WO2022196600A1 - Hyperthermia/dehydration predictive warning system and perspiration rate measuring device - Google Patents

Hyperthermia/dehydration predictive warning system and perspiration rate measuring device Download PDF

Info

Publication number
WO2022196600A1
WO2022196600A1 PCT/JP2022/011159 JP2022011159W WO2022196600A1 WO 2022196600 A1 WO2022196600 A1 WO 2022196600A1 JP 2022011159 W JP2022011159 W JP 2022011159W WO 2022196600 A1 WO2022196600 A1 WO 2022196600A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
thin wire
dehydration
transpiration rate
warning system
Prior art date
Application number
PCT/JP2022/011159
Other languages
French (fr)
Japanese (ja)
Inventor
仁 川喜多
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2023507076A priority Critical patent/JP7477932B2/en
Publication of WO2022196600A1 publication Critical patent/WO2022196600A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Definitions

  • the present invention relates to a heatstroke and dehydration warning system and a device for measuring transpiration rate.
  • Patent Document 1 can be cited.
  • the device of this document is equipped with a temperature and humidity sensor so that the amount of perspiration can be monitored.
  • the object of the present invention is to provide a low-cost, simple and timely warning system for signs of heatstroke and dehydration.
  • (Configuration 1) Transpiration rate measuring means for measuring the transpiration rate of transpiration water from the subject's hand, comparison means for comparing the transpiration rate with a predetermined reference value, and warning means for issuing a warning,
  • the comparison means compares the measured transpiration rate measured by the transpiration rate measuring means with the reference value, and the warning means issues a warning when the measured transpiration rate falls below the reference value. warning system.
  • (Configuration 2) The heat stroke and dehydration warning system according to Configuration 1, wherein the reference value is 0.006 mg/(cm 2 ⁇ min) or more and 600 mg/(cm 2 ⁇ min) or less.
  • composition 3 The heat treatment according to configuration 1, wherein the reference value is 1/4 of the average value of the measured transpiration rates obtained by measuring the transpiration rate a plurality of times in advance by the transpiration rate measuring means and without a change in body weight of the subject. disease, dehydration warning system.
  • Composition 4 Further comprising hand temperature measuring means for measuring hand temperature and reference value calibrating means for calibrating the reference value based on hand temperature, Simultaneously with the measurement of the measured transpiration rate, the temperature of the subject's hand is measured by the hand temperature measuring means, and the comparison means compares the reference value A by the reference value calibration means and the measured value of the measured transpiration rate, 4.
  • the heat stroke and dehydration warning system according to any one of configurations 1 to 3, wherein the warning means issues a warning when the measured transpiration rate falls below the reference value A.
  • Composition 5 Used in facilities with home appliances with touch switches, 5.
  • Composition 6 The transpiration rate measuring means includes a fine droplet detection unit in which a fine wire of a first metal and a fine wire of a second metal different from the first metal are arranged side by side on an insulating substrate; 6.
  • the heatstroke and dehydration warning system comprising a measurement unit that measures a galvanic current flowing between the metal thin wire and the second metal thin wire.
  • the transpiration rate measuring means is Having a specimen part that accommodates at least a part of the hand,
  • the sample unit is provided with a fine droplet detection unit in which a thin wire of a first metal and a thin wire of a second metal different from the first metal are arranged side by side on an insulating substrate, Further, a measurement unit placed inside, outside, or straddling both the inside and outside of the specimen unit and measuring a galvanic current flowing between the first metal thin wire and the second metal thin wire,
  • a heatstroke/dehydration warning system according to any one of configurations 1 to 6.
  • composition 8 The heat stroke and dehydration warning system according to configuration 7, wherein the first metal is selected from the group consisting of gold, platinum, silver, titanium and alloys thereof, and carbon.
  • Composition 9 Heatstroke according to configuration 7 or 8, wherein the second metal is selected from the group consisting of silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium and alloys thereof. , dehydration warning system.
  • Configuration 10 At least one of the thin wires of the first metal and the thin wires of the second metal is provided in plurality, and the thin wires of the first metal and the thin wires of the second metal are arranged in a direction facing each other toward the other side.
  • the heatstroke and dehydration warning system according to any one of configurations 7 to 9, which runs parallel to each other by extending.
  • Composition 11 Heat stroke and dehydration warning according to any one of configurations 7 to 10, wherein the distance between the first metal thin wire and the second metal thin wire is more than 1.0 ⁇ m and less than 10 ⁇ m. system.
  • Composition 12 A protective cap is formed on the upper surface of the first metal thin wire and the second metal thin wire to prevent contact between the hand and the first metal thin wire and the second metal thin wire.
  • the heatstroke and dehydration warning system according to any one of configurations 7 to 11.
  • Composition 13 13.
  • composition 14 Any one of configurations 7 to 12, wherein a protective mesh having gas permeable openings is disposed between the first metal thin wire and the second metal thin wire and the hand.
  • Composition 14 Any one of configurations 7 to 13, wherein the first metal thread and the second metal thread are spaced apart from contacting the hand above or laterally with respect to the hand.
  • Composition 15 15.
  • Composition 16 16.
  • thermoelectric and dehydration warning system according to any one of configurations 7 to 15, wherein an electrode for temperature measurement whose electric resistance changes with temperature is further arranged in the specimen section. (Composition 17) 17.
  • composition 18 Having a specimen part that accommodates at least a part of the hand,
  • the sample unit is provided with a fine droplet detection unit in which a thin wire of a first metal and a thin wire of a second metal different from the first metal are arranged side by side on an insulating substrate,
  • a protective cap is formed on the top surface of the first metal thin wire and the second metal thin wire to prevent contact between the hand and the first metal thin wire and the second metal thin wire,
  • a protective mesh having gas-permeable openings is arranged, Transpiration rate, having a measurement unit placed inside, outside, or straddling both the inside and outside of the specimen portion and measuring a galvanic current flowing between the first metal thin wire and the second metal thin wire.
  • composition 19 19. The transpiration rate measuring device according to configuration 18, wherein said first metal is selected from the group consisting of gold, platinum, silver, titanium and alloys thereof, and carbon.
  • Configuration 20 Transpiration rate according to configuration 18 or 19, wherein said second metal is selected from the group consisting of silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium and alloys thereof. measurement device.
  • Composition 21 At least one of the thin wires of the first metal and the thin wires of the second metal is provided in plurality, and the thin wires of the first metal and the thin wires of the second metal are arranged in a direction facing each other toward the other side. 21.
  • the transpiration rate measuring device according to any one of configurations 18 to 20, which runs parallel to each other by stretching.
  • Composition 22 22.
  • the transpiration rate measuring device according to any one of configurations 18 to 21, wherein the distance between the thin wire of the first metal and the thin wire of the second metal is more than 1.0 ⁇ m and less than 10 ⁇ m.
  • Composition 23 23.
  • the transpiration rate measuring device according to any one of configurations 18 to 22, wherein the volume of the specimen part is 0.05 cm 3 or more and 2.5 cm 3 or less.
  • Composition 24 24.
  • the transpiration rate measuring device according to any one of configurations 18 to 23, further comprising a temperature measuring electrode whose electrical resistance changes with temperature is arranged in the specimen part.
  • Composition 25 25.
  • the transpiration rate measurement device is shared with the first metal thin wire or the second metal thin wire.
  • a low-cost, simple, and timely warning system for signs of heat stroke and dehydration and a transpiration rate measurement device used as the core of the system are provided.
  • FIG. 1 is an explanatory diagram showing the configuration of a heat stroke and dehydration warning system of the present invention
  • FIG. 4 is an explanatory diagram showing the configuration of the transpiration rate measuring means of the system of the present invention
  • FIG. 3 is an explanatory diagram for explaining the configuration and operating principle of a microdroplet detecting section of the system of the present invention
  • FIG. 1 is an explanatory diagram for explaining the features of the micro droplet detection unit of the system of the present invention, (a) is a physical adsorption detection method (physical adsorption sensor), and (b) is a chemical adsorption used in a general humidity sensor.
  • FIG. 4 is a cross-sectional view of the main part showing the structure of the minute liquid droplet detection section of the system of the present invention
  • FIG. 4 is a cross-sectional view of the main part showing the structure of the minute liquid droplet detection section of the system of the present invention
  • FIG. 2 is a cross-sectional view of a main part showing the structure of the specimen section of the system of the present invention
  • FIG. 4 is an explanatory diagram showing an example of the relationship between dehydration symptoms and weight loss rate. It is a photograph which shows the device for transpiration rate measurement which was prototyped in the Example, (a) is a device single body, (b) is the state which put the finger on the container of the device.
  • FIG. 5 is a characteristic diagram showing the relationship between the output current and the volume of droplets straddling the fine metal wire;
  • FIG. 4 is a characteristic diagram showing the relationship between the steam rate and body weight change rate, and the relationship between the steam sweat rate and the risk of heat stroke obtained by linking the relationship between the body weight decrease rate and the symptoms of dehydration.
  • Embodiment 1 describes a heatstroke/dehydration warning system and a transpiration rate measuring device used therein according to the present invention.
  • a heatstroke/dehydration warning system 101 of the present invention has a transpiration rate measuring means 11, a comparing means 12 and a warning means 13, as shown in FIG.
  • the transpiration rate measuring means 11 is a means for measuring the transpiration rate of transpiration water from the subject's hand, and includes a sample section 21 and a measurement section 22 as shown in FIG. 2 which is a plan view.
  • the specimen unit 21 includes a container that accommodates at least a portion of a subject's hand, and a microdroplet detection unit 21a that detects microdroplets having a diameter conversion size of 100 nm or more and 20 ⁇ m or less.
  • a hand means each part of a finger, a palm, and a wrist, and the transpiration rate of the evaporated water from one or more parts is measured by the transpiration rate measuring means 11 . Therefore, the transpiration rate of evaporated water from any one of a single finger, a single palm, a single wrist, fingers and palms, palms and wrists, fingers, palms and wrists may be measured.
  • measurement with a finger is characterized by the fact that it is easy to reduce the size of the device used (device for transpiration rate measurement), it is simple and easy to handle, and it is easy to reduce costs.
  • the perspiration rate of transpiration water means the rate at which transpiration occurs (transpiration occurs) with respect to the transpiration of water from the hands.
  • the term steam rate is used.
  • the speed of generation of evaporated water means the speed at which water is evaporated (transpiration occurs) from the skin including the hands.
  • the device should contain the part of the hand to be measured, or have a structure that makes it difficult for evaporated water (steamed sweat) to escape from the part of the hand to be measured when it is placed in close contact with or close to the part of the hand to be measured.
  • a formed box-like shape or a cup-like shape on which a measurement site such as a finger can be placed instead of a lid is used.
  • the device has a small cavity (spatial capacity) during measurement so that the sweat rate can be measured in a short period of time within a range in which the hand to be measured does not touch the microdroplet detector 21a. Therefore, it is preferable that the volume of the sample portion, which is the space formed in the vessel during measurement, is 0.05 cm 3 or more and 2.5 cm 3 or less.
  • the minute droplet detection unit 21a detects moisture caused by sweat as minute droplets, that is, a sweat detection unit.
  • a configuration of a sensor section such as a droplet sensor or a humidity sensor can be adopted.
  • the microdroplet detection unit 21a is electrically connected to a measurement unit 22, which will be described later. It is configured to be able to measure the transpiration rate of water.
  • first fine metal wires (first fine metal wires) 23 are juxtaposed on an insulating substrate with a minute gap d.
  • the first thin metal wire 23 is electrically connected to a first electrode 24 as a collecting electrode
  • the second thin metal wire 25 is electrically connected to a second electrode 26 as a collecting electrode and bundled.
  • FIG. 3 shows the principle by which minute droplets can be detected by the minute droplet detector 21a of the galvanic current measurement method.
  • This principle is also described in Patent Document 2.
  • Moisture of evaporated water moisture due to perspiration
  • a droplet water droplet containing impurity ions from sweat
  • a galvanic current flows due to the electrochemical potential difference between the metals.
  • the rate of change in the galvanic current corresponds to the minute droplet formation rate, that is, the perspiration rate.
  • This correspondence relationship can be quantitatively understood by preparing a calibration curve in advance. Therefore, the perspiration rate is known by monitoring the rate of change of the galvanic current.
  • the rate of change of the galvanic current the first derivative of the galvanic output current, the reciprocal of the rise time up to the galvanic output current value set according to a certain standard, or the like can be used.
  • the method using the rise time is practically preferred because it is suitable for timely alarming in a short period of time. Speed is especially important because heat stroke and dehydration are life-threatening.
  • This perspiration rate measurement method is a physical adsorption detection method, which is different from the chemical adsorption detection method used in general humidity sensors. Moisture due to perspiration is detected by the above-mentioned physical adsorption detection method, that is, a detection unit provided with a first fine metal wire 23 and a second fine metal wire 25 arranged side by side on an insulating substrate with a minute distance d. As shown in Fig. 4(a), droplets can be adsorbed in layers on the sensor surface (micro droplet detection surface), so even under high humidity conditions, an accurate response can be obtained according to the amount of moisture. It has characteristics. On the other hand, in the chemisorption detection method, as shown in Fig.
  • Patent Document 3 As an example of a moisture sensitive sheet and a moisture sensitive system for measuring the amount of perspiration by a chemisorption detection method, Patent Document 3 can be mentioned.
  • At least one of the first thin metal wires 23 and the second thin metal wires 25 is provided in plural, and the first thin metal wires 23 and the second thin metal wires 25 are arranged from directions facing each other.
  • the area occupied by the microdroplet detection unit (steam sweat detection unit) 21a is suppressed.
  • the portion where both electrodes face each other closely can be lengthened.
  • the battery capacity can be increased, that is, the galvanic current that can be taken out can be increased.
  • An increase in the galvanic current is preferable because it improves the S/N in the sweat rate measurement.
  • the parallel running distance By arranging such thin metal wires parallel to each other, the length of the adjacent portion between the metal thin wires (hereinafter referred to as the parallel running distance) is increased.
  • the structure include a comb structure and a double spiral structure. be able to. Since the structure itself for maximizing the parallel running distance of two thin metal wires within a certain planar area is well known in the field of semiconductor devices and the like, such a structure may also be adopted as necessary.
  • "placing thin metal wires side by side on a substrate” does not specify the mutual orientation of a plurality of thin metal wires placed on the substrate, but the fine metal wires are spaced apart on the same plane of the substrate. It means to place
  • Examples of the material of the first fine metal wire 23 include gold (Au), platinum (Pt), silver (Ag), titanium (Ti) and alloys thereof when the first fine metal wire 23 is used as a cathode. Mention may be made of materials selected from the group of carbon (C).
  • examples of the material of the second metal fine wire 25 include silver (Ag), copper (Cu), iron (Fe), zinc (Zn), nickel (Ni), Mention may be made of materials selected from the group of Cobalt (Co), Aluminum (Al), Tin (Sn), Chromium (Cr), Molybdenum (Mo), Manganese (Mn), Magnesium (Mg) and alloys thereof.
  • the material of the second thin metal wire 25 is other than silver and its alloy.
  • the output depends on the material combination of the thin metal wires.
  • the silver/iron combination has a higher corrosion rate per the same area, resulting in a higher current value.
  • the gold/silver electrode wears less and has a longer life.
  • silver since silver has the effect of preventing mold from growing at the location where water droplets are detected, it is preferably used as the first fine metal wire 23 or the second fine metal wire 25 . It is preferable to use the same material for the first electrode 24 and the first metal wire 23, and for the second electrode 26 and the second metal wire 25, because this simplifies the manufacturing process of the transpiration rate measuring device.
  • the distance d between the first fine metal wire 23 and the second fine metal wire 25 is preferably more than 1.0 ⁇ m and less than 10 ⁇ m, more preferably 1.5 ⁇ m or more and 5 ⁇ m or less, and even more preferably 1.5 ⁇ m or more and 3 ⁇ m or less. .
  • the inventor found out from accumulation of a large amount of experimental data that the resolution and measurement reproducibility of the perspiration rate are high when the interval d is within this range.
  • the thickness of the first fine metal wire 23 and the second fine metal wire 25 is preferably 10 nm or more and 300 nm or less.
  • the thickness of the first metal fine wire 23 and the second metal fine wire 25 is less than 10 nm, the electrical resistance becomes too large, making it difficult to extract output, and the output tends to change with time.
  • the thickness of the first metal fine wire 23 and the second metal fine wire 25 exceeds 300 nm, no particular effect is observed and the material is wasted.
  • the thickness of the metal fine wires on the anode side may be increased, or the width of the metal fine wires on the anode side may be increased, and instead the thickness of the metal fine wires on the cathode side may be increased.
  • the width should be narrowed.
  • the protective cap 32 On the upper surface of the first fine metal wire 23 and the second fine metal wire 25 arranged in the container 31 .
  • the protective cap 32 preferably has a so-called overhang shape that has eaves for the first fine metal wires 23 and the second fine metal wires 25 in order to enhance the protection from unnecessary perspiration.
  • the hand when the part of the hand to be measured is placed in the container, or when the part of the hand to be measured and the container are brought into close contact with or close to each other, the hand (for example, the fingertip) can be The static electricity in the body may be discharged from the body, and an unintended current value may be measured. Therefore, it is also preferable to make part or all of the material of the protective cap 32 conductive so that internal static electricity can be released when a hand touches or approaches the protective cap 32 .
  • the protection cap 32, the first thin metal wire 23, and the second thin metal wire 25 are electrically insulated.
  • Films used for the protective cap 32 include, for example, SiO2 , SiON, SiOx , SiNx , Si3N4 , HfOx , Al2O3 , polyimide, acrylic, polystyrene (PS), polypropylene (PP), and polyethylene.
  • PET Terephthalate
  • PC polycarbonate
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene/hexafluoropropylene copolymer
  • a single layer film selected from the group consisting of ethylene copolymer (ETFE), copper, aluminum, nickel, zinc and their alloys, and stainless steel, or a laminated film consisting of one or more selected from the group can be mentioned.
  • a protective cap 32 having an opening through which gas permeates is formed above the first thin metal wire 23 and the second thin metal wire 25 and the protective cap 32 .
  • a mesh 41 is preferably provided. The openings in the protective mesh 41 allow moisture from perspiration to pass through the protective mesh 41 .
  • provision of the protective mesh 41 can prevent the hands from touching the first fine metal wires 23 and the second fine metal wires 25 .
  • the protective mesh 41 include, but are not limited to, mesh members such as mesh plates and mesh films, woven fabrics, and non-woven fabrics.
  • the material of the protective mesh 41 is not particularly limited, and metals, oxides, nitrides, oxynitrides, silicon, organic substances, etc. can be used.
  • the openings of the protective mesh 41 can ensure gas permeation paths, such as holes or grooves formed in the protective mesh material, or spaces between fibers when cloth is used as the protective mesh material.
  • the microdroplet detector 21a in which the first metal fine wire 23 and the second metal fine wire 25 are arranged is positioned above or on the side of the hand (the finger 51 in the figure). It is preferably spaced on one side and not in contact with the hand. By doing so, it is possible to make the space 61 (capacity of the specimen part) compact while preventing the sweat directly dripping from the hand from touching the first metal fine wire 23 and the second metal fine wire 25, and the sweat can be removed. Rate measurement accuracy and measurement reliability are improved.
  • the space 61 is preferably kept as small as possible in order to perform short-time measurement of the sweat rate.
  • the measurement unit 22 is equipped with an ammeter 28 electrically connected to the first metal electrode 24 and the second metal electrode 26 via a wiring 27, and the first thin metal wire 23 and the second metal electrode 26 are connected to each other.
  • the galvanic current generated by the thin metal wire 25 can be measured.
  • the measured data of the current value and the time change of the current value are sent to the comparison means 12 through the signal path 29 .
  • the signal path 29 may be electrical wiring, wireless distribution, or electronic media, but electrical wiring or wireless distribution is preferable from the point of view of responsiveness.
  • the measurement unit 22 may be placed inside the container 31 that constitutes the sample unit 21, outside, or across the inside and outside.
  • the device When placed inside a vessel, the device can be made compact. When placed outside the device, (1) maintainability is improved, (2) the failure rate is reduced because the measurement unit 22 can be placed in an environment with relatively lower humidity than the inside of the device, and (3) the damage from the device is reduced. Since the influence of heat generation is less likely to affect the inside of the vessel, the effect of improving the measurement accuracy and measurement reliability of the perspiration rate can be obtained. Also, if it is placed across the inside and the outside, a neutral effect can be obtained between the case where it is placed inside and the case where it is placed outside.
  • the comparison means 12 compares the measurement data of the current value and the time change of the current value sent from the measuring unit 22 with the determination data held as a reference or the determination data calculated from the past data, and compares the measurement data. When the data falls below the judgment data, the information is conveyed to the warning means 13. - ⁇
  • the determination data is the transpiration water generation rate, which is made to correspond to the change rate of the galvanic current by a calibration curve prepared in advance, and the transpiration rate of the transpiration water from the measurement data (measured transpiration rate) is the standard from the determination data. Make a judgment by comparing with the value.
  • FIG. 8 shows an example of the relationship between the symptoms of dehydration and the rate of weight loss.
  • the inventor believes that the sweat rate (transpiration rate) measurement site is susceptible to environmental factors such as temperature, wind, and sunshine at the extremities, not just the trunk such as the armpits, neck, chest, and abdomen. It was found that even a bare hand can sufficiently detect signs of heat stroke and dehydration and give a warning. Using the hand as the target site greatly facilitates handling during measurement, making it suitable for daily management of the elderly.
  • the determination value (standard value) of the vapor perspiration rate obtained as a result of the examination was 0.006 mg/(cm 2 ⁇ min) or more and 600 mg/(cm 2 ⁇ min) or less.
  • the occurrence of heatstroke and dehydration varies among individuals, and also depends on the environment in which the subject is placed. For example, elderly people who spend most of their time in a fixed home depend on their living environment. Therefore, in conducting the experiment, the inventor measured the normal sweat rate of the subject in advance, and investigated how much lower the sweat rate than that value would be a sign of heatstroke and dehydration. It was found that 1/4 of the average value of the measured transpiration rate when the body weight of the subject was not changed should be used as the criterion (reference value).
  • the reference value for determination by the comparison means is the average value of the measured transpiration rates that were obtained by measuring the transpiration rate of the transpiration water from the hand of the subject a plurality of times in advance by the transpiration rate measurement means 11, and that did not involve changes in the weight of the subject. I found that it should be 1/4.
  • Warning means 13 When the warning means 13 receives information from the comparison means 12 indicating that the measured transpiration rate has fallen below the reference value (determination value), it warns that heatstroke and dehydration may occur. Warnings include visual notifications to subjects (text and image displays), audible notifications (audio alerts), and remote health management of subjects (medical institutions, nursing homes, etc.). etc.) and message communication. In addition to the warning, it is also preferable to take measures to prevent heatstroke and dehydration, such as rehydration and air conditioner operation.
  • the system further comprises hand temperature measuring means for measuring the temperature of the hand and reference value calibrating means for calibrating the reference value based on the temperature of the hand, in order to improve the warning accuracy.
  • the temperature of the subject's hand is measured by the hand temperature measuring means at the same time as the transpiration rate is measured by the transpiration rate measuring means 11, and the reference value A reflecting the hand temperature and the transpiration are obtained by the reference value calibrating means.
  • the comparison means 12 compares the measured value of the velocity (measured transpiration rate), and when the measured transpiration rate falls below the reference value A, the warning means 13 issues a warning.
  • the hand temperature measurement means an electrode for temperature measurement, which is provided in the specimen section 21 and whose electrical resistance changes with temperature, can be mentioned. Further, if either the first thin metal wire 23 or the second thin metal wire 25 is made of a material having a high temperature coefficient of resistance near body temperature, it becomes possible to share the electrode for temperature measurement with part of the thin metal wire. It becomes possible to reduce the cost. Examples of such materials include platinum and titanium. An infrared thermometer or the like can also be used as the hand temperature measuring means.
  • the above-described transpiration rate measuring means 11 is a transpiration rate measuring device that has a short measurement time and is excellent in sensitivity and accuracy.
  • the transpiration rate measuring device consisting of the transpiration rate measuring means 11 is of a non-contact type in which the hand to be measured does not touch the microdroplet detection section 21a, and the microdroplet detection section 21a dries quickly after measurement and is repeated. Can be used.
  • due to the configuration of the device it is possible to measure the galvanic current even with a single droplet. 0.001 mg/(cm 2 ⁇ min) has been confirmed.
  • the size of the device is 50 mm ⁇ 65 mm ⁇ 25 mm, for example, for a finger, and the measurement time is as short as 10 to 30 seconds.
  • the specifications of the SKW-1000 are 0.1 mg/(cm 2 ⁇ min) of evaporated water measurement resolution, 30 seconds of measurement time, and the perspiration sensor (life care), the evaporative water measurement resolution is 1.1 mg/(cm 2 ⁇ min), the measurement time is 60 seconds, and in the case of the sweat sensor (UC Berkeley), the evaporative water measurement resolution is 3-4 mg/(cm 2 ⁇ min), and the measurement time is 60 seconds.
  • the perspiration sensor and perspiration sensor cannot be used repeatedly. From the above, it can be seen that the transpiration rate measuring device of the present invention has high performance.
  • the measurement unit 22 is replaced with an ammeter 28, and the measurement target is Depending on the requirements, impedance measuring devices, voltmeters, resistance measuring devices, etc. are provided. In that case, the objects to be compared by the comparing means 12 are those measured by them, such as impedance, voltage, and resistance.
  • Embodiment 2 describes effective operation of the heat stroke/dehydration warning system and the transpiration rate measurement device described in Embodiment 1.
  • FIG. 1 is a diagrammatic representation of Embodiment 2
  • steamed sweat rate the rate of sweat (steamed sweat) that evaporates from the hands such as fingertips.
  • the main target audience is the elderly at home. Elderly people at home spend most of their time in a relatively static environment. By doing so, signs of heatstroke and dehydration can be monitored with high accuracy.
  • the transpiration rate measuring device of the present invention can be used repeatedly and has sufficient sensitivity to warn of signs of heatstroke and dehydration.
  • the device for measuring the transpiration rate of the present invention is built into a button used in a home appliance or an intercom-type monitoring service, such as a touch switch, or placed in a box containing the touch switch, and the heat stroke or dehydration warning of the present invention is used.
  • a button used in a home appliance or an intercom-type monitoring service such as a touch switch, or placed in a box containing the touch switch
  • the heat stroke or dehydration warning of the present invention is used.
  • the system of the present invention can be integrated with home appliances and intercom-type monitoring services, and can be used in facilities with home appliances equipped with touch switches. Since such a button is used on a daily basis, it is possible to monitor the subject's (user's) perspiration status on a daily basis without any sense of incongruity, thereby enabling health management.
  • Example 1 In Example 1, an example using a device for measuring the transpiration rate, which is a transpiration rate measuring means, and which contains a microdroplet detection unit in which electrodes having thin metal wires made of two kinds of metals are arranged in a comb shape will be described.
  • a device for measuring the transpiration rate which is a transpiration rate measuring means, and which contains a microdroplet detection unit in which electrodes having thin metal wires made of two kinds of metals are arranged in a comb shape will be described.
  • the invention is not limited to this particular form, but the scope of the invention is defined by the appended claims.
  • FIG. 9 shows the prototype transpiration rate measuring device.
  • (a) of FIG. 9 is a photograph of the device alone, and (b) is a photograph of the device with a finger placed on the vessel.
  • the vessel of the specimen section equipped with the microdroplet detection section has a cup-like shape that is substantially rectangular in plan view and has an opening at the top.
  • the finger becomes a lid.
  • FIG. 10 is a photograph of the microdroplet detecting portion of the device.
  • the image on the left is an image of fine metal wires (galvanic array) arranged in a comb shape on a silicon chip (insulating substrate) 201 together with a scale 204.
  • this device measures the speed of perspiration (sweat rate) that evaporates from the finger (fingertip) when the finger is placed on the container, and can send the measurement data wirelessly to the server. It has become.
  • weat rate the speed of perspiration
  • gold was used for the second fine metal wire
  • the distance d between the two fine metal wires was 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m and 10 ⁇ m.
  • the space volume inside the vessel formed when the finger is placed is 1 cm 3 .
  • the air temperature at the time of measurement in the measurement examples shown below was 25°C.
  • This device can be mass-produced at low cost using semiconductor processing technology, and the A/D conversion circuit can be manufactured at low cost because it can extract signals using electronic components that are widely used in the world.
  • FIG. 11 shows an example of measurement results of the galvanic output current using this device.
  • Figure 11 (a) is before the subject ran (before running), (b) is after the heart rate returned to normal after running (after running), and (c) is 10 minutes after rehydration.
  • the measurement data after (after rehydration) was measured immediately after the subject placed his/her finger on the container of the device.
  • the test subject was a 50-year-old male, and the running was performed at a speed of about 10 km/h for about 1 hour.
  • the subject placed their finger on the vessel of the device and then removed it 30 seconds later. From the results shown in (a) to (c) of FIG. 11, it can be read that the output current signal rises in a nearly straight line and then settles down to a constant value although there are fluctuations.
  • the sweat rate was evaluated by dividing the reference output current value by the time (s) required to reach that current value.
  • the reference output current value is set to 1 ⁇ 10 ⁇ 11 A (10 pA). Therefore, the units of the vapor rate at this stage are pA/s.
  • the evaporation rate is a device-dependent value by creating a calibration curve showing the relationship between the output current (A) and the droplet volume ( ⁇ m 3 ) across the metal fine wire. can be converted to units of mg/(cm 2 ⁇ min) that are not physically meaningful.
  • the increase in the output current value remains slightly after running and after hydration. This is because when the distance d between the metal wires is 0.5 ⁇ m and 1 ⁇ m, even a small amount of water fills the narrow space between the metal wires, and when the distance d is 10 ⁇ m, there is not enough time for the water droplets to accumulate in the space between the metal wires. It is thought that this is because As a result of accumulating measurement data by conducting experiments of the same method under different environmental conditions, the correlation between the perspiration rate and the dehydration level was found when the distance d between the first and second fine metal wires was more than 1 ⁇ m and less than 10 ⁇ m. Got. In particular, the correlation was enhanced when the distance d between fine metal wires was 1.5 ⁇ m or more and 3 ⁇ m or less, and the correlation was maximized when the distance d was 2 ⁇ m.
  • the subject's weight was also measured using a weight scale immediately after the galvanic output current before and after exercise and after hydration was measured from the subject's finger with the transpiration rate measuring device.
  • the relationship shown in FIG. 13 was obtained between the perspiration rate and the change in body water content (increase or decrease in body weight).
  • the perspiration rate was calculated from the galvanic output current value (pA) at which the S/N ratio reached 10, and the time from placing the finger on the opening of the vessel until reaching that current value. It was obtained by dividing by (s). Plots with circles, downward triangles, and upward triangles represent pre-exercise, post-exercise, and post-hydration values, respectively.
  • the transpiration rate measuring device of this example by narrowing the distance d between the fine metal wires to 0.1 ⁇ m, water droplets of minimum 0.1 pl were detected as a galvanic output current signal with an S/N ratio of two digits or more in the shortest 20 ms. .
  • the amount (volume) of droplets on the microdroplet detector of this device is proportional to the galvanic output current value. For this reason, when the evaporated water is detected as droplets on the minute droplet detection unit and the time change of the galvanic output current obtained thereby is measured, the current value at a certain point is the amount of the evaporated water It corresponds to the total amount, and the slope of the current value corresponds to the transpiration rate. Therefore, the sweat rate can also be evaluated by the slope of the current value.
  • the transpiration rate measuring device of this embodiment which can directly measure the perspiration rate, can directly detect a sign of heatstroke, in which sweating ceases to function even though the body temperature is rising. Further, as described above, the transpiration rate measurement device of the present embodiment is configured to be able to wirelessly transmit the measured value of the perspiration rate to the cloud server. Another experiment was conducted with the addition of a function that can determine the risk of heatstroke and issue warnings to the subject and their caregivers. I also verified that the function works.
  • the heat stroke and dehydration warning system of the present invention can warn the signs of heat stroke and dehydration in a low-cost, simple and timely manner. Therefore, it is believed that this system can contribute to suppressing the occurrence of heat stroke and dehydration and preventing the severity of the disease. Heatstroke and dehydration are becoming social problems as global warming and aging progress, so this system will have a great impact on society.
  • the transpiration rate measuring device of the present invention is a core device that contributes to timely measurement, cost reduction, and high sensitivity of the heat stroke and dehydration warning system, and is greatly appreciated not only by the general public but also by the industry. likely to be used.
  • Transpiration rate measurement means Transpiration rate measurement device 12: Comparing Means 13: Warning Means 21: Specimen Part 21a: Minute Droplet Detection Part (Sweat Detection Part) 22: Measuring part 23: First thin metal wire 24: First metal electrode 25: Second thin metal wire 26: Second metal electrode 27: Wiring 28: Ammeter 29: Signal path 31: Device 32: Protective cap 41: Protective mesh 51: Finger 61: Space 101: Heat stroke, dehydration warning system 102: Specimen part 103: Specimen part 201: Silicon chip (galvanic array) 202: First thin metal wire (aluminum) 203: Second metal thin wire (gold) 204: Scale

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The present invention provides a system for predictively warning about hyperthermia and dehydration at a low-cost, and in an easy and timely manner. A hyperthermia/dehydration predictive warning system (101) according to one embodiment of the present invention comprises a perspiration rate measuring means (11) for measuring the perspiration rate of perspiration moisture from a subject's hand, a comparing means (12) for comparing the perspiration rate against a pre-established reference value, and a warning means (13) for emitting a warning. The measured perspiration rate measured by the perspiration rate measuring means (11) is compared against the reference value by the comparing means (12), and the warning is emitted by the warning means (13) when the measured perspiration rate has fallen below the reference value.

Description

熱中症、脱水症予兆警告システムおよび蒸散速度計測用デバイスHeat stroke, dehydration warning system and transpiration rate measurement device
 本発明は、熱中症、脱水症予兆警告システムおよび蒸散速度計測用デバイスに関する。 The present invention relates to a heatstroke and dehydration warning system and a device for measuring transpiration rate.
 近年、特に夏場において、熱中症、脱水症の増加と、死にも至る重症化が問題になっている。
 熱中症、脱水症はごく初期段階に十分に水分を補給したり、冷房などにより冷所で休んだりすれば重症化しにくい。しかしながら、人は、加齢とともに暑さや喉の渇きといった自覚症状を感じにくくなるため、高齢者などで手遅れになる例が頻発して社会問題化している。例えば、2020年の夏において日本では1週間で約13000人が熱中症、脱水症で救急搬送されている。この数は全体の救急搬送の約1割である。なお、13000人の約8割が在宅の高齢者となってる。
In recent years, especially in the summer, heatstroke and dehydration have become a problem, with an increase in the number of cases and aggravation leading to death.
Heatstroke and dehydration are less likely to become serious if you replenish plenty of water in the very early stages and rest in a cool place with an air conditioner. However, as people age, subjective symptoms such as heat and thirst become less likely to be felt, so there are frequent cases where it is too late for elderly people and the like, which has become a social problem. For example, in the summer of 2020, about 13,000 people are transported by ambulance due to heatstroke and dehydration in one week in Japan. This number is about 10% of all ambulance transportation. About 80% of the 13,000 people are elderly people living at home.
 したがって、熱中症、脱水症の予兆を掴んで早めに警告を発することが重要になっており、特に高齢者に使い勝手の良い警告システムを提供することが強く求められている。 Therefore, it is important to catch the signs of heat stroke and dehydration and issue an early warning, and there is a strong demand to provide an easy-to-use warning system, especially for the elderly.
 熱中症、脱水症の予防は、気温の高い日は水分を多めにとったり、屋外ではなるべく陽に当たらないようにして例えば木陰に退避したり、室内ではエアコンを稼働させたりするが、その判断は基本的に個人の感覚に委ねられている。 To prevent heatstroke and dehydration, drink plenty of water on hot days, avoid exposure to the sun as much as possible and evacuate to the shade of a tree, or turn on the air conditioner indoors. It is basically left to individual senses.
 老人介護施設などでの予防は、通常、体重、体温、血圧、脈拍など、一般的な体調管理のデータと外気温、湿度、日差しなどを基に、経験や予め作成しておいた基準に照らして行われていて、個々人の熱中症、脱水症に直結する予兆状況に応じて警告を発するものではなかった。しかも、これらの評価項目は脱水状態を直接ではなく間接的に反映したものであるため、従来の方法は、熱中症や脱水症の予兆を必ずしもタイムリーに警告するものではなく、簡便性やコストの面でも必ずしも満足がいくものではなかった。
 なお、従来の熱中症の警告装置の例としては、特許文献1を挙げることができる。この文献の装置では、温湿度センサを備えており、発汗量をモニターできるようになっている。
Prevention at nursing homes for the elderly is usually based on general physical condition management data such as body weight, body temperature, blood pressure, and pulse, as well as outside temperature, humidity, sunlight, etc., and in light of experience and established standards. However, it did not issue warnings according to the premonitory conditions directly linked to individual heat stroke and dehydration. Moreover, since these evaluation items indirectly reflect the state of dehydration rather than directly, conventional methods do not necessarily give timely warnings of signs of heatstroke and dehydration, and are simple and cost effective. It was not always satisfactory in terms of
As an example of a conventional heatstroke warning device, Patent Document 1 can be cited. The device of this document is equipped with a temperature and humidity sensor so that the amount of perspiration can be monitored.
特開2013-90894号公報JP 2013-90894 A 国際公開WO2016/013544A1International publication WO2016/013544A1 特開2019-52893号公報JP 2019-52893 A
 本発明の課題は、熱中症、脱水症の予兆を低コスト、簡便かつタイムリーに警告するシステムを提供することである。 The object of the present invention is to provide a low-cost, simple and timely warning system for signs of heatstroke and dehydration.
 上記課題を解決するための本発明の構成を以下に示す。
 (構成1)
 被験者の手からの蒸散水の蒸散速度を計測する蒸散速度計測手段と、前記蒸散速度を予め定めた基準値と比較する比較手段と、警告を発する警告手段を有し、
 前記蒸散速度計測手段により計測された計測蒸散速度を前記比較手段により前記基準値と比較し、前記計測蒸散速度が前記基準値を下回ったとき前記警告手段により警告を発する、熱中症、脱水症予兆警告システム。
 (構成2)
 前記基準値は、0.006mg/(cm・min)以上600mg/(cm・min)以下である、構成1記載の熱中症、脱水症予兆警告システム。
 (構成3)
 前記基準値は、前記蒸散速度計測手段により予め前記蒸散速度の計測を複数回実施し、前記被験者の体重変化を伴わなかった計測蒸散速度の平均値の1/4とする、構成1記載の熱中症、脱水症予兆警告システム。
 (構成4)
 手の温度を計測する手温度計測手段と、手の温度に基づいて前記基準値を校正する基準値校正手段をさらに備え、
 前記計測蒸散速度の計測と同時に前記手温度計測手段により前記被験者の手の温度を計測し、前記基準値校正手段による基準値Aと前記計測蒸散速度の計測値を前記比較手段により比較し、前記計測蒸散速度が前記基準値Aを下回ったとき前記警告手段により警告を発する、構成1から3の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成5)
 タッチスイッチを備えるホーム家電のある施設で使用され、
 前記蒸散速度計測手段が前記タッチスイッチを収めるボックス内に配置されている、構成1から4の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成6)
 前記蒸散速度計測手段は、第1の金属の細線と、前記第1の金属とは異なる第2の金属の細線とが絶縁性基板上に並置される微小液滴検出部と、前記第1の金属の細線と前記第2の金属の細線の間に流れるガルバニー電流を測定する測定部を備える、構成1から5の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成7)
 前記蒸散速度計測手段は、
 少なくとも前記手の一部を収める検体部を有し、
 前記検体部には、第1の金属の細線と、前記第1の金属とは異なる第2の金属の細線とが絶縁性基板上に並置される微小液滴検出部が配置され、
 さらに前記検体部の内部、外部、あるいは内部と外部の両方に跨って置かれ、前記第1の金属の細線と前記第2の金属の細線の間に流れるガルバニー電流を測定する測定部を有する、構成1から6の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成8)
 前記第1の金属は金、白金、銀、チタンおよびこれらの合金、並びに炭素からなる群から選択される、構成7に記載の熱中症、脱水症予兆警告システム。
 (構成9)
 前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウムおよびこれらの合金からなる群から選択される、構成7または8に記載の熱中症、脱水症予兆警告システム。
 (構成10)
 前記第1の金属の細線と前記第2の金属の細線の少なくとも一方は複数本設けられ、前記第1の金属の細線と前記2の金属の細線とは互いに対向する方向から相手側に向かって伸びることにより、互いに平行に併走する、構成7から9の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成11)
 前記第1の金属の細線と前記第2の金属の細線との間隔は、1.0μmを超えて10μm未満である、構成7から10の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成12)
 前記第1の金属の細線および前記第2の金属の細線の上面には、前記手と前記第1の金属の細線および前記第2の金属の細線との接触を防止する保護キャップが形成されている、構成7から11の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成13)
 前記第1の金属の細線および前記第2の金属の細線と、前記手との間には気体を透過する開口が形成された保護メッシュが配置されている、構成7から12の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成14)
 前記第1の金属の細線および前記第2の金属の細線は、前記手に対して上方または側方に前記手とは接触しない間隔を置いて配置されている、構成7から13の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成15)
 前記検体部の容量は0.05cm以上2.5cm以下である、構成7から14の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成16)
 前記検体部内にはさらに温度により電気抵抗が変化する温度計測用の電極が配置されている、構成7から15の何れか1項に記載の熱中症、脱水症予兆警告システム。
 (構成17)
 前記温度計測用の電極は、前記第1の金属の細線または前記第2の金属の細線と共用されている、構成16に記載の熱中症、脱水症予兆警告システム。
 (構成18)
 少なくとも手の一部が収まる検体部を有し、
 前記検体部には、第1の金属の細線と、前記第1の金属とは異なる第2の金属の細線とが絶縁性基板上に並置される微小液滴検出部が配置され、
 前記第1の金属の細線および前記第2の金属の細線の上面には、前記手と前記第1の金属の細線および前記第2の金属の細線との接触を防止する保護キャップが形成され、
 前記第1の金属の細線および前記第2の金属の細線と、前記手との間には気体を透過する開口が形成された保護メッシュが配置され、
 前記検体部内部、外部、あるいは内部と外部の両方に跨って置かれ、前記第1の金属の細線と前記第2の金属の細線の間に流れるガルバニー電流を測定する測定部を有する、蒸散速度計測用デバイス。
 (構成19)
 前記第1の金属は金、白金、銀、チタンおよびこれらの合金、並びに炭素からなる群から選択される、構成18に記載の蒸散速度計測用デバイス。
 (構成20)
 前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウムおよびこれらの合金からなる群から選択される、構成18または19に記載の蒸散速度計測用デバイス。
 (構成21)
 前記第1の金属の細線と前記第2の金属の細線の少なくとも一方は複数本設けられ、前記第1の金属の細線と前記2の金属の細線とは互いに対向する方向から相手側に向かって伸びることにより、互いに平行に併走する、構成18から20の何れか1項に記載の蒸散速度計測用デバイス。
 (構成22)
 前記第1の金属の細線と前記第2の金属の細線との間隔は、1.0μmを超えて10μm未満である、構成18から21の何れか1項に記載の蒸散速度計測用デバイス。
 (構成23)
 前記検体部の容量は0.05cm以上2.5cm以下である、構成18から22の何れか1項に記載の蒸散速度計測用デバイス。
 (構成24)
 前記検体部内にはさらに温度により電気抵抗が変化する温度計測用の電極が配置されている、構成18から23の何れか1項に記載の蒸散速度計測用デバイス。
 (構成25)
 前記温度計測用の電極は、前記第1の金属の細線または前記第2の金属の細線と共用されている、構成24に記載の蒸散速度計測用デバイス。
The configuration of the present invention for solving the above problems is shown below.
(Configuration 1)
Transpiration rate measuring means for measuring the transpiration rate of transpiration water from the subject's hand, comparison means for comparing the transpiration rate with a predetermined reference value, and warning means for issuing a warning,
The comparison means compares the measured transpiration rate measured by the transpiration rate measuring means with the reference value, and the warning means issues a warning when the measured transpiration rate falls below the reference value. warning system.
(Configuration 2)
The heat stroke and dehydration warning system according to Configuration 1, wherein the reference value is 0.006 mg/(cm 2 ·min) or more and 600 mg/(cm 2 ·min) or less.
(Composition 3)
The heat treatment according to configuration 1, wherein the reference value is 1/4 of the average value of the measured transpiration rates obtained by measuring the transpiration rate a plurality of times in advance by the transpiration rate measuring means and without a change in body weight of the subject. disease, dehydration warning system.
(Composition 4)
Further comprising hand temperature measuring means for measuring hand temperature and reference value calibrating means for calibrating the reference value based on hand temperature,
Simultaneously with the measurement of the measured transpiration rate, the temperature of the subject's hand is measured by the hand temperature measuring means, and the comparison means compares the reference value A by the reference value calibration means and the measured value of the measured transpiration rate, 4. The heat stroke and dehydration warning system according to any one of configurations 1 to 3, wherein the warning means issues a warning when the measured transpiration rate falls below the reference value A.
(Composition 5)
Used in facilities with home appliances with touch switches,
5. The heat stroke and dehydration warning system according to any one of configurations 1 to 4, wherein the transpiration rate measuring means is arranged in a box containing the touch switch.
(Composition 6)
The transpiration rate measuring means includes a fine droplet detection unit in which a fine wire of a first metal and a fine wire of a second metal different from the first metal are arranged side by side on an insulating substrate; 6. The heatstroke and dehydration warning system according to any one of configurations 1 to 5, comprising a measurement unit that measures a galvanic current flowing between the metal thin wire and the second metal thin wire.
(Composition 7)
The transpiration rate measuring means is
Having a specimen part that accommodates at least a part of the hand,
The sample unit is provided with a fine droplet detection unit in which a thin wire of a first metal and a thin wire of a second metal different from the first metal are arranged side by side on an insulating substrate,
Further, a measurement unit placed inside, outside, or straddling both the inside and outside of the specimen unit and measuring a galvanic current flowing between the first metal thin wire and the second metal thin wire, A heatstroke/dehydration warning system according to any one of configurations 1 to 6.
(Composition 8)
The heat stroke and dehydration warning system according to configuration 7, wherein the first metal is selected from the group consisting of gold, platinum, silver, titanium and alloys thereof, and carbon.
(Composition 9)
Heatstroke according to configuration 7 or 8, wherein the second metal is selected from the group consisting of silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium and alloys thereof. , dehydration warning system.
(Configuration 10)
At least one of the thin wires of the first metal and the thin wires of the second metal is provided in plurality, and the thin wires of the first metal and the thin wires of the second metal are arranged in a direction facing each other toward the other side. The heatstroke and dehydration warning system according to any one of configurations 7 to 9, which runs parallel to each other by extending.
(Composition 11)
Heat stroke and dehydration warning according to any one of configurations 7 to 10, wherein the distance between the first metal thin wire and the second metal thin wire is more than 1.0 μm and less than 10 μm. system.
(Composition 12)
A protective cap is formed on the upper surface of the first metal thin wire and the second metal thin wire to prevent contact between the hand and the first metal thin wire and the second metal thin wire. The heatstroke and dehydration warning system according to any one of configurations 7 to 11.
(Composition 13)
13. Any one of configurations 7 to 12, wherein a protective mesh having gas permeable openings is disposed between the first metal thin wire and the second metal thin wire and the hand. The heatstroke and dehydration warning system described in .
(Composition 14)
14. Any one of configurations 7 to 13, wherein the first metal thread and the second metal thread are spaced apart from contacting the hand above or laterally with respect to the hand. The heatstroke and dehydration warning system described in the paragraph.
(Composition 15)
15. The heat stroke and dehydration warning system according to any one of configurations 7 to 14, wherein the specimen unit has a capacity of 0.05 cm 3 or more and 2.5 cm 3 or less.
(Composition 16)
16. The heatstroke and dehydration warning system according to any one of configurations 7 to 15, wherein an electrode for temperature measurement whose electric resistance changes with temperature is further arranged in the specimen section.
(Composition 17)
17. The heatstroke and dehydration warning system according to configuration 16, wherein the electrode for temperature measurement is shared with the thin wire of the first metal or the thin wire of the second metal.
(Composition 18)
Having a specimen part that accommodates at least a part of the hand,
The sample unit is provided with a fine droplet detection unit in which a thin wire of a first metal and a thin wire of a second metal different from the first metal are arranged side by side on an insulating substrate,
A protective cap is formed on the top surface of the first metal thin wire and the second metal thin wire to prevent contact between the hand and the first metal thin wire and the second metal thin wire,
Between the first metal thin wire and the second metal thin wire and the hand, a protective mesh having gas-permeable openings is arranged,
Transpiration rate, having a measurement unit placed inside, outside, or straddling both the inside and outside of the specimen portion and measuring a galvanic current flowing between the first metal thin wire and the second metal thin wire. measurement device.
(Composition 19)
19. The transpiration rate measuring device according to configuration 18, wherein said first metal is selected from the group consisting of gold, platinum, silver, titanium and alloys thereof, and carbon.
(Configuration 20)
Transpiration rate according to configuration 18 or 19, wherein said second metal is selected from the group consisting of silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium and alloys thereof. measurement device.
(Composition 21)
At least one of the thin wires of the first metal and the thin wires of the second metal is provided in plurality, and the thin wires of the first metal and the thin wires of the second metal are arranged in a direction facing each other toward the other side. 21. The transpiration rate measuring device according to any one of configurations 18 to 20, which runs parallel to each other by stretching.
(Composition 22)
22. The transpiration rate measuring device according to any one of configurations 18 to 21, wherein the distance between the thin wire of the first metal and the thin wire of the second metal is more than 1.0 μm and less than 10 μm.
(Composition 23)
23. The transpiration rate measuring device according to any one of configurations 18 to 22, wherein the volume of the specimen part is 0.05 cm 3 or more and 2.5 cm 3 or less.
(Composition 24)
24. The transpiration rate measuring device according to any one of configurations 18 to 23, further comprising a temperature measuring electrode whose electrical resistance changes with temperature is arranged in the specimen part.
(Composition 25)
25. The transpiration rate measurement device according to configuration 24, wherein the temperature measurement electrode is shared with the first metal thin wire or the second metal thin wire.
 本発明によれば、熱中症、脱水症の予兆を低コスト、簡便かつタイムリーに警告するシステムおよびそのシステムでコアとして使用される蒸散速度計測用デバイスが提供される。 According to the present invention, a low-cost, simple, and timely warning system for signs of heat stroke and dehydration and a transpiration rate measurement device used as the core of the system are provided.
本発明の熱中症、脱水症予兆警告システムの構成を示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the configuration of a heat stroke and dehydration warning system of the present invention; 本発明のシステムの蒸散速度計測手段の構成を示す説明図である。FIG. 4 is an explanatory diagram showing the configuration of the transpiration rate measuring means of the system of the present invention; 本発明のシステムの微小液滴検出部の構成とその動作原理を説明する説明図である。FIG. 3 is an explanatory diagram for explaining the configuration and operating principle of a microdroplet detecting section of the system of the present invention; 本発明のシステムの微小液滴検出部の特徴を説明する説明図で、(a)は物理吸着検出方式(物理吸着センサ)であり、(b)は一般的な湿度センサに使用される化学吸着検出方式(化学吸着センサ)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining the features of the micro droplet detection unit of the system of the present invention, (a) is a physical adsorption detection method (physical adsorption sensor), and (b) is a chemical adsorption used in a general humidity sensor. It is a detection method (chemisorption sensor). 本発明のシステムの微小液滴検出部の構造を示す要部断面図である。FIG. 4 is a cross-sectional view of the main part showing the structure of the minute liquid droplet detection section of the system of the present invention; 本発明のシステムの微小液滴検出部の構造を示す要部断面図である。FIG. 4 is a cross-sectional view of the main part showing the structure of the minute liquid droplet detection section of the system of the present invention; 本発明のシステムの検体部の構造を示す要部断面図である。FIG. 2 is a cross-sectional view of a main part showing the structure of the specimen section of the system of the present invention; 脱水症の症状と体重の減少率の関係の一例を示した説明図である。FIG. 4 is an explanatory diagram showing an example of the relationship between dehydration symptoms and weight loss rate. 実施例で試作した蒸散速度計測用デバイスを示す写真で、(a)はデバイス単体であり、(b)はデバイスの器に指を置いた状態である。It is a photograph which shows the device for transpiration rate measurement which was prototyped in the Example, (a) is a device single body, (b) is the state which put the finger on the container of the device. 実施例で用いたデバイスの微小液滴検出部を上面から撮影した光学写真である。It is an optical photograph taken from the upper surface of the microdroplet detecting portion of the device used in Examples. 出力電流の時間変化を示す特性図で、(a)はランニング前、(b)はランニング後、そして(c)は水分補給後である。It is a characteristic diagram showing the time change of the output current, (a) is before running, (b) is after running, and (c) is after rehydration. 出力電流と金属細線に跨る液滴のボリュームとの関係を示す特性図である。FIG. 5 is a characteristic diagram showing the relationship between the output current and the volume of droplets straddling the fine metal wire; 蒸汗レートと体重変化率との関係、および、体重の減少率と脱水症の症状の関係をリンクさせて得られた蒸汗レートと熱中症リスクとの関係を示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between the steam rate and body weight change rate, and the relationship between the steam sweat rate and the risk of heat stroke obtained by linking the relationship between the body weight decrease rate and the symptoms of dehydration.
 以下、本発明を実施するための形態について図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
(実施の形態1)
 実施の形態1では、本発明の熱中症、脱水症予兆警告システムおよびそこで用いられる蒸散速度計測用デバイスについて説明する。
(Embodiment 1)
Embodiment 1 describes a heatstroke/dehydration warning system and a transpiration rate measuring device used therein according to the present invention.
<システム概要>
 本発明の熱中症、脱水症予兆警告システム101は、図1に示されるように、蒸散速度計測手段11、比較手段12および警告手段13を有する。
<System overview>
A heatstroke/dehydration warning system 101 of the present invention has a transpiration rate measuring means 11, a comparing means 12 and a warning means 13, as shown in FIG.
<蒸散速度計測手段>
 蒸散速度計測手段11は、被験者の手からの蒸散水の蒸散速度を計測する手段であって、平面視図である図2に示すように、検体部21と測定部22を備える。
 検体部21は、被験者の手の少なくとも一部を収める器と、直径換算の大きさが100nm以上20μm以下の微小液滴を検出する微小液滴検出部21aを備える。
<Transpiration rate measuring means>
The transpiration rate measuring means 11 is a means for measuring the transpiration rate of transpiration water from the subject's hand, and includes a sample section 21 and a measurement section 22 as shown in FIG. 2 which is a plan view.
The specimen unit 21 includes a container that accommodates at least a portion of a subject's hand, and a microdroplet detection unit 21a that detects microdroplets having a diameter conversion size of 100 nm or more and 20 μm or less.
 手は、指、掌および手首の各部を意味し、何れか1以上の部位からの蒸散水の蒸散速度を蒸散速度計測手段11により計測する。したがって、指単体、掌単体、手首単体、指と掌、掌と手首、指と掌と手首の何れかからの蒸散水の蒸散速度を計測してよい。
 ここで、指(より具体的には指先)での計測は、使用するデバイス(蒸散速度計測用デバイス)の小型化を図りやすく、簡便で取り扱い性に優れ、かつ低コスト化を図りやすいという特徴がある。
 掌での計測は、その部位からの発汗量が多いことから、蒸汗(蒸散する汗)を検知しやすく、蒸汗レート(蒸汗の速度)を精度よく容易に計測できるという特徴がある。
 手首での計測は、体幹部に近く、発汗現象と熱中症や脱水症との相関性が高いので、他の要因の影響の少ない計測が可能になる。
 当然、指と掌のような複数部位を使っての計測では、個々の部位の特徴を兼ね備えた計測が可能になる。
 なお、本明細書において、蒸散水の蒸散速度とは、手から蒸散する水分について、その蒸散が生じる(蒸散が起こる)速度を意味し、当該蒸散する水分(蒸散水)として特に汗(蒸汗)に着目する場合に、蒸汗レートとの用語を用いる。また、蒸散水生成速度という場合には、手を含む肌から水分の蒸散が生じる(蒸散が起こる)速度を意図するものとする。
A hand means each part of a finger, a palm, and a wrist, and the transpiration rate of the evaporated water from one or more parts is measured by the transpiration rate measuring means 11 . Therefore, the transpiration rate of evaporated water from any one of a single finger, a single palm, a single wrist, fingers and palms, palms and wrists, fingers, palms and wrists may be measured.
Here, measurement with a finger (more specifically, a fingertip) is characterized by the fact that it is easy to reduce the size of the device used (device for transpiration rate measurement), it is simple and easy to handle, and it is easy to reduce costs. There is
Measurement with the palm is characterized by the fact that it is easy to detect perspiration (sweat that evaporates) because the amount of perspiration from that part is large, and that the perspiration rate (the speed of perspiration) can be measured with high accuracy and ease.
Since the measurement at the wrist is close to the trunk and has a high correlation between the sweating phenomenon and heatstroke and dehydration, it is possible to measure with little influence of other factors.
Naturally, in the measurement using a plurality of parts such as fingers and palms, it is possible to measure the features of each part.
In this specification, the transpiration rate of transpiration water means the rate at which transpiration occurs (transpiration occurs) with respect to the transpiration of water from the hands. ), the term steam rate is used. In addition, the speed of generation of evaporated water means the speed at which water is evaporated (transpiration occurs) from the skin including the hands.
 器は、計測する手の部位を収めるか、計測する手の部位と密着あるいは近接させたときに手の計測部位からの蒸散水(蒸汗)を逃しにくい構造とし、例えば、手の挿入口が形成された箱状にしたり、指等の計測部位を蓋代わりに置けるカップ状にする。
 また、器は、計測対象となる手が微小液滴検出部21aに触れない範囲で蒸汗レートを短時間で計測可能なように、計測時のキャビティ(空間容量)が小さいものとする。
 このため、計測時に器にできる空間である検体部の容量は、0.05cm以上2.5cm以下が好ましい。
The device should contain the part of the hand to be measured, or have a structure that makes it difficult for evaporated water (steamed sweat) to escape from the part of the hand to be measured when it is placed in close contact with or close to the part of the hand to be measured. A formed box-like shape or a cup-like shape on which a measurement site such as a finger can be placed instead of a lid is used.
In addition, the device has a small cavity (spatial capacity) during measurement so that the sweat rate can be measured in a short period of time within a range in which the hand to be measured does not touch the microdroplet detector 21a.
Therefore, it is preferable that the volume of the sample portion, which is the space formed in the vessel during measurement, is 0.05 cm 3 or more and 2.5 cm 3 or less.
 微小液滴検出部21aは、蒸汗によるモイスチャーを微小液滴として検出するもの、すなわち、蒸汗検知部である。微小液滴検出部21aの構成としては、液滴センサや湿度センサのセンサ部の構成を採用することができる。微小液滴検出部21aは、後述する測定部22と電気的に繋がれており、微小液滴検出部21aで検出される微小液滴の成長速度を計測することで、被験者の手からの蒸散水の蒸散速度を計測可能に構成されている。
 液滴センサや湿度センサは種々の原理のものがあるが、本発明においては、微小な間隔dを隔てて絶縁性基板上に並置された第1の金属の細線(第1の金属細線)23と、前記第1の金属とは異なる第2の金属の細線(第2の金属細線)25とを備え、第1の金属細線23と第2の金属細線25間に流れるガルバニー電流を測定するガルバニー電流測定方式が特に好ましい。ここで、第1の金属細線23は集電極である第1の電極24に、第2の金属細線25は集電極である第2の電極26に電気的に繋がれて束ねられる。
The minute droplet detection unit 21a detects moisture caused by sweat as minute droplets, that is, a sweat detection unit. As the configuration of the minute droplet detection section 21a, a configuration of a sensor section such as a droplet sensor or a humidity sensor can be adopted. The microdroplet detection unit 21a is electrically connected to a measurement unit 22, which will be described later. It is configured to be able to measure the transpiration rate of water.
There are droplet sensors and humidity sensors based on various principles, but in the present invention, first fine metal wires (first fine metal wires) 23 are juxtaposed on an insulating substrate with a minute gap d. and a second metal thin wire (second metal thin wire) 25 different from the first metal, and measures a galvanic current flowing between the first metal thin wire 23 and the second metal thin wire 25. The amperometric method is particularly preferred. Here, the first thin metal wire 23 is electrically connected to a first electrode 24 as a collecting electrode, and the second thin metal wire 25 is electrically connected to a second electrode 26 as a collecting electrode and bundled.
 ガルバニー電流測定方式の微小液滴検出部21aで微小液滴が検出できる原理を図3に示す。なお、この原理は特許文献2にも記載がある。
 蒸散水の湿気(蒸汗によるモイスチャー)が微小な液滴となって空気中を漂い、吸着/凝縮現象により、金属Aからなる第1の金属細線23と金属Bからなる第2の金属細線25に跨るように液滴(汗からの不純物イオンを含む水滴)が形成され、金属間の電気化学ポテンシャル差により、ガルバニー電流が流れる。このガルバニー電流の大きさは、液滴の数や大きさと相関があるので、ガルバニー電流の変化速度は微小液滴形成速度、すなわち蒸汗レートに呼応する。この呼応関係は、予め検量線を作成しておけば定量的にわかる。したがって、ガルバニー電流の変化速度をモニターすることによって蒸汗レートがわかる。
 ガルバニー電流の変化速度としては、ガルバニー出力電流の1次微分や、一定の基準で設定したガルバニー出力電流値に至るまでの立ち上がり時間の逆数などを用いることができる。立ち上がり時間を使用する方法は、短時間でタイムリーに警報を発するのに適するため、実用的に好ましい。熱中症や脱水症は命にかかわることなので、速さは特に重要である。
FIG. 3 shows the principle by which minute droplets can be detected by the minute droplet detector 21a of the galvanic current measurement method. This principle is also described in Patent Document 2.
Moisture of evaporated water (moisture due to perspiration) turns into fine droplets and floats in the air, and adsorption/condensation phenomena form the first fine metal wire 23 made of metal A and the second fine metal wire 25 made of metal B. A droplet (water droplet containing impurity ions from sweat) is formed so as to straddle the , and a galvanic current flows due to the electrochemical potential difference between the metals. Since the magnitude of this galvanic current has a correlation with the number and size of the droplets, the rate of change in the galvanic current corresponds to the minute droplet formation rate, that is, the perspiration rate. This correspondence relationship can be quantitatively understood by preparing a calibration curve in advance. Therefore, the perspiration rate is known by monitoring the rate of change of the galvanic current.
As the rate of change of the galvanic current, the first derivative of the galvanic output current, the reciprocal of the rise time up to the galvanic output current value set according to a certain standard, or the like can be used. The method using the rise time is practically preferred because it is suitable for timely alarming in a short period of time. Speed is especially important because heat stroke and dehydration are life-threatening.
 この蒸汗レートの計測方式は物理吸着検出方式であり、一般的な湿度センサに使用されている化学吸着検出方式とは異なる。
 上記物理吸着検出方式、すなわち微小な間隔dを隔てて絶縁性基板上に並置された第1の金属細線23と、第2の金属細線25とを備えた検出部において蒸汗によるモイスチャーを検出する方式は、図4の(a)に示すようにセンサ面(微小液滴検出面)に液滴が積層で吸着可能なため、高湿度下でもモイスチャーの量に応じて正確な応答が得られるという特徴を有する。一方、化学吸着検出方式は、図4の(b)に示すように単分子層吸着で吸着容量が限られるため、発汗量、すなわち発汗による液滴の量が多くなると吸着飽和が起こって測定精度が低下する。なお、化学吸着検出方式で発汗量を測る感湿シート、感湿システムの例としては、特許文献3を挙げることができる。
This perspiration rate measurement method is a physical adsorption detection method, which is different from the chemical adsorption detection method used in general humidity sensors.
Moisture due to perspiration is detected by the above-mentioned physical adsorption detection method, that is, a detection unit provided with a first fine metal wire 23 and a second fine metal wire 25 arranged side by side on an insulating substrate with a minute distance d. As shown in Fig. 4(a), droplets can be adsorbed in layers on the sensor surface (micro droplet detection surface), so even under high humidity conditions, an accurate response can be obtained according to the amount of moisture. It has characteristics. On the other hand, in the chemisorption detection method, as shown in Fig. 4(b), the adsorption capacity is limited by monomolecular layer adsorption. Therefore, when the amount of perspiration, that is, the amount of droplets due to perspiration increases, adsorption saturation occurs and the measurement accuracy is reduced. decreases. As an example of a moisture sensitive sheet and a moisture sensitive system for measuring the amount of perspiration by a chemisorption detection method, Patent Document 3 can be mentioned.
 第1の金属細線23と第2の金属細線25は、図2に示すように、その少なくとも一方を複数本設け、第1の金属細線23と第2の金属細線25とは互いに対向する方向から相手側に向かって伸びるようにして互いに平行に併走させ、かつ電極の幅が狭い電極、すなわち細線にすることにより、微小液滴検出部(蒸汗検知部)21aの専有面積を抑えた上で、両電極が近接して対向している部分を長くすることができる。そして、このことにより電池容量の増大、すなわち取り出すことができるガルバニー電流を増大させることができる。ガルバニー電流が増大すると、蒸汗レートの計測におけるS/Nが向上するので好ましい。 As shown in FIG. 2, at least one of the first thin metal wires 23 and the second thin metal wires 25 is provided in plural, and the first thin metal wires 23 and the second thin metal wires 25 are arranged from directions facing each other. By running parallel to each other so as to extend toward the other side and narrowing the width of the electrode, that is, by making it a thin wire, the area occupied by the microdroplet detection unit (steam sweat detection unit) 21a is suppressed. , the portion where both electrodes face each other closely can be lengthened. As a result, the battery capacity can be increased, that is, the galvanic current that can be taken out can be increased. An increase in the galvanic current is preferable because it improves the S/N in the sweat rate measurement.
 このような金属細線同士を平行に配置することで、金属細線間の近接部分の長さ(以下、併走距離と称する)を増大させる構成としては、例えば、櫛形構造や、二重渦巻き構造を挙げることができる。一定の平面領域内で2つの金属細線の併走距離をできるだけ長くするための構造自体は半導体素子分野等でよく知られているので、そのような構造も必要に応じて採用してもよい。なお、本発明において、「金属細線を基板上に並置する」とは、基板上に置かれる複数の金属細線の相互の向きを特定するものではなく、金属細線を基板の同一平面上に離間させて配置することをいう。 By arranging such thin metal wires parallel to each other, the length of the adjacent portion between the metal thin wires (hereinafter referred to as the parallel running distance) is increased. Examples of the structure include a comb structure and a double spiral structure. be able to. Since the structure itself for maximizing the parallel running distance of two thin metal wires within a certain planar area is well known in the field of semiconductor devices and the like, such a structure may also be adopted as necessary. In the present invention, "placing thin metal wires side by side on a substrate" does not specify the mutual orientation of a plurality of thin metal wires placed on the substrate, but the fine metal wires are spaced apart on the same plane of the substrate. It means to place
 第1の金属細線23の材料としては、第1の金属細線23をカソードとする場合、例えば、金(Au)、白金(Pt)、銀(Ag)、チタン(Ti)およびこれらの合金、並びに炭素(C)の群から選ばれる材料を挙げることができる。
 第2の金属細線25の材料としては、第2の金属細線25をアノードとする場合、例えば、銀(Ag)、銅(Cu)、鉄(Fe)、亜鉛(Zn)、ニッケル(Ni)、コバルト(Co)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、モリブデン(Mo)、マンガン(Mn)、マグネシウム(Mg)およびこれらの合金の群から選ばれる材料を挙げることができる。ただし、第1の金属細線23として銀またはその合金を用いる場合には、第2の金属細線25の材料としては銀およびその合金以外を用いる。
Examples of the material of the first fine metal wire 23 include gold (Au), platinum (Pt), silver (Ag), titanium (Ti) and alloys thereof when the first fine metal wire 23 is used as a cathode. Mention may be made of materials selected from the group of carbon (C).
When the second metal fine wire 25 is used as an anode, examples of the material of the second metal fine wire 25 include silver (Ag), copper (Cu), iron (Fe), zinc (Zn), nickel (Ni), Mention may be made of materials selected from the group of Cobalt (Co), Aluminum (Al), Tin (Sn), Chromium (Cr), Molybdenum (Mo), Manganese (Mn), Magnesium (Mg) and alloys thereof. However, when silver or its alloy is used as the first thin metal wire 23, the material of the second thin metal wire 25 is other than silver and its alloy.
 当然ながら、出力(電流)は金属細線の材料の組み合わせに依存する。例えば銀/鉄と金/銀とでは、銀/鉄の組み合わせの方が同じ面積当たりの腐食速度が大きいため、得られる電流値が大きくなる。一方で、金/銀の方は、電極の消耗が少ないため長寿命になる。ここで、銀は水滴を検出する場所にカビが発生するのを防ぐ効果があるので、第1の金属細線23または第2の金属細線25として用いることが好ましい。
 なお、第1の電極24は第1の金属細線23と、第2の電極26は第2の金属細線25と同じ材料とすると、蒸散速度計測用デバイスの製造工程が簡単化されるので好ましい。
Naturally, the output (current) depends on the material combination of the thin metal wires. For example, between silver/iron and gold/silver, the silver/iron combination has a higher corrosion rate per the same area, resulting in a higher current value. On the other hand, the gold/silver electrode wears less and has a longer life. Here, since silver has the effect of preventing mold from growing at the location where water droplets are detected, it is preferably used as the first fine metal wire 23 or the second fine metal wire 25 .
It is preferable to use the same material for the first electrode 24 and the first metal wire 23, and for the second electrode 26 and the second metal wire 25, because this simplifies the manufacturing process of the transpiration rate measuring device.
 第1の金属細線23と第2の金属細線25との間隔dは、1.0μmを超えて10μm未満が好ましく、1.5μm以上5μm以下がより好ましく、1.5μm以上3μm以下がさらにいっそう好ましい。間隔dがこの範囲にあると、蒸汗レートの分解能や計測再現性が高いことを発明者は多大な実験データの積み上げから見出した。 The distance d between the first fine metal wire 23 and the second fine metal wire 25 is preferably more than 1.0 μm and less than 10 μm, more preferably 1.5 μm or more and 5 μm or less, and even more preferably 1.5 μm or more and 3 μm or less. . The inventor found out from accumulation of a large amount of experimental data that the resolution and measurement reproducibility of the perspiration rate are high when the interval d is within this range.
 第1の金属細線23および第2の金属細線25の厚さは、10nm以上300nm以下が好ましい。第1の金属細線23および第2の金属細線25の厚さが10nmを下回ると、電気抵抗が大きくなりすぎて出力を取り出しにくくなり、また出力の経時変化も大きくなりやすいという問題が生じる。一方、第1の金属細線23および第2の金属細線25の厚さが300nmを上回っても特段の効果は認められず、材料の浪費になる。 The thickness of the first fine metal wire 23 and the second fine metal wire 25 is preferably 10 nm or more and 300 nm or less. When the thickness of the first metal fine wire 23 and the second metal fine wire 25 is less than 10 nm, the electrical resistance becomes too large, making it difficult to extract output, and the output tends to change with time. On the other hand, even if the thickness of the first metal fine wire 23 and the second metal fine wire 25 exceeds 300 nm, no particular effect is observed and the material is wasted.
 なお、第1の金属細線23および第2の金属細線25間において繰り返しガルバニー電流が流れると、アノード側の金属細線の金属がイオン化することでアノード側の金属細線が次第に消耗する。特に、金属細線の敷設密度を高くするために金属細線を細くした場合、このアノード側の金属細線の消耗によって金属細線間距離が次第に大きくなりやすく、また金属細線が断線しやすくなる。 Note that when the galvanic current repeatedly flows between the first thin metal wire 23 and the second thin metal wire 25, the metal of the thin metal wire on the anode side is ionized and the thin metal wire on the anode side is gradually consumed. In particular, when the fine metal wires are thinned to increase the laying density of the fine metal wires, wear of the fine metal wires on the anode side tends to gradually increase the distance between the fine metal wires, and the fine metal wires are likely to break.
 金属細線の敷設密度を維持したままでこの問題に対処するには、例えばアノード側の金属細線を厚くしたり、あるいはアノード側の金属細線の幅を広くし、その代わりにカソード側の金属細線の幅を狭くする等すればよい。 In order to deal with this problem while maintaining the laying density of the metal fine wires, for example, the thickness of the metal fine wires on the anode side may be increased, or the width of the metal fine wires on the anode side may be increased, and instead the thickness of the metal fine wires on the cathode side may be increased. The width should be narrowed.
 第1の金属細線23および第2の金属細線25は、手と触れたり、直接手から滴り落ちる汗に触れると蒸汗レートの計測精度が落ちるため、検体部102の構造を説明する図5に示すように、器31に配置された第1の金属細線23および第2の金属細線25の上面に保護キャップ32を形成しておくことが好ましい。ここで、保護キャップ32は、不要な汗からの保護性を高めるため、第1の金属細線23および第2の金属細線25に対する庇を有するいわゆるオーバーハング形状になっていることが好ましい。また、計測する手の部位を器に収めたとき、あるいは、計測する手の部位と器とを密着あるいは近接させたときに、手が保護キャップ32に触れるあるいは近接することで手(例えば指先)から体内静電気が放電され、意図しない電流値が計測される場合がある。そのため、保護キャップ32の材料の一部あるいは全部を導電性とすることで、手が保護キャップ32に触れた際あるいは近接した際に体内静電気を逃がすことができるようにすることも好ましい。但し、この場合には、保護キャップ32と第1の金属細線23および第2の金属細線25とは、電気的に絶縁された構成とする。 If the first fine metal wire 23 and the second fine metal wire 25 come into contact with the hand or the sweat dripping directly from the hand, the measurement accuracy of the sweat rate will drop. As shown, it is preferable to form a protective cap 32 on the upper surface of the first fine metal wire 23 and the second fine metal wire 25 arranged in the container 31 . Here, the protective cap 32 preferably has a so-called overhang shape that has eaves for the first fine metal wires 23 and the second fine metal wires 25 in order to enhance the protection from unnecessary perspiration. In addition, when the part of the hand to be measured is placed in the container, or when the part of the hand to be measured and the container are brought into close contact with or close to each other, the hand (for example, the fingertip) can be The static electricity in the body may be discharged from the body, and an unintended current value may be measured. Therefore, it is also preferable to make part or all of the material of the protective cap 32 conductive so that internal static electricity can be released when a hand touches or approaches the protective cap 32 . However, in this case, the protection cap 32, the first thin metal wire 23, and the second thin metal wire 25 are electrically insulated.
 保護キャップ32に用いられる膜としては、例えばSiO、SiON、SiO、SiN、Si、HfO、Al、ポリイミド、アクリル、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、および、銅、アルミニウム、ニッケル、亜鉛およびそれらの合金、および、ステンレス鋼からなる群より選ばれる単層膜、あるいはその群より選ばれる1以上からなる積層膜を挙げることができる。 Films used for the protective cap 32 include, for example, SiO2 , SiON, SiOx , SiNx , Si3N4 , HfOx , Al2O3 , polyimide, acrylic, polystyrene (PS), polypropylene (PP), and polyethylene. Terephthalate (PET), polycarbonate (PC), polytetrafluoroethylene (PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/hexafluoropropylene copolymer (FEP), tetrafluoroethylene A single layer film selected from the group consisting of ethylene copolymer (ETFE), copper, aluminum, nickel, zinc and their alloys, and stainless steel, or a laminated film consisting of one or more selected from the group can be mentioned.
 また、別の検体部103の構造を説明する図6に示すように、第1の金属細線23および第2の金属細線25や保護キャップ32の上方に、気体が透過する開口が形成された保護メッシュ41を設けておくのが好ましい。保護メッシュ41の開口により、発汗によるモイスチャーは保護メッシュ41を通り抜けることができる。一方で、保護メッシュ41が設けられていることにより、手が第1の金属細線23および第2の金属細線25に触れることを防止できる。
 保護メッシュ41としては、例えば、メッシュ板やメッシュフィルムなどのメッシュ部材、織布、不織布などが挙げられるが、これらに限定されない。保護メッシュ41の材料は、特に限定はなく、金属、酸化物、窒化物、酸窒化物、シリコン、有機物などを用いることができる。保護メッシュ41の開口は、保護メッシュ材に形成された孔や溝、保護メッシュ材に布を用いたときの繊維の空間部など、気体透過のパスが確保されたものとすることができる。
In addition, as shown in FIG. 6 for explaining the structure of another specimen part 103 , a protective cap 32 having an opening through which gas permeates is formed above the first thin metal wire 23 and the second thin metal wire 25 and the protective cap 32 . A mesh 41 is preferably provided. The openings in the protective mesh 41 allow moisture from perspiration to pass through the protective mesh 41 . On the other hand, provision of the protective mesh 41 can prevent the hands from touching the first fine metal wires 23 and the second fine metal wires 25 .
Examples of the protective mesh 41 include, but are not limited to, mesh members such as mesh plates and mesh films, woven fabrics, and non-woven fabrics. The material of the protective mesh 41 is not particularly limited, and metals, oxides, nitrides, oxynitrides, silicon, organic substances, etc. can be used. The openings of the protective mesh 41 can ensure gas permeation paths, such as holes or grooves formed in the protective mesh material, or spaces between fibers when cloth is used as the protective mesh material.
 また、第1の金属細線23および第2の金属細線25が配置されている微小液滴検出部21aは、図7に示すように、手(図の場合は指51)に対して上方または側方に前記手とは接触しない間隔を置いて配置されているのが好ましい。このようにすることにより、空間61(検体部の容量)をコンパクトにしながら直接手から滴り落ちる汗が第1の金属細線23および第2の金属細線25に触れるのを防ぐことができ、蒸汗レートの計測精度や計測信頼性が向上する。なお、上述のように、空間61は、蒸汗レートの短時間計測を行う上で、可能な限り小さくしておくことが好ましい。 Further, as shown in FIG. 7, the microdroplet detector 21a in which the first metal fine wire 23 and the second metal fine wire 25 are arranged is positioned above or on the side of the hand (the finger 51 in the figure). It is preferably spaced on one side and not in contact with the hand. By doing so, it is possible to make the space 61 (capacity of the specimen part) compact while preventing the sweat directly dripping from the hand from touching the first metal fine wire 23 and the second metal fine wire 25, and the sweat can be removed. Rate measurement accuracy and measurement reliability are improved. In addition, as described above, the space 61 is preferably kept as small as possible in order to perform short-time measurement of the sweat rate.
 測定部22には、第1の金属電極24および第2の金属電極26に配線27を介して電気的に繋がれた電流計28が備えられていて、第1の金属細線23と第2の金属細線25とによって発生したガルバニー電流を測定することができるようになっている。そして、その電流値や電流値の時間変化の測定データは、信号パス29によって比較手段12に送られる。信号パス29は、電気配線でも、無線配信でも、電子媒体でもよいが、即応性からは電気配線か無線配信が好ましい。 The measurement unit 22 is equipped with an ammeter 28 electrically connected to the first metal electrode 24 and the second metal electrode 26 via a wiring 27, and the first thin metal wire 23 and the second metal electrode 26 are connected to each other. The galvanic current generated by the thin metal wire 25 can be measured. Then, the measured data of the current value and the time change of the current value are sent to the comparison means 12 through the signal path 29 . The signal path 29 may be electrical wiring, wireless distribution, or electronic media, but electrical wiring or wireless distribution is preferable from the point of view of responsiveness.
 ここで、測定部22は、検体部21を構成する器31の内部に置かれていても、外部に置かれていても、内部と外部に跨って置かれていてもよい。器の内部に置かれると、デバイスをコンパクトにすることができる。器の外部に置かれると、(1)メンテナンス性が向上する、(2)器内部より比較的湿度の低い環境に測定部22を置くことができるので故障率が下がる、(3)機器からの発熱の影響が器内部に影響を与えにくいので蒸汗レートの計測精度や計測信頼性が向上するという効果が得られる。また、内部と外部に跨って置かれると、内部に置かれる場合と外部に置かれる場合の中庸の効果が得られる。 Here, the measurement unit 22 may be placed inside the container 31 that constitutes the sample unit 21, outside, or across the inside and outside. When placed inside a vessel, the device can be made compact. When placed outside the device, (1) maintainability is improved, (2) the failure rate is reduced because the measurement unit 22 can be placed in an environment with relatively lower humidity than the inside of the device, and (3) the damage from the device is reduced. Since the influence of heat generation is less likely to affect the inside of the vessel, the effect of improving the measurement accuracy and measurement reliability of the perspiration rate can be obtained. Also, if it is placed across the inside and the outside, a neutral effect can be obtained between the case where it is placed inside and the case where it is placed outside.
<比較手段>
 比較手段12は、測定部22から送られてくる電流値や電流値の時間変化の測定データと、基準として保有している判定データあるいは過去のデータから演算した判定データとを比較し、前記測定データが判定データを下回るときに警告手段13にその情報を伝える。
<Comparison means>
The comparison means 12 compares the measurement data of the current value and the time change of the current value sent from the measuring unit 22 with the determination data held as a reference or the determination data calculated from the past data, and compares the measurement data. When the data falls below the judgment data, the information is conveyed to the warning means 13. - 特許庁
 ここで、判定データは蒸散水生成速度とし、それを予め作成した検量線により、ガルバニー電流の変化速度に対応させ、測定データからの蒸散水の蒸散速度(計測蒸散速度)を判定データからの基準値と比較して判定を行う。 Here, the determination data is the transpiration water generation rate, which is made to correspond to the change rate of the galvanic current by a calibration curve prepared in advance, and the transpiration rate of the transpiration water from the measurement data (measured transpiration rate) is the standard from the determination data. Make a judgment by comparing with the value.
 実施例の項で実験例を挙げるが、発明者は、蒸汗レートと体重変化率の相関を調べ、さらに体重の減少率と脱水症の症状の関係をリンクさせて、蒸汗レートと熱中症リスクの関係を求めた。ここで、脱水症の症状と体重の減少率の関係の一例を図8に示す。
出典:教えて!「かくれ脱水」委員会
https://www.kakuredassui.jp/stop/knowledge/whatis/whatis03-2
 さらに、発明者は、蒸汗レート(蒸散速度)計測部位は、脇、首、胸、腹などの体幹部でなくとも、末端部で気温、風や日照等の環境の影響を受けやすいと考えられる手でも十分熱中症、脱水症の予兆を捉え、警告を与えられることを見出した。対象部位を手とすることで、計測時の取り扱いが大幅に容易になり、高齢者を日常的に管理するのに好適になる。
Experimental examples will be given in the section of Examples. asked for risk relationships. FIG. 8 shows an example of the relationship between the symptoms of dehydration and the rate of weight loss.
Source: Tell me! "Hidden Dehydration" Committee
https://www.kakuredassui.jp/stop/knowledge/whatis/whatis03-2
Furthermore, the inventor believes that the sweat rate (transpiration rate) measurement site is susceptible to environmental factors such as temperature, wind, and sunshine at the extremities, not just the trunk such as the armpits, neck, chest, and abdomen. It was found that even a bare hand can sufficiently detect signs of heat stroke and dehydration and give a warning. Using the hand as the target site greatly facilitates handling during measurement, making it suitable for daily management of the elderly.
 検討の結果得られた蒸汗レートの判定値(基準値)は、0.006mg/(cm・min)以上600mg/(cm・min)以下であった。 The determination value (standard value) of the vapor perspiration rate obtained as a result of the examination was 0.006 mg/(cm 2 ·min) or more and 600 mg/(cm 2 ·min) or less.
 また、熱中症や脱水症の発現には個人差があり、また、被験者が置かれている環境にも依存する。例えば、高齢者で、大半の時間を決まった住まいで生活している者は、その住居環境に依存する。
 そこで、発明者は、実験を行うにあたり、予め被験者の平常時の蒸汗レートを計測し、その値よりどれだけ蒸汗レートが低いと熱中症や脱水症の予兆になるかを調べた結果、被験者の体重変化を伴わなかったときの計測蒸散速度の平均値の1/4を判定基準(基準値)とすればよいことがわかった。すなわち、比較手段による判定の基準値は、蒸散速度計測手段11により予め被験者の手からの蒸散水の蒸散速度の計測を複数回実施し、被験者の体重変化を伴わなかった計測蒸散速度の平均値の1/4にすればよいことがわかった。
Moreover, the occurrence of heatstroke and dehydration varies among individuals, and also depends on the environment in which the subject is placed. For example, elderly people who spend most of their time in a fixed home depend on their living environment.
Therefore, in conducting the experiment, the inventor measured the normal sweat rate of the subject in advance, and investigated how much lower the sweat rate than that value would be a sign of heatstroke and dehydration. It was found that 1/4 of the average value of the measured transpiration rate when the body weight of the subject was not changed should be used as the criterion (reference value). That is, the reference value for determination by the comparison means is the average value of the measured transpiration rates that were obtained by measuring the transpiration rate of the transpiration water from the hand of the subject a plurality of times in advance by the transpiration rate measurement means 11, and that did not involve changes in the weight of the subject. I found that it should be 1/4.
<警告手段>
 警告手段13は、比較手段12から、計測蒸散速度が基準値(判定値)を下回ったことを伝える情報を受け取ったとき、熱中症、脱水症の恐れ、予兆ありとして警告を発する。警告は、被験者への視覚的な通知(文字や画像での表示)や、聴覚的な通知(音声での注意喚起)、およびリモートで被験者の健康管理を行っているところ(医療機関、介護施設など)への情報伝達、メッセージ連絡などを挙げることができる。また、警告に加え、水分補給、エアコンの稼働などの熱中症、脱水症予防への処置を伴うことも好ましい。
<Warning Means>
When the warning means 13 receives information from the comparison means 12 indicating that the measured transpiration rate has fallen below the reference value (determination value), it warns that heatstroke and dehydration may occur. Warnings include visual notifications to subjects (text and image displays), audible notifications (audio alerts), and remote health management of subjects (medical institutions, nursing homes, etc.). etc.) and message communication. In addition to the warning, it is also preferable to take measures to prevent heatstroke and dehydration, such as rehydration and air conditioner operation.
<温度補正>
 上記システムは、警告精度を高めるため、手の温度を計測する手温度計測手段と、手の温度に基づいて前記基準値を校正する基準値校正手段をさらに備えることが好ましい。
 この態様では、蒸散速度計測手段11による蒸散速度の計測と同時に手温度計測手段により被験者の手の温度を計測し、基準値校正手段により求めた、手の温度を反映した基準値Aと、蒸散速度の計測値(計測蒸散速度)を比較手段12により比較し、計測蒸散速度が基準値Aを下回ったとき警告手段13により警告を発する。
 ここで、手温度計測手段としては、検体部21内に備えられる、温度により電気抵抗が変化する温度計測用の電極を挙げることができる。また、第1の金属細線23または第2の金属細線25の何れかを体温付近で抵抗温度係数の高い材料にすると、温度計測用の電極をその金属細線の一部と共用することが可能になり、コストを下げることが可能になる。このような材料としては、例えば白金やチタンを挙げることができる。
 なお、手温度計測手段として赤外線温度計なども用いることができる。
<Temperature correction>
Preferably, the system further comprises hand temperature measuring means for measuring the temperature of the hand and reference value calibrating means for calibrating the reference value based on the temperature of the hand, in order to improve the warning accuracy.
In this embodiment, the temperature of the subject's hand is measured by the hand temperature measuring means at the same time as the transpiration rate is measured by the transpiration rate measuring means 11, and the reference value A reflecting the hand temperature and the transpiration are obtained by the reference value calibrating means. The comparison means 12 compares the measured value of the velocity (measured transpiration rate), and when the measured transpiration rate falls below the reference value A, the warning means 13 issues a warning.
Here, as the hand temperature measurement means, an electrode for temperature measurement, which is provided in the specimen section 21 and whose electrical resistance changes with temperature, can be mentioned. Further, if either the first thin metal wire 23 or the second thin metal wire 25 is made of a material having a high temperature coefficient of resistance near body temperature, it becomes possible to share the electrode for temperature measurement with part of the thin metal wire. It becomes possible to reduce the cost. Examples of such materials include platinum and titanium.
An infrared thermometer or the like can also be used as the hand temperature measuring means.
 以上により、熱中症、脱水症の予兆を低コスト、簡便かつタイムリーに警告するシステムが提供される。 As described above, a low-cost, simple, and timely warning system for signs of heatstroke and dehydration is provided.
 また、上述の蒸散速度計測手段11は、計測時間が短く、感度、精度も優れる蒸散速度計測用デバイスになっている。
 蒸散速度計測手段11からなる蒸散速度計測用デバイスは、計測対象となる手が微小液滴検出部21aに触れない非接触式であり、計測後の微小液滴検出部21aの乾燥も速く、繰り返し使用が可能である。また、デバイスの構成上、液滴1個でもガルバニー電流の測定が可能なため、蒸散水測定(蒸散速度計測)分解能としては0.0001mg/(cm・min)の能力をもち、実験例では0.001mg/(cm・min)を確認している。デバイスの大きさは、例えば指用として試作したもので50mm×65mm×25mmで、計測時間は10秒から30秒と短い。
 他の発汗センサと比較すると、その仕様は、例えばSKW-1000(スキノス製)の場合、蒸散水測定分解能は0.1mg/(cm・min)、計測時間30秒であり、発汗センサ(ライフケア製)の場合、蒸散水測定分解能は1.1mg/(cm・min)、計測時間60秒であり、そして汗センサ(UCバークレー)の場合、蒸散水測定分解能は3~4mg/(cm・min)、計測時間60秒である。しかも上記発汗センサや汗センサは繰り返し使用ができない。以上から、本発明の蒸散速度計測用デバイスは高い性能を有していることがわかる。
Moreover, the above-described transpiration rate measuring means 11 is a transpiration rate measuring device that has a short measurement time and is excellent in sensitivity and accuracy.
The transpiration rate measuring device consisting of the transpiration rate measuring means 11 is of a non-contact type in which the hand to be measured does not touch the microdroplet detection section 21a, and the microdroplet detection section 21a dries quickly after measurement and is repeated. Can be used. In addition, due to the configuration of the device, it is possible to measure the galvanic current even with a single droplet. 0.001 mg/(cm 2 ·min) has been confirmed. The size of the device is 50 mm×65 mm×25 mm, for example, for a finger, and the measurement time is as short as 10 to 30 seconds.
Compared to other perspiration sensors, the specifications of the SKW-1000 (manufactured by Sukinos), for example, are 0.1 mg/(cm 2 · min) of evaporated water measurement resolution, 30 seconds of measurement time, and the perspiration sensor (life care), the evaporative water measurement resolution is 1.1 mg/(cm 2 · min), the measurement time is 60 seconds, and in the case of the sweat sensor (UC Berkeley), the evaporative water measurement resolution is 3-4 mg/(cm 2 ·min), and the measurement time is 60 seconds. Moreover, the perspiration sensor and perspiration sensor cannot be used repeatedly. From the above, it can be seen that the transpiration rate measuring device of the present invention has high performance.
 なお、体水分の損失レベルを正確に判定できる技術は、まだ他に実用化されたものはない。また、市販の体組成計などでは体水分率を表示する機能を有しているが、激しい運動など、確実に脱水状態を引き起こす過程の前後を比較した際、運動後の方が、高い体水分率を示すなど、体水分の損失レベルとの相関は必ずしも正確に得られていない。さらに、医療機関においても、水分蒸発量は「体重(kg)×15+200×(体温-36.8)」なる計算式で求められており、体温が36.8℃を下回った場合には、水分蒸発量がマイナスの値になるなど、簡便な発汗計測技術が強く求められているのが現状である。本発明の蒸散速度計測用デバイスはこの要求に応えるものになっている。 However, there is no other technology that can accurately determine the level of body water loss that has been put into practical use. In addition, commercially available body composition analyzers have a function to display the body water percentage, but when comparing before and after a process that definitely causes dehydration, such as intense exercise, the body water content after exercise is higher. Correlations with levels of body water loss, such as percentages, have not always been accurately obtained. Furthermore, even in medical institutions, the amount of water evaporation is calculated by the formula "body weight (kg) x 15 + 200 x (body temperature - 36.8)". At present, there is a strong demand for a simple perspiration measurement technique, such as the amount of evaporation becoming a negative value. The transpiration rate measuring device of the present invention meets this demand.
 なお、上記では、微小液滴検出部21aとしてガルバニー電流測定方式を用いた場合について説明した。一方、液滴を化学吸着させて静電容量の変化を測定したり、電圧や抵抗の変化を測定する他の測定方式を用いる場合は、測定部22には電流計28に置き換わって、測定対象に応じて、インピーダンス測定装置、電圧計、抵抗測定装置などが設けられる。その場合、比較手段12における比較対象は、それらによって測定されるもの、すなわちインピーダンスや電圧や抵抗などになる。 In the above description, the case of using the galvanic current measurement method as the minute droplet detection unit 21a has been described. On the other hand, when measuring changes in capacitance by chemically adsorbing droplets or using other measurement methods for measuring changes in voltage or resistance, the measurement unit 22 is replaced with an ammeter 28, and the measurement target is Depending on the requirements, impedance measuring devices, voltmeters, resistance measuring devices, etc. are provided. In that case, the objects to be compared by the comparing means 12 are those measured by them, such as impedance, voltage, and resistance.
(実施の形態2)
 実施の形態2では、実施の形態1で説明した熱中症、脱水症予兆警告システム、および、蒸散速度計測用デバイスの効果的な運用について述べる。
(Embodiment 2)
Embodiment 2 describes effective operation of the heat stroke/dehydration warning system and the transpiration rate measurement device described in Embodiment 1. FIG.
 指先等の手から蒸散する汗(蒸汗)の速度(蒸汗レート)を計測して、体水分の損失を警告し、水分補給を促して熱中症、脱水症を予防することが、本発明の熱中症、脱水症予兆警告システム、および、蒸散速度計測用デバイスの第1の用途である。
 ターゲットの主な対象者は、在宅の高齢者である。在宅の高齢者は、大部分の時間を外部環境の変化が少ないところで過ごしているので、指、掌および手首のような末端部でも体幹部での計測と同様に対象部位の蒸汗レートを計測することにより、高い精度をもって熱中症、脱水症の予兆をモニターすることができる。
 また、本発明の蒸散速度計測用デバイスは、繰り返し利用が可能であることに加え、熱中症、脱水症の予兆を警告する上で十分な感度を有する。
It is the present invention to measure the rate of sweat (steamed sweat) that evaporates from the hands such as fingertips (steamed sweat rate), warn the loss of body water, and promote hydration to prevent heatstroke and dehydration. It is the first use of the heat stroke, dehydration warning system, and transpiration rate measurement device.
The main target audience is the elderly at home. Elderly people at home spend most of their time in a relatively static environment. By doing so, signs of heatstroke and dehydration can be monitored with high accuracy.
Moreover, the transpiration rate measuring device of the present invention can be used repeatedly and has sufficient sensitivity to warn of signs of heatstroke and dehydration.
 また、医療や介護の効率化を図り、社会負担を軽減するために、病気の可能性を早期に見つけ重症化を防ぐスクリーニングを行うことや、一人一人が自己の健康管理であるセルフチェックを常日頃行っておくことが望まれている。
 一般的なセルフチェックの項目としては、体温、血圧、脈拍および体重などがあるが、これらは脱水に起因する症状(脱水系症状)に対しては間接的である。本発明のシステムは、より直接的に脱水系症状を把握することができるので、脱水系症状のセルフチェックのシステムとしても活用できる。
In addition, in order to improve the efficiency of medical and nursing care and reduce the burden on society, it is necessary to detect the possibility of illness at an early stage and conduct screenings to prevent aggravation, and to conduct self-checks that are self-management by each person. It is hoped that you will go there on a daily basis.
General self-check items include body temperature, blood pressure, pulse and weight, but these are indirect for symptoms caused by dehydration (dehydration symptoms). Since the system of the present invention can more directly grasp dehydration symptoms, it can also be used as a self-check system for dehydration symptoms.
 本発明の蒸散速度計測用デバイスを、ホーム家電やインターホン型の見守りサービスで使用するボタン、例えばタッチスイッチに組み込み、あるいはタッチスイッチを収めるボックス内に配置し、本発明の熱中症、脱水症予兆警告システムに繋げることによって、より使いやすく熱中症、脱水症の予防や健康管理を行うことができる。すなわち、本発明のシステムは、ホーム家電やインターホン型の見守りサービスとの融合も可能であり、タッチスイッチを備えるホーム家電のある施設で使用することができる。
 このようなボタンは、日常使用するボタンであるため、違和感なく経時的、日常的に被験者(使用者)の発汗状況をモニターして、健康管理が行えるようになる。
The device for measuring the transpiration rate of the present invention is built into a button used in a home appliance or an intercom-type monitoring service, such as a touch switch, or placed in a box containing the touch switch, and the heat stroke or dehydration warning of the present invention is used. By connecting it to the system, it is easier to use and prevent heatstroke and dehydration, and manage your health. That is, the system of the present invention can be integrated with home appliances and intercom-type monitoring services, and can be used in facilities with home appliances equipped with touch switches.
Since such a button is used on a daily basis, it is possible to monitor the subject's (user's) perspiration status on a daily basis without any sense of incongruity, thereby enabling health management.
(実施例1)
 実施例1では、2種類の金属からなる金属細線を有する電極を櫛形に配置した微小液滴検出部が収められた蒸散速度計測手段である蒸散速度計測用デバイスを用いた実施例について説明する。当然ながら、本発明はこのような特定の形式に限定されるものではなく、本発明の技術的範囲は特許請求の範囲により規定されるものである。
(Example 1)
In Example 1, an example using a device for measuring the transpiration rate, which is a transpiration rate measuring means, and which contains a microdroplet detection unit in which electrodes having thin metal wires made of two kinds of metals are arranged in a comb shape will be described. Of course, the invention is not limited to this particular form, but the scope of the invention is defined by the appended claims.
 試作した蒸散速度計測用デバイスを図9および図10に示す。
 図9の(a)はデバイス単体の写真で、(b)はそのデバイスの器に指を置いた写真である。ここで、微小液滴検出部を備える検体部の器は、平面視略矩形のカップ状であり、上方が開口しており、図9の(b)に示すように被験者が指を置く(被せる)ことで当該指が蓋代わりとなる。
 図10はデバイスの微小液滴検出部の写真で、左側は、シリコンチップ(絶縁性基板)201上に櫛形に配置された金属細線(ガルバニーアレー)を、スケール204と一緒に撮影した像であり、右側には、第1の金属細線202と第2の金属細線203を上面から拡大観察した像も併せて載せてある。
 このデバイスは、図9の(b)のように器に指を置くと指(指先)から蒸散する汗の速度(蒸汗レート)を計測し、ワイヤレスでサーバーに計測データを送ることができる構成になっている。ここで、第1の金属細線にはアルミニウムを、第2の金属細線には金を用い、両金属細線の間隔dは、0.5μm、1μm、5μmおよび10μmの4通りとした。指を置いたときに形成される器内の空間容積は1cmである。以下に示す測定例の測定時の気温は25℃であった。
 このデバイスは半導体加工技術を用いて安価で大量生産できるとともに、A/D変換回路は世の中に普及している電子部品を用いて信号の取り出しができることから、低コストに作製が可能である。
Figs. 9 and 10 show the prototype transpiration rate measuring device.
(a) of FIG. 9 is a photograph of the device alone, and (b) is a photograph of the device with a finger placed on the vessel. Here, the vessel of the specimen section equipped with the microdroplet detection section has a cup-like shape that is substantially rectangular in plan view and has an opening at the top. As shown in FIG. ), the finger becomes a lid.
FIG. 10 is a photograph of the microdroplet detecting portion of the device. The image on the left is an image of fine metal wires (galvanic array) arranged in a comb shape on a silicon chip (insulating substrate) 201 together with a scale 204. , and on the right side, an enlarged observation image of the first fine metal wire 202 and the second fine metal wire 203 from the upper surface is also shown.
As shown in Fig. 9(b), this device measures the speed of perspiration (sweat rate) that evaporates from the finger (fingertip) when the finger is placed on the container, and can send the measurement data wirelessly to the server. It has become. Here, aluminum was used for the first fine metal wire, gold was used for the second fine metal wire, and the distance d between the two fine metal wires was 0.5 μm, 1 μm, 5 μm and 10 μm. The space volume inside the vessel formed when the finger is placed is 1 cm 3 . The air temperature at the time of measurement in the measurement examples shown below was 25°C.
This device can be mass-produced at low cost using semiconductor processing technology, and the A/D conversion circuit can be manufactured at low cost because it can extract signals using electronic components that are widely used in the world.
 このデバイスを用いたガルバニー出力電流の測定結果の一例を図11に示す。図11の(a)は被験者がランニングを行う前(ランニング前)、(b)はランニングを行い、心拍数が平常に戻った後(ランニング後)、そして(c)は水分を補給した10分後(水分補給後)の測定データで、デバイスの器に被験者が指を置いた直後から測定している。なお、被験者は年齢50歳の男性であり、ランニングは時速約10kmで約1時間行った。ガルバニー出力電流の測定では、被験者がデバイスの器に指を置いてから30秒後に器から指を離した。
 図11の(a)から(c)に示す結果から、出力電流の信号は、直線に近い形で立ち上がった後、揺らぎはあるものの一定の値に落ち着く傾向が読み取れる。
FIG. 11 shows an example of measurement results of the galvanic output current using this device. Figure 11 (a) is before the subject ran (before running), (b) is after the heart rate returned to normal after running (after running), and (c) is 10 minutes after rehydration. The measurement data after (after rehydration) was measured immediately after the subject placed his/her finger on the container of the device. The test subject was a 50-year-old male, and the running was performed at a speed of about 10 km/h for about 1 hour. For the measurement of galvanic output current, the subject placed their finger on the vessel of the device and then removed it 30 seconds later.
From the results shown in (a) to (c) of FIG. 11, it can be read that the output current signal rises in a nearly straight line and then settles down to a constant value although there are fluctuations.
 本発明で重要なことは、ガルバニー出力電流と、発汗による脱水レベル(体水分の損失レベル)との相関であることに鑑み、第1と第2の金属細線の間隔dと蒸汗の相関を調べるこの第1の評価では、基準として定めた出力電流値をその電流値に達するまでに要した時間(s)で除して蒸汗レートを評価した。ここでは、その基準出力電流値を1×10-11A(10pA)と定めた。したがって、この段階の蒸汗レートの単位はpA/sである。そして、蒸汗レートは、図12に示すように、出力電流(A)と金属細線に跨る液滴のボリューム(μm)の関係を示す検量線を作成することで、デバイスに依存する値ではない物理的に意味のあるmg/(cm・min)単位に変換することができる。 What is important in the present invention is the correlation between the galvanic output current and the dehydration level (body water loss level) due to perspiration. In this first evaluation investigated, the sweat rate was evaluated by dividing the reference output current value by the time (s) required to reach that current value. Here, the reference output current value is set to 1×10 −11 A (10 pA). Therefore, the units of the vapor rate at this stage are pA/s. Then, as shown in FIG. 12, the evaporation rate is a device-dependent value by creating a calibration curve showing the relationship between the output current (A) and the droplet volume (μm 3 ) across the metal fine wire. can be converted to units of mg/(cm 2 ·min) that are not physically meaningful.
 図11から、金属細線間隔dが5μmの場合は、ランニング後の脱水状態では出力電流は基準値に届かず(図11の(b))、ランニング前では約15秒(図11の(a))、水分補給後では約35秒後に基準値に達し(図11の(c))、ガルバニー出力電流と発汗による脱水レベルとの相関が取れ、脱水状態を検知するセンサ(脱水センサ)として十分機能することが実証された。
 一方、金属細線間隔dが、0.5μmと1μmの場合は、ランニング前、ランニング後、水分補給後の何れにおいても蒸汗レートに有意の差は認められず、10μmの場合は、ランニング前、ランニング後、水分補給後の何れにおいても出力電流値の上昇が僅かに留まっていることがわかる。
 これは、金属細線間隔dが、0.5μmと1μmの場合は、僅かな水分でも金属細線の狭い間隔を埋め尽くし、10μmの場合は、金属細線の間隔に水滴が溜まるのに時間が足りなかったためと考えられる。
 環境条件などを振って同様の手法の実験を行って測定データを蓄積したところ、第1と第2の金属細線の間隔dが、1μmを超え10μm未満で蒸汗レートと脱水レベルとの相関が得られた。特に、金属細線間隔dが1.5μm以上3μm以下で相関性が高まり、2μmで相関が極大になった。
From FIG. 11, when the metal wire spacing d is 5 μm, the output current does not reach the reference value in the dehydrated state after running ((b) in FIG. 11), and about 15 seconds before running ((a) in FIG. 11). ), and reached the reference value after about 35 seconds after rehydration ((c) in FIG. 11), and the correlation between the galvanic output current and the dehydration level due to perspiration can be obtained, and it functions sufficiently as a sensor (dehydration sensor) to detect the dehydration state. demonstrated to do.
On the other hand, when the metal fine wire spacing d was 0.5 μm and 1 μm, there was no significant difference in the sweat rate before running, after running, and after rehydration. It can be seen that the increase in the output current value remains slightly after running and after hydration.
This is because when the distance d between the metal wires is 0.5 μm and 1 μm, even a small amount of water fills the narrow space between the metal wires, and when the distance d is 10 μm, there is not enough time for the water droplets to accumulate in the space between the metal wires. It is thought that this is because
As a result of accumulating measurement data by conducting experiments of the same method under different environmental conditions, the correlation between the perspiration rate and the dehydration level was found when the distance d between the first and second fine metal wires was more than 1 μm and less than 10 μm. Got. In particular, the correlation was enhanced when the distance d between fine metal wires was 1.5 μm or more and 3 μm or less, and the correlation was maximized when the distance d was 2 μm.
 水分補給せずに発汗が続くと、人は脱水症になる。図8からわかるように、脱水による水分減少が、体重に占める割合として1~2%に留まっていれば、脱水症の症状としては軽度であるが、この割合が3~9%になると危険な状態(中等度の脱水症)になり、10%以上になると高度の脱水症で重篤な症状を示し、死に至ることがある。そのため、体重に対する水分減少の割合が1~2%程度の状態を簡便に検知して、水分を補給すれば脱水症を防げる。なお、「~」は、その前後の数値を含む範囲を表す。 If you continue to sweat without rehydrating, you will become dehydrated. As can be seen from FIG. 8, if the water loss due to dehydration remains at 1-2% of the body weight, the symptoms of dehydration are mild, but if this ratio is 3-9%, it becomes dangerous. A state (moderate dehydration) occurs, and when the concentration is 10% or more, severe dehydration causes severe symptoms and may lead to death. Therefore, dehydration can be prevented by simply detecting a state in which the ratio of water loss to body weight is about 1 to 2% and replenishing water. It should be noted that "-" represents a range including the numerical values before and after it.
 第2の実験では、運動前後および水分補給後のガルバニー出力電流を上記蒸散速度計測用デバイスで被験者の指から測定した直後に、体重計を用いて被験者の体重も測定した。
 その結果、蒸汗レートと体水分変化量(体重増減量)との間には図13に示す関係が得られた。ここで、第2の実験においては、蒸汗レートは、S/N比10に達したガルバニー出力電流値(pA)を、器の開口部に指を置いてからその電流値に至るまでの時間(s)で除して求めた。丸、下向き三角、上向き三角のプロットはそれぞれ、運動前、運動後、水分補給後の値を示している。
In a second experiment, the subject's weight was also measured using a weight scale immediately after the galvanic output current before and after exercise and after hydration was measured from the subject's finger with the transpiration rate measuring device.
As a result, the relationship shown in FIG. 13 was obtained between the perspiration rate and the change in body water content (increase or decrease in body weight). Here, in the second experiment, the perspiration rate was calculated from the galvanic output current value (pA) at which the S/N ratio reached 10, and the time from placing the finger on the opening of the vessel until reaching that current value. It was obtained by dividing by (s). Plots with circles, downward triangles, and upward triangles represent pre-exercise, post-exercise, and post-hydration values, respectively.
 図13において、熱中症リスク中と表示された領域では、蒸汗レートが低く、体重が減少(=体水分が損失)すると、その傾向は顕著となる。他方、熱中症リスク低と表示された領域では、蒸汗レートは熱中症リスク中の領域と比較すると3倍以上となっており、運動前や水分補給後に限られる。この結果における判別精度は87.5%となり、本デバイスを用いて計測した指先から蒸散する汗の蒸散速度と体水分の損失レベルの間には、強い相関が存在し、熱中症や脱水症の予兆を検知できることが実証された。 In FIG. 13, in the area indicated as medium risk of heatstroke, the sweat rate is low, and the tendency becomes remarkable when body weight decreases (= body water loss). On the other hand, in the area labeled as low heat stroke risk, the sweat rate is more than three times higher than that in the medium heat stroke risk area, and is limited to before exercise and after rehydration. The discrimination accuracy in this result is 87.5%, and there is a strong correlation between the transpiration rate of sweat transpiration from the fingertips measured using this device and the level of body water loss. It was demonstrated that the sign can be detected.
 本実施例の蒸散速度計測用デバイスでは、金属細線間隔dを0.1μmまで狭くすることで、最小0.1plの水滴を最短20msでS/N比2桁以上のガルバニー出力電流信号として検出した。
 このデバイスの微小液滴検出部上の液滴の量(体積)はガルバニー出力電流値に比例する。このため、蒸散した蒸散水を微小液滴検出部上で液滴として検出し、それによって得られるガルバニー出力電流の時間変化を測定する場合、ある時点の電流値はその時までに蒸散した蒸散水の総量に相当し、電流値の傾きは蒸散速度に相当する。したがって、蒸汗レートは電流値の傾きで評価することもできる。
In the transpiration rate measuring device of this example, by narrowing the distance d between the fine metal wires to 0.1 μm, water droplets of minimum 0.1 pl were detected as a galvanic output current signal with an S/N ratio of two digits or more in the shortest 20 ms. .
The amount (volume) of droplets on the microdroplet detector of this device is proportional to the galvanic output current value. For this reason, when the evaporated water is detected as droplets on the minute droplet detection unit and the time change of the galvanic output current obtained thereby is measured, the current value at a certain point is the amount of the evaporated water It corresponds to the total amount, and the slope of the current value corresponds to the transpiration rate. Therefore, the sweat rate can also be evaluated by the slope of the current value.
 なお、蒸汗レートを直接測定できる本実施例の蒸散速度計測用デバイスは、体温が上昇しているのに発汗が機能しなくなる熱中症の予兆を直接検知できることも確認している。
 また、上述したように、本実施例の蒸散速度計測用デバイスは、蒸汗レートの計測値をワイヤレスでクラウドサーバーに送信することができる構成であるので、一定の基準値を定めて脱水症や熱中症のリスクを判定して、被験者本人やその介助者に警告を発することが可能な機能を付加した別の実験も行った。そして、その機能が作動することも確認した。
It has also been confirmed that the transpiration rate measuring device of this embodiment, which can directly measure the perspiration rate, can directly detect a sign of heatstroke, in which sweating ceases to function even though the body temperature is rising.
Further, as described above, the transpiration rate measurement device of the present embodiment is configured to be able to wirelessly transmit the measured value of the perspiration rate to the cloud server. Another experiment was conducted with the addition of a function that can determine the risk of heatstroke and issue warnings to the subject and their caregivers. I also verified that the function works.
 本発明の熱中症、脱水症予兆警告システムは、上記説明のように、熱中症、脱水症の予兆を低コスト、簡便かつタイムリーに警告できる。このため、このシステムは、熱中症、脱水症発生の抑制、および重症化防止に寄与することができると考えられる。熱中症、脱水症は、地球温暖化や高齢化の進行とともに社会問題にもなってきているので、本システムが社会に与えるインパクトは大きい。
 また、本発明の蒸散速度計測用デバイスは、上記熱中症、脱水症予兆警告システムのタイムリー測定、低コスト化、高感度化に寄与するコアデバイスであり、一般社会のみならず産業としても大いに使用される可能性が高い。
As described above, the heat stroke and dehydration warning system of the present invention can warn the signs of heat stroke and dehydration in a low-cost, simple and timely manner. Therefore, it is believed that this system can contribute to suppressing the occurrence of heat stroke and dehydration and preventing the severity of the disease. Heatstroke and dehydration are becoming social problems as global warming and aging progress, so this system will have a great impact on society.
In addition, the transpiration rate measuring device of the present invention is a core device that contributes to timely measurement, cost reduction, and high sensitivity of the heat stroke and dehydration warning system, and is greatly appreciated not only by the general public but also by the industry. likely to be used.
11:蒸散速度計測手段(蒸散速度計測用デバイス)
12:比較手段
13:警告手段
21:検体部
21a:微小液滴検出部(蒸汗検知部)
22:測定部
23:第1の金属細線
24:第1の金属電極
25:第2の金属細線
26:第2の金属電極
27:配線
28:電流計
29:信号パス
31:器
32:保護キャップ
41:保護メッシュ
51:指
61:空間
101:熱中症、脱水症予兆警告システム
102:検体部
103:検体部
201:シリコンチップ(ガルバニーアレー)
202:第1の金属細線(アルミニウム)
203:第2の金属細線(金)
204:スケール
11: Transpiration rate measurement means (transpiration rate measurement device)
12: Comparing Means 13: Warning Means 21: Specimen Part 21a: Minute Droplet Detection Part (Sweat Detection Part)
22: Measuring part 23: First thin metal wire 24: First metal electrode 25: Second thin metal wire 26: Second metal electrode 27: Wiring 28: Ammeter 29: Signal path 31: Device 32: Protective cap 41: Protective mesh 51: Finger 61: Space 101: Heat stroke, dehydration warning system 102: Specimen part 103: Specimen part 201: Silicon chip (galvanic array)
202: First thin metal wire (aluminum)
203: Second metal thin wire (gold)
204: Scale

Claims (25)

  1.  被験者の手からの蒸散水の蒸散速度を計測する蒸散速度計測手段と、前記蒸散速度を予め定めた基準値と比較する比較手段と、警告を発する警告手段を有し、
     前記蒸散速度計測手段により計測された計測蒸散速度を前記比較手段により前記基準値と比較し、前記計測蒸散速度が前記基準値を下回ったとき前記警告手段により警告を発する、熱中症、脱水症予兆警告システム。
    Transpiration rate measuring means for measuring the transpiration rate of transpiration water from the subject's hand, comparison means for comparing the transpiration rate with a predetermined reference value, and warning means for issuing a warning,
    The comparison means compares the measured transpiration rate measured by the transpiration rate measuring means with the reference value, and the warning means issues a warning when the measured transpiration rate falls below the reference value. warning system.
  2.  前記基準値は、0.006mg/(cm・min)以上600mg/(cm・min)以下である、請求項1記載の熱中症、脱水症予兆警告システム。 The heat stroke and dehydration warning system according to claim 1, wherein the reference value is 0.006 mg/( cm2 ·min) or more and 600 mg/( cm2 ·min) or less.
  3.  前記基準値は、前記蒸散速度計測手段により予め前記蒸散速度の計測を複数回実施し、前記被験者の体重変化を伴わなかった計測蒸散速度の平均値の1/4とする、請求項1記載の熱中症、脱水症予兆警告システム。 2. The reference value according to claim 1, wherein the transpiration rate is measured a plurality of times in advance by the transpiration rate measuring means, and the average value of the measured transpiration rate without a change in body weight of the subject is set to ¼ of the average value. Heatstroke and dehydration warning system.
  4.  手の温度を計測する手温度計測手段と、手の温度に基づいて前記基準値を校正する基準値校正手段をさらに備え、
     前記計測蒸散速度の計測と同時に前記手温度計測手段により前記被験者の手の温度を計測し、前記基準値校正手段による基準値Aと前記計測蒸散速度の計測値を前記比較手段により比較し、前記計測蒸散速度が前記基準値Aを下回ったとき前記警告手段により警告を発する、請求項1から3の何れか1項に記載の熱中症、脱水症予兆警告システム。
    Further comprising hand temperature measuring means for measuring hand temperature and reference value calibrating means for calibrating the reference value based on hand temperature,
    Simultaneously with the measurement of the measured transpiration rate, the temperature of the subject's hand is measured by the hand temperature measuring means, and the comparison means compares the reference value A by the reference value calibration means and the measured value of the measured transpiration rate, 4. The heat stroke and dehydration warning system according to any one of claims 1 to 3, wherein when the measured transpiration rate falls below said reference value A, said warning means issues a warning.
  5.  タッチスイッチを備えるホーム家電のある施設で使用され、
     前記蒸散速度計測手段が前記タッチスイッチを収めるボックス内に配置されている、請求項1から4の何れか1項に記載の熱中症、脱水症予兆警告システム。
    Used in facilities with home appliances with touch switches,
    5. The heat stroke and dehydration warning system according to claim 1, wherein said transpiration rate measuring means is arranged in a box containing said touch switch.

  6.  前記蒸散速度計測手段は、第1の金属の細線と、前記第1の金属とは異なる第2の金属の細線とが絶縁性基板上に並置される微小液滴検出部と、前記第1の金属の細線と前記第2の金属の細線の間に流れるガルバニー電流を測定する測定部を備える、請求項1から5の何れか1項に記載の熱中症、脱水症予兆警告システム。

    The transpiration rate measuring means includes a fine droplet detection unit in which a fine wire of a first metal and a fine wire of a second metal different from the first metal are arranged side by side on an insulating substrate; The heat stroke and dehydration warning system according to any one of claims 1 to 5, comprising a measurement unit that measures a galvanic current flowing between the metal thin wire and the second metal thin wire.

  7.  前記蒸散速度計測手段は、
     少なくとも前記手の一部を収める検体部を有し、
     前記検体部には、第1の金属の細線と、前記第1の金属とは異なる第2の金属の細線とが絶縁性基板上に並置される微小液滴検出部が配置され、
     さらに前記検体部の内部、外部、あるいは内部と外部の両方に跨って置かれ、前記第1の金属の細線と前記第2の金属の細線の間に流れるガルバニー電流を測定する測定部を有する、請求項1から6の何れか1項に記載の熱中症、脱水症予兆警告システム。

    The transpiration rate measuring means is
    Having a specimen part that accommodates at least a part of the hand,
    The sample unit is provided with a fine droplet detection unit in which a thin wire of a first metal and a thin wire of a second metal different from the first metal are arranged side by side on an insulating substrate,
    Further, a measurement unit placed inside, outside, or straddling both the inside and outside of the specimen unit and measuring a galvanic current flowing between the first metal thin wire and the second metal thin wire, The heatstroke and dehydration warning system according to any one of claims 1 to 6.
  8.  前記第1の金属は金、白金、銀、チタンおよびこれらの合金、並びに炭素からなる群から選択される、請求項7に記載の熱中症、脱水症予兆警告システム。 The heat stroke and dehydration warning system according to claim 7, wherein the first metal is selected from the group consisting of gold, platinum, silver, titanium, alloys thereof, and carbon.
  9.  前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウムおよびこれらの合金からなる群から選択される、請求項7または8に記載の熱中症、脱水症予兆警告システム。 9. The heat sink of claim 7 or 8, wherein said second metal is selected from the group consisting of silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium and alloys thereof. disease, dehydration warning system.
  10.  前記第1の金属の細線と前記第2の金属の細線の少なくとも一方は複数本設けられ、前記第1の金属の細線と前記2の金属の細線とは互いに対向する方向から相手側に向かって伸びることにより、互いに平行に併走する、請求項7から9の何れか1項に記載の熱中症、脱水症予兆警告システム。 At least one of the thin wires of the first metal and the thin wires of the second metal is provided in plurality, and the thin wires of the first metal and the thin wires of the second metal are arranged in a direction facing each other toward the other side. The heat stroke and dehydration warning system according to any one of claims 7 to 9, which runs parallel to each other by extending.
  11.  前記第1の金属の細線と前記第2の金属の細線との間隔は、1.0μmを超えて10μm未満である、請求項7から10の何れか1項に記載の熱中症、脱水症予兆警告システム。 The heatstroke and dehydration symptom according to any one of claims 7 to 10, wherein the distance between the first metal thin wire and the second metal thin wire is more than 1.0 µm and less than 10 µm. warning system.
  12.  前記第1の金属の細線および前記第2の金属の細線の上面には、前記手と前記第1の金属の細線および前記第2の金属の細線との接触を防止する保護キャップが形成されている、請求項7から11の何れか1項に記載の熱中症、脱水症予兆警告システム。 A protective cap is formed on the upper surface of the first metal thin wire and the second metal thin wire to prevent contact between the hand and the first metal thin wire and the second metal thin wire. The heat stroke and dehydration warning system according to any one of claims 7 to 11.
  13.  前記第1の金属の細線および前記第2の金属の細線と、前記手との間には気体を透過する開口が形成された保護メッシュが配置されている、請求項7から12の何れか1項に記載の熱中症、脱水症予兆警告システム。 13. Any one of claims 7 to 12, wherein a protective mesh having gas permeable openings is disposed between the first metal thin wire and the second metal thin wire and the hand. The heatstroke and dehydration warning system described in the paragraph.
  14.  前記第1の金属の細線および前記第2の金属の細線は、前記手に対して上方または側方に前記手とは接触しない間隔を置いて配置されている、請求項7から13の何れか1項に記載の熱中症、脱水症予兆警告システム。 14. Any one of claims 7 to 13, wherein said first metal thin wire and said second metal thin wire are spaced above or laterally with respect to said hand so as not to contact said hand. The heatstroke and dehydration warning system according to item 1.
  15.  前記検体部の容量は0.05cm以上2.5cm以下である、請求項7から14の何れか1項に記載の熱中症、脱水症予兆警告システム。 The heat stroke and dehydration warning system according to any one of claims 7 to 14, wherein the capacity of the specimen part is 0.05 cm3 or more and 2.5 cm3 or less.
  16.  前記検体部内にはさらに温度により電気抵抗が変化する温度計測用の電極が配置されている、請求項7から15の何れか1項に記載の熱中症、脱水症予兆警告システム。 The heatstroke and dehydration warning system according to any one of claims 7 to 15, wherein an electrode for temperature measurement whose electric resistance changes with temperature is further arranged in the specimen part.
  17.  前記温度計測用の電極は、前記第1の金属の細線または前記第2の金属の細線と共用されている、請求項16に記載の熱中症、脱水症予兆警告システム。 The heat stroke and dehydration warning system according to claim 16, wherein the electrode for temperature measurement is shared with the thin wire of the first metal or the thin wire of the second metal.

  18.  少なくとも手の一部が収まる検体部を有し、
     前記検体部には、第1の金属の細線と、前記第1の金属とは異なる第2の金属の細線とが絶縁性基板上に並置される微小液滴検出部が配置され、
     前記第1の金属の細線および前記第2の金属の細線の上面には、前記手と前記第1の金属の細線および前記第2の金属の細線との接触を防止する保護キャップが形成され、
     前記第1の金属の細線および前記第2の金属の細線と、前記手との間には気体を透過する開口が形成された保護メッシュが配置され、
     前記検体部内部、外部、あるいは内部と外部の両方に跨って置かれ、前記第1の金属の細線と前記第2の金属の細線の間に流れるガルバニー電流を測定する測定部を有する、蒸散速度計測用デバイス。

    Having a specimen part that accommodates at least a part of the hand,
    The sample unit is provided with a fine droplet detection unit in which a thin wire of a first metal and a thin wire of a second metal different from the first metal are arranged side by side on an insulating substrate,
    A protective cap is formed on the top surface of the first metal thin wire and the second metal thin wire to prevent contact between the hand and the first metal thin wire and the second metal thin wire,
    Between the first metal thin wire and the second metal thin wire and the hand, a protective mesh having gas-permeable openings is arranged,
    Transpiration rate, having a measurement unit placed inside, outside, or straddling both the inside and outside of the specimen portion and measuring a galvanic current flowing between the first metal thin wire and the second metal thin wire. measurement device.
  19.  前記第1の金属は金、白金、銀、チタンおよびこれらの合金、並びに炭素からなる群から選択される、請求項18に記載の蒸散速度計測用デバイス。 The transpiration rate measuring device according to claim 18, wherein the first metal is selected from the group consisting of gold, platinum, silver, titanium and alloys thereof, and carbon.
  20.  前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウムおよびこれらの合金からなる群から選択される、請求項18または19に記載の蒸散速度計測用デバイス。 20. The ablation of claim 18 or 19, wherein said second metal is selected from the group consisting of silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium and alloys thereof. Device for speed measurement.
  21.  前記第1の金属の細線と前記第2の金属の細線の少なくとも一方は複数本設けられ、前記第1の金属の細線と前記2の金属の細線とは互いに対向する方向から相手側に向かって伸びることにより、互いに平行に併走する、請求項18から20の何れか1項に記載の蒸散速度計測用デバイス。 At least one of the thin wires of the first metal and the thin wires of the second metal is provided in plurality, and the thin wires of the first metal and the thin wires of the second metal are arranged in a direction facing each other toward the other side. The transpiration rate measuring device according to any one of claims 18 to 20, which runs parallel to each other by extending.
  22.  前記第1の金属の細線と前記第2の金属の細線との間隔は、1.0μmを超えて10μm未満である、請求項18から21の何れか1項に記載の蒸散速度計測用デバイス。 The transpiration rate measuring device according to any one of claims 18 to 21, wherein the distance between the thin wire of the first metal and the thin wire of the second metal is more than 1.0 µm and less than 10 µm.
  23.  前記検体部の容量は0.05cm以上2.5cm以下である、請求項18から22の何れか1項に記載の蒸散速度計測用デバイス。 The transpiration rate measuring device according to any one of claims 18 to 22, wherein the volume of the specimen part is 0.05 cm 3 or more and 2.5 cm 3 or less.
  24.  前記検体部内にはさらに温度により電気抵抗が変化する温度計測用の電極が配置されている、請求項18から23の何れか1項に記載の蒸散速度計測用デバイス。 The transpiration rate measuring device according to any one of claims 18 to 23, further comprising an electrode for temperature measurement whose electric resistance changes with temperature is arranged in the specimen part.
  25.  前記温度計測用の電極は、前記第1の金属の細線または前記第2の金属の細線と共用されている、請求項24に記載の蒸散速度計測用デバイス。 The transpiration rate measuring device according to claim 24, wherein the electrode for temperature measurement is shared with the thin wire of the first metal or the thin wire of the second metal.
PCT/JP2022/011159 2021-03-19 2022-03-14 Hyperthermia/dehydration predictive warning system and perspiration rate measuring device WO2022196600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023507076A JP7477932B2 (en) 2021-03-19 2022-03-14 Heat stroke and dehydration warning system and evaporation rate measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021045311 2021-03-19
JP2021-045311 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196600A1 true WO2022196600A1 (en) 2022-09-22

Family

ID=83320356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011159 WO2022196600A1 (en) 2021-03-19 2022-03-14 Hyperthermia/dehydration predictive warning system and perspiration rate measuring device

Country Status (2)

Country Link
JP (1) JP7477932B2 (en)
WO (1) WO2022196600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171472A1 (en) * 2022-03-09 2023-09-14 国立研究開発法人物質・材料研究機構 Heart-rate variability measurement system and heart-rate variability measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020137992A1 (en) * 1999-11-16 2002-09-26 Lahtinen Aulis Tapani Method and device for measuring transepidermal water loss of skin surface
US20170325008A1 (en) * 2016-05-09 2017-11-09 Intel Corporation Wearable apparatus for measurements of a user's physiological context
WO2018150903A1 (en) * 2017-02-14 2018-08-23 国立研究開発法人物質・材料研究機構 Method and system for preventing dew formation and light scattering associated with dew formation
WO2019044640A1 (en) * 2017-09-01 2019-03-07 国立研究開発法人物質・材料研究機構 Hygroscopic sensor
WO2020100778A1 (en) * 2018-11-12 2020-05-22 国立研究開発法人物質・材料研究機構 Condensation detection element
JP2020522698A (en) * 2017-06-02 2020-07-30 ノースウェスタン ユニヴァーシティNorthwestern University Microfluidic system for epidermal sampling and sensing
EP3756544A1 (en) * 2019-06-26 2020-12-30 Koninklijke Philips N.V. System and method for correcting a sweat analyte measurement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020137992A1 (en) * 1999-11-16 2002-09-26 Lahtinen Aulis Tapani Method and device for measuring transepidermal water loss of skin surface
US20170325008A1 (en) * 2016-05-09 2017-11-09 Intel Corporation Wearable apparatus for measurements of a user's physiological context
WO2018150903A1 (en) * 2017-02-14 2018-08-23 国立研究開発法人物質・材料研究機構 Method and system for preventing dew formation and light scattering associated with dew formation
JP2020522698A (en) * 2017-06-02 2020-07-30 ノースウェスタン ユニヴァーシティNorthwestern University Microfluidic system for epidermal sampling and sensing
WO2019044640A1 (en) * 2017-09-01 2019-03-07 国立研究開発法人物質・材料研究機構 Hygroscopic sensor
WO2020100778A1 (en) * 2018-11-12 2020-05-22 国立研究開発法人物質・材料研究機構 Condensation detection element
EP3756544A1 (en) * 2019-06-26 2020-12-30 Koninklijke Philips N.V. System and method for correcting a sweat analyte measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171472A1 (en) * 2022-03-09 2023-09-14 国立研究開発法人物質・材料研究機構 Heart-rate variability measurement system and heart-rate variability measurement method

Also Published As

Publication number Publication date
JP7477932B2 (en) 2024-05-02
JPWO2022196600A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
Chen et al. Smart gas sensor arrays powered by artificial intelligence
EP3402393B1 (en) Paper based electronics platform
Lin et al. Large‐scale and washable smart textiles based on triboelectric nanogenerator arrays for self‐powered sleeping monitoring
JP4298299B2 (en) Method and apparatus for measuring heat flow
CN109752029B (en) Preparation method of paper-based capacitive flexible sensor
WO2022196600A1 (en) Hyperthermia/dehydration predictive warning system and perspiration rate measuring device
US10444038B2 (en) Detecting personnel, their activity, falls, location, and walking characteristics
CN105118236A (en) Paralysis falling detection and prevention device and processing method thereof
CN110226802A (en) A kind of resource allocation management system based on multisensor towards health
US20150057516A1 (en) Fully wireless continuously wearable sensor for measurement of eye fluid
US20180038816A1 (en) Miniature gas sensor and method for manufacturing the same
CN205458631U (en) Multidimension physiological parameter sensor and multidimension physiological parameters detecting system
Han et al. All Resistive Pressure–Temperature Bimodal Sensing E‐Skin for Object Classification
Thiyagarajan et al. Cost-effective, disposable, flexible, and printable MWCNT-based wearable sensor for human body temperature monitoring
Basjaruddin et al. Measurement device for stress level and vital sign based on sensor fusion
Majumder et al. sEmoD: A personalized emotion detection using a smart holistic embedded IoT system
KR20200114673A (en) self-powered vital signs sensor and monitoring system using the same
Xuan et al. Smart mask based on lead-free perovskite humidity sensor for labor intensity grading by breath monitoring
US20230084600A1 (en) Non-invasive hydration and electrolyte monitoring
WO2023171472A1 (en) Heart-rate variability measurement system and heart-rate variability measurement method
CN208769758U (en) Monitoring probe
WO2005053770A2 (en) A self-condensing ph sensor
JP4800151B2 (en) Micro pressure detector
CN206772887U (en) A kind of high temperature-resistant polymer Humidity-Sensitive Capacitance Sensor
CN112782089A (en) Gas sensor based on photoacoustic effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023507076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771346

Country of ref document: EP

Kind code of ref document: A1