JP4800151B2 - Micro pressure detector - Google Patents

Micro pressure detector Download PDF

Info

Publication number
JP4800151B2
JP4800151B2 JP2006228352A JP2006228352A JP4800151B2 JP 4800151 B2 JP4800151 B2 JP 4800151B2 JP 2006228352 A JP2006228352 A JP 2006228352A JP 2006228352 A JP2006228352 A JP 2006228352A JP 4800151 B2 JP4800151 B2 JP 4800151B2
Authority
JP
Japan
Prior art keywords
pressure detection
polymer film
hole
conductive layer
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006228352A
Other languages
Japanese (ja)
Other versions
JP2008051660A (en
Inventor
芳文 山口
直敏 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Yaskawa Electric Corp
Original Assignee
Kyushu University NUC
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Yaskawa Electric Corp filed Critical Kyushu University NUC
Priority to JP2006228352A priority Critical patent/JP4800151B2/en
Publication of JP2008051660A publication Critical patent/JP2008051660A/en
Application granted granted Critical
Publication of JP4800151B2 publication Critical patent/JP4800151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、微小圧力検出装置に関し、特に手首領域の橈骨動脈から発生する脈拍を測定する微小圧力検出装置に関する。   The present invention relates to a minute pressure detection device, and more particularly to a minute pressure detection device for measuring a pulse generated from a radial artery in a wrist region.

従来の血圧等の流体圧力測定には、スパッタリングや金属のシルクスクリーン印刷によりNiCu合金や銀からなる金属層と、非電気伝導性材料として圧電材料を用いたセンサーが開発されている(特許文献1参照)。
図4は特許文献1記載の圧力センサーを示すものである。図4において、14、15はNiCu合金や銀から形成された金属層で、16は圧電特性を有する非電気伝導性材料のフィルムで、電気伝導性の金属層14、15でサンドイッチされている。17は非電気伝導性の空気、ガス、あるいは弾性成分が満たされた中央室で、非電気伝導性材料18がフィルム16、金属層14、15及び出力端19、20の外囲器に用いられている。金属層14の表面にはアルコールで消毒できるように中性層21で保護されている。なお、Sは皮膚組織である。そこで、皮膚組織S内にある動脈に血液などの流体が通り、脈動が発生するとフィルム16に機械的な応力がかかり、フィルムの二つの面にそれぞれ電荷が分離される。分離された電荷を集め出力端19、20に送ると、出力端19、20の間に電気的なポテンシャルの差(電位)が生じるので、この電位差を計測することで血圧の変化を測定している。
特表2000−516121号公報(第9−10頁、図1)
For measuring fluid pressure such as conventional blood pressure, a sensor using a metal layer made of NiCu alloy or silver by sputtering or metal silk screen printing and a piezoelectric material as a non-electrically conductive material has been developed (Patent Document 1). reference).
FIG. 4 shows a pressure sensor described in Patent Document 1. In FIG. 4, reference numerals 14 and 15 denote metal layers formed of NiCu alloy or silver, and reference numeral 16 denotes a film of a non-electrically conductive material having piezoelectric characteristics, which is sandwiched between the electrically conductive metal layers 14 and 15. Reference numeral 17 denotes a central chamber filled with non-electrically conductive air, gas, or elastic component, and the non-electrically conductive material 18 is used for the envelope of the film 16, the metal layers 14 and 15, and the output ends 19 and 20. ing. The surface of the metal layer 14 is protected with a neutral layer 21 so that it can be sterilized with alcohol. S is skin tissue. Therefore, when a fluid such as blood passes through the artery in the skin tissue S and pulsation occurs, mechanical stress is applied to the film 16, and the charges are separated on the two surfaces of the film, respectively. When the separated charges are collected and sent to the output terminals 19 and 20, an electrical potential difference (potential) is generated between the output terminals 19 and 20. Therefore, by measuring this potential difference, a change in blood pressure is measured. Yes.
JP 2000-516121 A (page 9-10, FIG. 1)

従来の血圧測定方法では、圧電特性を有する非電気伝導性材料からなるフィルム16を金属層14、15で両方からサンドイッチ状にしていることから、装置全体が大きくなるため、乳幼児などの小さな手首には装着しにくい上に、圧電特性素子を利用しているため、微小な圧力変化を検出することは難しく、さらに、装着者の皮膚組織から発生する汗の蒸発を逃がせないため、皮膚組織Hがかぶれて、センサーを長時間使用することができない、という問題があった。
また、圧電特性を有するフィルム16及び金属層14、15を複数個、配置していないので、頻脈、徐脈、もしくは不整脈などの微小な脈拍変化を高感度に検出しにくいなどの問題もあった。
本発明はこのような問題点に鑑みてなされたものであり、手首の大きさや形状に関係なく、センサー本体を橈骨動脈付近の皮膚組織Sに密着して固定化させることができ、且つセンサー本体を小型・軽量化できるととともに、頻脈、徐脈、もしくは不整脈による微小な脈拍変化も高感度に検出することができる微小圧力検出装置を提供することを目的とする。
In the conventional blood pressure measurement method, since the film 16 made of a non-electrically conductive material having piezoelectric characteristics is sandwiched between the metal layers 14 and 15, the entire apparatus becomes large, so that it can be applied to a small wrist such as an infant. Is difficult to wear, and since it uses a piezoelectric characteristic element, it is difficult to detect minute pressure changes, and furthermore, since the evaporation of sweat generated from the wearer's skin tissue cannot be released, the skin tissue H There was a problem that the sensor could not be used for a long time.
In addition, since a plurality of films 16 and metal layers 14 and 15 having piezoelectric characteristics are not arranged, there is a problem that it is difficult to detect minute pulse changes such as tachycardia, bradycardia, or arrhythmia with high sensitivity. It was.
The present invention has been made in view of such problems, and the sensor body can be fixed in close contact with the skin tissue S near the radial artery regardless of the size and shape of the wrist, and the sensor body. It is an object of the present invention to provide a micro pressure detecting device that can detect a small pulse change due to tachycardia, bradycardia, or arrhythmia with high sensitivity.

上記問題を解決するため、本発明は、次のようにしたものである。
請求項1記載の微小圧力検出装置の発明は、複数の貫通穴をあけた高分子フィルムと、前記各貫通穴の内壁に形成され両開口に延びる導電層と、前記各貫通穴の一方の開口の前記導電層の上に設けられた環状の感圧抵抗素子と、前記各貫通穴の他方の開口の前記導電層の上に設けられた環状の受信端子と、前記高分子フィルムの一方の面に形成され前記環状の各感圧抵抗素子にそれぞれ接続される電源線と、前記高分子フィルムの他方の面に形成され前記各受信端子にそれぞれ接続される信号線とを有することを特徴とする。
請求項2記載の発明は、請求項1記載の微小圧力検出装置において、前記高分子フィルムにあけられた前記貫通穴とは異なる大きさの貫通穴の上に信号処理部を設け、前記信号処理部に前記導電層および前記信号線をそれぞれ電気的接続をし、前記信号処理部から前記感圧抵抗素子に電気を流すことで微小圧力検出回路を形成することを特徴とする。
In order to solve the above problem, the present invention is as follows.
The invention of the micro pressure detection device according to claim 1 includes a polymer film having a plurality of through holes, a conductive layer formed on an inner wall of each through hole and extending to both openings, and one opening of each through hole. An annular pressure-sensitive resistor element provided on the conductive layer, an annular receiving terminal provided on the conductive layer in the other opening of each through hole, and one surface of the polymer film And a signal line connected to each receiving terminal formed on the other surface of the polymer film. .
According to a second aspect of the present invention, in the micro pressure detection device according to the first aspect, a signal processing unit is provided on a through hole having a size different from the through hole formed in the polymer film, and the signal processing is performed. The conductive layer and the signal line are electrically connected to the part, and a minute pressure detection circuit is formed by flowing electricity from the signal processing part to the pressure-sensitive resistor element.

請求項3記載の発明は、請求項1記載の微小圧力検出装置において、前記感圧抵抗素子、前記導電層、および前記電源線と前記信号線が、単層カーボンナノチューブ、カーボンナノウォール、カップ積層型カーボンナノファイバーの少なくとも1種からなるカーボンナノ部材であることを特徴とする。
請求項4記載の発明は、請求項1記載の微小圧力検出装置において、前記感圧抵抗素子、前記導電層、および前記電源線と前記信号線の各下地には、グラフト重合されたポリマー層が形成されていることを特徴とする。
請求項5記載の発明は、請求項4記載の微小圧力検出装置において、前記ポリマー層が、光グラフト重合反応により得られる、アクリル酸、ジアリルジメチルアンモニウムクロリド、アクリロイルオキシエチルトリメチルアンモニウムクロリドのいずれかのモノマーである特徴とする。
請求項6記載の発明は、請求項1記載の微小圧力検出装置において、前記信号線と前記電源線および前記端子部の表面が、絶縁層で覆われていることを特徴とする。
請求項7記載の発明は、請求項6記載の微小圧力検出装置において、前記絶縁層が、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリエチレンテレフタレート、酢酸セルロース、ポリオレフィン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリエーテル、ポリアミド、ポリイミド、ポリカーボネート、ポリウレタン、ポリテトラフルオロエチレン、ニトロセルロース、アクリル樹脂、エポキシ樹脂のいずれかであることを特徴とする。
According to a third aspect of the present invention, in the micro pressure detection device according to the first aspect, the pressure-sensitive resistance element, the conductive layer, and the power supply line and the signal line are a single-walled carbon nanotube, a carbon nanowall, and a cup stack. It is a carbon nano member consisting of at least one type of carbon nanofiber.
According to a fourth aspect of the present invention, in the micro pressure detecting device according to the first aspect, a graft-polymerized polymer layer is formed on each of the pressure-sensitive resistor element, the conductive layer, and the power supply line and the signal line. It is formed.
The invention according to claim 5 is the micro pressure detection device according to claim 4, wherein the polymer layer is any one of acrylic acid, diallyldimethylammonium chloride, acryloyloxyethyltrimethylammonium chloride obtained by a photograft polymerization reaction. Characterized as a monomer.
According to a sixth aspect of the present invention, in the micro pressure detection device according to the first aspect, the surfaces of the signal line, the power supply line, and the terminal portion are covered with an insulating layer.
The invention according to claim 7 is the micro pressure detection device according to claim 6, wherein the insulating layer is made of polyethylene, polypropylene, polymethyl methacrylate, polyethylene terephthalate, cellulose acetate, polyolefin, polyacrylonitrile, polyvinylidene fluoride, polyether, It is one of polyamide, polyimide, polycarbonate, polyurethane, polytetrafluoroethylene, nitrocellulose, acrylic resin, and epoxy resin.

上記構成により、図1(後述)に示す高分子フィルム2には多数の貫通穴H(直径が数十μmの微小な穴が好ましい)に環状の感圧抵抗素子3がそれぞれ対応して設けられているため、乳幼児などの小さな手首の橈骨動脈から発生する脈拍をいずれかの感圧抵抗素子3がしかも高感度に検出することができる。
また、図3(後述)に示すポリマー層9及びカーボンナノ部材で形成された感圧抵抗素子3と受信端子7は、貫通穴が形成されているのでこれが通気穴となり、装着者の皮膚組織から発生する汗が蒸発し易くなるため、皮膚組織Sがかぶれたりすることがなく、センサーを長時間使用することが可能となる。
また、感圧抵抗素子3および共通端子4が単層カーボンナノチューブやカーボンナノウォール、またはカップ積層型カーボンナノファイバーからなるカーボンナノ部材で形成されているため、センサー自体を小型・軽量にすることができるとともに、頻脈、徐脈、もしくは不整脈などの微小な脈拍変化も高感度に検出することができる。
また、高分子フィルム2(図1)の両側には、粘着部6を設けているため、乳幼児から成人まで、手首の大きさや形状に関係なく橈骨動脈付近の皮膚組織S(図3)の表面に高分子フィルム2を密着して貼り付けることができる。
With the above configuration, the polymer film 2 shown in FIG. 1 (described later) is provided with annular pressure-sensitive resistor elements 3 corresponding to a large number of through holes H (preferably fine holes with a diameter of several tens of μm). Therefore, any pressure-sensitive resistance element 3 can detect a pulse generated from the radial artery of a small wrist such as an infant with high sensitivity.
In addition, since the pressure-sensitive resistance element 3 and the receiving terminal 7 formed of the polymer layer 9 and the carbon nano member shown in FIG. 3 (described later) are formed with through holes, they serve as ventilation holes, and the skin tissue of the wearer Since the generated sweat easily evaporates, the skin tissue S is not rashed, and the sensor can be used for a long time.
In addition, since the pressure-sensitive resistance element 3 and the common terminal 4 are formed of carbon nano members made of single-walled carbon nanotubes, carbon nanowalls, or cup-stacked carbon nanofibers, the sensor itself can be made small and light. In addition, minute pulse changes such as tachycardia, bradycardia, or arrhythmia can be detected with high sensitivity.
In addition, since the adhesive film 6 is provided on both sides of the polymer film 2 (FIG. 1), the surface of the skin tissue S (FIG. 3) in the vicinity of the radial artery from infants to adults irrespective of the size and shape of the wrist. The polymer film 2 can be adhered and pasted onto.

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

図1及び図2は、本発明の高分子フィルムからなる微小圧力検出装置の両面の構成を示す概略平面図で、図1は表(おもて)面、図2は裏面であり、図3は微小圧力検出装置の側断面図である。
図1〜図3において、1は本発明に係る微小圧力検出装置、2は厚みが数百μm〜数mmの柔軟性のある高分子フィルムで、材料としては、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリエチレンテレフタレート、酢酸セルロース、ポリオレフィン、ポリアクリロニトリル、ポリスルホン、ポリエーテル、ポリアミド、ポリイミド、ポリカーボネート、ニトロセルロース、ポリウレタン、ポリ塩化ビニル、アクリル樹脂、フッ素系樹脂、エチレン−プロピレン共重合体、エチレン−テトラフルオロエチレン共重合体、テトラフルオロエチレン−クロロトリフルオロエチレン共重合体などがあるが、装着者の皮膚組織Sを刺激しないような材料を用いた方が良く、絆創膏などで用いられているポリウレタンが好ましい。
1 and 2 are schematic plan views showing the configuration of both surfaces of a micro pressure detection device made of a polymer film of the present invention, FIG. 1 is a front surface, FIG. 2 is a back surface, and FIG. FIG. 3 is a side sectional view of the minute pressure detection device.
1 to 3, 1 is a micro pressure detection device according to the present invention, 2 is a flexible polymer film having a thickness of several hundred μm to several mm, and the materials include polyethylene, polypropylene, polymethyl methacrylate, Polyethylene terephthalate, cellulose acetate, polyolefin, polyacrylonitrile, polysulfone, polyether, polyamide, polyimide, polycarbonate, nitrocellulose, polyurethane, polyvinyl chloride, acrylic resin, fluorine resin, ethylene-propylene copolymer, ethylene-tetrafluoroethylene There are copolymers, tetrafluoroethylene-chlorotrifluoroethylene copolymers, etc., but it is better to use a material that does not irritate the skin tissue S of the wearer, and polyurethane used in adhesive bandages and the like is preferred.

高分子フィルム2の皮膚組織Sに接する面には、直径が数十μmの微小な円形状の貫通穴Hが多数形成され、またその円形状の貫通穴Hに対応して環状の感圧抵抗素子3が、互いに数十μmの距離を置いて数百から数千個配列されている。
それらの多数の感圧抵抗素子3の中で、図で一番右側の中央部に位置している感圧抵抗素子3から一定の間隔を置いて感圧抵抗素子3よりも直径の大きな円形状の貫通穴H’があけられており、その貫通穴H’の開口近傍に環状の電源共通端子4が設けられている。そしてこの電源共通端子4にそれぞれ電源線5a、5bを介して各感圧抵抗素子3の環状端子3a、3bの2箇所が接続されている。
また、高分子フィルム2の両側には、高分子フィルム2を皮膚組織Sに密着・固定化するための粘着部6(図1)が設けてある。
A large number of minute circular through holes H having a diameter of several tens of μm are formed on the surface of the polymer film 2 in contact with the skin tissue S, and an annular pressure-sensitive resistor corresponding to the circular through hole H is formed. Several hundreds to thousands of elements 3 are arranged at a distance of several tens of μm from each other.
Among these many pressure-sensitive resistor elements 3, a circular shape having a diameter larger than that of the pressure-sensitive resistor element 3 at a certain distance from the pressure-sensitive resistor element 3 located in the rightmost central portion in the drawing. Through hole H ′, and an annular power supply common terminal 4 is provided in the vicinity of the opening of the through hole H ′. The power supply common terminal 4 is connected to two locations of the annular terminals 3a and 3b of each pressure-sensitive resistance element 3 through power supply lines 5a and 5b, respectively.
Moreover, the adhesive part 6 (FIG. 1) for sticking and fixing the polymer film 2 to the skin tissue S is provided on both sides of the polymer film 2.

一方、高分子フィルム2の皮膚組織Sに接しない側の面には、各感圧抵抗素子3の設けられた貫通穴Hの反対側開口位置に、感圧抵抗素子3と同じ大きさの環状の受信端子7がある。これによって、皮膚組織Sから発した汗は環状の感圧抵抗素子3(図3)の穴と高分子フィルム2の貫通穴Hと環状の受信端子7の穴を通って外気へ蒸発することができ、皮膚組織Hがかぶれて、センサーを長時間使用することができない、という問題がなくなる。
また、各受信端子7から送られてきた電気信号を処理するための信号処理部8は、電源共通端子4から貫通穴H’を通って反対面の開口近傍に設けてある。さらに、この貫通穴H’にも導電層12が形成されていて、信号処理部8からの電流が導電層12から共通端子4を経て各感圧抵抗素子3の電極に与えられ、さらに感圧抵抗素子3を通って貫通穴H内の導電層12および受信端子7(7a,7b)を経由して信号線10を通って信号処理部8に戻る。
各感圧抵抗素子3は圧力を感じたときその圧力の大きさに比例してその抵抗値が変化する特性を有するので、図3において、感圧抵抗素子3の真下にある血管Bの脈拍(血圧)の大きさに応じて感圧抵抗素子3が抵抗変化をするため、その信号線10には脈拍の大きさに応じた電流が流れて信号処理部8に達することとなる。
したがって、信号処理部8では、図2の各信号線に流れる電流の大きさをそれぞれ検出することで、各感圧抵抗素子3直下の血管の血圧を知ることができる。
On the other hand, on the surface of the polymer film 2 that is not in contact with the skin tissue S, a ring of the same size as the pressure-sensitive resistor element 3 is provided at the opening position opposite to the through hole H in which each pressure-sensitive resistor element 3 is provided. There is a receiving terminal 7. As a result, sweat generated from the skin tissue S evaporates to the outside air through the hole of the annular pressure-sensitive resistance element 3 (FIG. 3), the through hole H of the polymer film 2 and the hole of the annular receiving terminal 7. This eliminates the problem that the skin tissue H is covered and the sensor cannot be used for a long time.
Further, the signal processing unit 8 for processing the electric signal sent from each receiving terminal 7 is provided in the vicinity of the opening on the opposite surface from the power common terminal 4 through the through hole H ′. Further, the conductive layer 12 is also formed in the through hole H ′, and the current from the signal processing unit 8 is applied from the conductive layer 12 to the electrode of each pressure-sensitive resistor element 3 through the common terminal 4, and further pressure sensitive. The signal returns to the signal processing unit 8 through the signal line 10 through the resistance element 3 and the conductive layer 12 in the through hole H and the reception terminal 7 (7a, 7b).
Since each pressure-sensitive resistance element 3 has a characteristic that its resistance value changes in proportion to the magnitude of the pressure when it is felt, in FIG. 3, the pulse of the blood vessel B (below the pressure-sensitive resistance element 3 ( Since the pressure-sensitive resistance element 3 changes in resistance according to the magnitude of blood pressure), a current corresponding to the magnitude of the pulse flows through the signal line 10 to reach the signal processing unit 8.
Therefore, the signal processing unit 8 can know the blood pressure of the blood vessel immediately below each pressure-sensitive resistor element 3 by detecting the magnitude of the current flowing through each signal line in FIG.

このように、高分子フィルム2を手首の橈骨動脈付近の皮膚組織Sに貼り付けると、心臓の収縮により発生する周期的な波動(脈拍)が橈骨動脈に伝わって皮膚組織Sの表面から各感圧抵抗素子3に圧力変化として検出され、各感圧抵抗素子3に流されている電流値が変化することになる。その電流値の変化が発生した感圧抵抗素子3の位置と発生順および電流値の変化を計測することで、装着者の健康状態を監視することができる。例えば、圧力変化を検出した感圧抵抗素子3の位置と発生順および電流値の変化が健康状態の時とかなり異なる場合には、装着者の身体に何らかの異変が発生したと判断できるので、図に示していない遠隔処理装置にワイヤーレス通信技術を用いて送信することで、装着者の周囲にいるナースや家族に異常を知らせることが可能となる。   As described above, when the polymer film 2 is attached to the skin tissue S near the radial artery of the wrist, the periodic wave (pulse) generated by the contraction of the heart is transmitted to the radial artery, and each sensation is sensed from the surface of the skin tissue S. A current value detected by the pressure resistance element 3 as a pressure change and flowing through each pressure sensitive resistance element 3 changes. The health state of the wearer can be monitored by measuring the position and order of occurrence of the pressure-sensitive resistor element 3 where the change in the current value has occurred and the change in the current value. For example, if the position of the pressure-sensitive resistance element 3 that has detected the pressure change, the order of occurrence, and the change in the current value are significantly different from those in the healthy state, it can be determined that some change has occurred in the wearer's body. By using a wireless communication technique to transmit to a remote processing device not shown in Fig. 1, it becomes possible to notify the nurse or family around the wearer of the abnormality.

また、センサー本体と遠隔処理装置はワイヤーレス通信技術でデータを送信することで、従来のような装着者の行動に制限を与えたり、装着者の動きにより配線が切れるなどの問題がないため、センサーを長時間安定に使用することができる。   In addition, because the sensor body and remote processing device send data using wireless communication technology, there are no problems such as limiting the behavior of the wearer as in the past or disconnecting the wire due to the movement of the wearer, The sensor can be used stably for a long time.

実施例2は本発明の微小圧力検出装置の製造方法に関するものである。
図3において、まず、貫通穴の円周部と共通端子4および受信端子7と信号処理部8との間の配線領域のみに紫外線が照射できるようにマスク基板を数十μmの円形状の穴が複数個形成された高分子フィルム2の両面に重ねて固定する。
次に、アクリル酸、ジアリルジメチルアンモニウムクロリド、アクリロイルオキシエチルトリメチルアンモニウムクロリドなどのモノマー水溶液に浸漬し、一定時間、紫外線ランプを点灯して紫外線を照射すると、穴の円周部および側面部と、配線領域のみにアクリル酸、ジアリルジメチルアンモニウムクロリド、アクリロイルオキシエチルトリメチルアンモニウムクロリドからなるポリマー層9が形成される。
Example 2 relates to a manufacturing method of the micro pressure detection device of the present invention.
In FIG. 3, first, the mask substrate is formed in a circular hole of several tens of μm so that ultraviolet rays can be irradiated only to the circumferential portion of the through hole and the common terminal 4 and the wiring region between the receiving terminal 7 and the signal processing unit 8. Are stacked and fixed on both surfaces of the polymer film 2 formed with a plurality of layers.
Next, immerse in an aqueous monomer solution such as acrylic acid, diallyldimethylammonium chloride, acryloyloxyethyltrimethylammonium chloride, and turn on the UV lamp for a certain period of time to irradiate with UV light. A polymer layer 9 made of acrylic acid, diallyldimethylammonium chloride, and acryloyloxyethyltrimethylammonium chloride is formed only in the region.

次に、ポリマー層9が形成された高分子フィルム2を強酸で可溶化処理した単層カーボンナノチューブ、カーボンナノウォール、カップ積層型カーボンナノファイバーが分散した水溶液に入れ、20mM−N−ヒドロキシこはく酸イミド水溶液及び20mM−1−エチル−3−(3−ジメチルアミノプロピル)カルボジミド水溶液と、エチレンジアミン水溶液又は1、10−ジアミノデカン水溶液を適量添加し、ホットスターラーで加熱・撹拌したり、単層カーボンナノチューブ、カーボンナノウォール、カップ積層型カーボンナノファイバーの分散水溶液にポリマー層9が形成された高分子フィルム2を入れて加熱・撹拌すると、カーボンナノチューブやカーボンナノファイバーおよびアクリル酸のカルボキシル基とアミノ基とがアミド結合を形成したり、陽イオンの第四級アンモニウム塩と陰イオンのカルボキシル基(−COO−)とが静電気的相互作用により、ポリマー層9の表面に単層カーボンナノチューブ、カーボンナノウォール、カップ積層型カーボンナノファイバーからなるカーボンナノ部材およびナノ配線層11が固定化される。   Next, the polymer film 2 on which the polymer layer 9 is formed is placed in an aqueous solution in which single-walled carbon nanotubes, carbon nanowalls, and cup-stacked carbon nanofibers that have been solubilized with a strong acid are dispersed, and 20 mM N-hydroxysuccinic acid. Add appropriate amount of imide aqueous solution and 20 mM-1-ethyl-3- (3-dimethylaminopropyl) carbodiimide aqueous solution and ethylenediamine aqueous solution or 1,10-diaminodecane aqueous solution, and heat and stir with a hot stirrer, or single-walled carbon nanotube When the polymer film 2 on which the polymer layer 9 is formed is placed in an aqueous dispersion of carbon nanowalls and cup-stacked carbon nanofibers, and heated and stirred, the carbon nanotubes, carbon nanofibers, and carboxyl groups and amino groups of acrylic acid Amido Or a quaternary ammonium salt of a cation and a carboxyl group (—COO—) of an anion electrostatically interact with each other to form a single-walled carbon nanotube, carbon nanowall, or cup laminated type on the surface of the polymer layer 9. The carbon nano member made of carbon nano fiber and the nano wiring layer 11 are fixed.

さらに、マスク技術を用いてカーボンナノ部材の表面以外の領域全体をポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリウレタン、ポリテトラフルオロエチレン、アクリル樹脂、エポキシ樹脂などの高分子材料で被覆することで絶縁層13が形成される。   Furthermore, the insulating layer 13 is formed by covering the entire region other than the surface of the carbon nano member with a polymer material such as polyethylene, polypropylene, polymethyl methacrylate, polyurethane, polytetrafluoroethylene, acrylic resin, or epoxy resin using a mask technique. Is formed.

このように、微小な脈拍変化を検出するカーボンナノ部材でできた感圧抵抗素子3以外は、全て絶縁層13で被覆されているため、ナノ配線層11の表面に空気中の水分や不純物が付着・吸着したりすることでノイズの発生を抑制しているとともに、装着者の動きにより高分子フィルム2が固形物にぶつかってもナノ配線層11が断線することもないため、長時間安定した測定が可能になっている。
また、微小な脈拍変化を検出するカーボンナノ部材は、円形状の感圧抵抗素子3および受信端子7の円周部に固定化しているため、装着者の皮膚組織Sから発生する汗が蒸発せずに滞留することがないため、皮膚表面がかぶれたりすることで装着者に不快感を与えることが少ない。
さらに、センサー素子の材料にカーボンナノチューブ、カーボンナノウォール、カップ積層型カーボンナノファイバーなどを用いているため、センサー自体を小型・軽量にすることができる。
As described above, since all of the elements other than the pressure-sensitive resistance element 3 made of the carbon nano member for detecting a minute pulse change are covered with the insulating layer 13, moisture and impurities in the air are present on the surface of the nano wiring layer 11. Suppressing the generation of noise by adhering and adsorbing, and the nanowiring layer 11 does not break even if the polymer film 2 hits a solid due to the movement of the wearer, so it is stable for a long time Measurement is possible.
In addition, since the carbon nano member for detecting a minute pulse change is fixed to the circumferential portion of the circular pressure-sensitive resistance element 3 and the receiving terminal 7, sweat generated from the skin tissue S of the wearer evaporates. Therefore, it is less likely to cause discomfort to the wearer due to the skin surface rashing.
Furthermore, since carbon nanotubes, carbon nanowalls, cup-stacked carbon nanofibers, and the like are used as the sensor element material, the sensor itself can be made smaller and lighter.

本発明の微小圧力検出装置は、空気中だけでなく、水中でも使用することができるので、溶液やガスの流速や温度の測定にも用いることができる。また、臭気性物質に対して選択的な応答を示す成分をカーボンナノチューブやカーボンナノウォール、カップ積層型カーボンナノファイバー表面に修飾することで、においセンサーの用途にも適用できる。   Since the micro pressure detection device of the present invention can be used not only in air but also in water, it can also be used for measuring the flow rate and temperature of solutions and gases. Moreover, it can be applied to the use of an odor sensor by modifying a component exhibiting a selective response to an odorous substance on the surface of a carbon nanotube, a carbon nanowall, or a cup-stacked carbon nanofiber.

本発明の高分子フィルムの表面の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the surface of the polymer film of this invention. 本発明の高分子フィルムの裏面の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the back surface of the polymer film of this invention. 本発明の高分子フィルムの構成を示す側断面図である。It is a sectional side view which shows the structure of the polymer film of this invention. 従来の微小圧力検出装置の構成を示す概略図である。It is the schematic which shows the structure of the conventional micro pressure detection apparatus.

符号の説明Explanation of symbols

1 微小圧力検出装置
2 高分子フィルム
3 感圧抵抗素子(カーボンナノ部材)
4 電源共通端子
5、5a、5b 電源線
6 粘着部
7 受信端子
8 信号処理部
9 ポリマー層
10 信号線
11 ナノ配線層
12 導電層
13 絶縁層
H 貫通穴
H’ 貫通穴Hより若干大きめの貫通穴
S 皮膚組織
B 血管
DESCRIPTION OF SYMBOLS 1 Minute pressure detection apparatus 2 Polymer film 3 Pressure sensitive resistance element (carbon nano member)
4 Power supply common terminal 5, 5 a, 5 b Power supply line 6 Adhesive part 7 Reception terminal 8 Signal processing part 9 Polymer layer 10 Signal line 11 Nano wiring layer 12 Conductive layer 13 Insulating layer H Through hole H ′ Through hole slightly larger than through hole H Hole S Skin tissue B Blood vessel

Claims (8)

複数の貫通穴をあけた高分子フィルムと、前記各貫通穴の内壁に形成され両開口に延びる導電層と、前記各貫通穴の一方の開口の前記導電層の上に設けられた環状の感圧抵抗素子と、前記各貫通穴の他方の開口の前記導電層の上に設けられた環状の受信端子と、前記高分子フィルムの一方の面に形成され前記環状の各感圧抵抗素子にそれぞれ接続される電源線と、前記高分子フィルムの他方の面に形成され前記各受信端子にそれぞれ接続される信号線とを有することを特徴とする微小圧力検出装置。   A polymer film having a plurality of through holes, a conductive layer formed on the inner wall of each through hole and extending to both openings, and an annular feeling provided on the conductive layer in one opening of each through hole A piezoelectric resistance element, an annular receiving terminal provided on the conductive layer of the other opening of each through hole, and each annular pressure sensitive resistance element formed on one surface of the polymer film, respectively A micro-pressure detection device comprising: a power line to be connected; and a signal line formed on the other surface of the polymer film and connected to each receiving terminal. 前記高分子フィルムにあけられた前記貫通穴とは異なる大きさの貫通穴の上に信号処理部を設け、前記信号処理部に前記導電層および前記信号線をそれぞれ電気的接続をし、前記信号処理部から前記感圧抵抗素子に電気を流すことで微小圧力検出回路を形成することを特徴とする請求項1記載の微小圧力検出装置。   A signal processing unit is provided on a through hole having a size different from that of the through hole formed in the polymer film, and the conductive layer and the signal line are electrically connected to the signal processing unit, respectively, and the signal 2. The micro pressure detection device according to claim 1, wherein a micro pressure detection circuit is formed by causing electricity to flow from the processing section to the pressure sensitive resistance element. 前記感圧抵抗素子、前記導電層、および前記電源線と前記信号線は、単層カーボンナノチューブ、カーボンナノウォール、カップ積層型カーボンナノファイバーの少なくとも1種からなるカーボンナノ部材であることを特徴とする請求項1記載の微小圧力検出装置。   The pressure-sensitive resistor element, the conductive layer, and the power supply line and the signal line are carbon nano members made of at least one of single-walled carbon nanotubes, carbon nanowalls, and cup-stacked carbon nanofibers. The micro pressure detection device according to claim 1. 前記感圧抵抗素子、前記導電層、および前記電源線と前記信号線の各下地には、グラフト重合されたポリマー層が形成されていることを特徴とする請求項1記載の微小圧力検出装置。   2. The micro pressure detecting device according to claim 1, wherein a polymer layer formed by graft polymerization is formed on each of the bases of the pressure sensitive resistance element, the conductive layer, and the power supply line and the signal line. 前記ポリマー層は、光グラフト重合反応により得られる、アクリル酸、ジアリルジメチルアンモニウムクロリド、アクリロイルオキシエチルトリメチルアンモニウムクロリドのいずれかのモノマーである特徴とする請求項4記載の微小圧力検出装置。   5. The micro pressure detection apparatus according to claim 4, wherein the polymer layer is a monomer of acrylic acid, diallyldimethylammonium chloride, or acryloyloxyethyltrimethylammonium chloride obtained by a photograft polymerization reaction. 前記信号線と前記電源線および前記端子部の表面は、絶縁層で覆われていることを特徴とする請求項1記載の微小圧力検出装置。   2. The minute pressure detection device according to claim 1, wherein surfaces of the signal line, the power supply line, and the terminal portion are covered with an insulating layer. 前記絶縁層は、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリエチレンテレフタレート、酢酸セルロース、ポリオレフィン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリエーテル、ポリアミド、ポリイミド、ポリカーボネート、ポリウレタン、ポリテトラフルオロエチレン、ニトロセルロース、アクリル樹脂、エポキシ樹脂のいずれかであることを特徴とする請求項6記載の微小圧力検出装置。   The insulating layer is made of polyethylene, polypropylene, polymethyl methacrylate, polyethylene terephthalate, cellulose acetate, polyolefin, polyacrylonitrile, polyvinylidene fluoride, polyether, polyamide, polyimide, polycarbonate, polyurethane, polytetrafluoroethylene, nitrocellulose, acrylic resin, The micro pressure detection apparatus according to claim 6, wherein the micro pressure detection apparatus is one of epoxy resins. 前記高分子フィルムの一方の面の両端に、人の皮膚に貼り付けることができる粘着部を設けたことを特徴とする請求項1記載の微小圧力検出装置。   2. The micro pressure detection device according to claim 1, wherein an adhesive portion that can be attached to a human skin is provided at both ends of one surface of the polymer film.
JP2006228352A 2006-08-24 2006-08-24 Micro pressure detector Expired - Fee Related JP4800151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228352A JP4800151B2 (en) 2006-08-24 2006-08-24 Micro pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228352A JP4800151B2 (en) 2006-08-24 2006-08-24 Micro pressure detector

Publications (2)

Publication Number Publication Date
JP2008051660A JP2008051660A (en) 2008-03-06
JP4800151B2 true JP4800151B2 (en) 2011-10-26

Family

ID=39235851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228352A Expired - Fee Related JP4800151B2 (en) 2006-08-24 2006-08-24 Micro pressure detector

Country Status (1)

Country Link
JP (1) JP4800151B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636731B2 (en) * 2010-05-10 2014-12-10 オリンパス株式会社 Blood pressure sensor system and blood pressure measurement method thereof
KR101674886B1 (en) * 2015-01-23 2016-11-11 인하대학교 산학협력단 Dry electrode sensor for excellent ventilation
EP3595521A1 (en) * 2017-03-13 2020-01-22 Redtel, Heiko Method and device for the time-resolved measurement of characteristic variables of the cardiac function

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559756U (en) * 1992-01-14 1993-08-06 イナバゴム株式会社 Anisotropic pressure-sensitive conductive elastomer sheet
JP3564878B2 (en) * 1996-07-04 2004-09-15 松下電器産業株式会社 Biological signal detection device
JP2004294336A (en) * 2003-03-27 2004-10-21 Nitta Ind Corp Pressure distribution sensor
JP4899117B2 (en) * 2004-11-02 2012-03-21 株式会社ユニークメディカル Heart rate / respiration sensor and biological monitoring apparatus using the same

Also Published As

Publication number Publication date
JP2008051660A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
Mirjalali et al. Wearable sensors for remote health monitoring: potential applications for early diagnosis of Covid‐19
Lu et al. Flexible noncontact sensing for human–machine interaction
Gogurla et al. Self‐powered and imperceptible electronic tattoos based on silk protein nanofiber and carbon nanotubes for human–machine interfaces
Afsarimanesh et al. A review on fabrication, characterization and implementation of wearable strain sensors
Kim et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices
Dahiya et al. Energy autonomous wearable sensors for smart healthcare: a review
Jin et al. Advanced materials for health monitoring with skin‐based wearable devices
Ochoa et al. Flexible sensors for chronic wound management
US10048141B2 (en) Pressure sensing element and pressure sensor
US20210236036A1 (en) A wearable device
EP1552785B1 (en) Body surface bio-potential sensor having multiple electrodes and apparatus comprising the body surface bio-potential sensor
US20200046236A1 (en) Flexible sensor and application thereof
Yin et al. Hybrid electronic skin combining triboelectric nanogenerator and humidity sensor for contact and non-contact sensing
TWI757424B (en) Sheets for Biological Detectors
KR101703948B1 (en) Implantable flexible biosensor and method of manufacturing the same
CN107198519A (en) A kind of Novel sweat-absorbing textile electrode
JP4800151B2 (en) Micro pressure detector
JP2018042665A (en) Electronic apparatus
Zheng et al. Large area solution processed poly (dimethylsiloxane)-based thin film sensor patch for wearable electrocardiogram detection
JP6933937B2 (en) Moisture sensitive sheet and moisture sensitive system
Nguyen et al. Stretchable, skin-breathable, and ultrasensitive respiration sensor using graphite on paper with smart structures
CN111430060A (en) Silk flexible electrode and manufacturing method thereof
WO2022196600A1 (en) Hyperthermia/dehydration predictive warning system and perspiration rate measuring device
Nag et al. Wearable flexible sensors: fabrication and characterization
Beak et al. Highly stretchable dry electrode composited with carbon nanofiber (CNF) for wearable device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees