WO2022196753A1 - Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery using same - Google Patents
Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery using same Download PDFInfo
- Publication number
- WO2022196753A1 WO2022196753A1 PCT/JP2022/012172 JP2022012172W WO2022196753A1 WO 2022196753 A1 WO2022196753 A1 WO 2022196753A1 JP 2022012172 W JP2022012172 W JP 2022012172W WO 2022196753 A1 WO2022196753 A1 WO 2022196753A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aqueous secondary
- secondary battery
- lithium
- carbonate
- electrolyte
- Prior art date
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 32
- -1 transition metal sulfide Chemical class 0.000 claims abstract description 81
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims abstract description 60
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 36
- 239000000654 additive Substances 0.000 claims abstract description 34
- 239000007774 positive electrode material Substances 0.000 claims abstract description 27
- 239000003960 organic solvent Substances 0.000 claims abstract description 25
- 230000000996 additive effect Effects 0.000 claims abstract description 18
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 17
- 239000010452 phosphate Substances 0.000 claims abstract description 17
- KSECJOPEZIAKMU-UHFFFAOYSA-N [S--].[S--].[S--].[S--].[S--].[V+5].[V+5] Chemical compound [S--].[S--].[S--].[S--].[S--].[V+5].[V+5] KSECJOPEZIAKMU-UHFFFAOYSA-N 0.000 claims description 52
- 239000008151 electrolyte solution Substances 0.000 claims description 45
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims description 42
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 claims description 28
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 24
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 12
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 12
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 10
- 229910001416 lithium ion Inorganic materials 0.000 claims description 10
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 7
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 6
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 4
- ZMQDTYVODWKHNT-UHFFFAOYSA-N tris(2,2,2-trifluoroethyl) phosphate Chemical compound FC(F)(F)COP(=O)(OCC(F)(F)F)OCC(F)(F)F ZMQDTYVODWKHNT-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 37
- 229910052717 sulfur Inorganic materials 0.000 description 27
- 239000011593 sulfur Substances 0.000 description 27
- 239000000203 mixture Substances 0.000 description 25
- 239000002904 solvent Substances 0.000 description 24
- 238000003701 mechanical milling Methods 0.000 description 22
- 229910003002 lithium salt Inorganic materials 0.000 description 15
- 159000000002 lithium salts Chemical class 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 229940021013 electrolyte solution Drugs 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000007773 negative electrode material Substances 0.000 description 7
- 239000005486 organic electrolyte Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 101000579490 Solanum lycopersicum Suberization-associated anionic peroxidase 1 Proteins 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- 238000007600 charging Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052976 metal sulfide Inorganic materials 0.000 description 5
- 150000003624 transition metals Chemical class 0.000 description 5
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical class [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000002178 crystalline material Substances 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 101001073211 Solanum lycopersicum Suberization-associated anionic peroxidase 2 Proteins 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- QGMHVMSINPZNBA-UHFFFAOYSA-N [S-2].[Nb+5].[Ti+4] Chemical compound [S-2].[Nb+5].[Ti+4] QGMHVMSINPZNBA-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000002194 amorphous carbon material Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- PTISTKLWEJDJID-UHFFFAOYSA-N sulfanylidenemolybdenum Chemical class [Mo]=S PTISTKLWEJDJID-UHFFFAOYSA-N 0.000 description 2
- NYPFJVOIAWPAAV-UHFFFAOYSA-N sulfanylideneniobium Chemical compound [Nb]=S NYPFJVOIAWPAAV-UHFFFAOYSA-N 0.000 description 2
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910019614 (NH4)6 Mo7 O24.4H2 O Inorganic materials 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- UDKXBPLHYDCWIG-UHFFFAOYSA-M [S-2].[S-2].[SH-].S.[V+5] Chemical compound [S-2].[S-2].[SH-].S.[V+5] UDKXBPLHYDCWIG-UHFFFAOYSA-M 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000012378 ammonium molybdate tetrahydrate Substances 0.000 description 1
- UYJXRRSPUVSSMN-UHFFFAOYSA-P ammonium sulfide Chemical compound [NH4+].[NH4+].[S-2] UYJXRRSPUVSSMN-UHFFFAOYSA-P 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- KBLZDCFTQSIIOH-UHFFFAOYSA-M tetrabutylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC KBLZDCFTQSIIOH-UHFFFAOYSA-M 0.000 description 1
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- PSDQQCXQSWHCRN-UHFFFAOYSA-N vanadium(4+) Chemical compound [V+4] PSDQQCXQSWHCRN-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrolytic solution for non-aqueous secondary batteries and non-aqueous secondary batteries using the same.
- lithium-ion secondary batteries Due to the recent improvements in the performance of portable electronic devices and hybrid vehicles, there is a growing demand for higher capacity lithium-ion secondary batteries used in these devices.
- the capacity of the positive electrode is insufficient compared to that of the negative electrode, and even lithium nickel oxide-based materials, which are said to have relatively high capacity, have a capacity of about 190mAh/g to 220mAh/g. It's nothing more than
- sulfur has a high theoretical capacity of about 1670 mAh/g, and is expected to be used as a positive electrode active material.
- Lithium-free transition metal sulfides have electronic conductivity, and although they are less eluted into organic electrolytes, they are not sufficient.
- vanadium sulfide as an example of a lithium-free transition metal sulfide
- crystalline vanadium sulfide (III) (V 2 S 3 ) sold as a reagent is used as a positive electrode active material, Since the reaction with the organic electrolyte cannot be suppressed, the measured capacity is only about 23 mAh/g for charge capacity and about 52 mAh/g for discharge capacity.
- a low-crystalline vanadium sulfide having a specific composition exhibits a high capacity when used as an electrode active material for a lithium-ion secondary battery, and has excellent charge-discharge cycle characteristics. have also been reported to be excellent (see, for example, Patent Document 1).
- the present inventors have developed a material that exhibits a high capacity when used as an electrode active material for a lithium ion secondary battery and also has excellent charge-discharge cycle characteristics. There is no end to the demand for higher reliability for , and improvements are required in order to achieve compatibility with charge-discharge cycle characteristics.
- the present invention has been made in view of the current state of the prior art described above, and the main object thereof is to provide a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material, in which charge-discharge cycle characteristics are improved. It is an object of the present invention to provide an electrolytic solution capable of achieving both the improvement of reliability and the improvement of reliability.
- the inventors of the present invention have been earnestly conducting research to achieve the above objectives.
- an organic solvent containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a carbonate compound to trimethyl phosphate (TMP) and an additive, a lithium-free transition metal sulfide can be converted into a positive electrode active material.
- TMP trimethyl phosphate
- the present invention was completed as a result of further research based on such knowledge.
- the present invention includes the following configurations.
- the non-aqueous secondary battery is a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material
- the electrolytic solution is an organic solvent containing a carbonate compound; a phosphate ester compound; lithium bis(trifluoromethanesulfonyl)imide (LiTFSI); containing an additive, Electrolyte for non-aqueous secondary batteries.
- the phosphate ester compound is at least one selected from the group consisting of trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2,2,2-trifluoroethyl) phosphate (TFEP). 3.
- TMP trimethyl phosphate
- TEP triethyl phosphate
- TFEP tris(2,2,2-trifluoroethyl) phosphate
- Item 3 The electrolytic solution for a non-aqueous secondary battery according to Item 1 or 2, wherein the additive is at least one selected from the group consisting of vinylene carbonate (VC) and fluoroethylene carbonate (FEC).
- VC vinylene carbonate
- FEC fluoroethylene carbonate
- Section 4. Any one of the above items 1 to 3, wherein the content of the phosphoric acid ester compound is 0.25 to 1.0 times the content of the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in terms of molar ratio.
- Item 5 The electrolytic solution for a non-aqueous secondary battery according to any one of Items 1 to 4, wherein the content of the additive is 5% to 10% by weight based on the total amount of the electrolytic solution being 100% by weight. .
- Item 6. Any one of the above items 1 to 5, wherein the carbonate compound is at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and propylene carbonate (PC). 2.
- DMC dimethyl carbonate
- DEC diethyl carbonate
- EMC ethyl methyl carbonate
- PC propylene carbonate
- Item 7. The electrolysis for a non-aqueous secondary battery according to any one of items 1 to 6, wherein the lithium-free transition metal sulfide is at least one selected from the group consisting of vanadium sulfide and molybdenum sulfide. liquid.
- Item 8 A non-aqueous secondary battery comprising the electrolytic solution for a non-aqueous secondary battery according to any one of Items 1 to 7 above.
- Item 9 The nonaqueous secondary battery according to claim 8, which is a lithium ion secondary battery.
- charge-discharge cycle characteristics can be further improved in a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material.
- the concentration (mol/L) of each component means that it contains the desired number of moles per 1 L of the organic solvent.
- Electrolyte solution for non-aqueous secondary battery is an electrolyte solution for non-aqueous secondary battery,
- the non-aqueous secondary battery is a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material,
- the electrolytic solution is an organic solvent containing a carbonate compound; a phosphate ester compound; lithium bis(trifluoromethanesulfonyl)imide (LiTFSI); and additives.
- Lithium-free transition metal sulfide In the present invention, transition metal sulfides containing lithium must be handled in an inert atmosphere such as an argon gas atmosphere. Containing transition metal sulfides are used. Examples of such lithium-free transition metal sulfides include lithium-free transition metal sulfides used as positive electrode active materials in non-aqueous secondary batteries in which the electrolyte for non-aqueous secondary batteries of the present invention is used. and is not particularly limited as long as it is a lithium-free transition metal sulfide known as a positive electrode active material for lithium ion secondary batteries. Specifically, vanadium sulfide (lithium-free vanadium sulfide: International Publication No.
- niobium sulfide and titanium niobium sulfide lithium-free niobium sulfide and lithium-free titanium niobium sulfide: International Publication No. 2015/049986
- molybdenum sulfides lithium-free molybdenum sulfides
- iron sulfides lithium-free iron sulfides
- lithium-free transition metal sulfides can be used alone or in combination of two or more.
- vanadium sulfide lithium-free vanadium sulfide: International Publication No. 2018/181698
- molybdenum sulfide lithium-free molybdenum sulfide
- Iron sulfide lithium-free iron sulfide
- vanadium sulfide lithium-free vanadium sulfide: International Publication No. 2018/181698
- the non-lithium-containing transition metal sulfide is preferably at least one selected from the group consisting of vanadium sulfide and molybdenum sulfide.
- Both crystalline materials and low-crystalline materials (or amorphous materials) can be used for such lithium-free transition metal sulfides. Among them, particularly excellent charge-discharge capacity, charge-discharge cycle characteristics, etc., and from the viewpoint of easily suppressing the reaction with the organic electrolyte when it comes into contact with the organic electrolyte, low-crystalline materials (or amorphous materials) is preferred.
- the composition ratio (S/M 1 ) of sulfur and transition metal is particularly excellent in charge-discharge capacity, charge-discharge cycle characteristics, etc.
- a molar ratio of 2.1 to 10 is preferable from the viewpoint of easily suppressing the reaction with the organic electrolyte when in contact with the liquid.
- non-lithium containing transition metal sulfides have the general formula (2): M1S x ( 2 ) [In the formula, M 1 represents a transition metal. x indicates 2.1-10. ] It is preferable to have a composition represented by When a plurality of transition metals are contained as M 1 , the composition ratio (S/M 1 ) of sulfur to the total amount of transition metals is preferably 2.1-10 in terms of molar ratio.
- the lithium-free metal sulfide has a high elemental ratio of sulfur to transition metal (M 1 ). Therefore, in the present invention, by using a lithium-free metal sulfide, a high charge-discharge capacity and excellent charge-discharge cycle characteristics can be obtained.
- x is preferably 2.1-10, more preferably 3-8.
- vanadium sulfide lithium-free vanadium sulfide
- lithium-free vanadium sulfide which is a preferred lithium-free transition metal sulfide
- vanadium sulfide preferably has a crystal structure similar to that of crystalline vanadium tetrasulfide (IV) (VS 4 ) (hereinafter sometimes referred to as "VS 4 type crystal structure").
- vanadium sulfide is a sulfide with a high sulfur ratio as an average composition, but sulfur hardly exists as elemental sulfur as described later, and is combined with vanadium to have low crystallinity. preferably forms a sulfide of
- vanadium sulfide has a lower crystallinity, so that there are more sites where lithium ions can be inserted and detached, and gaps that can be three-dimensionally conductive paths for lithium can be made structurally easier to have.
- it has many advantages such as easy three-dimensional volume change during charging and discharging. Therefore, the charge/discharge capacity and charge/discharge cycle characteristics can be further improved.
- vanadium sulfide (V 2 S 3 etc.) used as a raw material is almost absent.
- the average composition of sulfide indicates the element ratio of each element that constitutes the entire sulfide.
- crystalline vanadium sulfide (IV) (VS 4 )
- the number of sites where Li can stably exist tends to increase. And it is easy to improve charge-discharge cycle characteristics.
- the cyclic carbonate compound contained in the electrolyte for non-aqueous secondary batteries of the present invention tends to react with elemental sulfur.
- the vanadium sulfide described above hardly contains elemental sulfur or the like, so when used as a positive electrode active material, cyclic carbonate Even when a compound is used, these problems do not occur, and the charge/discharge capacity and charge/discharge cycle characteristics are likely to be dramatically improved.
- vanadium sulfide can be made a material that hardly contains elemental sulfur, and the concern of causing a reaction with the electrolyte solution as described above is further reduced, and the charge-discharge capacity and charge-discharge cycle characteristics can be further improved.
- PDF analysis X-ray/neutron atom pair correlation function analysis
- vanadium sulfide preferably has not only V-S bonds but also S-S bonds (disulfide bonds).
- the vanadium sulfide described above can be obtained, for example, by using vanadium sulfide and sulfur as raw materials or intermediates and using a production method comprising a step of subjecting them to a mechanical milling method.
- Mechanical milling is a method of grinding and mixing raw materials while applying mechanical energy. According to this method, vanadium sulfide and Sulfur contacts violently and becomes fine, causing reaction of raw materials. In other words, at this time, mixing, grinding and reaction occur simultaneously. Therefore, it is possible to react the raw materials more reliably without heating the raw materials to a high temperature.
- a metastable crystal structure which cannot be obtained by ordinary heat treatment, may be obtained by using mechanical milling treatment.
- mixed grinding can be performed using a mechanical grinding device such as a ball mill, bead mill, rod mill, vibration mill, disk mill, hammer mill, jet mill, or the like.
- All of these raw materials or intermediates can be mixed at the same time and subjected to mechanical milling. Some of the materials or intermediates are first subjected to mechanical milling, and then the remaining materials are added to mechanical milling. can also be provided to
- vanadium sulfide with a high sulfur content composition ratio (S/V) of sulfur and vanadium is 3.3 or more in terms of molar ratio
- crystalline vanadium sulfide may be obtained. Therefore, in order to easily obtain low-crystalline vanadium sulfide having excellent charge-discharge capacity and charge-discharge cycle characteristics, first, vanadium sulfide and a part of sulfur are subjected to mechanical milling to obtain the desired intermediate. After obtaining the low crystalline sulfide, it is preferable to subject the obtained low crystalline sulfide and the remaining sulfur to a mechanical milling treatment.
- vanadium sulfide As a specific raw material, it is preferable to use crystalline vanadium sulfide (III) (V 2 S 3 ) as vanadium sulfide. Vanadium sulfide is not particularly limited, and any commercially available vanadium sulfide can be used. In particular, it is preferable to use a highly pure one. In addition, since the vanadium sulfide is mixed and pulverized by mechanical milling, the particle size of the vanadium sulfide used is not limited, and powdery vanadium sulfide that is commercially available can be used.
- sulfur it is possible to use elemental sulfur (S 8 ) in an amount necessary to form a sulfide having the desired composition.
- the sulfur used as a raw material is also not particularly limited, and any sulfur can be used. In particular, it is preferable to use a highly pure one.
- the particle size of the sulfur used is not limited, and powdered sulfur commercially available can be used.
- a low-crystalline vanadium sulfide (low-crystalline VS 2.5 , etc.) having a desired composition can also be used.
- the ratio of each element in the product is almost the same as the ratio of the raw materials, so it can be the same ratio as the elemental ratio of vanadium and sulfur in the target vanadium sulfide.
- sulfur is preferably 1.2 mol or more (especially 1.2 mol to 17.0 mol, more preferably 3.0 mol to 13.0 mol) per 1 mol of vanadium sulfide.
- the temperature at which the mechanical milling is performed is not particularly limited, and is preferably 300° C. or less, more preferably -10° C. to 200° C., in order to make it difficult for sulfur to volatilize and to make it difficult to generate the previously reported crystal phase. .
- the time of the mechanical milling treatment is not particularly limited, and the mechanical milling treatment can be performed for an arbitrary time until the desired vanadium sulfide precipitates.
- an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere can be used.
- mechanical milling can be performed within the processing time range of 0.1 hours to 100 hours (especially 15 hours to 80 hours). It should be noted that this mechanical milling process can also be performed by dividing it into a plurality of times with intervening breaks on the way, if necessary.
- the target vanadium sulfide can be obtained as a fine powder by the mechanical milling treatment described above.
- the electrolytic solution for non-aqueous secondary batteries of the present invention is an organic solvent containing a carbonate compound; a phosphate ester compound; lithium bis(trifluoromethanesulfonyl)imide (LiTFSI); and additives.
- the electrolyte solution for non-aqueous secondary batteries of the present invention is an electrolyte solution for non-aqueous secondary batteries that uses a lithium-free transition metal sulfide as a positive electrode active material.
- a lithium-free transition metal sulfide as a positive electrode active material.
- the lithium-free transition metal sulfide is used in a non-aqueous secondary battery using the lithium-free transition metal sulfide, by adding the additive described later, the carbonate compound and the lithium-free transition metal sulfide It is possible to suppress the reaction with substances and dramatically improve the charge-discharge cycle characteristics.
- Carbonate compound is not particularly limited as long as it can be used as an organic solvent in the electrolyte of a lithium ion secondary battery. , ethyl methyl carbonate (EMC), and the like. Cyclic carbonate compounds include propylene carbonate (PC) and the like. These carbonate compounds can be used alone or in combination of two or more.
- EMC ethyl methyl carbonate
- PC propylene carbonate
- the carbonate compound is preferably at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), and propylene carbonate (PC).
- DMC dimethyl carbonate
- DEC diethyl carbonate
- EMC ethylmethyl carbonate
- PC propylene carbonate
- the organic solvent constituting the electrolytic solution for non-aqueous secondary batteries may be composed of only the above-described carbonate compound. It is also possible to include compounds known as
- organic solvent as the third component examples include cyclic carboxylic acid ester compounds such as ⁇ -butyrolactone; chain carboxylic acid ester compounds such as methyl acetate, methyl propionate and ethyl acetate; sulfone compounds; ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran, and 1,2-dimethoxyethane; These organic solvents as the third component can be used alone or in combination of two or more.
- the content of the organic solvent as the third component is 0.1% by volume to 10% by volume, with the total amount of the organic solvent being 100% by volume, from the viewpoint of charge-discharge cycle characteristics. %, more preferably 0.2% to 5% by volume.
- the electrolytic solution for non-aqueous secondary batteries of the present invention contains: an organic solvent containing a carbonate compound; a phosphate ester compound; lithium bis(trifluoromethanesulfonyl)imide (LiTFSI); and additives.
- the electrolytic solution for a non-aqueous secondary battery of the present invention contains an additive to suppress the reaction between the carbonate compound and the lithium-free transition metal sulfide, thereby dramatically improving the charge-discharge cycle characteristics. can be improved to
- Such additives are vinylene carbonate (VC), or fluoro Ethylene carbonate (FEC) is preferred.
- VC vinylene carbonate
- FEC fluoro Ethylene carbonate
- additives can be used alone or in combination of two or more. By using a combination of two or more additives, it is possible to improve charge-discharge cycle characteristics even when the additive content is increased.
- the additive is preferably at least one selected from the group consisting of vinylene carbonate (VC) and fluoroethylene carbonate (FEC).
- VC vinylene carbonate
- FEC fluoroethylene carbonate
- the content of the above additives is preferably 2.5 parts by mass to 20.0 parts by mass, and 2.5 parts by mass to 15.0 parts by mass with respect to 100 parts by mass of the organic solvent. parts is more preferred, and 2.5 to 10.0 parts by mass is even more preferred. Even if only one type of additive is used, if only one type such as fluoroethylene carbonate (FEC), trifluoromethylethylene carbonate, vinylethylene carbonate, etc. is used, it is better to charge and discharge with more additives.
- the amount is preferably 2.5 parts by mass to 10.0 parts by mass with respect to 100 parts by mass of the organic solvent, since it is easy to improve cycle characteristics.
- the total content of the additives is 100 parts by mass of the organic solvent. 2.5 parts by mass to 20.0 parts by mass is preferable, 2.5 parts by mass to 15.0 parts by mass is more preferable, and 5.0 parts by mass to 10.0 parts by mass is even more preferable.
- the electrolyte for non-aqueous secondary batteries of the present invention is an organic solvent containing a carbonate compound; a phosphate ester compound; lithium bis(trifluoromethanesulfonyl)imide (LiTFSI); and additives.
- the electrolytic solution for non-aqueous secondary batteries of the present invention further contains lithium bis(trifluoromethanesulfonyl)imide (LiTFSI: Li(CF 3 SO 2 ) 2 N) as a lithium salt.
- LiTFSI lithium bis(trifluoromethanesulfonyl)imide
- This lithium salt is an organic lithium salt having a sulfonyl group (perfluoroalkanesulfonyl group).
- organic lithium salt having a sulfonyl group is not particularly limited as long as it is conventionally used in electrolyte solutions for non-aqueous secondary batteries.
- (Pentafluoroethanesulfonyl) imide Li(C 2 F 5 SO 2 ) 2 N, etc.
- These organic lithium salts having a sulfonyl group may be used singly or in combination of two or more. may be used.
- the lithium salt is preferably an organic lithium salt having a sulfonyl group rather than an inorganic lithium salt ( LiPF6 , LiBF4 , etc.).
- an organic lithium salt having boron atoms may be added.
- the lithium salt is preferably an organic lithium salt having a boron atom.
- non-aqueous secondary battery of the present invention uses a lithium-free metal sulfide as a positive electrode active material, the influence of reactivity with sulfur on charge-discharge cycle characteristics is taken into consideration.
- the concentration of the lithium salt described above is preferably 2 to 4 times the molar ratio of the chain carbonate from the viewpoint of charge-discharge cycle characteristics and internal resistance. 2 to 3 times is more preferable.
- the content of phosphate ester (preferably trimethyl phosphate (TMP)) is preferably 0.25 times to the content of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in terms of molar ratio. 1.0 times.
- the electrolytic solution for non-aqueous secondary batteries of the present invention comprises an organic solvent containing a carbonate compound; a phosphate ester compound; lithium bis(trifluoromethanesulfonyl)imide (LiTFSI); and additives.
- the phosphate ester compound is preferably selected from the group consisting of trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2,2,2-trifluoroethyl) phosphate (TFEP). at least one
- the content of phosphate ester (preferably trimethyl phosphate (TMP)) is preferably 0.25 times to the content of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in terms of molar ratio. 1.0 times.
- a phosphate compound, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and an additive are contained in an organic solvent containing a carbonate compound so that a lithium-free transition metal sulfide can be used as a positive electrode active material.
- LiTFSI lithium bis(trifluoromethanesulfonyl)imide
- an additive is contained in an organic solvent containing a carbonate compound so that a lithium-free transition metal sulfide can be used as a positive electrode active material.
- charge-discharge cycle characteristics can be improved.
- Such other additives include, for example, tetrabutylammonium hexafluorophosphate, tetrabutylammonium perchlorate, tetramethylammonium tetrafluoroborate, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, tetrabromide methylammonium, tetraethylammonium bromide, tetrabutylammonium bromide, biphenyl, trialkyl phosphate (trimethyl phosphate etc.) and the like. These other additives may be used alone or in combination of two or more.
- Non-Aqueous Secondary Battery of the present invention comprises the above electrolyte for non-aqueous secondary batteries.
- the non-aqueous secondary battery of the present invention can comprise a positive electrode, a negative electrode and a separator in addition to the electrolyte for non-aqueous secondary batteries.
- (2-1) Positive Electrode As the positive electrode, a configuration in which a positive electrode mixture layer containing a positive electrode active material, a binder, etc. is formed on one or both sides of a positive electrode current collector can be adopted.
- This positive electrode mixture layer is prepared by adding a binder to a positive electrode active material and a conductive aid added as necessary, and dispersing this in an organic solvent to prepare a positive electrode mixture layer forming paste (in this case, The binder may be dissolved or dispersed in an organic solvent in advance), applied to the surface (one side or both sides) of a positive electrode current collector made of metal foil or the like, and dried to form a positive electrode mixture layer, It can be manufactured through a process of processing as necessary.
- the above lithium-free metal sulfide is used as the positive electrode active material.
- the details of the lithium-free metal sulfide follow those explained above.
- a conductive aid graphite; carbon black (acetylene black, ketjen black, etc.); amorphous carbon materials such as carbon materials with amorphous carbon generated on the surface, as in ordinary non-aqueous secondary batteries. fibrous carbon (vapor-grown carbon fiber, carbon fiber obtained by carbonizing pitch after spinning, etc.); carbon nanotube (various multilayer or single-wall carbon nanotubes); As the conductive aid for the positive electrode, one may be used alone, or two or more may be used in combination.
- binders examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, styrene-butadiene rubber, polyimide, polyvinyl alcohol, and water-soluble carboxymethylcellulose.
- PVDF polyvinylidene fluoride
- polyacrylic acid examples include acrylic acid, styrene-butadiene rubber, polyimide, polyvinyl alcohol, and water-soluble carboxymethylcellulose.
- the organic solvent used in producing the positive electrode mixture is not particularly limited, and examples thereof include N-methylpyrrolidone (NMP). can be done.
- NMP N-methylpyrrolidone
- the positive electrode active material is about 70% to 95% by weight and the binder is about 1% to 30% by weight.
- the positive electrode active material is about 50% to 90% by weight, the binder is about 1% to 20% by weight, and the conductive aid is 1% to 40% by weight. % is preferable.
- the thickness of the positive electrode mixture layer is preferably about 1 ⁇ m to 100 ⁇ m per side of the current collector.
- the positive electrode current collector for example, aluminum foil, stainless steel, nickel, titanium or alloys thereof, punched metal, expanded metal, mesh, etc. can be used. Foil is preferably used.
- Negative Electrode As the negative electrode, a structure in which a negative electrode mixture layer containing a negative electrode active material, a binder, etc. is formed on one or both sides of a negative electrode current collector can be adopted.
- This negative electrode mixture layer is formed by mixing a binder with a negative electrode active material and a conductive aid that is added as necessary and forming it into a sheet, which is formed on the surface (one side) of a negative electrode current collector made of a metal foil or the like. or both sides).
- the negative electrode active material is not particularly limited, and for example, graphite (natural graphite, artificial graphite, etc.), difficult-to-sinter carbon, lithium metal, tin, silicon, alloys containing these, SiO, etc. can be used.
- lithium metal, lithium alloys, etc. can be used for metallic lithium primary batteries and metallic lithium secondary batteries, and materials capable of doping and dedoping lithium ions (graphite (natural graphite, artificial graphite, etc.), difficult-to-sinter carbon, etc.), etc. can be used as the active material.
- These negative electrode active materials may be used alone or in combination of two or more.
- a conductive aid graphite; carbon black (acetylene black, ketjen black, etc.); amorphous carbon materials such as carbon materials with amorphous carbon generated on the surface, as in ordinary non-aqueous secondary batteries. fibrous carbon (vapor-grown carbon fiber, carbon fiber obtained by carbonizing pitch after spinning, etc.); carbon nanotube (various multilayer or single-wall carbon nanotubes);
- the conductive aid for the negative electrode it may be used alone, or two or more of them may be used in combination. If the negative electrode active material has high conductivity, it may not be used.
- binders examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, styrene-butadiene rubber, polyimide, polyvinyl alcohol, and water-soluble carboxymethylcellulose.
- PVDF polyvinylidene fluoride
- polyacrylic acid examples include acrylic acid, styrene-butadiene rubber, polyimide, polyvinyl alcohol, and water-soluble carboxymethylcellulose.
- the negative electrode active material is about 70% to 95% by weight and the binder is about 1% to 30% by weight.
- the negative electrode active material is about 50% to 90% by weight, the binder is about 1% to 20% by weight, and the conductive aid is 1% to 40% by weight. % is preferred.
- the thickness of the negative electrode mixture layer is preferably about 1 ⁇ m to 100 ⁇ m per side of the current collector.
- the negative electrode current collector for example, a foil, punched metal, expanded metal, mesh, mesh, etc. made of aluminum, copper, stainless steel, nickel, titanium, or alloys thereof can be used, and the thickness is usually 5 ⁇ m to 5 ⁇ m.
- a copper foil of about 30 ⁇ m is preferably used.
- the positive electrode and the negative electrode described above can be used, for example, in the form of a laminated electrode body in which a separator is interposed and laminated, or in the form of a wound electrode body in which this is spirally wound.
- separator it is preferable to use a separator that has sufficient strength and can hold a large amount of electrolytic solution. From this point of view, polyethylene, polypropylene, ethylene-propylene with a thickness of 10 ⁇ m to 50 ⁇ m and an aperture ratio of 30% to 70%. Microporous films, non-woven fabrics, etc. containing one or more copolymers are preferred.
- non-aqueous secondary battery of the present invention a cylindrical shape (square cylindrical shape, cylindrical shape, etc.) using a stainless steel can, an aluminum can, or the like as an outer can can be adopted. Also, a soft package battery in which a laminated film integrated with a metal foil is used as an outer package can be employed.
- Synthesis Example 1 Synthesis of vanadium sulfide (positive electrode active material)
- vanadium sulfide (III) V 2 S 3 : manufactured by Kojundo Chemical Laboratory Co., Ltd.
- sulfur manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
- the vacuum-sealed sample was sintered in a tubular furnace at 400°C for 5 hours.
- the calcined sample was calcined in vacuum at 200°C for 8 hours to desulfurize surplus sulfur and synthesize crystalline vanadium sulfide VS 4 (c-VS 4 ).
- crystalline VS 4 (c-VS 4 ) was mechanically milled (ball diameter of 4 mm and rotation speed of 270 rpm), a low-crystalline vanadium sulfide VS 4 (a-VS 4 ) was synthesized and used as a positive electrode active material.
- the powder XRD measurement of the obtained a-VS 4 showed no clear peaks other than the minimum peak of V 2 O 3 , which is an extremely small amount of impurity, and it was found to be completely amorphous.
- Synthesis example 2 Synthesis of molybdenum sulfide (positive electrode active material) Zhang, M. Xue, and J. Chen, ACS Appl. Mater. Interface, 9, 38606-38611 (2017).).
- ammonium molybdate tetrahydrate (NH4) 6Mo7O24.4H2O : manufactured by FUJIFILM Wako Pure Chemical Industries , Ltd.) and hydroxylamine chloride ( NH2OH.HCl : FUJIFILM Wako Pure Chemical Industries , Ltd.) Co., Ltd.) was weighed into a volumetric flask so that the weight ratio was 4:3, and a mixture of ammonium sulfide ((NH 4 ) 2 S: Fuji Film Wako Pure Chemical Co., Ltd.) and ion-exchanged water was dripped. After that, the mixture was held at 50° C. for 1 hour and then at 90° C. for 4 hours to obtain a precipitate.
- ammonium molybdate tetrahydrate (NH4) 6Mo7O24.4H2O : manufactured by FUJIFILM Wako Pure Chemical Industries , Ltd.) and hydroxylamine chloride ( NH2OH.HCl : FU
- Amorphous MoS 5.7 was synthesized by heat-treating the dried sample at 220°C for 1 hour in an electric furnace in an Ar atmosphere.
- EMC Ethyl methyl carbonate
- TMP Trimethyl phosphate
- LiTFSI Lithium bis(trifluoromethanesulfonyl)imide
- FEC Fluoroethylene carbonate
- VC Vinylene carbonate
- DEC Diethyl carbonate
- PC Propylene carbonate
- DMC Dimethyl carbonate
- Example 1 FEC 10% by mass/LiTFSI:TMP:EMC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:1:1 molar ratio), and further , 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 1.
- Example 2 FEC 10% by mass/LiTFSI:TMP:EMC (1:TMP0.5:solvent 1.5 molar ratio) TMP and LiTFSI were added to the EMC medium so that the concentration was (1:0.5:1.5 molar ratio). Further, 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 2.
- Example 3 FEC 10% by mass/LiTFSI:TMP:EMC (1:TMP 0.25:solvent 1.75 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:0.25:1.75 molar ratio). Further, 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 3.
- Example 4 VC5% by mass/LiTFSI:TMP:EMC (1:TMP0.5:solvent 1.5 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:0.5:1.5 molar ratio). Further, 5 parts by mass of VC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 4.
- Example 5 FEC 10% by mass/LiTFSI:TMP:DEC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the DEC solvent so that the concentration was (1:1:1 molar ratio), and , 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 5.
- Example 6 FEC 10% by mass/LiTFSI:TMP:PC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the PC solvent so that the concentration was (1:1:1 molar ratio), and , 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 6.
- Example 7 FEC 10% by mass/LiTFSI:TMP:DMC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the DMC solvent so that the concentration was (1:1:1 molar ratio), and , 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 7.
- Example 8 FEC 10% by mass/LiTFSI:TMP:EMC (1:TMP0.5:solvent 1.5 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:0.5:1.5 molar ratio). Further, 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 8.
- Comparative Example 1 No additive / LiTFSI: TMP (1: TMP2: 0 molar ratio of solvent) LiTFSI was added to TMP at a concentration of (2:1 molar ratio) to obtain an electrolytic solution for a non-aqueous secondary battery of Comparative Example 1.
- Comparative Example 2 10% by mass of FEC/LiTFSI:TMP (1:TMP2:0 molar ratio of solvent) (solvent does not contain a carbonate compound) LiTFSI was added to TMP so that the concentration was (2:1 molar ratio), and 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte. I got the liquid.
- Comparative Example 3 No additive/LiTFSI:TMP:EMC (1:TMP1::solvent 1 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:1:1 molar ratio), An electrolytic solution for a non-aqueous secondary battery of Comparative Example 3 was obtained.
- Comparative Example 4 No additive/LiTFSI:TMP:DEC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the DEC solvent so that the concentration was (1:1:1 molar ratio) and compared An electrolytic solution for a non-aqueous secondary battery of Example 4 was obtained.
- Comparative Example 5 No additive/LiTFSI:TMP:EMC (1:TMP0.5:solvent 1.5 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:0.5:1.5 molar ratio). , an electrolytic solution for a non-aqueous secondary battery of Comparative Example 5 was obtained.
- Test example 1 Charge/discharge test (after 100 cycles) The VS4 powder obtained in Synthesis Example 1 was used as the positive electrode active material in the nonaqueous secondary battery electrolyte solutions obtained in Examples 1 to 7 and Comparative Examples 1 to 4 .
- the MoS5.7 powder obtained in Synthesis Example 2 was used as the positive electrode active material in the non-aqueous secondary battery electrolytes obtained in Example 8 and Comparative Example 5.
- the working electrode positive electrode
- the working electrode was prepared by adding 10 mg of VS4 powder obtained in Synthesis Example 1, 1 mg of Ketjenblack, and polytetrafluoroethylene ( 1 mg of PTFE) was added, mixed in a mortar for 8 minutes, and then attached to an aluminum mesh.
- Lithium metal was used as the counter electrode (negative electrode).
- Polypropylene was used as the separator.
- Table 1 shows the results of charge-discharge cycle characteristics (capacity retention rate at 100 cycles).
- the capacity retention rate is the ratio of the capacity measured after 100 cycles when the capacity at the start of the cycle test (first cycle) is taken as 100. The higher the capacity retention rate, the better the life characteristics as a battery. indicates that
- Test example 2 Internal resistance evaluation (after 100 cycles) Using the electrochemical cell subjected to 100 cycles of constant-current charge-discharge measurement described in Test Example 1, the internal resistance was evaluated by the method shown below.
- Table 1 shows the results of internal resistance characteristics after 100 cycles.
- the capacity maintenance rate is not determined based on a particular threshold.
- Examples 1 to 7 of the present invention exhibit a higher capacity retention rate of 35% or more than Comparative Examples 1 to 4.
- Examples 1 to 7 of the present invention suggest that a battery system with high energy efficiency and excellent life characteristics can be realized.
- Example 8 to which the present invention is applied exhibits a value of capacity retention rate higher than that of Comparative Example 5 by 38% or more.
- Example 8 to which the present invention is applied suggests that a battery system with high energy efficiency and excellent life characteristics can be realized.
- the internal resistance is not determined based on a particular threshold.
- Examples 1 to 7 of the present invention When VS4 is used as the active material in the stage before the charge/discharge cycle, the resistance of Examples 1 to 7 of the present invention is 25% or more lower than that of Comparative Examples 1 to 4. Examples 1 to 7 of the present invention suggest that a battery system with high energy efficiency can be realized because electric energy used for charging is not wasted due to resistance heating or the like.
- Example 8 to which the present invention is applied is 40% or more lower than the internal resistance shown in Comparative Example 5.
- Example 8 to which the present invention is applied suggests that a battery system with high energy efficiency can be realized as in the case of using VS4.
- the electrolytic solution for non-aqueous secondary batteries of the present invention and non-aqueous secondary batteries using the same can be used for various known applications. Specific examples include laptop computers, mobile phones, electric vehicles, power sources for load leveling, and natural energy storage power sources.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention provides an electrolyte capable of improving both charge-discharge cycle characteristics and reliability in a non-aqueous secondary battery that uses a lithium-free transition metal sulfide as a positive-electrode active material. An electrolyte for non-aqueous secondary batteries, in which: the non-aqueous secondary battery uses a lithium-free transition metal sulfide as a positive-electrode active material; and, the electrolyte contains a carbonate-compound-containing organic solvent, a phosphate ester compound, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and an additive.
Description
本発明は、非水二次電池用電解液及びそれを用いた非水二次電池に関する。
The present invention relates to an electrolytic solution for non-aqueous secondary batteries and non-aqueous secondary batteries using the same.
近年の携帯電子機器、ハイブリッド車等の高性能化により、それらに用いられるリチウムイオン二次電池は益々高容量化が求められている。しかしながら、現行のリチウムイオン二次電池は、負極に比べて正極の高容量化が不十分であり、比較的高容量と言われるニッケル酸リチウム系材料でもその容量は190mAh/g~220mAh/g程度に過ぎない。
Due to the recent improvements in the performance of portable electronic devices and hybrid vehicles, there is a growing demand for higher capacity lithium-ion secondary batteries used in these devices. However, in current lithium-ion secondary batteries, the capacity of the positive electrode is insufficient compared to that of the negative electrode, and even lithium nickel oxide-based materials, which are said to have relatively high capacity, have a capacity of about 190mAh/g to 220mAh/g. It's nothing more than
一方、硫黄は理論容量が約1670mAh/gと高く、正極活物質としての利用が期待されるが、一般的に、硫黄系の正極活物質は、充放電サイクルを繰り返すと容量が低下することが知られている。充放電時に多硫化リチウムとして有機電解液に溶出するためであり、有機電解液への溶出を抑制する技術が不可欠である。
On the other hand, sulfur has a high theoretical capacity of about 1670 mAh/g, and is expected to be used as a positive electrode active material. Are known. This is because lithium polysulfide is eluted into the organic electrolyte during charging and discharging, and a technique for suppressing elution into the organic electrolyte is essential.
リチウム非含有遷移金属硫化物(リチウムを含有しない遷移金属硫化物)は電子伝導性を有しており、有機電解液への溶出も少ないものの、十分とは言えない。リチウム非含有遷移金属硫化物として、例えば、バナジウム硫化物を例に取ると、試薬として販売されている結晶性硫化バナジウム(III)(V2S3)を正極活物質として用いた場合には、有機電解液との反応を抑制することができないために、実測の容量は充電容量が23mAh/g程度、放電容量が52mAh/g程度に過ぎない。これに対して、本発明者らは、特定の組成を有する低結晶性バナジウム硫化物が、リチウムイオン二次電池用電極活物質として使用した場合に高い容量を示し、また、充放電サイクル特性にも優れることを報告した(例えば、特許文献1参照)。
Lithium-free transition metal sulfides (lithium-free transition metal sulfides) have electronic conductivity, and although they are less eluted into organic electrolytes, they are not sufficient. Taking vanadium sulfide as an example of a lithium-free transition metal sulfide, when crystalline vanadium sulfide (III) (V 2 S 3 ) sold as a reagent is used as a positive electrode active material, Since the reaction with the organic electrolyte cannot be suppressed, the measured capacity is only about 23 mAh/g for charge capacity and about 52 mAh/g for discharge capacity. In contrast, the present inventors have found that a low-crystalline vanadium sulfide having a specific composition exhibits a high capacity when used as an electrode active material for a lithium-ion secondary battery, and has excellent charge-discharge cycle characteristics. have also been reported to be excellent (see, for example, Patent Document 1).
上記の様に、本発明者らは、リチウムイオン二次電池用電極活物質として使用した場合に高い容量を示し、また、充放電サイクル特性にも優れる材料を開発したが、リチウムイオン二次電池に対する高信頼化の要請は止まることが無く、充放電サイクル特性との両立がする為に改善が求められている。
As described above, the present inventors have developed a material that exhibits a high capacity when used as an electrode active material for a lithium ion secondary battery and also has excellent charge-discharge cycle characteristics. There is no end to the demand for higher reliability for , and improvements are required in order to achieve compatibility with charge-discharge cycle characteristics.
信頼性向上に向けては、地震や交通事故等による外部からの衝撃や、火災等による異常加熱により、電池が発火した場合でも、自己消火機能を持たせることが、安全性の改善に繋がると考えられる。電池の燃焼反応を抑制する方法としては、例えば、酸素ラジカルをトラップし、支燃性ガスを遮断する機能を有する、リン酸エステル系材料を電解液に添加する手法等を挙げることができる。しかしながら、一般的な電解液にリン酸エステル系材料を添加すると、充放電サイクルを繰り返した際に、内部抵抗が高くなり、寿命特性が悪くなる問題があった。
In order to improve reliability, even if the battery ignites due to an external impact such as an earthquake or traffic accident, or abnormal heating due to a fire, etc., it will lead to improved safety by providing a self-extinguishing function. Conceivable. As a method for suppressing the combustion reaction of the battery, for example, a method of adding a phosphoric acid ester-based material, which has a function of trapping oxygen radicals and blocking combustion-supporting gas, to the electrolytic solution can be used. However, when a phosphate ester-based material is added to a general electrolytic solution, there is a problem that the internal resistance increases and the life characteristics deteriorate when the charge-discharge cycle is repeated.
本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、リチウム非含有遷移金属硫化物を正極活物質として使用した非水二次電池において、充放電サイクル特性と信頼性の向上を両立させることができる電解液を提供することである。
The present invention has been made in view of the current state of the prior art described above, and the main object thereof is to provide a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material, in which charge-discharge cycle characteristics are improved. It is an object of the present invention to provide an electrolytic solution capable of achieving both the improvement of reliability and the improvement of reliability.
本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、リン酸トリメチル(TMP)にリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)とカーボネート化合物を含む有機溶媒と、添加剤とを含有することで、リチウム非含有遷移金属硫化物を正極活物質として使用した非水二次電池において、充放電サイクル特性を向上させることができることを見出した。
The inventors of the present invention have been earnestly conducting research to achieve the above objectives. As a result, by adding an organic solvent containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a carbonate compound to trimethyl phosphate (TMP) and an additive, a lithium-free transition metal sulfide can be converted into a positive electrode active material. In the non-aqueous secondary battery used as, it was found that the charge-discharge cycle characteristics can be improved.
本発明は、このような知見に基づいて更に研究を重ねた結果、完成されたものである。
The present invention was completed as a result of further research based on such knowledge.
即ち、本発明は、以下の構成を包含する。
That is, the present invention includes the following configurations.
項1.
非水二次電池用電解液であって、
前記非水二次電池は、正極活物質としてリチウム非含有遷移金属硫化物を使用する非水二次電池であり、
前記電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する、
非水二次電池用電解液。 Item 1.
An electrolytic solution for a non-aqueous secondary battery,
The non-aqueous secondary battery is a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material,
The electrolytic solution is
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
containing an additive,
Electrolyte for non-aqueous secondary batteries.
非水二次電池用電解液であって、
前記非水二次電池は、正極活物質としてリチウム非含有遷移金属硫化物を使用する非水二次電池であり、
前記電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する、
非水二次電池用電解液。 Item 1.
An electrolytic solution for a non-aqueous secondary battery,
The non-aqueous secondary battery is a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material,
The electrolytic solution is
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
containing an additive,
Electrolyte for non-aqueous secondary batteries.
項2.
前記リン酸エステル化合物は、リン酸トリメチル(TMP)、リン酸トリエチル(TEP)、及びリン酸トリス(2,2,2-トリフルオロエチル)(TFEP)から成る群から選ばれる少なくとも1種である、前記項1に記載の非水二次電池用電解液。 Section 2.
The phosphate ester compound is at least one selected from the group consisting of trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2,2,2-trifluoroethyl) phosphate (TFEP). 3. The electrolytic solution for a non-aqueous secondary battery according to item 1 above.
前記リン酸エステル化合物は、リン酸トリメチル(TMP)、リン酸トリエチル(TEP)、及びリン酸トリス(2,2,2-トリフルオロエチル)(TFEP)から成る群から選ばれる少なくとも1種である、前記項1に記載の非水二次電池用電解液。 Section 2.
The phosphate ester compound is at least one selected from the group consisting of trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2,2,2-trifluoroethyl) phosphate (TFEP). 3. The electrolytic solution for a non-aqueous secondary battery according to item 1 above.
項3.
前記添加剤は、ビニレンカーボネート(VC)、及びフルオロエチレンカーボネート(FEC)から成る群から選ばれる少なくとも1種である、前記項1又は2に記載の非水二次電池用電解液。 Item 3.
Item 3. The electrolytic solution for a non-aqueous secondary battery according to Item 1 or 2, wherein the additive is at least one selected from the group consisting of vinylene carbonate (VC) and fluoroethylene carbonate (FEC).
前記添加剤は、ビニレンカーボネート(VC)、及びフルオロエチレンカーボネート(FEC)から成る群から選ばれる少なくとも1種である、前記項1又は2に記載の非水二次電池用電解液。 Item 3.
Item 3. The electrolytic solution for a non-aqueous secondary battery according to Item 1 or 2, wherein the additive is at least one selected from the group consisting of vinylene carbonate (VC) and fluoroethylene carbonate (FEC).
項4.
前記リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)の含有量に対して、前記リン酸エステル化合物の含有量は、モル比で0.25倍~1.0倍である、前記項1~3のいずれか1項に記載の非水二次電池用電解液。 Section 4.
4. Any one of the above items 1 to 3, wherein the content of the phosphoric acid ester compound is 0.25 to 1.0 times the content of the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in terms of molar ratio. Electrolyte solution for non-aqueous secondary batteries according to.
前記リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)の含有量に対して、前記リン酸エステル化合物の含有量は、モル比で0.25倍~1.0倍である、前記項1~3のいずれか1項に記載の非水二次電池用電解液。 Section 4.
4. Any one of the above items 1 to 3, wherein the content of the phosphoric acid ester compound is 0.25 to 1.0 times the content of the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in terms of molar ratio. Electrolyte solution for non-aqueous secondary batteries according to.
項5.
前記電解液の総量を100重量%として、前記添加剤の含有量は、5重量%~10重量%である、前記項1~4のいずれか1項に記載の非水二次電池用電解液。 Item 5.
5. The electrolytic solution for a non-aqueous secondary battery according to any one of Items 1 to 4, wherein the content of the additive is 5% to 10% by weight based on the total amount of the electrolytic solution being 100% by weight. .
前記電解液の総量を100重量%として、前記添加剤の含有量は、5重量%~10重量%である、前記項1~4のいずれか1項に記載の非水二次電池用電解液。 Item 5.
5. The electrolytic solution for a non-aqueous secondary battery according to any one of Items 1 to 4, wherein the content of the additive is 5% to 10% by weight based on the total amount of the electrolytic solution being 100% by weight. .
項6.
前記カーボネート化合物は、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、及びプロピレンカーボネート(PC)から成る群から選ばれる少なくとも1種である、前記項1~5のいずれか1項に記載の非水二次電池用電解液。 Item 6.
6. Any one of the above items 1 to 5, wherein the carbonate compound is at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and propylene carbonate (PC). 2. The electrolytic solution for non-aqueous secondary batteries according to item 1.
前記カーボネート化合物は、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、及びプロピレンカーボネート(PC)から成る群から選ばれる少なくとも1種である、前記項1~5のいずれか1項に記載の非水二次電池用電解液。 Item 6.
6. Any one of the above items 1 to 5, wherein the carbonate compound is at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and propylene carbonate (PC). 2. The electrolytic solution for non-aqueous secondary batteries according to item 1.
項7.
前記リチウム非含有遷移金属硫化物は、バナジウム硫化物、及びモリブデン硫化物から成る群から選ばれる少なくとも1種である、前記項1~6のいずれか1項に記載の非水二次電池用電解液。 Item 7.
7. The electrolysis for a non-aqueous secondary battery according to any one of items 1 to 6, wherein the lithium-free transition metal sulfide is at least one selected from the group consisting of vanadium sulfide and molybdenum sulfide. liquid.
前記リチウム非含有遷移金属硫化物は、バナジウム硫化物、及びモリブデン硫化物から成る群から選ばれる少なくとも1種である、前記項1~6のいずれか1項に記載の非水二次電池用電解液。 Item 7.
7. The electrolysis for a non-aqueous secondary battery according to any one of items 1 to 6, wherein the lithium-free transition metal sulfide is at least one selected from the group consisting of vanadium sulfide and molybdenum sulfide. liquid.
項8.
前記項1~7のいずれか1項に記載の非水二次電池用電解液を備える、非水二次電池。 Item 8.
A non-aqueous secondary battery comprising the electrolytic solution for a non-aqueous secondary battery according to any one of Items 1 to 7 above.
前記項1~7のいずれか1項に記載の非水二次電池用電解液を備える、非水二次電池。 Item 8.
A non-aqueous secondary battery comprising the electrolytic solution for a non-aqueous secondary battery according to any one of Items 1 to 7 above.
項9.
リチウムイオン二次電池である、請求項8に記載の非水二次電池。 Item 9.
9. The nonaqueous secondary battery according to claim 8, which is a lithium ion secondary battery.
リチウムイオン二次電池である、請求項8に記載の非水二次電池。 Item 9.
9. The nonaqueous secondary battery according to claim 8, which is a lithium ion secondary battery.
本発明によれば、リチウム非含有遷移金属硫化物を正極活物質として使用した非水二次電池において、充放電サイクル特性をさらに向上させることができる。
According to the present invention, charge-discharge cycle characteristics can be further improved in a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material.
本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。
As used herein, "contain" is a concept that includes all of "comprise", "consist essentially of", and "consist of". Further, in this specification, when a numerical range is indicated by "A to B", it means A or more and B or less.
本明細書において、各成分の濃度(mol/L)は、有機溶媒1Lに対して、所望のモル数含んでいることを意味する。
In this specification, the concentration (mol/L) of each component means that it contains the desired number of moles per 1 L of the organic solvent.
1.非水二次電池用電解液
本発明は、非水二次電池用電解液であって、
前記非水二次電池は、正極活物質としてリチウム非含有遷移金属硫化物を使用する非水二次電池であり、
前記電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 1. Electrolyte solution for non-aqueous secondary battery The present invention is an electrolyte solution for non-aqueous secondary battery,
The non-aqueous secondary battery is a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material,
The electrolytic solution is
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
本発明は、非水二次電池用電解液であって、
前記非水二次電池は、正極活物質としてリチウム非含有遷移金属硫化物を使用する非水二次電池であり、
前記電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 1. Electrolyte solution for non-aqueous secondary battery The present invention is an electrolyte solution for non-aqueous secondary battery,
The non-aqueous secondary battery is a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material,
The electrolytic solution is
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
(1-1)リチウム非含有遷移金属硫化物
本発明において、遷移金属硫化物としては、リチウムを含むものについては、アルゴンガス雰囲気等の不活性雰囲気下での取り扱いが必要となるため、リチウム非含有遷移金属硫化物を使用する。このようなリチウム非含有遷移金属硫化物としては、本発明の非水二次電池用電解液が使用される非水二次電池において、正極活物質として使用されるリチウムを含有しない遷移金属硫化物であり、リチウムイオン二次電池の正極活物質として知られているリチウム非含有遷移金属硫化物であれば特に制限されない。具体的には、バナジウム硫化物(リチウム非含有バナジウム硫化物:国際公開第2018/181698号)、ニオブ硫化物及びチタンニオブ硫化物(リチウム非含有ニオブ硫化物及びリチウム非含有チタンニオブ硫化物:国際公開第2015/049986号)、モリブデン硫化物(リチウム非含有モリブデン硫化物)、鉄硫化物(リチウム非含有鉄硫化物)等が挙げられる。なお、国際公開第2018/181698号及び国際公開第2015/049986号の記載は、参照により引用する(incorporate by reference)。 (1-1) Lithium-free transition metal sulfide In the present invention, transition metal sulfides containing lithium must be handled in an inert atmosphere such as an argon gas atmosphere. Containing transition metal sulfides are used. Examples of such lithium-free transition metal sulfides include lithium-free transition metal sulfides used as positive electrode active materials in non-aqueous secondary batteries in which the electrolyte for non-aqueous secondary batteries of the present invention is used. and is not particularly limited as long as it is a lithium-free transition metal sulfide known as a positive electrode active material for lithium ion secondary batteries. Specifically, vanadium sulfide (lithium-free vanadium sulfide: International Publication No. 2018/181698), niobium sulfide and titanium niobium sulfide (lithium-free niobium sulfide and lithium-free titanium niobium sulfide: International Publication No. 2015/049986), molybdenum sulfides (lithium-free molybdenum sulfides), iron sulfides (lithium-free iron sulfides), and the like. Note that the descriptions of International Publication No. 2018/181698 and International Publication No. 2015/049986 are incorporated by reference.
本発明において、遷移金属硫化物としては、リチウムを含むものについては、アルゴンガス雰囲気等の不活性雰囲気下での取り扱いが必要となるため、リチウム非含有遷移金属硫化物を使用する。このようなリチウム非含有遷移金属硫化物としては、本発明の非水二次電池用電解液が使用される非水二次電池において、正極活物質として使用されるリチウムを含有しない遷移金属硫化物であり、リチウムイオン二次電池の正極活物質として知られているリチウム非含有遷移金属硫化物であれば特に制限されない。具体的には、バナジウム硫化物(リチウム非含有バナジウム硫化物:国際公開第2018/181698号)、ニオブ硫化物及びチタンニオブ硫化物(リチウム非含有ニオブ硫化物及びリチウム非含有チタンニオブ硫化物:国際公開第2015/049986号)、モリブデン硫化物(リチウム非含有モリブデン硫化物)、鉄硫化物(リチウム非含有鉄硫化物)等が挙げられる。なお、国際公開第2018/181698号及び国際公開第2015/049986号の記載は、参照により引用する(incorporate by reference)。 (1-1) Lithium-free transition metal sulfide In the present invention, transition metal sulfides containing lithium must be handled in an inert atmosphere such as an argon gas atmosphere. Containing transition metal sulfides are used. Examples of such lithium-free transition metal sulfides include lithium-free transition metal sulfides used as positive electrode active materials in non-aqueous secondary batteries in which the electrolyte for non-aqueous secondary batteries of the present invention is used. and is not particularly limited as long as it is a lithium-free transition metal sulfide known as a positive electrode active material for lithium ion secondary batteries. Specifically, vanadium sulfide (lithium-free vanadium sulfide: International Publication No. 2018/181698), niobium sulfide and titanium niobium sulfide (lithium-free niobium sulfide and lithium-free titanium niobium sulfide: International Publication No. 2015/049986), molybdenum sulfides (lithium-free molybdenum sulfides), iron sulfides (lithium-free iron sulfides), and the like. Note that the descriptions of International Publication No. 2018/181698 and International Publication No. 2015/049986 are incorporated by reference.
これらのリチウム非含有遷移金属硫化物は、単独で用いることもでき、2種以上を組合せて用いることもできる。これらのなかでも、充放電容量、充放電サイクル特性等の観点から、バナジウム硫化物(リチウム非含有バナジウム硫化物:国際公開第2018/181698号)、モリブデン硫化物(リチウム非含有モリブデン硫化物)、鉄硫化物(リチウム非含有鉄硫化物)等が好ましく、バナジウム硫化物(リチウム非含有バナジウム硫化物:国際公開第2018/181698号)がより好ましい。
These lithium-free transition metal sulfides can be used alone or in combination of two or more. Among them, from the viewpoint of charge-discharge capacity, charge-discharge cycle characteristics, etc., vanadium sulfide (lithium-free vanadium sulfide: International Publication No. 2018/181698), molybdenum sulfide (lithium-free molybdenum sulfide), Iron sulfide (lithium-free iron sulfide) and the like are preferable, and vanadium sulfide (lithium-free vanadium sulfide: International Publication No. 2018/181698) is more preferable.
本発明において、リチウム非含有遷移金属硫化物は、好ましくは、バナジウム硫化物、及びモリブデン硫化物から成る群から選ばれる少なくとも1種である。
In the present invention, the non-lithium-containing transition metal sulfide is preferably at least one selected from the group consisting of vanadium sulfide and molybdenum sulfide.
このようなリチウム非含有遷移金属硫化物は、結晶性材料及び低結晶性材料(又は非晶質材料)をいずれも採用できる。なかでも、充放電容量、充放電サイクル特性等に特に優れ、仮に有機電解液と接した場合に有機電解液との反応を抑制しやすい観点からは、低結晶性材料(又は非晶質材料)が好ましい。
Both crystalline materials and low-crystalline materials (or amorphous materials) can be used for such lithium-free transition metal sulfides. Among them, particularly excellent charge-discharge capacity, charge-discharge cycle characteristics, etc., and from the viewpoint of easily suppressing the reaction with the organic electrolyte when it comes into contact with the organic electrolyte, low-crystalline materials (or amorphous materials) is preferred.
本発明において、リチウム非含有遷移金属硫化物としては、硫黄と遷移金属との組成比(S/M1)は、充放電容量、充放電サイクル特性等に特に優れ、合成しやすく、仮に有機電解液と接した場合に有機電解液との反応を抑制しやすい観点から、モル比で2.1~10であることが好ましい。
In the present invention, as the lithium-free transition metal sulfide, the composition ratio (S/M 1 ) of sulfur and transition metal is particularly excellent in charge-discharge capacity, charge-discharge cycle characteristics, etc. A molar ratio of 2.1 to 10 is preferable from the viewpoint of easily suppressing the reaction with the organic electrolyte when in contact with the liquid.
より詳細には、リチウム非含有遷移金属硫化物は、一般式(2):
M1Sx (2)
[式中、M1は遷移金属を示す。xは2.1~10を示す。]
で表される組成を有することが好ましい。なお、M1として複数の遷移金属を含む場合は、硫黄と遷移金属の総量との組成比(S/M1)をモル比で2.1~10とすることが好ましい。 More specifically, non-lithium containing transition metal sulfides have the general formula (2):
M1S x ( 2 )
[In the formula, M 1 represents a transition metal. x indicates 2.1-10. ]
It is preferable to have a composition represented by When a plurality of transition metals are contained as M 1 , the composition ratio (S/M 1 ) of sulfur to the total amount of transition metals is preferably 2.1-10 in terms of molar ratio.
M1Sx (2)
[式中、M1は遷移金属を示す。xは2.1~10を示す。]
で表される組成を有することが好ましい。なお、M1として複数の遷移金属を含む場合は、硫黄と遷移金属の総量との組成比(S/M1)をモル比で2.1~10とすることが好ましい。 More specifically, non-lithium containing transition metal sulfides have the general formula (2):
M1S x ( 2 )
[In the formula, M 1 represents a transition metal. x indicates 2.1-10. ]
It is preferable to have a composition represented by When a plurality of transition metals are contained as M 1 , the composition ratio (S/M 1 ) of sulfur to the total amount of transition metals is preferably 2.1-10 in terms of molar ratio.
このように、本発明において、リチウム非含有金属硫化物は、遷移金属(M1)に対する硫黄の元素比が高い。このため、本発明において、リチウム非含有金属硫化物を用いることで、高い充放電容量及び優れた充放電サイクル特性を有することができる。なお、本発明では、硫黄の含有量を高くするほど(xを大きくするほど)充放電容量が高くなりやすく、硫黄の含有量を低くするほど(xを小さくするほど)単体硫黄を含みにくくして充放電サイクル特性が高くなりやすい。
Thus, in the present invention, the lithium-free metal sulfide has a high elemental ratio of sulfur to transition metal (M 1 ). Therefore, in the present invention, by using a lithium-free metal sulfide, a high charge-discharge capacity and excellent charge-discharge cycle characteristics can be obtained. In the present invention, the higher the sulfur content (the larger x), the higher the charge-discharge capacity, and the lower the sulfur content (the smaller x), the less elemental sulfur is contained. charge-discharge cycle characteristics tend to be high.
本発明においては、充放電サイクル特性に劣る硫化物を使用したとしても、後述する組成の電解液を使用することで充放電サイクル特性を向上させることができることから、充放電容量は高くなりやすいものの充放電サイクル特性は不十分となりやすい多硫化物を適用することに特に有用性が認められる。このため、xとしては2.1~10が好ましく、3~8がより好ましい。
In the present invention, even if a sulfide having poor charge-discharge cycle characteristics is used, the charge-discharge cycle characteristics can be improved by using an electrolytic solution having a composition described later, so the charge-discharge capacity tends to increase. Use of polysulfides, which tend to have insufficient charge-discharge cycle characteristics, is particularly useful. Therefore, x is preferably 2.1-10, more preferably 3-8.
以下、好ましいリチウム非含有遷移金属硫化物であるバナジウム硫化物(リチウム非含有バナジウム硫化物)を例に取って、説明する。
Hereinafter, vanadium sulfide (lithium-free vanadium sulfide), which is a preferred lithium-free transition metal sulfide, will be described as an example.
本発明において、バナジウム硫化物は、結晶性四硫化バナジウム(IV)(VS4)と類似した結晶構造(以下、「VS4型結晶構造」と言うこともある)を有することが好ましい。
In the present invention, vanadium sulfide preferably has a crystal structure similar to that of crystalline vanadium tetrasulfide (IV) (VS 4 ) (hereinafter sometimes referred to as "VS 4 type crystal structure").
より具体的には、バナジウム硫化物は、CuKα線によるX線回折図における回折角2θ=10°~80°の範囲内において、±1.0°の許容範囲で、15.4°、35.3°、及び45.0°にピークを有することが好ましい。つまり、14.4°~16.4°、34.3°~36.3°、及び44.0°~46.0°の範囲にピークを有することが好ましい。
More specifically, vanadium sulfide is 15.4 °, 35.3 °, and 45.0 ° with a tolerance of ± 1.0 ° in the range of diffraction angles 2θ = 10 ° to 80 ° in the X-ray diffraction diagram using CuKα rays. It is preferable to have a peak at . That is, it preferably has peaks in the ranges of 14.4° to 16.4°, 34.3° to 36.3°, and 44.0° to 46.0°.
なお、本発明において、X線回折図は、粉末X線回折測定法(θ-2θ法)によって求められるものであり、以下の測定条件:
測定装置:D8ADVANCE(BrukerAXS)
X線源:CuKα40kV/40mA
測定条件:2θ=10°~80°、0.1°ステップ、走査速度0.02°/秒
で測定する。 In the present invention, the X-ray diffraction pattern is obtained by a powder X-ray diffraction measurement method (θ-2θ method) under the following measurement conditions:
Measuring device: D8ADVANCE (BrukerAXS)
X-ray source: CuKα40kV/40mA
Measurement conditions: 2θ = 10° to 80°, 0.1° steps, scanning speed 0.02°/sec.
測定装置:D8ADVANCE(BrukerAXS)
X線源:CuKα40kV/40mA
測定条件:2θ=10°~80°、0.1°ステップ、走査速度0.02°/秒
で測定する。 In the present invention, the X-ray diffraction pattern is obtained by a powder X-ray diffraction measurement method (θ-2θ method) under the following measurement conditions:
Measuring device: D8ADVANCE (BrukerAXS)
X-ray source: CuKα40kV/40mA
Measurement conditions: 2θ = 10° to 80°, 0.1° steps, scanning speed 0.02°/sec.
本発明において、バナジウム硫化物は、上記した2θ位置にピークを有することが好ましいが、回折角2θ=10°~80°の範囲内において、±1.0°の許容範囲で、54.0°及び56.0°の少なくとも1箇所(特に全て)にもピークを有することが好ましい。
In the present invention, the vanadium sulfide preferably has a peak at the 2θ position described above, but within the diffraction angle 2θ = 10 ° to 80 °, the tolerance range of ±1.0 °, 54.0 ° and 56.0 ° It is preferable to have a peak at at least one location (especially all).
本発明において、バナジウム硫化物は、平均組成としては硫黄の比率が高い硫化物であるにもかかわらず、硫黄は後述のように単体硫黄としてはほとんど存在せず、バナジウムと結合して低結晶性の硫化物を形成していることが好ましい。
In the present invention, vanadium sulfide is a sulfide with a high sulfur ratio as an average composition, but sulfur hardly exists as elemental sulfur as described later, and is combined with vanadium to have low crystallinity. preferably forms a sulfide of
このように、本発明において、バナジウム硫化物は、結晶性を低くすることにより、リチウムイオンが挿入及び脱離可能なサイトがより多く存在し、また、3次元的にリチウムの導電経路となり得る隙間を構造的に有しやすくすることができる。また、充放電時に3次元的な体積変化を行いやすい等多数の利点を有している。このため、充放電容量及び充放電サイクル特性をさらに向上させることができる。また、原料として使用する硫化バナジウム(V2S3等)もほとんど存在しないことが好ましい。
Thus, in the present invention, vanadium sulfide has a lower crystallinity, so that there are more sites where lithium ions can be inserted and detached, and gaps that can be three-dimensionally conductive paths for lithium can be made structurally easier to have. In addition, it has many advantages such as easy three-dimensional volume change during charging and discharging. Therefore, the charge/discharge capacity and charge/discharge cycle characteristics can be further improved. Moreover, it is preferable that vanadium sulfide (V 2 S 3 etc.) used as a raw material is almost absent.
なお、本明細書において、硫化物の平均組成とは、硫化物の全体を構成する各元素の元素比を示す。
In this specification, the average composition of sulfide indicates the element ratio of each element that constitutes the entire sulfide.
以下、本発明における「低結晶性」について説明する。
"Low crystallinity" in the present invention will be described below.
本発明において、低結晶性バナジウム硫化物は、2θ=15.4°、35.3°、及び45.0°にピークが存在しないか、又はピークが現れたとしてもそのピークの半値全幅がいずれも0.8°~2.0°(特に1.0°~2.0°)であることが好ましい。なお、結晶性硫化バナジウム(IV)(VS4)においては、2θ=15.4°、35.3°、及び45.0°のピークの半値全幅がいずれも0.2°~0.6°である。
In the present invention, the low-crystalline vanadium sulfide has no peaks at 2θ = 15.4 °, 35.3 °, and 45.0 °, or even if a peak appears, the full width at half maximum of the peak is 0.8 ° to 2.0 °. (especially 1.0° to 2.0°) is preferred. In crystalline vanadium sulfide (IV) (VS 4 ), the full widths at half maximum of the peaks at 2θ=15.4°, 35.3° and 45.0° are all 0.2° to 0.6°.
このように、本発明において、低結晶性バナジウム硫化物は、2θ=15.4°、35.3°、及び45.0°にピークが存在しないか、又はピークが現れてもそのピークの半値全幅が、結晶性硫化バナジウム(IV)(VS4)と比較すると大きいことが好ましい。
Thus, in the present invention, the low-crystalline vanadium sulfide has no peaks at 2θ = 15.4 °, 35.3 °, and 45.0 °, or even if a peak appears, the full width at half maximum of the peak is Large compared to vanadium (IV) (VS 4 ) is preferred.
このように、本発明においては低結晶性であることにより、Liが安定して存在できるサイトが増えやすいため、低結晶性のリチウム非含有金属硫化物を正極活物資として使うと、充放電容量及び充放電サイクル特性を向上させやすい。
Thus, in the present invention, due to the low crystallinity, the number of sites where Li can stably exist tends to increase. And it is easy to improve charge-discharge cycle characteristics.
また、単体硫黄等を多量に含む材料を正極活物質として用いた場合には、本発明の非水二次電池用電解液中に含まれる環状カーボネート化合物は単体硫黄と反応を起こしやすいことと比較して、本発明において、例えば、十分な時間メカニカルミリング処理をした場合等においては、上記したバナジウム硫化物は単体硫黄等をほとんど含んでいないため、正極活物質として使用する場合には、環状カーボネート化合物を用いた場合にもこれらの問題は生じず、充放電容量及び充放電サイクル特性を飛躍的に向上させやすい。
In addition, when a material containing a large amount of elemental sulfur or the like is used as the positive electrode active material, the cyclic carbonate compound contained in the electrolyte for non-aqueous secondary batteries of the present invention tends to react with elemental sulfur. Then, in the present invention, for example, when the mechanical milling treatment is performed for a sufficient time, the vanadium sulfide described above hardly contains elemental sulfur or the like, so when used as a positive electrode active material, cyclic carbonate Even when a compound is used, these problems do not occur, and the charge/discharge capacity and charge/discharge cycle characteristics are likely to be dramatically improved.
より具体的には、硫黄(S8)の最も強いピークは、±1.0°の許容範囲で、2θ=23.0°に存在する。このことから、CuKα線によるX線回折図において、±1.0°の許容範囲で、単体硫黄に特徴的なピークである、2θ=23.0°に極大を有するピークを有さないか、2θ=23.0°に極大を有するピークの面積が、前記2θ=35.3°に極大を有するピークの面積の20%以下(0%~20%、特に0.1%~19%)であることが好ましい。これにより、本発明において、バナジウム硫化物を、単体硫黄をほとんど含まない材料とすることができ、上記のような電解液との反応を起こす懸念をより少なくし、充放電容量及び充放電サイクル特性をより向上させることができる。
More specifically, the strongest peak for sulfur (S 8 ) is at 2θ=23.0° with a tolerance of ±1.0°. From this, in the X-ray diffraction diagram with CuKα rays, it is possible to have a peak with a maximum at 2θ = 23.0°, which is a peak characteristic of elemental sulfur, within an allowable range of ± 1.0°. is preferably 20% or less (0% to 20%, particularly 0.1% to 19%) of the area of the peak having a maximum at 2θ=35.3°. As a result, in the present invention, vanadium sulfide can be made a material that hardly contains elemental sulfur, and the concern of causing a reaction with the electrolyte solution as described above is further reduced, and the charge-discharge capacity and charge-discharge cycle characteristics can be further improved.
本発明において、バナジウム硫化物は、他にも、±1.0°の許容範囲で、単体硫黄に特徴的なピークである2θ=25.8°及び27.8°の位置についても、ピークを有さないか、当該位置に極大を有するピークの面積が、前記2θ=35.3°に極大を有するピークの面積の10%以下(0%~10%、特に0.1%~8%)であることが好ましい。これにより、バナジウム硫化物において、単体硫黄をほとんど含まない材料とすることができ、上記のような電解液との反応を起こす懸念をより少なくし、充放電容量及び充放電サイクル特性をより向上させることができる。
In the present invention, vanadium sulfide also has no peaks at 2θ = 25.8° and 27.8°, which are peaks characteristic of elemental sulfur, within a tolerance of ±1.0°. The area of the peak having the maximum at 2θ=35.3° is preferably 10% or less (0% to 10%, particularly 0.1% to 8%) of the area of the peak having the maximum at 2θ=35.3°. As a result, vanadium sulfide can be made into a material that contains almost no elemental sulfur, which further reduces the concern of causing a reaction with the electrolyte solution as described above, and further improves charge-discharge capacity and charge-discharge cycle characteristics. be able to.
このような条件を満たすバナジウム硫化物は、X線/中性子原子対相関関数解析(PDF解析)において、±0.1Åの許容範囲で、g(r)=2.4Åの位置に強いピークを有することが好ましいが、より充放電容量及び充放電サイクル特性が良好な硫化物については、g(r)=2.0Åに肩ピークを有することがより好ましく、また、g(r)=3.3Åの位置にもピークを有することがより好ましい。言い換えれば、バナジウム硫化物は、V-S結合のみならず、S-S結合(ジスルフィド結合)も有することが好ましい。
Vanadium sulfide that satisfies these conditions has a strong peak at g(r) = 2.4 Å with a tolerance of ±0.1 Å in X-ray/neutron atom pair correlation function analysis (PDF analysis). However, for sulfides with better charge-discharge capacity and charge-discharge cycle characteristics, it is more preferable to have a shoulder peak at g(r) = 2.0 Å, and also at g(r) = 3.3 Å. Having a peak is more preferable. In other words, vanadium sulfide preferably has not only V-S bonds but also S-S bonds (disulfide bonds).
本発明において、上記したバナジウム硫化物は、例えば、原料又は中間体として、バナジウム硫化物及び硫黄を用い、メカニカルミリング法に供する工程を備える製造方法によって得ることができる。
In the present invention, the vanadium sulfide described above can be obtained, for example, by using vanadium sulfide and sulfur as raw materials or intermediates and using a production method comprising a step of subjecting them to a mechanical milling method.
メカニカルミリング処理は、機械的エネルギーを付与しながら原料を摩砕混合する方法であり、この方法によれば、原料に機械的な衝撃及び摩擦を与えて摩砕混合することによって、バナジウム硫化物及び硫黄が激しく接触して微細化され、原料の反応が生じる。つまり、この際、混合、粉砕及び反応が同時に生じる。このため、原料を高温に熱することなく、原料をより確実に反応させることが可能である。メカニカルミリング処理を用いることで通常の熱処理では得ることのできない、準安定結晶構造が得られることがある。
Mechanical milling is a method of grinding and mixing raw materials while applying mechanical energy. According to this method, vanadium sulfide and Sulfur contacts violently and becomes fine, causing reaction of raw materials. In other words, at this time, mixing, grinding and reaction occur simultaneously. Therefore, it is possible to react the raw materials more reliably without heating the raw materials to a high temperature. A metastable crystal structure, which cannot be obtained by ordinary heat treatment, may be obtained by using mechanical milling treatment.
メカニカルミリング処理としては、具体的には、例えば、ボールミル、ビーズミル、ロッドミル、振動ミル、ディスクミル、ハンマーミル、ジェットミル等の機械的粉砕装置を用いて混合粉砕を行うことができる。
Specifically, as the mechanical milling treatment, for example, mixed grinding can be performed using a mechanical grinding device such as a ball mill, bead mill, rod mill, vibration mill, disk mill, hammer mill, jet mill, or the like.
これらの原料又は中間体については、全てを同時に混合してメカニカルミリング処理に供することもでき、一部の材料又は中間体についてまずメカニカルミリング処理に供した後、残りの材料を加えてメカニカルミリング処理に供することもできる。
All of these raw materials or intermediates can be mixed at the same time and subjected to mechanical milling. Some of the materials or intermediates are first subjected to mechanical milling, and then the remaining materials are added to mechanical milling. can also be provided to
なお、特に、硫黄含量が多いバナジウム硫化物(硫黄とバナジウムとの組成比(S/V)がモル比で3.3以上)を製造する場合には、仕込み質量によっては、結晶性のバナジウム硫化物が得られることがある。このため、充放電容量及び充放電サイクル特性に優れた低結晶性バナジウム硫化物を得やすくするため、まず、バナジウム硫化物と硫黄の一部とをメカニカルミリング処理に供することにより中間体として所望の低結晶性硫化物を得た後、得られた低結晶性硫化物と残りの硫黄とをメカニカルミリング処理に供することが好ましい。
In particular, when producing vanadium sulfide with a high sulfur content (composition ratio (S/V) of sulfur and vanadium is 3.3 or more in terms of molar ratio), crystalline vanadium sulfide may can be obtained. Therefore, in order to easily obtain low-crystalline vanadium sulfide having excellent charge-discharge capacity and charge-discharge cycle characteristics, first, vanadium sulfide and a part of sulfur are subjected to mechanical milling to obtain the desired intermediate. After obtaining the low crystalline sulfide, it is preferable to subject the obtained low crystalline sulfide and the remaining sulfur to a mechanical milling treatment.
具体的な原料としては、バナジウム硫化物として、結晶性硫化バナジウム(III)(V2S3)を使用することが好ましい。バナジウム硫化物は、特に限定はなく、市販されている任意のバナジウム硫化物を用いることができる。特に、高純度のものを用いることが好ましい。また、バナジウム硫化物をメカニカルミリング処理によって混合粉砕するので、使用するバナジウム硫化物の粒径についても限定はなく、通常は、市販されている粉末状のバナジウム硫化物を用いることができる。
As a specific raw material, it is preferable to use crystalline vanadium sulfide (III) (V 2 S 3 ) as vanadium sulfide. Vanadium sulfide is not particularly limited, and any commercially available vanadium sulfide can be used. In particular, it is preferable to use a highly pure one. In addition, since the vanadium sulfide is mixed and pulverized by mechanical milling, the particle size of the vanadium sulfide used is not limited, and powdery vanadium sulfide that is commercially available can be used.
また、硫黄としては、目的とする組成の硫化物を形成するたに必要な量の単体硫黄(S8)を用いることが可能である。原料として用いる硫黄についても特に限定はなく、任意の硫黄を用いることができる。特に、高純度のものを用いることが好ましい。また、硫黄をメカニカルミリング処理によって混合粉砕するので、使用する硫黄の粒径についても限定はなく、通常は、市販されている粉末状の硫黄を用いることができる。
Also, as sulfur, it is possible to use elemental sulfur (S 8 ) in an amount necessary to form a sulfide having the desired composition. The sulfur used as a raw material is also not particularly limited, and any sulfur can be used. In particular, it is preferable to use a highly pure one. In addition, since sulfur is mixed and pulverized by mechanical milling, the particle size of the sulfur used is not limited, and powdered sulfur commercially available can be used.
さらに、上記したように、複数(特に2段階)のメカニカルミリング処理に供する場合、中間体としては、所望の組成の低結晶性バナジウム硫化物(低結晶性VS2.5等)等を用いることもできる。
Furthermore, as described above, when subjected to multiple (especially two-stage) mechanical milling treatments, as an intermediate, a low-crystalline vanadium sulfide (low-crystalline VS 2.5 , etc.) having a desired composition can also be used. .
原料の混合割合については、原料の仕込み比率が、ほとんどそのまま生成物の各元素の比率となるため、目的とするバナジウム硫化物におけるバナジウム及び硫黄の元素比と同一の比率とし得る。例えば、バナジウム硫化物1モルに対して、硫黄を1.2モル以上(特に1.2モル~17.0モル、更に3.0モル~13.0モル)が好ましい。
Regarding the mixing ratio of raw materials, the ratio of each element in the product is almost the same as the ratio of the raw materials, so it can be the same ratio as the elemental ratio of vanadium and sulfur in the target vanadium sulfide. For example, sulfur is preferably 1.2 mol or more (especially 1.2 mol to 17.0 mol, more preferably 3.0 mol to 13.0 mol) per 1 mol of vanadium sulfide.
メカニカルミリング処理を行う際の温度については、特に制限はなく、硫黄が揮発しにくくするとともに、既報の結晶相が生成されにくくするため、300℃以下が好ましく、-10℃~200℃がより好ましい。
The temperature at which the mechanical milling is performed is not particularly limited, and is preferably 300° C. or less, more preferably -10° C. to 200° C., in order to make it difficult for sulfur to volatilize and to make it difficult to generate the previously reported crystal phase. .
メカニカルミリング処理の時間については、特に限定はなく、目的のバナジウム硫化物が析出した状態となるまで任意の時間メカニカルミリング処理を行うことができる。
The time of the mechanical milling treatment is not particularly limited, and the mechanical milling treatment can be performed for an arbitrary time until the desired vanadium sulfide precipitates.
なお、メカニカルミリング処理を行う際の雰囲気については、特に制限はないが、窒素ガス雰囲気、アルゴンガス雰囲気等の不活性ガス雰囲気等を採用できる。
Although there are no particular restrictions on the atmosphere in which the mechanical milling process is performed, an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere can be used.
例えば、メカニカルミリング処理は、0.1時間~100時間(特に15時間~80時間)の処理時間の範囲内において行うことができる。なお、このメカニカルミリング処理は、必要に応じて途中に休止を挟みながら複数回に分けて行うこともできる。
For example, mechanical milling can be performed within the processing time range of 0.1 hours to 100 hours (especially 15 hours to 80 hours). It should be noted that this mechanical milling process can also be performed by dividing it into a plurality of times with intervening breaks on the way, if necessary.
なお、メカニカルミリング処理を複数回繰り返す場合は、各工程のメカニカルミリング処理において、上記条件とすることができる。
When the mechanical milling process is repeated multiple times, the above conditions can be applied to the mechanical milling process in each step.
上記したメカニカルミリング処理により、目的とするバナジウム硫化物を微粉末として得ることができる。
The target vanadium sulfide can be obtained as a fine powder by the mechanical milling treatment described above.
(1-2)有機溶媒
本発明の非水二次電池用電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 (1-2) Organic solvent The electrolytic solution for non-aqueous secondary batteries of the present invention is
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
本発明の非水二次電池用電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 (1-2) Organic solvent The electrolytic solution for non-aqueous secondary batteries of the present invention is
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
上記のとおり、本発明の非水二次電池用電解液は、正極活物質としてリチウム非含有遷移金属硫化物を使用する非水二次電池に用いられる非水二次電池用電解液である。このように、本発明では、リチウム非含有遷移金属硫化物を使用する非水二次電池に使用するにもかかわらず、後述の添加剤を添加することにより、カーボネート化合物とリチウム非含有遷移金属硫化物との反応を抑制し、充放電サイクル特性を劇的に向上させることが可能である。
As described above, the electrolyte solution for non-aqueous secondary batteries of the present invention is an electrolyte solution for non-aqueous secondary batteries that uses a lithium-free transition metal sulfide as a positive electrode active material. As described above, in the present invention, although the lithium-free transition metal sulfide is used in a non-aqueous secondary battery using the lithium-free transition metal sulfide, by adding the additive described later, the carbonate compound and the lithium-free transition metal sulfide It is possible to suppress the reaction with substances and dramatically improve the charge-discharge cycle characteristics.
カーボネート化合物
カーボネート化合物としては、リチウムイオン二次電池の電解液において有機溶媒として使用し得るものであれば特に制限はなく、例えば、鎖状カーボネート化合物として、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等が挙げられる。環状カーボネート化合物として、プロピレンカーボネート(PC)等が挙げられる。これらのカーボネート化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。 Carbonate compound The carbonate compound is not particularly limited as long as it can be used as an organic solvent in the electrolyte of a lithium ion secondary battery. , ethyl methyl carbonate (EMC), and the like. Cyclic carbonate compounds include propylene carbonate (PC) and the like. These carbonate compounds can be used alone or in combination of two or more.
カーボネート化合物としては、リチウムイオン二次電池の電解液において有機溶媒として使用し得るものであれば特に制限はなく、例えば、鎖状カーボネート化合物として、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等が挙げられる。環状カーボネート化合物として、プロピレンカーボネート(PC)等が挙げられる。これらのカーボネート化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。 Carbonate compound The carbonate compound is not particularly limited as long as it can be used as an organic solvent in the electrolyte of a lithium ion secondary battery. , ethyl methyl carbonate (EMC), and the like. Cyclic carbonate compounds include propylene carbonate (PC) and the like. These carbonate compounds can be used alone or in combination of two or more.
本発明においては、カーボネート化合物は、好ましくは、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、及びプロピレンカーボネート(PC)から成る群から選ばれる少なくとも1種である。
In the present invention, the carbonate compound is preferably at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), and propylene carbonate (PC).
本発明においては、非水二次電池用電解液を構成する有機溶媒は、上記したカーボネート化合物のみからなる構成とすることもできるし、これら以外に、リチウムイオン二次電池の電解液において有機溶媒として知られている化合物を含ませることも可能である。
In the present invention, the organic solvent constituting the electrolytic solution for non-aqueous secondary batteries may be composed of only the above-described carbonate compound. It is also possible to include compounds known as
このような第三成分としての有機溶媒としては、例えば、γ-ブチロラクトン等の環状カルボン酸エステル化合物;酢酸メチル、プロピオン酸メチル、酢酸エチル等の鎖状カルボン酸エステル化合物;スルホラン、ジエチルスルホン等のスルホン化合物;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,2-ジメトキシエタン等のエーテル化合物等が挙げられる。これらの第三成分としての有機溶媒は、単独で用いることもでき、2種以上を組合せて用いることもできる。
Examples of such an organic solvent as the third component include cyclic carboxylic acid ester compounds such as γ-butyrolactone; chain carboxylic acid ester compounds such as methyl acetate, methyl propionate and ethyl acetate; sulfone compounds; ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran, and 1,2-dimethoxyethane; These organic solvents as the third component can be used alone or in combination of two or more.
上記した第三成分としての有機溶媒を含む場合、当該第三成分としての有機溶媒の含有量は、充放電サイクル特性の観点から、有機溶媒の総量を100体積%として、0.1体積%~10体積%が好ましく、0.2体積%~5体積%がより好ましい。
When the organic solvent as the third component is included, the content of the organic solvent as the third component is 0.1% by volume to 10% by volume, with the total amount of the organic solvent being 100% by volume, from the viewpoint of charge-discharge cycle characteristics. %, more preferably 0.2% to 5% by volume.
(1-3)添加剤
本発明の非水二次電池用電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 (1-3) Additives The electrolytic solution for non-aqueous secondary batteries of the present invention contains:
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
本発明の非水二次電池用電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 (1-3) Additives The electrolytic solution for non-aqueous secondary batteries of the present invention contains:
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
上記のとおり、本発明の非水二次電池用電解液においては、添加剤を含有することにより、カーボネート化合物とリチウム非含有遷移金属硫化物との反応を抑制し、充放電サイクル特性を劇的に向上させることが可能である。
As described above, the electrolytic solution for a non-aqueous secondary battery of the present invention contains an additive to suppress the reaction between the carbonate compound and the lithium-free transition metal sulfide, thereby dramatically improving the charge-discharge cycle characteristics. can be improved to
このような添加剤としては、カーボネート化合物とリチウム非含有遷移金属硫化物との反応を抑制しやすく、充放電サイクル特性を向上させやすい観点から、前記添加剤は、ビニレンカーボネート(VC)、又はフルオロエチレンカーボネート(FEC)が望ましい。
Such additives are vinylene carbonate (VC), or fluoro Ethylene carbonate (FEC) is preferred.
これらの添加剤は、単独で使用することもできるし、2種以上を組合せて用いることもできる。添加剤を2種以上組合せて用いることで、添加剤の含有量を多くしても充放電サイクル特性を向上させることが可能である。
These additives can be used alone or in combination of two or more. By using a combination of two or more additives, it is possible to improve charge-discharge cycle characteristics even when the additive content is increased.
本は発明において、添加剤は、好ましくは、ビニレンカーボネート(VC)、及びフルオロエチレンカーボネート(FEC)から成る群から選ばれる少なくとも1種である。
In the present invention, the additive is preferably at least one selected from the group consisting of vinylene carbonate (VC) and fluoroethylene carbonate (FEC).
上記した添加剤の含有量は、充放電容量、充放電サイクル特性、エネルギー密度等の観点から、有機溶媒100質量部に対して、2.5質量部~20.0質量部が好ましく、2.5質量部~15.0質量部がより好ましく、2.5質量部~10.0質量部がさらに好ましい。なお、添加剤を1種のみ使用する場合であっても、フルオロエチレンカーボネート(FEC)、トリフルオロメチルエチレンカーボネート、ビニルエチレンカーボネート等を1種のみ使用する場合は、添加料を多くしたほうが充放電サイクル特性を向上させやすいため、有機溶媒100質量部に対して、2.5質量部~10.0質量部が好ましい。また、添加剤を2種以上使用する場合は、含有量を多くしても充放電サイクル特性を向上させやすく、エネルギー密度も向上させやすいため、添加剤の合計含有量は、有機溶媒100質量部に対して、2.5質量部~20.0質量部が好ましく、2.5質量部~15.0質量部がより好ましく、5.0質量部~10.0質量部がさらに好ましい。
From the viewpoint of charge/discharge capacity, charge/discharge cycle characteristics, energy density, etc., the content of the above additives is preferably 2.5 parts by mass to 20.0 parts by mass, and 2.5 parts by mass to 15.0 parts by mass with respect to 100 parts by mass of the organic solvent. parts is more preferred, and 2.5 to 10.0 parts by mass is even more preferred. Even if only one type of additive is used, if only one type such as fluoroethylene carbonate (FEC), trifluoromethylethylene carbonate, vinylethylene carbonate, etc. is used, it is better to charge and discharge with more additives. The amount is preferably 2.5 parts by mass to 10.0 parts by mass with respect to 100 parts by mass of the organic solvent, since it is easy to improve cycle characteristics. In addition, when using two or more additives, even if the content is increased, it is easy to improve the charge-discharge cycle characteristics and the energy density, so the total content of the additives is 100 parts by mass of the organic solvent. 2.5 parts by mass to 20.0 parts by mass is preferable, 2.5 parts by mass to 15.0 parts by mass is more preferable, and 5.0 parts by mass to 10.0 parts by mass is even more preferable.
(1-4)リチウム塩
本発明の非水二次電池用電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 (1-4) Lithium salt The electrolyte for non-aqueous secondary batteries of the present invention is
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
本発明の非水二次電池用電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 (1-4) Lithium salt The electrolyte for non-aqueous secondary batteries of the present invention is
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
本発明の非水二次電池用電解液は、更に、リチウム塩として、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI:Li(CF3SO2)2N)含む。このリチウム塩は、スルホニル基(パーフルオロアルカンスルホニル基)を有する有機リチウム塩である。リチウム塩として、LiTFSIを用いることにより、より高電圧での充電に耐え、充放電サイクル特性をより向上させることができる。
The electrolytic solution for non-aqueous secondary batteries of the present invention further contains lithium bis(trifluoromethanesulfonyl)imide (LiTFSI: Li(CF 3 SO 2 ) 2 N) as a lithium salt. This lithium salt is an organic lithium salt having a sulfonyl group (perfluoroalkanesulfonyl group). By using LiTFSI as the lithium salt, it is possible to endure charging at a higher voltage and further improve charge-discharge cycle characteristics.
その他、スルホニル基を有する有機リチウム塩としては、従来から非水二次電池用電解液に使用されるものであれば特に制限されず、例えば、パーフルオロアルカンスルホニル基を有する有機リチウム塩(リチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(C2F5SO2)2N等)等が挙げられる。これらのスルホニル基を有する有機リチウム塩は、単独で用いてもよいし、2種以上を組合せて用いてもよい。
In addition, the organic lithium salt having a sulfonyl group is not particularly limited as long as it is conventionally used in electrolyte solutions for non-aqueous secondary batteries. (Pentafluoroethanesulfonyl) imide (Li(C 2 F 5 SO 2 ) 2 N, etc.), etc. These organic lithium salts having a sulfonyl group may be used singly or in combination of two or more. may be used.
上記した充放電サイクル特性の観点からは、リチウム塩は、無機リチウム塩(LiPF6、LiBF4等)ではなく、スルホニル基を有する有機リチウム塩が好ましい。
From the viewpoint of the charge-discharge cycle characteristics described above, the lithium salt is preferably an organic lithium salt having a sulfonyl group rather than an inorganic lithium salt ( LiPF6 , LiBF4 , etc.).
その他、ホウ素原子を有する有機リチウム塩を添加しても良い。充放電サイクル特性の観点からは、リチウム塩は、ホウ素原子を有する有機リチウム塩が好ましい。
In addition, an organic lithium salt having boron atoms may be added. From the viewpoint of charge-discharge cycle characteristics, the lithium salt is preferably an organic lithium salt having a boron atom.
本発明の非水二次電池は、正極活物質としてリチウム非含有金属硫化物を使用しているため、硫黄との反応性による充放電サイクル特性への影響を考慮する。
Since the non-aqueous secondary battery of the present invention uses a lithium-free metal sulfide as a positive electrode active material, the influence of reactivity with sulfur on charge-discharge cycle characteristics is taken into consideration.
上記したリチウム塩としては、リチウム塩として、LiTFSIを用いることにより、充放電サイクル特性が良好である。
By using LiTFSI as the lithium salt, the charge-discharge cycle characteristics are good.
本発明の非水二次電池用電解液において、充放電サイクル特性や内部抵抗の観点から、上記したリチウム塩の濃度は、鎖状系カーボネートに対してモル比で2倍~4倍が好ましく、2倍~3倍がより好ましい。
In the non-aqueous secondary battery electrolyte solution of the present invention, the concentration of the lithium salt described above is preferably 2 to 4 times the molar ratio of the chain carbonate from the viewpoint of charge-discharge cycle characteristics and internal resistance. 2 to 3 times is more preferable.
本発明において、好ましくは、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)の含有量に対して、リン酸エステル(好ましくは、リン酸トリメチル(TMP))の含有量は、モル比で0.25倍~1.0倍である。
In the present invention, the content of phosphate ester (preferably trimethyl phosphate (TMP)) is preferably 0.25 times to the content of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in terms of molar ratio. 1.0 times.
(1-5)リン酸エステル化合物
本発明の非水二次電池用電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 (1-5) Phosphate ester compound The electrolytic solution for non-aqueous secondary batteries of the present invention comprises
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
本発明の非水二次電池用電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する。 (1-5) Phosphate ester compound The electrolytic solution for non-aqueous secondary batteries of the present invention comprises
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
and additives.
本発明において、リン酸エステル化合物は、好ましくは、リン酸トリメチル(TMP)、リン酸トリエチル(TEP)、及びリン酸トリス(2,2,2-トリフルオロエチル)(TFEP)から成る群から選ばれる少なくとも1種である。
In the present invention, the phosphate ester compound is preferably selected from the group consisting of trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2,2,2-trifluoroethyl) phosphate (TFEP). at least one
本発明において、好ましくは、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)の含有量に対して、リン酸エステル(好ましくは、リン酸トリメチル(TMP))の含有量は、モル比で0.25倍~1.0倍である。
In the present invention, the content of phosphate ester (preferably trimethyl phosphate (TMP)) is preferably 0.25 times to the content of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in terms of molar ratio. 1.0 times.
本発明において、カーボネート化合物を含む有機溶媒に、リン酸エステル化合物と、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、添加剤とを含有することで、リチウム非含有遷移金属硫化物を正極活物質として使用した非水二次電池において、充放電サイクル特性を向上させることができる。
In the present invention, a phosphate compound, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and an additive are contained in an organic solvent containing a carbonate compound so that a lithium-free transition metal sulfide can be used as a positive electrode active material. In the non-aqueous secondary battery used as the substance, charge-discharge cycle characteristics can be improved.
(1-6)その他
本発明の非水二次電池用電解液においては、本発明の効果を損なわない範囲(例えば、0.01mol/L~0.2mol/L、特に0.02mol/L~0.1mol/L)であれば、上記以外の成分、例えば他の添加剤を含ませることもできる。 (1-6) Others In the electrolytic solution for non-aqueous secondary batteries of the present invention, the range that does not impair the effects of the present invention (for example, 0.01 mol / L to 0.2 mol / L, particularly 0.02 mol / L to 0.1 mol / In the case of L), components other than those mentioned above, such as other additives, can also be included.
本発明の非水二次電池用電解液においては、本発明の効果を損なわない範囲(例えば、0.01mol/L~0.2mol/L、特に0.02mol/L~0.1mol/L)であれば、上記以外の成分、例えば他の添加剤を含ませることもできる。 (1-6) Others In the electrolytic solution for non-aqueous secondary batteries of the present invention, the range that does not impair the effects of the present invention (for example, 0.01 mol / L to 0.2 mol / L, particularly 0.02 mol / L to 0.1 mol / In the case of L), components other than those mentioned above, such as other additives, can also be included.
このような他の添加剤としては、例えば、テトラブチルアンモニウムヘキサフルオロフォスファート、テトラブチルアンモニウムパークロレート、テトラメチルアンモニウムテトラフルオロボレート、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラブチルアンモニウム、ビフェニル、トリアルキルホスファート(トリメチルホスファート等)等が挙げられる。これらの他の添加剤は、単独で用いてもよいし、2種以上を組合せて用いてもよい。
Such other additives include, for example, tetrabutylammonium hexafluorophosphate, tetrabutylammonium perchlorate, tetramethylammonium tetrafluoroborate, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, tetrabromide methylammonium, tetraethylammonium bromide, tetrabutylammonium bromide, biphenyl, trialkyl phosphate (trimethyl phosphate etc.) and the like. These other additives may be used alone or in combination of two or more.
2.非水二次電池
本発明の非水二次電池は、上記した非水二次電池用電解液を備える。その他の構成及び構造については、従来から知られている非水二次電池で採用されている構成及び構造を適用し得る。通常は、本発明の非水二次電池は、上記の非水二次電池用電解液の他、正極、負極及びセパレータを備え得る。 2. Non-Aqueous Secondary Battery The non-aqueous secondary battery of the present invention comprises the above electrolyte for non-aqueous secondary batteries. For other configurations and structures, configurations and structures employed in conventionally known non-aqueous secondary batteries can be applied. Generally, the non-aqueous secondary battery of the present invention can comprise a positive electrode, a negative electrode and a separator in addition to the electrolyte for non-aqueous secondary batteries.
本発明の非水二次電池は、上記した非水二次電池用電解液を備える。その他の構成及び構造については、従来から知られている非水二次電池で採用されている構成及び構造を適用し得る。通常は、本発明の非水二次電池は、上記の非水二次電池用電解液の他、正極、負極及びセパレータを備え得る。 2. Non-Aqueous Secondary Battery The non-aqueous secondary battery of the present invention comprises the above electrolyte for non-aqueous secondary batteries. For other configurations and structures, configurations and structures employed in conventionally known non-aqueous secondary batteries can be applied. Generally, the non-aqueous secondary battery of the present invention can comprise a positive electrode, a negative electrode and a separator in addition to the electrolyte for non-aqueous secondary batteries.
(2-1)正極
正極としては、正極活物質、結着剤等を含有する正極合剤層を、正極集電体の片面又は両面に形成した構成を採用し得る。 (2-1) Positive Electrode As the positive electrode, a configuration in which a positive electrode mixture layer containing a positive electrode active material, a binder, etc. is formed on one or both sides of a positive electrode current collector can be adopted.
正極としては、正極活物質、結着剤等を含有する正極合剤層を、正極集電体の片面又は両面に形成した構成を採用し得る。 (2-1) Positive Electrode As the positive electrode, a configuration in which a positive electrode mixture layer containing a positive electrode active material, a binder, etc. is formed on one or both sides of a positive electrode current collector can be adopted.
この正極合剤層は、正極活物質と必要に応じて添加される導電助剤に結着剤を加え、これを有機溶剤に分散させて正極合剤層形成用ペーストを調製し(この場合、結着剤はあらかじめ有機溶剤に溶解又は分散させておいてもよい)、金属箔等からなる正極集電体の表面(片面又は両面)に塗布し、乾燥して正極合剤層を形成し、必要に応じて加工する工程を経て製造することができる。
This positive electrode mixture layer is prepared by adding a binder to a positive electrode active material and a conductive aid added as necessary, and dispersing this in an organic solvent to prepare a positive electrode mixture layer forming paste (in this case, The binder may be dissolved or dispersed in an organic solvent in advance), applied to the surface (one side or both sides) of a positive electrode current collector made of metal foil or the like, and dried to form a positive electrode mixture layer, It can be manufactured through a process of processing as necessary.
正極活物質としては、上記したリチウム非含有金属硫化物を採用する。リチウム非含有金属硫化物の詳細については、上記説明したものを踏襲する。
The above lithium-free metal sulfide is used as the positive electrode active material. The details of the lithium-free metal sulfide follow those explained above.
導電助剤としては、通常の非水二次電池と同様に、黒鉛;カーボンブラック(アセチレンブラック、ケッチェンブラック等);表面に非晶質炭素を生成させた炭素材料等の非晶質炭素材料;繊維状炭素(気相成長炭素繊維、ピッチを紡糸した後に炭化処理して得られる炭素繊維等);カーボンナノチューブ(各種の多層又は単層のカーボンナノチューブ)等を用いることができる。正極の導電助剤としては、単独で用いてもよいし、2種以上を組合せて用いてもよい。
As a conductive aid, graphite; carbon black (acetylene black, ketjen black, etc.); amorphous carbon materials such as carbon materials with amorphous carbon generated on the surface, as in ordinary non-aqueous secondary batteries. fibrous carbon (vapor-grown carbon fiber, carbon fiber obtained by carbonizing pitch after spinning, etc.); carbon nanotube (various multilayer or single-wall carbon nanotubes); As the conductive aid for the positive electrode, one may be used alone, or two or more may be used in combination.
結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリアクリル酸、スチレンブタジエンゴム、ポリイミド、ポリビニルアルコール、水溶性カルボキシメチルセルロース等が挙げられる。
Examples of binders include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, styrene-butadiene rubber, polyimide, polyvinyl alcohol, and water-soluble carboxymethylcellulose.
正極合剤を製造する際に使用する有機溶媒としては、特に制限はなく、N-メチルピロリドン(NMP)等が挙げられ、これと正極活物質、結着剤等を用いてペースト状とすることができる。
The organic solvent used in producing the positive electrode mixture is not particularly limited, and examples thereof include N-methylpyrrolidone (NMP). can be done.
正極合剤層の組成については、例えば、上記の正極活物質が70重量%~95重量%程度、結着剤が1重量%~30重量%程度であることが好ましい。また、導電助剤を使用する場合には、上記の正極活物質が50重量%~90重量%程度、結着剤が1重量%~20重量%程度、導電助剤が1重量%~40重量%程度であることが好ましい。
Regarding the composition of the positive electrode mixture layer, for example, it is preferable that the positive electrode active material is about 70% to 95% by weight and the binder is about 1% to 30% by weight. In addition, when using a conductive aid, the positive electrode active material is about 50% to 90% by weight, the binder is about 1% to 20% by weight, and the conductive aid is 1% to 40% by weight. % is preferable.
正極合剤層の厚みは、集電体の片面あたり、1μm~100μm程度であることが好ましい。
The thickness of the positive electrode mixture layer is preferably about 1 μm to 100 μm per side of the current collector.
正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン又はこれらの合金からなる箔、パンチドメタル、エキスパンドメタル、網等を用いることができ、通常、厚みが10μm~30μm程度のアルミニウム箔が好適に用いられる。
As the positive electrode current collector, for example, aluminum foil, stainless steel, nickel, titanium or alloys thereof, punched metal, expanded metal, mesh, etc. can be used. Foil is preferably used.
(2-2)負極
負極としては、負極活物質、結着剤等を含有する負極合剤層を、負極集電体の片面又は両面に形成した構成を採用し得る。 (2-2) Negative Electrode As the negative electrode, a structure in which a negative electrode mixture layer containing a negative electrode active material, a binder, etc. is formed on one or both sides of a negative electrode current collector can be adopted.
負極としては、負極活物質、結着剤等を含有する負極合剤層を、負極集電体の片面又は両面に形成した構成を採用し得る。 (2-2) Negative Electrode As the negative electrode, a structure in which a negative electrode mixture layer containing a negative electrode active material, a binder, etc. is formed on one or both sides of a negative electrode current collector can be adopted.
この負極合剤層は、負極活物質と必要に応じて添加される導電助剤に結着剤を混合してシート状に成形し、これを金属箔等からなる負極集電体の表面(片面又は両面)に圧着する工程を経て製造することができる。
This negative electrode mixture layer is formed by mixing a binder with a negative electrode active material and a conductive aid that is added as necessary and forming it into a sheet, which is formed on the surface (one side) of a negative electrode current collector made of a metal foil or the like. or both sides).
負極活物質としては、特に制限されず、例えば、黒鉛(天然黒鉛、人造黒鉛等)、難焼結性炭素、リチウム金属、スズやシリコン及びこれらを含む合金、SiO等を用いることができる。好ましくは、金属リチウム一次電池及び金属リチウム二次電池ではリチウム金属、リチウム合金等を用いることができ、リチウムイオン二次電池では、リチウムイオンをドープ・脱ドープ可能な材料(黒鉛(天然黒鉛、人造黒鉛等)、難焼結性炭素等)等を活物質として用いることができる。これら負極活物質は、単独で用いてもよいし、2種以上を組合せて用いてもよい。
The negative electrode active material is not particularly limited, and for example, graphite (natural graphite, artificial graphite, etc.), difficult-to-sinter carbon, lithium metal, tin, silicon, alloys containing these, SiO, etc. can be used. Preferably, lithium metal, lithium alloys, etc. can be used for metallic lithium primary batteries and metallic lithium secondary batteries, and materials capable of doping and dedoping lithium ions (graphite (natural graphite, artificial graphite, etc.), difficult-to-sinter carbon, etc.), etc. can be used as the active material. These negative electrode active materials may be used alone or in combination of two or more.
導電助剤としては、通常の非水二次電池と同様に、黒鉛;カーボンブラック(アセチレンブラック、ケッチェンブラック等);表面に非晶質炭素を生成させた炭素材料等の非晶質炭素材料;繊維状炭素(気相成長炭素繊維、ピッチを紡糸した後に炭化処理して得られる炭素繊維等);カーボンナノチューブ(各種の多層又は単層のカーボンナノチューブ)等を用いることができる。負極の導電助剤としては、単独で用いてもよいし、2種以上を組合せて用いてもよいし、負極活物質の導電性が高い場合は用いなくてもよい。
As a conductive aid, graphite; carbon black (acetylene black, ketjen black, etc.); amorphous carbon materials such as carbon materials with amorphous carbon generated on the surface, as in ordinary non-aqueous secondary batteries. fibrous carbon (vapor-grown carbon fiber, carbon fiber obtained by carbonizing pitch after spinning, etc.); carbon nanotube (various multilayer or single-wall carbon nanotubes); As the conductive aid for the negative electrode, it may be used alone, or two or more of them may be used in combination. If the negative electrode active material has high conductivity, it may not be used.
結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリアクリル酸、スチレンブタジエンゴム、ポリイミド、ポリビニルアルコール、水溶性カルボキシメチルセルロース等が挙げられる。
Examples of binders include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, styrene-butadiene rubber, polyimide, polyvinyl alcohol, and water-soluble carboxymethylcellulose.
負極合剤層の組成については、例えば、上記の負極活物質が70重量%~95重量%程度、結着剤が1重量%~30重量%程度であることが好ましい。また、導電助剤を使用する場合には、上記の負極活物質が50重量%~90重量%程度、結着剤が1重量%~20重量%程度、導電助剤が1重量%~40重量%程度であることが好ましい。
Regarding the composition of the negative electrode mixture layer, for example, it is preferable that the negative electrode active material is about 70% to 95% by weight and the binder is about 1% to 30% by weight. In addition, when using a conductive aid, the negative electrode active material is about 50% to 90% by weight, the binder is about 1% to 20% by weight, and the conductive aid is 1% to 40% by weight. % is preferred.
負極合剤層の厚みは、集電体の片面あたり、1μm~100μm程度であることが好ましい。
The thickness of the negative electrode mixture layer is preferably about 1 μm to 100 μm per side of the current collector.
負極集電体としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル、チタン又はこれらの合金からなる箔、パンチドメタル、エキスパンドメタル、メッシュ、網等を用いることができ、通常、厚みが5μm~30μm程度の銅箔が好適に用いられる。
As the negative electrode current collector, for example, a foil, punched metal, expanded metal, mesh, mesh, etc. made of aluminum, copper, stainless steel, nickel, titanium, or alloys thereof can be used, and the thickness is usually 5 μm to 5 μm. A copper foil of about 30 μm is preferably used.
(2-3)セパレータ
上記した正極と負極は、例えば、セパレータを介在させつつ積層した積層電極体や、さらにこれを渦巻状に巻回した巻回電極体の形で用いることができる。 (2-3) Separator The positive electrode and the negative electrode described above can be used, for example, in the form of a laminated electrode body in which a separator is interposed and laminated, or in the form of a wound electrode body in which this is spirally wound.
上記した正極と負極は、例えば、セパレータを介在させつつ積層した積層電極体や、さらにこれを渦巻状に巻回した巻回電極体の形で用いることができる。 (2-3) Separator The positive electrode and the negative electrode described above can be used, for example, in the form of a laminated electrode body in which a separator is interposed and laminated, or in the form of a wound electrode body in which this is spirally wound.
セパレータとしては、強度が十分で且つ電解液を多く保持できるものがよく、そのような観点から、厚さが10μm~50μmで、開口率が30%~70%の、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等の一種又は複数を含む微多孔フィルムや不織布等が好ましい。
As the separator, it is preferable to use a separator that has sufficient strength and can hold a large amount of electrolytic solution. From this point of view, polyethylene, polypropylene, ethylene-propylene with a thickness of 10 μm to 50 μm and an aperture ratio of 30% to 70%. Microporous films, non-woven fabrics, etc. containing one or more copolymers are preferred.
また、本発明の非水二次電池の形態としては、ステンレススチール缶やアルミニウム缶等を外装缶として使用した筒形(角筒形や円筒形等)等を採用できる。また、金属箔と一体化したラミネートフィルムを外装体としたソフトパッケージ電池も採用し得る。
In addition, as the form of the non-aqueous secondary battery of the present invention, a cylindrical shape (square cylindrical shape, cylindrical shape, etc.) using a stainless steel can, an aluminum can, or the like as an outer can can be adopted. Also, a soft package battery in which a laminated film integrated with a metal foil is used as an outer package can be employed.
以下、実施例に基づいて本発明を詳細に説明するが、本発明は以下の実施例に限定されないことは言うまでもない。
Although the present invention will be described in detail below based on examples, it goes without saying that the present invention is not limited to the following examples.
合成例1:バナジウム硫化物(正極活物質)の合成
市販の硫化バナジウム(III)(V2S3:(株)高純度化学研究所製)及び硫黄(富士フイルム和光純薬(株)製)を、モル比が1:6となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、真空中にてガラス管内に封管を行った。 Synthesis Example 1: Synthesis of vanadium sulfide (positive electrode active material) Commercially available vanadium sulfide (III) (V 2 S 3 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) and sulfur (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were weighed in a glove box (dew point -80°C) in an argon gas atmosphere so that the molar ratio was 1:6, and sealed in a glass tube in vacuum.
市販の硫化バナジウム(III)(V2S3:(株)高純度化学研究所製)及び硫黄(富士フイルム和光純薬(株)製)を、モル比が1:6となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、真空中にてガラス管内に封管を行った。 Synthesis Example 1: Synthesis of vanadium sulfide (positive electrode active material) Commercially available vanadium sulfide (III) (V 2 S 3 : manufactured by Kojundo Chemical Laboratory Co., Ltd.) and sulfur (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were weighed in a glove box (dew point -80°C) in an argon gas atmosphere so that the molar ratio was 1:6, and sealed in a glass tube in vacuum.
真空封管した試料を管状炉にて400℃で5時間焼成を行った。焼成した試料を真空中にて200℃で8時間焼成することで、余剰硫黄を脱硫し、結晶性バナジウム硫化物VS4(c-VS4)を合成した。
The vacuum-sealed sample was sintered in a tubular furnace at 400°C for 5 hours. The calcined sample was calcined in vacuum at 200°C for 8 hours to desulfurize surplus sulfur and synthesize crystalline vanadium sulfide VS 4 (c-VS 4 ).
次に、得られた結晶性VS4(c-VS4)を、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で、ボールミル装置(フリッチュ製PL-7)で40時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、低結晶性バナジウム硫化物VS4(a-VS4)を合成し、正極活物質として使用した。
Next, the obtained crystalline VS 4 (c-VS 4 ) was mechanically milled (ball diameter of 4 mm and rotation speed of 270 rpm), a low-crystalline vanadium sulfide VS 4 (a-VS 4 ) was synthesized and used as a positive electrode active material.
得られたa-VS4については、粉末XRD測定から、極少量不純物であるV2O3の極小ピーク以外に明瞭なピークは観察されず、完全な非晶質体であることが分かった。
The powder XRD measurement of the obtained a-VS 4 showed no clear peaks other than the minimum peak of V 2 O 3 , which is an extremely small amount of impurity, and it was found to be completely amorphous.
合成例2:モリブデン硫化物(正極活物質)の合成
モリブデン硫化物は、既報(X. Wang, K. Du, C. Wang, L. Ma, B. Zhao, J. Yang, M. Li, X. Zhang, M. Xue, and J. Chen, ACS Appl. Mater. Interface, 9, 38606-38611 (2017).)に記述される手法に準じる手法で合成した。 Synthesis example 2: Synthesis of molybdenum sulfide (positive electrode active material) Zhang, M. Xue, and J. Chen, ACS Appl. Mater. Interface, 9, 38606-38611 (2017).).
モリブデン硫化物は、既報(X. Wang, K. Du, C. Wang, L. Ma, B. Zhao, J. Yang, M. Li, X. Zhang, M. Xue, and J. Chen, ACS Appl. Mater. Interface, 9, 38606-38611 (2017).)に記述される手法に準じる手法で合成した。 Synthesis example 2: Synthesis of molybdenum sulfide (positive electrode active material) Zhang, M. Xue, and J. Chen, ACS Appl. Mater. Interface, 9, 38606-38611 (2017).).
市販のモリブデン酸アンモニウム4水和物((NH4)6Mo7O24・4H2O:富士フイルム和光純薬(株)製)及び塩化ヒドロキシルアミン(NH2OH・HCl:富士フイルム和光純薬(株)製)を、重量比が4:3となるよう、メスフラスコに秤量し、硫化アンモニウム((NH4)2S:富士フイルム和光純薬(株)製)とイオン交換水の混合液を滴下した。その後、その混合液を50℃で1時間保持した後に、90℃で4時間保持して沈殿物を得た。
Commercially available ammonium molybdate tetrahydrate ((NH4) 6Mo7O24.4H2O : manufactured by FUJIFILM Wako Pure Chemical Industries , Ltd.) and hydroxylamine chloride ( NH2OH.HCl : FUJIFILM Wako Pure Chemical Industries , Ltd.) Co., Ltd.) was weighed into a volumetric flask so that the weight ratio was 4:3, and a mixture of ammonium sulfide ((NH 4 ) 2 S: Fuji Film Wako Pure Chemical Co., Ltd.) and ion-exchanged water was dripped. After that, the mixture was held at 50° C. for 1 hour and then at 90° C. for 4 hours to obtain a precipitate.
その沈殿物をろ過回収し、Arガス雰囲気下で12時間乾燥させた。乾燥後のサンプルをAr雰囲気の電気炉内で220℃・1時間加熱処理を行うことで、非晶質MoS5.7を合成した。
The precipitate was collected by filtration and dried under an Ar gas atmosphere for 12 hours. Amorphous MoS 5.7 was synthesized by heat-treating the dried sample at 220°C for 1 hour in an electric furnace in an Ar atmosphere.
略語の説明
EMC:エチルメチルカーボネート
TMP:リン酸トリメチル
LiTFSI:リチウムビス(トリフルオロメタンスルホニル)イミド
FEC:フルオロエチレンカーボネート
VC:ビニレンカーボネート
DEC:ジエチルカーボネート
PC:プロピレンカーボネート
DMC:ジメチルカーボネート Abbreviations EMC: Ethyl methyl carbonate TMP: Trimethyl phosphate LiTFSI: Lithium bis(trifluoromethanesulfonyl)imide FEC: Fluoroethylene carbonate VC: Vinylene carbonate DEC: Diethyl carbonate PC: Propylene carbonate DMC: Dimethyl carbonate
EMC:エチルメチルカーボネート
TMP:リン酸トリメチル
LiTFSI:リチウムビス(トリフルオロメタンスルホニル)イミド
FEC:フルオロエチレンカーボネート
VC:ビニレンカーボネート
DEC:ジエチルカーボネート
PC:プロピレンカーボネート
DMC:ジメチルカーボネート Abbreviations EMC: Ethyl methyl carbonate TMP: Trimethyl phosphate LiTFSI: Lithium bis(trifluoromethanesulfonyl)imide FEC: Fluoroethylene carbonate VC: Vinylene carbonate DEC: Diethyl carbonate PC: Propylene carbonate DMC: Dimethyl carbonate
実施例1:FEC10質量%/LiTFSI:TMP:EMC(1:TMP1:溶媒1モル比) EMC溶媒に、TMPとLiTFSIを濃度が(1:1:1モル比)となるように添加し、さらに、FECを混合電解液100質量部に対して10質量部添加し、実施例1の非水二次電池用電解液を得た。
Example 1: FEC 10% by mass/LiTFSI:TMP:EMC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:1:1 molar ratio), and further , 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 1.
実施例2:FEC10質量%/LiTFSI:TMP:EMC(1:TMP0.5:溶媒1.5モル比) EMC用媒に、TMPとLiTFSIを濃度が(1:0.5:1.5モル比)となるように添加し、さらに、FECを混合電解液100質量部に対して10質量部添加し、実施例2の非水二次電池用電解液を得た。
Example 2: FEC 10% by mass/LiTFSI:TMP:EMC (1:TMP0.5:solvent 1.5 molar ratio) TMP and LiTFSI were added to the EMC medium so that the concentration was (1:0.5:1.5 molar ratio). Further, 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 2.
実施例3:FEC10質量%/LiTFSI:TMP:EMC(1:TMP0.25:溶媒1.75モル比) EMC溶媒に、TMPとLiTFSIを濃度が(1:0.25:1.75モル比)となるように添加し、さらに、FECを混合電解液100質量部に対して10質量部添加し実施例3の非水二次電池用電解液を得た。
Example 3: FEC 10% by mass/LiTFSI:TMP:EMC (1:TMP 0.25:solvent 1.75 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:0.25:1.75 molar ratio). Further, 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 3.
実施例4:VC5質量%/LiTFSI:TMP:EMC(1:TMP0.5:溶媒1.5モル比) EMC溶媒に、TMPとLiTFSIを濃度が(1:0.5:1.5モル比)となるように添加し、さらに、VCを混合電解液100質量部に対して5質量部添加し実施例4の非水二次電池用電解液を得た。
Example 4: VC5% by mass/LiTFSI:TMP:EMC (1:TMP0.5:solvent 1.5 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:0.5:1.5 molar ratio). Further, 5 parts by mass of VC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 4.
実施例5:FEC10質量%/LiTFSI:TMP:DEC(1:TMP1:溶媒1モル比) DEC溶媒に、TMPとLiTFSIを濃度が(1:1:1モル比)となるように添加し、さらに、FECを混合電解液100質量部に対して10質量部添加し実施例5の非水二次電池用電解液を得た。
Example 5: FEC 10% by mass/LiTFSI:TMP:DEC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the DEC solvent so that the concentration was (1:1:1 molar ratio), and , 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 5.
実施例6:FEC10質量%/LiTFSI:TMP:PC(1:TMP1:溶媒1モル比) PC溶媒に、TMPとLiTFSIを濃度が(1:1:1モル比)となるように添加し、さらに、FECを混合電解液100質量部に対して10質量部添加し、実施例6の非水二次電池用電解液を得た。
Example 6: FEC 10% by mass/LiTFSI:TMP:PC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the PC solvent so that the concentration was (1:1:1 molar ratio), and , 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 6.
実施例7:FEC10質量%/LiTFSI:TMP:DMC(1:TMP1:溶媒1モル比) DMC溶媒に、TMPとLiTFSIを濃度が(1:1:1モル比)となるように添加し、さらに、FECを混合電解液100質量部に対して10質量部添加し、実施例7の非水二次電池用電解液を得た。
Example 7: FEC 10% by mass/LiTFSI:TMP:DMC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the DMC solvent so that the concentration was (1:1:1 molar ratio), and , 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 7.
実施例8:FEC10質量%/LiTFSI:TMP:EMC(1:TMP0.5:溶媒1.5モル比) EMC溶媒に、TMPとLiTFSIを濃度が(1:0.5:1.5モル比)となるように添加し、さらに、FECを混合電解液100質量部に対して10質量部添加し、実施例8の非水二次電池用電解液を得た。
Example 8: FEC 10% by mass/LiTFSI:TMP:EMC (1:TMP0.5:solvent 1.5 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:0.5:1.5 molar ratio). Further, 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte to obtain an electrolyte for a non-aqueous secondary battery of Example 8.
比較例1:添加剤なし/LiTFSI:TMP(1:TMP2:溶媒0モル比)
TMPにLiTFSIを濃度が(2:1モル比)となるように添加し、比較例1の非水二次電池用電解液を得た。 Comparative Example 1: No additive / LiTFSI: TMP (1: TMP2: 0 molar ratio of solvent)
LiTFSI was added to TMP at a concentration of (2:1 molar ratio) to obtain an electrolytic solution for a non-aqueous secondary battery of Comparative Example 1.
TMPにLiTFSIを濃度が(2:1モル比)となるように添加し、比較例1の非水二次電池用電解液を得た。 Comparative Example 1: No additive / LiTFSI: TMP (1: TMP2: 0 molar ratio of solvent)
LiTFSI was added to TMP at a concentration of (2:1 molar ratio) to obtain an electrolytic solution for a non-aqueous secondary battery of Comparative Example 1.
比較例2:FEC10質量%/LiTFSI:TMP(1:TMP2:溶媒0モル比) (溶媒にカーボネート化合物を含まない)
TMPにLiTFSIを濃度が(2:1モル比)となるように添加し、さらに、FECを混合電解液100質量部に対して10質量部添加し、比較例2の非水二次電池用電解液を得た。 Comparative Example 2: 10% by mass of FEC/LiTFSI:TMP (1:TMP2:0 molar ratio of solvent) (solvent does not contain a carbonate compound)
LiTFSI was added to TMP so that the concentration was (2:1 molar ratio), and 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte. I got the liquid.
TMPにLiTFSIを濃度が(2:1モル比)となるように添加し、さらに、FECを混合電解液100質量部に対して10質量部添加し、比較例2の非水二次電池用電解液を得た。 Comparative Example 2: 10% by mass of FEC/LiTFSI:TMP (1:TMP2:0 molar ratio of solvent) (solvent does not contain a carbonate compound)
LiTFSI was added to TMP so that the concentration was (2:1 molar ratio), and 10 parts by mass of FEC was added to 100 parts by mass of the mixed electrolyte. I got the liquid.
比較例3:添加剤なし/LiTFSI:TMP:EMC(1:TMP1::溶媒1モル比) EMC溶媒に、TMPとLiTFSIを濃度が(1:1:1モル比)となるように添加し、比較例3の非水二次電池用電解液を得た。
Comparative Example 3: No additive/LiTFSI:TMP:EMC (1:TMP1::solvent 1 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:1:1 molar ratio), An electrolytic solution for a non-aqueous secondary battery of Comparative Example 3 was obtained.
比較例4:添加剤なし/LiTFSI:TMP:DEC(1:TMP1:溶媒1モル比) DEC溶媒に、TMPとLiTFSIを濃度が(1:1:1モル比)となるように添加し、比較例4の非水二次電池用電解液を得た。
Comparative Example 4: No additive/LiTFSI:TMP:DEC (1:TMP1:solvent 1 molar ratio) TMP and LiTFSI were added to the DEC solvent so that the concentration was (1:1:1 molar ratio) and compared An electrolytic solution for a non-aqueous secondary battery of Example 4 was obtained.
比較例5:添加剤なし/LiTFSI:TMP:EMC(1:TMP0.5:溶媒1.5モル比) EMC溶媒に、TMPとLiTFSIを濃度が(1:0.5:1.5モル比)となるように添加し、比較例5の非水二次電池用電解液を得た。
Comparative Example 5: No additive/LiTFSI:TMP:EMC (1:TMP0.5:solvent 1.5 molar ratio) TMP and LiTFSI were added to the EMC solvent so that the concentration was (1:0.5:1.5 molar ratio). , an electrolytic solution for a non-aqueous secondary battery of Comparative Example 5 was obtained.
試験例1:充放電試験(100サイクル後)
実施例1~7、及び比較例1~4で得た非水二次電池用電解液に、合成例1で得たVS4粉末を正極活物質として用い、を用いた。 Test example 1: Charge/discharge test (after 100 cycles)
The VS4 powder obtained in Synthesis Example 1 was used as the positive electrode active material in the nonaqueous secondary battery electrolyte solutions obtained in Examples 1 to 7 and Comparative Examples 1 to 4 .
実施例1~7、及び比較例1~4で得た非水二次電池用電解液に、合成例1で得たVS4粉末を正極活物質として用い、を用いた。 Test example 1: Charge/discharge test (after 100 cycles)
The VS4 powder obtained in Synthesis Example 1 was used as the positive electrode active material in the nonaqueous secondary battery electrolyte solutions obtained in Examples 1 to 7 and Comparative Examples 1 to 4 .
実施例8、及び比較例5で得た非水二次電池用電解液に、合成例2で得たMoS5.7粉末を正極活物質として用いた。
The MoS5.7 powder obtained in Synthesis Example 2 was used as the positive electrode active material in the non-aqueous secondary battery electrolytes obtained in Example 8 and Comparative Example 5.
以下の方法で試験用電気化学セル(リチウム二次電池)を作製し、25℃において、充放電レート:0.1C(1C=747mAh/g)で、電圧2.6V~1.9Vの範囲内で、サイクル間の休止時間10分として、定電流充放電測定を100サイクル行った。
An electrochemical cell (lithium secondary battery) for testing was produced by the following method, and the charge/discharge rate was 0.1C (1C = 747mAh/g) at 25°C, and the voltage was within the range of 2.6V to 1.9V. Galvanostatic charge/discharge measurements were performed for 100 cycles with a rest time of 10 minutes.
試験用電気化学セルの作製方法としては、まず、作用極(正極)は、合成例1で得たVS4粉末10mgに対して、ケッチェンブラック1mg、及び結着材であるポリテトラフルオロエチレン(PTFE)1mgを加え、乳鉢で8分間混合した後、アルミニウムメッシュに張り付けることで作製した。
As a method for producing an electrochemical cell for testing, first, the working electrode (positive electrode) was prepared by adding 10 mg of VS4 powder obtained in Synthesis Example 1, 1 mg of Ketjenblack, and polytetrafluoroethylene ( 1 mg of PTFE) was added, mixed in a mortar for 8 minutes, and then attached to an aluminum mesh.
対極(負極)としてはリチウム金属を用いた。
Lithium metal was used as the counter electrode (negative electrode).
セパレータとしてはポリプロピレンを用いた。
Polypropylene was used as the separator.
充放電サイクル特性の結果(100サイクル時点での容量維持率)を表1に示す。
Table 1 shows the results of charge-discharge cycle characteristics (capacity retention rate at 100 cycles).
容量維持率はサイクル試験開始時(1サイクル目)の容量を100とした場合の、100サイクル後に計測された容量の割合であり、容量維持率が高いほど、電池としての寿命特性が優れていることを示す。
The capacity retention rate is the ratio of the capacity measured after 100 cycles when the capacity at the start of the cycle test (first cycle) is taken as 100. The higher the capacity retention rate, the better the life characteristics as a battery. indicates that
試験例2:内部抵抗評価(100サイクル後)
前記した、試験例1に記載の定電流充放電測定を100サイクル行った電気化学セルを用い、以下に示す手法で内部抵抗の評価を実施した。 Test example 2: Internal resistance evaluation (after 100 cycles)
Using the electrochemical cell subjected to 100 cycles of constant-current charge-discharge measurement described in Test Example 1, the internal resistance was evaluated by the method shown below.
前記した、試験例1に記載の定電流充放電測定を100サイクル行った電気化学セルを用い、以下に示す手法で内部抵抗の評価を実施した。 Test example 2: Internal resistance evaluation (after 100 cycles)
Using the electrochemical cell subjected to 100 cycles of constant-current charge-discharge measurement described in Test Example 1, the internal resistance was evaluated by the method shown below.
2.6Vに充電後、0.05Cで10秒の放電を行い、放電開始時の電圧と10秒放電後の電圧差を計測する。その後、0.05Cで2.6Vまで定電流充電を行った。10分間の休止後に、0.1Cで10秒間の放電を行い、同様に放電前後の電圧差を計測する。その後0.05Cで2.6Vまで定電流充電する。10分間の休止後に、0.2Cで10秒間の放電を行い、放電前後の電圧差を計測する。
After charging to 2.6V, discharge at 0.05C for 10 seconds, and measure the voltage difference between the voltage at the start of discharge and the voltage after 10 seconds of discharge. After that, constant current charging was performed at 0.05C to 2.6V. After resting for 10 minutes, discharge is performed at 0.1C for 10 seconds, and the voltage difference before and after the discharge is similarly measured. After that, it is charged at a constant current of 0.05C to 2.6V. After resting for 10 minutes, discharge at 0.2C for 10 seconds, and measure the voltage difference before and after the discharge.
放電時の電流と10秒後に計測された電圧差のグラフから算出された傾きを、100サイクル後の内部抵抗と定義した。
The slope calculated from the graph of the current during discharge and the voltage difference measured 10 seconds later was defined as the internal resistance after 100 cycles.
100サイクル後の内部抵抗特性の結果を表1に示す。
Table 1 shows the results of internal resistance characteristics after 100 cycles.
容量維持率については、特に閾値をもって判断するものではない。
The capacity maintenance rate is not determined based on a particular threshold.
VS4を活物質として用いた場合おいて、比較例1~4に対して、本発明の実施例1~7は、35%以上容量維持率が高い値を示す。本発明の実施例1~7は、エネルギー効率が高く、寿命特性に優れた電池システムを実現できることを示唆している。
When VS4 is used as an active material, Examples 1 to 7 of the present invention exhibit a higher capacity retention rate of 35% or more than Comparative Examples 1 to 4. Examples 1 to 7 of the present invention suggest that a battery system with high energy efficiency and excellent life characteristics can be realized.
MoS5.7を活物質として用いた場合においても、比較例5より、本発明を適用した実施例8は、比較例5の結果より38%以上容量維持率が高い値を示す。本発明を適用した実施例8は、エネルギー効率が高く、寿命特性に優れた電池システムを実現できることを示唆している。
Even when MoS5.7 is used as the active material, Example 8 to which the present invention is applied exhibits a value of capacity retention rate higher than that of Comparative Example 5 by 38% or more. Example 8 to which the present invention is applied suggests that a battery system with high energy efficiency and excellent life characteristics can be realized.
内部抵抗については、特に閾値をもって判断するものではない。
The internal resistance is not determined based on a particular threshold.
充放電サイクル前の段階にいて、VS4を活物質として用いた場合おいて、比較例1~4に対して、本発明の実施例1~7は、25%以上抵抗が低い。本発明の実施例1~7は、充電に供した電気エネルギーを抵抗発熱等で無駄に消耗されることがないため、エネルギー効率が高い電池システムを実現できることを示唆している。
When VS4 is used as the active material in the stage before the charge/discharge cycle, the resistance of Examples 1 to 7 of the present invention is 25% or more lower than that of Comparative Examples 1 to 4. Examples 1 to 7 of the present invention suggest that a battery system with high energy efficiency can be realized because electric energy used for charging is not wasted due to resistance heating or the like.
MoS5.7を活物質として用いた場合においても、比較例5で示す内部抵抗より、本発明を適用した実施例8は、40%以上抵抗が低い。本発明を適用した実施例8は、VS4を用いた場合と同様に、エネルギー効率が高い電池システムを実現できることを示唆している。
Even when MoS5.7 is used as the active material, the resistance of Example 8 to which the present invention is applied is 40% or more lower than the internal resistance shown in Comparative Example 5. Example 8 to which the present invention is applied suggests that a battery system with high energy efficiency can be realized as in the case of using VS4.
本発明の非水二次電池用電解液及びそれを用いた非水二次電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、携帯電話、電気自動車、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。
The electrolytic solution for non-aqueous secondary batteries of the present invention and non-aqueous secondary batteries using the same can be used for various known applications. Specific examples include laptop computers, mobile phones, electric vehicles, power sources for load leveling, and natural energy storage power sources.
Claims (9)
- 非水二次電池用電解液であって、
前記非水二次電池は、正極活物質としてリチウム非含有遷移金属硫化物を使用する非水二次電池であり、
前記電解液は、
カーボネート化合物を含む有機溶媒と、
リン酸エステル化合物と、
リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)と、
添加剤とを含有する、
非水二次電池用電解液。 An electrolytic solution for a non-aqueous secondary battery,
The non-aqueous secondary battery is a non-aqueous secondary battery using a lithium-free transition metal sulfide as a positive electrode active material,
The electrolytic solution is
an organic solvent containing a carbonate compound;
a phosphate ester compound;
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI);
containing an additive,
Electrolyte for non-aqueous secondary batteries. - 前記リン酸エステル化合物は、リン酸トリメチル(TMP)、リン酸トリエチル(TEP)、及びリン酸トリス(2,2,2-トリフルオロエチル)(TFEP)から成る群から選ばれる少なくとも1種である、請求項1に記載の非水二次電池用電解液。 The phosphate ester compound is at least one selected from the group consisting of trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2,2,2-trifluoroethyl) phosphate (TFEP). , the electrolytic solution for a non-aqueous secondary battery according to claim 1.
- 前記添加剤は、ビニレンカーボネート(VC)、及びフルオロエチレンカーボネート(FEC)から成る群から選ばれる少なくとも1種である、請求項1又は2に記載の非水二次電池用電解液。 3. The electrolytic solution for non-aqueous secondary batteries according to claim 1 or 2, wherein said additive is at least one selected from the group consisting of vinylene carbonate (VC) and fluoroethylene carbonate (FEC).
- 前記リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)の含有量に対して、前記リン酸エステル化合物の含有量は、モル比で0.25倍~1.0倍である、請求項1~3のいずれか1項に記載の非水二次電池用電解液。 4. The content of the phosphoric acid ester compound is 0.25 to 1.0 times the content of the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in molar ratio, according to any one of claims 1 to 3. Electrolyte solution for non-aqueous secondary batteries according to.
- 前記電解液の総量を100重量%として、前記添加剤の含有量は、5重量%~10重量%である、請求項1~4のいずれか1項に記載の非水二次電池用電解液。 5. The electrolytic solution for a non-aqueous secondary battery according to claim 1, wherein the content of said additive is 5% by weight to 10% by weight, with the total amount of said electrolytic solution being 100% by weight. .
- 前記カーボネート化合物は、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、及びプロピレンカーボネート(PC)から成る群から選ばれる少なくとも1種である、請求項1~5のいずれか1項に記載の非水二次電池用電解液。 Any one of claims 1 to 5, wherein the carbonate compound is at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and propylene carbonate (PC). 2. The electrolytic solution for non-aqueous secondary batteries according to item 1.
- 前記リチウム非含有遷移金属硫化物は、バナジウム硫化物、及びモリブデン硫化物から成る群から選ばれる少なくとも1種である、請求項1~6のいずれか1項に記載の非水二次電池用電解液。 The non-aqueous secondary battery electrolyte according to any one of claims 1 to 6, wherein the lithium-free transition metal sulfide is at least one selected from the group consisting of vanadium sulfide and molybdenum sulfide. liquid.
- 請求項1~7のいずれか1項に記載の非水二次電池用電解液を備える、非水二次電池。 A nonaqueous secondary battery comprising the electrolyte for nonaqueous secondary batteries according to any one of claims 1 to 7.
- リチウムイオン二次電池である、請求項8に記載の非水二次電池。 The nonaqueous secondary battery according to claim 8, which is a lithium ion secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023507176A JP7498535B2 (en) | 2021-03-19 | 2022-03-17 | Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021045374 | 2021-03-19 | ||
JP2021-045374 | 2021-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022196753A1 true WO2022196753A1 (en) | 2022-09-22 |
Family
ID=83321129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/012172 WO2022196753A1 (en) | 2021-03-19 | 2022-03-17 | Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7498535B2 (en) |
WO (1) | WO2022196753A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010030008A1 (en) * | 2008-09-11 | 2010-03-18 | 日本電気株式会社 | Secondary battery |
WO2018181698A1 (en) * | 2017-03-31 | 2018-10-04 | 国立研究開発法人産業技術総合研究所 | Low crystallinity vanadium sulfide |
JP2019175577A (en) * | 2018-03-27 | 2019-10-10 | 三井化学株式会社 | Nonaqueous electrolyte solution for battery and lithium secondary battery |
-
2022
- 2022-03-17 WO PCT/JP2022/012172 patent/WO2022196753A1/en active Application Filing
- 2022-03-17 JP JP2023507176A patent/JP7498535B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010030008A1 (en) * | 2008-09-11 | 2010-03-18 | 日本電気株式会社 | Secondary battery |
WO2018181698A1 (en) * | 2017-03-31 | 2018-10-04 | 国立研究開発法人産業技術総合研究所 | Low crystallinity vanadium sulfide |
JP2019175577A (en) * | 2018-03-27 | 2019-10-10 | 三井化学株式会社 | Nonaqueous electrolyte solution for battery and lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP7498535B2 (en) | 2024-06-12 |
JPWO2022196753A1 (en) | 2022-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102397826B1 (en) | Lithium secondary battery | |
EP2498323B1 (en) | Positive active material, and electrode and lithium battery containing the material | |
KR102397827B1 (en) | Lithium secondary battery | |
KR20160106537A (en) | Active material, nonaqueous electrolyte battery, and battery pack | |
JP6269475B2 (en) | Secondary battery | |
KR101440347B1 (en) | Anode Having Multi-Layer Structure for Secondary Battery and Lithium Secondary Battery Including The Same | |
KR20180125235A (en) | Anode for lithium secondary battery and lithium secondary battery comprising the same | |
US20150318541A1 (en) | High-capacity negative electrode active material and lithium secondary battery including the same | |
JP6897707B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2011117992A1 (en) | Active material for battery, and battery | |
WO2020003595A1 (en) | Nonaqueous electrolyte secondary battery | |
KR20150138813A (en) | Lithium secondary battery | |
US20130071749A1 (en) | Positive electrode active material production method, positive electrode, and storage device | |
US20230411692A1 (en) | Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery using same, and method for discharging nonaqueous secondary battery | |
EP3531484B1 (en) | Anode active material and preparation method therefor | |
JP2022076996A (en) | Electrolytic solution for non-aqueous secondary battery, and non-aqueous secondary battery using the same | |
US9397336B2 (en) | Battery active material comprising a crystal phase having a Ruddlesden-Popper structure and battery including the same | |
JP7498535B2 (en) | Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery using the same | |
JP7475753B2 (en) | Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery using the same | |
JP6658608B2 (en) | Positive electrode for non-aqueous electrolyte storage element, non-aqueous electrolyte storage element, and method for manufacturing positive electrode mixture paste | |
JP7492775B2 (en) | Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery | |
JP2003264006A (en) | Lithium ion secondary battery and charging method of lithium ion secondary battery | |
JP7428346B2 (en) | Lithium secondary battery and method for manufacturing lithium secondary battery | |
JP2013080664A (en) | Power storage device | |
JP2022076865A (en) | Electrolytic solution for non-aqueous secondary battery, and non-aqueous secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22771498 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023507176 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22771498 Country of ref document: EP Kind code of ref document: A1 |