WO2022196860A1 - 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템 - Google Patents

온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템 Download PDF

Info

Publication number
WO2022196860A1
WO2022196860A1 PCT/KR2021/005007 KR2021005007W WO2022196860A1 WO 2022196860 A1 WO2022196860 A1 WO 2022196860A1 KR 2021005007 W KR2021005007 W KR 2021005007W WO 2022196860 A1 WO2022196860 A1 WO 2022196860A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
stress
phosphorescence
signal
formula
Prior art date
Application number
PCT/KR2021/005007
Other languages
English (en)
French (fr)
Inventor
김경천
얀용주
차이타오
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2022196860A1 publication Critical patent/WO2022196860A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/76Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet

Definitions

  • the present invention relates to a method for manufacturing a temperature and stress sensitive film and a system for measuring temperature and stress, and more specifically, to a flexible temperature and stress sensing film by uniformly mixing two types of inorganic phosphorescent materials and a polyimide derivative compound And it relates to a non-contact measurement system that can measure a wide range of temperature and stress using the same.
  • Sensors act as a link between the machine and the real world. By sending real-world information to the machine, the machine can make a series of responses based on this information to meet various life or production needs. Advances in robotics, industry and advanced medical technology are placing increasingly high demands on flexible sensors. In particular, as artificial intelligence technology matures in recent years, it will become possible to "make machines replace humans", which will depend primarily on perceptions and interactions between machines and the real world. In other words, high-performance sensors will be the key to future industrial development.
  • Temperature and stress the two most common signals in the real world, play a very important role in human life and production sites.
  • industrial production places great demands on temperature and stress sensors.
  • temperature and stress influence each other. Therefore, the study of accurate measurement methods for these two signals has always been one of the important research directions of many researchers.
  • scientific researchers have invested a lot of effort and money in this field and have successfully developed flexible temperature and stress sensors based on electrical signals.
  • these sensors are difficult to mass-produce and difficult to use in production and life. Therefore, new types of multi-measurement sensors that measure temperature and stress simultaneously must be developed to meet the growing demands of the manufacturing and medical fields.
  • Newly developed sensors should have advantages such as flexibility, simple structure, efficient sensing, and adaptability to harsh environments.
  • the present inventors have completed the present invention, recognizing that it is urgent to develop a method for manufacturing a temperature and stress sensitive film sensor and a temperature and stress measurement system required in various fields to supplement the above-mentioned problems.
  • An object of the present invention relates to a method for manufacturing a temperature and stress sensitive film and a system for measuring temperature and stress, and more specifically, to a temperature and stress sensing film in a flexible form by uniformly mixing two kinds of inorganic phosphorescent materials and a polyimide derivative compound. to provide a non-contact measurement system that can measure a wide range of temperatures and stresses by using them.
  • the present invention provides a method for manufacturing a temperature and stress sensitive film and a system for measuring temperature and stress.
  • the present invention provides a method for producing a temperature and stress sensing film comprising the following steps.
  • n 1 to 1,000,000,000.
  • step (S1) is
  • the 6FDA:MCA is mixed in a molar mass ratio of 1:0.8 to 1.2.
  • step (S2) is
  • the inorganic phosphor is added in an amount of 1 to 20 wt% based on the total mass% of the compound represented by [Formula 1].
  • the present invention provides a temperature and stress sensing system comprising:
  • a signal generator outputting a control signal
  • a signal processing unit for extracting the emitted light as a phosphorescence attenuation signal.
  • the signal generator outputs a control signal that causes the excitation light source to have a pulse width of 5 ns to 50 ms.
  • the signal generator outputs a control signal that causes the excitation light source to have a pulse period of 10 to 1000 ms.
  • the signal processing unit is equipped with a phosphorescent filter, and the phosphorescent filter passes through a wavelength band of 620 to 670 nm.
  • the signal processing unit is equipped with a detector for obtaining a temperature-related phosphorescence attenuation signal
  • the temperature-related phosphorescence decay signal is converted to a calibration curve of temperature versus phosphorescence lifetime using Equation 1:
  • I(t) I 0 ⁇ exp(-t/ ⁇ ) + b
  • I(t) is the phosphorescence intensity with time
  • I 0 is the phosphorescence intensity in a fully excited state
  • t is the decay time
  • is the phosphorescence decay constant
  • b is the noise.
  • the signal processing unit is equipped with a detector for obtaining a stress-related phosphorescence attenuation signal
  • the stress-related phosphorescence decay signal is converted to a calibration curve of stress versus phosphorescence intensity using Equation 2:
  • I M is the intensity of the mechanoluminescence recorded after stress loading
  • I a is the intensity of the afterglow recorded before stress loading
  • the method for manufacturing a temperature and stress sensitive film of the present invention may have advantages of flexibility, long service life, wide measurement range, and high accuracy, and has strong resistance to harsh environments by using a polyimide derivative.
  • the temperature and stress measuring system of the present invention has the effect of being able to measure a wide range of temperature and stress.
  • FIG. 1 is a configuration diagram schematically showing a temperature and stress measurement system according to the present invention.
  • FIG. 2 is a cross-sectional view of a temperature and stress sensing film according to the present invention and an enlarged view of an inorganic phosphor of the film.
  • FIG. 3 is a spectrum and graph showing information on the temperature-related phosphorescence attenuation signal in Experimental Example 1.
  • FIG. 4 is a spectrum and graph showing information on the stress-related phosphorescence attenuation signal in Experimental Example 2.
  • thermocouple 5 is a graph showing a comparison of the temperature measured by the thermocouple with respect to the elapsed heating time and the temperature measured by the sensing film of the present invention with respect to the elapsed heating time.
  • FIG. 6 is a photograph showing the result of sensing stress using the temperature and stress sensing film according to the present invention.
  • the present invention provides a temperature and stress sensing film prepared by the following method.
  • n 1 to 1,000,000,000.
  • the step (S1) is a step of preparing a compound represented by [Formula 2], and may consist of the following steps.
  • the 6FDA:MCA may be used in a molar mass ratio of 1:0.8 to 1.2, preferably in a molar mass ratio of 1:0.9 to 1.1.
  • 0.105 g of MCA (0.5 mmol) and 1.635-3.27 mL of NMP can be mixed, and 0.222 g of 6FDA (0.5 mmol) can be added to the mixture.
  • the step (S1a) may be performed while stirring under a non-reactive gas condition, and the non-reactive gas may be helium, argon or nitrogen, preferably argon or nitrogen, and most preferably nitrogen. .
  • step (S1b) the 6FDA may be slowly added dropwise to the mixture prepared in step (S1a) at room temperature or room temperature and stirred at the same time.
  • the stirring step in step (S1b) may be performed for 20 hours to 28 hours, preferably, it may be performed for 23 hours to 25 hours.
  • the step (S1b) may be performed while stirring under a non-reactive gas condition, and the non-reactive gas may be helium, argon or nitrogen, preferably argon or nitrogen, and most preferably nitrogen. .
  • the compound represented by [Formula 1] prepared in step (S1b) may be a transparent compound, or a compound having viscosity.
  • the step (S2) is a step of preparing a polyimide compound represented by the [Formula 1] by adding a temperature-sensitive inorganic phosphor and a stress-sensing inorganic phosphor to the compound represented by [Formula 2], comprising the following steps can be
  • the temperature sensing inorganic phosphorescent material and the stress sensing inorganic phosphorescent material may be mixed by stirring when added, and the stirring may be performed for 0.5 to 4 hours.
  • the inorganic phosphor may be a phosphor including a rare earth metal. More specifically, the inorganic phosphor may be a phosphor containing at least one rare earth metal selected from the group consisting of Eu 2+ , Eu 3+ , Mn 4+ , Mn 2+ and Dy 3+ , preferably , Y 2 O 3 :Eu 3+ , Y 2 O 2 S:Eu 3+ , TiO 2 :Eu 3+ , Gd 2 O 3 :Eu 3+ , GdAlO 3 :Eu 3+ , La 2 O 2 S:Eu 3+ , BaMg 2 Al 10 O 17 :Eu 2+ , SrAl 2 O 4 :Eu 2+ , (Sr,Mg) 2 SiO 4 :Eu 2+ , Mg 4 FGeO 6 :Mn 4+ , TiMg 2 O 4 : Mn 4+ , and SrAl 2 O 4 :Dy 3+ may
  • the temperature-sensing inorganic phosphor may have a particle size of 0.1 to 10 ⁇ m. More specifically, when the temperature-sensing inorganic phosphor is less than 0.1 ⁇ m, it is impossible to manufacture the phosphor particles, and when the temperature-sensing inorganic phosphor is more than 10 ⁇ m, the surface of the polyimide compound represented by [Formula 1] This roughening problem may occur.
  • the stress-sensing inorganic phosphor may have a particle diameter of 50 to 120 ⁇ m.
  • the temperature and stress sensing inorganic phosphor may be added to the compound represented by the [Formula 2] in an amount of 1 to 20% by weight relative to the total mass% of the compound represented by the [Formula 2], preferably the [Formula 2] 2] may be added in an amount of 1 to 16 wt% based on the total mass% of the compound represented by
  • Step (S2b) may be a step of coating the mixture prepared in step (S2a) on a cover slip. More specifically, the mixture prepared in step (S2a) may be coated on a clean cover slip and then coated in a vacuum oven at 50 to 70° C. for 1 to 8 hours.
  • the step (S2c) may be a step of finally preparing a temperature and stress sensing film through a thermal imidization reaction. More specifically, the mixture coated in step (S2b) is subjected to a first thermal imidization reaction at 60 to 100°C, a secondary thermal imidization reaction is performed at 120 to 220°C, and 220 to 280°C to perform the tertiary thermal imidization reaction, and the quaternary thermal imidization reaction may be sequentially performed at 280 to 350 °C. In addition, when the thermal imidization reaction is carried out at less than 80 °C, the reaction does not occur, and when carried out above 350 °C, the produced film is burned, so that a film form is not obtained.
  • the thermal imidization reaction may be performed under a non-reactive gas condition, and the non-reactive gas may be helium, argon or nitrogen, preferably argon or nitrogen, and most preferably nitrogen.
  • the first thermal imidization reaction may be performed for 0.5 to 6 hours, and the second to fourth thermal imidization reaction may be performed for 0.1 to 5 hours.
  • the temperature and stress sensing film may be in the form of a transparent or translucent film, and may have a size of 1 mm 2 to 1 m 2 and a thickness of 40 to 100 ⁇ m.
  • the present invention provides a signal generator for outputting a control signal (10); an excitation light source (20) controlled by a control signal of the signal generator (10); a target material 30 to which a temperature and stress sensing film 31 is attached to emit excitation light from the excitation light source 20 as emission light; and a signal processing unit 40 for extracting the emitted light as a phosphorescence attenuation signal.
  • the temperature and stress sensing film 31 may be manufactured and applied in the same manner as described above.
  • the control signal output by the signal generator 10 may be a pulse signal.
  • the control signal enables the excitation light source 20 to emit pulsed light with a pulse period of 10 to 1000 ms.
  • the control signal allows the excitation light source 20 to emit pulsed light with a pulse width of 1 to 5 ms.
  • the wavelength of the excitation light source 20 controlled by the control signal of the signal generator 10 may be in the range of 250 to 430 nm, preferably in the range of 260 to 410 nm.
  • the excitation light source 20 has a power of 0 to 20 W, preferably 0 to 15 W.
  • the excitation light source 20 may be an LED lamp or a laser, but is not limited thereto.
  • the target material 30 is a material whose temperature and stress are measured by emitting the excitation light received from the excitation light source 20 as emission light, and the target material 30 is the temperature and stress sensing film 31 . It may be a material of a metallic component that can be attached.
  • the signal processing unit 40 may include two phosphorescent filters 41 , a detector 42 , and a computer 43 connected thereto.
  • a band pass filter may be used for the phosphorescent filter 41, and when measuring temperature, the band pass filter can pass a wavelength band of 620 to 670 nm, and when measuring stress, the band pass filter is It can pass through a wavelength band of 480 to 700 nm.
  • the phosphorescent filter 41 may be mounted on a lens of the detector 42 .
  • the temperature and stress related phosphorescent signal received from the target material 30 may pass through the phosphorescent filter 41 to be acquired by the detector 42 and transmitted to the computer 43 .
  • the detector 42 may be a CCD camera or a CMOS high-speed camera, but is not limited thereto as long as it is a detector capable of measuring to detect the emitted light emitted from the target material 30 .
  • the excitation light received from the excitation light source 20 is converted into light emitted by the temperature and stress sensing film 31 attached to the target material 30 . can be emitted.
  • the emitted light may be filtered into a temperature-related phosphorescence signal by passing through the phosphorescence filter 41 and extracted as a phosphorescence attenuation signal.
  • the extracted phosphorescence attenuation signal may be converted into a calibration curve of temperature versus phosphorescence lifetime through the following [Equation 1] in the signal processing unit 40 .
  • I(t) I 0 ⁇ exp(-t/ ⁇ ) + b
  • I(t) is the phosphorescence intensity with time
  • I 0 is the phosphorescence intensity in a fully excited state
  • t is the decay time
  • is the phosphorescence decay constant
  • b is the noise.
  • the excitation light when measuring the stress, may fill the inorganic phosphor of the temperature and stress sensing film 31 before being emitted as emission light. Thereafter, when the excitation light source 20 is turned off, the charged inorganic phosphor may emit afterglow.
  • the temperature and stress sensing film 31 to which the stress is applied may generate mechanoluminescence.
  • the stress-related phosphorescence signal received from the target material 30 may pass through the phosphorescent filter 41 to be obtained by the detector 42 and transmitted to the computer 43 to be extracted as a phosphorescence attenuation signal.
  • the extracted phosphorescence attenuation signal may be converted into a calibration curve of the stress to intensity ratio through the following [Equation 2] in the signal processing unit 40 .
  • I M is the intensity of the mechanoluminescence recorded after stress loading
  • I a is the intensity of the afterglow recorded before stress loading
  • the temperature and stress measuring system 1 can measure the temperature and stress of a target material having a wide temperature range of -200 to 400° C. and a wide stress range of 0.1 to 20 Mpa, and thus can measure the temperature and stress of a bioengineering robot or biomedicine. It can be used for temperature and stress measurements in technology.
  • SAOED SrAl 2 O 4 : Eu 2+ , Dy 3+
  • MFG Mg 4 FGeO 6 :Mn 4+
  • SAOED + MFG/polyimide was prepared by peeling off the final product from the cover slip. The cross-section of the composite film and the inorganic phosphorescent materials SAOED and MFG layers are shown in FIG. 2 below.
  • a pulse signal having a pulse width of 50 ms and a pulse period of 100 ms was generated through a signal transmitter to control the excitation light, and the excitation light was irradiated with a wavelength of 385 nm, and the excitation light source was an LED.
  • the temperature and stress sensing film to which the target material is adhered receives the excitation light and emits emission light, and the emitted light passes through the phosphorescence filter and is filtered into a temperature-related phosphorescence signal to obtain a temperature-related phosphorescence attenuation signal.
  • Fig. 3a is a spectrum showing the decay behavior of phosphorescence at 654 nm under excitation of 385 nm UV light
  • Fig. 3b is a spectrum showing the decay of phosphorescence at 654 nm at 20°C and 100°C
  • Fig. 3c is temperature vs. decay lifetime. is a graph showing the calibration curve of
  • the phosphorescent filter uses a band-pass filter of 480 nm, and generates a pulse signal with a pulse width of 50 ms and a pulse period of 100 ms through a signal transmitter to control the excitation light, and irradiate the excitation light with a wavelength of 400 nm and LED was used as the excitation light source.
  • the inorganic phosphorescent material SAOED of the temperature and stress sensing film to which the target material was attached was charged with the excitation light, and after the excitation light source was turned off, the afterglow was emitted. And a stress-related phosphorescence decay signal was extracted from the mechanoluminescence generated by the afterglow.
  • Fig. 4a is a spectrum showing the decay behavior of phosphorescence at 520 nm under excitation of 400 nm UV light
  • Fig. 4b is a spectrum showing the decay of phosphorescence at 520 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

본 발명은 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템에 관한 것으로, 보다 구체적으로 2종의 무기 인광 재료와 폴리이미드 유도체 화합물을 균일하게 혼합하여 유연한 형태의 온도 및 응력 감지 필름을 제조하고, 이를 이용하여 광범위한 온도 및 응력 범위를 측정할 수 있는 비접촉식 측정 시스템에 관한 것이다.

Description

온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템
본 발명은 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템에 관한 것으로, 보다 구체적으로 2종의 무기 인광 재료와 폴리이미드 유도체 화합물을 균일하게 혼합하여 유연한 형태의 온도 및 응력 감지 필름을 제조하고, 이를 이용하여 광범위한 온도 및 응력 범위를 측정할 수 있는 비접촉식 측정 시스템에 관한 것이다.
센서는 기계와 실제 세계를 연결하는 고리역할을 한다. 실제 세계의 정보를 기계로 전송하여 기계가 이 정보를 기반으로 일련의 응답을 하여 다양한 생활이나 생산 요구를 충족시킬 수 있다. 로봇 공학, 산업 및 첨단 의료 기술의 발전으로 유연한 센서에 대한 요구 사항이 점점 더 높아지고 있다. 특히 최근 몇 년간 인공 지능 기술이 성숙함에 따라 "기계가 사람을 대체하게 하는 것"이 가능해질 것이며 이는 주로 기계와 현실 세계 사이의 인식과 상호 작용에 달려 있다. 즉, 고성능 센서가 미래 산업 발전의 열쇠가 될 것이다.
현실 세계에서 가장 흔한 두 가지 신호인 온도와 응력은 인간의 삶과 생산현장에서 매우 중요한 역할을 한다. 특히 산업 생산에는 온도와 응력센서에 대해 큰 수요가 있다. 대부분의 산업에서 온도와 응력은 서로 영향을 준다. 따라서 이 두 신호에 대한 정확한 측정방법에 대한 연구는 인식은 항상 많은 연구자들의 중요한 연구 방향 중 하나였다. 최근 몇 년 동안 과학 연구자들은 이 분야에 많은 노력과 비용을 투자했으며 전기 신호를 기반으로 한 유연한 온도 및 응력 센서를 성공적으로 개발하였다. 그러나 이러한 센서는 복잡한 구조, 높은 제조 비용, 제한된 사용 환경 및 기타 단점을 감안할 때 대량 생산이 어렵고 생산 및 생활에 사용되기가 어렵다. 따라서 증가하는 생산 및 의료분야의 요구에 부응하기 위해서는 새로운 유형의 온도 및 응력을 동시에 측정하는 다중 측정 센서를 개발해야 한다. 새로 개발하는 센서는 유연성, 간단한 구조, 효율적인 감지 및 열악한 환경에 대한 적응성 등의 장점이 있어야 한다.
따라서, 본 발명가들은 전술한 문제점을 보완하고 다양한 분야에서 요구되고 있는 온도 및 응력 감응 필름 센서의 제조 방법 및 온도 및 응력 측정 시스템의 개발이 시급하다 인식하여, 본 발명을 완성하였다.
본 발명의 목적은 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템에 관한 것으로, 보다 구체적으로 2종의 무기 인광 재료와 폴리이미드 유도체 화합물을 균일하게 혼합하여 유연한 형태의 온도 및 응력 감지 필름을 제조하고, 이를 이용하여 광범위한 온도 및 응력 범위를 측정할 수 있는 비접촉식 측정 시스템을 제공하는 것이다.
발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템을 제공한다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 발명은 하기 단계를 포함하는 온도 및 응력 감지 필름의 제조 방법을 제공한다.
(S1) 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(4,4′-(Hexafluoroisopropylidene)diphthalic anhydride, 6FDA), 4,4'-메틸렌디사이클로헥산아민(4,4'-Methylenedicyclohexanamine, MCA) 및 메틸피롤리돈(N-methyl-2-pyrrolidone, NMP)를 혼합하여 하기 [화학식 2]로 표시되는 화합물을 제조하는 단계; 및
(S2) 상기 [화학식 2]로 표시되는 화합물에 온도 감지 무기인광물질 및 응력 감지 무기인광물질을 첨가하고, 열이미드화 반응을 수행하여 하기 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 것을 특징으로 하는 온도 및 응력 감지 필름의 제조 방법.
[화학식 1]
Figure PCTKR2021005007-appb-I000001
[화학식 2]
Figure PCTKR2021005007-appb-I000002
[상기 식에서, n은 1 내지 1,000,000,000임].
본 발명에 있어서, 상기 (S1) 단계는
(S1a) 상기 MCA 및 NMP를 혼합하는 단계; 및
(S1b) 상기 혼합물에 6FDA를 첨가하여 상기 [화학식 1]로 표시되는 화합물을 제조하는 단계;로 구성되고,
상기 6FDA : MCA는 1 : 0.8 내지 1.2의 몰 질량비로 혼합된다.
본 발명에 있어서, 상기 (S2) 단계는
(S2a) 상기 [화학식 2]로 표시되는 화합물에 온도 감지 무기인광물질 및 응력 감지 무기인광물질을 첨가하여 혼합물을 제조하는 단계;
(S2b) 상기 혼합물을 커버 슬립 상에 코팅하는 단계; 및
(S2c) 상기 코팅된 혼합물을 120 내지 350℃의 온도에서 열이미드화 반응을 수행하여 온도 및 응력 감지 필름을 제조하는 단계;로 구성되고,
상기 무기인광물질은 상기 [화학식 1]로 표시되는 화합물의 총 질량% 대비 1 내지 20 중량%로 첨가된다.
본 발명은 하기를 포함하는 온도 및 응력 감지 시스템을 제공한다.
제어 신호를 출력하는 신호 발생기;
상기 신호 발생기의 제어 신호에 의해 제어되는 여기 광원;
상기 여기 광원으로부터의 여기 광(excitation light)을 방출 광(emission light)으로 방출시키기 위해 온도 및 응력 감지 필름이 부착된 타겟 물질; 및
상기 방출 광을 인광 감쇠 신호로 추출하기 위한 신호 처리부.
본 발명에 있어서, 상기 신호 발생기는 여기 광원이 5 ns 내지 50 ms 의 펄스 폭을 갖도록 하는 제어 신호를 내보낸다.
본 발명에 있어서, 상기 신호 발생기는 여기 광원이 10 내지 1000 ms 의 펄스 주기를 갖도록 하는 제어 신호를 내보낸다.
본 발명에 있어서, 상기 신호 처리부는 인광 필터가 장착되고, 상기 인광 필터는 620 내지 670 ㎚ 파장 대역을 통과한다.
본 발명에 있어서, 상기 신호 처리부는 온도 관련 인광 감쇠 신호를 얻기 위한 검출기가 장착되고,
상기 온도 관련 인광 감쇠 신호는 하기 [수학식 1]을 사용하여 온도 대 인광 수명의 교정 곡선으로 변환된다:
[수학식 1]
I(t) = I0 × exp(-t/τ) + b
상기 식에서, 상기 I(t)는 시간에 따른 인광 강도, I0은 완전히 여기된 상태의 인광 강도, t는 감쇠 시간, τ는 인광 감쇠 상수, b는 노이즈이다.
본 발명에 있어서, 상기 신호 처리부는 응력 관련 인광 감쇠 신호를 얻기 위한 검출기가 장착되고,
상기 응력 관련 인광 감쇠 신호는 하기 [수학식 2]를 사용하여 응력 대 인광 강도의 교정 곡선으로 변환된다:
[수학식 2]
ε = IM / Ia
상기 식에서, 상기 IM은 응력이 부하된 후 기록된 기계 발광의 강도이고, Ia는 응력이 부하되기 전에 기록된 잔광의 강도이다.
상기 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템에 언급된 모든 사항은 모순되지 않는 한 동일하게 적용된다.
본 발명의 온도 및 응력 감응 필름의 제조 방법은 유연성, 긴 서비스 수명, 넓은 측정 범위, 높은 정확도의 장점을 가질 수 있으며, 폴리이미드 유도체를 사용함으로써 열악한 환경에 대한 강한 내성을 갖는 효과가 있다.
본 발명의 온도 및 응력 측정 시스템은 광범위한 온도 및 응력 범위를 측정할 수 있는 효과를 갖는다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명에 따른 온도 및 응력 측정 시스템을 대략적으로 나타낸 구성도이다.
도 2는 본 발명에 따른 온도 및 응력 감지 필름의 단면도 및 필름의 무기인광물질의 확대도이다.
도 3은 실험예 1에서 온도 관련 인광 감쇠 신호 정보를 나타내는 스펙트럼 및 그래프이다.
도 4는 실험예 2에서 응력 관련 인광 감쇠 신호 정보를 나타내는 스펙트럼 및 그래프이다.
도 5는 가열 경과 시간에 대한 열전대로 측정된 온도와 가열 경과 시간에 대한 본 발명의 감지 필름으로 측정된 온도의 비교를 나타내는 그래프이다.
도 6은 본 발명에 따른 온도 및 응력 감지 필름을 사용하여 응력을 감지한 결과를 나타내는 사진이다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
수치 범위는 상기 범위에 정의된 수치를 포함한다. 본 명세서에 걸쳐 주어진 모든 최대의 수치 제한은 낮은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 낮은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 최소의 수치 제한은 더 높은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 높은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 수치 제한은 더 좁은 수치 제한이 명확히 쓰여져 있는 것처럼, 더 넓은 수치 범위 내의 더 좋은 모든 수치 범위를 포함할 것이다.
이하, 본 발명의 실시예를 상세히 기술하나, 하기 실시예에 의해 본 발명이 한정되지 아니함은 자명하다.
온도 및 응력 감지 필름의 제조 방법
본 발명은 하기의 방법으로 제조되는 온도 및 응력 감지 필름을 제공한다.
(S1) 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(4,4′-(Hexafluoroisopropylidene)diphthalic anhydride, 6FDA), 4,4'-메틸렌디사이클로헥산아민(4,4'-Methylenedicyclohexanamine, MCA) 및 메틸피롤리돈(N-methyl-2-pyrrolidone, NMP)를 혼합하여 하기 [화학식 2]로 표시되는 화합물을 제조하는 단계; 및
(S2) 상기 [화학식 2]로 표시되는 화합물에 온도 감지 무기인광물질 및 응력 감지 무기인광물질을 첨가하고, 열이미드화 반응을 수행하여 [화학식 1]로 표시되는 화합물을 제조하는 단계.
[화학식 1]
Figure PCTKR2021005007-appb-I000003
[화학식 2]
Figure PCTKR2021005007-appb-I000004
[상기 식에서, n은 1 내지 1,000,000,000임].
상기 (S1) 단계는 [화학식 2]로 표시되는 화합물을 제조하는 단계로서, 하기의 단계로 구성될 수 있다.
(S1a) 상기 MCA 및 NMP를 혼합하는 단계; 및
(S1b) 상기 혼합물에 6FDA를 첨가하여 상기 [화학식 1]로 표시되는 화합물을 제조하는 단계.
보다 구체적으로, 상기 6FDA : MCA는 1 : 0.8 내지 1.2의 몰 질량비로 사용될 수 있으며, 바람직하게는 1 : 0.9 내지 1.1의 몰 질량비로 사용될 수 있다. 또한, 상기 NMP는 W(MCA + 6FDA)/V(NMP) = 0.1 내지 0.2를 만족하는 질량 부피비(W/V)를 갖도록 측정되어 사용될 수 있다.
예를 들어, 상기 MCA(0.105 g, 0.5 mmol) 및 6FDA(0.222 g, 0.5 mmol)를 1 : 1의 몰 질량비로 사용할 경우, 상기 NMP는 W(MCA(0.105 g) + 6FDA(0.222g))/V(NMP(mL)) = 0.1 내지 0.2를 만족해야 하므로, 상기 NMP는 1.635 내지 3.27 mL가 사용될 수 있다. 다시 말해, 0.105 g의 MCA(0.5 mmol) 및 1.635 내지 3.27 mL의 NMP를 혼합하고, 상기 혼합물에 0.222 g의 6FDA(0.5 mmol)를 첨가할 수 있다.
상기 (S1a) 단계는 비반응성 기체 조건 하에서 교반하면서 수행될 수 있으며, 상기 비반응성 기체는 헬륨, 아르곤 또는 질소일 수 있으며, 바람직하게는 아르곤 또는 질소일 수 있고, 가장 바람직하게는 질소일 수 있다.
상기 (S1b) 단계는 상기 (S1a) 단계에서 제조된 혼합물에 상기 6FDA를 상온 또는 실온에서 천천히 적하시킴과 동시에 교반할 수 있다.
상기 (S1b) 단계에서 상기 교반 단계는 20 시간 내지 28 시간 동안 수행될 수 있고, 바람직하게는 23 시간 내지 25 시간 동안 수행될 수 있다.
상기 (S1b) 단계는 비반응성 기체 조건 하에서 교반하면서 수행될 수 있으며, 상기 비반응성 기체는 헬륨, 아르곤 또는 질소일 수 있으며, 바람직하게는 아르곤 또는 질소일 수 있고, 가장 바람직하게는 질소일 수 있다.
상기 (S1b) 단계에서 제조된 상기 [화학식 1]로 표시되는 화합물은 투명한 화합물일 수 있고, 점성을 갖는 화합물일 수 있다.
상기 (S2) 단계는 [화학식 2]로 표시되는 화합물에 온도 감지 무기인광물질 및 응력 감지 무기인광물질을 첨가하여 상기 [화학식 1]로 표시되는 폴리이미드 화합물을 제조하는 단계로서, 하기 단계로 구성될 수 있다.
(S2a) 상기 [화학식 2]로 표시되는 화합물에 온도 감지 무기인광물질 및 응력 감지 무기인광물질을 첨가하여 혼합물을 제조하는 단계;
(S2b) 상기 혼합물을 커버 슬립 상에 코팅하는 단계; 및
(S2c) 상기 코팅된 혼합물을 120 내지 350℃의 온도에서 열이미드화 반응을 수행하여 온도 및 응력 감지 필름을 제조하는 단계.
상기 (S2) 단계에서, 상기 온도 감지 무기인광물질 및 응력 감지 무기인광물질을 첨가할 때 교반에 의해 혼합할 수 있으며, 상기 교반은 0.5 내지 4시간 동안 수행될 수 있다.
상기 무기인광물질은 희토류 금속을 포함하는 인광물질일 수 있다. 보다 구체적으로, 상기 무기인광물질은 Eu2+, Eu3+, Mn4+, Mn2+ 및 Dy3+로 이루어진 군으로부터 선택된 1종 이상의 희토류 금속을 포함하는 인광물질일 수 있으며, 바람직하게는, Y2O3:Eu3+, Y2O2S:Eu3+, TiO2:Eu3+, Gd2O3:Eu3+, GdAlO3:Eu3+, La2O2S:Eu3+, BaMg2Al10O17:Eu2+, SrAl2O4:Eu2+, (Sr,Mg)2SiO4:Eu2+, Mg4FGeO6:Mn4+, TiMg2O4:Mn4+, 및 SrAl2O4:Dy3+로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 가장 바람직하게는 Mg4FGeO6:Mn4+, SrAl2O4:Eu2+ 및 SrAl2O4:Dy3+로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 온도 감지 무기인광물질은 0.1 내지 10 ㎛의 입자일 수 있다. 보다 구체적으로, 상기 온도 감지 무기인광물질이 0.1 ㎛ 미만인 경우, 형광체 입자의 제조가 불가능하고, 상기 온도 감지 무기인광물질이 10 ㎛ 초과인 경우, 상기 [화학식 1]로 표시되는 폴리이미드 화합물의 표면이 거칠어지는 문제점이 발생할 수 있다.
상기 응력 감지 무기인광물질의 직경은 50 내지 120 ㎛의 입자일 수 있다.
상기 온도 및 응력 감지 무기인광물질은 상기 [화학식 2]로 표시되는 화합물의 총 질량% 대비 1 내지 20 중량%로 상기 [화학식 2]로 표시되는 화합물에 첨가될 수 있으며, 바람직하게는 상기 [화학식 2]로 표시되는 화합물의 총 질량% 대비 1 내지 16 중량%로 첨가될 수 있다.
상기 (S2b) 단계는 상기 (S2a) 단계에서 제조된 혼합물을 커버 슬립 상에 코팅하는 단계일 수 있다. 보다 구체적으로 상기 (S2a) 단계에서 제조된 혼합물을 깨끗한 커버 슬립에 도포한 후 50 내지 70℃에서 1 내지 8시간 동안 진공 오븐에서 코팅할 수 있다.
상기 (S2c) 단계는 열이미드화 반응을 통해 최종적으로 온도 및 응력 감지 필름을 제조하는 단계일 수 있다. 보다 구체적으로, 상기 (S2b) 단계에서 코팅된 혼합물을 60 내지 100℃에서 1차 열이미드화 반응을 수행하고, 120 내지 220℃에서 2차 열이미드화 반응을 수행하고, 220 내지 280℃에서 3차 열이미드화 반응을 수행하고, 280 내지 350℃에서 4차 열이미드화 반응을 순차적으로 수행할 수 있다. 또한, 상기 열이미드화 반응은 80℃ 미만에서 수행될 경우 반응이 일어나지 않고, 350℃ 초과에서 수행될 경우 제조되는 필름이 연소되어 필름 형태가 수득되지 않는다.
상기 열이미드화 반응은 비반응성 기체 조건 하에서 수행될 수 있으며, 상기 비반응성 기체는 헬륨, 아르곤 또는 질소일 수 있으며, 바람직하게는 아르곤 또는 질소일 수 있고, 가장 바람직하게는 질소일 수 있다. 또한, 상기 1차 열이미드화 반응은 0.5 내지 6시간 동안 수행될 수 있고, 상기 2 내지 4차 열이미드화 반응은 0.1 내지 5시간 동안 수행될 수 있다.
상기 온도 및 응력 감지 필름은 투명 또는 반투명 필름 형태일 수 있으며, 1 ㎟ 내지 1 ㎡ 의 크기 및 40 내지 100 ㎛ 두께로 형성될 수 있다.
온도 및 응력 측정 시스템
본 발명은 제어 신호를 출력하는 신호 발생기(10); 상기 신호 발생기(10)의 제어 신호에 의해 제어되는 여기 광원(20); 상기 여기 광원(20)으로부터의 여기 광(excitation light)을 방출 광(emission light)으로 방출시키기 위해 온도 및 응력 감지 필름(31)이 부착된 타겟 물질(30); 및 상기 방출 광을 인광 감쇠 신호로 추출하기 위한 신호 처리부(40);를 포함하는 온도 및 응력 측정 시스템(1)을 제공한다.
상기 온도 및 응력 감지 필름(31)은 앞서 기재한 바와 동일하게 제조되어 적용될 수 있다.
상기 신호 발생기(10)에 의해 출력되는 제어 신호는 펄스 신호일 수 있다.
상기 제어 신호는 상기 여기 광원(20)이 10 내지 1000 ms 의 펄스 주기로 펄스 빛을 방출할 수 있도록 한다.
상기 제어 신호는 상기 여기 광원(20)이 1 내지 5 ms 의 펄스 폭으로 펄스 빛을 방출할 수 있도록 한다.
상기 신호 발생기(10)의 제어 신호에 의해 제어되는 여기 광원(20)의 파장은 250 내지 430 ㎚ 범위일 수 있고, 바람직하게는 260 내지 410 ㎚ 범위일 수 있다.
상기 여기 광원(20)은 전력이 0 내지 20 W 이고, 바람직하게는 0 내지 15 W 이다.
상기 여기 광원(20)은 LED 램프이거나 레이저일 수 있으나, 이에 한정되는 것은 아니다.
상기 타겟 물질(30)은 상기 여기 광원(20)에서 수신된 여기 광을 방출 광으로 방출시킴으로써 온도 및 응력이 측정되는 물질로서, 상기 타겟 물질(30)은 상기 온도 및 응력 감지 필름(31)이 부착될 수 있는 금속 성분의 물질일 수 있다.
상기 신호 처리부(40)는 2개의 인광 필터(41), 검출기(42) 및 이에 연결된 컴퓨터(43)를 포함할 수 있다.
상기 인광 필터(41)에는 대역 통과 필터가 사용될 수 있고, 온도를 측정하는 경우, 상기 대역 통과 필터는 620 내지 670 ㎚ 의 파장 대역을 통과할 수 있고, 응력을 측정하는 경우, 상기 대역 통과 필터는 480 내지 700 ㎚ 의 파장 대역을 통과할 수 있다.
상기 인광 필터(41)는 검출기(42)의 렌즈에 장착될 수 있다.
상기 타겟 물질(30)로부터 수신된 온도 및 응력 관련 인광 신호는 상기 인광 필터(41)를 통과하여 검출기(42)에 의해 획득되고 컴퓨터(43)로 전송될 수 있다.
상기 검출기(42)는 CCD 카메라 또는 CMOS 고속 카메라일 수 있으며, 상기 타겟 물질(30)로부터 방출된 방출 광을 검출하기 위해 측정할 수 있는 검출기라면 이에 한정되는 것은 아니다.
본 발명의 바람직한 일 실시예에 따르면, 온도를 측정하는 경우, 상기 여기 광원(20)에서 수신된 여기 광은 상기 타겟 물질(30)에 부착된 온도 및 응력 감지 필름(31)에 의해 방출 광으로 방출될 수 있다. 상기 방출 광은 상기 인광 필터(41)를 통과함으로써 온도 관련 인광 신호로 필터링되고, 인광 감쇠 신호로 추출될 수 있다. 상기 추출된 인광 감쇠 신호는 상기 신호 처리부(40)에서 하기 [수학식 1]을 통해 온도 대 인광 수명의 교정 곡선으로 변환될 수 있다.
[수학식 1]
I(t) = I0 × exp(-t/τ) + b
상기 식에서, 상기 I(t)는 시간에 따른 인광 강도, I0은 완전히 여기된 상태의 인광 강도, t는 감쇠 시간, τ는 인광 감쇠 상수, b는 노이즈이다.
본 발명의 바람직한 일 실시예에 따르면, 응력을 측정하는 경우, 상기 여기 광은 방출 광으로 방출되기 전, 상기 온도 및 응력 감지 필름(31)의 무기인광물질을 충전시킬 수 있다. 이후, 상기 여기 광원(20)을 소등하면 상기 충전된 무기인광물질은 잔광을 방출할 수 있다.
상기 잔광은 방출된 후 상기 온도 및 응력 감지 필름(31)에 응력을 가할 수 있다.
상기 응력이 가해진 온도 및 응력 감지 필름(31)은 기계적 발광을 발생시킬 수 있다.
상기 타겟 물질(30)로부터 수신된 응력 관련 인광 신호는 상기 인광 필터(41)를 통과하여 검출기(42)에 의해 획득되고 컴퓨터(43)로 전송되어, 인광 감쇠 신호로 추출될 수 있다. 상기 추출된 인광 감쇠 신호는 상기 신호 처리부(40)에서 하기 [수학식 2]를 통해 응력 대 강도 비율의 교정 곡선으로 변환될 수 있다.
[수학식 2]
ε = IM / Ia
상기 식에서, 상기 IM은 응력이 부하된 후 기록된 기계 발광의 강도이고, Ia는 응력이 부하되기 전에 기록된 잔광의 강도이다.
상기 온도 및 응력 측정 시스템(1)은 -200 내지 400℃의 넓은 온도 범위 및 0.1 내지 20 Mpa의 넓은 응력 범위를 갖는 타겟 물질의 온도 및 응력을 측정할 수 있어, 생체 공학 로봇 또는 생체 의학 등 첨단기술에서 온도 및 응력 측정을 위해 사용될 수 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해 질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하세 알려 주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
제조예 1. [화학식 2]로 표시되는 화합물 제조
Figure PCTKR2021005007-appb-I000005
0.105 g의 MCA(0.5 mmol) 및 2.2 mL의 NMP를 질소 조건 하에서 상온에서 유리 반응기에서 혼합하였다. 이후, 상기 혼합물에 0.222 g의 6FDA(0.5 mmol)를 서서히 첨가하면서 상온에서 24시간 동안 교반하여 상기 [화학식 2]로 표시되는 화합물을 제조하였다.
실시예 1. 온도 및 응력 감지 필름 제조
상기 1.1에서 제조한 [화학식 2]로 표시되는 화합물에 SAOED (SrAl2O4: Eu2+, Dy3+) 및 MFG(Mg4FGeO6:Mn4+)를 첨가하고 1시간 동안 격렬하게 교반하였다. 상기 혼합물을 깨끗한 커버 슬립 상에 코팅하고 4시간 동안 60℃에서 진공 오븐에서 보관하였다. 질소 분위기 하에서 80℃에서 2시간 동안, 160℃, 240℃, 300℃에서 1시간 동안 열 이미드화 반응을 수행하였다. 커버 슬립으로부터 최종 수득물을 벗겨내어 SAOED + MFG/폴리이미드의 복합 필름을 제조하였다. 상기 복합 필름의 단면과 상기 무기인광물질 SAOED 및 MFG 층을 하기 도 2에 나타내었다.
실험예 1. 온도 측정 확인
신호 송신기를 통해 펄스 폭 50 ms 이고, 펄스 주기가 100 ms 인 펄스 신호를 발생시켜 여기 광을 제어하고, 상기 여기 광을 385 ㎚의 파장으로 조사시켰으며, 상기 여기 광원은 LED를 이용하였다. 다음으로, 상기 타겟 물질이 부착된 온도 및 응력 감지 필름은 상기 여기 광을 수신하여 방출 광을 방출하고, 상기 방출 광은 상기 인광 필터를 통과함으로써 온도와 관련된 인광 신호로 필터링되어 온도 관련 인광 감쇠 신호로 추출되었다. 그리고, 상기 인광 감쇠 신호를 상기 신호 처리부에서 상기 [수학식 1]을 통해 온도 대 인광 수명의 교정 곡선으로 변환하였고, 최종적으로 상기 온도 대 인광 수명의 교정 곡선에 대한 온도 정보를 도 3에 나타내었다. 도 3a는 385 ㎚ UV 광의 여기 하에서 654 ㎚에서의 인광의 감쇠 거동을 나타내는 스펙트럼이고, 도 3b는 20℃ 및 100℃에서 654 ㎚에서의 인광의 감쇠를 나타내는 스펙트럼이고, 도 3c는 온도 대 감쇠 수명의 보정 곡선을 나타내는 그래프이다.
실험예 2. 응력 측정 확인
인광 필터를 480 ㎚의 대역 통과 필터를 사용하고, 신호 송신기를 통해 펄스 폭 50 ms 이고, 펄스 주기가 100 ms 인 펄스 신호를 발생시켜 여기 광을 제어하고, 상기 여기 광을 400 ㎚의 파장으로 조사시켰으며, 상기 여기 광원은 LED를 이용하였다. 상기 타겟 물질이 부착된 온도 및 응력 감지 필름의 무기인광물질 SAOED는 상기 여기 광으로 충전되고, 여기 광원 소등 후, 잔광을 방출하였다. 그리고 상기 잔광에 의해 발생된 기계적 발광으로부터 응력 관련 인광 감쇠 신호가 추출되었다. 그리고, 상기 인광 감쇠 신호를 상기 신호 처리부에서 상기 [수학식 2]를 통해 응력 대 강도 비율의 교정 곡선으로 변환하였고, 최종적으로 상기 응력 대 인광 수명의 교정 곡선에 대한 응력 정보를 도 4에 나타내었다. 도 4a는 400 ㎚ UV 광의 여기 하에서 520 ㎚에서의 인광의 감쇠 거동을 나타내는 스펙트럼이고, 도 4b는 520 ㎚ 에서의 인광의 감쇠를 나타내는 스펙트럼이고, 도 4c는 응력 대 감쇠 수명의 보정 곡선을 나타내는 그래프이다. 도 6은 본 발명의 온도 및 응력 감지 필름을 사용하여 응력을 감지한 결과를 나타내는 사진이다.
이상 설명으로부터, 본 발명에 속하는 기술 분야의 당업자는 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해해야만 한다.

Claims (9)

  1. (S1) 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(4,4′-
    (Hexafluoroisopropylidene)diphthalic anhydride, 6FDA), 4,4'-메틸렌디사이클로헥산아민(4,4'-Methylenedicyclohexanamine, MCA) 및 메틸피롤리돈(N-methyl-2-pyrrolidone, NMP)를 혼합하여 하기 [화학식 2]로 표시되는 화합물을 제조하는 단계; 및
    (S2) 상기 [화학식 2]로 표시되는 화합물에 온도 감지 무기인광물질 및 응력 감지 무기인광물질을 첨가하고, 열이미드화 반응을 수행하여 [화학식 1]로 표시되는 화합물을 제조하는 단계;를 포함하는 것을 특징으로 하는 온도 및 응력 감지 필름의 제조 방법.
    [화학식 1]
    Figure PCTKR2021005007-appb-I000006
    [화학식 2]
    Figure PCTKR2021005007-appb-I000007
    [상기 식에서, n은 1 내지 1,000,000,000임].
  2. 제1항에 있어서,
    상기 (S1) 단계는
    (S1a) 상기 MCA 및 NMP를 혼합하는 단계; 및
    (S1b) 상기 혼합물에 6FDA를 첨가하여 상기 [화학식 1]로 표시되는 화합물을 제조하는 단계;로 구성되고,
    상기 6FDA : MCA는 1 : 0.8 내지 1.2의 몰 질량비로 혼합되는 것을 특징으로 하는 온도 및 응력 감지 필름의 제조 방법.
  3. 제1항에 있어서,
    상기 (S2) 단계는
    (S2a) 상기 [화학식 2]로 표시되는 화합물에 온도 감지 무기인광물질 및 응력 감지 무기인광물질을 첨가하여 혼합물을 제조하는 단계;
    (S2b) 상기 혼합물을 커버 슬립 상에 코팅하는 단계; 및
    (S2c) 상기 코팅된 혼합물을 120 내지 350℃의 온도에서 열이미드화 반응을 수행하여 온도 및 응력 감지 필름을 제조하는 단계;로 구성되고,
    상기 무기인광물질은 상기 [화학식 1]로 표시되는 화합물의 총 질량% 대비 1 내지 20 중량%로 첨가되는 것을 특징으로 하는 온도 및 응력 감지 필름의 제조 방법.
  4. 제어 신호를 출력하는 신호 발생기;
    상기 신호 발생기의 제어 신호에 의해 제어되는 여기 광원;
    상기 여기 광원으로부터의 여기 광(excitation light)을 방출 광(emission light)으로 방출시키기 위해 온도 및 응력 감지 필름이 부착된 타겟 물질; 및
    상기 방출 광을 인광 감쇠 신호로 추출하기 위한 신호 처리부;를 포함하는 것을 특징으로 하는 온도 및 응력 감지 시스템.
  5. 제4항에 있어서,
    상기 신호 발생기는 여기 광원이 5 ns 내지 50 ms 의 펄스 폭을 갖도록 하는 제어 신호를 내보내는 온도 및 응력 감지 시스템.
  6. 제4항에 있어서,
    상기 신호 발생기는 여기 광원이 10 내지 1000 ms 의 펄스 주기를 갖도록 하는 제어 신호를 내보내는 온도 및 응력 감지 시스템.
  7. 제4항에 있어서,
    상기 신호 처리부는 인광 필터가 장착되고,
    상기 인광 필터는 620 내지 670 ㎚ 파장 대역을 통과하는 것을 특징으로 하는 온도 및 응력 감지 시스템.
  8. 제4항에 있어서,
    상기 신호 처리부는 온도 관련 인광 감쇠 신호를 얻기 위한 검출기가 장착되고,
    상기 온도 관련 인광 감쇠 신호는 하기 [수학식 1]을 사용하여 온도 대 인광 수명의 교정 곡선으로 변환되는 것을 특징으로 하는 온도 및 응력 감지 시스템:
    [수학식 1]
    I(t) = I0 × exp(-t/τ) + b
    상기 식에서, 상기 I(t)는 시간에 따른 인광 강도, I0은 완전히 여기된 상태의 인광 강도, t는 감쇠 시간, τ는 인광 감쇠 상수, b는 노이즈이다.
  9. 제4항에 있어서,
    상기 신호 처리부는 응력 관련 인광 감쇠 신호를 얻기 위한 검출기가 장착되고,
    상기 응력 관련 인광 감쇠 신호는 하기 [수학식 2]를 사용하여 응력 대 강도 비율의 교정 곡선으로 변환되는 것을 특징으로 하는 온도 및 응력 감지 시스템:
    [수학식 2]
    ε = IM / Ia
    상기 식에서, 상기 IM은 응력이 부하된 후 기록된 기계 발광의 강도이고, Ia는 응력이 부하되기 전에 기록된 잔광의 강도이다.
PCT/KR2021/005007 2021-03-17 2021-04-21 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템 WO2022196860A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0034351 2021-03-17
KR1020210034351A KR102549246B1 (ko) 2021-03-17 2021-03-17 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템

Publications (1)

Publication Number Publication Date
WO2022196860A1 true WO2022196860A1 (ko) 2022-09-22

Family

ID=83320573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005007 WO2022196860A1 (ko) 2021-03-17 2021-04-21 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템

Country Status (2)

Country Link
KR (1) KR102549246B1 (ko)
WO (1) WO2022196860A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149787A (ja) * 2007-12-21 2009-07-09 Tokyo Institute Of Technology 蛍光材料
US20170152348A1 (en) * 2015-12-01 2017-06-01 Taiflex Scientific Co., Ltd. Polyimide and polyimide film
JP2017186490A (ja) * 2016-04-01 2017-10-12 国立大学法人東京工業大学 室温燐光を示す有機発光材料、及びそれを用いた光デバイス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835218B1 (ko) 2016-06-14 2018-03-08 울산과학기술원 온도 감응형 스마트 접착패드
KR101843854B1 (ko) 2016-10-31 2018-03-30 한국생산기술연구원 온도감응소재를 포함한 온도감응필름, 이의 제조방법 및 이를 이용한 온도감응패치 및 패치형 온도계

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149787A (ja) * 2007-12-21 2009-07-09 Tokyo Institute Of Technology 蛍光材料
US20170152348A1 (en) * 2015-12-01 2017-06-01 Taiflex Scientific Co., Ltd. Polyimide and polyimide film
JP2017186490A (ja) * 2016-04-01 2017-10-12 国立大学法人東京工業大学 室温燐光を示す有機発光材料、及びそれを用いた光デバイス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANTONIAK MAGDA A., ZELEWSKI SZYMON J., OLIVA ROBERT, ŻAK ANDRZEJ, KUDRAWIEC ROBERT, NYK MARCIN: "Combined Temperature and Pressure Sensing Using Luminescent NaBiF 4 :Yb,Er Nanoparticles", ACS APPLIED NANO MATERIALS, vol. 3, no. 5, 22 May 2020 (2020-05-22), pages 4209 - 4217, XP055968231, ISSN: 2574-0970, DOI: 10.1021/acsanm.0c00403 *
TAO CAI; DONG KIM; MIRAE KIM; YING ZHENG LIU; KYUNG CHUN KIM: "Effect of surface moisture on chemically bonded phosphor for thermographic phosphor thermometry", MEASUREMENT SCIENCE AND TECHNOLOGY., IOP, BRISTOL., GB, vol. 27, no. 9, 9 August 2016 (2016-08-09), GB , pages 097003, XP020307983, ISSN: 0957-0233, DOI: 10.1088/0957-0233/27/9/097003 *
ZHANG W.; LI Z.; BAXTER G. W.; COLLINS S. F.: "Stress- and Temperature-Dependent Wideband Fluorescence of a Phosphor Composite for Sensing Applications", EXPERIMENTAL MECHANICS, SPRINGER US, NEW YORK, vol. 57, no. 1, 25 August 2016 (2016-08-25), New York, pages 57 - 63, XP036133275, ISSN: 0014-4851, DOI: 10.1007/s11340-016-0207-5 *

Also Published As

Publication number Publication date
KR102549246B1 (ko) 2023-06-28
KR20220129725A (ko) 2022-09-26

Similar Documents

Publication Publication Date Title
Zhang et al. An intense elastico-mechanoluminescence material CaZnOS: Mn 2+ for sensing and imaging multiple mechanical stresses
WO2022196860A1 (ko) 온도 및 응력 감응 필름의 제조 방법과 온도 및 응력 측정 시스템
Aizawa et al. Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay
WO1987002769A1 (en) Fiberoptic sensing of temperature and/or other physical parameters
JPS62501448A (ja) 光学的温度測定技術
WO2014171592A1 (ko) 색 조절이 가능한 기계적 발광 복합필름 및 이의 색 조절방법
CN113416329B (zh) 裸眼可视荧光多色变化的高温多阈值温度指示薄膜的制备方法与应用
WO2016068559A1 (ko) 이형필름 박리안정성 측정방법 및 이형필름 적층체
WO2021221313A1 (ko) 온도 감응 필름 및 이를 이용한 온도 측정 시스템
WO2012036376A1 (ko) 애자 점검 모듈 및 그 구동 방법, 애자 점검 장치 및 그 방법
WO2015190661A1 (ko) 기계적 발광 디스플레이 장치
WO2014109540A1 (en) Sensor module and method for operating the same
WO2012011631A1 (ko) 차분 자기 센서 모듈을 구비한 자기장 검출 장치
WO2019009505A1 (ko) 실리콘 양자점에 기반한 폭발물 식별용 폭약 첨가제 검출센서 및 실리콘 양자점 제조방법
CN113698933B (zh) 一种温度敏感发光材料及其制备方法
KR102501407B1 (ko) 온도 감응 필름 및 이를 이용한 온도 측정 시스템
WO2011083885A1 (ko) 산황화물계 적색 형광체 및 이를 이용한 백색 led와 led패키지
WO2016175469A1 (ko) Oled 패널 봉착용 저융점 유리 프릿 및 그 유리 페이스트
WO2018097543A1 (ko) 화염 진단 장치 및 이에 의한 화염 제어방법
WO2015023029A1 (ko) 전기기기의 전자파 측정장치 및 이를 이용한 측정방법
WO2019146913A1 (ko) 구리 프로모터를 포함하는 수소발생 반응용 촉매
WO2021182846A1 (ko) 식물 재배용 광원 모듈 및 그것을 포함하는 광 조사 장치
WO2013191358A1 (ko) 형광체 및 이를 포함하는 발광장치
WO2017010817A1 (ko) 치아의 미세크랙 검출용 형광체조성물, 상기 형광체조성물을 포함하는 인공치아제품 및 상기 형광체조성물을 이용한 미세크랙 검출방법
CN115235661A (zh) 一种柔性光伏式应力发光薄膜传感器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931804

Country of ref document: EP

Kind code of ref document: A1