WO2022196572A1 - Explosive loading method, and detonation-use explosive mounting body - Google Patents

Explosive loading method, and detonation-use explosive mounting body Download PDF

Info

Publication number
WO2022196572A1
WO2022196572A1 PCT/JP2022/011032 JP2022011032W WO2022196572A1 WO 2022196572 A1 WO2022196572 A1 WO 2022196572A1 JP 2022011032 W JP2022011032 W JP 2022011032W WO 2022196572 A1 WO2022196572 A1 WO 2022196572A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
explosive
mounting body
parent die
rod
Prior art date
Application number
PCT/JP2022/011032
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 水谷
Original Assignee
前田建設工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 前田建設工業株式会社 filed Critical 前田建設工業株式会社
Priority to EP22771320.3A priority Critical patent/EP4310440A1/en
Priority to JP2023507066A priority patent/JPWO2022196572A1/ja
Publication of WO2022196572A1 publication Critical patent/WO2022196572A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/08Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/006Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by making use of blasting methods

Definitions

  • the present invention relates to an explosive loading method and an initiating explosive mounting body for loading an initiating explosive into a blast hole drilled in the face of a tunnel constructed by a blasting method.
  • the blasting method is known as a tunnel excavation method.
  • an explosive with a detonator is inserted into multiple blast holes (charge holes) drilled in the face, and the detonator is detonated to detonate the explosive and excavate the face.
  • a parent dynamite for initiation (hereinafter sometimes abbreviated as “parent die") from a position away from the face surface, and an additional dynamite for increasing the blasting power at the time of blasting Techniques for charging dynamite (hereinafter sometimes abbreviated as “additional die”) into blast holes have been proposed (see Patent Documents 1 to 3, for example).
  • This type of explosive loading technique is also called mechanical loading (remote loading) or the like.
  • a worker on a drill jumbo frame (cage) inserts the tip of a loading pipe into a blasting hole drilled in the face surface, and a hose connected to the loading pipe Compressed air is pumped from a loader provided at the proximal end of the die to the tip of the loading pipe, and the main die and the additional die are loaded into the charging hole by the loading pipe together with the compressed air.
  • Patent Document 4 a mounting frame, a loading pipe provided on the mounting frame so as to be able to advance and retract in the direction of loading an explosive, and a parent die provided on the mounting frame in front of the loading pipe to supply a parent die coaxially with the loading pipe.
  • a possible parent die feed mechanism a loading hose communicatively connected to the rear of the loading pipe, and an explosive loading mechanism coupled to the loading hose and pumping additional dies through the interior of the loading hose and loading pipe.
  • An explosive autoloader is disclosed in which a parent die is insertable into the tip of a loading pipe.
  • the loading pipe is moved in the loading direction while the parent die is supplied to the tip of the loading pipe, the tip reaches the deepest part of the blasting hole, and the additional die is loaded. It is said that the main die and the additional die can be loaded into the blasting hole by pulling out the loading pipe from the blasting hole at the same time as feeding from the rear of the pipe.
  • the present invention has been made in view of the above-mentioned problems, and its object is to make it possible to smoothly load a detonating explosive into a blast hole drilled in the face surface in a tunnel blasting method. To provide a convenient explosive loading method.
  • the present invention employs the following means. That is, the present invention is applied to a tunnel blasting method, and is an explosive loading method for loading a detonating explosive into a blast hole drilled in a face surface, wherein a hollow portion remains inside the rear end of a cylindrical holder. a step of holding the detonating explosive mounting body by the loading rod by inserting the tip of the loading rod into the hollow portion of the detonating explosive mounting body mounted with the detonating explosive, and and a detonating explosive loading step of loading the held detonating explosive mounting body into the blast hole, wherein the detonating explosive mounting body is mounted at the front end portion of the cylindrical holder in the detonating explosive mounting body.
  • a conical guide portion is provided that tapers toward the tip.
  • the leg wire extending from the detonator of the detonating explosive mounted on the detonating explosive mounting body is bound so that a ring-shaped portion having a diameter larger than the diameter of the blast hole is formed in the middle of the leg wire.
  • the ring-shaped portion of the leg line is aligned with the opening of the blasting hole on the face surface.
  • the binding material may be unbound by resistance to contact with the surrounding edge.
  • the present invention can be applied to a tunnel blasting method and can be specified as an initiating explosive mounting body that is loaded into a blasting hole drilled in the face surface.
  • the initiating explosive mounting body includes a tubular holder, an initiating explosive mounted inside the tubular holder, a hollow portion formed inside the rear end of the tubular holder, and the tubular holder. a conical guide provided at the front end of the shape holder and having a tapered shape toward the tip.
  • an explosive loading method capable of smoothly loading a detonating explosive into a blast hole drilled in the face surface.
  • FIG. 1 is a diagram showing the overall schematic configuration when an explosive loading device for loading explosives into a plurality of blasting holes for blasting drilled in the face of a tunnel according to Embodiment 1 is mounted on a construction heavy machine.
  • FIG. 2 is a front view showing an arrangement example of a plurality of blast holes formed in the face.
  • FIG. 3 is a diagram illustrating the state after the blasting hole drilled in the face is charged with explosives.
  • FIG. 4 is a side view of the parent die mount.
  • FIG. 5 is an exploded view of the parent die mount.
  • Figure 6 is a schematic side view of an explosive loader mounted on a guide cell;
  • FIG. 7 is a schematic front view of an explosive loading device mounted on a guide cell;
  • FIG. 1 is a diagram showing the overall schematic configuration when an explosive loading device for loading explosives into a plurality of blasting holes for blasting drilled in the face of a tunnel according to Embodiment 1 is mounted on a construction heavy machine.
  • FIG. 8 is a diagram illustrating an additional explosive supply device.
  • FIG. 9 is a front view of the parent die accommodation unit.
  • FIG. 10 is a rear view of the parent die containing unit.
  • FIG. 11 is a side view of the parent die containing unit.
  • FIG. 12 is a top view of the parent die containing unit.
  • FIG. 13 is a diagram illustrating various devices installed in the cockpit.
  • FIG. 14 is a diagram showing a procedure flow of automatic explosive loading control.
  • FIG. 15 is a diagram for explaining the state in which the rod alignment process is completed.
  • FIG. 16 is a diagram for explaining the state of the detonating explosive loading process.
  • FIG. 17 is a diagram for explaining the guide function of the conical guide portion in the parent die mounting body.
  • FIG. 18 is a diagram for explaining the state in which the detonating explosive loading process is completed.
  • FIG. 19 is a diagram for explaining the state in which the additional explosive loading process is completed.
  • FIG. 1 shows an explosive loading device 1 for loading explosives into a plurality of blasting holes (charge holes) 3 drilled in a face surface (rock bed) 2 of a tunnel TN according to Embodiment 1, which is mounted on construction heavy equipment. It is a figure which shows the whole outline structure at time.
  • the tunnel TN according to Embodiment 1 is constructed by a blasting method in which an explosive with a detonator is inserted into each blast hole 3 drilled in the face 2, and the detonator is detonated to explode the explosive and excavate the face 2. be done.
  • the explosive loading device 1 is mounted on the drill jumbo 10. Further, as shown in FIG. 1, a plurality of blast holes 3 are drilled in the face 2 with a predetermined drilling depth.
  • the drill jumbo 10 includes a carriage 11 for self-propelled operation, a drilling boom 12 provided on the front side of the carriage 11, an explosive loading boom 13, an operator's seat 14, a control device 15, a driving It is equipped with a power unit (not shown) and the like.
  • the drilling boom 12 and the explosive loading boom 13 are configured to be pivotably connected to the front end of the carriage 11, and extend and retract by the operation of a drive mechanism attached to the drilling boom 12 and the explosive loading boom 13. , tilting motion, swinging motion, rotating motion, and the like.
  • a pair of explosive loading booms 13 are provided on the drill jumbo 10, but the number of explosive loading booms 13 is not particularly limited.
  • a rock drilling machine 16 is rotatably supported on the drilling boom 12 .
  • the rock drilling machine 16 for example, a known machine that drills the blast hole 3 in the face surface 2 (rock rock) by impact motion and rotational action of an excavating drill is employed.
  • FIG. 2 is a front view showing an arrangement example of a plurality of blast holes 3 formed in the face surface 2.
  • FIG. 2 is a front view showing an arrangement example of a plurality of blast holes 3 formed in the face surface 2.
  • the stepped blasting method is used for excavating the face surface 2 .
  • a plurality of blasting target areas are set on the face surface 2, and blasting is performed by setting a time difference in the detonation timing of the detonator that detonates the explosive for each of the plurality of set blasting target areas.
  • the symbols #1 to #10 shown in FIG. 2 indicate the number of steps (corresponding to the blasting holes 3) to which the plurality of blasting holes 3 belong.
  • a plurality of blasting target areas are set on the face surface 2, and the number of steps corresponding to each blasting target area is assigned (installed).
  • 10 types of blasting target areas are set on the face surface 2, and the 1st stage #1 to the 10th stage #10 are assigned to each blasting target area.
  • FIG. 2 in order to facilitate understanding of the distribution of the steps #1 to #10 on the face surface 2, when the blast holes 3 belonging to the same step number are close to each other, those blast holes are grouped. They are connected by dashed lines.
  • the arrangement pattern of the blast holes 3 shown in FIG. 2, the number of stages, the number of blast holes 3 belonging to each stage, and the like are not particularly limited.
  • FIG. 3 is a diagram explaining the situation after the blasting hole 3 drilled in the face 2 is charged with explosives.
  • FIG. 3 shows a longitudinal section along the drilling direction (axial direction) of the blast hole 3 .
  • explosives are not manually loaded into the blast holes 3 but are automatically loaded using the explosive loading device 1 .
  • reference numeral 3A denotes the innermost portion of the blast hole 3
  • reference numeral 3B denotes the opening of the blast hole 3.
  • reference numeral 5 denotes a parent die mounting body in which a parent dynamite with a detonator (hereinafter abbreviated as "parent die") 4, which is an explosive for detonation, is mounted.
  • Reference numeral 6 denotes additional dynamite (hereinafter abbreviated as “additional die”) which is an additional explosive for increasing the blasting power at the time of blasting.
  • the type of the increasing die 6 is not particularly limited, for example, granular explosives and bulk type explosives can be preferably used.
  • the additional die 6 is not limited to granular explosives or bulk type explosives, and may be cartridge type explosives. In this embodiment, a granular explosive is used as an example.
  • FIG. 4 is a side view of the parent die mounting body 5.
  • FIG. FIG. 5 is an exploded view of the parent die mounting body 5.
  • the parent die mounting body 5 has a hollow cylindrical (tubular) member 51 and a conical guide portion 52 connected to the front end 51A side of the cylindrical member 51 . contains the parent die 4.
  • the tubular member 51 of the parent die mounting body 5 is a cylindrical paper tube, and the conical guide portion 52 is also made of paper.
  • the tubular member 51 and the conical guide portion 52 in the parent die mounting body 5 are not limited to being made of paper, and various materials can be used.
  • the conical guide portion 52 has a conical shape and is attached to the front end 51A of the tubular member 51 coaxially with the tubular member 51 .
  • Reference numeral 5A denotes the tip of the parent die mounting body 5. As shown in FIG. The tip portion 5A of the parent die mounting body 5 is formed by the tip-side vertex of the conical guide portion 52 . Reference numeral 5B denotes the rear end of the parent die mounting body 5, which is formed by the rear end of the cylindrical member 51. As shown in FIG. In the parent die mounting body 5 configured as described above, the outer diameter of the cylindrical member 51 is set smaller than the diameter of the blasting hole 3, and the parent die mounting body 5 is blasted as shown in FIG. The inside of the hole 3 can be loaded.
  • the parent die 4 employs, for example, a drug-containing hydrogen explosive, and is formed in the form of a packaged explosive (medicine-wrapped type) wrapped in paper, plastic film, or the like.
  • the parent die 4 has a stepped detonator 41 to which a leg wire 42 is connected.
  • a detonator with a fuse non-electrical detonator
  • the staged detonator 41 may be an electric detonator.
  • the cylindrical member 51 and the conical guide portion 52 in the parent die mounting body 5 are made of paper as a countermeasure against static electricity.
  • the stepped detonator 41 has a delaying charge interposed between an ignition charge and a detonating charge contained inside a case, and a shock wave for actuation (actuating current in the case of an electric ) is supplied, the detonation time (reference time) is set for each type so that the detonation will occur after a certain delay.
  • the detonation time may be set, for example, at intervals of several tenths of a second.
  • stage detonator 41 may be, for example, a wireless detonator having a wireless detonator antenna (for example, a receiving coil) that receives AC magnetic field energy wirelessly transmitted from the detonator device.
  • a wireless detonator antenna for example, a receiving coil
  • a conical guide portion 52 is provided with a hole for pulling out the leg wire 42 to the outside, and the leg wire 42 is pulled out to the outside from the pull-out hole.
  • the length of the cylindrical member 51 is longer than the length of the parent die 4, and is mounted on the front end 51A side of the cylindrical member 51 as shown in FIG. Therefore, a hollow portion 53 is formed inside the rear end 51B side of the cylindrical member 51 . That is, the parent die mounting body 5 mounts the parent die 4 so that the hollow portion 53 remains inside the rear end of the tubular member 51 .
  • Reference numeral 43 shown in FIGS. 4 and 5 is a binding material for binding the leg wires 42 .
  • the binding material 43 binds the leg wires 42 in a loop and individually in the middle of the leg wires 42 to form a ring-shaped portion 42A in the middle of the leg wires 42 .
  • the binding material 43 is made of paper, for example, and is made of an easily breakable material that can be easily broken by a small external force.
  • the explosive loading device 1 is mounted on a guide cell 20 of an explosive loading boom 13, as shown in FIG.
  • FIG. 6 is a schematic side view of the explosive loading device 1 mounted on the guide cell 20.
  • FIG. FIG. 7 is a schematic front view of the explosive loading device 1 mounted on the guide cell 20.
  • FIG. FIG. 6 shows the front-rear direction of the guide cell 20 .
  • the explosive loading boom 13 is provided with a drive mechanism (not shown) for driving the guide cell 20. By this drive mechanism, the guide cell 20 can be swung horizontally, vertically, and It can freely move back and forth.
  • a guide cell 20 attached to an explosive loading boom 13 uses an explosive loading device 1 mounted on a drill jumbo 10 to automatically load explosives (primary die 4, additional die 6) into the blast hole 3 of the face 2.
  • the front side is arranged toward the face surface 2 side
  • the rear side is arranged toward the carriage 11 side.
  • the explosive loading device 1 has a parent die supply device 70 mounted on the guide cell 20, a loading rod 81, a loading rod feeding mechanism 80, and the like.
  • the parent die supply device 70 (initiation explosive supply device) includes a parent die accommodation unit 100 (initiation explosive accommodation unit) that accommodates a plurality of parent die mounted bodies 5 and a parent die accommodation unit 100. It is configured to include a driving parent die containing unit driving mechanism 90 (initial explosive containing unit driving mechanism).
  • a loading rod feeding mechanism 80 is attached to the rear end side of a long pipe-shaped loading rod 81 extending in one direction.
  • the loading rod feeding mechanism 80 moves the loading rod 81 in a posture in which the axial direction of the loading rod 81 is parallel to the extending direction of the guide cell 20, with the tip 811 of the loading rod 81 directed toward the front side of the guide cell 20. keeping.
  • An arrow X shown in FIG. 6 indicates a preset loading direction of the detonating explosive.
  • the central axis C1 of the loading rod 81 is parallel to the loading direction X of the detonating explosive, and the loading rod 81 is held by the loading rod feeding mechanism 80 so as to be driven forward and backward along the loading direction X of the detonating explosive.
  • the outer diameter of the tip 811 of the loading rod 81 is slightly smaller than the inner diameter of the rear end 5B of the parent die mounting body 5 (cylindrical member 51). Therefore, by inserting the front end 811 of the loading rod 81 into the hollow portion 53 from the rear end portion 5B side of the parent die mounting body 5 (cylindrical member 51), the parent die mounting body 5 is attached to the front end 811 side of the loading rod 81. can hold.
  • the material for forming the loading rod 81 is not particularly limited, it is preferable to use a member having a certain degree of rigidity, such as synthetic resin. Further, the guide cell 20 does not hinder the forward/backward movement of the loading rod 81 along the detonating explosive loading direction X, and supports the posture of the long loading rod 81 parallel to the detonating explosive loading direction X. A support member 21 may be provided.
  • the loading rod feeding mechanism 80 attached to the guide cell 20 can advance and retreat along the front-rear direction of the guide cell 20 .
  • the loading rod feed mechanism 80 may be composed of, for example, a drifter supported on the upper surface of the guide cell 20, and is guided by the guide cell 20 to reciprocate along the longitudinal direction of the guide cell 20. .
  • the loading rod feeding mechanism 80 can move back and forth along the extension direction of the guide cell 20 by, for example, operation of a feeder (not shown).
  • the feeder which is the driving source of the loading rod feeding mechanism 80, can be composed of, for example, a hydraulic cylinder or the like, but the loading rod feeding mechanism 80 may be driven by an electric driving source.
  • the loading rod 81 has a hollow pipe shape with a hollow passage 812 formed therein.
  • a pressure-feeding hose 82 for pressure-feeding the additional die 6 (additional explosive) is connected to the rear end side of the loading rod 81 so as to communicate with the hollow passage 812 .
  • the pumping hose 82 may be made of a synthetic resin hose, a rubber hose, or the like.
  • FIG. 8 is a diagram illustrating an additional explosive supply device 83 that feeds and feeds the additional die 6 to the loading rod 81 through a pressure feed hose 82 .
  • the supplementary explosive supply device 83 is mounted, for example, on a loading platform of a work vehicle 200 (see FIG. 1) arranged on the rear side of the drill jumbo 10 with respect to the face surface 2 .
  • the additional explosive supply device 83 may be mounted on the drill jumbo 10, or may be arranged at another location.
  • the additional explosive supply device 83 includes an air compressor (pneumatic feeder) 84, a hopper 85 for storing the additional die 6, a chute 86, a pressure feed hose 82, an air supply hose 87, a junction pipe 88, and the like.
  • the hopper 85 has, for example, a transfer mechanism 89 capable of automatically weighing the stored increasing dies 6 and delivering a preset amount of increasing dies 6 to the chute 86 .
  • a transfer mechanism 89 for example, a rotary valve or the like may be adopted.
  • a merging pipe 88 is connected to the lower end of the chute 86
  • a pressure-feeding hose 82 is connected to the merging pipe 88 .
  • An air supply hose 87 extending from the air compressor 84 is connected to the junction pipe 88 .
  • the increasing die 6 transferred from the hopper 85 to the chute 86 by the operation of the transfer mechanism 89 joins with the compressed air supplied from the air compressor 84 through the air supply hose 87 in the junction pipe 88, and together with the compressed air, the increasing die 6 is pumped through the pumping hose 82 toward the hollow passage 812 of the loading rod 81 .
  • the parent die supply device 70 includes the parent die housing unit 100 (initial explosive housing unit) and the parent die housing unit driving mechanism 90 (initial explosive housing unit) for holding and driving the parent die housing unit 100 (detonation explosive housing unit). Explosive storage unit drive mechanism). Further, the main die housing unit driving mechanism 90 has a fixed portion 91 fixed to the guide cell 20 and a slider 92 provided so as to be interposed between the fixed portion 91 and the main die housing unit 100 . is doing.
  • the slider 92 has a mounting portion 93 on which the parent die housing unit 100 can be mounted and fixed, and a drive portion 94 interposed between the mounting portion 93 and the fixing portion 91 .
  • the parent die housing unit 100 is a housing box having a substantially rectangular parallelepiped shape.
  • the mounting portion 93 of the slider 92 is composed of, for example, a flat steel plate on which the bottom of the parent die housing unit 100 can be placed and fixed.
  • the parent die housing unit 100 is held in a posture parallel to it. Further, the slider 92 of the parent die housing unit driving mechanism 90 can reciprocate the parent die housing unit 100 held on the mounting portion 93 along the predetermined loading orthogonal direction Y.
  • the loading orthogonal direction Y is a direction orthogonal to the aforementioned detonating explosive loading direction X, and corresponds to the width direction of the guide cell 20 in this example.
  • the driving portion 94 of the slider 92 includes, for example, a linear shaft provided on one side of the mounting portion 93 and the fixed portion 91 and extending along the loading orthogonal direction Y, and a linear bushing housing provided on the other side and receiving the linear shaft. It may be a direct acting mechanism including a unit. However, the driving portion 94 of the slider 92 is not limited to the linear motion mechanism having the above configuration.
  • the parent die housing unit driving mechanism 90 is controlled by the control device 15 so that the parent die 4 having the initiation time corresponding to the number of steps of the target blasting hole 3 to be charged with the explosive is attached to the parent die 4.
  • the mounting body 5 is fed to a predetermined detonating explosive supply position coaxially forward of the loading rod 81 .
  • FIG. 9 to 12 are diagrams for explaining the parent die housing unit 100.
  • FIG. FIG. 9 is a front view of the parent die housing unit 100.
  • FIG. FIG. 10 is a rear view of the parent die housing unit 100.
  • FIG. 11 is a side view of the parent die housing unit 100.
  • FIG. 12 is a top view of the parent die housing unit 100.
  • the parent die accommodating unit 100 is a substantially rectangular parallelepiped case that accommodates a plurality of parent die mounting bodies 5 and whose outer shape is defined by a front surface 101 , a rear surface 102 , a pair of side surfaces 103 , an upper surface 104 and a bottom surface 105 .
  • each direction of the parent die accommodating unit 100 shown in FIGS. 9 to 12 indicates the relative positional relationship of each element of the parent die accommodating unit 100.
  • a rear wall 110, a side wall 120, and a bottom wall 130 are provided on the rear surface 102, the pair of side surfaces 103, and the bottom surface 105 of the parent die housing unit 100, respectively. Also, the upper surface 104 of the parent die housing unit 100 is open.
  • the interior of the parent die housing unit 100 is partitioned into a plurality of sorting housing sections 150 by partition walls 140 .
  • nine partition walls 140 are arranged at intervals in the width direction of the parent die accommodation unit 100, and the interior of the parent die accommodation unit 100 is divided into first sorting and accommodation sections 150 (#1) to It is partitioned into the tenth sorting storage section 150 (#10).
  • Each partition wall 140 is arranged parallel to the side surface 103 (side wall 120 ) and extends from the front surface 101 to the rear surface 102 .
  • Each partition wall 140 is arranged at regular intervals in the width direction of the parent die accommodating unit 100 . As shown in FIGS.
  • the parent die housing unit 100 has a posture in which the longitudinal direction is parallel to the loading direction X of the detonating explosive and the width dimension is parallel to the loading orthogonal direction Y, and the slider 92 is installed on the mounting portion 93 of the .
  • the sorting and accommodating sections 150 in the parent die accommodating unit 100 are arranged side by side along the loading orthogonal direction Y. As shown in FIG. That is, the front-rear direction of each sorting accommodation portion 150 in the parent die accommodation unit 100 is parallel to the loading orthogonal direction Y and the central axis C1 of the loading rod 81 .
  • the parent die mounted bodies 5 mounted with the parent dies 4 having different detonation times in the stepped detonators 41 are sorted and accommodated. It is configured so that it can be
  • Each sorting storage unit 150 can store a plurality of detonating explosives having the same detonation time.
  • the first step #1 to the tenth step #10 are assigned to each blasting target area set on the face surface 2 .
  • the blasting holes 3 belonging to (associated with) the 1st stage #1 to the 10th stage #10 are defined as the 1st stage blasting hole 3 (#1) to the 10th stage blasting hole 3 (#10)
  • 1st stage blasting hole 3 (#1) to 10th stage blasting hole 3 (#10) are equipped with a parent die 4 having an initiation time corresponding to the number of steps #1 to #10.
  • the die mounting body 5 (#1) to the tenth parent die mounting body 5 (#10) are loaded.
  • the first parent die mounting body 5 (#1) to the tenth parent die mounting body 5 ( #10) are sorted and stored.
  • each sorting container 150 can contain, for example, about five parent die mounted bodies 5 .
  • the storage capacity of the parent die mounting bodies 5 in each sorting storage section 150 may be increased or decreased.
  • the front end portion 5A of the parent die mounting body 5 in each sorting container 150 is positioned on the front surface 101 side, and the rear end portion 5B is positioned on the rear surface 102 side. are housed in
  • each sorting and accommodating section 150 accommodates a plurality of parent die mounted bodies 5 arranged in a row in the vertical direction and arranged in multiple stages.
  • a plurality of parent die mounted bodies 5 housed in each sorting housing portion 150 are sorted from the side closest to the bottom surface 105 (bottom wall 130) to the lowermost (first stage) parent die mounted body 5, the second stage , . . . are called the top parent die mounting body 5.
  • the rear wall 110 of the parent die housing unit 100 covers the rear surface 102 while leaving the lower area of the rear surface 102 as an opening. Therefore, a "rod insertion opening 106" is formed as an opening in the lower region of the rear surface 102 of each sorting container 150. As shown in FIG.
  • the rod insertion port 106 is an opening for inserting the loading rod 8 forwardly driven along the detonating explosive loading direction X by the loading rod feeding mechanism 80 described in FIG.
  • the height dimension of the rod insertion opening 106 is larger than the outer diameter of the tubular member 51 in the parent die mounting body 5 and smaller than twice the outer diameter of the tubular member 51 .
  • the front surface 101 of the parent die housing unit 100 is provided with a stop plate 160 that partially covers the front surface 101 .
  • a stop plate 160 is attached to the front end of the partition wall 140 in each of the plurality of sorting storage units 150 .
  • the partition wall 140 in each sorting container 150 is arranged such that the discharge port 107 is formed in the lower region of the front surface 101 of each sorting container 150 .
  • This discharge port 107 is an opening for discharging the bottom (first) parent die mounting body 5 accommodated in each sorting container 150 to the outside, and corresponds to an explosive discharge port for detonation.
  • each sorting container 150 The discharge port 107 formed on the front surface 101 side of each sorting container 150 is arranged to face the rod insertion port 106 formed on the rear surface 102 side. Similarly to the rod insertion port 106, the height dimension of the discharge port 107 in each sorting container 150 is also greater than the outer diameter of the cylindrical member 51 in the parent die mounting body 5, and the outer diameter of the cylindrical member 51 has a dimension smaller than twice the Therefore, each sorting storage section 150 can eject only the parent die mounting body 5 at the bottom (first stage) to the outside through the ejection port 107 .
  • the stopper plate 160 prevents the mother die mounted bodies 5 positioned from the second stage to the uppermost stage of each sorting container 150 from being ejected to the outside from the front surface 101 .
  • the width dimension of the stopper plate 160 is smaller than the width dimension of each sorting container 150 .
  • a leg wire lead-out opening 108 is formed on the side (side) of the stop plate 160 in each sorting container 150, and the leg wire 42 of the parent die mounting body 5 can be pulled out to the outside through the leg wire lead-out opening 108. can.
  • the leg lines 42 are shown only for a portion of the parent die mounting body 5 accommodated in the parent die accommodation unit 100 for drawing purposes.
  • each sorting container 150 of the parent die container unit 100 is provided with a pressing mechanism 170 that presses the parent die mounting bodies 5 housed in each sorting container 150 downward (bottom surface 105).
  • the specific configuration of the pressing mechanism 170 is not particularly limited, for example, it includes a strip-shaped pressing plate 171 and a torsion spring (torsion spring) 172 interposed between the pressing plate 171 and the rear wall 110 .
  • the rotation shaft portion 171A of each pressing plate 171 may be supported by the partition wall 140 or the side wall 120 . Further, the pressing plate 171 is urged in the A direction shown in FIG.
  • the pressing plate 171 of the pressing mechanism 170 can always press the parent die mounting bodies 5 housed in the sorting housing portions 150 downward (bottom surface 105).
  • the lowermost (first step) parent die mounting body 5 can be placed on the bottom surface 105 (bottom surface). It can always be pressed against the wall 130).
  • the explosive loading system S including the explosive loading device 1 configured as described above is applied to a stepped blasting method in which blasting is performed with a time difference for each of a plurality of blasting target areas assigned to the face surface 2 of the tunnel TN.
  • This is an automatic explosive loading system that automatically loads explosives into a plurality of blasting holes 3 drilled in a surface 2 using an explosive loading device 1 for automatic explosive loading control.
  • the explosive loading system S in this embodiment includes the above-described drill jumbo 10, the additional explosive supply device 83, and the control device 15.
  • the control device 15 controls the explosive loading device 1 and the additional explosive supply device 83, thereby Control automatic loading.
  • FIG. 13 is a diagram illustrating various devices installed in the cockpit 14. As shown in FIG. The cockpit 14 is provided with a monitor (display device) 210, a control device 15, and an input device to the control device 15 (charge remote control switch 231, operation panel 232, keyboard 233, pointing device 234, etc.). .
  • the drill jumbo 10 is operated by a worker using various devices of the input device to manually operate the drilling boom 12, the explosive loading boom 13, the guide cell 20, the explosive loading device 1, the additional explosive feeding device 83, etc. in the drill jumbo 10. It is possible to operate.
  • the control device 15 controls the explosive loading boom 13, the guide cell 20, the explosive loading device 1, etc., so that the blast hole 3 drilled in the face 2 is fully or semi-automatically controlled.
  • a parent die 4 and an additional die 6 can be loaded.
  • the control device 15 is, but not limited to, a computer including an input unit, a processing unit, an output unit, and the like.
  • the processing unit of the control device 15 can include a processor for executing various programs, a storage device (storage unit) for storing various programs and various information required for the operation of the processor, and the like.
  • FIG. 14 is a diagram showing a procedure flow of automatic explosive loading control executed by the controller 15 of the automatic explosive loading system S.
  • the carriage 11 of the drill jumbo 10 is driven to move close to the face 2 to be blasted, and the boom 12 for drilling is sequentially moved to the planned drilling position of the face 2 according to the blasting pattern. Then, a plurality of blast holes 3, 3, .
  • the control device 15 associates all the blast holes 3 with hole numbers.
  • the drill jumbo 10 may be a full-automatic drill jumbo (also called a “computer drill jumbo”). By automatically controlling the boom 12 and the rock drilling machine 16 , the blast holes 3 may be drilled sequentially at the planned drilling positions on the face surface 2 .
  • the blast holes 3 may be drilled sequentially at the planned drilling positions on the face surface 2 .
  • the first stage #1 to the tenth stage #10 are assigned to the face 2 for each blasting target area, and in step S1, the first stage #1 of the face 2
  • a first-stage blasting hole 3 (#1) to a tenth-stage blasting hole 3 (#10) each including one or a plurality of blasting hole groups are drilled for the first to tenth stages #10.
  • the parent die 4 having the initiation time set in association with each step number is inserted into the first stage blasting hole 3 (#1) to the tenth stage blasting hole 3 (#10).
  • the explosive loading boom 13 is placed near the face 2 in which the blast hole 3 is drilled by operation via an input device (for example, the operation panel 232). Further, as shown in FIG. 1, a working vehicle 200 is arranged behind the drill jumbo 10, and a predetermined amount of additional dies 6 are put into the hopper 85 of the additional explosive supply device 83. As shown in FIG.
  • step S2 the first coordinate P1 (X1, Y1, Z1) and the second coordinate P2 (X2, Y2) are automatically driven, and among the blast holes 3 drilled at multiple locations on the face surface 2 , the loading rod 81 is aligned so that the tip of the loading rod is coaxially opposed to the loading target blasting hole 3 TGT to which the explosives (parent die 4, additional die 6) should be loaded this time (rod alignment step ).
  • the control device 15 controls the first coordinate P1 (X1, Y1, Z1) and the second coordinate P2 (X2, Y2, Z2) of the deepest part 3A are associated with the hole number, and the blast hole related to the number of stages of the blast hole 3 corresponding to the hole number. and are stored in the storage device in association with each other. Therefore, the control device 15 refers to this blasting hole position information and reads out the first coordinates P1 (X1, Y1, Z1) and the second coordinates P2 (X2, Y2, Z2) corresponding to the loading target blasting hole 3 TGT .
  • FIG. 15 is a diagram for explaining the state in which the rod alignment process is completed.
  • the position of the loading rod 81 in the state where the rod alignment process is completed is referred to as "rod alignment completed position”.
  • the central axis C1 of the loading rod 81 arranged at the rod alignment completion position is coaxial with the central axis C2 of the blast hole 3 TGT to be loaded, and the tip 811 of the loading rod 81 , the blast hole 3 to be loaded is arranged at a position spaced apart from the opening 3B of the TGT by a predetermined dimension.
  • the distance between the tip 811 of the loading rod 81 and the hole 3B (hereinafter referred to as "the initial distance between the rod holes”) is not particularly limited.
  • the control device 15 refers to the blast hole stage number information and controls the parent die housing unit drive mechanism 90 to set the explosive loading boom 13 (guide cell 20) in front of the loading rod 81.
  • the parent die storage unit 100 initiation explosive storage unit
  • the parent die 4 initiation explosive
  • It is supplied to the detonating explosive supply position located coaxially forward of 81 (initial explosive supplying step).
  • the inside of the parent die accommodating unit 100 is divided into the first sorting and accommodating section 150 (#1) to the tenth sorting and accommodating section 150 (#10). Therefore, the control device 15 supplies the parent die mounting body 5 mounted with the parent die 4 having the initiation time corresponding to the stage number of the blast hole 3 TGT to be loaded to the above-described initiation explosive supply position. .
  • the parent die housing unit 100 has a plurality of sorting and housing sections 150 capable of mutually sorting and housing the parent die mounted bodies 5 mounted with the parent dies 4 (detonating explosives) having the detonation time. It is provided so as to be able to reciprocate along the charging orthogonal direction Y with respect to the explosive loading boom 13 (guide cell 20).
  • the sorting storage units 150 are arranged along the loading orthogonal direction Y and are provided reciprocatingly along the loading orthogonal direction perpendicular to the loading direction.
  • the control device 15 automatically controls the main die housing unit drive mechanism 90 to move the main die housing unit 100 along the loading orthogonal direction Y, thereby Blasting hole 3 Sorting storage in which parent die mounted bodies 5 (hereinafter referred to as "loading target parent die mounted bodies 5 TGT ”) mounted with parent dies 4 set with detonation seconds corresponding to the number of stages of TGT are stored.
  • a section 150 (hereinafter referred to as a “loading target sorting and containing section 150 TGT ”) can be arranged at a detonating explosive supply position located coaxially in front of the loading rod 81 .
  • the parent die mounting body 5 is accommodated in the lowest stage (first stage) of each sorting accommodation section 150 of the parent die accommodation unit 100. is held by the parent die housing unit 100 installed on the mounting portion 93 of the slider 92 and the loading rod feeding mechanism 80 so that the height of the center axis of the loading rod 81 substantially coincides with the height of the center axis C1 of the loading rod 81
  • the installation relationship of the loading rod 81 is defined.
  • the width dimension of each sorting container 150 in the parent die container unit 100 is set to a dimension substantially corresponding to the outer diameter of the cylindrical member 51 in the parent die mounting body 5 as described above.
  • the parent die mounting bodies 5 are accommodated in the sorting and accommodating sections 150 in a state in which the central axis positions of the parent die mounted bodies 5 (cylindrical members 51) are aligned with the center positions in the width direction of the respective sorting and accommodating sections 150.
  • the control device 15 controls the main die so that the center position in the width direction of the loading object sorting and storing section 150 TGT is arranged coaxially with the loading rod 81 (on the extension line of the central axis C1).
  • the storage unit 100 is moved.
  • the central axis of the parent die mounting body 5 TGT to be loaded which is housed in the lowest stage (first stage) of the sorting and storing part 150 TGT to be loaded, can be arranged coaxially with the central axis C1 of the loading rod 81. can.
  • the control device Reference numeral 15 designates the widthwise center position of the eighth sorting/accommodating section 150 (#8) in which the eighth parent die mounting body 5 (#8) as the loading target parent die mounting body 5 TGT is accommodated.
  • the slider 92 is actuated so that it is arranged on the upper front side (on the extension line of the central axis C1).
  • the central axis of the eighth parent die mounting body 5 (#8) accommodated in the lowest stage (first stage) in the eighth sorting and accommodating section 150 (#8) as the loading target sorting and accommodating section 150 TGT is loaded. It can be arranged coaxially with the central axis C ⁇ b>1 of the rod 81 . As a result, the eighth parent die mounting body 5 (#8) serving as the loading target sorting and receiving section 150 TGT can be positioned at the initial explosive supply position coaxially in front of the loading rod 81 .
  • step S3 the control device 15 automatically controls the loading rod feeding mechanism 80 to advance the loading rod 81 along the detonating explosive loading direction X, and feeds the loading target parent die to the detonating explosive supply position. While holding the mounting body 5 TGT at the tip 811 of the loading rod 81, the parent die mounting body 5 TGT to be loaded is loaded into the innermost portion 3A of the blast hole 3 TGT to be loaded (initial explosive loading step).
  • each sorting container 150 of the parent die container unit 100 has the discharge port 107 formed in the lower region of the front surface 101 . Therefore, when the loading rod feeding mechanism 80 forwards the loading rod 81 along the loading direction X of the detonating explosive, the loading rod 81 is fed from the rod insertion opening 106 corresponding to the loading target sorting storage section 150 TGT in the parent die storage unit 100 . tip 811 of the can be inserted.
  • the parent die mounting body 5 mounts the parent die 4 so that the hollow portion 53 remains inside the rear end of the tubular member 51 . Therefore, in the process of loading the detonating explosive, the tip 811 of the loading rod 81 inserted from the rod insertion opening 106 into the loading target sorting storage section 150 TGT is attached to the loading target parent die positioned at the bottom of the loading target sorting storage section 150 TGT . By inserting it into the hollow portion 53 of the body 5 TGT , the parent die mounting body 5 TGT to be loaded can be held at the tip 811 of the loading rod 81 .
  • the loading target parent die mounting body 5 TGT held by the tip end 811 of the loading rod 81 inserted into the loading target sorting storage section 150 TGT from the rod insertion port 106 can be easily forwarded by the loading rod 81.
  • the loading target parent die mounting body 5 TGT is coaxially held by the loading rod 81 .
  • FIG. 16 is a diagram for explaining the state of the detonating explosive loading process.
  • the discharge port 107 formed in the lower region of the front face 101 of each sorting container 150 is formed to face the rod insertion port 106 formed in the lower region of the rear face 102 side. Therefore, in the detonating explosive loading step, the loading rod 81 holding the loading target parent die mounting body 5 TGT is further forwarded along the detonating explosive loading direction X, thereby making the loading target sorting and accommodating part 150 TGT .
  • the parent die mounting body 5 TGT to be loaded in the lowest stage (first stage) can be discharged from the discharge port 107 .
  • each sorting accommodation portion 150 of the parent die accommodation unit 100 is parallel to the loading direction X of the detonating explosive and the direction of the central axis C1 of the loading rod 81 . Therefore, by feeding the loading rod 81 forward along the loading direction X of the detonating explosive, the loading target parent die mounting body 5 TGT held by the loading rod 81 is moved along the front-rear direction of each sorting container 150, It can be discharged smoothly from the discharge port 107 .
  • a stopping plate 160 is provided on the front surface 101 of each sorting container 150 to prevent the mother die mounted bodies 5 positioned in the second to uppermost stages in each sorting container 150 from being ejected from the front surface 101 side.
  • the parent die mounting body 5 TGT to be loaded may cause friction with the parent die mounting body 5 TGT to be loaded. It is possible to prevent the mounting body 5 from being ejected from the front surface 101 side.
  • the loading rod 81 is aligned so that the center axis C1 of the loading rod 81 is coaxial with the center axis C2 of the blast hole 3 TGT to be loaded. Therefore, in the detonating explosive loading step, the loading rod 81 holding the loading target parent die mounting body 5 TGT is fed forward along the detonating explosive loading direction X, thereby loading the loading target parent die mounting body 5 TGT . It can be smoothly inserted into the loading target blasting hole 3 TGT from the tip portion 5A side.
  • FIG. 17 shows a situation in which the initiation explosive loading step is performed under a situation where the central axis C1 of the charging rod 81 is eccentric with respect to the central axis C2 of the blast hole 3 TGT to be charged. 17, illustration of the loading rod feeding mechanism 80 and the parent die housing unit 100 is omitted.
  • the parent die mounting body 5 in this embodiment is provided with the conical guide portion 52 at the front end 51A of the tubular holder 51, and the conical guide portion 52 has a conical shape as described above. Therefore, even if the loading rod 81 is fed forward in a state in which the loading rod 81 is eccentric with respect to the blast hole 3 TGT to be loaded, the opening of the blast hole 3 TGT to be loaded is removed during the process of loading the detonating explosive.
  • the side surface of the conical guide portion 52 that collides with the edge of 3B (edge 2A on the face surface) is brought into sliding contact with the hole opening 3B (edge 2A), and the main die mounting body 5 is pushed into the blasting hole 3 TGT to be loaded. You can progress inside.
  • the amount of eccentricity between the central axis C1 of the loading rod 81 and the central axis C2 of the blast hole 3 TGT to be loaded, which was eccentric at the rod alignment completion position, is reduced by the guide function of the conical guide portion 52, and the parent die
  • the mounting body 5 can be smoothly inserted into the loading target blasting hole 3 TGT .
  • an obstacle 3C such as falling rocks is caused by hole roughening in the blast hole 3 TGT to be loaded. Even if there is, the parent die mounting body 5 can be advanced toward the innermost portion 3A while the side surface of the conical guide portion 52 is brought into sliding contact with the obstacle 3C.
  • the leg wire 42 connected to the stepped detonator 41 in the loading target parent die mounting body 5 TGT (mother die mounting body 5) is attached to a binding material. 43 may be inserted into the target blast hole 3 TGT (blast hole 3).
  • the diameter of the loop portion 42A formed by bundling the leg wires 42 into a loop with the binding material 43 is set to be larger than the diameter of the hole mouth 3B of the blast hole 3.
  • the ring-shaped portion 42A for bundling the leg wires 42 is formed around the hole opening 3B.
  • the binding material 43 is broken by the resistance.
  • the binding of the leg wire 42 with the binding material 43 can be automatically untied.
  • the binding material 43 is made of an easily breakable material such as paper, it can be easily broken with a small force. Therefore, it is possible to suppress a large load from being applied to the leg wire 42 in the process of untying the leg wire 42 during the process of loading the detonating explosive.
  • the following alternative embodiment may be adopted.
  • one or a plurality of leg wire holding rod members for hooking and holding the ring-shaped portion 42A of the leg wire 42 of each parent die mounting body 5 may be provided at appropriate locations on the outer surface of the parent die housing unit 100 in this embodiment. good too.
  • Such a leg wire holding rod member may be provided, for example, on the side surface 103 of the parent die housing unit 100 (the outer surface of the side wall 120).
  • the parent die housing unit 100 preferably includes a plurality of holding rod members 42A.
  • the parent die housing unit 100 preferably has one or more leg wire holding rod members on each of the left and right side surfaces 103 .
  • stress is applied to the binding material 43 that binds the ring-shaped portion 42A held by the leg wire holding rod member in the process.
  • the binding material 43 can be broken by the stress.
  • the binding material 43 is made of an easily breakable material such as paper, a large stress is not applied to the wire 42 before the binding material 43 breaks.
  • the loop portion 42A is held by the leg wire holding rod member in advance, and the binding of the leg wire 42 with the binding material 43 can be automatically unbound during the process of loading the detonating explosive. .
  • the leg wires 42 unbound by the binding material 43 can then be fed out sequentially from the leg wire holding rod member as the loading rod 81 is advanced forward.
  • the leg wire holding rod member When the leg wire holding rod member is provided on the side surface 103 of the parent die housing unit 100, the leg wire holding rod member may protrude from the side surface 103 toward the side. Further, when a plurality of leg wire holding rod members are provided on the side surface 103 of the parent die housing unit 100, the plurality of leg wire holding rod members may be arranged in the vertical direction of the parent die housing unit 100 at different levels. By installing a plurality of leg wire holding rod members in different levels, the leg wires 42 held by the respective leg wire holding rod members are less likely to get entangled with each other.
  • the control device 15 calculates the forward feeding amount of the loading rod 81 and drives the loading rod feeding mechanism 80 based on the calculated forward feeding amount of the loading rod 81 .
  • the forward feed amount of the loading rod 81 can be calculated, for example, based on the initial distance between the rod hole openings and the design length of the blast hole 3 TGT to be loaded when the loading rod 81 is arranged at the rod alignment completion position.
  • control device 15 controls the first coordinate P1 (X1, Y1, Z1) of the hole opening 3B and the second coordinate P2 (X2 , Y2, Z2), and based on the initial distance between the rod holes, the innermost part 3A of the blast hole 3 TGT to be loaded is the parent die mounting body 5 TGT to be loaded .
  • a forward feed amount of the loading rod 81 required to position the tip portion 5A may be calculated.
  • the control device 15 controls the loading rod feeding mechanism 80 to retract the loading rod 81 while operating the additional explosive supply device 83 to increase the amount through the pressure feeding hose 82 in step S4.
  • the die 6 (additional explosive) is pumped and supplied to the hollow passage 812 of the loading rod 81 (additional explosive loading step).
  • the additional die 6 pressure-fed into the hollow passage 812 of the loading rod 81 is loaded from the tip 811 of the loading rod 81 (hollow passage 812) into the blasting hole 3 TGT to be loaded.
  • FIG. 19 shows the completion of the additional explosive loading process. When the additional explosive loading step is completed, the loading of the parent die 4 (parent die mounting body 5) and the additional die 6 inside the target blasting hole 3 TGT is completed.
  • the explosives (the main die 4 and the additional die 6) are automatically loaded into the next blasting hole 3 TGT to be loaded. control is performed. That is, the steps S2 to S4 described above are sequentially repeated, and all the blast holes 3 can be automatically charged with explosives (the main die 4 and the additional die 6).
  • the explosive loading system S including the explosive loading device 1 and the control device 15, explosives corresponding to the number of stages of the blasting target areas assigned to the face surface 2 of the tunnel TN are automatically delivered to the blast holes 3. It can be loaded.
  • the main die mounting body 5 having the main die 4 mounted thereon is provided with the conical guide portion 52 at the front end 51A of the cylindrical holding body 51.
  • the conical guide portion 52 As described with reference to FIG. 17, under the condition that the central axis of the parent die mounting body 5 is eccentric with respect to the central axis C2 of the blasting hole 3, or due to hole roughening in the blasting hole 3, falling rocks may occur. Even if there is an obstacle 3C such as the blasting hole 3, the guide function of the conical guide portion 52 allows the main die mounting body 5 to be smoothly loaded to the innermost portion 3A of the blast hole 3.
  • the blasting hole 3 drilled in the face surface 2 is fully automatically loaded with explosives (the main die 4 and the additional die 6) has been described as an example.
  • the explosive loading method using the parent die mounting body 5 having the guide portion 52 is not limited to the above-described form.
  • the loading rod 81 faces the blast hole 3 not by automatic control using the control device 15 but by operation via the operation panel 232 or the like.
  • the loading rod 81 may be aligned so that it is positioned.
  • the explosive loading method according to the present disclosure in which the parent die mounting body 5 held at the tip 811 of the loading rod 81 is loaded into the blast hole 3, can be suitably applied, realizing smooth explosive loading. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

Provided is an explosive loading method that enables smooth loading of a detonation-use explosive into a blasting hole drilled into a working surface of a tunnel in a tunnel blasting process. This explosive loading method includes: a step in which a loading rod holds a detonation-use explosive mounted body as a result of inserting the distal end of the loading rod into a hollow section of the detonation-use explosive mounted body which is formed by mounting a detonation-use explosive on the inside of the rear end of a cylindrical holding body so that a hollow section remains; and a detonation-use explosive loading step in which the detonation-use explosive mounted body held by the distal end of the loading rod is loaded into the blasting hole. The front end of the cylindrical holding body of the detonation-use explosive mounted body is provided with a spindle-shaped guide part that has a shape which is tapered toward the distal end of the detonation-use explosive mounted body.

Description

爆薬装填方法および起爆用爆薬装着体Explosive loading method and detonating explosive loading body
 本発明は、発破工法によって施工されるトンネルにおいて、切羽面に穿孔された発破孔に起爆用爆薬を装填する爆薬装填方法および起爆用爆薬装着体に関する。 The present invention relates to an explosive loading method and an initiating explosive mounting body for loading an initiating explosive into a blast hole drilled in the face of a tunnel constructed by a blasting method.
 トンネルの掘削工法として、発破工法が知られている。発破工法でトンネルを掘削する場合、切羽面に穿孔した複数の発破孔(装薬孔)に雷管を取り付けた爆薬を挿入し、雷管を起爆することで爆薬を爆破して切羽面を掘削する。 The blasting method is known as a tunnel excavation method. When excavating a tunnel by the blasting method, an explosive with a detonator is inserted into multiple blast holes (charge holes) drilled in the face, and the detonator is detonated to detonate the explosive and excavate the face.
 従来、発破方式によって施工されるトンネル現場において、発破孔への爆薬の装填は、作業者よる手装填が行われているのが一般的であった。この装填作業は発破孔に長尺棒材を用いて順次爆薬を押し込む作業となり、かなりの重労働となっていた。 Conventionally, at tunnel sites constructed by the blasting method, it was common for workers to manually load explosives into the blast holes. This loading work involved pushing the explosives into the blast holes one by one using a long bar, which was quite labor intensive.
 そのため、ホースやパイプを使用して切羽面から離れた位置から起爆用の親ダイナマイト(以下、「親ダイ」と略称する場合がある)と、発破時の爆破力を増大させるための追加用のダイナマイト(以下、「増しダイ」と略称する場合がある)を発破孔に装填する技術が提案されている(例えば、特許文献1~3等を参照)。この種の爆薬装填技術は、機械装填(遠隔装填)等とも呼ばれている。このような機械装填としては、例えば、ドリルジャンボの架台(ケージ)上に搭乗した作業員が切羽面に穿孔された発破孔に装填パイプの先端部を挿入し、装填パイプに連結されているホースの基端部に設けられている装填機から圧縮空気を装填パイプの先端部に向けて圧送し、圧縮空気と共に親ダイおよび増しダイを装填パイプによって装薬孔内に装填する。 Therefore, using a hose or pipe, a parent dynamite for initiation (hereinafter sometimes abbreviated as "parent die") from a position away from the face surface, and an additional dynamite for increasing the blasting power at the time of blasting Techniques for charging dynamite (hereinafter sometimes abbreviated as "additional die") into blast holes have been proposed (see Patent Documents 1 to 3, for example). This type of explosive loading technique is also called mechanical loading (remote loading) or the like. As such mechanical loading, for example, a worker on a drill jumbo frame (cage) inserts the tip of a loading pipe into a blasting hole drilled in the face surface, and a hose connected to the loading pipe Compressed air is pumped from a loader provided at the proximal end of the die to the tip of the loading pipe, and the main die and the additional die are loaded into the charging hole by the loading pipe together with the compressed air.
 また、発破孔に対する爆薬の装填安全性の向上および作業の省力化を図るために、発破孔に爆薬を自動で装填する爆薬自動装填装置も提案されている。例えば、特許文献4には、架台と、架台上で爆薬の装填方向に進退可能に設けられた装填パイプと、架台上で装填パイプの前方に設けられ、親ダイを装填パイプと同軸上に供給可能な親ダイ供給機構と、装填パイプの後方に連通させて接続された装填ホースと、装填ホースに連結され、装填ホースおよび装填パイプの内部を通過させて増しダイを圧送供給する爆薬装填機構とからなり、装填パイプの先端部内に親ダイが挿入可能とされた爆薬自動装填装置が開示されている。特許文献4の記載によると、親ダイを装填パイプの先端部に供給した状態で装填パイプを装填方向に移動させ、その先端部を発破孔の最奥部に到達させ、さらに、増しダイを装填パイプの後方から送り込むと同時に、装填パイプを発破孔から引抜くことで発破孔内に親ダイと増しダイを装填できるとされている。 Also, in order to improve the safety of loading explosives into blast holes and to save labor, an automatic explosive loading device that automatically loads explosives into blast holes has been proposed. For example, in Patent Document 4, a mounting frame, a loading pipe provided on the mounting frame so as to be able to advance and retract in the direction of loading an explosive, and a parent die provided on the mounting frame in front of the loading pipe to supply a parent die coaxially with the loading pipe. a possible parent die feed mechanism, a loading hose communicatively connected to the rear of the loading pipe, and an explosive loading mechanism coupled to the loading hose and pumping additional dies through the interior of the loading hose and loading pipe. An explosive autoloader is disclosed in which a parent die is insertable into the tip of a loading pipe. According to the description of Patent Document 4, the loading pipe is moved in the loading direction while the parent die is supplied to the tip of the loading pipe, the tip reaches the deepest part of the blasting hole, and the additional die is loaded. It is said that the main die and the additional die can be loaded into the blasting hole by pulling out the loading pipe from the blasting hole at the same time as feeding from the rear of the pipe.
特許第2860847号公報Japanese Patent No. 2860847 特許第5614139号公報Japanese Patent No. 5614139 特許第5854923号公報Japanese Patent No. 5854923 特開2008-25972号公報JP-A-2008-25972
 しかしながら、上述した爆薬の機械装填技術において、切羽面から離れた位置から発破孔に爆薬を装填するためのホースやパイプ等を挿入するのは容易でなく、作業効率を改善する余地があった。また、特許文献4に開示されている爆薬の自動装填技術においては、切羽面に穿孔した発破孔に装填パイプを対向するように位置合わせすることが開示されているが、実際には、発破孔と装填パイプの軸同士が偏心を伴って装填パイプが配置される場合が想定され、そのような場合には装填パイプを円滑に発破孔に挿入することが困難になる虞がある。 However, in the above-mentioned explosives mechanical loading technology, it was not easy to insert hoses and pipes for loading explosives into the blast hole from a position away from the face, and there was room for improvement in work efficiency. Further, in the automatic explosive loading technology disclosed in Patent Document 4, it is disclosed that the loading pipe is aligned so as to face the blast hole drilled in the face surface. It is conceivable that the loading pipe may be arranged with the axes of the loading pipe and the loading pipe being eccentric, and in such a case, it may be difficult to smoothly insert the loading pipe into the blast hole.
 本発明は、上記のような問題点に鑑みてなされたものであって、その目的は、トンネルの発破工法において、切羽面に穿孔された発破孔に円滑に起爆用爆薬を装填することの可能な爆薬装填方法を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and its object is to make it possible to smoothly load a detonating explosive into a blast hole drilled in the face surface in a tunnel blasting method. To provide a convenient explosive loading method.
 上記課題の解決するために、本発明は以下の手段を採用した。すなわち、本発明は、トンネルの発破工法に適用され、切羽面に穿孔された発破孔に起爆用爆薬を装填する爆薬装填方法であって、筒状保持体の後端内側に中空部が残存するように起爆用爆薬を装着してなる起爆用爆薬装着体の前記中空部に装填ロッドの先端を挿入することで当該装填ロッドによって起爆用爆薬装着体を保持する工程と、前記装填ロッドの先端に保持した前記起爆用爆薬装着体を前記発破孔に装填する起爆用爆薬装填工程と、を含み、前記起爆用爆薬装着体における前記筒状保持体の前端部には、前記起爆用爆薬装着体の先端に向かって先細り形状を有する錘状ガイド部が設けられている。 In order to solve the above problems, the present invention employs the following means. That is, the present invention is applied to a tunnel blasting method, and is an explosive loading method for loading a detonating explosive into a blast hole drilled in a face surface, wherein a hollow portion remains inside the rear end of a cylindrical holder. a step of holding the detonating explosive mounting body by the loading rod by inserting the tip of the loading rod into the hollow portion of the detonating explosive mounting body mounted with the detonating explosive, and and a detonating explosive loading step of loading the held detonating explosive mounting body into the blast hole, wherein the detonating explosive mounting body is mounted at the front end portion of the cylindrical holder in the detonating explosive mounting body. A conical guide portion is provided that tapers toward the tip.
 ここで、前記起爆用爆薬装着体に装着された起爆用爆薬の雷管から延びる脚線を、その途中部に前記発破孔の直径よりも大きな直径を有する輪状の輪状部が形成されるように結束材を用いて結束しておき、前記起爆用爆薬装填工程において前記起爆用爆薬装着体を前記発破孔に装填する過程で、前記脚線の前記輪状部が前記切羽面における前記発破孔の孔口周囲の縁部と接触するときの抵抗によって前記結束材による結束を解くようにしてもよい。 Here, the leg wire extending from the detonator of the detonating explosive mounted on the detonating explosive mounting body is bound so that a ring-shaped portion having a diameter larger than the diameter of the blast hole is formed in the middle of the leg wire. In the process of loading the detonating explosive mounting body into the blasting hole in the detonating explosive loading step, the ring-shaped portion of the leg line is aligned with the opening of the blasting hole on the face surface. The binding material may be unbound by resistance to contact with the surrounding edge.
 また、本発明は、トンネルの発破工法に適用され、切羽面に穿孔された発破孔に装填される起爆用爆薬装着体として特定することができる。すなわち、起爆用爆薬装着体は、筒状保持体と、前記筒状保持体の内側に装着された起爆用爆薬と、前記筒状保持体の後端内側に形成された中空部と、前記筒状保持体の前端部に設けられ、先端に向かって先細り形状を有する錘状ガイド部と、を備える。 In addition, the present invention can be applied to a tunnel blasting method and can be specified as an initiating explosive mounting body that is loaded into a blasting hole drilled in the face surface. That is, the initiating explosive mounting body includes a tubular holder, an initiating explosive mounted inside the tubular holder, a hollow portion formed inside the rear end of the tubular holder, and the tubular holder. a conical guide provided at the front end of the shape holder and having a tapered shape toward the tip.
 本発明によれば、トンネルの発破工法において、切羽面に穿孔された発破孔に円滑に起爆用爆薬を装填することの可能な爆薬装填方法を提供できる。 According to the present invention, in a tunnel blasting method, it is possible to provide an explosive loading method capable of smoothly loading a detonating explosive into a blast hole drilled in the face surface.
図1は、実施形態1に係るトンネルの切羽面に穿孔された複数の発破用の発破孔に爆薬を装填する爆薬装填装置を施工重機に搭載したときの全体概略構成を示す図である。FIG. 1 is a diagram showing the overall schematic configuration when an explosive loading device for loading explosives into a plurality of blasting holes for blasting drilled in the face of a tunnel according to Embodiment 1 is mounted on a construction heavy machine. 図2は、切羽面に形成された複数の発破孔の配置例を示す正面図である。FIG. 2 is a front view showing an arrangement example of a plurality of blast holes formed in the face. 図3は、切羽面に穿孔された発破孔に爆薬が装填された後の状況を説明する図である。FIG. 3 is a diagram illustrating the state after the blasting hole drilled in the face is charged with explosives. 図4は、親ダイ装着体の側面図である。FIG. 4 is a side view of the parent die mount. 図5は、親ダイ装着体の分解図である。FIG. 5 is an exploded view of the parent die mount. 図6は、ガイドセルに搭載された爆薬装填装置の概略側面図である。Figure 6 is a schematic side view of an explosive loader mounted on a guide cell; 図7は、ガイドセルに搭載された爆薬装填装置の概略正面図であるFIG. 7 is a schematic front view of an explosive loading device mounted on a guide cell; 図8は、追加用爆薬供給装置を説明する図である。FIG. 8 is a diagram illustrating an additional explosive supply device. 図9は、親ダイ収容ユニットの正面図である。FIG. 9 is a front view of the parent die accommodation unit. 図10は、親ダイ収容ユニットの背面図である。FIG. 10 is a rear view of the parent die containing unit. 図11は、親ダイ収容ユニットの側面図である。FIG. 11 is a side view of the parent die containing unit. 図12は、親ダイ収容ユニットの上面図である。FIG. 12 is a top view of the parent die containing unit. 図13は、操縦席に装備された各種機器を例示する図である。FIG. 13 is a diagram illustrating various devices installed in the cockpit. 図14は、爆薬自動装填制御の手順フローを示す図である。FIG. 14 is a diagram showing a procedure flow of automatic explosive loading control. 図15は、ロッド位置合わせ工程が完了した状況を説明する図である。FIG. 15 is a diagram for explaining the state in which the rod alignment process is completed. 図16は、起爆用爆薬装填工程の状況を説明する図である。FIG. 16 is a diagram for explaining the state of the detonating explosive loading process. 図17は、親ダイ装着体における錘状ガイド部のガイド機能を説明する図である。FIG. 17 is a diagram for explaining the guide function of the conical guide portion in the parent die mounting body. 図18は、起爆用爆薬装填工程が完了した状況を説明する図である。FIG. 18 is a diagram for explaining the state in which the detonating explosive loading process is completed. 図19は、追加用爆薬装填工程が完了した状況を説明する図である。FIG. 19 is a diagram for explaining the state in which the additional explosive loading process is completed.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、実施形態における各構成及びそれらの組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that each configuration and combination thereof in the embodiment is an example, and addition, omission, replacement, and other modifications of the configuration are possible as appropriate without departing from the gist of the present invention.
 <実施形態1>
 図1は、実施形態1に係るトンネルTNの切羽面(岩盤)2に穿孔された複数の発破用の発破孔(装薬孔)3に爆薬を装填する爆薬装填装置1を施工重機に搭載したときの全体概略構成を示す図である。実施形態1に係るトンネルTNは、切羽面2に穿孔した各発破孔3に雷管を取り付けた爆薬を挿入し、雷管を起爆することで爆薬を爆破して切羽面2を掘削する発破工法によって構築される。
<Embodiment 1>
FIG. 1 shows an explosive loading device 1 for loading explosives into a plurality of blasting holes (charge holes) 3 drilled in a face surface (rock bed) 2 of a tunnel TN according to Embodiment 1, which is mounted on construction heavy equipment. It is a figure which shows the whole outline structure at time. The tunnel TN according to Embodiment 1 is constructed by a blasting method in which an explosive with a detonator is inserted into each blast hole 3 drilled in the face 2, and the detonator is detonated to explode the explosive and excavate the face 2. be done.
 図1においては、爆薬装填装置1がドリルジャンボ10に搭載されている。また、図1に示すように、切羽面2には複数の発破孔3が所定の穿孔深さで穿孔されている。 In FIG. 1, the explosive loading device 1 is mounted on the drill jumbo 10. Further, as shown in FIG. 1, a plurality of blast holes 3 are drilled in the face 2 with a predetermined drilling depth.
 図1に示すように、ドリルジャンボ10は、自走するための台車11、台車11の前方側に設けられた穿孔用ブーム12、爆薬装填用ブーム13、操縦席14、制御装置15、駆動用パワーユニット(図示省略)等を備えている。穿孔用ブーム12および爆薬装填用ブーム13は、台車11の前端に旋回可能に連結された構造をなしており、穿孔用ブーム12および爆薬装填用ブーム13に付設される駆動機構の作動によって伸縮動作、傾動動作、揺動動作、回動動作等が自在である。図1に示す例では、一対の爆薬装填用ブーム13がドリルジャンボ10に設けられているが、爆薬装填用ブーム13の数は特に限定されない。 As shown in FIG. 1, the drill jumbo 10 includes a carriage 11 for self-propelled operation, a drilling boom 12 provided on the front side of the carriage 11, an explosive loading boom 13, an operator's seat 14, a control device 15, a driving It is equipped with a power unit (not shown) and the like. The drilling boom 12 and the explosive loading boom 13 are configured to be pivotably connected to the front end of the carriage 11, and extend and retract by the operation of a drive mechanism attached to the drilling boom 12 and the explosive loading boom 13. , tilting motion, swinging motion, rotating motion, and the like. In the example shown in FIG. 1, a pair of explosive loading booms 13 are provided on the drill jumbo 10, but the number of explosive loading booms 13 is not particularly limited.
 穿孔用ブーム12には、岩盤穿孔機16が旋回可能に支持されている。岩盤穿孔機16としては、例えば、掘削ドリルの打撃運動と回転作用によって切羽面2(岩盤)に発破孔3を穿孔する公知のものが採用されている。 A rock drilling machine 16 is rotatably supported on the drilling boom 12 . As the rock drilling machine 16, for example, a known machine that drills the blast hole 3 in the face surface 2 (rock rock) by impact motion and rotational action of an excavating drill is employed.
 図2は、切羽面2に形成された複数の発破孔3の配置例を示す正面図である。本実施形態において、切羽面2の掘削に段発発破工法が用いられる。段発発破工法は、切羽面2に複数の発破対象領域を設定し、複数設定された発破対象領域毎に爆薬を起爆する雷管の起爆タイミングに時間差を設けて発破を行う工法である。 FIG. 2 is a front view showing an arrangement example of a plurality of blast holes 3 formed in the face surface 2. FIG. In this embodiment, the stepped blasting method is used for excavating the face surface 2 . In the stepped blasting method, a plurality of blasting target areas are set on the face surface 2, and blasting is performed by setting a time difference in the detonation timing of the detonator that detonates the explosive for each of the plurality of set blasting target areas.
 図2に示す符号#1~#10は、複数の発破孔3が属する(発破孔3に対応する)段数を示している。本実施形態においては、切羽面2に複数の発破対象領域を設定し、それぞれの発破対象領域に対応する段数を割り当てている(設置している)。図2に示す例では、切羽面2に10種類の発破対象領域が設定されており、発破対象領域毎に第1段#1~第10段#10がそれぞれ割り当てられている。なお、図2においては、切羽面2における各段#1~#10の分布が理解しやすいように、同じ段数に属する発破孔3同士が近接している場合には、それらの発破孔群を破線で連結して表している。但し、図2に示す発破孔3の配置パターンや、段数、および各段に属する発破孔3の数などについては特に限定されない。 The symbols #1 to #10 shown in FIG. 2 indicate the number of steps (corresponding to the blasting holes 3) to which the plurality of blasting holes 3 belong. In this embodiment, a plurality of blasting target areas are set on the face surface 2, and the number of steps corresponding to each blasting target area is assigned (installed). In the example shown in FIG. 2, 10 types of blasting target areas are set on the face surface 2, and the 1st stage #1 to the 10th stage #10 are assigned to each blasting target area. In FIG. 2, in order to facilitate understanding of the distribution of the steps #1 to #10 on the face surface 2, when the blast holes 3 belonging to the same step number are close to each other, those blast holes are grouped. They are connected by dashed lines. However, the arrangement pattern of the blast holes 3 shown in FIG. 2, the number of stages, the number of blast holes 3 belonging to each stage, and the like are not particularly limited.
 図3は、切羽面2に穿孔された発破孔3に爆薬が装填された後の状況を説明する図である。図3においては、発破孔3の穿孔方向(軸方向)に沿った縦断面を示している。詳しくは後述するが、本実施形態において、発破孔3への爆薬の装填は手作業ではなく、爆薬装填装置1を用いて自動装填される。 FIG. 3 is a diagram explaining the situation after the blasting hole 3 drilled in the face 2 is charged with explosives. FIG. 3 shows a longitudinal section along the drilling direction (axial direction) of the blast hole 3 . Although details will be described later, in the present embodiment, explosives are not manually loaded into the blast holes 3 but are automatically loaded using the explosive loading device 1 .
 図3において、符号3Aは発破孔3の最奥部、符号3Bは発破孔3の孔口である。また、符号5は、内部に起爆用爆薬である雷管付き親ダイナマイト(以下、「親ダイ」と略称する)4を装着した親ダイ装着体である。符号6は、発破時の爆破力を増大させるための追加用爆薬である増しダイナマイト(以下、「増しダイ」と略称する)である。増しダイ6の種類は特に限定されないが、例えば、粒状爆薬やバルクタイプの爆薬を好適に用いることができる。但し、増しダイ6は粒状爆薬やバルクタイプの爆薬に限られず、薬包タイプの爆薬を採用しても良い。本実施形態においては、例示的に粒状爆薬を採用している。 In FIG. 3, reference numeral 3A denotes the innermost portion of the blast hole 3, and reference numeral 3B denotes the opening of the blast hole 3. Further, reference numeral 5 denotes a parent die mounting body in which a parent dynamite with a detonator (hereinafter abbreviated as "parent die") 4, which is an explosive for detonation, is mounted. Reference numeral 6 denotes additional dynamite (hereinafter abbreviated as "additional die") which is an additional explosive for increasing the blasting power at the time of blasting. Although the type of the increasing die 6 is not particularly limited, for example, granular explosives and bulk type explosives can be preferably used. However, the additional die 6 is not limited to granular explosives or bulk type explosives, and may be cartridge type explosives. In this embodiment, a granular explosive is used as an example.
 図4は、親ダイ装着体5の側面図である。図5は、親ダイ装着体5の分解図である。親ダイ装着体5は、内部が中空の筒状(管状)部材51と、筒状部材51の前端51A側に接続して取り付けられた錘状ガイド部52を有し、筒状部材51の内部に親ダイ4を収容している。本実施形態において、親ダイ装着体5の筒状部材51は円筒形状を有する紙管であり、錘状ガイド部52も紙製である。但し、親ダイ装着体5における筒状部材51および錘状ガイド部52は紙製に限られず、種々の材料を使用することができる。錘状ガイド部52は、円錐形状を有しており、筒状部材51と同軸に当該筒状部材51の前端51Aに取り付けられている。なお、符号5Aは、親ダイ装着体5の先端部である。親ダイ装着体5の先端部5Aは、錘状ガイド部52の先端側頂点によって形成されている。また、符号5Bは、親ダイ装着体5の後端部であり、筒状部材51の後端によって形成されている。上記のように構成される親ダイ装着体5は、筒状部材51の外径が発破孔3の直径よりも小さな寸法に設定されており、図3に示すように親ダイ装着体5を発破孔3の内部に装填可能となっている。 4 is a side view of the parent die mounting body 5. FIG. FIG. 5 is an exploded view of the parent die mounting body 5. As shown in FIG. The parent die mounting body 5 has a hollow cylindrical (tubular) member 51 and a conical guide portion 52 connected to the front end 51A side of the cylindrical member 51 . contains the parent die 4. In this embodiment, the tubular member 51 of the parent die mounting body 5 is a cylindrical paper tube, and the conical guide portion 52 is also made of paper. However, the tubular member 51 and the conical guide portion 52 in the parent die mounting body 5 are not limited to being made of paper, and various materials can be used. The conical guide portion 52 has a conical shape and is attached to the front end 51A of the tubular member 51 coaxially with the tubular member 51 . Reference numeral 5A denotes the tip of the parent die mounting body 5. As shown in FIG. The tip portion 5A of the parent die mounting body 5 is formed by the tip-side vertex of the conical guide portion 52 . Reference numeral 5B denotes the rear end of the parent die mounting body 5, which is formed by the rear end of the cylindrical member 51. As shown in FIG. In the parent die mounting body 5 configured as described above, the outer diameter of the cylindrical member 51 is set smaller than the diameter of the blasting hole 3, and the parent die mounting body 5 is blasted as shown in FIG. The inside of the hole 3 can be loaded.
 親ダイ4は、例えば、薬包含水爆薬を採用しており、紙又はプラスチック製フィルム等で包装した包装爆薬の形態(薬包タイプ)として形成されている。親ダイ4は、段発雷管41を有し、この段発雷管41に脚線42が結線されている。本実施形態における段発雷管41は、静電気対策として、例えば導火管付き雷管(非電気式雷管)を採用することができる。但し、段発雷管41は、電気雷管であってもよい。なお、段発雷管41を電気雷管とする場合には、静電気対策として親ダイ装着体5における筒状部材51および錘状ガイド部52を紙製にすることが好ましい。段発雷管41は、ケース内部に収容された点火薬と起爆薬との間に延時薬が介在しており、脚線42(導火管)を通じて作動用の衝撃波(電気雷管の場合に作動電流)が供給された後、一定時間遅延してから起爆に至るように起爆秒時(基準秒時)が種類ごとに設定されている。段発雷管41は、例えば起爆秒時が10分の数秒刻みの秒時間隔に設定されていてもよい。なお、段発雷管41は、例えば、起爆操作装置機から無線で送信された交流磁界エネルギーを受け取る無線起爆雷管用アンテナ(例えば、受信コイル等)を有する無線雷管であっても良い。このような無線雷管方式の場合には、段発雷管41に脚線42を結線する必要が無い。 The parent die 4 employs, for example, a drug-containing hydrogen explosive, and is formed in the form of a packaged explosive (medicine-wrapped type) wrapped in paper, plastic film, or the like. The parent die 4 has a stepped detonator 41 to which a leg wire 42 is connected. For the stepped detonator 41 in this embodiment, for example, a detonator with a fuse (non-electrical detonator) can be adopted as a countermeasure against static electricity. However, the staged detonator 41 may be an electric detonator. When the stepped detonator 41 is an electric detonator, it is preferable that the cylindrical member 51 and the conical guide portion 52 in the parent die mounting body 5 are made of paper as a countermeasure against static electricity. The stepped detonator 41 has a delaying charge interposed between an ignition charge and a detonating charge contained inside a case, and a shock wave for actuation (actuating current in the case of an electric ) is supplied, the detonation time (reference time) is set for each type so that the detonation will occur after a certain delay. For the staged detonator 41, the detonation time may be set, for example, at intervals of several tenths of a second. Note that the stage detonator 41 may be, for example, a wireless detonator having a wireless detonator antenna (for example, a receiving coil) that receives AC magnetic field energy wirelessly transmitted from the detonator device. In the case of such a wireless detonator system, it is not necessary to connect the leg wire 42 to the stepped detonator 41 .
 親ダイ装着体5は、例えば錘状ガイド部52に脚線42を外部に引き出す穴が設けられており、当該引き出し穴から脚線42が外部に引き出されている。また、筒状部材51の長さは、親ダイ4の長さよりも長く、図5に示すように筒状部材51の前端51A側に装着されている。そのため、筒状部材51の後端51B側には、その内部に中空部53が形成されている。つまり、親ダイ装着体5は、筒状部材51の後端内側に中空部53が残存するように親ダイ4を装着している。図4および図5に示す符号43は、脚線42を束ねる結束材である。結束材43は、脚線42の途中部で当該脚線42を環状且つ個別に結束することで前記脚線42の途中部に輪状の輪状部42Aが形成されている。また、結束材43は例えば紙製であり、小さな外力によって容易に破断可能な易破断材料で形成されているため、小さな外力で簡単に脚線42の結束を解くことができるように構成されている。なお、図3に示すように、親ダイ装着体5に装着された親ダイ4および増しダイ6が切羽面2の発破孔3に装填された後の状態では、結束材43が破れて脚線42の結束が解かれた状態となっている。また、図3に示すように、発破孔3に対する親ダイ装着体5の装填が完了した状態においては、発破孔3の最奥部3Aに親ダイ装着体5の先端部5Aが位置付けられている。 In the parent die mounting body 5, for example, a conical guide portion 52 is provided with a hole for pulling out the leg wire 42 to the outside, and the leg wire 42 is pulled out to the outside from the pull-out hole. Further, the length of the cylindrical member 51 is longer than the length of the parent die 4, and is mounted on the front end 51A side of the cylindrical member 51 as shown in FIG. Therefore, a hollow portion 53 is formed inside the rear end 51B side of the cylindrical member 51 . That is, the parent die mounting body 5 mounts the parent die 4 so that the hollow portion 53 remains inside the rear end of the tubular member 51 . Reference numeral 43 shown in FIGS. 4 and 5 is a binding material for binding the leg wires 42 . The binding material 43 binds the leg wires 42 in a loop and individually in the middle of the leg wires 42 to form a ring-shaped portion 42A in the middle of the leg wires 42 . In addition, the binding material 43 is made of paper, for example, and is made of an easily breakable material that can be easily broken by a small external force. there is As shown in FIG. 3, after the main die 4 and the additional die 6 mounted on the main die mounting body 5 are loaded into the blasting hole 3 of the face surface 2, the binding material 43 is torn and the leg line is broken. 42 has been untied. Further, as shown in FIG. 3, when the loading of the parent die mounting body 5 into the blasting hole 3 is completed, the leading end portion 5A of the parent die mounting body 5 is positioned at the innermost portion 3A of the blasting hole 3. .
 次に、爆薬装填装置1の構成について詳しく説明する。爆薬装填装置1は、図1に示すように、爆薬装填用ブーム13のガイドセル20に搭載されている。図6は、ガイドセル20に搭載された爆薬装填装置1の概略側面図である。図7は、ガイドセル20に搭載された爆薬装填装置1の概略正面図である。図6には、ガイドセル20の前後方向を示している。爆薬装填用ブーム13には、ガイドセル20を駆動する駆動機構(図示省略)が設けられており、この駆動機構によってガイドセル20を水平方向への揺動動作、垂直方向への揺動動作、前後方向への進退動が自在となっている。爆薬装填用ブーム13に取り付けられたガイドセル20は、ドリルジャンボ10に搭載される爆薬装填装置1を用いて切羽面2の発破孔3への爆薬(親ダイ4、増しダイ6)の自動装填を行う際に、前方を切羽面2側に向かって配置させ、後方を台車11側に向かって配置させる。 Next, the configuration of the explosive loading device 1 will be explained in detail. The explosive loading device 1 is mounted on a guide cell 20 of an explosive loading boom 13, as shown in FIG. FIG. 6 is a schematic side view of the explosive loading device 1 mounted on the guide cell 20. FIG. FIG. 7 is a schematic front view of the explosive loading device 1 mounted on the guide cell 20. FIG. FIG. 6 shows the front-rear direction of the guide cell 20 . The explosive loading boom 13 is provided with a drive mechanism (not shown) for driving the guide cell 20. By this drive mechanism, the guide cell 20 can be swung horizontally, vertically, and It can freely move back and forth. A guide cell 20 attached to an explosive loading boom 13 uses an explosive loading device 1 mounted on a drill jumbo 10 to automatically load explosives (primary die 4, additional die 6) into the blast hole 3 of the face 2. , the front side is arranged toward the face surface 2 side, and the rear side is arranged toward the carriage 11 side.
 図6および図7に示すように、爆薬装填装置1は、ガイドセル20に搭載された親ダイ供給装置70、装填ロッド81、装填ロッド送り機構80等を有している。詳しくは後述するが、親ダイ供給装置70(起爆用爆薬供給装置)は、複数の親ダイ装着体5を収容する親ダイ収容ユニット100(起爆用爆薬収容ユニット)と、親ダイ収容ユニット100を駆動する親ダイ収容ユニット駆動機構90(起爆用爆薬収容ユニット駆動機構)を含んで構成されている。 As shown in FIGS. 6 and 7, the explosive loading device 1 has a parent die supply device 70 mounted on the guide cell 20, a loading rod 81, a loading rod feeding mechanism 80, and the like. Although details will be described later, the parent die supply device 70 (initiation explosive supply device) includes a parent die accommodation unit 100 (initiation explosive accommodation unit) that accommodates a plurality of parent die mounted bodies 5 and a parent die accommodation unit 100. It is configured to include a driving parent die containing unit driving mechanism 90 (initial explosive containing unit driving mechanism).
 装填ロッド送り機構80には、一方向に延びる長尺パイプ状の装填ロッド81の後端側が取り付けられている。装填ロッド送り機構80は、装填ロッド81の先端811をガイドセル20の前方側に向けた状態で、装填ロッド81の軸方向がガイドセル20の延在方向と平行になる姿勢で装填ロッド81を保持している。図6に示す矢印Xは、予め設定された起爆用爆薬装填方向を示す。本実施形態において、装填ロッド81の中心軸C1は起爆用爆薬装填方向Xと平行となっており、装填ロッド81が起爆用爆薬装填方向Xに沿って進退駆動可能に装填ロッド送り機構80に保持されている。なお、装填ロッド81の先端811の外径は、親ダイ装着体5(筒状部材51)の後端部5Bにおける内径に比べて若干小さな寸法を有している。そのため、装填ロッド81の先端811を親ダイ装着体5(筒状部材51)の後端部5B側から中空部53に挿入することで、装填ロッド81の先端811側に親ダイ装着体5を保持することができる。 A loading rod feeding mechanism 80 is attached to the rear end side of a long pipe-shaped loading rod 81 extending in one direction. The loading rod feeding mechanism 80 moves the loading rod 81 in a posture in which the axial direction of the loading rod 81 is parallel to the extending direction of the guide cell 20, with the tip 811 of the loading rod 81 directed toward the front side of the guide cell 20. keeping. An arrow X shown in FIG. 6 indicates a preset loading direction of the detonating explosive. In this embodiment, the central axis C1 of the loading rod 81 is parallel to the loading direction X of the detonating explosive, and the loading rod 81 is held by the loading rod feeding mechanism 80 so as to be driven forward and backward along the loading direction X of the detonating explosive. It is The outer diameter of the tip 811 of the loading rod 81 is slightly smaller than the inner diameter of the rear end 5B of the parent die mounting body 5 (cylindrical member 51). Therefore, by inserting the front end 811 of the loading rod 81 into the hollow portion 53 from the rear end portion 5B side of the parent die mounting body 5 (cylindrical member 51), the parent die mounting body 5 is attached to the front end 811 side of the loading rod 81. can hold.
 なお、装填ロッド81を形成する材料は特に限定されないが、合成樹脂等といったある程度の剛性を有する部材によって形成することが好ましい。また、ガイドセル20には、起爆用爆薬装填方向Xに沿った装填ロッド81の進退動を阻害せず、且つ、長尺な装填ロッド81の姿勢を起爆用爆薬装填方向Xと平行に支持する支持部材21が設けられていてもよい。 Although the material for forming the loading rod 81 is not particularly limited, it is preferable to use a member having a certain degree of rigidity, such as synthetic resin. Further, the guide cell 20 does not hinder the forward/backward movement of the loading rod 81 along the detonating explosive loading direction X, and supports the posture of the long loading rod 81 parallel to the detonating explosive loading direction X. A support member 21 may be provided.
 ガイドセル20に取り付けられた装填ロッド送り機構80は、ガイドセル20の前後方向に沿って進退可能である。装填ロッド送り機構80は、例えばガイドセル20の上面に支持されたドリフタによって構成されていてもよく、ガイドセル20によってガイドされることによってガイドセル20の前後方向に沿って往復動が可能である。装填ロッド送り機構80は、例えば、図示しないフィーダの作動によってガイドセル20の延伸方向に沿って前後方向に進退動することが可能になっている。装填ロッド送り機構80の駆動源であるフィーダは、例えば、油圧シリンダ等から構成することができるが、電気式の駆動源によって装填ロッド送り機構80が駆動されてもよい。 The loading rod feeding mechanism 80 attached to the guide cell 20 can advance and retreat along the front-rear direction of the guide cell 20 . The loading rod feed mechanism 80 may be composed of, for example, a drifter supported on the upper surface of the guide cell 20, and is guided by the guide cell 20 to reciprocate along the longitudinal direction of the guide cell 20. . The loading rod feeding mechanism 80 can move back and forth along the extension direction of the guide cell 20 by, for example, operation of a feeder (not shown). The feeder, which is the driving source of the loading rod feeding mechanism 80, can be composed of, for example, a hydraulic cylinder or the like, but the loading rod feeding mechanism 80 may be driven by an electric driving source.
 図6に示すように、装填ロッド81は、内部に中空路812が形成された中空パイプ形態を有している。また、装填ロッド81の後端側には、増しダイ6(追加用爆薬)を圧送供給する圧送ホース82が中空路812と連通するように接続されている。圧送ホース82は、合成樹脂製ホース、ゴムホース等から形成されていてもよい。 As shown in FIG. 6, the loading rod 81 has a hollow pipe shape with a hollow passage 812 formed therein. A pressure-feeding hose 82 for pressure-feeding the additional die 6 (additional explosive) is connected to the rear end side of the loading rod 81 so as to communicate with the hollow passage 812 . The pumping hose 82 may be made of a synthetic resin hose, a rubber hose, or the like.
 図8は、装填ロッド81に圧送ホース82を通じて増しダイ6を圧送供給する追加用爆薬供給装置83を説明する図である。追加用爆薬供給装置83は、例えば、切羽面2に対してドリルジャンボ10の後方側に配置された作業車200(図1を参照)の荷台等に搭載されている。但し、追加用爆薬供給装置83はドリルジャンボ10に搭載されていてもよいし、他の場所に配置されていてもよい。追加用爆薬供給装置83は、エアコンプレッサ(空気圧送装置)84、増しダイ6を貯留するホッパー85、シュート86、圧送ホース82、エア供給ホース87、合流管88等を備える。ホッパー85は、例えば、貯留する増しダイ6を自動計量して予め設定された量の増しダイ6をシュート86に送り出すことが可能な移送機構89を有している。このような移送機構89として、例えばロータリーバルブ等を採用しても良い。更に、シュート86の下端には合流管88が接続され、当該合流管88には圧送ホース82が接続されている。また、合流管88には、エアコンプレッサ84から延びるエア供給ホース87が接続されている。そのため、移送機構89の作動によってホッパー85からシュート86に移送された増しダイ6は、合流管88においてエア供給ホース87を通じてエアコンプレッサ84から供給される圧縮空気と合流し、当該圧縮空気と共に増しダイ6が圧送ホース82を通じて装填ロッド81の中空路812に向けて圧送される。 FIG. 8 is a diagram illustrating an additional explosive supply device 83 that feeds and feeds the additional die 6 to the loading rod 81 through a pressure feed hose 82 . The supplementary explosive supply device 83 is mounted, for example, on a loading platform of a work vehicle 200 (see FIG. 1) arranged on the rear side of the drill jumbo 10 with respect to the face surface 2 . However, the additional explosive supply device 83 may be mounted on the drill jumbo 10, or may be arranged at another location. The additional explosive supply device 83 includes an air compressor (pneumatic feeder) 84, a hopper 85 for storing the additional die 6, a chute 86, a pressure feed hose 82, an air supply hose 87, a junction pipe 88, and the like. The hopper 85 has, for example, a transfer mechanism 89 capable of automatically weighing the stored increasing dies 6 and delivering a preset amount of increasing dies 6 to the chute 86 . As such a transfer mechanism 89, for example, a rotary valve or the like may be adopted. Furthermore, a merging pipe 88 is connected to the lower end of the chute 86 , and a pressure-feeding hose 82 is connected to the merging pipe 88 . An air supply hose 87 extending from the air compressor 84 is connected to the junction pipe 88 . Therefore, the increasing die 6 transferred from the hopper 85 to the chute 86 by the operation of the transfer mechanism 89 joins with the compressed air supplied from the air compressor 84 through the air supply hose 87 in the junction pipe 88, and together with the compressed air, the increasing die 6 is pumped through the pumping hose 82 toward the hollow passage 812 of the loading rod 81 .
 次に、図6および図7に戻り、親ダイ供給装置70について説明する。上記のように、親ダイ供給装置70は、親ダイ収容ユニット100(起爆用爆薬収容ユニット)と、この親ダイ収容ユニット100を保持すると共に駆動するための親ダイ収容ユニット駆動機構90(起爆用爆薬収容ユニット駆動機構)を含んで構成されている。また、親ダイ収容ユニット駆動機構90は、ガイドセル20に固定された固定部91と、当該固定部91と親ダイ収容ユニット100との間に介在するように設けられたスライダー92と、を有している。 Next, returning to FIGS. 6 and 7, the parent die supply device 70 will be described. As described above, the parent die supply device 70 includes the parent die housing unit 100 (initial explosive housing unit) and the parent die housing unit driving mechanism 90 (initial explosive housing unit) for holding and driving the parent die housing unit 100 (detonation explosive housing unit). Explosive storage unit drive mechanism). Further, the main die housing unit driving mechanism 90 has a fixed portion 91 fixed to the guide cell 20 and a slider 92 provided so as to be interposed between the fixed portion 91 and the main die housing unit 100 . is doing.
 スライダー92は、親ダイ収容ユニット100を載置および固定可能な載置部93と、載置部93と固定部91との間に介在する駆動部94を有している。図6および図7に示す例では、親ダイ収容ユニット100は、概略直方体形状を有する収容ボックスである。スライダー92の載置部93は、例えば、親ダイ収容ユニット100の底部を載置して固定可能な平坦な鋼製プレートによって構成されており、ガイドセル20の上方、且つガイドセル20の上面に対して平行な姿勢に親ダイ収容ユニット100を保持している。また、親ダイ収容ユニット駆動機構90のスライダー92は、載置部93に保持する親ダイ収容ユニット100を、所定の装填直交方向Yに沿って往復動させることが可能である。装填直交方向Yは、上述した起爆用爆薬装填方向Xに対して直交する方向であり、ここでの例ではガイドセル20の幅方向に対応している。スライダー92の駆動部94は、例えば載置部93および固定部91の一方側に設けられると共に装填直交方向Yに沿って延伸するリニアシャフトと、他方側に設けられると共にリニアシャフトを受け入れるリニアブッシュハウジングユニットと、を含む直動機構であってもよい。但し、スライダー92の駆動部94は、上記構成の直動機構に限定されない。 The slider 92 has a mounting portion 93 on which the parent die housing unit 100 can be mounted and fixed, and a drive portion 94 interposed between the mounting portion 93 and the fixing portion 91 . In the examples shown in FIGS. 6 and 7, the parent die housing unit 100 is a housing box having a substantially rectangular parallelepiped shape. The mounting portion 93 of the slider 92 is composed of, for example, a flat steel plate on which the bottom of the parent die housing unit 100 can be placed and fixed. The parent die housing unit 100 is held in a posture parallel to it. Further, the slider 92 of the parent die housing unit driving mechanism 90 can reciprocate the parent die housing unit 100 held on the mounting portion 93 along the predetermined loading orthogonal direction Y. FIG. The loading orthogonal direction Y is a direction orthogonal to the aforementioned detonating explosive loading direction X, and corresponds to the width direction of the guide cell 20 in this example. The driving portion 94 of the slider 92 includes, for example, a linear shaft provided on one side of the mounting portion 93 and the fixed portion 91 and extending along the loading orthogonal direction Y, and a linear bushing housing provided on the other side and receiving the linear shaft. It may be a direct acting mechanism including a unit. However, the driving portion 94 of the slider 92 is not limited to the linear motion mechanism having the above configuration.
 親ダイ収容ユニット駆動機構90は、制御装置15によって制御されることで、爆薬を装填すべき発破孔3である対象発破孔の段数に対応する起爆秒時を有する親ダイ4を装着した親ダイ装着体5を装填ロッド81の同軸上前方に位置する所定の起爆用爆薬供給位置に供給する。 The parent die housing unit driving mechanism 90 is controlled by the control device 15 so that the parent die 4 having the initiation time corresponding to the number of steps of the target blasting hole 3 to be charged with the explosive is attached to the parent die 4. The mounting body 5 is fed to a predetermined detonating explosive supply position coaxially forward of the loading rod 81 .
 図9~図12は、親ダイ収容ユニット100を説明する図である。図9は、親ダイ収容ユニット100の正面図である。図10は、親ダイ収容ユニット100の背面図である。図11は、親ダイ収容ユニット100の側面図である。図12は、親ダイ収容ユニット100の上面図である。親ダイ収容ユニット100は、前面101、後面102、一対の側面103、上面104、底面105によって外形が規定された、複数の親ダイ装着体5を収容する概略直方体形状のケースである。また、親ダイ収容ユニット100において前後方向と上下方向に直交する方向を幅方向と呼ぶ。なお、図9~図12に示す親ダイ収容ユニット100の各方向は、親ダイ収容ユニット100の各要素の相対的な位置関係を示すものである。 9 to 12 are diagrams for explaining the parent die housing unit 100. FIG. FIG. 9 is a front view of the parent die housing unit 100. FIG. FIG. 10 is a rear view of the parent die housing unit 100. FIG. 11 is a side view of the parent die housing unit 100. FIG. 12 is a top view of the parent die housing unit 100. FIG. The parent die accommodating unit 100 is a substantially rectangular parallelepiped case that accommodates a plurality of parent die mounting bodies 5 and whose outer shape is defined by a front surface 101 , a rear surface 102 , a pair of side surfaces 103 , an upper surface 104 and a bottom surface 105 . Further, the direction perpendicular to the front-back direction and the up-down direction in the parent die accommodating unit 100 is called the width direction. Each direction of the parent die accommodating unit 100 shown in FIGS. 9 to 12 indicates the relative positional relationship of each element of the parent die accommodating unit 100. FIG.
 親ダイ収容ユニット100の後面102、一対の側面103、底面105には、それぞれ後面壁110、側面壁120、底壁130がそれぞれ設けられている。また、親ダイ収容ユニット100の上面104は開放されている。 A rear wall 110, a side wall 120, and a bottom wall 130 are provided on the rear surface 102, the pair of side surfaces 103, and the bottom surface 105 of the parent die housing unit 100, respectively. Also, the upper surface 104 of the parent die housing unit 100 is open.
 親ダイ収容ユニット100の内部は、仕切り壁140によって複数の仕分け収容部150に区画されている。本実施形態においては、9枚の仕切り壁140が親ダイ収容ユニット100の幅方向に間隔をおいて配置されており、親ダイ収容ユニット100の内部が第1仕分け収容部150(#1)~第10仕分け収容部150(#10)に区画されている。各仕切り壁140は、側面103(側面壁120)と平行に配置され、且つ、前面101から後面102に至るまで延在している。各仕切り壁140は、親ダイ収容ユニット100の幅方向に一定間隔ごとに配置されている。その結果、各仕分け収容部150の幅寸法は互いに等しい寸法となっている。なお、図6および図7に示すように、親ダイ収容ユニット100は、その前後方向が起爆用爆薬装填方向Xと平行で、且つ幅寸法が装填直交方向Yと平行となる姿勢で、スライダー92の載置部93上に設置されている。以上のように、親ダイ収容ユニット100における各仕分け収容部150は、装填直交方向Yに沿って並んで配列されている。つまり、親ダイ収容ユニット100における各仕分け収容部150の前後方向は、装填直交方向Yおよび装填ロッド81の中心軸C1に平行である。 The interior of the parent die housing unit 100 is partitioned into a plurality of sorting housing sections 150 by partition walls 140 . In the present embodiment, nine partition walls 140 are arranged at intervals in the width direction of the parent die accommodation unit 100, and the interior of the parent die accommodation unit 100 is divided into first sorting and accommodation sections 150 (#1) to It is partitioned into the tenth sorting storage section 150 (#10). Each partition wall 140 is arranged parallel to the side surface 103 (side wall 120 ) and extends from the front surface 101 to the rear surface 102 . Each partition wall 140 is arranged at regular intervals in the width direction of the parent die accommodating unit 100 . As a result, the width dimension of each sorting container 150 is equal to each other. As shown in FIGS. 6 and 7, the parent die housing unit 100 has a posture in which the longitudinal direction is parallel to the loading direction X of the detonating explosive and the width dimension is parallel to the loading orthogonal direction Y, and the slider 92 is installed on the mounting portion 93 of the . As described above, the sorting and accommodating sections 150 in the parent die accommodating unit 100 are arranged side by side along the loading orthogonal direction Y. As shown in FIG. That is, the front-rear direction of each sorting accommodation portion 150 in the parent die accommodation unit 100 is parallel to the loading orthogonal direction Y and the central axis C1 of the loading rod 81 .
 親ダイ収容ユニット100の複数の仕分け収容部150(#1~#10)には、段発雷管41における起爆秒時が異なる親ダイ4を装着した親ダイ装着体5を相互に仕分けして収容することができるように構成されている。そして、各々の仕分け収容部150には、起爆秒時が同一の複数の起爆用爆薬が収容可能となっている。本実施形態に係る段発発破工法は、図2で説明したように、切羽面2に設定された発破対象領域毎に第1段#1~第10段#10がそれぞれ割り当てられている。ここで、第1段#1~第10段#10に属する(対応付けられた)発破孔3を第1段発破孔3(#1)~第10段発破孔3(#10)と定義すると、第1段発破孔3(#1)~第10段発破孔3(#10)には、これらの段数#1~#10に対応する起爆秒時を有する親ダイ4を装着した第1親ダイ装着体5(#1)~第10親ダイ装着体5(#10)が装填される。親ダイ収容ユニット100は、第1仕分け収容部150(#1)~第10仕分け収容部150(#10)にそれぞれ第1親ダイ装着体5(#1)~第10親ダイ装着体5(#10)を仕分けして収容している。各仕分け収容部150にそれぞれ収容可能な親ダイ装着体5の本数は特に限定されないが、例えば各仕分け収容部150に5本程度の親ダイ装着体5を収容できるようになっている。勿論、切羽面2に設定された各段に属する発破孔群の数に応じて各仕分け収容部150にそれぞれ親ダイ装着体5を収容可能な容量を増減させてもよい。なお、図11および図12から明らかなように、各仕分け収容部150における親ダイ装着体5は、先端部5A側が前面101側に位置付けられ、後端部5B側が後面102側に位置付けられた状態で収容されている。 In a plurality of sorting and accommodating sections 150 (#1 to #10) of the parent die accommodating unit 100, the parent die mounted bodies 5 mounted with the parent dies 4 having different detonation times in the stepped detonators 41 are sorted and accommodated. It is configured so that it can be Each sorting storage unit 150 can store a plurality of detonating explosives having the same detonation time. In the step blasting method according to the present embodiment, as described with reference to FIG. 2, the first step #1 to the tenth step #10 are assigned to each blasting target area set on the face surface 2 . Here, if the blasting holes 3 belonging to (associated with) the 1st stage #1 to the 10th stage #10 are defined as the 1st stage blasting hole 3 (#1) to the 10th stage blasting hole 3 (#10) , 1st stage blasting hole 3 (#1) to 10th stage blasting hole 3 (#10) are equipped with a parent die 4 having an initiation time corresponding to the number of steps #1 to #10. The die mounting body 5 (#1) to the tenth parent die mounting body 5 (#10) are loaded. In the parent die accommodating unit 100, the first parent die mounting body 5 (#1) to the tenth parent die mounting body 5 ( #10) are sorted and stored. Although the number of parent die mounted bodies 5 that can be accommodated in each sorting container 150 is not particularly limited, each sorting container 150 can contain, for example, about five parent die mounted bodies 5 . Of course, according to the number of blast hole groups belonging to each stage set on the face surface 2, the storage capacity of the parent die mounting bodies 5 in each sorting storage section 150 may be increased or decreased. As is clear from FIGS. 11 and 12, the front end portion 5A of the parent die mounting body 5 in each sorting container 150 is positioned on the front surface 101 side, and the rear end portion 5B is positioned on the rear surface 102 side. are housed in
 ここで、各仕分け収容部150の幅寸法が親ダイ装着体5における筒状部材51の外径にほぼ対応する寸法(筒状部材51の外径よりも僅かに大きな寸法であってもよい)に設定されている。そのため、各仕分け収容部150には、複数の親ダイ装着体5が上下方向に一列に並んで多段配列された状態で収容されている。以下では、各仕分け収容部150に収容されている複数の親ダイ装着体5を、底面105(底壁130)に近い方から最下段(1段目)の親ダイ装着体5、2段目の親ダイ装着体5、・・・、最上段の親ダイ装着体5と呼ぶこととする。 Here, the width dimension of each sorting accommodation portion 150 corresponds substantially to the outer diameter of the cylindrical member 51 in the parent die mounting body 5 (the dimension may be slightly larger than the outer diameter of the cylindrical member 51). is set to For this reason, each sorting and accommodating section 150 accommodates a plurality of parent die mounted bodies 5 arranged in a row in the vertical direction and arranged in multiple stages. Below, a plurality of parent die mounted bodies 5 housed in each sorting housing portion 150 are sorted from the side closest to the bottom surface 105 (bottom wall 130) to the lowermost (first stage) parent die mounted body 5, the second stage , . . . are called the top parent die mounting body 5.
 親ダイ収容ユニット100の後面壁110は、後面102における下方領域を開口部として残しつつ、後面102を覆っている。そのため、各仕分け収容部150における後面102の下部領域には、「ロッド挿入口106」が開口部として形成されている。このロッド挿入口106は、図6で説明した装填ロッド送り機構80によって起爆用爆薬装填方向Xに沿って前進駆動された装填ロッド8を仕分け収容部150に挿入させるための開口部である。ロッド挿入口106の高さ寸法は、親ダイ装着体5における筒状部材51の外径よりも大きく、且つ、筒状部材51の外径の2倍よりも小さな寸法を有している。 The rear wall 110 of the parent die housing unit 100 covers the rear surface 102 while leaving the lower area of the rear surface 102 as an opening. Therefore, a "rod insertion opening 106" is formed as an opening in the lower region of the rear surface 102 of each sorting container 150. As shown in FIG. The rod insertion port 106 is an opening for inserting the loading rod 8 forwardly driven along the detonating explosive loading direction X by the loading rod feeding mechanism 80 described in FIG. The height dimension of the rod insertion opening 106 is larger than the outer diameter of the tubular member 51 in the parent die mounting body 5 and smaller than twice the outer diameter of the tubular member 51 .
 また、親ダイ収容ユニット100の前面101には、当該前面101を部分的に覆う止め板160が設けられている。図9および図12に示すように、複数の仕分け収容部150の各々に止め板160が仕切り壁140の前端部に取り付けられている。各仕分け収容部150における仕切り壁140は、各仕分け収容部150における前面101の下部領域に排出口107が形成されるように配置されている。この排出口107は、各仕分け収容部150に収容された最下段(1段目)の親ダイ装着体5を外部に排出するための開口部であり、起爆用爆薬排出口に相当する。各仕分け収容部150の前面101側に形成された排出口107は、後面102側に形成されたロッド挿入口106と対向して配置されている。また、各仕分け収容部150における排出口107の高さ寸法も、ロッド挿入口106と同様、親ダイ装着体5における筒状部材51の外径よりも大きく、且つ、筒状部材51の外径の2倍よりも小さな寸法を有している。そのため、各仕分け収容部150は、最下段(1段目)の親ダイ装着体5のみを排出口107を通じて外部に排出させることができる。 Also, the front surface 101 of the parent die housing unit 100 is provided with a stop plate 160 that partially covers the front surface 101 . As shown in FIGS. 9 and 12, a stop plate 160 is attached to the front end of the partition wall 140 in each of the plurality of sorting storage units 150 . The partition wall 140 in each sorting container 150 is arranged such that the discharge port 107 is formed in the lower region of the front surface 101 of each sorting container 150 . This discharge port 107 is an opening for discharging the bottom (first) parent die mounting body 5 accommodated in each sorting container 150 to the outside, and corresponds to an explosive discharge port for detonation. The discharge port 107 formed on the front surface 101 side of each sorting container 150 is arranged to face the rod insertion port 106 formed on the rear surface 102 side. Similarly to the rod insertion port 106, the height dimension of the discharge port 107 in each sorting container 150 is also greater than the outer diameter of the cylindrical member 51 in the parent die mounting body 5, and the outer diameter of the cylindrical member 51 has a dimension smaller than twice the Therefore, each sorting storage section 150 can eject only the parent die mounting body 5 at the bottom (first stage) to the outside through the ejection port 107 .
 また、各仕分け収容部150の2段目から最上段に位置する親ダイ装着体5については、前面101から外部に排出されることが止め板160によって抑制されている。ここで、止め板160の横幅寸法は各仕分け収容部150の横幅寸法よりも小さな寸法を有している。そのため、各仕分け収容部150における止め板160の側方(脇)には脚線引き出し開口108が形成され、この脚線引き出し開口108を通じて親ダイ装着体5の脚線42を外部に引き出すことができる。なお、図9においては作図上、親ダイ収容ユニット100に収容されている親ダイ装着体5の一部についてのみ、脚線42を図示している。 In addition, the stopper plate 160 prevents the mother die mounted bodies 5 positioned from the second stage to the uppermost stage of each sorting container 150 from being ejected to the outside from the front surface 101 . Here, the width dimension of the stopper plate 160 is smaller than the width dimension of each sorting container 150 . For this reason, a leg wire lead-out opening 108 is formed on the side (side) of the stop plate 160 in each sorting container 150, and the leg wire 42 of the parent die mounting body 5 can be pulled out to the outside through the leg wire lead-out opening 108. can. In addition, in FIG. 9, the leg lines 42 are shown only for a portion of the parent die mounting body 5 accommodated in the parent die accommodation unit 100 for drawing purposes.
 更に、親ダイ収容ユニット100の各仕分け収容部150には、各仕分け収容部150に収容されている親ダイ装着体5を下方(底面105)側に向けて押し付ける押圧機構170が設置されている。押圧機構170の具体的構成は特に限定されないが、例えば短冊形状を有する押圧板171と、当該押圧板171と後面壁110との間に介在するねじりバネ(トーションばね)172とを含んで構成されていてもよい。図11に示す符号171Aは、押圧板171の基端側に設けられた回動軸部である。各押圧板171の回動軸部171Aは、仕切り壁140又は側面壁120に軸支されていてもよい。また、押圧板171は、ねじりバネ172の弾発力によって図11に示すA方向に付勢されている。そのため、押圧機構170の押圧板171によって、各仕分け収容部150に収容されている親ダイ装着体5を常時下方(底面105)に向けて押し付けることができる。これにより、爆薬装填用ブーム13やガイドセル20の駆動に伴って、親ダイ収容ユニット100の姿勢が斜めになっても、最下段(1段目)の親ダイ装着体5を底面105(底壁130)に常時押し付けておくことができる。 Furthermore, each sorting container 150 of the parent die container unit 100 is provided with a pressing mechanism 170 that presses the parent die mounting bodies 5 housed in each sorting container 150 downward (bottom surface 105). . Although the specific configuration of the pressing mechanism 170 is not particularly limited, for example, it includes a strip-shaped pressing plate 171 and a torsion spring (torsion spring) 172 interposed between the pressing plate 171 and the rear wall 110 . may be Reference numeral 171A shown in FIG. 11 denotes a rotation shaft provided on the base end side of the pressing plate 171. As shown in FIG. The rotation shaft portion 171A of each pressing plate 171 may be supported by the partition wall 140 or the side wall 120 . Further, the pressing plate 171 is urged in the A direction shown in FIG. 11 by the elastic force of the torsion spring 172 . Therefore, the pressing plate 171 of the pressing mechanism 170 can always press the parent die mounting bodies 5 housed in the sorting housing portions 150 downward (bottom surface 105). As a result, even if the attitude of the parent die housing unit 100 becomes oblique due to the driving of the explosive loading boom 13 and the guide cell 20, the lowermost (first step) parent die mounting body 5 can be placed on the bottom surface 105 (bottom surface). It can always be pressed against the wall 130).
 以上のように構成される爆薬装填装置1を含む爆薬装填システムSは、トンネルTNの切羽面2に割り当てられた複数の発破対象領域毎に時間差で発破を行う段発発破工法に適用され、切羽面2に穿孔された複数の発破孔3に爆薬装填装置1を用いて自動で爆薬を装填する爆薬自動装填制御を行う爆薬自動装填システムである。本実施形態における爆薬装填システムSは、上述したドリルジャンボ10、追加用爆薬供給装置83および制御装置15を含み、制御装置15が爆薬装填装置1、追加用爆薬供給装置83を制御することによって爆薬自動装填制御を行う。 The explosive loading system S including the explosive loading device 1 configured as described above is applied to a stepped blasting method in which blasting is performed with a time difference for each of a plurality of blasting target areas assigned to the face surface 2 of the tunnel TN. This is an automatic explosive loading system that automatically loads explosives into a plurality of blasting holes 3 drilled in a surface 2 using an explosive loading device 1 for automatic explosive loading control. The explosive loading system S in this embodiment includes the above-described drill jumbo 10, the additional explosive supply device 83, and the control device 15. The control device 15 controls the explosive loading device 1 and the additional explosive supply device 83, thereby Control automatic loading.
 以下、制御装置15が実行する爆薬自動装填制御の詳細について説明する。図13は、操縦席14に装備された各種機器を例示する図である。操縦席14には、モニタ(ディスプレイ装置)210、制御装置15、当該制御装置15への入力装置(装薬用リモコンスイッチ231、操作盤232、キーボード233、ポンティングデバイス234等)が設けられている。ドリルジャンボ10は、作業員が入力装置の各種機器を用いて、ドリルジャンボ10における穿孔用ブーム12、爆薬装填用ブーム13、ガイドセル20、爆薬装填装置1、追加用爆薬供給装置83等を手動操作することが可能である。また、爆薬自動装填制御においては、制御装置15が爆薬装填用ブーム13、ガイドセル20、爆薬装填装置1等を制御することによって全自動、又は半自動で切羽面2に穿孔された発破孔3に親ダイ4および増しダイ6を装填することが可能である。制御装置15は、特に限定されないが、例えば入力部、処理部、出力部などを備えたコンピュータである。制御装置15の処理部は、各種プログラムを実行するためのプロセッサや、プロセッサの動作に必要な各種プログラムや各種情報を記憶する記憶装置(記憶部)等を含んで構成することができる。 Details of the explosive automatic loading control executed by the control device 15 will be described below. FIG. 13 is a diagram illustrating various devices installed in the cockpit 14. As shown in FIG. The cockpit 14 is provided with a monitor (display device) 210, a control device 15, and an input device to the control device 15 (charge remote control switch 231, operation panel 232, keyboard 233, pointing device 234, etc.). . The drill jumbo 10 is operated by a worker using various devices of the input device to manually operate the drilling boom 12, the explosive loading boom 13, the guide cell 20, the explosive loading device 1, the additional explosive feeding device 83, etc. in the drill jumbo 10. It is possible to operate. In the automatic explosive loading control, the control device 15 controls the explosive loading boom 13, the guide cell 20, the explosive loading device 1, etc., so that the blast hole 3 drilled in the face 2 is fully or semi-automatically controlled. A parent die 4 and an additional die 6 can be loaded. The control device 15 is, but not limited to, a computer including an input unit, a processing unit, an output unit, and the like. The processing unit of the control device 15 can include a processor for executing various programs, a storage device (storage unit) for storing various programs and various information required for the operation of the processor, and the like.
 以下、爆薬自動装填システムSの制御装置15が実行する爆薬自動装填制御の作業手順について説明する。図14は、爆薬自動装填システムSの制御装置15が実行する爆薬自動装填制御の手順フローを示す図である。まず、図1に示すように、ドリルジャンボ10の台車11を走行させ、発破予定の切羽面2の近くまで移動し、発破パターンに応じた切羽面2の穿孔予定位置に順次、穿孔用ブーム12および岩盤穿孔機16の駆動によって所定長をなす複数の発破孔3、3、…を穿孔する(ステップS1)。制御装置15は、ドリルジャンボ10の岩盤穿孔機16で発破孔3を穿孔した際に、その発破孔3のすべてに孔番号を関連付けておく。そして、発破孔3の孔番号毎に、孔番号に対応する孔口3Bの第一座標P1(X1、Y1、Z1)と最奥部3Aの第二座標P2(X2、Y2、Z2)との三次元座標値を含む発破孔位置情報と、その孔番号に対応する発破孔3の段数に関する発破孔段数情報と、が関連付けられた発破孔情報を記憶装置に記憶させておく(記憶工程)。なお、ドリルジャンボ10は、フルオートドリルジャンボ(「コンピュータドリルジャンボ」とも呼ばれる)であってもよく、制御装置10の記憶装置に記憶されている発破孔3の穿孔予定位置情報に基づいて穿孔用ブーム12および岩盤穿孔機16を自動制御することによって、切羽面2の穿孔予定位置に発破孔3を順次穿孔させてもよい。また、図2に示す例では、切羽面2には、その発破対象領域毎に第1段#1~第10段#10が割り当てられており、ステップS1では、切羽面2の第1段#1~第10段#10に対して、それぞれ1又は複数の発破孔群を含む第1段発破孔3(#1)~第10段発破孔3(#10)が穿孔されることとなる。また、第1段発破孔3(#1)~第10段発破孔3(#10)には、各段数に対応付けて起爆秒時が設定された親ダイ4が挿入されることとなる。 The work procedure for automatic explosive loading control executed by the control device 15 of the automatic explosive loading system S will be described below. FIG. 14 is a diagram showing a procedure flow of automatic explosive loading control executed by the controller 15 of the automatic explosive loading system S. As shown in FIG. First, as shown in FIG. 1, the carriage 11 of the drill jumbo 10 is driven to move close to the face 2 to be blasted, and the boom 12 for drilling is sequentially moved to the planned drilling position of the face 2 according to the blasting pattern. Then, a plurality of blast holes 3, 3, . When the rock drilling machine 16 of the drill jumbo 10 drills the blast holes 3, the control device 15 associates all the blast holes 3 with hole numbers. Then, for each hole number of the blasting hole 3, the first coordinate P1 (X1, Y1, Z1) of the hole mouth 3B corresponding to the hole number and the second coordinate P2 (X2, Y2, Z2) of the deepest part 3A Blast hole position information including three-dimensional coordinate values and blast hole step information associated with the step number of the blast hole 3 corresponding to the hole number are stored in a storage device (storage step). The drill jumbo 10 may be a full-automatic drill jumbo (also called a “computer drill jumbo”). By automatically controlling the boom 12 and the rock drilling machine 16 , the blast holes 3 may be drilled sequentially at the planned drilling positions on the face surface 2 . In addition, in the example shown in FIG. 2, the first stage #1 to the tenth stage #10 are assigned to the face 2 for each blasting target area, and in step S1, the first stage #1 of the face 2 A first-stage blasting hole 3 (#1) to a tenth-stage blasting hole 3 (#10) each including one or a plurality of blasting hole groups are drilled for the first to tenth stages #10. In addition, the parent die 4 having the initiation time set in association with each step number is inserted into the first stage blasting hole 3 (#1) to the tenth stage blasting hole 3 (#10).
 次に、入力装置(例えば、操作盤232)を介した操作によって、爆薬装填用ブーム13を発破孔3が穿孔された切羽面2の近くに配置する。また、図1に示すように、ドリルジャンボ10の後方に作業車200を配置し、追加用爆薬供給装置83におけるホッパー85に所定量の増しダイ6を投入しておく。 Next, the explosive loading boom 13 is placed near the face 2 in which the blast hole 3 is drilled by operation via an input device (for example, the operation panel 232). Further, as shown in FIG. 1, a working vehicle 200 is arranged behind the drill jumbo 10, and a predetermined amount of additional dies 6 are put into the hopper 85 of the additional explosive supply device 83. As shown in FIG.
 次いで、ステップS2では、制御装置15のコンピュータ制御により、予め設定しておいた孔番号に対応する発破孔3の第一座標P1(X1、Y1、Z1)と第二座標P2(X2、Y2、Z2)の三次元座標値を含む発破孔位置情報を参照し、ドリルジャンボ10の爆薬装填用ブーム13およびガイドセル20を自動駆動させ、切羽面2の複数箇所に穿孔された発破孔3のうち、爆薬(親ダイ4、増しダイ6)を今回装填すべき対象となる装填対象発破孔3TGTと装填ロッドの先端が同軸上で対向するように装填ロッド81を位置合わせする(ロッド位置合わせ工程)。上記のように、制御装置15は、ドリルジャンボ10の岩盤穿孔機16によって切羽面2に各発破孔3を穿孔する際、その孔番号毎に、発破孔3における孔口3Bの第一座標P1(X1、Y1、Z1)と最奥部3Aの第二座標P2(X2、Y2、Z2)を孔番号と関連付けた発破孔位置情報と、その孔番号に対応する発破孔3の段数に関する発破孔段数情報と、が関連付けられて記憶装置に記憶されている。そのため、制御装置15は、この発破孔位置情報を参照し、装填対象発破孔3TGTに対応する第一座標P1(X1、Y1、Z1)および第二座標P2(X2、Y2、Z2)を読み出すことによって、装填対象発破孔3TGTに対して装填ロッド81の先端811が対向するように装填ロッド81を位置合わせすることができる。図15は、ロッド位置合わせ工程が完了した状況を説明する図である。以下、ロッド位置合わせ工程が完了した状態における装填ロッド81の位置を「ロッド合わせ完了位置」という。図15において、ロッド合わせ完了位置に配置された状態の装填ロッド81の中心軸C1は、装填対象発破孔3TGTの中心軸C2に対して同軸に位置付けられており、装填ロッド81の先端811が、装填対象発破孔3TGTの孔口3Bから所定寸法だけ離間した位置に配置されている。ロッド合わせ完了位置に装填ロッド81が配置された状態において、孔口3Bに対する装填ロッド81の先端811の離間寸法(以下、「ロッド孔口間初期離間寸法」という」)は特に限定されない。 Next, in step S2, the first coordinate P1 (X1, Y1, Z1) and the second coordinate P2 (X2, Y2, With reference to the blast hole position information including the three-dimensional coordinate value of Z2), the explosive loading boom 13 and the guide cell 20 of the drill jumbo 10 are automatically driven, and among the blast holes 3 drilled at multiple locations on the face surface 2 , the loading rod 81 is aligned so that the tip of the loading rod is coaxially opposed to the loading target blasting hole 3 TGT to which the explosives (parent die 4, additional die 6) should be loaded this time (rod alignment step ). As described above, when each blast hole 3 is drilled in the face surface 2 by the rock drilling machine 16 of the drill jumbo 10, the control device 15 controls the first coordinate P1 (X1, Y1, Z1) and the second coordinate P2 (X2, Y2, Z2) of the deepest part 3A are associated with the hole number, and the blast hole related to the number of stages of the blast hole 3 corresponding to the hole number. and are stored in the storage device in association with each other. Therefore, the control device 15 refers to this blasting hole position information and reads out the first coordinates P1 (X1, Y1, Z1) and the second coordinates P2 (X2, Y2, Z2) corresponding to the loading target blasting hole 3 TGT . Thus, the loading rod 81 can be aligned so that the tip 811 of the loading rod 81 faces the blast hole 3 TGT to be loaded. FIG. 15 is a diagram for explaining the state in which the rod alignment process is completed. Hereinafter, the position of the loading rod 81 in the state where the rod alignment process is completed is referred to as "rod alignment completed position". In FIG. 15, the central axis C1 of the loading rod 81 arranged at the rod alignment completion position is coaxial with the central axis C2 of the blast hole 3 TGT to be loaded, and the tip 811 of the loading rod 81 , the blast hole 3 to be loaded is arranged at a position spaced apart from the opening 3B of the TGT by a predetermined dimension. In the state where the loading rod 81 is arranged at the rod alignment completion position, the distance between the tip 811 of the loading rod 81 and the hole 3B (hereinafter referred to as "the initial distance between the rod holes") is not particularly limited.
 次に、制御装置15は、発破孔段数情報を参照して親ダイ収容ユニット駆動機構90を制御することによって、爆薬装填用ブーム13(ガイドセル20)上で装填ロッド81の前方に設けられた親ダイ収容ユニット100(起爆用爆薬収容ユニット)を装填直交方向Yに沿って移動させ、装填対象発破孔3TGTの段数に対応する起爆秒時を有する親ダイ4(起爆用爆薬)を装填ロッド81の同軸上前方に位置する起爆用爆薬供給位置に供給する(起爆用爆薬供給工程)。上記構成例では、親ダイ収容ユニット100の内部は、第1仕分け収容部150(#1)~第10仕分け収容部150(#10)に区画されている。したがって、制御装置15は、装填対象発破孔3TGTの段数に対応する起爆秒時が設定された親ダイ4を装着した親ダイ装着体5を、上記起爆用爆薬供給位置に供給することとなる。 Next, the control device 15 refers to the blast hole stage number information and controls the parent die housing unit drive mechanism 90 to set the explosive loading boom 13 (guide cell 20) in front of the loading rod 81. The parent die storage unit 100 (initiation explosive storage unit) is moved along the loading orthogonal direction Y, and the parent die 4 (initiation explosive) having the initiation time corresponding to the number of stages of the blasting hole 3 TGT to be loaded is loaded into the rod. It is supplied to the detonating explosive supply position located coaxially forward of 81 (initial explosive supplying step). In the above configuration example, the inside of the parent die accommodating unit 100 is divided into the first sorting and accommodating section 150 (#1) to the tenth sorting and accommodating section 150 (#10). Therefore, the control device 15 supplies the parent die mounting body 5 mounted with the parent die 4 having the initiation time corresponding to the stage number of the blast hole 3 TGT to be loaded to the above-described initiation explosive supply position. .
 上記のように、親ダイ収容ユニット100は、起爆秒時を有する親ダイ4(起爆用爆薬)を装着した親ダイ装着体5同士を相互に仕分けして収容可能な複数の仕分け収容部150を有すると共に、爆薬装填用ブーム13(ガイドセル20)に対して装填直交方向Yに沿って往復動可能に設けられている。そして、各仕分け収容部150が装填直交方向Yに沿って配列されていると共に前記装填方向と直交する装填直交方向に沿って往復動可能に設けられている。そのため、制御装置15は、起爆用爆薬供給工程において、制御装置15は、親ダイ収容ユニット駆動機構90の自動制御によって親ダイ収容ユニット100を装填直交方向Yに沿って移動させることで、装填対象発破孔3TGTの段数に対応する起爆秒時が設定された親ダイ4を装着した親ダイ装着体5(以下、「装填対象親ダイ装着体5TGT」という。)が収容されている仕分け収容部150(以下、「装填対象仕分け収容部150TGT」という。)を、装填ロッド81の同軸上前方に位置する起爆用爆薬供給位置に配置することができる。 As described above, the parent die housing unit 100 has a plurality of sorting and housing sections 150 capable of mutually sorting and housing the parent die mounted bodies 5 mounted with the parent dies 4 (detonating explosives) having the detonation time. It is provided so as to be able to reciprocate along the charging orthogonal direction Y with respect to the explosive loading boom 13 (guide cell 20). The sorting storage units 150 are arranged along the loading orthogonal direction Y and are provided reciprocatingly along the loading orthogonal direction perpendicular to the loading direction. Therefore, in the detonating explosive supply process, the control device 15 automatically controls the main die housing unit drive mechanism 90 to move the main die housing unit 100 along the loading orthogonal direction Y, thereby Blasting hole 3 Sorting storage in which parent die mounted bodies 5 (hereinafter referred to as "loading target parent die mounted bodies 5 TGT ") mounted with parent dies 4 set with detonation seconds corresponding to the number of stages of TGT are stored. A section 150 (hereinafter referred to as a “loading target sorting and containing section 150 TGT ”) can be arranged at a detonating explosive supply position located coaxially in front of the loading rod 81 .
 更に、本実施形態においては、爆薬装填用ブーム13(ガイドセル20)上において、親ダイ収容ユニット100の各仕分け収容部150の最下段(1段目)に収容されている親ダイ装着体5の中心軸の高さが、装填ロッド81の中心軸C1の高さと略一致するように、スライダー92の載置部93に設置される親ダイ収容ユニット100と装填ロッド送り機構80に保持される装填ロッド81の設置関係が規定されている。また、親ダイ収容ユニット100における各仕分け収容部150の幅寸法は、上記の通り親ダイ装着体5における筒状部材51の外径にほぼ対応する寸法に設定されている。そのため、各仕分け収容部150における幅方向の中央位置に親ダイ装着体5(筒状部材51)の中心軸位置が揃えられた状態で親ダイ装着体5が各仕分け収容部150に収容されている。上記起爆用爆薬供給工程において、制御装置15は、装填対象仕分け収容部150TGTにおける幅方向の中心位置が装填ロッド81と同軸上(中心軸C1の延長線上)に配置されるように、親ダイ収容ユニット100を移動させる。これにより、装填対象仕分け収容部150TGTの最下段(1段目)収容されている装填対象親ダイ装着体5TGTの中心軸を、装填ロッド81の中心軸C1と同軸上に配置することができる。 Further, in the present embodiment, on the explosive loading boom 13 (guide cell 20), the parent die mounting body 5 is accommodated in the lowest stage (first stage) of each sorting accommodation section 150 of the parent die accommodation unit 100. is held by the parent die housing unit 100 installed on the mounting portion 93 of the slider 92 and the loading rod feeding mechanism 80 so that the height of the center axis of the loading rod 81 substantially coincides with the height of the center axis C1 of the loading rod 81 The installation relationship of the loading rod 81 is defined. Further, the width dimension of each sorting container 150 in the parent die container unit 100 is set to a dimension substantially corresponding to the outer diameter of the cylindrical member 51 in the parent die mounting body 5 as described above. Therefore, the parent die mounting bodies 5 are accommodated in the sorting and accommodating sections 150 in a state in which the central axis positions of the parent die mounted bodies 5 (cylindrical members 51) are aligned with the center positions in the width direction of the respective sorting and accommodating sections 150. there is In the above-described detonating explosive supply process, the control device 15 controls the main die so that the center position in the width direction of the loading object sorting and storing section 150 TGT is arranged coaxially with the loading rod 81 (on the extension line of the central axis C1). The storage unit 100 is moved. As a result, the central axis of the parent die mounting body 5 TGT to be loaded, which is housed in the lowest stage (first stage) of the sorting and storing part 150 TGT to be loaded, can be arranged coaxially with the central axis C1 of the loading rod 81. can.
 ここで、例えば、装填対象発破孔3TGTの段数が第8段#8である場合(すなわち、装填対象発破孔3TGTが第8段発破孔(#8)である場合)には、制御装置15は、装填対象親ダイ装着体5TGTとしての第8親ダイ装着体5(#8)が収容されている第8仕分け収容部150(#8)の幅方向中心位置が装填ロッド81の同軸上前方(中心軸C1の延長線上)に配置されるようにスライダー92を作動させる。その結果、装填対象仕分け収容部150TGTとしての第8仕分け収容部150(#8)における最下段(1段目)収容されている第8親ダイ装着体5(#8)の中心軸を装填ロッド81の中心軸C1と同軸上に配置させることができる。その結果、装填対象仕分け収容部150TGTとしての第8親ダイ装着体5(#8)を、装填ロッド81の同軸上前方に位置する起爆用爆薬供給位置にすることができる。 Here, for example, when the number of stages of the blasting hole 3 TGT to be loaded is the eighth stage #8 (that is, when the blasting hole 3 TGT to be loaded is the eighth stage blasting hole (#8)), the control device Reference numeral 15 designates the widthwise center position of the eighth sorting/accommodating section 150 (#8) in which the eighth parent die mounting body 5 (#8) as the loading target parent die mounting body 5 TGT is accommodated. The slider 92 is actuated so that it is arranged on the upper front side (on the extension line of the central axis C1). As a result, the central axis of the eighth parent die mounting body 5 (#8) accommodated in the lowest stage (first stage) in the eighth sorting and accommodating section 150 (#8) as the loading target sorting and accommodating section 150 TGT is loaded. It can be arranged coaxially with the central axis C<b>1 of the rod 81 . As a result, the eighth parent die mounting body 5 (#8) serving as the loading target sorting and receiving section 150 TGT can be positioned at the initial explosive supply position coaxially in front of the loading rod 81 .
 次に、ステップS3において、制御装置15は、装填ロッド送り機構80を自動制御し、装填ロッド81を起爆用爆薬装填方向Xに沿って前進させ、起爆用爆薬供給位置に供給した装填対象親ダイ装着体5TGTを装填ロッド81の先端811に保持しつつ装填対象発破孔3TGTの最奥部3Aに装填対象親ダイ装着体5TGTを装填する(起爆用爆薬装填工程)。 Next, in step S3, the control device 15 automatically controls the loading rod feeding mechanism 80 to advance the loading rod 81 along the detonating explosive loading direction X, and feeds the loading target parent die to the detonating explosive supply position. While holding the mounting body 5 TGT at the tip 811 of the loading rod 81, the parent die mounting body 5 TGT to be loaded is loaded into the innermost portion 3A of the blast hole 3 TGT to be loaded (initial explosive loading step).
 上記のように、親ダイ収容ユニット100の各仕分け収容部150には、前面101の下部領域に排出口107が形成されている。そのため、装填ロッド送り機構80によって起爆用爆薬装填方向Xに沿って装填ロッド81を前送りした際、親ダイ収容ユニット100における装填対象仕分け収容部150TGTに対応するロッド挿入口106から装填ロッド81の先端811を挿入させることができる。 As described above, each sorting container 150 of the parent die container unit 100 has the discharge port 107 formed in the lower region of the front surface 101 . Therefore, when the loading rod feeding mechanism 80 forwards the loading rod 81 along the loading direction X of the detonating explosive, the loading rod 81 is fed from the rod insertion opening 106 corresponding to the loading target sorting storage section 150 TGT in the parent die storage unit 100 . tip 811 of the can be inserted.
 そして、親ダイ装着体5は、筒状部材51の後端内側に中空部53が残存するように親ダイ4を装着している。そのため、起爆用爆薬装填工程において、ロッド挿入口106から装填対象仕分け収容部150TGTに挿入した装填ロッド81の先端811を、装填対象仕分け収容部150TGTの最下段に位置する装填対象親ダイ装着体5TGTの中空部53に挿入することで、当該装填対象親ダイ装着体5TGTを装填ロッド81の先端811に保持させることができる。これにより、ロッド挿入口106から装填対象仕分け収容部150TGTに挿入した装填ロッド81の先端811に保持させた装填対象親ダイ装着体5TGTを、装填ロッド81によって容易に前送りできるようになる。なお、装填対象親ダイ装着体5TGTは、装填ロッド81によって同軸に保持される。 The parent die mounting body 5 mounts the parent die 4 so that the hollow portion 53 remains inside the rear end of the tubular member 51 . Therefore, in the process of loading the detonating explosive, the tip 811 of the loading rod 81 inserted from the rod insertion opening 106 into the loading target sorting storage section 150 TGT is attached to the loading target parent die positioned at the bottom of the loading target sorting storage section 150 TGT . By inserting it into the hollow portion 53 of the body 5 TGT , the parent die mounting body 5 TGT to be loaded can be held at the tip 811 of the loading rod 81 . As a result, the loading target parent die mounting body 5 TGT held by the tip end 811 of the loading rod 81 inserted into the loading target sorting storage section 150 TGT from the rod insertion port 106 can be easily forwarded by the loading rod 81. . The loading target parent die mounting body 5 TGT is coaxially held by the loading rod 81 .
 図16は、起爆用爆薬装填工程の状況を説明する図である。本実施形態において、各仕分け収容部150の前面101における下部領域に形成された排出口107は、後面102側の下部領域に形成されたロッド挿入口106と対向するように形成されている。そのため、起爆用爆薬装填工程において、装填対象親ダイ装着体5TGTを保持した状態の装填ロッド81を起爆用爆薬装填方向Xに沿って更に前送りすることで、装填対象仕分け収容部150TGTの最下段(1段目)の装填対象親ダイ装着体5TGTを排出口107から排出させることができる。また、親ダイ収容ユニット100の各仕分け収容部150の前後方向における延在方向は、起爆用爆薬装填方向Xおよび装填ロッド81の中心軸C1方向と平行である。そのため、装填ロッド81を起爆用爆薬装填方向Xに沿って前送りすることによって、装填ロッド81に保持した装填対象親ダイ装着体5TGTを各仕分け収容部150の前後方向に沿って移動させ、排出口107から円滑に排出させることができる。また、各仕分け収容部150の前面101には、各仕分け収容部150における2段目~最上段に位置する親ダイ装着体5が前面101側から排出されることを抑制するための止め板160が設けられているため、装填ロッド81によって最下段の装填対象親ダイ装着体5TGTを前送りする際に、当該装填対象親ダイ装着体5TGTとの摩擦などによって2段目以降の親ダイ装着体5が前面101側から排出されてしまうことを抑制できる。 FIG. 16 is a diagram for explaining the state of the detonating explosive loading process. In this embodiment, the discharge port 107 formed in the lower region of the front face 101 of each sorting container 150 is formed to face the rod insertion port 106 formed in the lower region of the rear face 102 side. Therefore, in the detonating explosive loading step, the loading rod 81 holding the loading target parent die mounting body 5 TGT is further forwarded along the detonating explosive loading direction X, thereby making the loading target sorting and accommodating part 150 TGT . The parent die mounting body 5 TGT to be loaded in the lowest stage (first stage) can be discharged from the discharge port 107 . In addition, the extending direction in the front-rear direction of each sorting accommodation portion 150 of the parent die accommodation unit 100 is parallel to the loading direction X of the detonating explosive and the direction of the central axis C1 of the loading rod 81 . Therefore, by feeding the loading rod 81 forward along the loading direction X of the detonating explosive, the loading target parent die mounting body 5 TGT held by the loading rod 81 is moved along the front-rear direction of each sorting container 150, It can be discharged smoothly from the discharge port 107 . In addition, on the front surface 101 of each sorting container 150, a stopping plate 160 is provided to prevent the mother die mounted bodies 5 positioned in the second to uppermost stages in each sorting container 150 from being ejected from the front surface 101 side. is provided, when the loading rod 81 advances the parent die mounting body 5 TGT to be loaded at the bottom stage, the parent die mounting body 5 TGT to be loaded may cause friction with the parent die mounting body 5 TGT to be loaded. It is possible to prevent the mounting body 5 from being ejected from the front surface 101 side.
 また、上述したロッド位置合わせ工程においては、装填ロッド81の中心軸C1が装填対象発破孔3TGTの中心軸C2に対して同軸となるように装填ロッド81が位置合わせされている。したがって、起爆用爆薬装填工程において、装填対象親ダイ装着体5TGTを保持した状態の装填ロッド81を起爆用爆薬装填方向Xに沿って前送りすることで、装填対象親ダイ装着体5TGTを先端部5A側から装填対象発破孔3TGTに対して円滑に挿入させることができる。 Further, in the above-described rod alignment step, the loading rod 81 is aligned so that the center axis C1 of the loading rod 81 is coaxial with the center axis C2 of the blast hole 3 TGT to be loaded. Therefore, in the detonating explosive loading step, the loading rod 81 holding the loading target parent die mounting body 5 TGT is fed forward along the detonating explosive loading direction X, thereby loading the loading target parent die mounting body 5 TGT . It can be smoothly inserted into the loading target blasting hole 3 TGT from the tip portion 5A side.
 ところで、上記ロッド位置合わせ工程において、装填ロッド81の中心軸C1が装填対象発破孔3TGTの中心軸C2に対して同軸に配置されるように位置合わせされるが、実際には数センチメートルレベルでの位置合わせ誤差を伴う場合も想定される。図17は、親ダイ装着体5における錘状ガイド部52のガイド機能を説明する図である。図17には、装填対象発破孔3TGTの中心軸C2に対して装填ロッド81の中心軸C1が偏心している状況下において起爆用爆薬装填工程が行われている状況が示されている。なお、図17においては、装填ロッド送り機構80や親ダイ収容ユニット100の図示を省略している。 By the way, in the above rod alignment process, the center axis C1 of the loading rod 81 is aligned so as to be coaxial with the center axis C2 of the blasting hole 3 TGT to be loaded. It is also assumed that there is an alignment error in . 17A and 17B are diagrams for explaining the guide function of the conical guide portion 52 in the parent die mounting body 5. FIG. FIG. 17 shows a situation in which the initiation explosive loading step is performed under a situation where the central axis C1 of the charging rod 81 is eccentric with respect to the central axis C2 of the blast hole 3 TGT to be charged. 17, illustration of the loading rod feeding mechanism 80 and the parent die housing unit 100 is omitted.
 本実施形態における親ダイ装着体5は、筒状保持体51の前端51Aに錘状ガイド部52が設けられており、上記のように錘状ガイド部52は円錐形状を有している。そのため、装填対象発破孔3TGTに対して装填ロッド81が偏心した状態で装填ロッド81が前送りされる場合であっても、起爆用爆薬装填工程の過程で装填対象発破孔3TGTの孔口3Bにおける縁部(切羽面における縁部2A)に衝突した錘状ガイド部52の側面を当該孔口3B(縁部2A)に摺接させながら親ダイ装着体5を装填対象発破孔3TGTの内部に進行させることができる。つまり、ロッド合わせ完了位置の時点で偏心していた装填ロッド81の中心軸C1と装填対象発破孔3TGTの中心軸C2との偏心量を錘状ガイド部52によるガイド機能で減少させつつ、親ダイ装着体5を装填対象発破孔3TGTの内部へと円滑に挿入することができる。また、装填対象発破孔3TGTの最奥部3Aまで装填対象親ダイ装着体5TGTを前送りする過程で、装填対象発破孔3TGTに孔荒れ等に起因して落石などの障害物3Cがあったとしても、障害物3Cに対して錘状ガイド部52の側面を摺接させながら親ダイ装着体5を最奥部3Aに向かって前送りすることができる。 The parent die mounting body 5 in this embodiment is provided with the conical guide portion 52 at the front end 51A of the tubular holder 51, and the conical guide portion 52 has a conical shape as described above. Therefore, even if the loading rod 81 is fed forward in a state in which the loading rod 81 is eccentric with respect to the blast hole 3 TGT to be loaded, the opening of the blast hole 3 TGT to be loaded is removed during the process of loading the detonating explosive. The side surface of the conical guide portion 52 that collides with the edge of 3B (edge 2A on the face surface) is brought into sliding contact with the hole opening 3B (edge 2A), and the main die mounting body 5 is pushed into the blasting hole 3 TGT to be loaded. You can progress inside. In other words, the amount of eccentricity between the central axis C1 of the loading rod 81 and the central axis C2 of the blast hole 3 TGT to be loaded, which was eccentric at the rod alignment completion position, is reduced by the guide function of the conical guide portion 52, and the parent die The mounting body 5 can be smoothly inserted into the loading target blasting hole 3 TGT . In addition, in the process of forward feeding the parent die mounting body 5 TGT to be loaded to the deepest part 3A of the blast hole 3 TGT to be loaded, an obstacle 3C such as falling rocks is caused by hole roughening in the blast hole 3 TGT to be loaded. Even if there is, the parent die mounting body 5 can be advanced toward the innermost portion 3A while the side surface of the conical guide portion 52 is brought into sliding contact with the obstacle 3C.
 また、図16に示すように、本実施形態における起爆用爆薬装填工程では、装填対象親ダイ装着体5TGT(親ダイ装着体5)における段発雷管41に結線された脚線42を結束材43によって結束した状態で装填対象発破孔3TGT(発破孔3)に挿入してもよい。この場合、結束材43によって脚線42を輪状に束ねることによって形成される輪状部42Aの直径は、発破孔3における孔口3Bの直径よりも大きな寸法に設定される。そうすると、装填対象親ダイ装着体5TGT(親ダイ装着体5)が装填対象発破孔3TGT(発破孔3)に挿入される過程で、脚線42を束ねる輪状部42Aが孔口3Bの周囲に位置する縁部2Aに引っ掛かり、その抵抗によって結束材43が破断する。その結果、結束材43による脚線42の結束を自動的に解くことができる。ここで、結束材43は、紙などの易破断材料によって形成されているため、小さな力によって容易に破断させることができる。そのため、起爆用爆薬装填工程の途中で脚線42の結束を解く過程で脚線42に大きな負荷がかかることを抑制できる。 Further, as shown in FIG. 16, in the step of loading the detonating explosive in this embodiment, the leg wire 42 connected to the stepped detonator 41 in the loading target parent die mounting body 5 TGT (mother die mounting body 5) is attached to a binding material. 43 may be inserted into the target blast hole 3 TGT (blast hole 3). In this case, the diameter of the loop portion 42A formed by bundling the leg wires 42 into a loop with the binding material 43 is set to be larger than the diameter of the hole mouth 3B of the blast hole 3. As shown in FIG. Then, in the process of inserting the loading target parent die mounting body 5 TGT (mother die mounting body 5) into the loading target blasting hole 3 TGT (blasting hole 3), the ring-shaped portion 42A for bundling the leg wires 42 is formed around the hole opening 3B. , and the binding material 43 is broken by the resistance. As a result, the binding of the leg wire 42 with the binding material 43 can be automatically untied. Here, since the binding material 43 is made of an easily breakable material such as paper, it can be easily broken with a small force. Therefore, it is possible to suppress a large load from being applied to the leg wire 42 in the process of untying the leg wire 42 during the process of loading the detonating explosive.
 また、起爆用爆薬装填工程の途中で装填対象親ダイ装着体5TGT(親ダイ装着体5)における脚線42の結束を自動的に解く手法として、以下の別態様を採用してもよい。例えば、本実施形態における親ダイ収容ユニット100の外面における適所に、各親ダイ装着体5における脚線42の輪状部42Aを引っ掛けて保持するための一又は複数の脚線保持ロッド部材を設けてもよい。このような脚線保持ロッド部材は、例えば親ダイ収容ユニット100の側面103(側面壁120の外面)に設けられていてもよい。各親ダイ装着体5における脚線42の輪状部42Aを整然と脚線保持ロッド部材に保持させる観点からは、親ダイ収容ユニット100は複数の保持ロッド部材42Aを備えていることが好ましい。 Further, as a method of automatically untying the leg wires 42 in the loading target parent die mounting body 5 TGT (parent die mounting body 5) during the process of loading the detonating explosive, the following alternative embodiment may be adopted. For example, one or a plurality of leg wire holding rod members for hooking and holding the ring-shaped portion 42A of the leg wire 42 of each parent die mounting body 5 may be provided at appropriate locations on the outer surface of the parent die housing unit 100 in this embodiment. good too. Such a leg wire holding rod member may be provided, for example, on the side surface 103 of the parent die housing unit 100 (the outer surface of the side wall 120). From the viewpoint of orderly holding the ring-shaped portions 42A of the leg wires 42 in each parent die mounting body 5 by the leg wire holding rod members, the parent die housing unit 100 preferably includes a plurality of holding rod members 42A.
 また、例えば親ダイ収容ユニット100は、左右双方の側面103の各々に一又は複数の脚線保持ロッド部材を備えていることが好ましい。起爆用爆薬装填工程において装填ロッド81に保持された装填対象親ダイ装着体5TGTが前送りされると、その過程で脚線保持ロッド部材に保持された輪状部42Aを束ねる結束材43に応力が掛かり、当該応力によって結束材43を破断させることができる。勿論、結束材43は紙などの易破断材料によって形成されているため、結束材43が破断する前に線42に大きな応力が掛かることはない。このような態様によっても、脚線保持ロッド部材に予め輪状部42Aを保持させておき、起爆用爆薬装填工程の途中で結束材43による脚線42の結束を自動的に解くことが可能となる。なお、結束材43による結束が解けた脚線42は、その後、装填ロッド81の前送りに伴って脚線保持ロッド部材から順次繰り出すことができる。 Also, for example, the parent die housing unit 100 preferably has one or more leg wire holding rod members on each of the left and right side surfaces 103 . When the parent die mounting body 5 TGT to be loaded held by the loading rod 81 is advanced in the process of loading the detonating explosive, stress is applied to the binding material 43 that binds the ring-shaped portion 42A held by the leg wire holding rod member in the process. The binding material 43 can be broken by the stress. Of course, since the binding material 43 is made of an easily breakable material such as paper, a large stress is not applied to the wire 42 before the binding material 43 breaks. Also in this mode, the loop portion 42A is held by the leg wire holding rod member in advance, and the binding of the leg wire 42 with the binding material 43 can be automatically unbound during the process of loading the detonating explosive. . The leg wires 42 unbound by the binding material 43 can then be fed out sequentially from the leg wire holding rod member as the loading rod 81 is advanced forward.
 なお、親ダイ収容ユニット100における側面103に脚線保持ロッド部材を設ける場合には、側面103から側方に向かって脚線保持ロッド部材が突設されていてもよい。また、親ダイ収容ユニット100の側面103に複数の脚線保持ロッド部材を設ける場合には、当該複数の脚線保持ロッド部材を親ダイ収容ユニット100の上下方向に段違いに設置してもよい。複数の脚線保持ロッド部材を段違いに設置することで、各脚線保持ロッド部材に保持する各脚線42を互いに絡みにくくなる。 When the leg wire holding rod member is provided on the side surface 103 of the parent die housing unit 100, the leg wire holding rod member may protrude from the side surface 103 toward the side. Further, when a plurality of leg wire holding rod members are provided on the side surface 103 of the parent die housing unit 100, the plurality of leg wire holding rod members may be arranged in the vertical direction of the parent die housing unit 100 at different levels. By installing a plurality of leg wire holding rod members in different levels, the leg wires 42 held by the respective leg wire holding rod members are less likely to get entangled with each other.
 また、上記起爆用爆薬装填工程において、制御装置15は、装填ロッド81の前送り量を算出し、算出した装填ロッド81の前送り量に基づいて装填ロッド送り機構80を駆動させる。装填ロッド81の前送り量は、例えば、ロッド合わせ完了位置に装填ロッド81が配置された状態におけるロッド孔口間初期離間寸法と装填対象発破孔3TGTの設計長さに基づいて算出できる。また、制御装置15は、発破孔位置情報に格納されている装填対象発破孔3TGTにおける孔口3Bの第一座標P1(X1、Y1、Z1)と最奥部3Aの第二座標P2(X2、Y2、Z2)に基づいて算出した装填対象発破孔3TGTと、ロッド孔口間初期離間寸法に基づいて、装填対象発破孔3TGTの最奥部3Aに装填対象親ダイ装着体5TGTの先端部5Aを位置付けるために必要な装填ロッド81の前送り量を算出してもよい。このようにして、制御装置15が装填ロッド送り機構80を自動制御する結果、図18に示すように、装填対象発破孔3TGTの最奥部3Aに装填対象親ダイ装着体5TGTの先端部5Aが位置付けられた状態で装填対象親ダイ装着体5TGTの装填が完了する。 Further, in the above-described explosive charge loading step, the control device 15 calculates the forward feeding amount of the loading rod 81 and drives the loading rod feeding mechanism 80 based on the calculated forward feeding amount of the loading rod 81 . The forward feed amount of the loading rod 81 can be calculated, for example, based on the initial distance between the rod hole openings and the design length of the blast hole 3 TGT to be loaded when the loading rod 81 is arranged at the rod alignment completion position. In addition, the control device 15 controls the first coordinate P1 (X1, Y1, Z1) of the hole opening 3B and the second coordinate P2 (X2 , Y2, Z2), and based on the initial distance between the rod holes, the innermost part 3A of the blast hole 3 TGT to be loaded is the parent die mounting body 5 TGT to be loaded . A forward feed amount of the loading rod 81 required to position the tip portion 5A may be calculated. As a result of the automatic control of the loading rod feeding mechanism 80 by the control device 15 in this way, as shown in FIG. When 5A is positioned, the loading of the parent die mounting body 5 TGT to be loaded is completed.
 そして、制御装置15は起爆用爆薬装填工程の後、ステップS4において、装填ロッド送り機構80を制御して装填ロッド81を後退させながら、追加用爆薬供給装置83を作動させ、圧送ホース82を通じて増しダイ6(追加用爆薬)を装填ロッド81の中空路812に圧送供給する(追加用爆薬装填工程)。装填ロッド81の中空路812に圧送供給された増しダイ6は、装填ロッド81(中空路812)の先端811から装填対象発破孔3TGTの内部に装填される。図19は、追加用爆薬装填工程が完了した図である。追加用爆薬装填工程が完了すると、装填対象発破孔3TGTの内部に親ダイ4(親ダイ装着体5)および増しダイ6の装填が完了した状態となる。そして、図19に示すように、装填ロッド81が装填対象発破孔3TGTから引き抜かれた状態において、次の装填対象発破孔3TGTに対して爆薬(親ダイ4、増しダイ6)の自動装填制御が行われる。すなわち、上述したステップS2~S4の各工程を順次繰り返し、全ての発破孔3に対して爆薬(親ダイ4、増しダイ6)の装填作業を自動で行うことができる。 After the initiation explosive loading step, the control device 15 controls the loading rod feeding mechanism 80 to retract the loading rod 81 while operating the additional explosive supply device 83 to increase the amount through the pressure feeding hose 82 in step S4. The die 6 (additional explosive) is pumped and supplied to the hollow passage 812 of the loading rod 81 (additional explosive loading step). The additional die 6 pressure-fed into the hollow passage 812 of the loading rod 81 is loaded from the tip 811 of the loading rod 81 (hollow passage 812) into the blasting hole 3 TGT to be loaded. FIG. 19 shows the completion of the additional explosive loading process. When the additional explosive loading step is completed, the loading of the parent die 4 (parent die mounting body 5) and the additional die 6 inside the target blasting hole 3 TGT is completed. Then, as shown in FIG. 19, in a state in which the loading rod 81 is pulled out from the blasting hole 3 TGT to be loaded, the explosives (the main die 4 and the additional die 6) are automatically loaded into the next blasting hole 3 TGT to be loaded. control is performed. That is, the steps S2 to S4 described above are sequentially repeated, and all the blast holes 3 can be automatically charged with explosives (the main die 4 and the additional die 6).
 以上のように、爆薬装填装置1および制御装置15を含む爆薬装填システムSによれば、トンネルTNの切羽面2に割り当てられた発破対象領域の段数に応じた爆薬を、発破孔3に自動で装填することが可能となる。 As described above, according to the explosive loading system S including the explosive loading device 1 and the control device 15, explosives corresponding to the number of stages of the blasting target areas assigned to the face surface 2 of the tunnel TN are automatically delivered to the blast holes 3. It can be loaded.
 そして、本実施形態における爆薬の装填方法によれば、親ダイ4を装着してなる親ダイ装着体5は、筒状保持体51の前端51Aに錘状ガイド部52が設けられているため、図17を参照して説明したように、発破孔3の中心軸C2に対して親ダイ装着体5の中心軸が偏心している状況下、或いは、発破孔3に孔荒れ等に起因して落石などの障害物3Cがあったとしても、錘状ガイド部52によるガイド機能によって親ダイ装着体5を発破孔3の最奥部3Aまで円滑に装填することができる。 According to the explosive loading method of the present embodiment, the main die mounting body 5 having the main die 4 mounted thereon is provided with the conical guide portion 52 at the front end 51A of the cylindrical holding body 51. As described with reference to FIG. 17, under the condition that the central axis of the parent die mounting body 5 is eccentric with respect to the central axis C2 of the blasting hole 3, or due to hole roughening in the blasting hole 3, falling rocks may occur. Even if there is an obstacle 3C such as the blasting hole 3, the guide function of the conical guide portion 52 allows the main die mounting body 5 to be smoothly loaded to the innermost portion 3A of the blast hole 3.
 なお、上記実施形態においては、切羽面2に穿孔された発破孔3に爆薬(親ダイ4、増しダイ6)を全自動で装填する実施形態を例に説明したが、本開示に係る錘状ガイド部52を備えた親ダイ装着体5を用いた爆薬装填方法は上記形態に限定されない。例えば、上述したロッド位置合わせ工程において装填ロッド81の位置合わせを行う際に、制御装置15を用いた自動制御ではなく操作盤232等を介した操作によって発破孔3に対して装填ロッド81が対向配置されるように装填ロッド81を位置合わせしてもよい。このような態様においても、装填ロッド81の先端811に保持した親ダイ装着体5を発破孔3に装填する本開示に係る爆薬装填方法を好適に適用することができ、円滑な爆薬装填を実現することができる。 In the above embodiment, an embodiment in which the blasting hole 3 drilled in the face surface 2 is fully automatically loaded with explosives (the main die 4 and the additional die 6) has been described as an example. The explosive loading method using the parent die mounting body 5 having the guide portion 52 is not limited to the above-described form. For example, when aligning the loading rod 81 in the rod alignment process described above, the loading rod 81 faces the blast hole 3 not by automatic control using the control device 15 but by operation via the operation panel 232 or the like. The loading rod 81 may be aligned so that it is positioned. Even in such an aspect, the explosive loading method according to the present disclosure, in which the parent die mounting body 5 held at the tip 811 of the loading rod 81 is loaded into the blast hole 3, can be suitably applied, realizing smooth explosive loading. can do.
1・・・爆薬装填装置
2・・・切羽面
3・・・発破孔
4・・・親ダイ
5・・・親ダイ装着体
6・・・増しダイ
10・・・ドリルジャンボ
13・・・爆薬装填用ブーム
20・・・ガイドセル
70・・・親ダイ供給装置
80・・・装填ロッド送り機構
81・・・装填ロッド
83・・・追加用爆薬供給装置
90・・・親ダイ収容ユニット駆動機構
100・・・親ダイ収容ユニット
140・・・仕切り壁
150・・・仕分け収容部
Reference Signs List 1... Explosive loading device 2... Face surface 3... Blasting hole 4... Parent die 5... Parent die mounting body 6... Additional die 10... Drill jumbo 13... Explosive Loading boom 20 Guide cell 70 Parent die supply device 80 Loading rod feed mechanism 81 Loading rod 83 Additional explosive supply device 90 Parent die housing unit drive mechanism 100... Parent die accommodation unit 140... Partition wall 150... Sorting accommodation unit

Claims (3)

  1.  トンネルの発破工法に適用され、切羽面に穿孔された発破孔に起爆用爆薬を装填する爆薬装填方法であって、
     筒状保持体の後端内側に中空部が残存するように起爆用爆薬を装着してなる起爆用爆薬装着体の前記中空部に装填ロッドの先端を挿入することで当該装填ロッドによって起爆用爆薬装着体を保持する工程と、
     前記装填ロッドの先端に保持した前記起爆用爆薬装着体を前記発破孔に装填する起爆用爆薬装填工程と、
     を含み、
     前記起爆用爆薬装着体における前記筒状保持体の前端部には、前記起爆用爆薬装着体の先端に向かって先細り形状を有する錘状ガイド部が設けられている、
     爆薬装填方法。
    An explosive loading method that is applied to a tunnel blasting method and loads a detonating explosive into a blast hole drilled in a face surface,
    By inserting the tip of a loading rod into the hollow portion of a detonating explosive mounting body in which the detonating explosive is mounted so that the hollow portion remains inside the rear end of the cylindrical holder, the detonating explosive is loaded by the loading rod. holding the mounting body;
    a detonating explosive loading step of loading the detonating explosive mounting body held at the tip of the loading rod into the blast hole;
    including
    A conical guide portion tapering toward the tip of the detonating explosive mount is provided at the front end of the cylindrical holder in the detonating explosive mount,
    explosive loading method.
  2.  前記起爆用爆薬装着体に装着された起爆用爆薬の雷管から延びる脚線を、その途中部に前記発破孔の直径よりも大きな直径を有する輪状の輪状部が形成されるように結束材を用いて結束しておき、
     前記起爆用爆薬装填工程において前記起爆用爆薬装着体を前記発破孔に装填する過程で、前記脚線の前記輪状部が前記切羽面における前記発破孔の孔口周囲の縁部と接触するときの抵抗によって前記結束材による結束を解く、
     請求項1に記載の爆薬装填方法。
    A binding material is used so that a leg line extending from the detonator of the detonating explosive mounted on the detonating explosive mounting body is formed with a ring-shaped portion having a diameter larger than the diameter of the blasting hole in the middle of the leg wire. and conclude with
    In the process of loading the detonating explosive mounting body into the blast hole in the detonating explosive loading step, when the ring-shaped portion of the leg line comes into contact with the edge around the mouth of the blast hole on the face surface untying the binding material by resistance;
    2. The explosive loading method of claim 1.
  3.  トンネルの発破工法に適用され、切羽面に穿孔された発破孔に装填される起爆用爆薬装着体であって、
     筒状保持体と、
     前記筒状保持体の内側に装着された起爆用爆薬と、
     前記筒状保持体の後端内側に形成された中空部と、
     前記筒状保持体の前端部に設けられ、先端に向かって先細り形状を有する錘状ガイド部と、
     を備える、起爆用爆薬装着体。
    A detonating explosive mounting body applied to a tunnel blasting method and loaded into a blasting hole drilled in a face surface,
    a cylindrical holder;
    a detonating explosive mounted inside the cylindrical holder;
    a hollow portion formed inside the rear end of the cylindrical holder;
    a conical guide portion provided at the front end portion of the cylindrical holder and having a tapered shape toward the tip;
    A detonating explosive loading body comprising a
PCT/JP2022/011032 2021-03-18 2022-03-11 Explosive loading method, and detonation-use explosive mounting body WO2022196572A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22771320.3A EP4310440A1 (en) 2021-03-18 2022-03-11 Explosive loading method, and detonation-use explosive mounting body
JP2023507066A JPWO2022196572A1 (en) 2021-03-18 2022-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021044971 2021-03-18
JP2021-044971 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022196572A1 true WO2022196572A1 (en) 2022-09-22

Family

ID=83320663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011032 WO2022196572A1 (en) 2021-03-18 2022-03-11 Explosive loading method, and detonation-use explosive mounting body

Country Status (3)

Country Link
EP (1) EP4310440A1 (en)
JP (1) JPWO2022196572A1 (en)
WO (1) WO2022196572A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005077A1 (en) * 2022-06-30 2024-01-04 前田建設工業株式会社 Explosive loading device and explosive loading method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860847B2 (en) 1992-05-15 1999-02-24 佐藤工業株式会社 Automatic loading device for flowable explosives
JP2008025972A (en) 2006-07-25 2008-02-07 Shimizu Corp Automatic explosive loading device and explosive loading method
JP5614139B2 (en) 2010-07-09 2014-10-29 日油株式会社 Explosive loading device
JP2015067956A (en) * 2013-09-26 2015-04-13 古河ロックドリル株式会社 Explosive charging device and work machine equipped with the same
JP5854923B2 (en) 2012-05-14 2016-02-09 カヤク・ジャパン株式会社 Loading device
CN109916245A (en) * 2019-04-22 2019-06-21 中国十九冶集团有限公司 Tunnel tunnel face blashole charge device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860847B2 (en) 1992-05-15 1999-02-24 佐藤工業株式会社 Automatic loading device for flowable explosives
JP2008025972A (en) 2006-07-25 2008-02-07 Shimizu Corp Automatic explosive loading device and explosive loading method
JP5614139B2 (en) 2010-07-09 2014-10-29 日油株式会社 Explosive loading device
JP5854923B2 (en) 2012-05-14 2016-02-09 カヤク・ジャパン株式会社 Loading device
JP2015067956A (en) * 2013-09-26 2015-04-13 古河ロックドリル株式会社 Explosive charging device and work machine equipped with the same
CN109916245A (en) * 2019-04-22 2019-06-21 中国十九冶集团有限公司 Tunnel tunnel face blashole charge device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005077A1 (en) * 2022-06-30 2024-01-04 前田建設工業株式会社 Explosive loading device and explosive loading method

Also Published As

Publication number Publication date
JPWO2022196572A1 (en) 2022-09-22
EP4310440A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
KR101321831B1 (en) Fastener feed method and apparatus
JP5330408B2 (en) Small quantity charge blasting method and apparatus
JP2008025972A (en) Automatic explosive loading device and explosive loading method
WO2022196572A1 (en) Explosive loading method, and detonation-use explosive mounting body
JP5614139B2 (en) Explosive loading device
CN116146260B (en) Installation device for resin anchoring agent and anchor rod trolley
KR101242923B1 (en) Method and apparatus for small-charge blasting
WO2022196570A1 (en) Explosive autoloading system and explosive autoloading method
WO2022196571A1 (en) Initiating explosive supply device
JP7381391B2 (en) Explosive loading system and explosive loading method
JP6963990B2 (en) Explosive loader
AU2003200490A1 (en) Apparatus and method for fracturing a hard material
WO2024005077A1 (en) Explosive loading device and explosive loading method
JP2008111628A (en) Explosive loading method
JP2019113199A (en) Explosive loading device
AU1970899A (en) Feed apparatus for feeding capsular cartridges into drilled hole
JP6963992B2 (en) Explosive loader
JP5614175B2 (en) Method and apparatus for loading explosives and contents
JPH05322500A (en) Automatic charging device for fluid explosive
JP2019113194A (en) Explosive loading device
JP7340417B2 (en) perforation charging system
JP5678582B2 (en) Explosives and contents loading device adapter and method for loading explosives and contents using the same
JPS6311519Y2 (en)
JP3461600B2 (en) Explosive loading device
JPH018880Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771320

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023507066

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022771320

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771320

Country of ref document: EP

Effective date: 20231018