WO2022196137A1 - Synthesized light generation device - Google Patents

Synthesized light generation device Download PDF

Info

Publication number
WO2022196137A1
WO2022196137A1 PCT/JP2022/003606 JP2022003606W WO2022196137A1 WO 2022196137 A1 WO2022196137 A1 WO 2022196137A1 JP 2022003606 W JP2022003606 W JP 2022003606W WO 2022196137 A1 WO2022196137 A1 WO 2022196137A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
light source
photodetector
generating device
Prior art date
Application number
PCT/JP2022/003606
Other languages
French (fr)
Japanese (ja)
Inventor
明 姫野
浩一 堀井
修 川崎
一樹 岩端
勇多 矢部
俊夫 勝山
祥治 山田
慧 中尾
Original Assignee
セーレンKst株式会社
国立大学法人福井大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セーレンKst株式会社, 国立大学法人福井大学 filed Critical セーレンKst株式会社
Publication of WO2022196137A1 publication Critical patent/WO2022196137A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches

Definitions

  • the present invention is a combined light generating apparatus comprising a light source circuit composed of a light source and an optical waveguide for receiving light emitted from the light source, and an optical multiplexer for combining the light emitted from the plurality of light source circuits.
  • the present invention relates to a synthetic light generating device in which a photodetector for detecting leaked light from the optical waveguide is arranged on an over-cladding layer of the optical waveguide.
  • an optical multiplexer using a plurality of laser diodes as a light source has been known in a synthetic light generation device used as a light source for an image projection device such as a glasses-type terminal or a portable projector (see Patent Document 1).
  • the optical multiplexer is formed by stacking silicon oxide films with a low refractive index and a high refractive index on a silicon substrate using a known chemical vapor deposition method (CVD), sputtering, or the like, and then photolithography using a photomask. It is manufactured through the steps of patterning by lithography, laminating a low refractive index silicon oxide film, and forming an over-cladding layer.
  • CVD chemical vapor deposition method
  • the laser diode which is the light source
  • the laser diode is known to change or deteriorate depending on the environment during use such as temperature, humidity, static electricity, and power supply noise.
  • An optical communication module is known in which a photodetector is provided on the back side opposite to the back side to detect the light emitted to the back side and feedback control is performed to stabilize the output of the laser diode (see Patent Document 2 reference).
  • the photodetector is provided on the back side of the laser diode as in the optical communication module, the number of parts increases in the light propagation direction of the optical multiplexer, and there is a limit to miniaturization of the combined light generation device. There is a problem.
  • the diameter of the emitted light from the rear side is small, it takes time and effort to adjust the position with respect to the light receiving area of the photodetector, which increases the manufacturing cost.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a synthetic light generating device in which the output of laser diodes is stable, which enables miniaturization and reduces manufacturing costs.
  • a combined light generating device comprising: a light source circuit composed of a light source and an optical waveguide for receiving light emitted from the light source; and an optical combiner for combining light emitted from a plurality of the light source circuits,
  • a synthetic light generating device characterized in that a photodetector for detecting leaked light from an optical waveguide is arranged on an overcladding layer of the optical waveguide.
  • an electrode is provided on the over-cladding layer of the optical waveguide in order to connect with the electrode provided on the lower surface of the photodetector.
  • the detector includes a plurality of light receiving areas.
  • the light sources in the plurality of light source circuits are laser diodes of at least three colors of red, green and blue.
  • the photodetector is arranged on the overcladding layer of the optical waveguide, and the leaked light leaking upward from the overcladding layer of the optical waveguide is detected and feedback-controlled to control the output of the light source.
  • the combined light generating device can be stabilized, and since the number of parts in the optical multiplexer does not increase in the light propagation direction, it is possible to reduce the size.
  • the present invention relates to a synthetic light generating device that reduces manufacturing costs because the position of detectors can be easily adjusted.
  • FIG. 1 is a perspective view of a synthetic light generation device of Example 1.
  • FIG. 3 is an enlarged perspective view of a light source circuit in the synthetic light generating device of Example 1.
  • FIG. FIG. 3 is a side view of the light source circuit of FIG. 2 as seen from the front right side;
  • FIG. 11 is a perspective view of a synthetic light generation device of Example 2;
  • FIG. 1 is a perspective view of a synthetic light generating device 100 of Example 1.
  • the synthetic light generating device 100 is composed of a light source 2 and an optical waveguide 3 for receiving light emitted from the light source. and an optical multiplexer 4 for multiplexing light emitted from the three light source circuits 101. Further, three photodetectors for detecting leakage light from the optical waveguide 3 are provided.
  • a device 5 is arranged on the overcladding layer of the optical waveguide 3, respectively.
  • the light source 2 is not present on the substrate 1, but the substrate 1 is expanded and extended in the direction of the light source 2 and a pedestal is formed, and the light source 2 is arranged on the pedestal. may
  • a set of two optical waveguide over-cladding layer upper surface electrodes 7 is provided on the upper surface of the over-cladding layer of the optical waveguide 3 corresponding to the photodetector 5, and the optical waveguide over-cladding layer
  • the upper surface electrode 7 can be provided by a known method such as a metal pattern formed by semiconductor processing technology such as LSI or printing using conductive ink.
  • the optical waveguide over-cladding layer upper surface electrode 7 may have any form, at least one of the pair of upper surface electrodes 7 may be replaced with another upper surface electrode 7 from the viewpoint of manufacturing cost reduction. It is preferably integrated with one of 7.
  • a laser diode, an edge emitting LED, or the like can be used for the light source 2, but it is preferable to use a laser diode. At least red, green and blue are used as the colors of the light source 2, but other colors such as yellow and purple may be additionally used.
  • the optical waveguide 3 and the optical multiplexer 4 are formed on a substrate 1 made of silicon or the like by using a known chemical vapor deposition method, an etching process, or the like, and forming an undercladding layer 9a (not shown, FIG. 3 to be described later). ), an optical waveguide 3, and an over-cladding layer 9b (not shown, see FIG. 3 described later).
  • the optical waveguide 3 and the optical multiplexer 4 may be manufactured in separate processes, but it is preferable to manufacture them simultaneously in one process from the viewpoint of manufacturing cost reduction.
  • a light source circuit 101 is composed of a light source 2 and an optical waveguide 3 into which light emitted from the light source 2 is incident. are combined using an appropriately designed directional coupler, Mach-Zehnder interferometer, or a combination thereof, and then emitted as one combined light.
  • the form of multiplexing of the optical multiplexer 4 can use any form.
  • a photodiode or the like having a light receiving region 6 on the lower surface is used as the photodetector 5, and the light receiving region 6 detects leaked light leaking upward from the over-cladding layer 9b of the waveguide 3, and a known feedback signal is detected.
  • a circuit (not shown) is used to feedback control the light source 2 to stabilize the output light from the light source 2 .
  • a set of two photodetector electrodes 8 corresponding to the over-cladding layer upper surface electrodes 7 of the optical waveguide 3 are provided on the lower surface of the photodetector 5 .
  • the optical waveguide over-cladding layer upper surface electrode 7 and the photodetector electrode 8 there are at least one electrode corresponding to each of the two electrodes only by arranging the photodetector 5 without requiring any particular position adjustment. are provided at positions where the corresponding electrodes are energized, but are preferably provided at positions where a pair of electrodes are energized together. If only at least one corresponding electrode is provided at the energized position, the energized position of the other one electrode is not particularly limited.
  • FIG. 2 is an enlarged perspective view of the light source circuit 101 in the synthetic light generation device 100 of Example 1.
  • FIG. The illustration of the optical waveguide over-cladding layer top electrode 7 and the photodetector electrode 8 is omitted.
  • the light source 2 and the optical waveguide 3 are directly connected and that 80% or more of the light emitted from the light source 2 is incident on the optical waveguide 3.
  • a lens may be used between the light source 2 and the optical waveguide 3 .
  • a photodetector 5 having a light receiving region 6 on its lower surface is disposed on the overcladding layer 9b (not shown, see FIG. 3 described later) of the optical waveguide 3 .
  • the light source 2 deteriorates due to the environment during use and the output light is reduced, the leaked light is also reduced at the same rate. Feedback control is performed so that the output light of 2 is stabilized.
  • FIG. 3 is a side view of the light source circuit 101 of FIG. 2 as seen from the front right side.
  • a cladding layer upper surface electrode 7 is provided, and the optical waveguide over-cladding layer upper surface electrode 7 is connected to two photodetector electrodes 8 via a bonding material 10 such as silver paste or eutectic solder.
  • the optical waveguide over-cladding layer upper surface electrode 7 and the photodetector electrode 8 must be provided at positions that do not interfere with detection of leaked light.
  • the space between the light receiving region 6 on the lower surface of the detector 5 and the over-cladding layer 9b is filled with a transparent resin used as a sealant or adhesive. can also be taken. It is desirable to use a sealant or adhesive having a refractive index higher than that of the over-cladding layer 9b in order to guide the light to the photodetector 5 more efficiently.
  • FIG. 4 is a perspective view of the synthetic light generation device 100 of Example 2, which is an integrated photodetector having three light receiving regions 6, whereas Example 1 uses three photodetectors 5. The difference is that 5 is used. By integrating the photodetector 5, manufacturing becomes easier, so that the manufacturing cost of the synthetic light generating device of the present invention can be further reduced.
  • the synthetic light generating device 100 of the present invention can stabilize the output light from the light source 2 by detecting leakage light leaking upward from the over-cladding layer 9b of the optical waveguide 3 and feedback-controlling the light source 2. can.
  • the most important issue is to shorten the length in the propagation direction of light, and the thickness of the combined light generation device 100 is small. However, there is little effect on miniaturization of the device.
  • the position of the photodetector 5 can be easily adjusted, so the manufacturing cost does not particularly increase.
  • the synthetic light generating device of the present invention can be used as a light source for image projection devices such as spectacle-type terminals and portable projectors. It is a light generating device.

Abstract

Provided is a synthesized light generation device for which laser diode output is stable and which enables miniaturization and reduces manufacturing costs. A synthesized light generation device (100) enables stabilization of the output of a light source (2) by placing a photodetector (5) atop an overcladding layer (9b) of an optical waveguide (3) to perform detection and feedback control of leaked light from the optical waveguide (3). The number of components in the light propagation direction of an optical multiplexer (4) does not increase, thus enabling miniaturization, and the position of the photodetector (5) can also be easily adjusted due to the detection of the leaked light generated on the overcladding layer (9b) of the optical waveguide (3), thus enabling manufacturing costs to be reduced.

Description

合成光生成装置Synthetic light generator
 本発明は、光源と前記光源から出射される光を入射する光導波路から構成される光源回路、および複数の前記光源回路から出射される光を合波する光合波器を備える合成光生成装置であって、前記光導波路からの漏洩光を検出する光検出器が前記光導波路のオーバークラッド層上に配設される合成光生成装置に関する。 The present invention is a combined light generating apparatus comprising a light source circuit composed of a light source and an optical waveguide for receiving light emitted from the light source, and an optical multiplexer for combining the light emitted from the plurality of light source circuits. In particular, the present invention relates to a synthetic light generating device in which a photodetector for detecting leaked light from the optical waveguide is arranged on an over-cladding layer of the optical waveguide.
 近年、眼鏡型端末や携帯型プロジェクタ等の画像投影装置の光源として用いられる合成光生成装置において、複数のレーザダイオードを光源として用いた光合波器が知られている(特許文献1を参照)。前記光合波器は、シリコン基板上に公知の化学気相成長法(CVD)やスパッタリング法等を用いて低屈折率および高屈折率のシリコン酸化膜を積層形成した後、フォトマスクを用いたフォトリソグラフィー法によりパターニングを行い、さらに低屈折率シリコン酸化膜を積層形成しオーバークラッド層にするという工程を経て製造される。 In recent years, an optical multiplexer using a plurality of laser diodes as a light source has been known in a synthetic light generation device used as a light source for an image projection device such as a glasses-type terminal or a portable projector (see Patent Document 1). The optical multiplexer is formed by stacking silicon oxide films with a low refractive index and a high refractive index on a silicon substrate using a known chemical vapor deposition method (CVD), sputtering, or the like, and then photolithography using a photomask. It is manufactured through the steps of patterning by lithography, laminating a low refractive index silicon oxide film, and forming an over-cladding layer.
 ここで、上記光源であるレーザダイオードは、温度、湿度、静電気、電源ノイズ等の使用時の環境により変化又は劣化することが知られており、前記劣化の問題に対し、レーザダイオードの出射光側と反対の背面側に光検出器を設けて、前記背面側に出射する光を検出し、フィードバック制御することにより、レーザダイオードの出力を安定させる光通信モジュールが知られている(特許文献2を参照)。 Here, the laser diode, which is the light source, is known to change or deteriorate depending on the environment during use such as temperature, humidity, static electricity, and power supply noise. An optical communication module is known in which a photodetector is provided on the back side opposite to the back side to detect the light emitted to the back side and feedback control is performed to stabilize the output of the laser diode (see Patent Document 2 reference).
 しかし、前記光通信モジュールのようにレーザダイオードの背面側に光検出器を設ける場合、光合波器の光の伝搬方向に部品点数が増加し、合成光生成装置を小型化することに限界が生じるという問題がある。また、背面側出射光の径が小さいことから、前記光検出器の受光領域との位置調整に手間がかかり、製造コストが増大するという問題もある。 However, when the photodetector is provided on the back side of the laser diode as in the optical communication module, the number of parts increases in the light propagation direction of the optical multiplexer, and there is a limit to miniaturization of the combined light generation device. There is a problem. In addition, since the diameter of the emitted light from the rear side is small, it takes time and effort to adjust the position with respect to the light receiving area of the photodetector, which increases the manufacturing cost.
特開2013-195603号公報JP 2013-195603 A 特開平10-253857号公報JP-A-10-253857
 本発明は、このような事情に鑑みてなされたものであり、小型化を可能とすると共に製造コストを低減する、レーザダイオードの出力が安定した合成光生成装置を提供することである。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a synthetic light generating device in which the output of laser diodes is stable, which enables miniaturization and reduces manufacturing costs.
 光源と前記光源から出射される光を入射する光導波路から構成される光源回路、および複数の前記光源回路から出射される光を合波する光合波器を備える合成光生成装置であって、前記光導波路からの漏洩光を検出する光検出器を前記光導波路のオーバークラッド層上に配設することを特徴とする合成光生成装置を提供する。 A combined light generating device comprising: a light source circuit composed of a light source and an optical waveguide for receiving light emitted from the light source; and an optical combiner for combining light emitted from a plurality of the light source circuits, Provided is a synthetic light generating device characterized in that a photodetector for detecting leaked light from an optical waveguide is arranged on an overcladding layer of the optical waveguide.
 前記光検出器の下面に設けられた電極と接続するため、前記光導波路のオーバークラッド層上に電極が設けられていることが好ましい。 It is preferable that an electrode is provided on the over-cladding layer of the optical waveguide in order to connect with the electrode provided on the lower surface of the photodetector.
 前記検出器が複数の受光領域を含むことが好ましい。 It is preferable that the detector includes a plurality of light receiving areas.
 前記複数の光源回路における光源が少なくとも赤色、緑色および青色の3色のレーザダイオードであることが好ましい。 It is preferable that the light sources in the plurality of light source circuits are laser diodes of at least three colors of red, green and blue.
 本発明によれば、光検出器を光導波路のオーバークラッド層上に配設し、前記光導波路のオーバークラッド層から上方に漏洩する漏洩光を検出してフィードバック制御することにより、光源の出力を安定させることができる合成光生成装置であって、光合波器の光の伝搬方向に部品点数は増加しないことから小型化が可能であり、また、光導波路から漏洩する漏洩光を検出することから検出器の位置調整も容易であるため、製造コストを低減する合成光生成装置に関する。 According to the present invention, the photodetector is arranged on the overcladding layer of the optical waveguide, and the leaked light leaking upward from the overcladding layer of the optical waveguide is detected and feedback-controlled to control the output of the light source. The combined light generating device can be stabilized, and since the number of parts in the optical multiplexer does not increase in the light propagation direction, it is possible to reduce the size. The present invention relates to a synthetic light generating device that reduces manufacturing costs because the position of detectors can be easily adjusted.
実施例1の合成光生成装置の斜視図である。1 is a perspective view of a synthetic light generation device of Example 1. FIG. 実施例1の合成光生成装置における光源回路の拡大斜視図である。3 is an enlarged perspective view of a light source circuit in the synthetic light generating device of Example 1. FIG. 図2の光源回路を右手前側から見た側面図である。FIG. 3 is a side view of the light source circuit of FIG. 2 as seen from the front right side; 実施例2の合成光生成装置の斜視図である。FIG. 11 is a perspective view of a synthetic light generation device of Example 2;
 以下、本発明を実施するための実施例について、図面を参照しながら説明する。なお、本発明はこれらの実施例に限られるものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, the present invention is not limited to these examples.
 図1は、実施例1の合成光生成装置100の斜視図であり、前記合成光生成装置100は、それぞれ光源2と前記光源から出射される光を入射する光導波路3から構成される、3つの光源回路101、および前記3つの光源回路101から出射される光を合波する光合波器4を備えており、さらに、前記光導波路3からの漏洩光を検出するために、3つの光検出器5を、それぞれ前記光導波路3のオーバークラッド層上に配設している。ここで、前記光源2は基板1の上には存在していないが、前記基板1を前記光源2の方向に拡大延長すると共に台座を形成し、当該台座の上に前記光源2を配設してもよい。 FIG. 1 is a perspective view of a synthetic light generating device 100 of Example 1. The synthetic light generating device 100 is composed of a light source 2 and an optical waveguide 3 for receiving light emitted from the light source. and an optical multiplexer 4 for multiplexing light emitted from the three light source circuits 101. Further, three photodetectors for detecting leakage light from the optical waveguide 3 are provided. A device 5 is arranged on the overcladding layer of the optical waveguide 3, respectively. Here, the light source 2 is not present on the substrate 1, but the substrate 1 is expanded and extended in the direction of the light source 2 and a pedestal is formed, and the light source 2 is arranged on the pedestal. may
 また、前記光検出器5に対応する光導波路3のオーバークラッド層の上面には、それぞれ2個一組となった光導波路オーバークラッド層上面電極7が設けられており、前記光導波路オーバークラッド層上面電極7はLSI等の半導体加工技術により形成される金属パターンや導電性インクを用いた印刷等の公知の方法で設けることができる。前記光導波路オーバークラッド層上面電極7の形態は任意の形態を用いることができるが、それぞれ2個一組の前記上面電極7の少なくとも1個は、製造コスト低減の点から、他の前記上面電極7の1個と一体化していることが好ましい。 A set of two optical waveguide over-cladding layer upper surface electrodes 7 is provided on the upper surface of the over-cladding layer of the optical waveguide 3 corresponding to the photodetector 5, and the optical waveguide over-cladding layer The upper surface electrode 7 can be provided by a known method such as a metal pattern formed by semiconductor processing technology such as LSI or printing using conductive ink. Although the optical waveguide over-cladding layer upper surface electrode 7 may have any form, at least one of the pair of upper surface electrodes 7 may be replaced with another upper surface electrode 7 from the viewpoint of manufacturing cost reduction. It is preferably integrated with one of 7.
 前記光源2には、レーザダイオードや端面発光型LED等を用いることができるが、レーザダイオードを用いることが好ましい。また、前記光源2の色は、少なくとも赤色、緑色および青色を用いるが、さらに黄色、紫色等の他の色を追加して用いてもよい。 A laser diode, an edge emitting LED, or the like can be used for the light source 2, but it is preferable to use a laser diode. At least red, green and blue are used as the colors of the light source 2, but other colors such as yellow and purple may be additionally used.
 前記光導波路3および前記光合波器4は、シリコン等を用いた基板1の上に、公知の化学気相成長法およびエッチング加工等を用い、アンダークラッド層9a(図示せず、後述する図3を参照)、光導波路3、オーバークラッド層9b(図示せず、後述する図3を参照)を積層することにより製造される。ここで、前記光導波路3および前記光合波器4は、別々の工程で製造してもよいが、製造コスト低減の面から1つの工程で同時に製造することが好ましい。 The optical waveguide 3 and the optical multiplexer 4 are formed on a substrate 1 made of silicon or the like by using a known chemical vapor deposition method, an etching process, or the like, and forming an undercladding layer 9a (not shown, FIG. 3 to be described later). ), an optical waveguide 3, and an over-cladding layer 9b (not shown, see FIG. 3 described later). Here, the optical waveguide 3 and the optical multiplexer 4 may be manufactured in separate processes, but it is preferable to manufacture them simultaneously in one process from the viewpoint of manufacturing cost reduction.
 光源回路101は、光源2と前記光源2から出射される光を入射する光導波路3から構成され、前記光合波器4は、3つの光源回路101から出射される光を入射し、波長依存性を適切に設計した方向性結合器やマッハツェンダー干渉計、若しくはそれらの組み合わせ等を利用して合波した後、1つの合波光として出射する。ここで、前記光合波器4の合波の形態は任意の形態を用いることができる。 A light source circuit 101 is composed of a light source 2 and an optical waveguide 3 into which light emitted from the light source 2 is incident. are combined using an appropriately designed directional coupler, Mach-Zehnder interferometer, or a combination thereof, and then emitted as one combined light. Here, the form of multiplexing of the optical multiplexer 4 can use any form.
 前記光導波路3において、光は反射を繰り返しながら進行するが、反射されずにアンダークラッド層9aやオーバークラッド層9bに透過する漏洩光が一定の割合で漏洩する。 In the optical waveguide 3, light travels while being repeatedly reflected, but leakage light that is not reflected and passes through the under-cladding layer 9a and the over-cladding layer 9b leaks at a constant rate.
 前記光検出器5には、下面に受光領域6を有するフォトダイオード等が用いられ、前記受光領域6が前記導波路3のオーバークラッド層9bから上方に漏洩する漏洩光を検出し、公知のフィードバック回路(図示しない)を用いて、光源2をフィードバック制御することにより、光源2からの出力光を安定化させる。 A photodiode or the like having a light receiving region 6 on the lower surface is used as the photodetector 5, and the light receiving region 6 detects leaked light leaking upward from the over-cladding layer 9b of the waveguide 3, and a known feedback signal is detected. A circuit (not shown) is used to feedback control the light source 2 to stabilize the output light from the light source 2 .
 また、前記光検出器5の下面には、前記光導波路3のオーバークラッド層上面電極7に対応する、それぞれ2個一組となった光検出器電極8が設けられている。前記光導波路オーバークラッド層上面電極7および前記光検出器電極8として、それぞれ2個ずつ対応する電極は、前記光検出器5を配設するだけで、特に位置調整を必要とせず、少なくとも1個の対応する電極が通電する位置に設けられるが、2個一組の電極が共に通電する位置に設けられることが好ましい。少なくとも1個の対応する電極のみが通電する位置に設けられる場合、それぞれ他方の1個の電極の通電する位置は特に制限されない。 A set of two photodetector electrodes 8 corresponding to the over-cladding layer upper surface electrodes 7 of the optical waveguide 3 are provided on the lower surface of the photodetector 5 . As the optical waveguide over-cladding layer upper surface electrode 7 and the photodetector electrode 8, there are at least one electrode corresponding to each of the two electrodes only by arranging the photodetector 5 without requiring any particular position adjustment. are provided at positions where the corresponding electrodes are energized, but are preferably provided at positions where a pair of electrodes are energized together. If only at least one corresponding electrode is provided at the energized position, the energized position of the other one electrode is not particularly limited.
 図2は、実施例1の合成光生成装置100における光源回路101の拡大斜視図である。光導波路オーバークラッド層上面電極7および光検出器電極8の図示は省略した。ここで、光源2および光導波路3は直接接続され、前記光源2から出射された光の80%以上を前記光導波路3に入射することが好ましいが、より多くの光を入射することを目的として光源2および光導波路3の間にレンズを用いてもよい。前記光導波路3のオーバークラッド層9b(図示せず、後述する図3を参照)の上には、下面に受光領域6を有する光検出器5が配設されている。 FIG. 2 is an enlarged perspective view of the light source circuit 101 in the synthetic light generation device 100 of Example 1. FIG. The illustration of the optical waveguide over-cladding layer top electrode 7 and the photodetector electrode 8 is omitted. Here, it is preferable that the light source 2 and the optical waveguide 3 are directly connected and that 80% or more of the light emitted from the light source 2 is incident on the optical waveguide 3. A lens may be used between the light source 2 and the optical waveguide 3 . A photodetector 5 having a light receiving region 6 on its lower surface is disposed on the overcladding layer 9b (not shown, see FIG. 3 described later) of the optical waveguide 3 .
 前記光導波路3からは、周囲の全方向に対して漏洩光が一定の割合で漏洩しており、前記光検出器5は、常に前記光導波路3のオーバークラッド層9bから上方に漏洩する漏洩光をモニタしている。そして、前記光源2が使用時の環境等により劣化して、出力光が低下した場合、前記漏洩光も同様の割合で低下することから、公知のフィードバック回路(図示しない)を用いて、前記光源2の出力光が安定するようにフィードバック制御を行う。 Leaked light leaks from the optical waveguide 3 in all directions at a constant rate, and the photodetector 5 constantly detects leaked light leaking upward from the over-cladding layer 9b of the optical waveguide 3. is being monitored. When the light source 2 deteriorates due to the environment during use and the output light is reduced, the leaked light is also reduced at the same rate. Feedback control is performed so that the output light of 2 is stabilized.
 図3は、図2の光源回路101を右手前側から見た側面図であり、基板1の上にアンダークラッド層9a、光導波路3、オーバークラッド層9bが積層され、さらに、2つの光導波路オーバークラッド層上面電極7が設けられ、前記光導波路オーバークラッド層上面電極7は、銀ペーストや共晶はんだ等の接合材10を介して、それぞれ2つの光検出器電極8に接続している。ここで、光導波路オーバークラッド層上面電極7および光検出器電極8は、漏洩光の検出を阻害しない位置に設けられている必要がある。また、漏洩光を効率よく光検出器5に導くため、検出器5の下面の受光領域6とオーバークラッド層9bの間の空間を封止剤や接着剤として用いられる透明樹脂で充填する構成をとることもできる。屈折率がオーバークラッド層9bより大きい封止剤や接着剤を用いれば、光をさらに効率よく光検出器5に導くために望ましい。 FIG. 3 is a side view of the light source circuit 101 of FIG. 2 as seen from the front right side. A cladding layer upper surface electrode 7 is provided, and the optical waveguide over-cladding layer upper surface electrode 7 is connected to two photodetector electrodes 8 via a bonding material 10 such as silver paste or eutectic solder. Here, the optical waveguide over-cladding layer upper surface electrode 7 and the photodetector electrode 8 must be provided at positions that do not interfere with detection of leaked light. In order to efficiently guide the leaked light to the photodetector 5, the space between the light receiving region 6 on the lower surface of the detector 5 and the over-cladding layer 9b is filled with a transparent resin used as a sealant or adhesive. can also be taken. It is desirable to use a sealant or adhesive having a refractive index higher than that of the over-cladding layer 9b in order to guide the light to the photodetector 5 more efficiently.
 図4は、実施例2の合成光生成装置100の斜視図であり、実施例1が3つの光検出器5を用いているのに対し、3つの受光領域6を有する一体化した光検出器5を用いる点が異なっている。前記光検出器5を一体化することにより、製造がより容易になるため、本発明の合成光生成装置の製造コストをより低減することができる。 FIG. 4 is a perspective view of the synthetic light generation device 100 of Example 2, which is an integrated photodetector having three light receiving regions 6, whereas Example 1 uses three photodetectors 5. The difference is that 5 is used. By integrating the photodetector 5, manufacturing becomes easier, so that the manufacturing cost of the synthetic light generating device of the present invention can be further reduced.
 本発明の合成光生成装置100は、光導波路3のオーバークラッド層9bから上方に漏洩する漏洩光を検出して光源2をフィードバック制御することにより、光源2からの出力光を安定化させることができる。合成光生成装置100の小型化について、光の伝搬方向の長さを短縮することが最も大きな課題であり、合成光生成装置100の厚みは小さいことから、部品として光検出器5を追加しても装置の小型化への影響は少ない。また、光導波路3から発生する漏洩光を検出することから、光検出器5の位置調整も容易であるため、製造コストは得に増大しない。 The synthetic light generating device 100 of the present invention can stabilize the output light from the light source 2 by detecting leakage light leaking upward from the over-cladding layer 9b of the optical waveguide 3 and feedback-controlling the light source 2. can. Regarding miniaturization of the combined light generation device 100, the most important issue is to shorten the length in the propagation direction of light, and the thickness of the combined light generation device 100 is small. However, there is little effect on miniaturization of the device. In addition, since leaked light generated from the optical waveguide 3 is detected, the position of the photodetector 5 can be easily adjusted, so the manufacturing cost does not particularly increase.
 本発明の合成光生成装置は、眼鏡型端末や携帯型プロジェクタ等の画像投影装置の光源として用いることができ、小型化を可能とすると共に製造コストを低減する、レーザダイオードの出力が安定した合成光生成装置である。 INDUSTRIAL APPLICABILITY The synthetic light generating device of the present invention can be used as a light source for image projection devices such as spectacle-type terminals and portable projectors. It is a light generating device.
100  合成光生成装置
101  光源回路
1    基板
2    光源
3    光導波路
4    光合波器
5    光検出器
6    受光領域
7    光導波路のオーバークラッド層上面電極
8    光検出器電極
9a   アンダークラッド層
9b   オーバークラッド層
10   接合材
 
REFERENCE SIGNS LIST 100 combined light generator 101 light source circuit 1 substrate 2 light source 3 optical waveguide 4 optical multiplexer 5 photodetector 6 light receiving region 7 optical waveguide over-cladding layer upper surface electrode 8 photodetector electrode 9a under-cladding layer 9b over-cladding layer 10 junction material

Claims (4)

  1.  光源と前記光源から出射される光を入射する光導波路から構成される光源回路、および複数の前記光源回路から出射される光を合波する光合波器を備える合成光生成装置であって、前記光導波路からの漏洩光を検出する光検出器を前記光導波路のオーバークラッド層上に配設することを特徴とする合成光生成装置。 A combined light generating device comprising: a light source circuit composed of a light source and an optical waveguide for receiving light emitted from the light source; and an optical combiner for combining light emitted from a plurality of the light source circuits, 1. A combined light generating device, comprising: a photodetector for detecting leaked light from an optical waveguide; provided on an over-cladding layer of the optical waveguide.
  2.  前記光検出器の下面に設けられた電極と接続するため、前記光導波路のオーバークラッド層上に電極が設けられている、請求項1に記載された合成光生成装置。 The combined light generating device according to claim 1, wherein an electrode is provided on the overcladding layer of the optical waveguide for connection with an electrode provided on the lower surface of the photodetector.
  3.  前記検出器が複数の受光領域を含む、請求項1または2に記載された合成光生成装置。 The synthetic light generating device according to claim 1 or 2, wherein the detector includes a plurality of light receiving areas.
  4.  前記複数の光源回路における光源が少なくとも赤色、緑色および青色の3色のレーザダイオードである、請求項1~3のいずれかに記載された合成光生成装置。
     
    4. The synthetic light generating device according to claim 1, wherein the light sources in said plurality of light source circuits are laser diodes of at least three colors of red, green and blue.
PCT/JP2022/003606 2021-03-17 2022-01-31 Synthesized light generation device WO2022196137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043484A JP2022143133A (en) 2021-03-17 2021-03-17 Synthetic light generation device
JP2021-043484 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196137A1 true WO2022196137A1 (en) 2022-09-22

Family

ID=83320355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003606 WO2022196137A1 (en) 2021-03-17 2022-01-31 Synthesized light generation device

Country Status (2)

Country Link
JP (1) JP2022143133A (en)
WO (1) WO2022196137A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162846A1 (en) * 2022-02-25 2023-08-31 京セラ株式会社 Optical waveguide substrate, optical waveguide package, and light source module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215371A (en) * 2000-02-04 2001-08-10 Sumitomo Osaka Cement Co Ltd Optical waveguide type element with monitor
US20050220437A1 (en) * 2004-04-02 2005-10-06 Dong-Su Kim Optical connection block, optical module, and optical axis alignment method using the same
JP2006091878A (en) * 2004-09-20 2006-04-06 Fujitsu Ltd Attachment-type optical coupler apparatus
JP2008089778A (en) * 2006-09-29 2008-04-17 Sumitomo Osaka Cement Co Ltd Optical device and optical device manufacturing method
US20180259728A1 (en) * 2017-03-07 2018-09-13 International Business Machines Corporation Fluid control structure
WO2020213067A1 (en) * 2019-04-16 2020-10-22 日本電信電話株式会社 Optical multiplexing circuit and light source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215371A (en) * 2000-02-04 2001-08-10 Sumitomo Osaka Cement Co Ltd Optical waveguide type element with monitor
US20050220437A1 (en) * 2004-04-02 2005-10-06 Dong-Su Kim Optical connection block, optical module, and optical axis alignment method using the same
JP2006091878A (en) * 2004-09-20 2006-04-06 Fujitsu Ltd Attachment-type optical coupler apparatus
JP2008089778A (en) * 2006-09-29 2008-04-17 Sumitomo Osaka Cement Co Ltd Optical device and optical device manufacturing method
US20180259728A1 (en) * 2017-03-07 2018-09-13 International Business Machines Corporation Fluid control structure
WO2020213067A1 (en) * 2019-04-16 2020-10-22 日本電信電話株式会社 Optical multiplexing circuit and light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162846A1 (en) * 2022-02-25 2023-08-31 京セラ株式会社 Optical waveguide substrate, optical waveguide package, and light source module

Also Published As

Publication number Publication date
JP2022143133A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
CN102879987A (en) Illumination unit and display
WO2022196137A1 (en) Synthesized light generation device
TW201325109A (en) Optical transceiver apparatus
TW200824160A (en) A light module package
JP2016178218A (en) Optical transmission module
JPWO2007080932A1 (en) Optical cable module and equipment using the same
JP2008124086A (en) Light sensing element and optical receiver using same
US20220113480A1 (en) Packaging with substrate and printed circuit board cutouts
JP5420388B2 (en) Optical module, method for manufacturing optical module, and method for adjusting optical module
KR20170049366A (en) Optical coupler system and method for manufacturing the same
TWI637203B (en) Optical module
KR20080088458A (en) Optical module
WO2024080380A1 (en) Combined beam generation device
JP2007094303A (en) Optical waveguide device and its manufacturing method
JP7252496B2 (en) Optical coupling method
JP2021026022A (en) Optical waveguide module and light source module
JP6566022B2 (en) Integrated prism and integrated prism construction method
US11808959B2 (en) Optical element and wafer level optical module
KR101803979B1 (en) Backlgiht unit and liquid crystal display device the same
JP2017063076A (en) Light-emitting device
JP2019063894A (en) Robot, printer, projector and optical signal transmission device
JP2004302459A (en) Optical module
JP2022130562A (en) light source module
Xi et al. Photodetector with a metalens packaging module for visible light communication based on RGBY illumination LED light source
CN116774507A (en) Projector with a light source for projecting light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770899

Country of ref document: EP

Kind code of ref document: A1