WO2022196250A1 - Shift-stage switching device - Google Patents

Shift-stage switching device Download PDF

Info

Publication number
WO2022196250A1
WO2022196250A1 PCT/JP2022/006744 JP2022006744W WO2022196250A1 WO 2022196250 A1 WO2022196250 A1 WO 2022196250A1 JP 2022006744 W JP2022006744 W JP 2022006744W WO 2022196250 A1 WO2022196250 A1 WO 2022196250A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shift fork
sleeve
shift
spline
Prior art date
Application number
PCT/JP2022/006744
Other languages
French (fr)
Japanese (ja)
Inventor
大蔵 荻野
均 竹内
周平 大橋
峻征 川口
広大 山本
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2022196250A1 publication Critical patent/WO2022196250A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/32Gear shift yokes, e.g. shift forks

Definitions

  • the present invention relates to a gear changeover device for switching gears of a vehicle.
  • a gear shift device employed in a two-speed transaxle moves a shift fork holding a sleeve by an electric actuator to engage the inner peripheral spline of the sleeve with a gear piece spline of an arbitrary transmission gear. It adopts a dog clutch mechanism that shifts gears by
  • Patent Literature 1 describes a technique for accurately performing a reference value test (so-called "hitting learning") for testing a reference value of a signal indicating a shift range in a shift range switching device mounted on a vehicle. disclosed.
  • hitting learning a technique for accurately performing a reference value test (so-called "hitting learning") for testing a reference value of a signal indicating a shift range in a shift range switching device mounted on a vehicle.
  • the driven body is abutted against the stopper so as to bend one or both of the driven body and the stopper, and the amount of current is reduced while the DC motor is kept energized in all phases.
  • the deflection is reduced, and the value of the position signal from the encoder when it is detected that the deflection has disappeared is used as the reference value.
  • the reference value is determined in a state in which the deflection is eliminated, variations in the reference value caused by the deflection do not occur. That is, since the reference value does not fluctuate even when conditions such as temperature change, it is possible to switch the shift range with high accuracy.
  • the sleeve is pressed against the stopper with a predetermined load in the direction of the gear, and then transferred to the electric actuator. Shifting is completed by cutting off the current supply to the Further, the electric actuator of the conventional speed changer adopts a configuration in which a ball screw is inserted into a DC brushless motor. The ball screw has a high reverse rotation efficiency, and if the current supply to the electric actuator is cut off, the holding force of the sleeve is lost. The position of the shift fork and sleeve is fixed at the specified position by the retracting force of the sublock mechanism (detent).
  • Patent Document 1 there is a problem that a sensor for detecting the amount of deflection of the driven body or the stopper with high accuracy is required, which increases the cost. Moreover, in Patent Document 1 described above, the driven body is operated while reading the motor current value, and there is a problem that the operation is complicated.
  • the present invention has been made in view of such circumstances, and its object is to suppress the wear of the members constituting the gear change device while ensuring the change of the gear of the vehicle.
  • one embodiment of the present invention is a gear shift device for switching gear stages of a vehicle, comprising a clutch hub provided on a drive shaft and an inner spline meshing with the clutch hub.
  • a shift fork that rotatably supports the sleeve; a first gear that is rotatably disposed at the drive shaft on both sides of the clutch hub and has outer splines that can mesh with the inner splines;
  • the shift fork is moved on a fixed shaft along the center line of the drive shaft using a second gear, a stopper provided on the first gear and the second gear and capable of coming into contact with the sleeve, and an electric motor.
  • a moving mechanism for selectively meshing the inner peripheral spline with the outer peripheral spline of the first gear and the outer peripheral spline of the second gear by moving a stroke for detecting the position of the shift fork on the fixed shaft; a sensor, and a movement control section that controls the movement state of the shift fork based on the detection value of the stroke sensor, wherein the movement control section controls the movement of the inner spline and the first gear or the second gear.
  • the shift fork is moved from a meshing completion position, which is a position on the fixed shaft where the sleeve abuts against the stopper of the meshing command side gear, to the meshing command side gear side, and then at least the meshing completion It is characterized in that the shift fork is returned to the position and made to stand by.
  • the sleeve when a gear change command to a predetermined gear is given, the sleeve abuts against the stopper of the gear on the switching side (engagement command side gear), and the fixed shaft does not deform the shift fork.
  • the shift fork is moved from the engagement completion position, which is the upper position, toward the switching side gear, and the engagement between the gears is completed while the shift fork is deformed, the shift fork is returned to at least the engagement completion position and waited.
  • the pressing of the sleeve against the stopper by the shift fork is released, and abrasion of the fork pad of the shift fork and abrasion of the contact surface between the sleeve and the stopper can be prevented.
  • FIG. 1 is a cross-sectional perspective view showing an overall configuration of a gear shift device according to an embodiment
  • FIG. FIG. 2 is a view showing the configuration of a shift fork moving mechanism from the rear side of FIG. 1
  • FIG. 4 is a cross-sectional view schematically showing the meshing relationship of gears that constitute the gear shift device; It is a figure which shows typically the engagement relationship of each gear which comprises a gear stage switching apparatus.
  • 2 is a cross-sectional view schematically showing the configuration of an electric actuator
  • FIG. FIG. 4 is an explanatory diagram schematically showing movement of a shift fork, showing a case where the shift fork is at a reference position;
  • FIG. 4 is an explanatory view schematically showing movement of a shift fork, showing a case where the shift fork is at the movement limit position and is bent.
  • FIG. 4 is an explanatory diagram schematically showing movement of a shift fork, showing a case where the shift fork is in a meshing completion position;
  • FIG. 4 is an explanatory diagram schematically showing movement of a shift fork, showing a case where the shift fork is in a standby position;
  • 4 is a timing chart showing changes over time in the position of the shift fork (detected value of the stroke sensor) and the current value of the electric motor;
  • 4 is a flow chart showing a procedure of learning processing of an engagement completion position by a movement control unit;
  • FIG. 1 A gear shift device 10 switches gear stages of a vehicle of an automatic transmission between two stages of a high (H) gear and a low (L) gear. It includes a first gear 20A, a second gear 20B, a moving mechanism 22, a stroke sensor 24, and a movement control section 300 (see FIG. 6).
  • the drive shaft 12 is an output shaft that transmits engine power to the drive wheels of the vehicle.
  • the clutch hub 14 is provided on the drive shaft 12 and has an outer peripheral spline 1402 on its outer peripheral portion as shown in FIG. Clutch hub 14 and drive shaft 12 are spline-connected, whereby clutch hub 14 rotates together with drive shaft 12 .
  • the sleeve 16 is a cylindrical member having an inner spline 1604 that meshes with the outer spline 1402 of the clutch hub 14 . More specifically, as shown in FIG. 3, the sleeve 16 has a cylindrical sleeve base portion 1602 provided with an inner peripheral spline 1604, and a shift fork 18 provided on the outer peripheral portion of the sleeve base portion 1602, which can be engaged. and an engaging portion 1606 .
  • the engaging portion 1606 includes an outer peripheral surface 1608 of the sleeve base portion 1602 and ridges 1610 on both sides of the outer peripheral surface 1608 in a direction orthogonal to the circumferential direction.
  • a shift fork 18 rotatably supports the sleeve 16 .
  • the shift fork 18 is movable in the extension direction of the drive shaft 12 by a movement mechanism 22 which will be described later.
  • the sleeve 16 also moves in the extension direction of the drive shaft 12 .
  • the shift fork 18 includes a holding portion 1802 that holds the sleeve 16, a tubular portion 1804 through which a fixed shaft 2208 of the moving mechanism 22 (to be described later) is inserted, the holding portion 1802 and the tubular portion 1804. and a main body portion 1806 for connecting the .
  • the holding portion 1802 has a contact surface 1808 that rotatably contacts the outer peripheral surface 1608 between the ridges 1610 provided on the outer peripheral portion of the sleeve 16 as shown in FIG. Further, as shown in FIG. 2, a fork pad 1812 is attached to a side wall 1810 of the holding portion 1802 that faces the ridge 1610 in order to prevent seizure when the shift fork 18 contacts the sleeve 16 with relative rotation. It is As shown in FIG. 3, the width (including the thickness of the fork pad 1812) W1 of the contact surface 1808 of the holding portion 1802 in the direction orthogonal to the circumferential direction of the outer peripheral surface 1608 of the sleeve 16 is It is smaller than the dimension W2 between them. That is, a gap (play) of distance W2-W1 is provided between the holding portion 1802 of the shift fork 18 and the engaging portion 1606 of the sleeve 16. As shown in FIG.
  • the first gear 20A and the second gear 20B are rotatably arranged at the drive shaft 12 on both sides of the clutch hub 14 as shown in FIG.
  • the first gear 20A corresponds to a high gear
  • an outer peripheral gear 2008A of a large diameter portion 2004A which will be described later, meshes with a third gear 34A fixed to the countershaft 32 indicated by a two-dot dashed line in FIG.
  • the second gear 20B corresponds to a low gear
  • an outer peripheral gear 2008B of a large diameter portion 2004 (to be described later) meshes with a fourth gear 34B fixed to the countershaft 32 to rotate.
  • the first gear 20A and the second gear 20B are connected to the drive shaft 12 via needle roller bearings (not shown), and the first gear 20A or the second gear 20B corresponds to the desired shift.
  • the drive shaft 12 By connecting the drive shaft 12 with the sleeve 16 via the clutch hub 14 , the rotation of the gear is transmitted to the drive shaft 12 .
  • a position restricting member (not shown) is provided so that the axial positions of the first gear 20A and the second gear 20B do not change.
  • the first gear 20A and the second gear 20B respectively have splines 2002 (2002A, 2002B) arranged adjacent to the clutch hub 14 and large splines 2002 (2002A, 2002B) arranged away from the clutch hub 14. and a diameter portion 2004 (2004A, 2004B).
  • the splines 2002 of the first gear 20A and the second gear 20B have outer splines 2006 (2006A, 2006B) that can mesh with the inner splines 1604 of the sleeve 16, respectively.
  • the large diameter portion 2004 has a larger radius than the spline 2002, and the outer peripheral gear 2008 (2008A, 2008B) provided on the outer periphery of the large diameter portion 2004 is the outer peripheral gear 3400A of the third gear 34A fixed to the countershaft 32 or the fourth gear. 34B are in constant mesh with the outer peripheral gear 3400B.
  • the moving mechanism 22 uses an electric motor 2204A to move the shift fork 18 along the centerline O of the drive shaft 12, thereby moving the inner spline 1604 of the sleeve 16 to the outer spline 2006A of the first gear 20A and the outer spline 2006A of the second gear 20B. is selectively engaged with the outer peripheral spline 2006B.
  • the moving mechanism 22 includes an electric actuator 2204, a moving shaft 2206, a guide portion 2210, and a lever 2212, as shown in FIG. Guide portion 2210 and shift fork 18 are provided integrally.
  • the electric actuator 2204 has an electric motor (in this embodiment, a DC brush motor) 2204A with a slide screw 2204B inserted therein.
  • the electric motor 2204A rotates the female screw side of the slide screw 2204B, thereby moving the electric actuator 2204 vertically (in the direction of arrow A in FIG. 2). That is, the moving mechanism 22 moves the shift fork 18 by converting the rotational force output by the electric motor 2204A into a moving force in the linear motion direction by the slide screw 2204B connected to the output shaft of the electric motor 2204A.
  • the moving shaft 2206 is attached to the tip of the output shaft 2204C of the electric actuator 2204, and moves along with the movement of the electric actuator 2204 in the linear motion direction (arrow A direction in FIG. 2).
  • the guide portion 2210 is integrated with the shift fork 18 as described above, and includes a body portion 2210A, an insertion hole 2210B through which a lever 2212 (to be described later) is inserted, and a spring 2210C through which the fixed shaft 2208 is inserted.
  • Lever 2212 has a substantially L-shape, one end 2212A is inserted into connecting portion 2206A provided on moving shaft 2206, and the other end 2212B is inserted through insertion hole 2210B of guide portion 2210. As shown in FIG. Lever 2212 can swing around a support shaft 2212C supported by the vehicle body. When the electric actuator 2204 operates and the moving shaft 2206 moves vertically (in the direction of arrow A), the lever 2212 swings and the shift fork 18 and the guide portion 2210 perform reciprocating linear motion (in the direction of arrow B).
  • the stroke sensor 24 detects the position of the shift fork 18 by reading the motion of the guide portion 2210 .
  • the stroke sensor 24 detects the position of the shift fork 18 when the axial center position of the holding portion 1802 of the shift fork 18 is positioned at the axial center position S0 of the clutch hub 14 (see FIG. 3). is defined as a reference position P0, and the position of the shift fork 18 is detected by detecting the amount of movement of the shift fork 18 from this reference position P0.
  • the stroke sensor 24 measures the movement distance of the shift fork 18 from the reference position P0 of the shift fork 18 where the inner spline 1604 of the sleeve 16 does not mesh with the outer spline 2006A of the first gear 20A and the outer spline 2006B of the second gear 20B. to detect
  • the remaining part of the inner peripheral spline 1604 of the sleeve 16 meshes with the clutch hub 14, whereby the first gear 20A, the sleeve 16 and the clutch hub 14 are integrated, and the rotational force of the drive shaft 12 is transferred to the sleeve 16 and the clutch hub 14. It is transmitted to the countershaft 32 via the first gear 20A and the third gear 34A.
  • the sleeve 16 is engaged with the first gear 20A, the vehicle is in high gear.
  • the side surfaces of large-diameter portion 2004 function as stoppers 2010 (2010A, 2010B) provided on first gear 20A and second gear 20B and capable of contacting sleeve 16 .
  • the movement control unit 300 is implemented as one function of a TCU (Transmission Control Unit) 30 that controls the transmission of the vehicle.
  • the TCU 30 includes a CPU (Central Processing Unit), a ROM (Read Only Memory) for storing control programs and the like, a RAM (Random Access Memory) as an operating area for the control programs, and an EEPROM (Electrically Rewritable) for holding various data. (Erasable Programmable ROM), an interface unit for interfacing with peripheral circuits, etc., and the CPU functions as a movement control unit 300 by executing the control program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Rewritable
  • the movement control section 300 controls the movement state of the shift fork 18 based on the detection value of the stroke sensor 24 . For example, when an ECU (Electronic Control Unit) that controls the entire vehicle issues a command to switch gears (i.e., when a command is issued to engage the sleeve 16 with the first gear 20A or the second gear 20B), the movement control unit 300 Electric actuator 2204 is operated to move shift fork 18 to a position where gear 20 and sleeve 16 corresponding to the gear are engaged.
  • ECU Electronic Control Unit
  • the end surface 1612 of the sleeve 16 is in contact with the side surface (stopper 2010) of the large diameter portion 2004 of the gear 20, and the shift fork 18 is meshed at a position where deformation (deflection) does not occur.
  • the completion position (stopper position) is Px.
  • the gear on the side of the engagement command side from the engagement completion position Px for example, the movement limit position Pl (see FIG. 7) described later.
  • the shift fork 18 is returned at least to the meshing completion position Px, and then the next gear stage is set. Wait until switching command. That is, the movement control unit 300 causes the sleeve 16 to abut against the stopper 2010 of the gear on the side of the engagement instruction and to the shift fork 18 when the inner spline 1604 of the sleeve 16 and the first gear 20A or the second gear 20B are instructed to engage.
  • the shift fork 18 is moved from the meshing completion position Px, which is a position on the fixed shaft 2208 where deformation does not occur, to the gear on the meshing instruction side, and after the shift fork is deformed, the shift fork 18 is returned to at least the meshing completion position Px. wait.
  • the engagement completion position Px is determined by learning of the movement control unit 300 rather than being specified in advance. The reason why the engagement completion position Px is set in the gear shift device 10 according to the embodiment will be described.
  • the electric actuator of the conventional gear shift device employs a configuration in which a ball screw is inserted into a DC brushless motor.
  • the ball screw has a high reverse rotation efficiency, and if the current supply to the electric actuator is cut off, the holding force of the sleeve is lost.
  • the position of the shift fork and sleeve is fixed at the specified position by the retracting force of the sublock mechanism (detent).
  • the holding force remains even if the electric current supply to the electric motor 2204A is cut off. , the positions of the shift fork 18 and the sleeve are maintained even without a sublock mechanism (detent).
  • the shift fork 18 may be bent. The pressing force due to remains. This pressing force may cause problems such as melting the fork pad 1812 of the shift fork 18 .
  • the gear shift device 10 completes shifting (turns off the electric actuator) in a state where the sleeve is pressed against the gear as in the conventional art.
  • the position (engagement completion position) of contact with the side surface (stopper 2010) of the diameter portion 2004 is learned, and after returning the shift fork 18 to at least the engagement completion position, the shift engagement is completed.
  • the dimensions of the clutch hub 14, the sleeve 16, the first gear 20A, the second gear 20B, etc. are constant, and a method of determining the engagement completion position based on these dimensions (design values) may be considered. There is a possibility that mechanical errors in dimensions and variations in characteristics of the stroke sensor 24 may occur, and it is considered that a uniform value is insufficient to solve the above problems. conduct.
  • step S900 movement control unit 300 operates electric actuator 2204 at a constant speed, and shifts shift fork 18 and sleeve 16 held by shift fork 18 in one gear direction ( 10A) at a constant speed (step S902, corresponding to times T0 to T1 in FIG. 10).
  • the stroke sensor 24 detects the amount of movement (distance) of the shift fork 18 from the reference position P0.
  • step S904 Yes, corresponding to times T1 to T2 in FIG. 10
  • the movement control unit 300 temporarily shifts the electric actuator 2204. is cut (step S906, corresponding to times T2 to T3 in FIG. 10).
  • the movement control unit 300 applies a constant voltage to the electric actuator 2204 to further move the shift fork 18 and the sleeve 16 held by the shift fork 18 in the direction of the first gear 20A (step S908, time of FIG. 10). corresponding to T3-T4). That is, as shown in FIG. 7, the shift fork 18 is further moved so as to press the sleeve 16 toward the large diameter portion 2004 (toward the stopper). At this time, the shift fork 18 is flexed D due to the pressing force in the direction of the stopper. 7 schematically shows the deflection of the shift fork 18. As shown in FIG.
  • the movement control unit 300 continues pressing with a constant voltage until the detection value of the stroke sensor 24 (denoted as "stroke” in the figure) stabilizes (step S910: No).
  • step S910: Yes movement control unit 300 determines that position to be the movement limit position of shift fork 18, and the detection value of stroke sensor 24 and electric actuator 2204 at that point in time.
  • the value of the flowing current is read (step S912, corresponding to time T4 in FIG. 10).
  • the movement control unit 300 estimates the axial load that the shift fork 18 receives from the movement mechanism 22 based on the current value of the electric actuator 2204 obtained in step S912 (step S914).
  • the current value of the electric actuator 2204 is proportional to the load received from the shift fork 18, and the movement control unit 300 reads the load value corresponding to the current value from a map prepared in advance by actual measurement.
  • the movement control unit 300 estimates the axial strain amount (corresponding to D in FIG. 7) occurring in the shift fork 18 based on the load obtained in step S914 (step S916).
  • the load applied to a member and the strain amount of the member are in a proportional relationship, and the movement control unit 300 reads the strain amount value corresponding to the load from a map prepared in advance by actual measurement.
  • the map prepared in advance may be such that the strain amount of the shift fork 18 can be obtained directly from the current value in step S912.
  • Movement control unit 300 determines a value obtained by subtracting the strain value obtained in step S916 from the value detected by stroke sensor 24 when the stroke is stable, read in step S912, as engagement completion position Px (step S918). End the process. Thereafter, the engagement completion position Px is similarly learned for the other gear direction (the second gear 20B direction in the above example).
  • the movement control unit 300 drives the electric motor 2204A at a constant voltage, and the sleeve 16 contacts the stopper 2010 (side surface of the large-diameter portion 2004 of the gear 20) to restrict movement of the shift fork 18.
  • the amount of deflection D of the shift fork 18 at the movement limit position Pl is estimated based on the current flowing through the electric motor 2204A when the shift fork 18 reaches the movement limit position.
  • the position obtained by subtracting the amount of deflection D from the value detected by the stroke sensor 24 when reaching Pl is learned as the engagement completion position Px.
  • Learning of the engagement completion position by the movement control unit 300 is performed at least once, for example, before shipment of the vehicle. Further, the movement control unit 300 may perform learning of the engagement completion position at predetermined intervals after the start of use of the vehicle. This is because there is a possibility that the fork pad 1812 will be worn and the motion characteristics of each member of the moving mechanism 22 will change due to use over time.
  • the predetermined period may be set, for example, at predetermined time intervals (every three months, every year, etc.), or at predetermined travel distances (every 10,000 km travel distance, etc.).
  • the movement control unit 300 first moves the shift fork 18 to the movement limit position Pl (see FIG. 7) when there is a shift stage switching command (engagement command between the sleeve 16 and the predetermined gear 20).
  • a shift stage switching command engagement command between the sleeve 16 and the predetermined gear 20.
  • the shift fork 18 is returned to at least the meshing completion position Px, and then the power supply to the electric actuator 2204 is cut off, Standby until the next shift stage switching command.
  • the pressing force applied to the sleeve 16 in the direction of the gear 20 (stopper) can be reduced to almost zero, and wear of the fork pad 1812 and deterioration of the shift fork 18 can be prevented.
  • the standby position of the fork pad 1812 after the completion of shifting is the position where the fork pad 1812 is in contact with the ridge 1610 of the sleeve 16 on the opposite side of the gear 20 (standby position), as shown in FIG. Py). As shown in FIG.
  • the width (including the thickness of the fork pad 1812) W1 of the contact surface 1808 of the holding portion 1802 in the direction orthogonal to the circumferential direction of the outer peripheral surface 1608 of the sleeve 16 is It is smaller than the dimension W2 between them. That is, a gap (play) of distance W2-W1 is provided between the holding portion 1802 of the shift fork 18 and the engaging portion 1606 of the sleeve 16. As shown in FIG. The standby position Py is a gap distance W2-W1 away from the engagement completion position Px on the side opposite to the gear 20 being engaged (toward the clutch hub 14).
  • the movement control unit 300 stores the gap distance W2-W1 obtained by subtracting the width of the contact surface 1808 including the fork pad 1812 from the dimension W2 between the ridges 1610 on both sides of the sleeve 16, and stores the gap distance W2-W1 when the shift fork 18 is engaged.
  • the shift fork 18 may be made to wait at a position (standby position Py) separated from the engagement completion position Px in the direction opposite to the gear 20 by the gap distance W2-W1.
  • the gear 20 and the sleeve 16 can be reliably meshed (shifted), and wear of each member constituting the gear shift device 10 can be prevented more reliably.
  • the gear change device 10 when a shift change command to a predetermined shift is given, the sleeve 16 abuts against the stopper 2010 of the gear 20 on the changeover side (engagement command side gear), and The shift fork 18 is moved toward the gear 20 on the switching side from the engagement completion position Px, which is a position on the fixed shaft 2208 where the shift fork 18 is not deformed, and the engagement between the gears is completed while the shift fork 18 is deformed. After that, the shift fork 18 is returned to at least the engagement completion position and waited.
  • the pressing of the sleeve 16 against the stopper 2010 by the shift fork 18 is released, and wear of the fork pad 1812 of the shift fork 18 and wear of the contact surface between the sleeve 16 and the stopper 2010 can be prevented.
  • the inner spline 1604 of the sleeve 16 is brought into engagement with the gear 20 on the switching side, thereby securely completing the shift.
  • the standby position until the next shift switching is set to a position (standby position Py) separated by a gap distance W2-W1 in the direction opposite to the gear 20 from the engagement completion position Px.
  • the shift fork 18 is moved to the movement limit position Pl, and when the shift fork 18 reaches the movement limit position Pl, the movement limit is determined based on the current flowing through the electric motor 2204A.
  • the shift The amount of deflection can be estimated without providing a sensor for detecting the amount of deflection of the fork 18, and the cost of the gear changeover device 10 can be reduced. Further, in the gear shift device 10 according to the embodiment, if the slide screw 2204B is adopted as the rotation-linear motion conversion mechanism of the electric actuator 2204, the rotation-linear motion conversion can be performed in comparison with the conventional configuration using a ball screw or the like. The parts cost of the mechanism can be reduced.
  • the gear shift device 10 if the learning of the engagement completion position is executed at predetermined intervals after the start of use of the vehicle, the gear shift device 10 can be engaged in a state that reflects changes in each part of the gear shift device 10 due to long-term use.
  • the completion position can be set, and wear of each member constituting the gear shift device 10 can be prevented more reliably.
  • gear shift device 12 drive shaft 14 clutch hub 16 sleeve 1602 sleeve base 1604 inner spline 1606 engaging portion 1608 outer peripheral surface 1610 ridge 1612 end surface 18 shift fork 20A first gear 20B second gear 2002 (2002A, 2002B) spline 2004 (2004A, 2004B) Large diameter portion 2006 (2006A, 2006B) Peripheral spline 2008 (2008A, 2008B) Peripheral gear 2010 (2010A, 2010B) Stopper 22 Moving mechanism 2204 Electric actuator 2204A Electric motor 2204B Slide screw 2204C Output shaft movement 2 2208 Fixed shaft 2210 Guide part 2212 Lever 24 Stroke sensor 300 Movement control part 32 Counter shaft P0 Reference position Pl Movement limit position Px Engagement completion position Py Standby position

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

When there is a command to mesh an inner peripheral gear (1604) of a sleeve (16) and a first gear (20A) or a second gear (20B), a shift-stage switching device (10) moves a shift fork (18) toward a meshing-command-side gear from a meshing completion position Px, which is the position on a fixed shaft (2208) where the sleeve (16) abuts on a stopper (2010B) of the meshing-command-side gear, and then returns the shift fork (18) to at least the meshing completion position (Px) and there puts the shift fork (18) into standby.

Description

変速段切替装置gear shift device
 本発明は、車両の変速段を切り替える変速段切替装置に関する。 The present invention relates to a gear changeover device for switching gears of a vehicle.
 従来、2段変速トランスアスクルで採用されている変速段切替装置は、スリーブを保持するシフトフォークを電動アクチュエータによって移動させ、スリーブの内周スプラインを任意の変速ギヤのギヤピーススプラインに係合させることによって変速を行う噛合いクラッチ機構を採用している。 Conventionally, a gear shift device employed in a two-speed transaxle moves a shift fork holding a sleeve by an electric actuator to engage the inner peripheral spline of the sleeve with a gear piece spline of an arbitrary transmission gear. It adopts a dog clutch mechanism that shifts gears by
 例えば、下記特許文献1には、車両に搭載されるシフトレンジ切替装置において、シフトレンジを示す信号の基準値を検定する基準値検定(いわゆる「突き当て学習」)を精度よく行うための技術が開示されている。特許文献1におけるシフトレンジ切替装置の突き当て学習では、被駆動体およびストッパの一方または両方を撓ませるように被駆動体をストッパに突き当てて、直流モータを全相通電を保ちながら電流量を低減することで撓みを低減させ、撓みがなくなったことを検知したときのエンコーダからの位置信号の値を基準値とする。このため、撓みを解消した状態で基準値を決定するため、撓みの影響による基準値のばらつきが生じない。つまり、温度等の条件が変化した場合でも基準値がばらつかないため、シフトレンジの切替を高精度に行うことが可能となる。 For example, Patent Literature 1 below describes a technique for accurately performing a reference value test (so-called "hitting learning") for testing a reference value of a signal indicating a shift range in a shift range switching device mounted on a vehicle. disclosed. In the abutting learning of the shift range switching device in Patent Document 1, the driven body is abutted against the stopper so as to bend one or both of the driven body and the stopper, and the amount of current is reduced while the DC motor is kept energized in all phases. By reducing the deflection, the deflection is reduced, and the value of the position signal from the encoder when it is detected that the deflection has disappeared is used as the reference value. Therefore, since the reference value is determined in a state in which the deflection is eliminated, variations in the reference value caused by the deflection do not occur. That is, since the reference value does not fluctuate even when conditions such as temperature change, it is possible to switch the shift range with high accuracy.
日本国特許第6443189号公報Japanese Patent No. 6443189
 従来の変速段切替装置(噛合いクラッチ機構)では、スリーブが所望のギヤピースとの噛合完了後、確実に噛合いを保証するため、更にギヤ方向に所定の荷重でストッパに押付けた後に電動アクチュエータへの電流供給を遮断することでシフト入れを完了している。
 また、従来の変速段切替装置の電動アクチュエータは、DCブラシレスモータにボールねじを挿入した構成が採用されている。ボールねじは逆転効率が高く、電動アクチュエータへの電流供給を遮断すると、スリーブの保持力を失うため、シフト入れ完了後のシフトフォークの位置を固定するサブロック機構(ディテント)が設けられており、サブロック機構(ディテント)の引き込み力により、シフトフォーク及びスリーブ位置は規定位置で固定される。
 一方で、変速段切替装置の電動アクチュエータにすべりねじ等の逆転効率が低い機構を採用した場合、電動モータへの電流供給を遮断しても保持力が残存し、サブロック機構(ディテント)が無くても、シフトフォーク及びスリーブ位置は保持される。しかしながら、従来の切替装置と同様にスリーブが所望のギヤピースとの噛合完了後、ギヤ方向に所定の荷重でストッパに押付けた後に電動アクチュエータへの電流供給を遮断した場合、シフトフォークのたわみ等による押付力が残存してしまう。この押付力により、例えばシフトフォークのフォークパッドを溶損してしまうなどの問題が発生する可能性がある。
In the conventional gear shift device (meshing clutch mechanism), after the sleeve has been completely engaged with the desired gear piece, in order to ensure the engagement, the sleeve is pressed against the stopper with a predetermined load in the direction of the gear, and then transferred to the electric actuator. Shifting is completed by cutting off the current supply to the
Further, the electric actuator of the conventional speed changer adopts a configuration in which a ball screw is inserted into a DC brushless motor. The ball screw has a high reverse rotation efficiency, and if the current supply to the electric actuator is cut off, the holding force of the sleeve is lost. The position of the shift fork and sleeve is fixed at the specified position by the retracting force of the sublock mechanism (detent).
On the other hand, if a slide screw or other mechanism with low reverse rotation efficiency is used for the electric actuator of the gear shift device, the holding force remains even if the current supply to the electric motor is cut off, and there is no sublock mechanism (detent). However, the shift fork and sleeve positions are retained. However, as in the conventional switching device, when the sleeve is pressed against the stopper with a predetermined load in the direction of the gear after the engagement with the desired gear piece is completed, and the current supply to the electric actuator is cut off, pressing due to deflection of the shift fork or the like may occur. power remains. This pressing force may cause problems such as melting the fork pad of the shift fork.
 また、上述した特許文献1では、被駆動体またはストッパのたわみ量を高精度に検出するセンサが必要となり、コストが上昇するという課題がある。また、上述した特許文献1では、モータ電流値を読み取りながら被駆動体を動作させており、動作が複雑であるという課題がある。 In addition, in Patent Document 1 mentioned above, there is a problem that a sensor for detecting the amount of deflection of the driven body or the stopper with high accuracy is required, which increases the cost. Moreover, in Patent Document 1 described above, the driven body is operated while reading the motor current value, and there is a problem that the operation is complicated.
 本発明は、このような事情に鑑みなされたものであり、その目的は、車両の変速段の切り替えを確実に行いつつ、変速段切替装置を構成する部材の摩耗を抑制することにある。 The present invention has been made in view of such circumstances, and its object is to suppress the wear of the members constituting the gear change device while ensuring the change of the gear of the vehicle.
 上述の目的を達成するため、本発明の一実施形態は、車両の変速段を切り替える変速段切替装置であって、駆動軸に設けられたクラッチハブと、前記クラッチハブに噛合する内周スプラインを有するスリーブと、前記スリーブを回転可能に支持するシフトフォークと、前記クラッチハブの両側の前記駆動軸の箇所に回転可能に配置されそれぞれ前記内周スプラインに噛合可能な外周スプラインを有する第1ギヤおよび第2ギヤと、前記第1ギヤおよび前記第2ギヤに設けられ前記スリーブに当接可能なストッパと、電動モータを用いて前記シフトフォークを前記駆動軸の中心線に沿った固定軸上で移動させることにより前記内周スプラインを前記第1ギヤの前記外周スプラインと前記第2ギヤの前記外周スプラインとに選択的に噛合させる移動機構と、前記固定軸上の前記シフトフォークの位置を検出するストロークセンサと、前記ストロークセンサの検出値に基づいて前記シフトフォークの移動状態を制御する移動制御部と、を備え、前記移動制御部は、前記内周スプラインと前記第1ギヤまたは前記第2ギヤとの噛合指令時には、噛合指令側ギヤの前記ストッパに前記スリーブが当接する前記固定軸上の位置である噛合完了位置より前記噛合指令側ギヤ側まで前記シフトフォークを移動させた後、少なくとも前記噛合完了位置まで前記シフトフォークを戻して待機させる、ことを特徴とする。 In order to achieve the above object, one embodiment of the present invention is a gear shift device for switching gear stages of a vehicle, comprising a clutch hub provided on a drive shaft and an inner spline meshing with the clutch hub. a shift fork that rotatably supports the sleeve; a first gear that is rotatably disposed at the drive shaft on both sides of the clutch hub and has outer splines that can mesh with the inner splines; The shift fork is moved on a fixed shaft along the center line of the drive shaft using a second gear, a stopper provided on the first gear and the second gear and capable of coming into contact with the sleeve, and an electric motor. a moving mechanism for selectively meshing the inner peripheral spline with the outer peripheral spline of the first gear and the outer peripheral spline of the second gear by moving a stroke for detecting the position of the shift fork on the fixed shaft; a sensor, and a movement control section that controls the movement state of the shift fork based on the detection value of the stroke sensor, wherein the movement control section controls the movement of the inner spline and the first gear or the second gear. , the shift fork is moved from a meshing completion position, which is a position on the fixed shaft where the sleeve abuts against the stopper of the meshing command side gear, to the meshing command side gear side, and then at least the meshing completion It is characterized in that the shift fork is returned to the position and made to stand by.
 本発明の一実施の形態によれば、所定の変速段への変速切替指令時、切替側のギヤ(噛合指令側ギヤ)のストッパにスリーブが当接し、かつシフトフォークに変形が生じない固定軸上の位置である噛合完了位置より切替側ギヤ側にシフトフォークを移動させ、シフトフォークを変形させた状態でギヤ間の噛合を完了させた後、少なくとも噛合完了位置までシフトフォークを戻して待機させる。これにより、シフトフォークによるストッパへのスリーブの押し付けを解除し、シフトフォークのフォークパッドの摩耗やスリーブとストッパの接触面の摩耗を防止できる。 According to one embodiment of the present invention, when a gear change command to a predetermined gear is given, the sleeve abuts against the stopper of the gear on the switching side (engagement command side gear), and the fixed shaft does not deform the shift fork. After the shift fork is moved from the engagement completion position, which is the upper position, toward the switching side gear, and the engagement between the gears is completed while the shift fork is deformed, the shift fork is returned to at least the engagement completion position and waited. . As a result, the pressing of the sleeve against the stopper by the shift fork is released, and abrasion of the fork pad of the shift fork and abrasion of the contact surface between the sleeve and the stopper can be prevented.
実施の形態にかかる変速段切替装置の全体構成を示す断面斜視図である。1 is a cross-sectional perspective view showing an overall configuration of a gear shift device according to an embodiment; FIG. シフトフォークの移動機構の構成を図1の背面側から示す図である。FIG. 2 is a view showing the configuration of a shift fork moving mechanism from the rear side of FIG. 1; 変速段切替装置を構成する各ギヤの噛合関係を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the meshing relationship of gears that constitute the gear shift device; 変速段切替装置を構成する各ギヤの噛合関係を模式的に示す図である。It is a figure which shows typically the engagement relationship of each gear which comprises a gear stage switching apparatus. 電動アクチュエータの構成を模式的に示す断面図である。2 is a cross-sectional view schematically showing the configuration of an electric actuator; FIG. シフトフォークの動きを模式的に示す説明図であり、シフトフォークが基準位置にある場合を示す。FIG. 4 is an explanatory diagram schematically showing movement of a shift fork, showing a case where the shift fork is at a reference position; シフトフォークの動きを模式的に示す説明図であり、シフトフォークが移動限界位置にありたわみが生じている場合を示す。FIG. 4 is an explanatory view schematically showing movement of a shift fork, showing a case where the shift fork is at the movement limit position and is bent. シフトフォークの動きを模式的に示す説明図であり、シフトフォークが噛合完了位置にある場合を示す。FIG. 4 is an explanatory diagram schematically showing movement of a shift fork, showing a case where the shift fork is in a meshing completion position; シフトフォークの動きを模式的に示す説明図であり、シフトフォークが待機位置にある場合を示す。FIG. 4 is an explanatory diagram schematically showing movement of a shift fork, showing a case where the shift fork is in a standby position; シフトフォークの位置(ストロークセンサの検出値)および電動モータの電流値の時間変化を示すタイミングチャートである。4 is a timing chart showing changes over time in the position of the shift fork (detected value of the stroke sensor) and the current value of the electric motor; 移動制御部による噛合完了位置の学習処理の手順を示すフローチャートである。4 is a flow chart showing a procedure of learning processing of an engagement completion position by a movement control unit;
 以下に添付図面を参照して、本発明にかかる変速段切替装置および変速段切替装置の制御方法の好適な実施の形態を詳細に説明する。
 図1~図6を参照して、実施の形態にかかる変速段切替装置10の構成について説明する。
 変速段切替装置10は、オートマチックトランスミッションの車両の変速段をハイ(H)ギヤとロー(L)ギヤの2段で切り替えるものであり、駆動軸12、クラッチハブ14、スリーブ16、シフトフォーク18、第1ギヤ20A、第2ギヤ20B、移動機構22、ストロークセンサ24、移動制御部300(図6参照)を備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a gear shift device and a control method for the gear shift device according to the present invention will be described below in detail with reference to the accompanying drawings.
A configuration of a gear shift device 10 according to an embodiment will be described with reference to FIGS. 1 to 6. FIG.
A gear shift device 10 switches gear stages of a vehicle of an automatic transmission between two stages of a high (H) gear and a low (L) gear. It includes a first gear 20A, a second gear 20B, a moving mechanism 22, a stroke sensor 24, and a movement control section 300 (see FIG. 6).
 駆動軸12は、車両の駆動輪にエンジンの動力を伝達するアウトプットシャフトである。 The drive shaft 12 is an output shaft that transmits engine power to the drive wheels of the vehicle.
 クラッチハブ14は、駆動軸12に設けられ、図3に示すように外周部に外周スプライン1402を有する。クラッチハブ14と駆動軸12とはスプライン結合されており、これにより、クラッチハブ14は、駆動軸12と一体に回転する。 The clutch hub 14 is provided on the drive shaft 12 and has an outer peripheral spline 1402 on its outer peripheral portion as shown in FIG. Clutch hub 14 and drive shaft 12 are spline-connected, whereby clutch hub 14 rotates together with drive shaft 12 .
 スリーブ16は、クラッチハブ14の外周スプライン1402に噛合する内周スプライン1604を有する円筒状の部材である。より詳細には、スリーブ16は、図3に示すように、内周スプライン1604が設けられた円筒状のスリーブ基部1602と、スリーブ基部1602の外周部に設けられ後述するシフトフォーク18が係合可能な係合部1606とを有する。係合部1606は、スリーブ基部1602の外周面1608と、外周面1608の周方向と直交する方向における両側部から起立する両側の凸条1610とを備える。 The sleeve 16 is a cylindrical member having an inner spline 1604 that meshes with the outer spline 1402 of the clutch hub 14 . More specifically, as shown in FIG. 3, the sleeve 16 has a cylindrical sleeve base portion 1602 provided with an inner peripheral spline 1604, and a shift fork 18 provided on the outer peripheral portion of the sleeve base portion 1602, which can be engaged. and an engaging portion 1606 . The engaging portion 1606 includes an outer peripheral surface 1608 of the sleeve base portion 1602 and ridges 1610 on both sides of the outer peripheral surface 1608 in a direction orthogonal to the circumferential direction.
 シフトフォーク18は、スリーブ16を回転可能に支持する。シフトフォーク18は、後述する移動機構22により駆動軸12の延在方向に移動可能であり、シフトフォーク18が移動することでスリーブ16も駆動軸12の延在方向に移動する。
 シフトフォーク18は、図2に示すように、スリーブ16を保持する保持部1802と、後述する移動機構22の固定軸2208が挿通される筒状部1804と、保持部1802と筒状部1804とを接続する本体部1806とを備える。
 保持部1802は、図3に示すようにスリーブ16の外周部に設けられた両側の凸条1610の間の外周面1608に回転可能に接触する接触面1808を有する。また、図2に示すように、保持部1802のうち凸条1610と対向する側壁1810には、シフトフォーク18がスリーブ16とが相対回転をもって接触した際の焼付を防止するためフォークパッド1812が取り付けられている。
 図3に示すように、保持部1802のうち、スリーブ16の外周面1608の周方向と直交する方向における接触面1808の幅(フォークパッド1812の厚みを含む)W1は、両側の凸条1610の間の寸法W2よりも小さくなっている。すなわち、シフトフォーク18の保持部1802とスリーブ16の係合部1606との間には、距離W2-W1の隙間(ガタ)が設けられている。
A shift fork 18 rotatably supports the sleeve 16 . The shift fork 18 is movable in the extension direction of the drive shaft 12 by a movement mechanism 22 which will be described later. As the shift fork 18 moves, the sleeve 16 also moves in the extension direction of the drive shaft 12 .
As shown in FIG. 2, the shift fork 18 includes a holding portion 1802 that holds the sleeve 16, a tubular portion 1804 through which a fixed shaft 2208 of the moving mechanism 22 (to be described later) is inserted, the holding portion 1802 and the tubular portion 1804. and a main body portion 1806 for connecting the .
The holding portion 1802 has a contact surface 1808 that rotatably contacts the outer peripheral surface 1608 between the ridges 1610 provided on the outer peripheral portion of the sleeve 16 as shown in FIG. Further, as shown in FIG. 2, a fork pad 1812 is attached to a side wall 1810 of the holding portion 1802 that faces the ridge 1610 in order to prevent seizure when the shift fork 18 contacts the sleeve 16 with relative rotation. It is
As shown in FIG. 3, the width (including the thickness of the fork pad 1812) W1 of the contact surface 1808 of the holding portion 1802 in the direction orthogonal to the circumferential direction of the outer peripheral surface 1608 of the sleeve 16 is It is smaller than the dimension W2 between them. That is, a gap (play) of distance W2-W1 is provided between the holding portion 1802 of the shift fork 18 and the engaging portion 1606 of the sleeve 16. As shown in FIG.
 第1ギヤ20Aおよび第2ギヤ20Bは、図1に示すようにクラッチハブ14の両側の駆動軸12の箇所に回転可能に配置されている。第1ギヤ20Aは、ハイギヤに対応し、後述する大径部2004Aの外周ギヤ2008Aが図1に二点破線で示すカウンターシャフト32に固定された第3ギヤ34Aと噛合して回転する。第2ギヤ20Bは、ローギヤに対応し、後述する大径部2004の外周ギヤ2008Bがカウンターシャフト32に固定された第4ギヤ34Bと噛合して回転する。
 第1ギヤ20Aおよび第2ギヤ20Bは、不図示のニードルローラベアリングを介して駆動軸12に接続されており、第1ギヤ20Aまたは第2ギヤ20Bのうち所望のシフトに対応する方のギヤと駆動軸12とをクラッチハブ14を介してスリーブ16により接続することで、当該ギヤの回転が駆動軸12に伝達される。なお、第1ギヤ20Aおよび第2ギヤ20Bの軸方向の位置が変化しないように、図示しない位置規制部材が設けられている。
The first gear 20A and the second gear 20B are rotatably arranged at the drive shaft 12 on both sides of the clutch hub 14 as shown in FIG. The first gear 20A corresponds to a high gear, and an outer peripheral gear 2008A of a large diameter portion 2004A, which will be described later, meshes with a third gear 34A fixed to the countershaft 32 indicated by a two-dot dashed line in FIG. The second gear 20B corresponds to a low gear, and an outer peripheral gear 2008B of a large diameter portion 2004 (to be described later) meshes with a fourth gear 34B fixed to the countershaft 32 to rotate.
The first gear 20A and the second gear 20B are connected to the drive shaft 12 via needle roller bearings (not shown), and the first gear 20A or the second gear 20B corresponds to the desired shift. By connecting the drive shaft 12 with the sleeve 16 via the clutch hub 14 , the rotation of the gear is transmitted to the drive shaft 12 . A position restricting member (not shown) is provided so that the axial positions of the first gear 20A and the second gear 20B do not change.
 図3に示すように、第1ギヤ20Aおよび第2ギヤ20Bはそれぞれ、クラッチハブ14と隣接して配置されたスプライン2002(2002A,2002B)と、クラッチハブ14から離れた側に配置される大径部2004(2004A,2004B)とを備える。
 第1ギヤ20Aおよび第2ギヤ20Bのスプライン2002は、それぞれスリーブ16の内周スプライン1604に噛合可能な外周スプライン2006(2006A,2006B)を有する。
 大径部2004は、スプライン2002より大きい半径を有し、その外周に設けられた外周ギヤ2008(2008A,2008B)は、カウンターシャフト32に固定された第3ギヤ34Aの外周ギヤ3400Aまたは第4ギヤ34Bの外周ギヤ3400Bとそれぞれ常時噛合している。
As shown in FIG. 3, the first gear 20A and the second gear 20B respectively have splines 2002 (2002A, 2002B) arranged adjacent to the clutch hub 14 and large splines 2002 (2002A, 2002B) arranged away from the clutch hub 14. and a diameter portion 2004 (2004A, 2004B).
The splines 2002 of the first gear 20A and the second gear 20B have outer splines 2006 (2006A, 2006B) that can mesh with the inner splines 1604 of the sleeve 16, respectively.
The large diameter portion 2004 has a larger radius than the spline 2002, and the outer peripheral gear 2008 (2008A, 2008B) provided on the outer periphery of the large diameter portion 2004 is the outer peripheral gear 3400A of the third gear 34A fixed to the countershaft 32 or the fourth gear. 34B are in constant mesh with the outer peripheral gear 3400B.
 移動機構22は、電動モータ2204Aを用いてシフトフォーク18を駆動軸12の中心線Oに沿って移動させることによりスリーブ16の内周スプライン1604を第1ギヤ20Aの外周スプライン2006Aと第2ギヤ20Bの外周スプライン2006Bとに選択的に噛合させる。
 本実施の形態では、移動機構22は、図2に示すように、電動アクチュエータ2204、移動軸2206、ガイド部2210、レバー2212を備える。ガイド部2210とシフトフォーク18とは、一体に設けられている。
 電動アクチュエータ2204は、図5に示すように、電動モータ(本実施の形態では、DCブラシモータ)2204Aにすべりねじ2204Bが挿入されており、電動モータ2204Aが出力する軸周りの回転を軸方向の直動に変換する直動機構として機能する。電動モータ2204Aがすべりねじ2204Bのめねじ側を回転させることにより、電動アクチュエータ2204は、上下方向(図2の矢印A方向)に移動する。すなわち、移動機構22は、電動モータ2204Aが出力する回転力を電動モータ2204Aの出力軸に接続されたすべりねじ2204Bにより直動方向の移動力に変換してシフトフォーク18を移動させる。
 移動軸2206は、電動アクチュエータ2204の出力軸2204Cの先端に取り付けられ、電動アクチュエータ2204の直動方向(図2の矢印A方向)の動きに付随して移動する。
 ガイド部2210は、上述のようにシフトフォーク18と一体となっており、本体部2210Aと、後述するレバー2212が挿通される挿通孔2210Bと、固定軸2208に挿通されたスプリング2210Cとを備える。
 レバー2212は、略L字形状を呈し、一方の端部2212Aを移動軸2206に設けられた接続部2206Aに、他方の端部2212Bをガイド部2210の挿通孔2210Bに挿通されている。レバー2212は、車体に支持された支軸2212Cを中心に揺動可能である。
 電動アクチュエータ2204が稼働し、移動軸2206が上下方向(矢印A方向)に移動すると、レバー2212が揺動し、シフトフォーク18とガイド部2210が往復直線運動(矢印B方向)する。
The moving mechanism 22 uses an electric motor 2204A to move the shift fork 18 along the centerline O of the drive shaft 12, thereby moving the inner spline 1604 of the sleeve 16 to the outer spline 2006A of the first gear 20A and the outer spline 2006A of the second gear 20B. is selectively engaged with the outer peripheral spline 2006B.
In this embodiment, the moving mechanism 22 includes an electric actuator 2204, a moving shaft 2206, a guide portion 2210, and a lever 2212, as shown in FIG. Guide portion 2210 and shift fork 18 are provided integrally.
As shown in FIG. 5, the electric actuator 2204 has an electric motor (in this embodiment, a DC brush motor) 2204A with a slide screw 2204B inserted therein. It functions as a linear motion mechanism that converts to linear motion. The electric motor 2204A rotates the female screw side of the slide screw 2204B, thereby moving the electric actuator 2204 vertically (in the direction of arrow A in FIG. 2). That is, the moving mechanism 22 moves the shift fork 18 by converting the rotational force output by the electric motor 2204A into a moving force in the linear motion direction by the slide screw 2204B connected to the output shaft of the electric motor 2204A.
The moving shaft 2206 is attached to the tip of the output shaft 2204C of the electric actuator 2204, and moves along with the movement of the electric actuator 2204 in the linear motion direction (arrow A direction in FIG. 2).
The guide portion 2210 is integrated with the shift fork 18 as described above, and includes a body portion 2210A, an insertion hole 2210B through which a lever 2212 (to be described later) is inserted, and a spring 2210C through which the fixed shaft 2208 is inserted.
Lever 2212 has a substantially L-shape, one end 2212A is inserted into connecting portion 2206A provided on moving shaft 2206, and the other end 2212B is inserted through insertion hole 2210B of guide portion 2210. As shown in FIG. Lever 2212 can swing around a support shaft 2212C supported by the vehicle body.
When the electric actuator 2204 operates and the moving shaft 2206 moves vertically (in the direction of arrow A), the lever 2212 swings and the shift fork 18 and the guide portion 2210 perform reciprocating linear motion (in the direction of arrow B).
 ストロークセンサ24は、ガイド部2210の動きを読み取ることでシフトフォーク18の位置を検出する。本実施の形態では、ストロークセンサ24は、シフトフォーク18の保持部1802の軸方向の中心位置がクラッチハブ14の軸方向の中心位置S0(図3参照)に位置するときのシフトフォーク18の位置を基準位置P0とし、この基準位置P0からのシフトフォーク18の移動量を検出することによりシフトフォーク18の位置を検出する。
 すなわち、ストロークセンサ24は、スリーブ16の内周スプライン1604が第1ギヤ20Aの外周スプライン2006Aおよび第2ギヤ20Bの外周スプライン2006Bに噛合しないシフトフォーク18の基準位置P0からのシフトフォーク18の移動距離を検出する。
The stroke sensor 24 detects the position of the shift fork 18 by reading the motion of the guide portion 2210 . In the present embodiment, the stroke sensor 24 detects the position of the shift fork 18 when the axial center position of the holding portion 1802 of the shift fork 18 is positioned at the axial center position S0 of the clutch hub 14 (see FIG. 3). is defined as a reference position P0, and the position of the shift fork 18 is detected by detecting the amount of movement of the shift fork 18 from this reference position P0.
That is, the stroke sensor 24 measures the movement distance of the shift fork 18 from the reference position P0 of the shift fork 18 where the inner spline 1604 of the sleeve 16 does not mesh with the outer spline 2006A of the first gear 20A and the outer spline 2006B of the second gear 20B. to detect
 図3で示すように、スリーブ16がクラッチハブ14の外周に位置する場合、第1ギヤ20Aおよび第2ギヤ20Bはいずれも駆動軸12とは接続しておらず、駆動軸12の周りをそれぞれ独立して回転している。この場合、車両の変速段はニュートラル(N)となる。
 一方、図4に示すように、シフトフォーク18によりスリーブ16が第1ギヤ20A方向に移動すると、スリーブ16の内周スプライン1604の一部と第1ギヤ20Aのスプライン2002Aの外周スプライン2006Aとが噛合する。スリーブ16の内周スプライン1604の残りの一部はクラッチハブ14と噛合しており、これにより、第1ギヤ20A、スリーブ16、クラッチハブ14が一体となり、駆動軸12の回転力をスリーブ16、第1ギヤ20A、第3ギヤ34Aを経由し、カウンターシャフト32に伝達する。スリーブ16が第1ギヤ20Aと噛合している場合には、車両の変速段はハイとなる。
 また、シフトフォーク18によりスリーブ16が第2ギヤ20B方向に移動すると、スリーブ16の内周スプライン1604の一部と第2ギヤ20Bのスプライン2002Bの外周スプライン2006Bとが噛合する。スリーブ16の内周スプライン1604の残りの一部はクラッチハブ14と噛合しており、これにより、第2ギヤ20B、スリーブ16、クラッチハブ14が一体となり、駆動軸12の回転力をスリーブ16、第2ギヤ20B、第4ギヤ34Bを経由し、カウンターシャフト32に伝達する。スリーブ16が第2ギヤ20Bと噛合している場合には、車両の変速段はローとなる。
As shown in FIG. 3, when the sleeve 16 is positioned on the outer circumference of the clutch hub 14, neither the first gear 20A nor the second gear 20B are connected to the drive shaft 12 and rotate around the drive shaft 12 respectively. rotating independently. In this case, the gear stage of the vehicle becomes neutral (N).
On the other hand, as shown in FIG. 4, when the sleeve 16 is moved in the direction of the first gear 20A by the shift fork 18, a part of the inner peripheral spline 1604 of the sleeve 16 and the outer peripheral spline 2006A of the spline 2002A of the first gear 20A mesh. do. The remaining part of the inner peripheral spline 1604 of the sleeve 16 meshes with the clutch hub 14, whereby the first gear 20A, the sleeve 16 and the clutch hub 14 are integrated, and the rotational force of the drive shaft 12 is transferred to the sleeve 16 and the clutch hub 14. It is transmitted to the countershaft 32 via the first gear 20A and the third gear 34A. When the sleeve 16 is engaged with the first gear 20A, the vehicle is in high gear.
Further, when the sleeve 16 is moved toward the second gear 20B by the shift fork 18, part of the inner peripheral spline 1604 of the sleeve 16 and the outer peripheral spline 2006B of the spline 2002B of the second gear 20B are meshed. The remaining part of the inner peripheral spline 1604 of the sleeve 16 is meshed with the clutch hub 14, whereby the second gear 20B, the sleeve 16 and the clutch hub 14 are integrated, and the rotational force of the drive shaft 12 is transferred to the sleeve 16 and the clutch hub 14. It is transmitted to the counter shaft 32 via the second gear 20B and the fourth gear 34B. When the sleeve 16 is engaged with the second gear 20B, the vehicle is in low gear.
 また、図4に示すように、シフトフォーク18によりスリーブ16が軸方向第1ギヤ20A方向に移動すると、スリーブ16の軸方向の端面1612が大径部2004のクラッチハブ14側の側面に当接し、スリーブ16の軸方向の動きを規制する。
 すなわち、本実施の形態では、大径部2004の側面が、第1ギヤ20Aおよび第2ギヤ20Bに設けられスリーブ16に当接可能なストッパ2010(2010A、2010B)として機能する。
As shown in FIG. 4, when the sleeve 16 is moved axially in the first gear 20A direction by the shift fork 18, the axial end surface 1612 of the sleeve 16 comes into contact with the side surface of the large diameter portion 2004 on the clutch hub 14 side. , restrict the axial movement of the sleeve 16 .
That is, in the present embodiment, the side surfaces of large-diameter portion 2004 function as stoppers 2010 (2010A, 2010B) provided on first gear 20A and second gear 20B and capable of contacting sleeve 16 .
 つぎに、移動制御部300について説明する。
 図6に示すように、移動制御部300は、車両のトランスミッションを制御するTCU(Transmission Control Unit)30の一機能として実現する。
 TCU30は、CPU(Central Processing Unit)、制御プログラムなどを格納・記憶するROM(Read Only Memory)、制御プログラムの作動領域としてのRAM(Random Access Memory)、各種データを書き換え可能に保持するEEPROM(Electrically Erasable Programmable ROM)、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成され、上記CPUが制御プログラムを実行することにより、移動制御部300として機能する。
Next, the movement control section 300 will be explained.
As shown in FIG. 6, the movement control unit 300 is implemented as one function of a TCU (Transmission Control Unit) 30 that controls the transmission of the vehicle.
The TCU 30 includes a CPU (Central Processing Unit), a ROM (Read Only Memory) for storing control programs and the like, a RAM (Random Access Memory) as an operating area for the control programs, and an EEPROM (Electrically Rewritable) for holding various data. (Erasable Programmable ROM), an interface unit for interfacing with peripheral circuits, etc., and the CPU functions as a movement control unit 300 by executing the control program.
 移動制御部300は、ストロークセンサ24の検出値に基づいてシフトフォーク18の移動状態を制御する。移動制御部300は、例えば車両全体を制御するECU(Electronic Control Unit)から変速段の切り替え指令があった場合(すなわちスリーブ16と第1ギヤ20Aまたは第2ギヤ20Bとの噛合指令時)に、電動アクチュエータ2204を作動させ、当該変速段に対応するギヤ20とスリーブ16とが噛合する位置にシフトフォーク18を移動させる。 The movement control section 300 controls the movement state of the shift fork 18 based on the detection value of the stroke sensor 24 . For example, when an ECU (Electronic Control Unit) that controls the entire vehicle issues a command to switch gears (i.e., when a command is issued to engage the sleeve 16 with the first gear 20A or the second gear 20B), the movement control unit 300 Electric actuator 2204 is operated to move shift fork 18 to a position where gear 20 and sleeve 16 corresponding to the gear are engaged.
 本実施の形態では、図8に示すように、スリーブ16の端面1612がギヤ20の大径部2004の側面(ストッパ2010)と接し、かつシフトフォーク18に変形(たわみ)が生じない位置を噛合完了位置(ストッパ位置)Pxとする。
 そして、変速段の切り替え指令(スリーブ16と所定のギヤ20との噛合指令)があった場合、まず噛合完了位置Pxより噛合指令側ギヤ側(たとえば後述する移動限界位置Pl(図7参照))までシフトフォーク18を移動させてスリーブ16をギヤ20に押し付けることによりスリーブ16とギヤ20とを確実に噛合させた後、シフトフォーク18を少なくとも噛合完了位置Pxまで戻した上で次回の変速段の切り替え指令まで待機させる。
 すなわち、移動制御部300は、スリーブ16の内周スプライン1604と第1ギヤ20Aまたは第2ギヤ20Bとの噛合指令時には、噛合指令側ギヤのストッパ2010にスリーブ16が当接し、かつシフトフォーク18に変形が生じない固定軸2208上の位置である噛合完了位置Pxより噛合指令側ギヤ側までシフトフォーク18を移動させ、シフトフォークを変形させた後、少なくとも噛合完了位置Pxまでシフトフォーク18を戻して待機させる。
In this embodiment, as shown in FIG. 8, the end surface 1612 of the sleeve 16 is in contact with the side surface (stopper 2010) of the large diameter portion 2004 of the gear 20, and the shift fork 18 is meshed at a position where deformation (deflection) does not occur. Assume that the completion position (stopper position) is Px.
Then, when there is a shift stage switching command (engagement command between the sleeve 16 and the predetermined gear 20), first, the gear on the side of the engagement command side from the engagement completion position Px (for example, the movement limit position Pl (see FIG. 7) described later). After the sleeve 16 and the gear 20 are reliably meshed by moving the shift fork 18 to and pressing the sleeve 16 against the gear 20, the shift fork 18 is returned at least to the meshing completion position Px, and then the next gear stage is set. Wait until switching command.
That is, the movement control unit 300 causes the sleeve 16 to abut against the stopper 2010 of the gear on the side of the engagement instruction and to the shift fork 18 when the inner spline 1604 of the sleeve 16 and the first gear 20A or the second gear 20B are instructed to engage. After the shift fork 18 is moved from the meshing completion position Px, which is a position on the fixed shaft 2208 where deformation does not occur, to the gear on the meshing instruction side, and after the shift fork is deformed, the shift fork 18 is returned to at least the meshing completion position Px. wait.
 噛合完了位置Pxは、予め指定されているのではなく、移動制御部300の学習により決定する。
 実施の形態にかかる変速段切替装置10において、噛合完了位置Pxを設定する理由について説明する。
 上述のように、従来の変速段切替装置の電動アクチュエータは、DCブラシレスモータにボールねじを挿入した構成が採用されている。ボールねじは逆転効率が高く、電動アクチュエータへの電流供給を遮断すると、スリーブの保持力を失うため、シフト入れ完了後のシフトフォークの位置を固定するサブロック機構(ディテント)が設けられており、サブロック機構(ディテント)の引き込み力により、シフトフォーク及びスリーブ位置は規定位置で固定される。
The engagement completion position Px is determined by learning of the movement control unit 300 rather than being specified in advance.
The reason why the engagement completion position Px is set in the gear shift device 10 according to the embodiment will be described.
As described above, the electric actuator of the conventional gear shift device employs a configuration in which a ball screw is inserted into a DC brushless motor. The ball screw has a high reverse rotation efficiency, and if the current supply to the electric actuator is cut off, the holding force of the sleeve is lost. The position of the shift fork and sleeve is fixed at the specified position by the retracting force of the sublock mechanism (detent).
 一方で、実施の形態にかかる変速段切替装置10の電動アクチュエータ2204にすべりねじ2204B等の逆転効率が低い機構を採用した場合、電動モータ2204Aへの電流供給を遮断しても保持力が残存し、サブロック機構(ディテント)が無くても、シフトフォーク18及びスリーブ位置は保持される。
 しかしながら、従来の切替装置と同様にスリーブが所望のギヤピースとの噛合完了後、ギヤ方向に所定の荷重でストッパに押付けた後に電動アクチュエータ2204への電流供給を遮断した場合、シフトフォーク18のたわみ等による押付力が残存してしまう。この押付力により、例えばシフトフォーク18のフォークパッド1812を溶損してしまうなどの問題が発生する可能性がある。
On the other hand, when a mechanism having a low reverse rotation efficiency such as a slide screw 2204B is employed for the electric actuator 2204 of the gear shift device 10 according to the embodiment, the holding force remains even if the electric current supply to the electric motor 2204A is cut off. , the positions of the shift fork 18 and the sleeve are maintained even without a sublock mechanism (detent).
However, as in the conventional switching device, when the sleeve is pressed against the stopper with a predetermined load in the direction of the gear after the sleeve has been engaged with the desired gear piece, and the current supply to the electric actuator 2204 is interrupted, the shift fork 18 may be bent. The pressing force due to remains. This pressing force may cause problems such as melting the fork pad 1812 of the shift fork 18 .
 このため、変速段切替装置10は、従来のようにギヤに対してスリーブを押し付けた状態でシフト入れを完了する(電動アクチュエータをオフする)のではなく、スリーブ16の端面1612がギヤ20の大径部2004の側面(ストッパ2010)と接する位置(噛合完了位置)を学習し、少なくとも噛合完了位置までシフトフォーク18を戻した上でシフト入れを完了させる。 For this reason, the gear shift device 10 completes shifting (turns off the electric actuator) in a state where the sleeve is pressed against the gear as in the conventional art. The position (engagement completion position) of contact with the side surface (stopper 2010) of the diameter portion 2004 is learned, and after returning the shift fork 18 to at least the engagement completion position, the shift engagement is completed.
 なお、クラッチハブ14やスリーブ16、第1ギヤ20A、第2ギヤ20B等の寸法は一定であり、この寸法(設計値)に基づいて噛合完了位置を決定する方法も考えられるが、個々の部材寸法の機械的誤差やストロークセンサ24の特性バラつきなどが生じる可能性があり、一律の値では上記問題を解消するのに不十分であると考えられるため、個々の変速段切替装置10において学習を行う。 The dimensions of the clutch hub 14, the sleeve 16, the first gear 20A, the second gear 20B, etc. are constant, and a method of determining the engagement completion position based on these dimensions (design values) may be considered. There is a possibility that mechanical errors in dimensions and variations in characteristics of the stroke sensor 24 may occur, and it is considered that a uniform value is insufficient to solve the above problems. conduct.
 図6~図10を参照しつつ、図11のフローチャートを用いて移動制御部300による学習の詳細について説明する。
 なお、図6~図9では、視認性の観点からクラッチハブ14、ストロークセンサ24等の図示を省略している。
 初期状態では、図6に示すようにシフトフォーク18は基準位置P0にあるものとする。
 移動制御部300は、移動量の学習指示を受けると(ステップS900:Yes)、電動アクチュエータ2204を一定速度で稼働させ、シフトフォーク18およびシフトフォーク18に保持されるスリーブ16を一方のギヤ方向(図では第1ギヤ20A方向)に一定速度で移動させる(ステップS902、図10の時刻T0~T1に対応)。ストロークセンサ24は、シフトフォーク18の基準位置P0からの移動量(移動距離)を検出する。
Details of learning by the movement control unit 300 will be described using the flowchart of FIG. 11 while referring to FIGS. 6 to 10. FIG.
6 to 9, illustration of the clutch hub 14, the stroke sensor 24, etc. is omitted from the viewpoint of visibility.
In the initial state, the shift fork 18 is assumed to be at the reference position P0 as shown in FIG.
When movement control unit 300 receives a movement amount learning instruction (step S900: Yes), movement control unit 300 operates electric actuator 2204 at a constant speed, and shifts shift fork 18 and sleeve 16 held by shift fork 18 in one gear direction ( 10A) at a constant speed (step S902, corresponding to times T0 to T1 in FIG. 10). The stroke sensor 24 detects the amount of movement (distance) of the shift fork 18 from the reference position P0.
 スリーブ16の内周スプライン1604が第1ギヤ20Aのスプライン2002の外周スプライン2006と噛合し、スリーブ16の軸方向の端面1612が大径部2004の2010Aに当接する位置(ストッパ位置)に到達すると、シフトフォーク18の移動速度は低下する。シフトフォーク18の移動速度は、例えばストロークセンサ24の検出値の単位時間当たりの変化量から算出可能である。
 移動制御部300は、シフトフォーク18の移動速度が低下すると(ステップS904:Yes、図10の時刻T1~T2に対応)、すなわちスリーブ16がストッパ位置に到達したことを検知すると、一旦電動アクチュエータ2204への通電をカットする(ステップS906、図10の時刻T2~T3に対応)。
When the inner peripheral spline 1604 of the sleeve 16 meshes with the outer peripheral spline 2006 of the spline 2002 of the first gear 20A and the axial end surface 1612 of the sleeve 16 reaches a position (stopper position) where it abuts against 2010A of the large diameter portion 2004, The moving speed of shift fork 18 decreases. The moving speed of the shift fork 18 can be calculated, for example, from the amount of change per unit time in the detection value of the stroke sensor 24 .
When the movement speed of the shift fork 18 decreases (step S904: Yes, corresponding to times T1 to T2 in FIG. 10), that is, when it detects that the sleeve 16 has reached the stopper position, the movement control unit 300 temporarily shifts the electric actuator 2204. is cut (step S906, corresponding to times T2 to T3 in FIG. 10).
 つぎに、移動制御部300は、電動アクチュエータ2204に一定電圧を印加し、シフトフォーク18およびシフトフォーク18に保持されるスリーブ16を第1ギヤ20A方向に更に移動させる(ステップS908、図10の時刻T3~T4に対応)。すなわち、図7に示すように、スリーブ16を大径部2004方向(ストッパ方向)に押し付けるようにシフトフォーク18を更に移動させる。この時、シフトフォーク18にはストッパ方向への押圧力によりたわみDが生じる。なお、図7ではシフトフォーク18のたわみを模式的に示している。 Next, the movement control unit 300 applies a constant voltage to the electric actuator 2204 to further move the shift fork 18 and the sleeve 16 held by the shift fork 18 in the direction of the first gear 20A (step S908, time of FIG. 10). corresponding to T3-T4). That is, as shown in FIG. 7, the shift fork 18 is further moved so as to press the sleeve 16 toward the large diameter portion 2004 (toward the stopper). At this time, the shift fork 18 is flexed D due to the pressing force in the direction of the stopper. 7 schematically shows the deflection of the shift fork 18. As shown in FIG.
 移動制御部300は、ストロークセンサ24の検出値(図中「ストローク」と表記)が安定するまでは(ステップS910:No)、一定電圧での押圧を継続する。移動制御部300は、ストロークセンサ24の検出値が安定すると(ステップS910:Yes)、その位置がシフトフォーク18の移動限界位置と判断し、その時点におけるストロークセンサ24の検出値および電動アクチュエータ2204に流れる電流の値を読み取る(ステップS912、図10の時刻T4に対応)。 The movement control unit 300 continues pressing with a constant voltage until the detection value of the stroke sensor 24 (denoted as "stroke" in the figure) stabilizes (step S910: No). When the detection value of stroke sensor 24 stabilizes (step S910: Yes), movement control unit 300 determines that position to be the movement limit position of shift fork 18, and the detection value of stroke sensor 24 and electric actuator 2204 at that point in time. The value of the flowing current is read (step S912, corresponding to time T4 in FIG. 10).
 つづいて、移動制御部300は、ステップS912で得られた電動アクチュエータ2204の電流値に基づいて、移動機構22からシフトフォーク18が受ける軸方向の荷重を推定する(ステップS914)。一般に電動アクチュエータ2204の電流値がシフトフォーク18から受ける荷重とは比例関係にあり、移動制御部300は、実測により予め作成しておいたマップから、電流値に対応する荷重の値を読み取る。 Subsequently, the movement control unit 300 estimates the axial load that the shift fork 18 receives from the movement mechanism 22 based on the current value of the electric actuator 2204 obtained in step S912 (step S914). In general, the current value of the electric actuator 2204 is proportional to the load received from the shift fork 18, and the movement control unit 300 reads the load value corresponding to the current value from a map prepared in advance by actual measurement.
 さらに、移動制御部300は、ステップS914で得られた荷重に基づいて、シフトフォーク18に生じる軸方向のひずみ量(図7の符号Dに対応)を推定する(ステップS916)。一般に、部材が受ける荷重と部材のひずみ量とは比例関係にあり、移動制御部300は、実測により予め作成しておいたマップから、荷重に対応するひずみ量の値を読み取る。
 なお、予め作成しておくマップは、ステップS912で電流値から直接シフトフォーク18のひずみ量を得られるようにしてもよい。
Further, the movement control unit 300 estimates the axial strain amount (corresponding to D in FIG. 7) occurring in the shift fork 18 based on the load obtained in step S914 (step S916). In general, the load applied to a member and the strain amount of the member are in a proportional relationship, and the movement control unit 300 reads the strain amount value corresponding to the load from a map prepared in advance by actual measurement.
Note that the map prepared in advance may be such that the strain amount of the shift fork 18 can be obtained directly from the current value in step S912.
 移動制御部300は、ステップS912で読み取ったストローク安定時のストロークセンサ24の検出値からステップS916で得られたひずみ値を差し引いた値を噛合完了位置Pxとして決定し(ステップS918)、本フローチャートによる処理を終了する。
 この後、他方のギヤ方向(上記の例では第2ギヤ20B方向)についても同様に噛合完了位置Pxを学習する。
Movement control unit 300 determines a value obtained by subtracting the strain value obtained in step S916 from the value detected by stroke sensor 24 when the stroke is stable, read in step S912, as engagement completion position Px (step S918). End the process.
Thereafter, the engagement completion position Px is similarly learned for the other gear direction (the second gear 20B direction in the above example).
 すなわち、移動制御部300は、電動モータ2204Aを定電圧で駆動してスリーブ16がストッパ2010(ギヤ20の大径部2004の側面)に当接することによりシフトフォーク18の移動が規制される移動限界位置Plまで移動させ、シフトフォーク18が移動限界位置に達した際に電動モータ2204Aに流れる電流に基づいて移動限界位置Plにおけるシフトフォーク18のたわみ量Dを推定し、シフトフォーク18が移動限界位置Plに達した際におけるストロークセンサ24の検出値からたわみ量Dを差し引いた位置を噛合完了位置Pxとして学習する。 That is, the movement control unit 300 drives the electric motor 2204A at a constant voltage, and the sleeve 16 contacts the stopper 2010 (side surface of the large-diameter portion 2004 of the gear 20) to restrict movement of the shift fork 18. When the shift fork 18 reaches the movement limit position Pl, the amount of deflection D of the shift fork 18 at the movement limit position Pl is estimated based on the current flowing through the electric motor 2204A when the shift fork 18 reaches the movement limit position. The position obtained by subtracting the amount of deflection D from the value detected by the stroke sensor 24 when reaching Pl is learned as the engagement completion position Px.
 移動制御部300による噛合完了位置の学習は、例えば車両の出荷前に少なくとも1回実行する。また、移動制御部300は、車両の使用開始後、所定期間ごとに噛合完了位置の学習を実行してもよい。これは、例えば経年使用によってフォークパッド1812の摩耗や移動機構22の各部材の運動特性の変化等が生じる可能性があるためである。
 所定期間とは、例えば所定の時間間隔毎(3か月毎、1年毎など)、または所定の走行距離毎(走行距離1万km毎など)などに設定してもよい。
Learning of the engagement completion position by the movement control unit 300 is performed at least once, for example, before shipment of the vehicle. Further, the movement control unit 300 may perform learning of the engagement completion position at predetermined intervals after the start of use of the vehicle. This is because there is a possibility that the fork pad 1812 will be worn and the motion characteristics of each member of the moving mechanism 22 will change due to use over time.
The predetermined period may be set, for example, at predetermined time intervals (every three months, every year, etc.), or at predetermined travel distances (every 10,000 km travel distance, etc.).
 上述のように、移動制御部300は、変速段の切り替え指令(スリーブ16と所定のギヤ20との噛合指令)があった場合、まずシフトフォーク18を移動限界位置Pl(図7参照)程度まで移動させてスリーブ16をギヤ20に押し付けることによりスリーブ16とギヤ20とを確実に噛合させた後、シフトフォーク18を少なくとも噛合完了位置Pxまで戻した上で電動アクチュエータ2204への通電をカットし、次回の変速段の切り替え指令まで待機させる。これにより、スリーブ16にかかるギヤ20(ストッパ)方向への押付力をほぼゼロとでき、フォークパッド1812の摩耗やシフトフォーク18の劣化等を防止できる。 As described above, the movement control unit 300 first moves the shift fork 18 to the movement limit position Pl (see FIG. 7) when there is a shift stage switching command (engagement command between the sleeve 16 and the predetermined gear 20). After the sleeve 16 and the gear 20 are reliably meshed by moving the sleeve 16 and pressing it against the gear 20, the shift fork 18 is returned to at least the meshing completion position Px, and then the power supply to the electric actuator 2204 is cut off, Standby until the next shift stage switching command. As a result, the pressing force applied to the sleeve 16 in the direction of the gear 20 (stopper) can be reduced to almost zero, and wear of the fork pad 1812 and deterioration of the shift fork 18 can be prevented.
 一方で、シフトフォーク18が噛合完了位置Pxにある状態ではギヤ20側のフォークパッド1812がスリーブ16の凸条1610と接しており、移動量の誤差がわずかでもあるとスリーブ16に対して押付力がかかってしまう可能性がある。
 よって、本実施の形態では、シフト入れ完了後のフォークパッド1812の待機位置を、図9に示すように、フォークパッド1812がギヤ20と反対側のスリーブ16の凸条1610と接する位置(待機位置Py)としてもよい。
 図9に示すように、保持部1802のうち、スリーブ16の外周面1608の周方向と直交する方向における接触面1808の幅(フォークパッド1812の厚みを含む)W1は、両側の凸条1610の間の寸法W2よりも小さくなっている。すなわち、シフトフォーク18の保持部1802とスリーブ16の係合部1606との間には、距離W2-W1の隙間(ガタ)が設けられている。
 待機位置Pyは、噛合完了位置Pxから噛合中のギヤ20と反対側(クラッチハブ14側)に隙間距離W2-W1分離れた距離となる。
 すなわち、移動制御部300は、スリーブ16の両側の凸条1610の間の寸法W2からフォークパッド1812を含む接触面1808の幅を差し引いた隙間距離W2-W1を記憶し、噛合指令時にはシフトフォーク18を移動限界位置Plまで移動させた後、噛合完了位置Pxよりギヤ20と反対方向に隙間距離W2-W1分離れた位置(待機位置Py)でシフトフォーク18を待機させるようにしてもよい。
 このようにすることで、ギヤ20とスリーブ16の噛合(シフト入れ)を確実に行いつつ、変速段切替装置10を構成する各部材の摩耗をより確実に防止できる。
On the other hand, when the shift fork 18 is at the engagement completion position Px, the fork pad 1812 on the side of the gear 20 is in contact with the ridge 1610 of the sleeve 16, and even a slight error in the amount of movement causes a pressing force against the sleeve 16. may be affected.
Therefore, in the present embodiment, the standby position of the fork pad 1812 after the completion of shifting is the position where the fork pad 1812 is in contact with the ridge 1610 of the sleeve 16 on the opposite side of the gear 20 (standby position), as shown in FIG. Py).
As shown in FIG. 9, the width (including the thickness of the fork pad 1812) W1 of the contact surface 1808 of the holding portion 1802 in the direction orthogonal to the circumferential direction of the outer peripheral surface 1608 of the sleeve 16 is It is smaller than the dimension W2 between them. That is, a gap (play) of distance W2-W1 is provided between the holding portion 1802 of the shift fork 18 and the engaging portion 1606 of the sleeve 16. As shown in FIG.
The standby position Py is a gap distance W2-W1 away from the engagement completion position Px on the side opposite to the gear 20 being engaged (toward the clutch hub 14).
That is, the movement control unit 300 stores the gap distance W2-W1 obtained by subtracting the width of the contact surface 1808 including the fork pad 1812 from the dimension W2 between the ridges 1610 on both sides of the sleeve 16, and stores the gap distance W2-W1 when the shift fork 18 is engaged. to the movement limit position Pl, the shift fork 18 may be made to wait at a position (standby position Py) separated from the engagement completion position Px in the direction opposite to the gear 20 by the gap distance W2-W1.
By doing so, the gear 20 and the sleeve 16 can be reliably meshed (shifted), and wear of each member constituting the gear shift device 10 can be prevented more reliably.
 以上説明したように、実施の形態にかかる変速段切替装置10は、所定のシフトへのシフト切替指令時、切替側のギヤ20(噛合指令側ギヤ)のストッパ2010にスリーブ16が当接し、かつシフトフォーク18に変形が生じない固定軸2208上の位置である噛合完了位置Pxより切替側のギヤ20側にシフトフォーク18を移動させ、シフトフォーク18を変形させた状態でギヤ間の噛合を完了させた後、少なくとも噛合完了位置までシフトフォーク18を戻して待機させる。これにより、シフトフォーク18によるストッパ2010へのスリーブ16の押し付けを解除し、シフトフォーク18のフォークパッド1812の摩耗やスリーブ16とストッパ2010の接触面の摩耗を防止できる。また、噛合完了位置Pxより切替側のギヤ20側にシフトフォーク18を移動させることにより、スリーブ16の内周スプライン1604と切替側のギヤ20とを噛合させ、シフト入れを確実に完了できる。
 また、実施の形態にかかる変速段切替装置10において、次回のシフト切替時までの待機位置を噛合完了位置Pxよりギヤ20と反対方向に隙間距離W2-W1分離れた位置(待機位置Py)にすれば、変速段切替装置10を構成する各部材の摩耗をより確実に防止できる。
 また、実施の形態にかかる変速段切替装置10において、シフトフォーク18を移動限界位置Plまで移動させ、シフトフォーク18が移動限界位置Plに達した際に電動モータ2204Aに流れる電流に基づいて移動限界位置Plにおけるシフトフォーク18のたわみ量Dを推定し、シフトフォーク18が移動限界位置Plに達した際におけるストロークセンサの検出値からたわみ量を差し引いた位置を噛合完了位置Pxとして学習すれば、シフトフォーク18のたわみ量を検出するセンサを設けることなくたわみ量を推定でき、変速段切替装置10のコストを低減できる。
 また、実施の形態にかかる変速段切替装置10において、電動アクチュエータ2204の回転―直動変換機構にすべりねじ2204Bを採用すれば、ボールねじ等を使用した従来構成と比較して回転―直動変換機構の部品コストを低減できる。また、すべりねじの逆転効率が低いことを利用して、シフトフォークの位置を保持するためのサブロック機構を廃止することでき、更なるコスト低減を実現できる。
 また、実施の形態にかかる変速段切替装置10において、車両の使用開始後、所定期間ごとに噛合完了位置の学習を実行すれば、経年使用による変速段切替装置10の各部の変化を反映した噛合完了位置を設定でき、変速段切替装置10を構成する各部材の摩耗をより確実に防止できる。
As described above, in the gear change device 10 according to the embodiment, when a shift change command to a predetermined shift is given, the sleeve 16 abuts against the stopper 2010 of the gear 20 on the changeover side (engagement command side gear), and The shift fork 18 is moved toward the gear 20 on the switching side from the engagement completion position Px, which is a position on the fixed shaft 2208 where the shift fork 18 is not deformed, and the engagement between the gears is completed while the shift fork 18 is deformed. After that, the shift fork 18 is returned to at least the engagement completion position and waited. As a result, the pressing of the sleeve 16 against the stopper 2010 by the shift fork 18 is released, and wear of the fork pad 1812 of the shift fork 18 and wear of the contact surface between the sleeve 16 and the stopper 2010 can be prevented. Further, by moving the shift fork 18 from the engagement completion position Px toward the gear 20 on the switching side, the inner spline 1604 of the sleeve 16 is brought into engagement with the gear 20 on the switching side, thereby securely completing the shift.
Further, in the gear shift device 10 according to the embodiment, the standby position until the next shift switching is set to a position (standby position Py) separated by a gap distance W2-W1 in the direction opposite to the gear 20 from the engagement completion position Px. By doing so, it is possible to more reliably prevent wear of each member constituting the gear shift device 10 .
Further, in the gear shift device 10 according to the embodiment, the shift fork 18 is moved to the movement limit position Pl, and when the shift fork 18 reaches the movement limit position Pl, the movement limit is determined based on the current flowing through the electric motor 2204A. If the deflection amount D of the shift fork 18 at the position Pl is estimated, and the position obtained by subtracting the deflection amount from the detection value of the stroke sensor when the shift fork 18 reaches the movement limit position Pl is learned as the engagement completion position Px, the shift The amount of deflection can be estimated without providing a sensor for detecting the amount of deflection of the fork 18, and the cost of the gear changeover device 10 can be reduced.
Further, in the gear shift device 10 according to the embodiment, if the slide screw 2204B is adopted as the rotation-linear motion conversion mechanism of the electric actuator 2204, the rotation-linear motion conversion can be performed in comparison with the conventional configuration using a ball screw or the like. The parts cost of the mechanism can be reduced. Further, by utilizing the fact that the reverse rotation efficiency of the slide screw is low, the sub-lock mechanism for holding the position of the shift fork can be eliminated, and further cost reduction can be realized.
Further, in the gear shift device 10 according to the embodiment, if the learning of the engagement completion position is executed at predetermined intervals after the start of use of the vehicle, the gear shift device 10 can be engaged in a state that reflects changes in each part of the gear shift device 10 due to long-term use. The completion position can be set, and wear of each member constituting the gear shift device 10 can be prevented more reliably.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年3月18日出願の日本特許出願(特願2021-044651)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-044651) filed on March 18, 2021, the content of which is incorporated herein by reference.
 10 変速段切替装置
 12 駆動軸
 14 クラッチハブ
 16 スリーブ
 1602 スリーブ基部
 1604 内周スプライン
 1606 係合部
 1608 外周面
 1610 凸条
 1612 端面
 18 シフトフォーク
 20A 第1ギヤ
 20B 第2ギヤ
 2002(2002A、2002B) スプライン
 2004(2004A、2004B) 大径部
 2006(2006A、2006B) 外周スプライン
 2008(2008A、2008B) 外周ギヤ
 2010(2010A、2010B) ストッパ
 22 移動機構
 2204 電動アクチュエータ
 2204A 電動モータ
 2204B すべりねじ
 2204C 出力軸
 2206 移動軸
 2208 固定軸
 2210 ガイド部
 2212 レバー
 24 ストロークセンサ
 300 移動制御部
 32 カウンターシャフト
 P0 基準位置
 Pl 移動限界位置
 Px 噛合完了位置
 Py 待機位置
REFERENCE SIGNS LIST 10 gear shift device 12 drive shaft 14 clutch hub 16 sleeve 1602 sleeve base 1604 inner spline 1606 engaging portion 1608 outer peripheral surface 1610 ridge 1612 end surface 18 shift fork 20A first gear 20B second gear 2002 (2002A, 2002B) spline 2004 (2004A, 2004B) Large diameter portion 2006 (2006A, 2006B) Peripheral spline 2008 (2008A, 2008B) Peripheral gear 2010 (2010A, 2010B) Stopper 22 Moving mechanism 2204 Electric actuator 2204A Electric motor 2204B Slide screw 2204C Output shaft movement 2 2208 Fixed shaft 2210 Guide part 2212 Lever 24 Stroke sensor 300 Movement control part 32 Counter shaft P0 Reference position Pl Movement limit position Px Engagement completion position Py Standby position

Claims (5)

  1.  車両の変速段を切り替える変速段切替装置であって、
     駆動軸に設けられたクラッチハブと、
     前記クラッチハブに噛合する内周スプラインを有するスリーブと、
     前記スリーブを回転可能に支持するシフトフォークと、
     前記クラッチハブの両側の前記駆動軸の箇所に回転可能に配置されそれぞれ前記内周スプラインに噛合可能な外周スプラインを有する第1ギヤおよび第2ギヤと、
     前記第1ギヤおよび前記第2ギヤに設けられ前記スリーブに当接可能なストッパと、
     電動モータを用いて前記シフトフォークを前記駆動軸の中心線に沿った固定軸上で移動させることにより前記内周スプラインを前記第1ギヤの前記外周スプラインと前記第2ギヤの前記外周スプラインとに選択的に噛合させる移動機構と、
     前記固定軸上の前記シフトフォークの位置を検出するストロークセンサと、
     前記ストロークセンサの検出値に基づいて前記シフトフォークの移動状態を制御する移動制御部と、を備え、
     前記移動制御部は、前記内周スプラインと前記第1ギヤまたは前記第2ギヤとの噛合指令時には、噛合指令側ギヤの前記ストッパに前記スリーブが当接する前記固定軸上の位置である噛合完了位置より前記噛合指令側ギヤ側まで前記シフトフォークを移動させた後、少なくとも前記噛合完了位置まで前記シフトフォークを戻して待機させる、
     ことを特徴とする変速段切替装置。
    A gear stage switching device for switching gear stages of a vehicle,
    a clutch hub provided on the drive shaft;
    a sleeve having an inner peripheral spline that meshes with the clutch hub;
    a shift fork that rotatably supports the sleeve;
    a first gear and a second gear rotatably disposed at the drive shaft on both sides of the clutch hub and each having an outer spline meshable with the inner spline;
    a stopper provided on the first gear and the second gear and capable of coming into contact with the sleeve;
    By moving the shift fork on a fixed shaft along the center line of the drive shaft using an electric motor, the inner spline is aligned with the outer spline of the first gear and the outer spline of the second gear. a moving mechanism for selectively engaging;
    a stroke sensor that detects the position of the shift fork on the fixed shaft;
    a movement control unit that controls the movement state of the shift fork based on the detection value of the stroke sensor,
    The movement control unit moves a mesh completion position, which is a position on the fixed shaft at which the sleeve abuts the stopper of the mesh command side gear, when a mesh command is issued between the inner peripheral spline and the first gear or the second gear. After moving the shift fork to the engagement command side gear side, the shift fork is returned to at least the engagement completion position and waited.
    A gear stage switching device characterized by:
  2.  前記スリーブは、前記内周スプラインが設けられた円筒状のスリーブ基部と、前記スリーブ基部の外周部に設けられ前記シフトフォークが係合可能な係合部とを有し、
     前記係合部は、前記スリーブ基部の外周面と、前記外周面の周方向と直交する方向における両側部から起立する両側の凸条とを備え、
     前記シフトフォークは、前記両側の凸条の間の前記外周面に回転可能に接触する接触面を有する保持部を有し、前記外周面の周方向と直交する方向における前記接触面の幅は、前記両側の凸条の間の寸法よりも小さく、
     前記移動制御部は、前記両側の凸条の間の寸法から前記接触面の幅を差し引いた隙間距離を記憶し、前記噛合指令時には前記噛合完了位置より前記噛合指令側ギヤ側まで前記シフトフォークを移動させた後、前記噛合完了位置より前記噛合指令側ギヤと反対方向に前記隙間距離分離れた位置で前記シフトフォークを待機させる、
     ことを特徴とする請求項1記載の変速段切替装置。
    The sleeve has a cylindrical sleeve base portion provided with the inner peripheral spline, and an engaging portion provided on the outer peripheral portion of the sleeve base portion and capable of being engaged with the shift fork,
    The engaging portion includes an outer peripheral surface of the sleeve base and ridges on both sides that stand up from both sides of the outer peripheral surface in a direction orthogonal to the circumferential direction,
    The shift fork has a holding portion having a contact surface that rotatably contacts the outer peripheral surface between the ridges on both sides, and the width of the contact surface in a direction orthogonal to the circumferential direction of the outer peripheral surface is smaller than the dimension between the ridges on both sides,
    The movement control unit stores a clearance distance obtained by subtracting the width of the contact surface from the dimension between the protrusions on both sides, and when the engagement command is issued, moves the shift fork from the engagement completion position to the gear on the engagement command side. After the shift fork is moved, the shift fork waits at a position separated by the gap distance in the direction opposite to the engagement command side gear from the engagement completion position.
    2. The gear shift device according to claim 1, wherein:
  3.  前記移動制御部は、前記電動モータを定電圧で駆動して前記スリーブが前記ストッパに押圧されることにより前記シフトフォークの移動が規制される移動限界位置まで移動させ、前記シフトフォークが前記移動限界位置に達した際に前記電動モータに流れる電流に基づいて前記移動限界位置における前記シフトフォークのたわみ量を推定し、前記シフトフォークが前記移動限界位置に達した際における前記ストロークセンサの検出値から前記たわみ量を差し引いた位置を前記噛合完了位置として学習する、
     ことを特徴とする請求項1または2記載の変速段切替装置。
    The movement control unit drives the electric motor at a constant voltage to move the sleeve to a movement limit position where movement of the shift fork is restricted by pressing the sleeve against the stopper. The amount of deflection of the shift fork at the movement limit position is estimated based on the current flowing through the electric motor when the shift fork reaches the movement limit position, and from the detection value of the stroke sensor when the shift fork reaches the movement limit position. learning the position from which the deflection amount is subtracted as the engagement completion position;
    3. The gear shift device according to claim 1 or 2, characterized in that:
  4.  前記移動機構は、前記電動モータが出力する回転力を前記電動モータの出力軸に接続されたすべりねじにより直動方向の移動力に変換して前記シフトフォークを移動させる、
     ことを特徴とする請求項1から3のいずれか1項記載の変速段切替装置。
    The moving mechanism converts a rotational force output by the electric motor into a moving force in a linear motion direction by a slide screw connected to an output shaft of the electric motor to move the shift fork.
    4. The gear changeover device according to any one of claims 1 to 3, characterized in that:
  5.  前記移動制御部は、前記車両の使用開始後、所定期間ごとに前記噛合完了位置の学習を実行する、
     ことを特徴とする請求項1から4のいずれか1項記載の変速段切替装置。
    The movement control unit learns the engagement completion position every predetermined period after the vehicle starts to be used.
    5. The gear changeover device according to any one of claims 1 to 4, characterized in that:
PCT/JP2022/006744 2021-03-18 2022-02-18 Shift-stage switching device WO2022196250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021044651A JP2024065133A (en) 2021-03-18 2021-03-18 Gear change device
JP2021-044651 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022196250A1 true WO2022196250A1 (en) 2022-09-22

Family

ID=83322310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006744 WO2022196250A1 (en) 2021-03-18 2022-02-18 Shift-stage switching device

Country Status (2)

Country Link
JP (1) JP2024065133A (en)
WO (1) WO2022196250A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085482A (en) * 2005-09-22 2007-04-05 Toyota Motor Corp Variable speed completion estimation device
JP2009156465A (en) * 2007-12-05 2009-07-16 Nissan Motor Co Ltd Shift position detecting device of selective meshing mechanism for transmission
JP2012229767A (en) * 2011-04-27 2012-11-22 Aisin Ai Co Ltd Shift fork of transmission
JP2012233571A (en) * 2011-04-22 2012-11-29 Honda Motor Co Ltd Gear shift device
JP2014190348A (en) * 2013-03-26 2014-10-06 Aisin Seiki Co Ltd Dog clutch control device for automatic transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085482A (en) * 2005-09-22 2007-04-05 Toyota Motor Corp Variable speed completion estimation device
JP2009156465A (en) * 2007-12-05 2009-07-16 Nissan Motor Co Ltd Shift position detecting device of selective meshing mechanism for transmission
JP2012233571A (en) * 2011-04-22 2012-11-29 Honda Motor Co Ltd Gear shift device
JP2012229767A (en) * 2011-04-27 2012-11-22 Aisin Ai Co Ltd Shift fork of transmission
JP2014190348A (en) * 2013-03-26 2014-10-06 Aisin Seiki Co Ltd Dog clutch control device for automatic transmission

Also Published As

Publication number Publication date
JP2024065133A (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US7874225B2 (en) Control apparatus and method for shift-position changing mechanism
US8068965B2 (en) Control apparatus and method for shift-position changing mechanism
JP4302039B2 (en) Motor control device
US9169879B2 (en) Dog clutch control apparatus for automated transmission
US20080113848A1 (en) Control apparatus and method for shift-position changing mechanism
JP2006518024A (en) Method for determining the operating point of a clutch of an automatic transmission
CN110382928B (en) Shift gear control device
US9403445B2 (en) Motor controller
CN111102354B (en) Position learning system for electric gear lever system
EP2592306A2 (en) Transmission actuating device
WO2022196250A1 (en) Shift-stage switching device
CN108223788B (en) Gear shifting control device and gear shifting control method for gearbox and gearbox
JP6642035B2 (en) Transmission control device
EP2592305A2 (en) Transmission actuating device
JP4572858B2 (en) Shift-by-wire range switching device
JP5155205B2 (en) Gearbox synchronizer
JP4902256B2 (en) Synchronous automatic transmission
CN108223774B (en) Shifting fork control method for engaging and disengaging of single-cone lock ring synchronizer
JP6156682B2 (en) Electric actuator and variable speed drive device including the same
JP2005180507A (en) Actuator for automatic transmission
EP2589840A2 (en) Transmission actuating device
JP2012241891A (en) Electric actuator and variable speed drive device
JP2008196614A (en) Range changeover control device
KR102557559B1 (en) Automatic calibration method for transmission synchronizer actuator
JP2017003080A (en) Control device of transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP