
도 2은 도 1의 전지 모듈이 장착된 종래의 전지팩에서, 전지 모듈의 발화시 모습을 나타낸 도면이다.
도 3는 도 2의 절단선 I-I’를 따라 자른 단면을 나타낸 단면도이다.
도 4는 본 발명의 일 실시예에 따른 전지 모듈을 나타낸 사시도이다.
도 5는 도 4의 전지 모듈에 대한 분해 사시도이다.
도 6은 도 5의 전지 모듈에 포함된 전지셀을 나타낸 사시도이다.
도 7은 도 4의 전지 모듈의 제2 엔드 플레이트가 정면에서 보여지도록 각도를 달리하여 나타낸 사시도이다.
도 8은 본 발명의 일 실시예에 따른 엔드 플레이트 및 절연 커버를 나타낸 사시도이다.
도 9는 도 8의 절단선 A-A’를 따라 자른 모습을 나타낸 단면 사시도이다.
도 10은 도 9의 엔드 플레이트 및 절연 커버를 xz 평면 상에서 -y축 방향으로 바라본 단면도이다.
도 11은 도 10의 엔드 플레이트 및 절연 커버에 대해 전지 모듈의 내부 압력 상승 시 가스가 배출되는 모습을 나타낸 단면도이다.
도 12는 본 발명의 다른 일 실시예에 따른 전지 모듈을 나타낸 사시도이다.
도 13은 도 12의 절단선 B-B’를 따라 자른 단면을 나타낸 단면도이다.
도 14는 본 발명의 변형된 일 실시예에 따른 엔드 플레이트 및 절연 커버를 나타낸 사시도이다.
도 15는 도 14의 절단선 C-C’를 따라 자른 모습을 나타낸 단면도이다.
도 16은 도 15의 엔드 플레이트 및 절연 커버에 대해 전지 모듈의 내부 압력 상승 시 가스가 배출되는 모습을 나타낸 단면도이다.
도 17 및 도 18은, 본 발명의 변형된 일 실시예에 따른 엔드 플레이트 및 절연 커버에 대한 단면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 “상에” 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 “상에” 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 “위에” 또는 “상에” 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 4는 본 발명의 일 실시예에 따른 전지 모듈을 나타낸 사시도이다. 도 5는 도 4의 전지 모듈에 대한 분해 사시도이다. 도 6은 도 5의 전지 모듈에 포함된 전지셀을 나타낸 사시도이다.
도 4 내지 도 6을 참고하면, 본 발명의 일 실시예에 따른 전지 모듈(100a)은, 복수의 전지셀(110)이 적층된 전지셀 적층체(120); 전지셀 적층체(120)을 수납하는 모듈 프레임(200); 및 전지셀 적층체(120)의 양 측에 배치되는 엔드 플레이트(410, 420)를 포함한다.
우선, 도 6을 참고하면, 전지셀(110)은 파우치형 전지셀인 것이 바람직하다. 예를 들어, 본 실시예에 따른 전지셀(110)은 두 개의 전극리드(111, 112)가 서로 대향하여 셀 본체(113)의 일단부(114a)와 다른 일단부(114b)로부터 각각 돌출되어 있는 구조를 갖는다. 보다 상세하게는 전극리드(111, 112)는 전극 조립체(미도시)와 연결되고, 전극 조립체(미도시)로부터 전지셀(110)의 외부로 돌출된다.
한편, 전지셀(110)은, 셀 케이스(114)에 전극 조립체(미도시)를 수납한 상태로 셀 케이스(114)의 양 단부(114a, 114b)와 이들을 연결하는 일측부(114c)를 접착함으로써 제조될 수 있다. 다시 말해, 본 실시예에 따른 전지셀(110)은 총 3군데의 실링부(114sa, 114sb, 114sc)를 갖고, 실링부(114sa, 114sb, 114sc)는 열융착 등의 방법으로 실링되는 구조이며, 나머지 다른 일측부는 연결부(115)로 이루어질 수 있다. 셀 케이스(114)는 수지층과 금속층을 포함하는 라미네이트 시트로 이루어질 수 있다.
또한, 연결부(115)는 전지셀(110)의 일 테두리를 따라 길게 뻗을 수 있고, 연결부(115)의 단부에는 배트 이어(bat-ear)라 불리우는 전지셀(110)의 돌출 부분(110p)이 형성될 수 있다. 또한, 돌출된 전극리드(111, 112)를 사이에 두고 셀 케이스(114)가 밀봉되면서, 전극리드(111, 112)와 셀 본체(113) 사이에 테라스(Terrace)부(116)가 형성될 수 있다. 즉, 전지셀(110)은, 전극리드(111, 112)가 돌출된 방향으로 셀 케이스(114)로부터 연장 형성된 테라스부(116)를 포함한다.
전지셀(110)은 복수개로 구성될 수 있으며, 복수의 전지셀(110)은 상호 전기적으로 연결될 수 있도록 적층되어 전지셀 적층체(120)를 형성할 수 있다. 도 5를 참고하면, 전지셀(110)들이 y축 방향을 따라 적층되어 전지셀 적층체(120)를 형성할 수 있다. 전극리드(111)가 돌출된 방향(x축 방향)의 전지셀 적층체(120)의 일면에는 제1 버스바 프레임(310)이 위치할 수 있다. 구체적으로 도시하지 않았으나, 전극리드(112)가 돌출되는 방향(-x축 방향)의 전지셀 적층체(120)의 타면에 제2 버스바 프레임이 위치할 수 있다. 전지셀 적층체(120) 및 제1 버스바 프레임(310)은 모듈 프레임(200)에 함께 수용될 수 있다. 모듈 프레임(200)은 모듈 프레임(200) 내부에 수용된 전지셀 적층체(120) 및 이와 연결된 전장품을 외부의 물리적 충격으로부터 보호할 수 있다.
한편, 전극리드(111, 112)들이 돌출된 방향(x축 방향, -x축 방향)으로, 모듈 프레임(200)이 개방될 수 있으며, 모듈 프레임(200)의 개방된 양 측에 각각 엔드 플레이트(410, 420)가 위치할 수 있다. 2개의 엔드 플레이트(410, 420)를 각각 제1 엔드 플레이트(410) 및 제2 엔드 플레이트(420)로 지칭하도록 한다. 제1 엔드 플레이트(410)가 제1 버스바 프레임(310)을 덮으면서 모듈 프레임(200)과 접합될 수 있고, 제2 엔드 플레이트(420)가 제2 버스바 프레임(미도시)을 덮으면서 모듈 프레임(200)과 접합될 수 있다. 즉, 제1 엔드 플레이트(410)와 전지셀 적층체(120) 사이에 제1 버스바 프레임(310)이 위치할 수 있고, 제2 엔드 플레이트(420)와 전지셀 적층체(120) 사이에 제2 버스바 프레임(미도시)이 위치할 수 있다. 또한, 제1 엔드 플레이트(410)와 제1 버스바 프레임(310) 사이에는 전기적 절연을 위한 절연 커버(800, 도 4 참고)가 위치할 수 있다.
제1 엔드 플레이트(410) 및 제2 엔드 플레이트(420)는 전지셀 적층체(120)의 상기 일면과 상기 타면을 각각 커버하도록 위치한다. 제1 엔드 플레이트(410) 및 제2 엔드 플레이트(420)는 외부의 충격으로부터 제1 버스바 프레임(310) 및 이와 연결된 여러 전장품을 보호할 수 있고, 이를 위해 소정의 강도를 가져야 하며 알루미늄과 같은 금속을 포함할 수 있다. 또한, 제1 엔드 플레이트(410) 및 제2 엔드 플레이트(420)는 각각 모듈 프레임(200)의 대응하는 모서리와 용접 등의 방법으로 접합될 수 있다.
제1 버스바 프레임(310)은 전지셀 적층체(120)의 일면에 위치하여, 전지셀 적층체(120)를 커버함과 동시에 전지셀 적층체(120)와 외부 기기와의 연결을 안내할 수 있다. 구체적으로, 제1 버스바 프레임(310)에는 버스바, 터미널 버스바 및 모듈 커넥터 중 적어도 하나가 장착될 수 있다. 특히, 제1 버스바 프레임(310)이 전지셀 적층체와 마주하는 면의 반대 면에 버스바, 터미널 버스바 및 모듈 커넥터 중 적어도 하나가 장착될 수 있다. 일례로, 도 5에는 제1 버스바 프레임(310)에 버스바(510) 및 터미널 버스바(520)가 장착된 모습이 나타나 있다.
전지셀(110)의 전극리드(111)가 제1 버스바 프레임(310)에 형성된 슬릿을 통과한 후 구부러져 버스바(510)나 터미널 버스바(520)와 접합될 수 있다. 버스바(510)나 터미널 버스바(520)에 의해 전지셀 적층체(120)를 구성하는 전지셀(110)들이 직렬 또는 병렬 연결될 수 있다. 또한, 전지 모듈(100a)의 외부로 노출되는 터미널 버스바(520)를 통해 외부 기기나 회로와 전지셀(110)들이 전기적으로 연결될 수 있다.
제1 버스바 프레임(310)은 전기적으로 절연인 소재를 포함할 수 있다. 제1 버스바 프레임(310)은, 버스바(510)나 터미널 버스바(520)가 전극리드(111)와 접합된 부분을 제외하고, 버스바(510)나 터미널 버스바(520)가 전지셀(110)들과 접촉하는 것을 제한하여, 단락 발생을 방지할 수 있다.
한편, 상술한 바 대로, 전지셀 적층체(120)의 타면에 제2 버스바 프레임이 위치할 수 있는데, 제2 버스바 프레임에는 버스바, 터미널 버스바 및 모듈 커텍터 중 적어도 하나가 장착될 수 있다. 이러한 버스바에 전극리드(112)가 접합될 수 있다.
본 실시예에 따른 제1 엔드 플레이트(410)에 터미널 버스바 및 모듈 커넥터 중 적어도 하나가 노출되는 개구부가 형성될 수 있다. 상기 개구부는 터미널 버스바 개구부이거나 모듈 커넥터 개구부일 수 있다. 일례로, 도 4 및 도 5에 도시된 바와 같이, 제1 엔드 플레이트(410)에 터미널 버스바(520)가 노출되는 터미널 버스바 개구부(410H)가 형성될 수 있다. 터미널 버스바(520)는 버스바(510)와 비교하여, 상향 돌출된 부분을 더 포함하는데, 이러한 상향 돌출된 부분이 터미널 버스바 개구부(410H)를 통해 전지 모듈(100a)의 외부로 노출될 수 있다. 터미널 버스바 개구부(410H)를 통해 노출된 터미널 버스바(520)가 다른 전지 모듈이나 BDU(Battery Disconnect Unit)와 연결되어 HV(High voltage) 연결을 형성할 수 있다.
도 7은 도 4의 전지 모듈의 제2 엔드 플레이트가 정면에서 보여지도록 각도를 달리하여 나타낸 사시도이다.
도 7을 참고하면, 일례로, 제2 엔드 플레이트(420)에 모듈 커넥터(600)가 노출되는 모듈 커넥터 개구부(420H)가 형성될 수 있다. 이는 앞서 언급한 제2 버스바 프레임에 모듈 커넥터(600)가 장착된 것을 의미한다. 모듈 커넥터(600)는, 전지 모듈(100a) 내부에 마련된 온도 센서나 전압 측정 부재 등과 연결될 수 있다. 이러한 모듈 커넥터(600)는 외부 BMS(Battery Management System)와 연결되어 LV(Low voltage) 연결을 형성하는데, 상기 온도 센서나 전압 측정 부재가 측정한 온도 정보와 전압 정도 등을 상기 외부 BMS에 전달하는 기능을 담당한다.
도 4, 도 5 및 도 7에서 도시된 제1 엔드 플레이트(410) 및 제2 엔드 플레이트(420)는 예시적 구조이며, 본 발명의 다른 실시예에 따라 제1 버스바 프레임(310)에 모듈 커넥터가 장착되고 제2 버스바 프레임에 터미널 버스바가 장착될 수 있다. 이에 따라 제1 엔드 플레이트에 모듈 커넥터 개구부가 형성될 수 있고, 제2 엔드 플레이트에 터미널 버스바 개구부가 형성될 수 있다.
한편, 본 실시예에 따른 엔드 플레이트(410, 420)는 전지셀 적층체(120)의 전면 및 후면을 커버하고, 모듈 프레임(200)은 전지셀 적층체(120)의 상면, 하면 및 양 측면을 커버한다. 여기서 전면은 전지셀 적층체(120)의 x축 방향의 면을 의미하고, 후면은 전지셀 적층체(120)의 -x축 방향의 면을 의미한다. 상면은 전지셀 적층체(120)의 z축 방향의 면을 의미하고, 하면은 전지셀 적층체(120)의 -z축 방향의 면을 의미하며, 양 측면은 각각 전지셀 적층체(120)의 y축 및 -y축 방향의 면을 의미한다. 다만 이는 설명의 편의를 위해 지칭한 면들이며, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있다. 상술한 바 대로, 전지셀 적층체(120)의 전면 및 후면은 전지셀(110)의 돌출된 전극 리드(111, 112)들이 위치한 면일 수 있다.
본 실시예에 따르면, 모듈 프레임(200) 및 엔드 플레이트(410, 420) 중 적어도 하나에 일 방향으로 가스를 배출하는 벤팅부(700a)를 포함할 수 있다.
이하에서는, 도 8 내지 도 10을 참고하여, 본 발명의 일 실시예에 따라, 제1 엔드 플레이트에 형성된 벤팅부에 대해 자세히 설명하도록 한다. 설명의 반복을 피하기 위해 제1 엔드 플레이트(410)를 기준으로 설명하나, 제2 엔드 플레이트(420)에도 동일 내지 유사한 구조가 적용될 수 있다.
도 8은 본 발명의 일 실시예에 따른 엔드 플레이트 및 절연 커버를 나타낸 사시도이다. 도 9는 도 8의 절단선 A-A’를 따라 자른 모습을 나타낸 단면 사시도이다. 도 10은 도 9의 엔드 플레이트 및 절연 커버를 xz 평면 상에서 -y축 방향으로 바라본 단면도이다.
도 8 내지 도 10을 참고하면, 본 실시예에 따른 벤팅부(700a)는, 모듈 프레임(200) 내부의 압력 상승에 따라 개폐가 조절되며, 모듈 프레임(200) 내부의 압력 상승 시 일 방향으로 가스를 배출한다.
구체적으로, 벤팅부(700a)는, 관통구(710a), 관통구(710a)를 막는 커버부(720a), 커버부(720a)의 외측에 위치하고 개방된 부분(OP)이 형성된 외곽부(730a) 및 커버부(720a)와 외곽부(730a) 사이에 위치한 스프링부(740a)를 포함할 수 있다.
관통구(710a)는 제1 엔드 플레이트(410)의 일면에 형성되어, 제1 엔드 플레이트(410)를 관통하도록 뚫린 부분일 수 있다. 관통구(710a)의 형태에 특별한 제한은 없으며, 원형, 다각형, 타원형 등이 모두 가능하다. 도 9에는 일례로 원형의 관통구(710a)가 도시되어 있다.
커버부(720a)는 외측에서 관통구(710a)의 뚫린 부분 전체를 막도록 배치될 수 있다. 정상 작동 상태에서는 커버부(720a)가 관통구(710a)을 막아 전지 모듈(100a)의 밀폐 상태를 유지하여, 조립 과정, 이송 과정, 정상 작동 과정 등에서 외부로부터의 이물이 유입되는 것을 막을 수 있다.
외곽부(730a)는 제1 엔드 플레이트(410)와 연결되는 프레임 형태일 수 있다. 일례로, 도 9에 도시된 바와 같이, 외곽부(730a)는 십자가 형태의 프레임이 제1 엔드 플레이트(410)의 일면에 배치된 형태일 수 있다. 프레임 형태이기 때문에 자연히 프레임 사이에 개방된 부분(OP)이 형성된다. 외곽부(730a)가 커버부(720a)의 외측에 위치하여, 커버부(720a)를 덮는 형태일 순 있으나, 상기 프레임 사이에 개방된 부분(OP)이 마련되기 때문에 외곽부(730a)에 의해 밀폐되는 것은 아니다.
구체적으로 도시하지 않았으나, 외곽부(730a)는 일자 형태의 프레임 형태도 가능하다. 또한, 프레임 형태가 아니더라도, 커버부(720a)의 외측에 위치하여 개방된 부분을 형성하고, 후술하는 스프링부(740a)를 그 사이에 고정시킬 수 있다면 구조적으로 특별한 제한은 없다.
스프링부(740a)는 커버부(720a)와 외곽부(730a) 사이에 위치한 탄성 부재로써, 관통구(710a)의 개구 방향과 동일한 방향으로 탄성력이 작용하도록 배치되는 것이 바람직하다. 여기서 관통구(710a)의 개구 방향이라 함은 x축과 평행한 방향을 의미한다. 일례로, 코일 형태의 스프링인 스프링부(740a)가 관통구(710a)의 개구 방향과 평행하도록 배치될 수 있다. 이러한, 스프링부(740a)는 커버부(720a)와 외곽부(730a) 사이에서 고정될 수 있다. 고정을 위해 스프링부(740a)가 다소 압축된 상태로 커버부(720a)와 외곽부(730a) 사이에 위치할 수 있다. 스프링부(740a)의 탄성력에 의해, 평상 시에는 커버부(720a)가 관통구(710a)를 막고 있는 상태를 유지할 수 있다.
한편, 외곽부(730a)는, 상술한 것처럼 프레임 형태일 수 있는데, 스프링부(740a)의 안정적인 장착을 위해, 스프링부(740a)와 접촉하는 부분이 외측으로 돌출되도록 휘어진 형태일 수 있다. 휘어지는 부분에 맞게 스프링부(740a)가 장착되어, 스프링부(740a)가 보다 안정적으로 커버부(720a)와 외곽부(730a) 사이에 고정될 수 있다.
도 11은 도 10의 엔드 플레이트 및 절연 커버에 대해 전지 모듈의 내부 압력 상승 시 가스가 배출되는 모습을 나타낸 단면도이다.
도 11을 도 9 및 도 10과 함께 참고하면, 전지 모듈(100a)이 비정상적인 작동 상태에 놓여 고온의 열, 가스 및 화염 등이 발생할 때, 상승된 내압이 커버부(720a)를 밀어내고 스프링부(740a)를 압축시킬 수 있다. 즉, 전지 모듈(100a) 내부에서 가스 발생 시, 스프링부(740a)가 압축되면서 커버부(720a)에 의해 막혀있던 관통구(710a)가 개방될 수 있다. 이에 따라 관통구(710a) 및 외곽부(730a)의 개방된 부분(OP)을 통해 다량의 가스가 신속하게 배출될 수 있다. 전지 모듈(100a) 내부의 압력이 급격하게 상승되는 것을 제한할 수 있다.
어느 정도 가스가 배출되고 나면, 스프링부(740a)의 탄성력에 의해 다시 관통구(710a)가 커버부(720a)에 의해 막히게 된다. 가스의 배출만 이루어지고, 외부 산소(공기)가 내부로 유입되는 것을 차단할 수 있다. 관통구(710a)가 열려있는 동안은, 전지 모듈(100a) 내부의 압력이 매우 높은 상태이므로, 외부 산소(공기)가 유입되는 힘들다. 즉, 본 실시예에 따른 벤팅부(700a)는 다량의 가스는 신속하게 배출가능하고 동시에 산소의 유입을 차단시킬 수 있다. 이에 따라, 전지 모듈 내부의 압력이 상승하는 것을 해소함과 동시에 가연성 가스의 폭발 조건 중 산소(공기)의 공급을 제한함으로써, 전지 모듈(100a)이 비정상적인 작동 상태에 놓이더라도 폭발이나 및 화염 발달로 이어지는 것을 방지할 수 있다.
또한, 본 실시예에 따른 벤팅부(700a)의 경우, 관통구(710a)를 막는 커버부(720a)가 전지 모듈(100a)의 내부 가스의 압력을 직접 받도록 구성되어 있으며, 관통구(710a)와 커버부(720a)의 개폐를 조절하는 스프링부(740a)는 커버부(720a)의 외측에 위치한다. 본 실시예에서는, 스프링부(740a)가 커버부(720a)의 안쪽에 위치하는 경우보다 내압이 작용하는 커버부(720a)의 면적을 크게 설정할 수 있다. 즉, 내압이 작용하는 면적을 크게 마련할 수 있기 때문에, 본 실시예에 따른 벤팅부(700a)는 전지 모듈(100a)의 내부 압력 변화에 보다 민감하게 반응하여, 개폐 동작이 원활히 작동할 수 있다는 장점을 갖는다. 스프링부(740a)가 전지 모듈의 안쪽에 위치하는 경우, 전지 모듈(100a)의 내부 가스의 압력을 받는 면적이 줄어들어, 개폐 동작이 적절하게 이루어지지 않을 가능성이 있다.
한편, 이러한 벤팅부(700a)의 개수에 특별한 제한은 없으며, 단수 또는 복수로 배치될 수 있다. 일례로, 도 8에는 3개의 벤팅부(700a)가 마련된 것이 나타나 있다.
한편, 상술한 바 대로, 제1 엔드 플레이트(410)와 제1 버스바 프레임(310, 도 5 참조) 사이에는 전기적 절연을 위한 절연 커버(800)가 위치할 수 있다. 전기적 절연인 소재라면 제한 없이 절연 커버(800)로 적용될 수 있다. 이 때, 도 10 및 도 11에 도시된 바와 같이, 절연 커버(800) 중 벤팅부(700a)와 대응하는 위치에 절연 커버 개구부(800H)가 형성될 수 있다. 전지 모듈 내부의 가스가 절연 커버 개구부(800H)와 벤팅부(700a)를 차례로 통과하여 외부로 배출될 수 있다.
이하에서는, 도 12 및 도 13을 참고하여, 본 발명의 다른 일 실시예에 따라, 모듈 프레임에 형성된 벤팅부에 대해 자세히 설명하도록 한다.
도 12는 본 발명의 다른 일 실시예에 따른 전지 모듈을 나타낸 사시도이다. 도 13은 도 12의 절단선 B-B’를 따라 자른 단면을 나타낸 단면도이다.
도 12 및 도 13을 참고하면, 본 발명의 다른 일 실시예에 따른 전지 모듈(100b)은, 전지셀 적층체(120)를 수납하는 모듈 프레임(200) 및 모듈 프레임(200)에 형성된 벤팅부(700b)를 포함한다.
구체적으로, 벤팅부(700b)는, 관통구(710b), 관통구(710b)를 막는 커버부(720b), 커버부(720b)의 외측에 위치하고 개방된 부분이 형성된 외곽부(730b) 및 커버부(720b)와 외곽부(730b) 사이에 위치한 스프링부(740b)를 포함할 수 있다.
관통구(710b)는 모듈 프레임(200)의 일면에 형성되어, 모듈 프레임(200)을 관통하도록 뚫린 부분일 수 있다. 커버부(720b)는 외측에서 관통구(710b)의 뚫린 부분 전체를 막도록 배치될 수 있다. 외곽부(730b)는 모듈 프레임(200)과 연결되는 프레임 형태일 수 있다. 일례로, 도 12에 도시된 바와 같이, 외곽부(730b)는 십자가 형태의 프레임이 모듈 프레임(200)의 일면에 배치된 형태일 수 있다. 프레임 형태이기 때문에 자연히 프레임 사이에 개방된 부분이 형성된다. 스프링부(740b)는 커버부(720b)와 외곽부(730b) 사이에 위치한 탄성 부재로써, 관통구(710b)의 개구 방향과 동일한 방향으로 탄성력이 작용하도록 배치될 수 있다.
즉, 본 실시예에 따른 벤팅부(700b)는, 엔드 플레이트(410, 420)에 형성되는 벤팅부(700a)와 유사한 구조를 갖는다. 이러한 벤팅부(700b)는 모듈 프레임(200) 내부의 압력 상승에 따라 개폐가 조절되며, 모듈 프레임(200) 내부의 압력 상승 시 일 방향으로 가스를 배출하는 구조를 가질 수 있다.
벤팅부(700b)가 모듈 프레임(200)의 상면에 형성된 것으로 도시되어 있으나, 그 위치에 특별한 제한은 없고, 하면이나 양 측면에 형성되는 것도 가능하다. 다만, 하면의 경우 가스 배출에 제한이 있을 수 있다.
한편, 모듈 프레임(200)이 엔드 플레이트(410, 420)에 비해 상대적으로 넓은 면적을 가질 수 있기 때문에 엔드 플레이트(410, 420)에 형성된 경우보다 벤팅부(700b)의 개수를 늘릴 수 있다. 또한, 관통구(710b)의 개구 면적도 늘릴 수 있다. 늘어난 벤팅부(700b)의 개수나 관통구(710b)의 개구 면적은 가스나 화염의 분산에 더 효과적이다.
또한, 벤팅부(700b)가 모듈 프레임(200)의 일면에 형성되는 것이므로, 엔드 플레이트가 위치한 방향으로 배출되는 가스나 화염 자체를 줄일 수 있다.
특히, 도시된 바와 같이, 모듈 프레임(200)의 상면에 벤팅부(700b)들이 형성될 수 있는데, 이 경우, 가스나 화염의 배출이 전지 모듈(100b)의 상부에서 일어나도록 유도할 수 있다. 따라서, 주로 측면에 배치되는 다른 전지 모듈들에게 가해지는 손상을 줄일 수 있다.
한편, 엔드 플레이트(410, 420)에 형성된 벤팅부(700a) 및 모듈 프레임(200)에 형성된 벤팅부(700b)를 구분하여 설명하였으나, 본 발명의 다른 일 실시예에 따른 전지 모듈은, 엔드 플레이트(410, 420)에 형성된 벤팅부(700a) 및 모듈 프레임(200)에 형성된 벤팅부(700b)를 모두 포함할 수 있다.
이하에서는, 도 14 내지 도 16을 참고하여, 본 발명의 변형된 일 실시예에 따른 벤팅부에 대해 자세히 설명하도록 한다. 설명의 반복을 피하기 위해 제1 엔드 플레이트(410)를 기준으로 설명하나, 제2 엔드 플레이트(420)에도 동일 내지 유사한 구조가 적용될 수 있다.
도 14는 본 발명의 변형된 일 실시예에 따른 엔드 플레이트 및 절연 커버를 나타낸 사시도이다. 도 15는 도 14의 절단선 C-C’를 따라 자른 모습을 나타낸 단면도이다. 도 16은 도 15의 엔드 플레이트 및 절연 커버에 대해 전지 모듈의 내부 압력 상승 시 가스가 배출되는 모습을 나타낸 단면도이다.
도 14 내지 도 16을 참고하면, 본 발명의 변형된 일 실시예에 따른 벤팅부(700c)는, 관통구(710c), 관통구(710c)를 막는 커버부(720c) 및 커버부(720c)의 일측에 위치하여 커버부(720c)의 개폐를 가능케 하는 힌지부(730c)를 포함할 수 있다.
관통구(710c)는 제1 엔드 플레이트(410)의 일면에 형성되어, 제1 엔드 플레이트(410)를 관통하도록 뚫린 부분일 수 있다. 관통구(710c)의 형태에 특별한 제한은 없으며, 원형, 다각형, 타원형 등이 모두 가능하다. 다만, 힌지부(730c)의 구성을 고려할 때 도시된 바와 같이 사각형의 관통구(710c)가 바람직할 수 있다.
커버부(720c)는 관통구(710c)의 뚫린 부분 전체를 막도록 배치될 수 있다. 정상 작동 상태에서는 커버부(720c)가 관통구(710c)을 막아 전지 모듈의 밀폐 상태를 유지하여, 조립 과정, 이송 과정, 정상 작동 과정 등에서 외부로부터의 이물이 유입되는 것을 막을 수 있다.
힌지부(730c)는 커버부(720c)의 일측에 위치한 구조물로써, 커버부(720c)의 개폐를 가능케 한다. 특히, 전지 모듈 내부에서 가스 발생 시, 커버부(720c)는 전지 모듈의 외측 방향으로 열릴 수 있다. 힌지부(730c)가 커버부(720c)를 전지 모듈의 외측 방향으로 개방시킬 수 있다.
구체적으로, 본 실시예에 따른 관통구(710c)에 단차부(740c)가 형성될 수 있다. 이러한 단차부(740c)는 커버부(720c)보다 안쪽에 위치할 수 있다. 힌지부(730c)가 마련된 커버부(720c)의 일측과 대향하는 커버부(720c)의 다른 일측이 단차부(740c)에 의해 막혀, 도 16에 도시된 바와 같이 커버부(720c)가 전지 모듈의 외측 방향으로만 열릴 수 있다.
한편, 본 실시예에 따른 벤팅부(700c)는 관통구(710c)의 내벽에 형성된 돌출부(750c)를 포함할 수 있다. 이러한 돌출부(750c)는 커버부(720c)의 외측에 위치할 수 있다. 보다 구체적으로, 커버부(720c)가 개방될 때, 커버부(720c)의 상기 일측과 대향하는 커버부(720c)의 상기 다른 일측이 돌출부(750c)와 접촉할 수 있도록 돌출부(750c)가 위치할 수 있다.
도 14에 도시된 바와 같이, 돌출부(750c)가 복수로 구성되고, 각각이 커버부(720c)의 일면과 평행한 방향을 따라 이격되면서 배치될 수 있다. 각 돌출부(750c)들 사이에는 공간이 마련될 수 있다.
도 16에 도시된 바와 같이, 전지 모듈이 비정상적인 작동 상태에 놓여 고온의 열, 가스 및 화염 등이 발생할 때, 상승된 내압이 커버부(720c)를 밀어내어 관통구(710c)가 개방될 수 있다. 이에 따라 관통구(710c)를 통해 다량의 가스가 신속하게 배출될 수 있다. 전지 모듈 내부의 압력이 급격하게 상승되는 것을 제한할 수 있다.
어느 정도 가스가 배출되고 나면, 전지 모듈 내부의 압력이 낮아지고, 커버부(720c)가 닫히면서, 다시 관통구(710c)가 막히게 된다. 가스의 배출만 이루어지고, 외부 산소(공기)가 내부로 유입되는 것을 차단할 수 있다. 특히, 돌출부(750c)가 마련됨에 따라 커버부(720c)의 회전 범위가 제한되고, 관통구(710c)가 가스가 배출될 정도로만 개방될 수 있다. 커버부(720c)가 약간의 간격으로만 열리기 때문에 전지 모듈 내부의 압력이 낮아지면 다시 커버부(720c)가 닫히게 된다. 또한, 관통구(710c)가 열려있는 동안은, 전지 모듈 내부의 압력이 매우 높은 상태이므로, 외부 산소(공기)가 유입되는 힘들다. 즉, 본 실시예에 따른 벤팅부(700c)는 다량의 가스는 신속하게 배출가능하고 동시에 산소의 유입을 차단시킬 수 있다. 이에 따라, 전지 모듈 내부의 압력이 상승하는 것을 해소함과 동시에 가연성 가스의 폭발 조건 중 산소(공기)의 공급을 제한함으로써, 전지 모듈이 비정상적인 작동 상태에 놓이더라도 폭발이나 및 화염 발달로 이어지는 것을 방지할 수 있다.
한편, 이러한 벤팅부(700c)의 개수에 특별한 제한은 없으며, 단수 또는 복수로 배치될 수 있다. 일례로, 도 14에는 3개의 벤팅부(700c)가 마련된 것이 나타나 있다.
이하에서는, 본 발명의 변형된 일 실시예로써, 내측 스프링부를 포함하는 벤팅부에 대해 자세히 설명하도록 한다.
도 17 및 도 18은, 본 발명의 변형된 일 실시예에 따른 엔드 플레이트 및 절연 커버에 대한 단면도이다. 구체적으로, 도 17은 내압이 상승하기 전의 모습이고, 도 18은 내압이 상승한 후의 모습을 도시하였다.
도 17 및 도 18을 참고하면, 본 발명의 변형된 일 실시예에 따른 벤팅부(700d)는 엔드 플레이트(410)에 형성될 수 있다. 본 실시예에 따른 벤팅부(700d)는, 관통구(710d), 관통구(710d)를 막는 커버부(720d) 및 커버부(720d)의 일측에 위치하여 커버부(720d)의 개폐를 가능케 하는 힌지부(730d)를 포함할 수 있다. 또한, 커버부(720d)보다 안쪽에 위치한 단차부(740d)가 관통구(710d)에 형성될 수 있다. 또한, 절연 커버(800) 중 벤팅부(700d)와 대응하는 위치에 절연 커버 개구부(800H)가 형성될 수 있다. 상기 각 구성에 대한 자세한 설명은 앞서 벤팅부(700c)에서 설명한 내용과 중복이므로 생략한다.
본 실시예에 따른 벤팅부(700d)는, 커버부(720d)의 상기 다른 일측 및 단차부(740d) 각각과 연결된 내측 스프링부(750d)를 더 포함할 수 있다. 커버부(720d)의 상기 다른 일측은, 힌지부(730d)가 위치한 커버부(720d)의 상기 일측에 대향하는 부분일 수 있다.
커버부(720d)의 상기 다른 일측이 단차부(740d)에 의해 막혀, 커버부(720d)는 전지 모듈의 외측 방향으로만 열릴 수 있다. 이 때, 내측 스프링부(750d)가 배치됨에 따라, 커버부(720d)가 열리는 방향(d1)과 반대 방향(d2)으로 내측 스프링부(750d)의 탄성력이 작용한다.
평상 시에는, 도 17에 도시된 것처럼, 내측 스프링부(750d)의 탄성력에 의해, 커버부(720d)가 닫힌 상태로 유지된다. 그러나 전지 모듈이 비정상적인 작동 상태에 놓여 고온의 열, 가스 및 화염 등이 발생할 때, 도 18에 도시된 것처럼, 내압이 내측 스프링부(750d)의 탄성력보다 증가하여, 커버부(720d)를 밀어낸다. 이에 따라 관통구(710d)가 개방되고, 관통구(710d)를 통해 다량의 가스가 신속하게 배출될 수 있다. 물론, 전지 모듈 내압의 상승 정도가 클 경우, 도 18에 도시된 것보다 커버부(720d)가 크게 개방될 수 있다.
가스가 배출되어 내압이 감소하면, 내측 스프링부(750d)의 탄성력에 의해 커버부(720d)는 다시 닫힌 상태로 유지된다. 가스의 배출만 이루어지고, 외부 산소(공기)가 내부로 유입되는 것을 차단할 수 있다. 관통구(710d)가 열려있는 동안은, 전지 모듈 내부의 압력이 매우 높은 상태이므로, 외부 산소(공기)가 유입되는 힘들다. 즉, 본 실시예에 따른 벤팅부(700d)는 다량의 가스는 신속하게 배출 가능하고 동시에 산소의 유입을 차단시킬 수 있다. 이에 따라, 전지 모듈 내부의 압력이 상승하는 것을 해소함과 동시에 가연성 가스의 폭발 조건 중 산소(공기)의 공급을 제한함으로써, 전지 모듈이 비정상적인 작동 상태에 놓이더라도 폭발이나 및 화염 발달로 이어지는 것을 방지할 수 있다.
본 실시예에 따라 내측 스프링부(750d)를 구비한 벤팅부(700d)는, 전지 모듈 내부의 압력 상승에 따라 개폐가 조절되며, 전지 모듈 내부의 압력 상승 시 일 방향으로 가스를 배출하는 구조를 가질 수 있다.
본 실시예에서 전, 후, 좌, 우, 상, 하와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있다.
앞에서 설명한 본 실시예에 따른 하나 또는 그 이상의 전지 모듈은, BMS(Battery Management System), BDU(Battery Disconnect Unit), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지팩을 형성할 수 있다.
상기 전지 모듈이나 전지팩은 다양한 디바이스에 적용될 수 있다. 구체적으로는, 전기 자전거, 전기 자동차, 하이브리드 등의 운송 수단에 적용될 수 있으나 이에 제한되지 않고 이차 전지를 사용할 수 있는 다양한 디바이스에 적용 가능하다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
부호의 설명
100a, 100b: 전지 모듈
200: 모듈 프레임
410: 제1 엔드 플레이트
700a, 700b, 700c, 700d: 벤팅부

Claims (12)

  1. 복수의 전지셀이 적층된 전지셀 적층체;
    상기 전지셀 적층체를 수납하는 모듈 프레임; 및
    상기 전지셀 적층체의 양 측에 배치되는 엔드 플레이트를 포함하고,
    상기 모듈 프레임 및 상기 엔드 플레이트 중 적어도 하나에 일 방향으로 가스를 배출하는 벤팅부가 형성되며,
    상기 벤팅부는 상기 모듈 프레임 내부의 압력 상승에 따라 개폐가 조절되는 전지 모듈.
  2. 제1항에서,
    상기 벤팅부는,
    관통구;
    상기 관통구를 막는 커버부;
    상기 커버부의 외측에 위치하고, 개방된 부분이 형성된 외곽부; 및
    상기 커버부와 상기 외곽부 사이에 위치한 스프링부를 포함하는 전지 모듈.
  3. 제2항에서,
    상기 외곽부는, 상기 엔드 플레이트 또는 상기 모듈 프레임과 연결되는 프레임 형태이고,
    상기 스프링부는 상기 커버부와 상기 외곽부 사이에서 고정되는 전지 모듈.
  4. 제2항에서,
    상기 전지 모듈 내부에서 가스 발생 시, 상기 스프링부가 압축되면서 상기 커버부에 의해 막혀있던 상기 관통구가 개방되는 전지 모듈.
  5. 제1항에서,
    상기 벤팅부는,
    관통구;
    상기 관통구를 막는 커버부; 및
    상기 커버부의 일측에 위치하여 상기 커버부의 개폐를 가능케 하는 힌지부를 포함하고,
    상기 전지 모듈 내부에서 가스 발생 시, 상기 커버부는 상기 전지 모듈의 외측 방향으로 열리는 전지 모듈.
  6. 제5항에서,
    상기 힌지부는 상기 커버부를 상기 전지 모듈의 외측 방향으로 개방시키는 전지 모듈.
  7. 제5항에서,
    상기 관통구에 단차부가 형성되고,
    상기 커버부의 다른 일측이 상기 단차부에 의해 막혀, 상기 커버부가 상기 전지 모듈의 외측 방향으로만 열리는 전지 모듈.
  8. 제7항에서,
    상기 벤팅부는, 상기 커버부의 상기 다른 일측 및 상기 단차부 각각과 연결된 내측 스프링부를 더 포함하는 전지 모듈.
  9. 제8항에서,
    상기 커버부가 열리는 방향과 반대 방향으로 상기 내측 스프링부의 탄성력이 작용하는 전지 모듈.
  10. 제5항에서,
    상기 벤팅부는 상기 관통구의 내벽에 형성된 더 돌출부를 포함하고,
    상기 돌출부는 상기 커버부의 외측에 위치하는 전지 모듈.
  11. 제1항에서,
    상기 전지셀 적층체와 상기 엔드 플레이트 사이에 위치하는 절연 커버를 더 포함하고,
    상기 벤팅부가 상기 엔드 플레이트에 형성되며,
    상기 절연 커버 중 상기 벤팅부와 대응하는 위치에 절연 커버 개구부가 형성되는 전지 모듈.
  12. 제1항에 따른 전지 모듈을 포함하는 전지팩.
PCT/KR2022/002992 2021-03-16 2022-03-03 전지 모듈 및 이를 포함하는 전지팩 WO2022196983A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212022000137.0U DE212022000137U1 (de) 2021-03-16 2022-03-03 Batteriemodul und Batteriepack mit Selbigem
CN202290000322.4U CN220553552U (zh) 2021-03-16 2022-03-03 电池模块和包括该电池模块的电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210034064A KR20220129323A (ko) 2021-03-16 2021-03-16 전지 모듈 및 이를 포함하는 전지팩
KR10-2021-0034064 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022196983A1 true WO2022196983A1 (ko) 2022-09-22

Family

ID=83320742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002992 WO2022196983A1 (ko) 2021-03-16 2022-03-03 전지 모듈 및 이를 포함하는 전지팩

Country Status (4)

Country Link
KR (1) KR20220129323A (ko)
CN (1) CN220553552U (ko)
DE (1) DE212022000137U1 (ko)
WO (1) WO2022196983A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980053617U (ko) * 1996-12-31 1998-10-07 박병재 Ni-MH 전지의 벤팅 구조
KR20130022817A (ko) * 2011-08-26 2013-03-07 삼성전기주식회사 에너지 저장장치용 압력밸브 및 이를 포함하는 에너지 저장장치
KR102067711B1 (ko) * 2015-12-22 2020-01-17 주식회사 엘지화학 과충전 방지 구조가 개선된 배터리 모듈
KR20200107214A (ko) * 2019-03-06 2020-09-16 주식회사 엘지화학 열폭주 현상 발생 시 모듈 내부로 공기 유입을 막을 수 있는 구조를 갖는 배터리 모듈 및 이를 포함하는 배터리 팩
KR20210002919A (ko) * 2019-07-01 2021-01-11 주식회사 엘지화학 전지 모듈 및 이를 포함하는 전지팩

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7201486B2 (ja) 2019-03-13 2023-01-10 日立建機株式会社 作業機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980053617U (ko) * 1996-12-31 1998-10-07 박병재 Ni-MH 전지의 벤팅 구조
KR20130022817A (ko) * 2011-08-26 2013-03-07 삼성전기주식회사 에너지 저장장치용 압력밸브 및 이를 포함하는 에너지 저장장치
KR102067711B1 (ko) * 2015-12-22 2020-01-17 주식회사 엘지화학 과충전 방지 구조가 개선된 배터리 모듈
KR20200107214A (ko) * 2019-03-06 2020-09-16 주식회사 엘지화학 열폭주 현상 발생 시 모듈 내부로 공기 유입을 막을 수 있는 구조를 갖는 배터리 모듈 및 이를 포함하는 배터리 팩
KR20210002919A (ko) * 2019-07-01 2021-01-11 주식회사 엘지화학 전지 모듈 및 이를 포함하는 전지팩

Also Published As

Publication number Publication date
DE212022000137U1 (de) 2023-11-06
KR20220129323A (ko) 2022-09-23
CN220553552U (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2021107336A1 (ko) 배터리 모듈, 배터리 팩, 및 자동차
WO2016175591A1 (ko) 배터리 팩 및 그 제조 방법
WO2022080908A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2020256304A1 (ko) 가스배출통로를 구비한 베이스 플레이트를 포함한 배터리 모듈 및 배터리 팩 및 전력 저장장치
WO2020116856A1 (ko) 벤팅 부재를 포함하는 파우치형 전지셀 및 이를 포함하는 전지팩
WO2021221478A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021206514A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022164180A2 (ko) 화재 방지 성능이 향상된 배터리 모듈
WO2021221340A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022154431A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022225168A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022250287A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022215881A1 (ko) 이차전지 및 이의 제조 방법
WO2022158792A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022149897A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022108145A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022196983A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221295A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022005233A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2021075688A1 (ko) 전지 모듈 및 이을 포함하는 전지 팩
WO2022154374A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2024005581A1 (ko) 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2022270732A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022225172A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2024063485A1 (ko) 배터리 팩 및 이를 포함하는 전력 저장 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18279180

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202290000322.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 212022000137

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771649

Country of ref document: EP

Kind code of ref document: A1