WO2022196043A1 - Method for producing zeolite - Google Patents

Method for producing zeolite Download PDF

Info

Publication number
WO2022196043A1
WO2022196043A1 PCT/JP2022/000346 JP2022000346W WO2022196043A1 WO 2022196043 A1 WO2022196043 A1 WO 2022196043A1 JP 2022000346 W JP2022000346 W JP 2022000346W WO 2022196043 A1 WO2022196043 A1 WO 2022196043A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
compound
mixture
reaction
zeolite crystals
Prior art date
Application number
PCT/JP2022/000346
Other languages
French (fr)
Japanese (ja)
Inventor
悠哉 池原
啓介 田中
昌義 村上
航平 関
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022196043A1 publication Critical patent/WO2022196043A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing zeolite.
  • the present invention also relates to a method for producing ⁇ -caprolactam using the zeolite as a catalyst.
  • Nylon 6 is used as a fiber material for clothing, as well as a resin material for automobile parts and electronic parts.
  • a method for producing ⁇ -caprolactam which is particularly useful as a raw material for nylon 6, a method is known in which zeolite is used as a catalyst and cyclohexanone oxime undergoes a Beckmann rearrangement reaction in the gas phase to produce ⁇ -caprolactam. .
  • the activity as a catalyst is further increased, and as a result, the conversion rate of cyclohexanone oxime is improved, and further the selectivity of ⁇ -caprolactam is improved. , various studies have been made.
  • the zeolite crystals obtained by the hydrothermal synthesis reaction are contact-treated with an aqueous solution containing a predetermined acid.
  • a method for producing zeolite is known (see Patent Document 1).
  • an object of the present invention is to provide a method for producing zeolite that can further improve the selectivity of ⁇ -caprolactam in the production of ⁇ -caprolactam using the Beckmann rearrangement reaction.
  • the present inventors have made intensive studies to achieve the above object, and found that the above object can be achieved by supplying predetermined components while hydrothermally synthesizing raw materials in a method for producing zeolite. and completed the present invention.
  • Step (1) A step of mixing a tetraalkyl orthosilicate, water, and a quaternary ammonium hydroxide to obtain a mixture
  • Step (2) At least one compound (A) selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound is added while the mixture obtained in the step (1) is subjected to a hydrothermal synthesis reaction.
  • Step (3) A step of solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in the step (2) to obtain zeolite crystals
  • the method for producing a zeolite according to [1] wherein an inorganic acid is further supplied to obtain a reaction mixture.
  • [3] The method for producing zeolite according to [2], wherein in the step (2), the compound (A) and the inorganic acid are supplied simultaneously to obtain a reaction mixture.
  • the compound (A) is supplied to the mixture 1 to 6 hours after the start of the hydrothermal synthesis reaction. of the zeolite.
  • Step (1) A step of mixing a tetraalkyl orthosilicate, water, and a quaternary ammonium hydroxide to obtain a mixture
  • Step (2) At least one compound (A) selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound is added to the mixture while hydrothermally reacting the mixture obtained in step (1).
  • Step (3) A step of solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in the step (2) to obtain zeolite crystals
  • Zeolite The zeolite according to the present embodiment can function as a catalyst in the production of ⁇ -caprolactam.
  • the zeolite contains elemental silicon and elemental oxygen as elements constituting its skeleton.
  • the zeolite may be crystalline silica whose framework is substantially composed of only silicon and oxygen elements, and may be a crystalline metallosilicate containing other elements as elements constituting the framework. good too.
  • Crystalline metallosilicates include, for example, aluminosilicates and titanosilicates.
  • the zeolite may contain two or more of these.
  • the zeolite that can be produced by the zeolite production method of the present embodiment is preferably zeolite having a pentasil structure.
  • Examples of pentasil-type structures indicated by the structural codes of zeolite structures include ABW, ACO, AEI, AEL, AEN, AET, AFG, AFI, AFN, AFO, AFR, AFS, AFT, AFX, AFY, AHT, ANA, APC, APD, AST, ATN, ATO, ATS, ATT, ATV, AWO, AWW, BEA, BIK, BOG, BPH, BRE, CAN, CAS, CFI, CGF, CGS, CHA, CHI, CLO, CON, CZP, DAC, DDR, DFO, DFT, DOH, DON, EAB, EDI, EMT, EPI, ERI, ESV, EUO, FAU, FER, GIS, GME, GOO, HEU, IFR, ISV, ITE, JBW, KFI, LAU, LEV, LIO, LOS, LOV, LTA, LTL, LTN, MAZ
  • the zeolite produced by the production method of the present embodiment is preferably zeolite having an MFI structure.
  • the zeolite structure can be analyzed, for example, using an X-ray diffractometer.
  • Step (1) A step of mixing a tetraalkyl orthosilicate, water, and a quaternary ammonium hydroxide to obtain a mixture
  • Step (2) At least one compound (A) selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound is added while the mixture obtained in the step (1) is subjected to a hydrothermal synthesis reaction.
  • Step (3) A step of solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in the step (2) to obtain zeolite crystals
  • Step (1) is a step of mixing tetraalkyl orthosilicate, water, and quaternary ammonium hydroxide to obtain a mixture.
  • tetraalkyl orthosilicate in step (1) examples include tetramethyl orthosilicate, tetraethyl orthosilicate, tetrapropyl orthosilicate, and tetrabutyl orthosilicate.
  • the tetraalkyl orthosilicate is preferably tetraethyl orthosilicate.
  • the above examples may be used alone, or two or more thereof may be used.
  • the "water” used in the present embodiment is preferably water whose purity has been increased by, for example, removing impurities through a predetermined treatment.
  • Examples of "water” in the present embodiment include distilled water, ion-exchanged water, and ultrapure water. In the present embodiment, it is preferable to use ion-exchanged water as "water”.
  • the quaternary ammonium hydroxide used in step (1) can function as a structure directing agent.
  • the structure-directing agent is a component that contributes to the formation of the zeolite structure.
  • the structure-directing agent can form a precursor of the zeolite structure by organizing polysilicate ions and polymetallosilicate ions around it (Science and Engineering of Zeolite, Kodansha Scientific, 2000). , p.33-34.).
  • Examples of the quaternary ammonium hydroxide used in step (1) include compounds represented by the following formula (I). R 1 R 2 R 3 R 4 N + OH ⁇ (I)
  • R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group, alkenyl group, aralkyl group or aryl group.
  • R 1 , R 2 , R 3 and R 4 may be the same or different.
  • alkyl groups represented by R 1 , R 2 , R 3 or R 4 in formula (I) include methyl, ethyl, propyl and butyl groups.
  • the alkyl group represented by R 1 , R 2 , R 3 or R 4 is preferably a propyl group.
  • the alkenyl group represented by R 1 , R 2 , R 3 or R 4 includes vinyl group, allyl group, 1-propenyl group and isopropenyl group.
  • Examples of the aralkyl group represented by R 1 , R 2 , R 3 or R 4 include benzyl group and tolylmethyl group.
  • Examples of the aryl group represented by R 1 , R 2 , R 3 or R 4 include phenyl group and tolyl group.
  • Tetraalkylammonium hydroxide is preferable as the quaternary ammonium hydroxide represented by formula (I).
  • Tetraalkylammonium hydroxides include, for example, tetramethylammonium hydroxide, tetraethyl hydroxide, tetra-n-propylammonium hydroxide, tetra-n-butylammonium hydroxide, triethylmethylammonium hydroxide, tri-n-hydroxide Examples include propylmethylammonium and tri-n-butylmethylammonium hydroxide.
  • the quaternary ammonium hydroxide is preferably tetra-n-propylammonium hydroxide.
  • the mixture obtained in step (1) may be mixed with components other than tetraalkyl orthosilicate, water and quaternary ammonium hydroxide.
  • Such other components include, for example, basic compounds such as sodium hydroxide and potassium hydroxide, and silicon compounds other than tetraalkyl orthosilicate such as silica, in order to adjust the hydroxide ion concentration in the mixture. It may be added, and it is preferable to add a basic compound.
  • a tetraalkylammonium salt such as a tetraalkylammonium bromide may be added to adjust the tetraalkylammonium ion concentration in the mixture. good.
  • the amount of water contained in the mixture obtained in step (1) is preferably 5 mol or more and 100 mol or less, more preferably 10 mol or more and 60 mol or less, per 1 mol of silicon element contained in the mixture.
  • the amount of the quaternary ammonium ion contained in the mixture is preferably 0.1 mol or more and 0.6 mol or less, more preferably 0.2 mol or more and 0.5 mol or less per 1 mol of silicon element contained in the mixture. is.
  • the amount of hydroxide ions contained in the mixture is preferably 0.01 mol or more and 0.6 mol or less, more preferably 0.05 mol or more and 0.5 mol or less per 1 mol of silicon element contained in the mixture. is.
  • the amount of tetraalkyl orthosilicate contained in the mixture is the ratio of the amount of water to the amount of tetraalkyl orthosilicate (water/tetraalkyl orthosilicate (molar ratio)) from the viewpoint of catalyst particle size. is preferably 10 to 40, more preferably 18 to 36.
  • a zeolite having excellent catalytic activity can be obtained, and by using the zeolite as a catalyst, cyclohexanone oxime can be reacted at a high conversion rate.
  • ⁇ -caprolactam can be obtained with higher selectivity, and ⁇ -caprolactam can be produced with higher productivity.
  • step (2) In the step (2), while the mixture obtained in the step (1) is hydrothermally synthesized, at least one selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound.
  • This is a step of supplying compound (A) to a mixture to obtain a reaction mixture containing zeolite crystals.
  • the hydrothermal synthesis reaction in step (2) is a reaction in which a compound is synthesized (crystals are grown) under heating and pressure to form a reaction mixture containing zeolite crystals.
  • the reaction temperature for hydrothermally synthesizing the mixture obtained in the already explained step (1) is preferably 100° C. to 200° C., more preferably 100° C. to 200° C., from the viewpoint of catalyst crystallinity. 105°C to 170°C.
  • the reaction temperature after supplying the compound (A) to the mixture is further increased from the reaction temperature before supplying the compound (A) to a higher temperature to hydrothermally It is preferable to allow the synthesis reaction to proceed.
  • the range of temperature rise is preferably 20°C to 80°C, more preferably 35°C to 65°C.
  • reaction temperature after supplying the compound (A) to the mixture is further raised from the reaction temperature before supplying the compound (A) as described above to proceed with the hydrothermal synthesis reaction, hydrothermal synthesis
  • the reaction rate of the reaction can be further improved, and as a result, the zeolite of the present embodiment can be produced more efficiently.
  • cyclohexanone oxime can be reacted at a higher conversion rate, and the yield of ⁇ -caprolactam can be improved.
  • step (2) the time for subjecting the mixture to the hydrothermal synthesis reaction, ie, the reaction time, is preferably 1 to 200 hours, more preferably 1 to 100 hours, from the viewpoint of catalyst crystallinity.
  • step (2) the time for hydrothermal synthesis reaction after supplying compound (A) to the mixture is preferably 1 to 200 hours, more preferably 10 to 100 hours, from the viewpoint of catalyst crystallinity. .
  • the hydrothermal synthesis reaction of step (2) is preferably performed under pressure, and the pressure is preferably 0.1 MPa or more and 5 MPa or less from the viewpoint of hydrothermal reactivity. More preferably, the pressure is 2 MPa or more and 3 MPa or less.
  • step (2) if the reaction temperature, reaction time and pressure are within the above ranges, a zeolite having excellent catalytic activity can be produced, and by using the zeolite as a catalyst, cyclohexanone oxime can be converted to a higher degree ⁇ -caprolactam can be obtained with high selectivity.
  • the hydrothermal synthesis reaction method is not particularly limited.
  • the mixture obtained in step (1) is placed in a reaction vessel such as an autoclave to be airtight, and the reaction temperature, reaction time and pressure are set to the conditions described above and stirred. can be implemented by
  • step (2) the mixture obtained in step (1) is hydrothermally synthesized, and selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound. At least one compound (A) is supplied to the mixture to further advance the hydrothermal synthesis reaction.
  • the timing of adding compound (A) is not particularly limited as long as the hydrothermal synthesis reaction is in progress.
  • the timing of adding the compound (A) is preferably 1 to 10 hours after the start of the hydrothermal synthesis reaction from the viewpoint of catalyst crystallinity, and 1 to 6 hours after the start of the hydrothermal synthesis reaction. It is more preferable to have
  • the amount of the metal element contained in the compound (A) is, from the viewpoint of catalyst crystallinity, the amount of the compound (A) relative to the amount of the orthosilicic acid contained in the mixture obtained in the step (1).
  • the amount of tetraalkyl (tetraalkyl orthosilicate/compound (A) (molar ratio)) is preferably 10 to 100,000, more preferably 15 to 50,000, and more preferably 20 to 10,000. It is even more preferable to
  • examples of the boron compound that is the compound (A) include boric acid, ammonium borate, ammonium tetrafluoroborate, lithium metaborate, lithium tetraborate, lithium tetrafluoroborate, and sodium metaborate.
  • boric acid, trimethyl borate, or triethyl borate is preferably used, and boric acid is more preferably used.
  • the germanium compound that is the compound (A) includes, for example, germanium oxide, germanium chloride, germanium bromide, germanium iodide, tetraethylgermanium, tetramethylgermanium, and tetraisopropoxygermanium.
  • Germanium oxide is preferably used as the germanium compound that is the compound (A).
  • magnesium compound that is the compound (A) in step (2) examples include magnesium nitrate, magnesium sulfite, magnesium benzoate, magnesium chloride, magnesium perchlorate, magnesium peroxide, magnesium glutamate, magnesium silicide, and silicic acid.
  • magnesium compound that is the compound (A) magnesium nitrate, magnesium sulfate or magnesium chloride is preferably used, and magnesium nitrate or magnesium sulfate is more preferably used.
  • examples of the aluminum compound that is the compound (A) include aluminum nitrate, aluminosilicate, sodium aluminate, strontium aluminate, aluminum antimonide, aluminum monochloride, aluminum monofluoride, aluminum chloride, Aluminum permanganate, aluminum formate, aluminum silicate, aluminum oxide, aluminum hydroxide, aluminum bromide, aluminum dodecaboride, aluminum hydride, lithium aluminum hydride, aluminum borohydride, aluminum carbonate, aluminum nitride, tetra Sodium hydridoaluminate, aluminum diboride, aluminum arsenide, aluminum fluoride, aluminum monostearate, aluminum iodide, aluminum sulfide, aluminum sulfate, aluminum phosphide and aluminum phosphate.
  • aluminum compound which is the compound (A) aluminum nitrate, aluminum chloride or aluminum phosphate is preferably used, and aluminum nitrate or aluminum chloride is more preferably used.
  • the tin compound that is the compound (A) includes, for example, tin (II) chloride, tin (IV) chloride, triphenyltin chloride, triphenyltin acetate, indium tin oxide, and tin (II) oxide. , tin(IV) oxide, tributyltin oxide, stanines, stanols, tetramethyltin, tributyltin, tin(IV) fluoride, tin iodide and tin sulfide.
  • tin compound that is the compound (A)
  • tin (IV) chloride, tin iodide or tin oxide is preferably used, and tin (IV) chloride or tin iodide is more preferably used.
  • the iron compound as the compound (A) includes, for example, iron nitrate, iron (II) chloride, iron (III) chloride, iron ammonium citrate, chromite, iron (II) acetate, iron oxide (II), iron (III) oxide, iron (II) cyanide, iron oxalate, triiron tetroxide, iron tetraboride, iron (III) bromide, iron (II) nitrate, iron (III) nitrate, iron (II) hydroxide, sucroferric oxyhydroxide, iron (II) carbonate, iron nitride, iron (II) lactate, iron (II) iodide, iron iodate, iron (II) sulfide, iron (III) sulfide, Ammonium iron(II) sulfate, iron(II) sulfate, iron(III) sulfate, iron(III) ammonium
  • iron (II) nitrate, iron (III) nitrate or iron (II) sulfate is preferably used, and iron (II) nitrate or iron (III) nitrate is more preferably used. preferable.
  • step (2) as the compound (A) of boron compound, germanium compound, magnesium compound, aluminum compound, and tin compound iron compound, the above examples may be used alone, or two or more of them may be used. good.
  • step (2) hydrates such as magnesium nitrate hexahydrate, aluminum nitrate nonahydrate, and iron nitrate nonahydrate may be used as compound (A).
  • step (2) boric acid, magnesium nitrate, aluminum nitrate, and iron nitrate are preferably used as compound (A) because ⁇ -caprolactam can be obtained with high selectivity. It is more preferable to use boric acid, magnesium nitrate, and iron nitrate because they can improve the conversion rate, the selectivity of ⁇ -caprolactam, and thus the yield.
  • examples of the combination of the compounds (A) described above include a combination of boric acid and magnesium nitrate, a combination of ammonium borate and magnesium phosphate, sodium tetraborate and magnesium chloride. , sodium perborate and magnesium sulfate, and potassium pentaborate and magnesium thiosulfate.
  • a combination of boric acid and magnesium nitrate, a combination of ammonium borate and magnesium phosphate, or a combination of sodium tetraborate and magnesium chloride is preferable.
  • a combination of acid and magnesium nitrate is more preferred.
  • step (2) from the viewpoint of increasing the metal content in the catalyst, it is preferable to further supply an inorganic acid to obtain a reaction mixture.
  • step (2) is preferably a step of simultaneously supplying compound (A) and an inorganic acid to obtain a reaction mixture.
  • Step (3) is a step of subjecting the reaction mixture containing zeolite crystals obtained in step (2) to solid-liquid separation to obtain zeolite crystals.
  • step (3) methods for solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in step (2) include, for example, concentration, filtration, and decantation.
  • the solid-liquid separation method is preferably filtration.
  • a membrane separation method using a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) as a filtration membrane.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • an MF membrane or UF membrane having an appropriate pore size made of any conventionally known suitable material can be used.
  • the filtration method may be a cross-flow method or a dead end filtration method.
  • the method of filtration is preferably a cross-flow method from the viewpoint of performing filtration (washing) simply and efficiently.
  • the filtration method may be an external pressure filtration method or an internal pressure filtration method.
  • Filtration may be either pressure filtration or suction filtration, and pressure filtration is preferred.
  • the pressure in filtration can be set as appropriate, and it may be either constant flow rate filtration in which the flow rate of the filtrate is kept constant or constant pressure filtration in which the transmembrane differential pressure is kept constant.
  • the reaction mixture (slurry liquid to be treated) flows parallel to the surface of the filtration membrane (filtration membrane surface) to prevent contamination of the filtration membrane due to deposition of filter cake on the filtration membrane surface.
  • a part of the reaction mixture is filtered laterally in the direction of flow of the reaction mixture.
  • the temperature of the reaction mixture during solid-liquid separation is preferably 0°C or higher and 160°C or lower, and the pressure applied to the reaction mixture during solid-liquid separation is preferably 0.1 MPa or higher and 5 MPa or lower.
  • step (3) it is not necessary to remove all the dissolved components and solvent in the reaction mixture.
  • step (3) the liquid obtained by solid-liquid separation usually contains silicic acid and its oligomers, which are active ingredients. It may also contain unreacted quaternary ammonium hydroxide and the like. Therefore, the liquid material obtained by solid-liquid separation in step (3) can be fed back to step (1) already explained in another reaction system and recycled. That is, the liquid material obtained by solid-liquid separation in step (3) can be mixed and used as a further raw material (active ingredient) in step (1) in another reaction system.
  • residual components other than the zeolite crystals remaining in the obtained zeolite crystals may be removed by further washing with an organic solvent such as methanol or ethanol or water.
  • washing treatment method examples include (a) a method of adding water to the obtained zeolite crystals and washing and filtering by a cross-flow method, and (b) adding water to the obtained zeolite crystals and performing a dead end filtration method. and (c) a method of mixing the obtained zeolite crystals with water, stirring the mixture, allowing the mixture to stand, and separating and removing the supernatant liquid by decantation.
  • the method (a) is preferably adopted because the washing can be performed simply and efficiently.
  • the washing filtration method may be an external pressure filtration method or an internal pressure filtration method. Washing filtration may be either pressure filtration or suction filtration, but pressure filtration is preferred.
  • the pressure in the washing filtration can be set as appropriate, and may be constant flow filtration in which filtration is performed while maintaining a constant flow rate of the filtrate or constant pressure filtration in which filtration is performed while maintaining a constant transmembrane pressure.
  • the cleaning solution obtained by the cleaning treatment may contain silicic acid, its oligomers, quaternary ammonium hydroxide, etc. as active ingredients
  • the resulting cleaning solution is treated in another reaction system. It may be recycled by feeding back to step (1) and mixed for use as a further component.
  • the temperature of the cleaning liquid during cleaning is preferably 0°C or higher and 100°C or lower, and the pressure applied during cleaning is preferably 0.1 MPa or higher and 5 MPa or lower.
  • the zeolite crystals and the washing solution do not necessarily need to be completely separated.
  • the washing treatment is preferably carried out so that the pH of the washing liquid obtained after washing the zeolite crystals by adding water is 7 or more and 9 or less at 25°C.
  • the obtained zeolite crystals may be dried by a drying treatment.
  • a drying method in the drying treatment is not particularly limited.
  • any suitable conventional drying method commonly used in this technical field can be employed.
  • Such drying methods include, for example, evaporation to dryness, spray drying, drum drying, and flash drying. Drying conditions in these drying methods can be appropriately set according to a conventional method.
  • Step (4) is a step of firing the zeolite crystals obtained in step (3).
  • step (4) the zeolite crystals obtained by performing step (3) already described are fired.
  • Firing in step (4) is usually performed in an oxygen-containing gas atmosphere.
  • oxygen-containing gas examples include air and a mixed gas of air and nitrogen. Also, before or after firing in an oxygen-containing gas atmosphere, firing in an inert gas atmosphere such as nitrogen gas may be further performed.
  • the firing in step (4) can be, for example, a step of first firing in a nitrogen gas atmosphere (under circulation) and then further firing in an air atmosphere (under circulation). .
  • the firing temperature is preferably 400°C or higher and 600°C or lower, more preferably 500°C or higher and 600°C or lower.
  • the firing time is preferably 0.5 hours or more and 12 hours or less, more preferably 1 hour or more and 6 hours or less.
  • Step (5) is a step of contact-treating the zeolite crystals fired in step (4) with an aqueous solution containing at least one acid selected from the group consisting of inorganic acids and organic acids to obtain zeolite.
  • Step (5) is a step for removing unnecessary elements derived from the compound (A), such as boron, germanium, magnesium, aluminum, tin, and iron elements incorporated in the zeolite crystals. is.
  • step (5) "contact-treating the zeolite crystals with an aqueous solution” means bringing the zeolite crystals into contact with an acid-containing aqueous solution by any conventionally known contact treatment method.
  • Examples of contact treatment include a mode in which the zeolite crystals are immersed in an aqueous solution, and a mode in which the zeolite crystals are sprayed with a misty aqueous solution. Since the contact treatment is simple, it is preferable to immerse the zeolite crystals in an aqueous solution.
  • inorganic acids that can be contained in the aqueous solution used in step (5) include nitric acid, phosphoric acid, hydrochloric acid, and sulfuric acid.
  • organic acids examples include formic acid, acetic acid, propionic acid, benzoic acid, citric acid, oxalic acid, terephthalic acid, and p-toluenesulfonic acid.
  • step (5) the inorganic acid and the organic acid may be used singly or in combination of two or more.
  • the inorganic acid and the organic acid can be used as an aqueous solution containing only one of them, or can be used as an aqueous solution containing both.
  • the at least one acid selected from the group consisting of inorganic acids and organic acids is preferably an inorganic acid, more preferably nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, or carbonic acid. More preferably, nitric acid or phosphoric acid is used.
  • the hydrogen ion concentration in at least one acid selected from the group consisting of inorganic acids and organic acids that can be contained in the aqueous solution is preferably 0.001 mol/L or more and 20 mol/L or less, more preferably 0.01 mol/L. It is more than 10 mol/L or less.
  • step (5) per equivalent of at least one compound (A) selected from the group consisting of boron compounds, germanium compounds, magnesium compounds, aluminum compounds, tin compounds and iron compounds in the fired zeolite crystals, It is preferable to carry out the contact treatment by adding an aqueous solution containing 1 equivalent or more and 100 equivalents or less of at least one acid selected from the group consisting of inorganic acids and organic acids.
  • the aqueous solution used in step (5) may contain at least one acid selected from the group consisting of inorganic acids and organic acids, as well as salts such as ammonium nitrate, ammonium chloride, ammonium sulfate and ammonium carbonate. .
  • the temperature of the zeolite crystals is preferably 0°C or higher and 100°C or lower, more preferably 45°C or higher and 95°C or lower.
  • step (5) by setting the temperature of the zeolite crystals within the above range, a zeolite with excellent catalytic activity can be obtained, and by using the zeolite as a catalyst, a higher conversion rate of cyclohexanone oxime can be obtained. can be reacted to obtain ⁇ -caprolactam with higher selectivity, and ⁇ -caprolactam can be produced with higher productivity.
  • the zeolite crystals may be subjected to contact treatment under pressurized conditions, and the pressure when pressurized is preferably 0.1 MPa or more and 5 MPa or less.
  • the treatment time for the contact treatment in step (5) is preferably 0.1 hours or more and 100 hours or less, more preferably 0.1 hours or more and 10 hours or less.
  • the contact treatment in step (5) may be performed batchwise or continuously.
  • the contact treatment in step (5) may be carried out, for example, by immersing the calcined zeolite crystals in an aqueous solution in a stirring tank and stirring the aqueous solution in a tubular container filled with the calcined zeolite crystals. You can let me go.
  • the same contact treatment in step (5) may be repeated one or more times after solid-liquid separation.
  • the number of contact treatments is preferably 1 or more and 10 or less.
  • the amount of the aqueous solution used is preferably 80 parts by mass or more and 5000 parts by mass or less with respect to 100 parts by mass of the fired zeolite crystals.
  • the treated material subjected to the contact treatment in step (5) can be obtained as zeolite by, for example, concentration, filtration, and solid-liquid separation by decantation (drying step 1).
  • the temperature of the treated material be 0°C or higher and 160°C or lower when performing solid-liquid separation after the contact treatment in step (5).
  • the solid-liquid separation may be performed under pressurized conditions. It is preferable that the pressure applied to the material to be treated in the solid-liquid separation is 0.1 MPa or more and 5 MPa or less. Solid-liquid separation may not completely remove unnecessary components such as an aqueous solution contained in the processed material.
  • an organic solvent such as methanol or ethanol or water is used. Additional cleaning treatments may be performed.
  • the temperature of the zeolite in the further washing treatment is preferably 0°C or higher and 100°C or lower.
  • the zeolite may be washed under pressurized conditions for further washing treatment. It is preferable that the pressure under the pressurization condition is 0.1 MPa or more and 5 MPa or less. In further washing treatments, the zeolite-containing washing liquid may not be completely removed.
  • the zeolite obtained by performing step (5) may be further dried (drying step 2).
  • a drying method in this drying treatment is not particularly limited. Examples of the drying method include conventionally known arbitrary and suitable methods such as an evaporation drying method, a spray drying method, a drum drying method, and a flash drying method. Moreover, the drying conditions in this drying treatment can be appropriately set according to a conventional method. By carrying out the steps (1) to (5) as described above, the zeolite of the present embodiment can be produced.
  • the compound (A) is supplied while the hydrothermal synthesis reaction is in progress, and the hydrothermal synthesis reaction is further advanced to obtain ⁇ -caprolactam. can be produced with a very high selectivity.
  • Method for producing ⁇ -caprolactam In the method for producing ⁇ -caprolactam of the present embodiment, the steps (1) to (5) already described are performed, and the zeolite obtained in step (5) is used as a catalyst to produce cyclohexanone oxime. is subjected to a Beckmann rearrangement reaction in the gas phase to obtain ⁇ -caprolactam (6).
  • zeolite produced by the method for producing zeolite including the steps (1) to (5) already described is prepared, and the zeolite is used as a catalyst to produce cyclohexanone oxime.
  • the zeolite produced by the zeolite production method including the steps (1) to (5) is used as a catalyst to cause the Beckmann rearrangement reaction of the raw material cyclohexanone oxime in the gas phase. and as a result, ⁇ -caprolactam can be produced.
  • the zeolite of the present embodiment can be used as a compact molded into a predetermined size and shape according to the size and shape of the reaction vessel used for producing ⁇ -caprolactam.
  • the zeolite of the present embodiment (hereinafter, when referred to as zeolite, may also include zeolite crystals in the middle of production) can be formed by any conventionally known suitable method such as extrusion, compression, tableting, flow, tumbling, or spraying. It can be performed by a suitable molding method.
  • the zeolite can be formed into any desired and suitable shape, such as spherical, cylindrical, plate-like, ring-like, clover-like, and granular shapes, by the forming method exemplified above.
  • the zeolite molding may be performed after the step (3) already explained, may be performed after the step (4), or may be performed after the step (5).
  • molding may be performed after cleaning treatment.
  • the molded body may be further subjected to a contact treatment with, for example, water vapor in order to improve the mechanical strength of the molded body.
  • the compact may consist essentially of zeolite alone, or may contain other components in addition to zeolite. That is, the molded body may be, for example, a molded body obtained by substantially molding only zeolite, or may be a molded body obtained by mixing zeolite with other components such as a predetermined binder and reinforcing material. may be a shaped body in which zeolite is supported on a predetermined carrier.
  • the reaction temperature in the Beckmann rearrangement reaction in step (6) is preferably 250°C or higher and 500°C or lower, more preferably 300°C or higher and 450°C or lower.
  • the reaction pressure in the Beckmann rearrangement reaction in step (6) is preferably 0.005 MPa or more and 0.5 MPa or less, more preferably 0.005 MPa or more and 0.2 MPa or less.
  • Step (6) may be carried out in a fixed bed format or in a fluidized bed format.
  • the supply rate of the vaporized cyclohexanone oxime is 0.1 h -1 or more for 20 h at the supply rate (unit: g/h) per 1 g of the catalyst, that is, the space velocity WHSV (unit: h -1 ). ⁇ 1 or less, and more preferably 0.2 h ⁇ 1 or more and 10 h ⁇ 1 or less.
  • Cyclohexanone oxime may be introduced into the reaction system alone in a gas phase, or may be introduced together with an inert gas such as nitrogen gas, argon gas, or carbon dioxide gas.
  • an inert gas such as nitrogen gas, argon gas, or carbon dioxide gas.
  • JP-A-2-250866 a method of introducing cyclohexanone oxime in the gas phase in the presence of ether, and as disclosed in JP-A-2-275850, cyclohexanone oxime is introduced in the gas phase in the presence of a lower alcohol, as disclosed in JP-A-5-201965, cyclohexanone oxime in the gas phase in the presence of an alcohol and/or ether, and further water.
  • a method of coexisting with methylamine in a phase and introducing it may also be used.
  • the cyclohexanone oxime used in step (6) may be prepared, for example, by oximating cyclohexanone with hydroxylamine or a salt thereof, by reacting cyclohexanone with ammonia and hydrogen peroxide in the presence of a catalyst such as a titanosilicate. It may be prepared by ammoximation, or may be prepared by oxidation of cyclohexylamine.
  • Step (6) may be carried out in combination with a process of calcining the zeolite catalyst in an oxygen-containing gas atmosphere such as air.
  • an oxygen-containing gas atmosphere such as air.
  • step (6) when step (6) is performed in a fixed bed system, cyclohexanone oxime is supplied in a gas phase together with other components as necessary to a fixed bed reactor filled with zeolite as a catalyst.
  • the supply of cyclohexanone oxime is stopped, and then the oxygen-containing gas is supplied into the reaction vessel to calcine the zeolite, and then the same Beckmann rearrangement reaction and calcination are repeated. It is preferable to set it as a method.
  • step (6) when the step (6) is carried out, for example, in a fluidized bed system, cyclohexanone oxime is added in a gas phase to a fluidized bed reaction vessel in which the zeolite catalyst is fluidized, and other components are added as necessary. It is preferable that the zeolite is continuously or intermittently withdrawn from the reaction vessel while the Beckmann rearrangement reaction is performed by supplying the zeolite together with the Beckmann rearrangement reaction, and the extracted zeolite is calcined in a calciner and then returned to the reaction vessel.
  • the product containing ⁇ -caprolactam obtained in step (6) can be treated by any suitable conventionally known post-treatment step.
  • the post-treatment step for example, after cooling and condensing the reaction product gas, which is the product of step (6), conventionally known arbitrary and suitable extraction treatment, distillation treatment, crystallization treatment, etc. are performed to obtain ⁇ - It can be a step of separating caprolactam.
  • the zeolite of the present embodiment can be applied to various applications such as molecular sieves and adsorbents.
  • the zeolite of the present embodiment can be suitably applied to various uses, particularly as a catalyst, in organic synthesis reactions.
  • the zeolite of the present embodiment can be suitably used as a catalyst for producing ⁇ -caprolactam by Beckmann rearrangement reaction of cyclohexanone oxime in the gas phase.
  • the space velocity WHSV (unit: h-1) of cyclohexanone oxime was calculated by dividing the feed rate (unit: g/h) of cyclohexanone oxime by the catalyst weight (unit: g).
  • zeolite (a) Production of zeolite [step (1)] 115.00 g of tetraethylorthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight aqueous tetra-n-propylammonium hydroxide (0.9% by weight of potassium, 1.0% by weight of 68.00 g of hydrogen bromide, and 58.4% by weight of water; 0.72 g of 85% by weight of potassium hydroxide (containing 15% by weight of water); 00 g and stirred at room temperature for 150 minutes to obtain a mixture.
  • step (1) 115.00 g of tetraethylorthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight aqueous tetra-n-propylammonium hydroxide (0.9% by weight of potassium, 1.0% by weight of 68.00 g of hydrogen bromide, and 58.4% by weight of water; 0.72 g of 85% by weight of potassium hydroxide
  • Step (2) The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction.
  • 0.32 g of magnesium nitrate hexahydrate (a magnesium compound), 14.20 g of 60% by weight nitric acid (containing 40% by weight of water) and 6.60 g of water were added and the temperature was raised to 150°C.
  • a reaction mixture containing zeolite crystals was obtained by heating and stirring for 42 hours to further advance the hydrothermal synthesis reaction.
  • the amount of silicon element contained in the obtained mixture was 50.0 mol per 1 mol of boron element.
  • the amount of silicon element contained in the obtained mixture was 890.0 mol per 1 mol of magnesium element.
  • Step (3) The reaction mixture containing the zeolite crystals obtained in step (2) was subjected to solid-liquid separation by filtration to obtain zeolite crystals.
  • step (3) The zeolite crystals obtained in step (3) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate reached 6 or more and 9 or less, the washed zeolite crystals were dried at 100° C. or more.
  • Step (4) The dried zeolite crystals are calcined at 530° C. for 1 hour under nitrogen gas flow, and then further calcined at 530° C. for 1 hour under air flow to obtain zeolite crystals that are powdery white crystals. Obtained.
  • Step (5) Add 4.0 g of powdered white zeolite crystals obtained in step (4) to an eggplant flask, then add 280 g of a 6 mol/L nitric acid aqueous solution, stir at 90° C. for 1 hour, and filter. Zeolite crystals were subjected to solid-liquid separation. The obtained zeolite crystals were treated with the same aqueous nitric acid solution and solid-liquid separation was repeated twice to obtain a treated product as zeolite.
  • step 2 and drying step 2 The zeolite obtained in step (5) was washed several times with ion-exchanged water until the pH of the filtrate reached 5 or higher, and then dried at 100° C. or higher. The dried zeolite was then classified into particles with a particle size of 0.50-0.85 mm. The zeolite thus obtained was used as a catalyst in step (6) of (b) below.
  • Step (6) Production of ⁇ -caprolactam
  • 0.375 g of the zeolite obtained in (a) above was filled in a quartz glass reaction tube with an inner diameter of 1 cm to form a catalyst layer, and was preliminarily heated at 350° C. for 1 hour under a stream of nitrogen gas of 4.2 L/h. heat treated. After that, the temperature of the catalyst layer was lowered to 316° C. under the flow of 4.2 L/h of nitrogen gas.
  • ⁇ Example 2> (a) Production of zeolite [step (1)] In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight), 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308.0 g 20 g was added and stirred at room temperature for 150 minutes to obtain a mixture.
  • tetraethyl orthosilicate Si(OC 2 H 5 ) 4
  • tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight
  • 0.72 g 85% by weight potassium hydroxide containing 15% by weight water
  • Step (2) The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction. 1.41 g of magnesium hexahydrate, 9.20 g of 60% by mass nitric acid (containing 40% by mass of water) and 1.06 g of water are added, heated to 140° C. and stirred for 42 hours to give water A reaction mixture containing zeolite crystals was obtained by allowing the thermal synthesis reaction to proceed further. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of boron element. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • zeolite [step (1)] In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight) 67.20 g, 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308% water .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
  • tetraethyl orthosilicate Si(OC 2 H 5 ) 4
  • tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight
  • 67.20 g 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and
  • Step (2) The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. for a hydrothermal synthesis reaction. 1.41 g of the hydrate, 7.50 g of 85% by mass phosphoric acid (containing 15% by mass of water) and 8.77 g of water were added, heated to 140° C. and stirred for 42 hours. A reaction mixture containing zeolite crystals was obtained by allowing the thermal synthesis reaction to proceed further. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of boron element. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • zeolite [step (1)] In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight), 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 129% water. .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
  • Step (2) The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction. 1.41 g of magnesium hexahydrate and 10.8 g of water were added, the temperature was raised to 140° C., and the mixture was stirred for 42 hours to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals.
  • the amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of boron element.
  • the amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • ⁇ Example 5> (a) Production of zeolite [step (1)] In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight) 67.20 g, 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308% water .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
  • tetraethyl orthosilicate Si(OC 2 H 5 ) 4
  • tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight
  • 67.20 g 0.72 g 85% by weight
  • Step (2) The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction. After 6 hours, 0.34 g of boric acid, 1.41 g of magnesium nitrate hexahydrate and 10.8 g of water were added and stirred at 140° C. for 42 hours for further hydrothermal synthesis reaction to obtain a reaction mixture containing zeolite crystals.
  • the amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of boron element.
  • the amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • zeolite [step (1)] In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight) 67.20 g, 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308% water .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
  • tetraethyl orthosilicate Si(OC 2 H 5 ) 4
  • tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight
  • 67.20 g 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and
  • Step (2) The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. for a hydrothermal synthesis reaction. After 6 hours, 1.70 g of boric acid and 9.8 g of water are added to the mixture obtained. was added, the temperature was raised to 170° C., and the mixture was stirred for 42 hours to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals. The amount of silicon element contained in the obtained mixture was 20.0 mol per 1 mol of boron element.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • step (2) Production of zeolite
  • step (3) the procedure was carried out in the same manner as in Example 6, except that the temperature was raised to 140 ° C. when boric acid and water were added 6 hours after the start of the hydrothermal synthesis reaction.
  • a zeolite according to Example 7 was obtained.
  • the amount of silicon element contained in the obtained mixture was 20.0 mol per 1 mol of boron element.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • step (2) when boric acid and water were added 6 hours after the start of the hydrothermal synthesis reaction, the procedure was carried out in the same manner as in Example 6, except that the temperature was maintained at 105 ° C. , a zeolite according to Example 8 was obtained.
  • the amount of silicon element contained in the obtained mixture was 20.0 mol per 1 mol of boron element.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • zeolite [step (1)] 115.00 g of tetraethylorthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight aqueous tetra-n-propylammonium hydroxide (0.9% by weight of potassium, 1.0% by weight of 67.20 g of hydrogen bromide, containing 58.4% by weight of water, 0.72 g of 85% by weight of potassium hydroxide (containing 15% by weight of water) and 308.20 g of water was added and stirred at room temperature for 150 minutes to obtain a mixture.
  • step (1) 115.00 g of tetraethylorthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight aqueous tetra-n-propylammonium hydroxide (0.9% by weight of potassium, 1.0% by weight of 67.20 g of hydrogen bromide, containing 58.4% by weight of water, 0.72 g of 85% by weight of potassium hydrox
  • Step (2) The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction, and magnesium nitrate hexahydrate 1 is added to the reaction mixture obtained after 6 hours. 0.41 g and 9.80 g of water were added, the temperature was raised to 140° C., and the mixture was stirred for 42 hours to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
  • Example 9 A zeolite according to Example 9 was obtained in the same manner as in Example 1 except for the above steps (1) and (2).
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • step (2) when magnesium nitrate hexahydrate and water were added 6 hours after the start of the hydrothermal synthesis reaction, the temperature was maintained at 105 ° C., except that the temperature was maintained at 105 ° C.
  • a zeolite according to Example 10 was obtained in the same manner. The amount of silicon element contained in the obtained mixture was 20.0 mol per 1 mol of magnesium element.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • Example 11 (a) Production of zeolite [step (1)] 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight aqueous tetra-n-propylammonium hydroxide (0.9% by weight potassium, 1.0% by weight of hydrogen bromide, containing 58.4 wt. 20 g was added and stirred at room temperature for 150 minutes to obtain a mixture.
  • step (1) 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight aqueous tetra-n-propylammonium hydroxide (0.9% by weight potassium, 1.0% by weight of hydrogen bromide, containing 58.4 wt. 20 g was added and stirred at room temperature for 150 minutes to obtain a mixture.
  • Step (2) The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to advance the hydrothermal synthesis reaction, and aluminum nitrate nonahydrate (aluminum Compound) 4.15 g and water 8.00 g were added, and the mixture was stirred for 42 hours while maintaining the temperature at 105° C. to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals.
  • the amount of silicon element contained in the obtained mixture was 50.0 mol per 1 mol of aluminum element.
  • Step (3) The reaction mixture obtained in step (2) was filtered to obtain zeolite crystals.
  • step (3) The zeolite crystals obtained in step (3) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate reached 6 or more and 9 or less, the obtained zeolite crystals were dried by heating to 100° C. or more.
  • Step (4) The obtained zeolite crystals were calcined at 530°C for 1 hour under nitrogen gas flow, and then further calcined at 530°C for 1 hour under air flow to obtain powdery white crystals. .
  • Step (5) Add 4.0 g of the powdered white crystals obtained in step (4) to an eggplant flask, then add 280 g of a 13 mol/L nitric acid aqueous solution, stir at 115° C. (reflux conditions) for 1 hour, and then filter to obtain crystals. was separated to obtain zeolite crystals. The treatment with the aqueous nitric acid solution was repeated two more times on the obtained zeolite crystals.
  • step 2 The zeolite crystals obtained in step (5) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate reached 5 or higher, the resulting zeolite crystals were dried by heating to 100° C. or higher to obtain zeolite. The obtained zeolite was classified into particles with a particle size of 0.50-0.85 mm. The zeolite thus obtained was used as a catalyst in (b) below.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • ⁇ Example 12> (a) Production of zeolite [step (1)] In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight) 67.20 g, 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308% water .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
  • tetraethyl orthosilicate Si(OC 2 H 5 ) 4
  • tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight
  • 67.20 g 0.72 g 85% by weight
  • Step (2) The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction. After 6 hours, iron nitrate nonahydrate ( Iron compound) (4.50 g) and water (8.00 g) were added, and the mixture was stirred for 42 hours while maintaining the temperature at 105° C. to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals. The amount of silicon element contained in the obtained mixture was 50.0 mol per 1 mol of iron element.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
  • ⁇ Comparative Example 1> (a) Production of zeolite [step (1)] In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC2H5)4], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of odor 153.00 g of hydrogen chloride, containing 58.4% by mass of water, 3.40 g of boric acid and 269.00 g of water were added and stirred at room temperature for 120 minutes to obtain a mixture. The amount of silicon element contained in the obtained mixture was 10.0 mol per 1 mol of boron element.
  • Step (2) The mixture obtained in step (1) was added to a stainless steel autoclave and stirred at 120° C. for 24 hours to carry out a hydrothermal synthesis reaction.
  • Step (3) The reaction mixture obtained in step (2) was filtered to obtain zeolite crystals.
  • step (3) The zeolite crystals obtained in step (3) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate became 9 or less, the obtained zeolite crystals were dried by heating to 100° C. or more.
  • Step (4) The obtained zeolite crystals were calcined at 530°C for 1 hour under nitrogen gas flow, and then further calcined at 530°C for 1 hour under air flow to obtain powdery white crystals. .
  • Step (5) Add 5.0 g of the powdery white crystals obtained in step (4) to an autoclave, then add 150 g of a 0.2 mol/L nitric acid aqueous solution, stir at 90° C. for 1 hour, and then filter to separate the zeolite crystals. did. The treatment with the aqueous nitric acid solution was repeated two more times on the obtained zeolite crystals.
  • step 2 The zeolite crystals obtained in step (5) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate reached 5 or higher, the resulting zeolite crystals were dried by heating to 100° C. or higher to obtain zeolite. The dried powdered zeolite was classified into particles with a particle size of 0.50-0.85 mm. The zeolite thus obtained was used as a catalyst in (b) below.
  • Step (6) Production of ⁇ -caprolactam
  • Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention further improves the selectivity of ε-caprolactam. This method is for producing zeolite and comprises steps (1)-(5). Step (1): A step for mixing tetraalkyl orthosilicate, water, and a hydroxylated quaternary ammonium to obtain a mixture. Step (2): A step for, while causing the mixture obtained in step (1) to undergo a hydrothermal synthesis reaction, supplying, to the mixture, at least one compound (A) selected from the group consisting of boron compounds, germanium compounds, magnesium compounds, aluminum compounds, tin compounds, and iron compounds to obtain a reaction mixture containing zeolite crystals. Step (3): A step for performing solid-liquid separation on the reaction mixture containing zeolite crystals obtained in step (2), to obtain zeolite crystals. Step (4): A step for sintering the zeolite crystals obtained in step (3). Step (5): A step for bringing the zeolite crystals sintered in step (4) into contact with an aqueous solution containing at least one acid selected from the group consisting of inorganic acids and organic acids to obtain zeolite.

Description

ゼオライトの製造方法Method for producing zeolite
 本発明は、ゼオライトの製造方法に関する。また本発明は、当該ゼオライトを触媒として用いて、ε-カプロラクタムを製造する方法に関する。 The present invention relates to a method for producing zeolite. The present invention also relates to a method for producing ε-caprolactam using the zeolite as a catalyst.
 ナイロン6は、衣料用の繊維材料、さらには自動車部品、電子部品の樹脂材料として用いられている。このナイロン6の原料として特に有用であるε-カプロラクタムの製造方法としては、ゼオライトを触媒として用いて、シクロヘキサノンオキシムを気相にてベックマン転位反応させてε-カプロラクタムを製造する方法が知られている。 Nylon 6 is used as a fiber material for clothing, as well as a resin material for automobile parts and electronic parts. As a method for producing ε-caprolactam, which is particularly useful as a raw material for nylon 6, a method is known in which zeolite is used as a catalyst and cyclohexanone oxime undergoes a Beckmann rearrangement reaction in the gas phase to produce ε-caprolactam. .
 このようなε-カプロラクタムの製造方法において触媒として用いられるゼオライトについては、触媒としての活性をより高め、結果としてシクロヘキサノンオキシムの転化率を向上させ、さらにはε-カプロラクタムの選択率を向上させる観点から、種々の検討がなされてきている。 Regarding the zeolite used as a catalyst in such a method for producing ε-caprolactam, the activity as a catalyst is further increased, and as a result, the conversion rate of cyclohexanone oxime is improved, and further the selectivity of ε-caprolactam is improved. , various studies have been made.
 具体的には、例えば、シクロヘキサノンオキシムを高転化率で反応させ、かつ高選択率で得ることを目的として、水熱合成反応により得られたゼオライト結晶を、所定の酸を含む水溶液で接触処理するゼオライトの製造方法が知られている(特許文献1参照。)。 Specifically, for example, for the purpose of reacting cyclohexanone oxime at a high conversion rate and obtaining it at a high selectivity, the zeolite crystals obtained by the hydrothermal synthesis reaction are contact-treated with an aqueous solution containing a predetermined acid. A method for producing zeolite is known (see Patent Document 1).
特開2017-30986号公報JP 2017-30986 A
 しかしながら、上記特許文献1にかかる技術によって製造されたゼオライトをもってしても、ε-カプロラクタムの選択率といった触媒の活性については、十分であるとは言い難い。 However, even with the zeolite produced by the technique according to Patent Document 1, it is difficult to say that the catalytic activity such as ε-caprolactam selectivity is sufficient.
 よって、本発明の目的は、ベックマン転移反応を用いるε-カプロラクタムの製造において、ε-カプロラクタムの選択率をより向上させることができるゼオライトの製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing zeolite that can further improve the selectivity of ε-caprolactam in the production of ε-caprolactam using the Beckmann rearrangement reaction.
 本発明者らは、上記目的を達成すべく鋭意検討を進めたところ、ゼオライトの製造方法において、原料を水熱合成反応させつつ、所定の成分を供給することにより、上記目的を達成しうることを見出し、本発明を完成するに至った。 The present inventors have made intensive studies to achieve the above object, and found that the above object can be achieved by supplying predetermined components while hydrothermally synthesizing raw materials in a method for producing zeolite. and completed the present invention.
 すなわち、本発明は、下記[1]~[8]を提供する。
[1] 下記の工程(1)~(5)を含む、ゼオライトの製造方法。
 工程(1):
 オルトケイ酸テトラアルキルと、水と、水酸化4級アンモニウムとを混合して混合物を得る工程
 工程(2):
 前記工程(1)で得られた混合物を水熱合成反応させつつ、ホウ素化合物、ゲルマニウム化合物、マグネシウム化合物、アルミニウム化合物、スズ化合物および鉄化合物からなる群より選ばれる少なくとも1種の化合物(A)を混合物に供給して、ゼオライト結晶を含む反応混合物を得る工程
 工程(3):
 前記工程(2)で得られたゼオライト結晶を含む反応混合物を固液分離して、ゼオライト結晶を得る工程
 工程(4):
 前記工程(3)で得られたゼオライト結晶を焼成する工程
 工程(5):
 前記工程(4)で焼成されたゼオライト結晶を、無機酸および有機酸からなる群より選ばれる少なくとも1種の酸を含む水溶液で接触処理して、ゼオライトを得る工程
[2] 前記工程(2)において、無機酸をさらに供給して反応混合物を得る、[1]に記載のゼオライトの製造方法。
[3] 前記工程(2)において、前記化合物(A)と前記無機酸とを同時に供給して反応混合物を得る、[2]に記載のゼオライトの製造方法。
[4] 前記工程(2)において、水熱合成反応の開始から1~6時間経過後に、前記混合物に前記化合物(A)を供給する、[1]~[3]のいずれか1つに記載のゼオライトの製造方法。
[5] 前記工程(1)において、前記オルトケイ酸テトラアルキルの量に対する、前記水の量のモル比が、18~36である、[1]~[4]のいずれか1つに記載のゼオライトの製造方法。
[6] 前記工程(2)において、前記混合物を水熱合成反応させる際の反応温度が、105℃~170℃である、[1]~[5]のいずれか1つに記載のゼオライトの製造方法。
[7] 前記工程(2)において、前記化合物(A)を前記混合物に供給した後の反応温度を、前記化合物(A)を供給する前の反応温度からさらに昇温して水熱合成反応を進行させる、[6]に記載のゼオライトの製造方法。
[8] 下記の工程(1)~(6)を含む、ε-カプロラクタムの製造方法。
 工程(1):
 オルトケイ酸テトラアルキルと、水と、水酸化4級アンモニウムとを混合して混合物を得る工程
 工程(2):
 工程(1)で得られた混合物を水熱合成反応させつつ、ホウ素化合物、ゲルマニウム化合物、マグネシウム化合物、アルミニウム化合物、スズ化合物および鉄化合物からなる群より選ばれる少なくとも1種の化合物(A)を混合物に供給して、ゼオライト結晶を含む反応混合物を得る工程
 工程(3):
 前記工程(2)で得られたゼオライト結晶を含む反応混合物を固液分離して、ゼオライト結晶を得る工程
 工程(4):
 前記工程(3)で得られたゼオライト結晶を焼成する工程
 工程(5):
 前記工程(4)で焼成されたゼオライト結晶を、無機酸および有機酸からなる群より選ばれる少なくとも1種の酸を含む水溶液で接触処理して、ゼオライトを得る工程
 工程(6):
 前記工程(5)で得られたゼオライトを触媒として用いて、シクロヘキサノンオキシムを気相にてベックマン転位反応させることによりε-カプロラクタムを得る工程
That is, the present invention provides the following [1] to [8].
[1] A method for producing zeolite, comprising the following steps (1) to (5).
Step (1):
A step of mixing a tetraalkyl orthosilicate, water, and a quaternary ammonium hydroxide to obtain a mixture Step (2):
At least one compound (A) selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound is added while the mixture obtained in the step (1) is subjected to a hydrothermal synthesis reaction. supplying to the mixture to obtain a reaction mixture containing zeolite crystals Step (3):
A step of solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in the step (2) to obtain zeolite crystals Step (4):
Step (5) of calcining the zeolite crystals obtained in step (3):
Step [2] of obtaining zeolite by contact-treating the zeolite crystals calcined in step (4) with an aqueous solution containing at least one acid selected from the group consisting of inorganic acids and organic acids; In the above, the method for producing a zeolite according to [1], wherein an inorganic acid is further supplied to obtain a reaction mixture.
[3] The method for producing zeolite according to [2], wherein in the step (2), the compound (A) and the inorganic acid are supplied simultaneously to obtain a reaction mixture.
[4] Any one of [1] to [3], wherein in the step (2), the compound (A) is supplied to the mixture 1 to 6 hours after the start of the hydrothermal synthesis reaction. of the zeolite.
[5] The zeolite according to any one of [1] to [4], wherein in step (1), the molar ratio of the amount of water to the amount of tetraalkyl orthosilicate is 18 to 36. manufacturing method.
[6] Production of zeolite according to any one of [1] to [5], wherein in the step (2), the reaction temperature when hydrothermally synthesizing the mixture is 105° C. to 170° C. Method.
[7] In the step (2), the reaction temperature after supplying the compound (A) to the mixture is further increased from the reaction temperature before supplying the compound (A) to perform a hydrothermal synthesis reaction. The method for producing zeolite according to [6], which is allowed to proceed.
[8] A method for producing ε-caprolactam, comprising the following steps (1) to (6).
Step (1):
A step of mixing a tetraalkyl orthosilicate, water, and a quaternary ammonium hydroxide to obtain a mixture Step (2):
At least one compound (A) selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound is added to the mixture while hydrothermally reacting the mixture obtained in step (1). to obtain a reaction mixture containing zeolite crystals Step (3):
A step of solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in the step (2) to obtain zeolite crystals Step (4):
Step (5) of calcining the zeolite crystals obtained in step (3):
A step of contact-treating the zeolite crystals calcined in step (4) with an aqueous solution containing at least one acid selected from the group consisting of inorganic acids and organic acids to obtain zeolite; step (6):
A step of obtaining ε-caprolactam by Beckmann rearrangement reaction of cyclohexanone oxime in a gas phase using the zeolite obtained in step (5) as a catalyst.
 本発明にかかるゼオライトの製造方法によれば、ε-カプロラクタムを高い選択率で得ることができるゼオライトを効率よく製造することができる。 According to the method for producing zeolite according to the present invention, it is possible to efficiently produce zeolite from which ε-caprolactam can be obtained with high selectivity.
 以下、本発明にかかる実施形態について具体的に説明する。本発明は、以下に示される具体的な実施形態に限定されるものではなく、本発明の目的を逸脱しない範囲において適宜変更することができる。 The embodiments according to the present invention will be specifically described below. The present invention is not limited to the specific embodiments shown below, and can be modified as appropriate without departing from the scope of the present invention.
1.ゼオライト
 本実施形態にかかるゼオライトは、ε-カプロラクタムの製造における触媒として機能しうる。
1. Zeolite The zeolite according to the present embodiment can function as a catalyst in the production of ε-caprolactam.
 まず、本発明の実施形態にかかるゼオライトの製造方法により製造されるゼオライトについて説明する。 First, the zeolite produced by the method for producing zeolite according to the embodiment of the present invention will be described.
 本実施形態において、ゼオライトは、その骨格を構成する元素としてケイ素元素および酸素元素を含む。 In this embodiment, the zeolite contains elemental silicon and elemental oxygen as elements constituting its skeleton.
 本実施形態において、ゼオライトは、実質的にケイ素元素と酸素元素のみから骨格が構成される結晶性シリカであってよく、骨格を構成する元素としてさらに他の元素を含む結晶性メタロシリケートであってもよい。 In the present embodiment, the zeolite may be crystalline silica whose framework is substantially composed of only silicon and oxygen elements, and may be a crystalline metallosilicate containing other elements as elements constituting the framework. good too.
 結晶性メタロシリケートとしては、例えば、アルミノシリケート、チタノシリケートが挙げられる。本実施形態において、ゼオライトには、これらの2種以上が含まれていてもよい。  Crystalline metallosilicates include, for example, aluminosilicates and titanosilicates. In this embodiment, the zeolite may contain two or more of these.
 本実施形態のゼオライトの製造方法によって製造されうるゼオライトは、ペンタシル型構造を有するゼオライトであることが好ましい。 The zeolite that can be produced by the zeolite production method of the present embodiment is preferably zeolite having a pentasil structure.
 ゼオライト構造の構造コードで示されるペンタシル型構造の例としては、ABW、ACO、AEI、AEL、AEN、AET、AFG、AFI、AFN、AFO、AFR、AFS、AFT、AFX、AFY、AHT、ANA、APC、APD、AST、ATN、ATO、ATS、ATT、ATV、AWO、AWW、BEA、BIK、BOG、BPH、BRE、CAN、CAS、CFI、CGF、CGS、CHA、CHI、CLO、CON、CZP、DAC、DDR、DFO、DFT、DOH、DON、EAB、EDI、EMT、EPI、ERI、ESV、EUO、FAU、FER、GIS、GME、GOO、HEU、IFR、ISV、ITE、JBW、KFI、LAU、LEV、LIO、LOS、LOV、LTA、LTL、LTN、MAZ、MEI、MEL、MEP、MER、MFI、MFS、MON、MOR、MSO、MTF、MTN、MTT、MTW、MWW、NAT、NES、NON、OFF、OSI、PAR、PAU、PHI、RHO、RON、RSN、RTE、RTH、RUT、SAO、SAT、SBE、SBS、SBT、SFF、SGT、SOD、STF、STI、STT、TER、THO、TON、TSC、VET、VFI、VNI、VSV、WEI、WEN、YUG、ZONが挙げられる。また、ペンタシル型構造には、これらのうちの2種以上の組み合わせからなる構造が含まれうる。 Examples of pentasil-type structures indicated by the structural codes of zeolite structures include ABW, ACO, AEI, AEL, AEN, AET, AFG, AFI, AFN, AFO, AFR, AFS, AFT, AFX, AFY, AHT, ANA, APC, APD, AST, ATN, ATO, ATS, ATT, ATV, AWO, AWW, BEA, BIK, BOG, BPH, BRE, CAN, CAS, CFI, CGF, CGS, CHA, CHI, CLO, CON, CZP, DAC, DDR, DFO, DFT, DOH, DON, EAB, EDI, EMT, EPI, ERI, ESV, EUO, FAU, FER, GIS, GME, GOO, HEU, IFR, ISV, ITE, JBW, KFI, LAU, LEV, LIO, LOS, LOV, LTA, LTL, LTN, MAZ, MEI, MEL, MEP, MER, MFI, MFS, MON, MOR, MSO, MTF, MTN, MTT, MTW, MWW, NAT, NES, NON, OFF, OSI, PAR, PAU, PHI, RHO, RON, RSN, RTE, RTH, RUT, SAO, SAT, SBE, SBS, SBT, SFF, SGT, SOD, STF, STI, STT, TER, THO, TON, TSC, VET, VFI, VNI, VSV, WEI, WEN, YUG, ZON. Also, the pentasil-type structure may include a structure consisting of a combination of two or more of these.
 本実施形態の製造方法により製造されるゼオライトは、MFI型構造を有するゼオライトであることが好ましい。ゼオライト構造は、例えば、X線回折装置を用いて分析することができる。 The zeolite produced by the production method of the present embodiment is preferably zeolite having an MFI structure. The zeolite structure can be analyzed, for example, using an X-ray diffractometer.
2.ゼオライトの製造方法
 本実施形態にかかるゼオライトの製造方法は、下記の工程(1)~(5)を含む。
 工程(1):
 オルトケイ酸テトラアルキルと、水と、水酸化4級アンモニウムとを混合して混合物を得る工程
 工程(2):
 前記工程(1)で得られた混合物を水熱合成反応させつつ、ホウ素化合物、ゲルマニウム化合物、マグネシウム化合物、アルミニウム化合物、スズ化合物および鉄化合物からなる群より選ばれる少なくとも1種の化合物(A)を混合物に供給して、ゼオライト結晶を含む反応混合物を得る工程
 工程(3):
 前記工程(2)で得られたゼオライト結晶を含む反応混合物を固液分離して、ゼオライト結晶を得る工程
 工程(4):
 前記工程(3)で得られたゼオライト結晶を焼成する工程
 工程(5):
 前記工程(4)で焼成されたゼオライト結晶を、無機酸および有機酸からなる群より選ばれる少なくとも1種の酸を含む水溶液で接触処理して、ゼオライトを得る工程
2. Method for producing zeolite The method for producing zeolite according to the present embodiment includes the following steps (1) to (5).
Step (1):
A step of mixing a tetraalkyl orthosilicate, water, and a quaternary ammonium hydroxide to obtain a mixture Step (2):
At least one compound (A) selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound is added while the mixture obtained in the step (1) is subjected to a hydrothermal synthesis reaction. supplying to the mixture to obtain a reaction mixture containing zeolite crystals Step (3):
A step of solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in the step (2) to obtain zeolite crystals Step (4):
Step (5) of calcining the zeolite crystals obtained in step (3):
A step of contact-treating the zeolite crystals calcined in the step (4) with an aqueous solution containing at least one acid selected from the group consisting of inorganic acids and organic acids to obtain zeolite.
 以下、工程(1)~(5)それぞれについて具体的に説明する。 Each of steps (1) to (5) will be specifically described below.
 (i)工程(1)
 工程(1)は、オルトケイ酸テトラアルキルと、水と、水酸化4級アンモニウムとを混合して混合物を得る工程である。
(i) step (1)
Step (1) is a step of mixing tetraalkyl orthosilicate, water, and quaternary ammonium hydroxide to obtain a mixture.
 工程(1)において、オルトケイ酸テトラアルキルとしては、例えば、オルトケイ酸テトラメチル、オルトケイ酸テトラエチル、オルトケイ酸テトラプロピル、オルトケイ酸テトラブチルが挙げられる。 Examples of tetraalkyl orthosilicate in step (1) include tetramethyl orthosilicate, tetraethyl orthosilicate, tetrapropyl orthosilicate, and tetrabutyl orthosilicate.
 工程(1)において、オルトケイ酸テトラアルキルは、好ましくはオルトケイ酸テトラエチルである。本実施形態において、オルトケイ酸テトラアルキルとしては、上記例示物を単独で用いてもよいし、2種以上を用いてもよい。 In step (1), the tetraalkyl orthosilicate is preferably tetraethyl orthosilicate. In the present embodiment, as the tetraalkyl orthosilicate, the above examples may be used alone, or two or more thereof may be used.
 本実施形態において用いられる「水」は、触媒の活性を向上させる観点から、所定の処理により不純物を除去するなどして純度が高められた水を用いることが好ましい。本実施形態における「水」としては、例えば、蒸留水、イオン交換水、超純水が挙げられる。本実施形態において、「水」としては、イオン交換水を用いることが好ましい。 From the viewpoint of improving the activity of the catalyst, the "water" used in the present embodiment is preferably water whose purity has been increased by, for example, removing impurities through a predetermined treatment. Examples of "water" in the present embodiment include distilled water, ion-exchanged water, and ultrapure water. In the present embodiment, it is preferable to use ion-exchanged water as "water".
 工程(1)において用いられる水酸化4級アンモニウムは、構造規定剤として機能しうる。ここで、構造規定剤とは、ゼオライト構造の形成に寄与する成分である。 The quaternary ammonium hydroxide used in step (1) can function as a structure directing agent. Here, the structure-directing agent is a component that contributes to the formation of the zeolite structure.
 本実施形態において、構造規定剤は、その周囲にポリケイ酸イオンやポリメタロケイ酸イオンを組織することによりゼオライト構造の前駆体を形成することができる(ゼオライトの科学と工学、講談社サイエンティフィク、2000年、p.33-34参照。)。工程(1)で使用される水酸化4級アンモニウムとしては、例えば、下記式(I)で表される化合物が挙げられる。
 ROH    (I)
In this embodiment, the structure-directing agent can form a precursor of the zeolite structure by organizing polysilicate ions and polymetallosilicate ions around it (Science and Engineering of Zeolite, Kodansha Scientific, 2000). , p.33-34.). Examples of the quaternary ammonium hydroxide used in step (1) include compounds represented by the following formula (I).
R 1 R 2 R 3 R 4 N + OH (I)
 式(I)中、R、R、R、およびRは、それぞれ独立して、アルキル基、アルケニル基、アラルキル基またはアリール基を表す。
 R、R、R、およびRは、互いに同一であっても異なっていてもよい。
In formula (I), R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group, alkenyl group, aralkyl group or aryl group.
R 1 , R 2 , R 3 and R 4 may be the same or different.
 式(I)中、R、R、R、またはRで表されるアルキル基の例としては、メチル基、エチル基、プロピル基、およびブチル基が挙げられる。R、R、R、またはRで表されるアルキル基としては、好ましくはプロピル基である。 Examples of alkyl groups represented by R 1 , R 2 , R 3 or R 4 in formula (I) include methyl, ethyl, propyl and butyl groups. The alkyl group represented by R 1 , R 2 , R 3 or R 4 is preferably a propyl group.
 式(I)中、R、R、R、またはRで表されるアルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基が挙げられる。R、R、R、またはRで表されるアラルキル基の例としては、ベンジル基、トリルメチル基が挙げられる。R、R、R、またはRで表されるアリール基の例としては、フェニル基、トリル基が挙げられる。 In formula (I), the alkenyl group represented by R 1 , R 2 , R 3 or R 4 includes vinyl group, allyl group, 1-propenyl group and isopropenyl group. Examples of the aralkyl group represented by R 1 , R 2 , R 3 or R 4 include benzyl group and tolylmethyl group. Examples of the aryl group represented by R 1 , R 2 , R 3 or R 4 include phenyl group and tolyl group.
 式(I)で表される水酸化4級アンモニウムとしては、水酸化テトラアルキルアンモニウムが好ましい。水酸化テトラアルキルアンモニウムとしては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチル、水酸化テトラ-n-プロピルアンモニウム、水酸化テトラ-n-ブチルアンモニウム、水酸化トリエチルメチルアンモニウム、水酸化トリ-n-プロピルメチルアンモニウム、水酸化トリ-n-ブチルメチルアンモニウムが挙げられる。水酸化4級アンモニウムは、好ましくは水酸化テトラ-n-プロピルアンモニウムである。 Tetraalkylammonium hydroxide is preferable as the quaternary ammonium hydroxide represented by formula (I). Tetraalkylammonium hydroxides include, for example, tetramethylammonium hydroxide, tetraethyl hydroxide, tetra-n-propylammonium hydroxide, tetra-n-butylammonium hydroxide, triethylmethylammonium hydroxide, tri-n-hydroxide Examples include propylmethylammonium and tri-n-butylmethylammonium hydroxide. The quaternary ammonium hydroxide is preferably tetra-n-propylammonium hydroxide.
 工程(1)で得られた混合物には、オルトケイ酸テトラアルキル、水および水酸化4級アンモニウム以外のその他の成分を混合してもよい。 The mixture obtained in step (1) may be mixed with components other than tetraalkyl orthosilicate, water and quaternary ammonium hydroxide.
 このようなその他の成分としては、例えば、混合物中の水酸化物イオン濃度を調整するために、水酸化ナトリウムや水酸化カリウムなどの塩基性化合物、シリカなどのオルトケイ酸テトラアルキル以外のケイ素化合物を添加してもよく、塩基性化合物を添加することが好ましい。 Such other components include, for example, basic compounds such as sodium hydroxide and potassium hydroxide, and silicon compounds other than tetraalkyl orthosilicate such as silica, in order to adjust the hydroxide ion concentration in the mixture. It may be added, and it is preferable to add a basic compound.
 また、水酸化4級アンモニウムとして水酸化テトラアルキルアンモニウムを添加する場合には、混合物中のテトラアルキルアンモニウムイオン濃度を調整するために、臭化テトラアルキルアンモニウムなどのテトラアルキルアンモニウム塩を添加してもよい。 When adding a tetraalkylammonium hydroxide as the quaternary ammonium hydroxide, a tetraalkylammonium salt such as a tetraalkylammonium bromide may be added to adjust the tetraalkylammonium ion concentration in the mixture. good.
 工程(1)で得られる混合物に含まれる水の量は、混合物に含まれるケイ素元素1モルあたり、好ましくは5モル以上100モル以下であり、より好ましくは10モル以上60モル以下である。 The amount of water contained in the mixture obtained in step (1) is preferably 5 mol or more and 100 mol or less, more preferably 10 mol or more and 60 mol or less, per 1 mol of silicon element contained in the mixture.
 混合物に含まれる4級アンモニウムイオンの量は、混合物に含まれるケイ素元素1モルあたり、好ましくは0.1モル以上0.6モル以下であり、より好ましくは0.2モル以上0.5モル以下である。 The amount of the quaternary ammonium ion contained in the mixture is preferably 0.1 mol or more and 0.6 mol or less, more preferably 0.2 mol or more and 0.5 mol or less per 1 mol of silicon element contained in the mixture. is.
 混合物に含まれる水酸化物イオンの量は、混合物に含まれるケイ素元素1モルあたり、好ましくは0.01モル以上0.6モル以下であり、より好ましくは0.05モル以上0.5モル以下である。 The amount of hydroxide ions contained in the mixture is preferably 0.01 mol or more and 0.6 mol or less, more preferably 0.05 mol or more and 0.5 mol or less per 1 mol of silicon element contained in the mixture. is.
 工程(1)において、混合物に含まれるオルトケイ酸テトラアルキルの量は、触媒粒径の観点から、オルトケイ酸テトラアルキルの量に対する、水の量の比(水/オルトケイ酸テトラアルキル(モル比))を、10~40とすることが好ましく、18~36とすることがより好ましい。 In step (1), the amount of tetraalkyl orthosilicate contained in the mixture is the ratio of the amount of water to the amount of tetraalkyl orthosilicate (water/tetraalkyl orthosilicate (molar ratio)) from the viewpoint of catalyst particle size. is preferably 10 to 40, more preferably 18 to 36.
 混合物に含まれる各成分の量を上記の範囲にすれば、より触媒としての活性に優れるゼオライトを得ることができ、当該ゼオライトを触媒として用いることにより、シクロヘキサノンオキシムを高い転化率で反応させることができ、ε-カプロラクタムをより高い選択率で得ることができ、ひいてはε-カプロラクタムをより生産性よく製造することができる。 If the amount of each component contained in the mixture is within the above range, a zeolite having excellent catalytic activity can be obtained, and by using the zeolite as a catalyst, cyclohexanone oxime can be reacted at a high conversion rate. Thus, ε-caprolactam can be obtained with higher selectivity, and ε-caprolactam can be produced with higher productivity.
 (ii)工程(2)
 工程(2)は、工程(1)で得られた混合物を水熱合成反応させつつ、ホウ素化合物、ゲルマニウム化合物、マグネシウム化合物、アルミニウム化合物、スズ化合物および鉄化合物からなる群より選ばれる少なくとも1種の化合物(A)を混合物に供給して、ゼオライト結晶を含む反応混合物を得る工程である。
(ii) step (2)
In the step (2), while the mixture obtained in the step (1) is hydrothermally synthesized, at least one selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound. This is a step of supplying compound (A) to a mixture to obtain a reaction mixture containing zeolite crystals.
 工程(2)における水熱合成反応とは、具体的には、加温および加圧下において化合物を合成して(結晶を成長させて)ゼオライト結晶を含む反応混合物とする反応である。 Specifically, the hydrothermal synthesis reaction in step (2) is a reaction in which a compound is synthesized (crystals are grown) under heating and pressure to form a reaction mixture containing zeolite crystals.
 工程(2)において、既に説明した工程(1)で得られた混合物を水熱合成反応させる際の反応温度は、触媒結晶性の観点から、好ましくは100℃~200℃であり、より好ましくは105℃~170℃である。 In the step (2), the reaction temperature for hydrothermally synthesizing the mixture obtained in the already explained step (1) is preferably 100° C. to 200° C., more preferably 100° C. to 200° C., from the viewpoint of catalyst crystallinity. 105°C to 170°C.
 工程(2)の水熱合成反応においては、化合物(A)を混合物に供給した後の反応温度を、化合物(A)を供給する前の反応温度からより高い温度にさらに昇温して水熱合成反応を進行させることが好ましい。この場合における昇温の幅は、20℃~80℃とすることが好ましく、35℃~65℃とすることがより好ましい。 In the hydrothermal synthesis reaction of step (2), the reaction temperature after supplying the compound (A) to the mixture is further increased from the reaction temperature before supplying the compound (A) to a higher temperature to hydrothermally It is preferable to allow the synthesis reaction to proceed. In this case, the range of temperature rise is preferably 20°C to 80°C, more preferably 35°C to 65°C.
 化合物(A)を混合物に供給した後の反応温度を、上記のとおり化合物(A)を供給する前の反応温度からさらに昇温して水熱合成反応を進行させる態様とすれば、水熱合成反応の反応速度をより向上させることができ、結果として、本実施形態のゼオライトをより効率的に製造することができる。また、このような態様として製造されたゼオライトを触媒として用いれば、シクロヘキサノンオキシムをより高い転化率で反応させることができ、ひいてはε-カプロラクタムの収率を向上させることができる。 If the reaction temperature after supplying the compound (A) to the mixture is further raised from the reaction temperature before supplying the compound (A) as described above to proceed with the hydrothermal synthesis reaction, hydrothermal synthesis The reaction rate of the reaction can be further improved, and as a result, the zeolite of the present embodiment can be produced more efficiently. In addition, by using the zeolite produced in this manner as a catalyst, cyclohexanone oxime can be reacted at a higher conversion rate, and the yield of ε-caprolactam can be improved.
 工程(2)において、混合物を水熱合成反応に付す時間、すなわち反応時間は、触媒結晶性の観点から、好ましくは1~200時間であり、より好ましくは1~100時間である。 In step (2), the time for subjecting the mixture to the hydrothermal synthesis reaction, ie, the reaction time, is preferably 1 to 200 hours, more preferably 1 to 100 hours, from the viewpoint of catalyst crystallinity.
 工程(2)において、化合物(A)を混合物に供給した後に水熱合成反応に付す時間は、触媒結晶性の観点から、好ましくは1~200時間であり、より好ましくは10~100時間である。 In step (2), the time for hydrothermal synthesis reaction after supplying compound (A) to the mixture is preferably 1 to 200 hours, more preferably 10 to 100 hours, from the viewpoint of catalyst crystallinity. .
 工程(2)の水熱合成反応において、水熱合成反応は加圧下で行うことが好ましく、その圧力は、水熱反応性の観点から、0.1MPa以上5MPa以下とすることが好ましく、0.2MPa以上3MPa以下とすることがより好ましい。 In the hydrothermal synthesis reaction of step (2), the hydrothermal synthesis reaction is preferably performed under pressure, and the pressure is preferably 0.1 MPa or more and 5 MPa or less from the viewpoint of hydrothermal reactivity. More preferably, the pressure is 2 MPa or more and 3 MPa or less.
 工程(2)において、反応温度、反応時間および圧力を上記範囲とすれば、触媒としての活性により優れたゼオライトを製造することができ、当該ゼオライトを触媒として用いることにより、シクロヘキサノンオキシムをより高い転化率で反応させることができ、ε-カプロラクタムを高い選択率で得ることができる。 In step (2), if the reaction temperature, reaction time and pressure are within the above ranges, a zeolite having excellent catalytic activity can be produced, and by using the zeolite as a catalyst, cyclohexanone oxime can be converted to a higher degree ε-caprolactam can be obtained with high selectivity.
 工程(2)において、水熱合成反応の方法は、特に限定されない。水熱合成反応は、例えば、工程(1)で得られた混合物を、オートクレーブなどの反応容器に収容して、気密状態とし、反応温度、反応時間および圧力を既に説明した条件として、撹拌することにより実施することができる。 In the step (2), the hydrothermal synthesis reaction method is not particularly limited. In the hydrothermal synthesis reaction, for example, the mixture obtained in step (1) is placed in a reaction vessel such as an autoclave to be airtight, and the reaction temperature, reaction time and pressure are set to the conditions described above and stirred. can be implemented by
 本実施形態では、工程(2)において、工程(1)で得られた混合物を水熱合成反応させつつ、ホウ素化合物、ゲルマニウム化合物、マグネシウム化合物、アルミニウム化合物、スズ化合物および鉄化合物からなる群より選ばれる少なくとも1種の化合物(A)を混合物に供給して、さらに水熱合成反応を進行させる。 In the present embodiment, in step (2), the mixture obtained in step (1) is hydrothermally synthesized, and selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound. At least one compound (A) is supplied to the mixture to further advance the hydrothermal synthesis reaction.
 工程(2)において、化合物(A)を添加する時期は、水熱合成反応の進行中であれば特に限定されない。化合物(A)を添加する時期は、触媒結晶性の観点から、水熱合成反応の開始から1~10時間経過後であることが好ましく、水熱合成反応の開始から1~6時間経過後であることがより好ましい。 In step (2), the timing of adding compound (A) is not particularly limited as long as the hydrothermal synthesis reaction is in progress. The timing of adding the compound (A) is preferably 1 to 10 hours after the start of the hydrothermal synthesis reaction from the viewpoint of catalyst crystallinity, and 1 to 6 hours after the start of the hydrothermal synthesis reaction. It is more preferable to have
 工程(2)において、化合物(A)に含まれる金属元素の量は、触媒結晶性の観点から、化合物(A)の量に対して、工程(1)で得られた混合物に含まれるオルトケイ酸テトラアルキルの量(オルトケイ酸テトラアルキル/化合物(A)(モル比))が10~100000となるようにすることが好ましく、15~50000となるようにすることがより好ましく、20~10000となるようにすることがさらに好ましい。 In the step (2), the amount of the metal element contained in the compound (A) is, from the viewpoint of catalyst crystallinity, the amount of the compound (A) relative to the amount of the orthosilicic acid contained in the mixture obtained in the step (1). The amount of tetraalkyl (tetraalkyl orthosilicate/compound (A) (molar ratio)) is preferably 10 to 100,000, more preferably 15 to 50,000, and more preferably 20 to 10,000. It is even more preferable to
 工程(2)において、化合物(A)であるホウ素化合物としては、例えば、ホウ酸、ホウ酸アンモニウム、テトラフルオロホウ酸アンモニウム、メタホウ酸リチウム、四ホウ酸リチウム、テトラフルオロホウ酸リチウム、メタホウ酸ナトリウム、四ホウ酸ナトリウム、過ホウ酸ナトリウム、テトラヒドロホウ酸ナトリウム、テトラエチルホウ酸ナトリウム、テトラフェニルホウ酸ナトリウム、テトラフルオロホウ酸ナトリウム、メタホウ酸カリウム、四ホウ酸カリウム、五ホウ酸カリウム、テトラフルオロホウ酸カリウム、ホウ酸カルシウム、ホウ酸マグネシウム、ホウ酸亜鉛、ホウ酸トリメチル、ホウ酸トリメチレン、ホウ酸トリエチル、テトラフルオロホウ酸、トリ-n-ブチルホウ酸、ホウ酸トリイソプロピル、ホウ酸トリエタノールアミン、テトラフルオロホウ酸ニトロシルが挙げられる。化合物(A)であるホウ素化合物としては、ホウ酸、ホウ酸トリメチル、またはホウ酸トリエチルを用いることが好ましく、ホウ酸を用いることがより好ましい。 In the step (2), examples of the boron compound that is the compound (A) include boric acid, ammonium borate, ammonium tetrafluoroborate, lithium metaborate, lithium tetraborate, lithium tetrafluoroborate, and sodium metaborate. , sodium tetraborate, sodium perborate, sodium tetrahydroborate, sodium tetraethylborate, sodium tetraphenylborate, sodium tetrafluoroborate, potassium metaborate, potassium tetraborate, potassium pentaborate, tetrafluoroborate potassium borate, calcium borate, magnesium borate, zinc borate, trimethyl borate, trimethylene borate, triethyl borate, tetrafluoroboric acid, tri-n-butyl borate, triisopropyl borate, triethanolamine borate, Nitrosyl tetrafluoroborate can be mentioned. As the boron compound that is the compound (A), boric acid, trimethyl borate, or triethyl borate is preferably used, and boric acid is more preferably used.
 工程(2)において、化合物(A)であるゲルマニウム化合物としては、例えば、酸化ゲルマニウム、塩化ゲルマニウム、臭化ゲルマニウム、ヨウ化ゲルマニウム、テトラエチルゲルマニウム、テトラメチルゲルマニウム、テトライソプロポキシゲルマニウムが挙げられる。化合物(A)であるゲルマニウム化合物としては、酸化ゲルマニウムを用いることが好ましい。 In step (2), the germanium compound that is the compound (A) includes, for example, germanium oxide, germanium chloride, germanium bromide, germanium iodide, tetraethylgermanium, tetramethylgermanium, and tetraisopropoxygermanium. Germanium oxide is preferably used as the germanium compound that is the compound (A).
 工程(2)において、化合物(A)であるマグネシウム化合物としては、例えば、硝酸マグネシウム、亜硫酸マグネシウム、安息香酸マグネシウム、塩化マグネシウム、過塩素酸マグネシウム、過酸化マグネシウム、グルタミン酸マグネシウム、ケイ化マグネシウム、ケイ酸マグネシウム、酢酸マグネシウム、酸化マグネシウム、臭化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、窒化マグネシウム、二ホウ化マグネシウム、四ホウ酸マグネシウム、フッ化マグネシウム、ヨウ化マグネシウム、硫化マグネシウム、硫酸マグネシウム、硫酸水素マグネシウム、チオ硫酸マグネシウム、リン酸マグネシウム、ヒ酸マグネシウム、炭酸水素マグネシウムおよびメタケイ酸マグネシウムが挙げられる。化合物(A)であるマグネシウム化合物としては、硝酸マグネシウム、硫酸マグネシウムまたは塩化マグネシウムを用いることが好ましく、硝酸マグネシウムまたは硫酸マグネシウムを用いることがより好ましい。 Examples of the magnesium compound that is the compound (A) in step (2) include magnesium nitrate, magnesium sulfite, magnesium benzoate, magnesium chloride, magnesium perchlorate, magnesium peroxide, magnesium glutamate, magnesium silicide, and silicic acid. magnesium, magnesium acetate, magnesium oxide, magnesium bromide, magnesium hydroxide, magnesium carbonate, magnesium nitride, magnesium diboride, magnesium tetraborate, magnesium fluoride, magnesium iodide, magnesium sulfide, magnesium sulfate, magnesium hydrogen sulfate, Magnesium thiosulfate, magnesium phosphate, magnesium arsenate, magnesium bicarbonate and magnesium metasilicate. As the magnesium compound that is the compound (A), magnesium nitrate, magnesium sulfate or magnesium chloride is preferably used, and magnesium nitrate or magnesium sulfate is more preferably used.
 工程(2)において、化合物(A)であるアルミニウム化合物としては、例えば、硝酸アルミニウム、アルミノケイ酸塩、アルミン酸ナトリウム、アルミン酸ストロンチウム、アンチモン化アルミニウム、一塩化アルミニウム、一フッ化アルミニウム、塩化アルミニウム、過マンガン酸アルミニウム、ギ酸アルミニウム、ケイ酸アルミニウム、酸化アルミニウム、水酸化アルミニウム、臭化アルミニウム、十二ホウ化アルミニウム、水素化アルミニウム、水素化アルミニウムリチウム、水素化ホウ素アルミニウム、炭酸アルミニウム、窒化アルミニウム、テトラヒドリドアルミン酸ナトリウム、二ホウ化アルミニウム、ヒ化アルミニウム、フッ化アルミニウム、モノステアリン酸アルミニウム、ヨウ化アルミニウム、硫化アルミニウム、硫酸アルミニウム、リン化アルミニウムおよびリン酸アルミニウムが挙げられる。化合物(A)であるアルミニウム化合物としては、硝酸アルミニウム、塩化アルミニウムまたはリン酸アルミニウムを用いることが好ましく、硝酸アルミニウムまたは塩化アルミニウムを用いることがより好ましい。 In the step (2), examples of the aluminum compound that is the compound (A) include aluminum nitrate, aluminosilicate, sodium aluminate, strontium aluminate, aluminum antimonide, aluminum monochloride, aluminum monofluoride, aluminum chloride, Aluminum permanganate, aluminum formate, aluminum silicate, aluminum oxide, aluminum hydroxide, aluminum bromide, aluminum dodecaboride, aluminum hydride, lithium aluminum hydride, aluminum borohydride, aluminum carbonate, aluminum nitride, tetra Sodium hydridoaluminate, aluminum diboride, aluminum arsenide, aluminum fluoride, aluminum monostearate, aluminum iodide, aluminum sulfide, aluminum sulfate, aluminum phosphide and aluminum phosphate. As the aluminum compound which is the compound (A), aluminum nitrate, aluminum chloride or aluminum phosphate is preferably used, and aluminum nitrate or aluminum chloride is more preferably used.
 工程(2)において、化合物(A)であるスズ化合物としては、例えば、塩化スズ(II)、塩化スズ(IV)、塩化トリフェニルスズ、酢酸トリフェニルスズ、酸化インジウムスズ、酸化スズ(II)、酸化スズ(IV)、酸化トリブチルスズ、スタニン、スタノール、テトラメチルスズ、トリブチルスズ、フッ化スズ(IV)、ヨウ化スズおよび硫化スズが挙げられる。化合物(A)であるスズ化合物としては、塩化スズ(IV)、ヨウ化スズまたは酸化スズを用いることが好ましく、塩化スズ(IV)またはヨウ化スズを用いることがより好ましい。 In the step (2), the tin compound that is the compound (A) includes, for example, tin (II) chloride, tin (IV) chloride, triphenyltin chloride, triphenyltin acetate, indium tin oxide, and tin (II) oxide. , tin(IV) oxide, tributyltin oxide, stanines, stanols, tetramethyltin, tributyltin, tin(IV) fluoride, tin iodide and tin sulfide. As the tin compound that is the compound (A), tin (IV) chloride, tin iodide or tin oxide is preferably used, and tin (IV) chloride or tin iodide is more preferably used.
 工程(2)において、化合物(A)である鉄化合物としては、例えば、硝酸鉄、塩化鉄(II)、塩化鉄(III)、クエン酸鉄アンモニウム、クロム鉄鉱、酢酸鉄(II)、酸化鉄(II)、酸化鉄(III)、シアン化鉄(II)、シュウ酸鉄、四酸化三鉄、四ホウ化鉄、臭化鉄(III)、硝酸鉄(II)、硝酸鉄(III)、水酸化鉄(II)、スクロオキシ水酸化鉄、炭酸鉄(II)、窒化鉄、乳酸鉄(II)、ヨウ化鉄(II)、ヨウ素酸鉄、硫化鉄(II)、硫化鉄(III)、硫酸アンモニウム鉄(II)、硫酸鉄(II)、硫酸鉄(III)、硫酸鉄(III)アンモニウム、リン酸鉄(II)およびリン酸鉄(III)が挙げられる。化合物(A)である鉄化合物としては、硝酸鉄(II)、硝酸鉄(III)または硫酸鉄(II)を用いることが好ましく、硝酸鉄(II)または硝酸鉄(III)を用いることがより好ましい。 In the step (2), the iron compound as the compound (A) includes, for example, iron nitrate, iron (II) chloride, iron (III) chloride, iron ammonium citrate, chromite, iron (II) acetate, iron oxide (II), iron (III) oxide, iron (II) cyanide, iron oxalate, triiron tetroxide, iron tetraboride, iron (III) bromide, iron (II) nitrate, iron (III) nitrate, iron (II) hydroxide, sucroferric oxyhydroxide, iron (II) carbonate, iron nitride, iron (II) lactate, iron (II) iodide, iron iodate, iron (II) sulfide, iron (III) sulfide, Ammonium iron(II) sulfate, iron(II) sulfate, iron(III) sulfate, iron(III) ammonium sulfate, iron(II) phosphate and iron(III) phosphate. As the iron compound which is the compound (A), iron (II) nitrate, iron (III) nitrate or iron (II) sulfate is preferably used, and iron (II) nitrate or iron (III) nitrate is more preferably used. preferable.
 工程(2)において、化合物(A)であるホウ素化合物、ゲルマニウム化合物、マグネシウム化合物、アルミニウム化合物およびスズ化合物鉄化合物としては、上記例示物を単独で用いてもよいし、2種以上を用いてもよい。 In step (2), as the compound (A) of boron compound, germanium compound, magnesium compound, aluminum compound, and tin compound iron compound, the above examples may be used alone, or two or more of them may be used. good.
 また、工程(2)において、化合物(A)としては、例えば、硝酸マグネシウム6水和物、硝酸アルミニウム9水和物、硝酸鉄9水和物といった水和物を用いてもよい。 In step (2), hydrates such as magnesium nitrate hexahydrate, aluminum nitrate nonahydrate, and iron nitrate nonahydrate may be used as compound (A).
 工程(2)において、化合物(A)としては、ε-カプロラクタムを高い選択率で得ることができるので、ホウ酸、硝酸マグネシウム、硝酸アルミニウム、硝酸鉄を用いることが好ましく、原料であるシクロヘキサノンオキシムの転化率を向上させることができ、ε-カプロラクタムの選択率、ひいては収率を向上させることができるので、ホウ酸、硝酸マグネシウム、硝酸鉄を用いることがより好ましい。 In step (2), boric acid, magnesium nitrate, aluminum nitrate, and iron nitrate are preferably used as compound (A) because ε-caprolactam can be obtained with high selectivity. It is more preferable to use boric acid, magnesium nitrate, and iron nitrate because they can improve the conversion rate, the selectivity of ε-caprolactam, and thus the yield.
 工程(2)において、化合物(A)である上記例示物の組合せとしては、例えば、ホウ酸と硝酸マグネシウムとの組合せ、ホウ酸アンモニウムとリン酸マグネシウムとの組み合わせ、四ホウ酸ナトリウムと塩化マグネシウムとの組み合わせ、過ホウ酸ナトリウムと硫酸マグネシウムとの組み合わせ、および、五ホウ酸カリウムとチオ硫酸マグネシウムが挙げられる。化合物(A)である上記例示物の組合せとしては、ホウ酸と硝酸マグネシウムとの組合せ、ホウ酸アンモニウムとリン酸マグネシウムとの組み合わせ、または、四ホウ酸ナトリウムと塩化マグネシウムとの組み合わせが好ましく、ホウ酸と硝酸マグネシウムとの組合せがより好ましい。 In step (2), examples of the combination of the compounds (A) described above include a combination of boric acid and magnesium nitrate, a combination of ammonium borate and magnesium phosphate, sodium tetraborate and magnesium chloride. , sodium perborate and magnesium sulfate, and potassium pentaborate and magnesium thiosulfate. As the combination of the above exemplified compound (A), a combination of boric acid and magnesium nitrate, a combination of ammonium borate and magnesium phosphate, or a combination of sodium tetraborate and magnesium chloride is preferable. A combination of acid and magnesium nitrate is more preferred.
 工程(2)においては、触媒中金属含有量増加の観点から、無機酸をさらに供給して反応混合物を得ることが好ましい。 In step (2), from the viewpoint of increasing the metal content in the catalyst, it is preferable to further supply an inorganic acid to obtain a reaction mixture.
 この場合には、工程(2)は、化合物(A)と無機酸とを同時に供給して反応混合物を得る工程とすることが好ましい。 In this case, step (2) is preferably a step of simultaneously supplying compound (A) and an inorganic acid to obtain a reaction mixture.
 (iii)工程(3)
 工程(3)は、工程(2)で得られたゼオライト結晶を含む反応混合物を固液分離して、ゼオライト結晶を得る工程である。
(iii) step (3)
Step (3) is a step of subjecting the reaction mixture containing zeolite crystals obtained in step (2) to solid-liquid separation to obtain zeolite crystals.
 工程(3)において、工程(2)で得られたゼオライト結晶を含む反応混合物を固液分離する方法としては、例えば、濃縮、ろ過、デカンテーションが挙げられる。工程(3)において、固液分離の方法としては、好ましくはろ過である。 In step (3), methods for solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in step (2) include, for example, concentration, filtration, and decantation. In step (3), the solid-liquid separation method is preferably filtration.
 ろ過の方法としては、ろ過膜として精密ろ過膜(MF膜)または限外ろ過膜(UF膜)を使用した膜分離法を適用することが好ましい。MF膜またはUF膜としては、従来公知の任意好適な材料により形成された適切な孔径を有するMF膜またはUF膜を用いることができる。 As a filtration method, it is preferable to apply a membrane separation method using a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) as a filtration membrane. As the MF membrane or UF membrane, an MF membrane or UF membrane having an appropriate pore size made of any conventionally known suitable material can be used.
 ろ過の方式としては、クロスフロー方式であってよく、また全量ろ過方式であってもよい。ろ過の方式は、簡便に効率よくろ過(洗浄)を行う観点から、クロスフロー方式とすることが好ましい。 The filtration method may be a cross-flow method or a dead end filtration method. The method of filtration is preferably a cross-flow method from the viewpoint of performing filtration (washing) simply and efficiently.
 また、ろ過の方式は、外圧ろ過方式であってよく、内圧ろ過方式であってもよい。ろ過は、加圧ろ過または吸引ろ過のいずれであってもよく、加圧ろ過とすることが好ましい。 In addition, the filtration method may be an external pressure filtration method or an internal pressure filtration method. Filtration may be either pressure filtration or suction filtration, and pressure filtration is preferred.
 ろ過における圧力は適宜設定することができ、ろ液の流量を一定に保ってろ過を行う定流量ろ過または膜差圧を一定に保ってろ過を行う定圧ろ過のいずれであってもよい。 The pressure in filtration can be set as appropriate, and it may be either constant flow rate filtration in which the flow rate of the filtrate is kept constant or constant pressure filtration in which the transmembrane differential pressure is kept constant.
 なお、クロスフロー方式とは、ろ過膜の表面(ろ過膜面)に対して平行に反応混合物(スラリー状の被処理液)を流し、ろ過膜面における濾滓の沈着によるろ過膜の汚染を防ぎながら反応混合物の一部を、反応混合物の流れ方向の側方にろ過する方式である。 In the cross-flow method, the reaction mixture (slurry liquid to be treated) flows parallel to the surface of the filtration membrane (filtration membrane surface) to prevent contamination of the filtration membrane due to deposition of filter cake on the filtration membrane surface. A part of the reaction mixture is filtered laterally in the direction of flow of the reaction mixture.
 固液分離時における反応混合物の温度は、0℃以上160℃以下とすることが好ましく、固液分離時に反応混合物に作用させる圧力は、0.1MPa以上5MPa以下とすることが好ましい。 The temperature of the reaction mixture during solid-liquid separation is preferably 0°C or higher and 160°C or lower, and the pressure applied to the reaction mixture during solid-liquid separation is preferably 0.1 MPa or higher and 5 MPa or lower.
 なお、工程(3)における固液分離においては、反応混合物中のすべての溶存成分および溶媒を除去しなくともよい。 In addition, in the solid-liquid separation in step (3), it is not necessary to remove all the dissolved components and solvent in the reaction mixture.
 工程(3)において、固液分離により得られた液状体には、通常、有効成分であるケイ酸やそのオリゴマーが含まれる。また、未反応の水酸化4級アンモニウムなども含まれうる。よって、工程(3)の固液分離により得られた液状体は、別の反応系における既に説明した工程(1)フィードバックしてリサイクルすることができる。すなわち、工程(3)の固液分離により得られた液状体は、別の反応系における工程(1)においてさらなる原料(有効成分)として混合して用いることができる。 In step (3), the liquid obtained by solid-liquid separation usually contains silicic acid and its oligomers, which are active ingredients. It may also contain unreacted quaternary ammonium hydroxide and the like. Therefore, the liquid material obtained by solid-liquid separation in step (3) can be fed back to step (1) already explained in another reaction system and recycled. That is, the liquid material obtained by solid-liquid separation in step (3) can be mixed and used as a further raw material (active ingredient) in step (1) in another reaction system.
 固液分離後、得られたゼオライト結晶中に残留してしまったゼオライト結晶以外の残留成分は、さらにメタノールやエタノールなどの有機溶媒や水を用いて洗浄処理を行うことにより除去してもよい。 After the solid-liquid separation, residual components other than the zeolite crystals remaining in the obtained zeolite crystals may be removed by further washing with an organic solvent such as methanol or ethanol or water.
 洗浄処理の方法としては、例えば、(a)得られたゼオライト結晶に水を添加してクロスフロー方式により洗浄ろ過する方法、(b)得られたゼオライト結晶に水を添加して全量ろ過方式により洗浄ろ過する方法、(c)得られたゼオライト結晶と水とを混合して撹拌した後に静置し、デカンテーションにより上澄み液を分離して除去する方法が挙げられる。これら(a)~(c)の方法の中でも、簡便に効率よく洗浄を行えるので、(a)の方法を採用することが好ましい。 Examples of the washing treatment method include (a) a method of adding water to the obtained zeolite crystals and washing and filtering by a cross-flow method, and (b) adding water to the obtained zeolite crystals and performing a dead end filtration method. and (c) a method of mixing the obtained zeolite crystals with water, stirring the mixture, allowing the mixture to stand, and separating and removing the supernatant liquid by decantation. Among these methods (a) to (c), the method (a) is preferably adopted because the washing can be performed simply and efficiently.
 洗浄ろ過を行う場合の洗浄ろ過の方法としては、既に説明したMF膜またはUF膜を使用した膜分離法を採用することが好ましい。洗浄ろ過の方式としては、外圧ろ過方式であってもよく、内圧ろ過方式であってもよい。洗浄ろ過は、加圧ろ過または吸引ろ過のいずれであってもよいが、加圧ろ過とすることが好ましい。洗浄ろ過における圧力は適宜設定することができ、ろ液の流量を一定に保ってろ過を行う定流量ろ過または膜差圧を一定に保ってろ過を行う定圧ろ過のいずれであってもよい。 As a method of washing and filtering when performing washing and filtration, it is preferable to adopt the membrane separation method using the MF membrane or UF membrane already explained. The washing filtration method may be an external pressure filtration method or an internal pressure filtration method. Washing filtration may be either pressure filtration or suction filtration, but pressure filtration is preferred. The pressure in the washing filtration can be set as appropriate, and may be constant flow filtration in which filtration is performed while maintaining a constant flow rate of the filtrate or constant pressure filtration in which filtration is performed while maintaining a constant transmembrane pressure.
 洗浄処理により得られる洗浄液、特に、洗浄初期の洗浄液には、有効成分として、ケイ酸やそのオリゴマー、水酸化4級アンモニウムなどが含まれうることから、得られた洗浄液を、別の反応系における工程(1)にフィードバックしてリサイクルし、さらなる成分として混合して用いてもよい。 Since the cleaning solution obtained by the cleaning treatment, particularly the cleaning solution in the initial stage of cleaning, may contain silicic acid, its oligomers, quaternary ammonium hydroxide, etc. as active ingredients, the resulting cleaning solution is treated in another reaction system. It may be recycled by feeding back to step (1) and mixed for use as a further component.
 洗浄処理時の洗浄液の温度は、好ましくは0℃以上100℃以下であり、洗浄処理時にに作用させる圧力は、好ましくは0.1MPa以上5MPa以下である。洗浄処理において、ゼオライト結晶と洗浄液とは必ずしも完全に分離する必要はなく、例えば、クロスフローろ過設備により洗浄処理を行った後、濃縮し、スラリーとして回収してもよい。洗浄処理は、水を添加してゼオライト結晶を洗浄した後に得ることができる洗浄液の25℃におけるpHが7以上9以下となるようにして行うことが好ましい。 The temperature of the cleaning liquid during cleaning is preferably 0°C or higher and 100°C or lower, and the pressure applied during cleaning is preferably 0.1 MPa or higher and 5 MPa or lower. In the washing treatment, the zeolite crystals and the washing solution do not necessarily need to be completely separated. For example, after the washing treatment is performed using a cross-flow filtration facility, they may be concentrated and recovered as a slurry. The washing treatment is preferably carried out so that the pH of the washing liquid obtained after washing the zeolite crystals by adding water is 7 or more and 9 or less at 25°C.
 得られたゼオライト結晶は、乾燥処理により乾燥させてもよい。乾燥処理における乾燥方法は、特に限定されない。乾燥方法としては、この技術分野において通常用いられる従来公知の任意好適な乾燥方法を採用することができる。このような乾燥方法としては、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法が挙げられる。これらの乾燥方法における乾燥条件は、常法に従って適宜設定することができる。 The obtained zeolite crystals may be dried by a drying treatment. A drying method in the drying treatment is not particularly limited. As a drying method, any suitable conventional drying method commonly used in this technical field can be employed. Such drying methods include, for example, evaporation to dryness, spray drying, drum drying, and flash drying. Drying conditions in these drying methods can be appropriately set according to a conventional method.
 (iv)工程(4)
 工程(4)は、工程(3)で得られたゼオライト結晶を焼成する工程である。
(iv) step (4)
Step (4) is a step of firing the zeolite crystals obtained in step (3).
 工程(4)においては、既に説明した工程(3)の実施により得られたゼオライト結晶が焼成される。 In step (4), the zeolite crystals obtained by performing step (3) already described are fired.
 工程(4)における焼成は、通常、酸素含有ガス雰囲気下で行われる。用いられる酸素含有ガスとしては、例えば、空気、空気と窒素との混合ガスが挙げられる。また、酸素含有ガス雰囲気下における焼成の前ないし後に、窒素ガスなどの不活性ガス雰囲気下での焼成をさらに行ってもよい。 Firing in step (4) is usually performed in an oxygen-containing gas atmosphere. Examples of the oxygen-containing gas that can be used include air and a mixed gas of air and nitrogen. Also, before or after firing in an oxygen-containing gas atmosphere, firing in an inert gas atmosphere such as nitrogen gas may be further performed.
 工程(4)における焼成は、具体的には、例えば、まず、窒素ガス雰囲気下(流通下)にて焼成を行い、次いで空気雰囲気下(流通下)にてさらに焼成する工程とすることができる。 Specifically, the firing in step (4) can be, for example, a step of first firing in a nitrogen gas atmosphere (under circulation) and then further firing in an air atmosphere (under circulation). .
 工程(4)において、焼成温度は400℃以上600℃以下とすることが好ましく、500℃以上600℃以下とすることがより好ましい。焼成時間は、0.5時間以上12時間以下とすることが好ましく、1時間以上6時間以下とすることがでより好ましい。 In step (4), the firing temperature is preferably 400°C or higher and 600°C or lower, more preferably 500°C or higher and 600°C or lower. The firing time is preferably 0.5 hours or more and 12 hours or less, more preferably 1 hour or more and 6 hours or less.
 (v)工程(5)
 工程(5)は、工程(4)で焼成されたゼオライト結晶を、無機酸および有機酸からなる群より選ばれる少なくとも1種の酸を含む水溶液で接触処理して、ゼオライトを得る工程である。
(v) step (5)
Step (5) is a step of contact-treating the zeolite crystals fired in step (4) with an aqueous solution containing at least one acid selected from the group consisting of inorganic acids and organic acids to obtain zeolite.
 工程(5)は、ゼオライト結晶に取り込まれている、ホウ素元素、ゲルマニウム元素、マグネシウム元素、アルミニウム元素、スズ元素、鉄元素といった、例えば化合物(A)に由来する不要な元素を除去するための工程である。 Step (5) is a step for removing unnecessary elements derived from the compound (A), such as boron, germanium, magnesium, aluminum, tin, and iron elements incorporated in the zeolite crystals. is.
 工程(5)において、ゼオライト結晶を「水溶液で接触処理する」とは、ゼオライト結晶を、酸を含む水溶液に、従来公知の任意好適な接触処理方法により接触させることをいう。 In step (5), "contact-treating the zeolite crystals with an aqueous solution" means bringing the zeolite crystals into contact with an acid-containing aqueous solution by any conventionally known contact treatment method.
 接触処理の態様としては、例えば、ゼオライト結晶を水溶液に浸漬する態様、ゼオライト結晶に霧状の水溶液を噴霧する態様が挙げられる。接触処理は、簡便であるため、ゼオライト結晶を水溶液に浸漬する態様とすることが好ましい。 Examples of contact treatment include a mode in which the zeolite crystals are immersed in an aqueous solution, and a mode in which the zeolite crystals are sprayed with a misty aqueous solution. Since the contact treatment is simple, it is preferable to immerse the zeolite crystals in an aqueous solution.
 工程(5)において、用いられる水溶液に含まれうる無機酸としては、例えば、硝酸、リン酸、塩酸、硫酸が挙げられる。 Examples of inorganic acids that can be contained in the aqueous solution used in step (5) include nitric acid, phosphoric acid, hydrochloric acid, and sulfuric acid.
 工程(5)において、用いられる水溶液に含まれうる有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、安息香酸、クエン酸、シュウ酸、テレフタル酸、パラトルエンスルホン酸が挙げられる。 Examples of organic acids that can be contained in the aqueous solution used in step (5) include formic acid, acetic acid, propionic acid, benzoic acid, citric acid, oxalic acid, terephthalic acid, and p-toluenesulfonic acid.
 工程(5)において、無機酸および有機酸は、いずれも1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In step (5), the inorganic acid and the organic acid may be used singly or in combination of two or more.
 また、工程(5)において、無機酸および有機酸は、いずれか一方のみを含む水溶液として用いることができ、さらには両方を含む水溶液として用いることもできる。 Also, in step (5), the inorganic acid and the organic acid can be used as an aqueous solution containing only one of them, or can be used as an aqueous solution containing both.
 工程(5)において、無機酸および有機酸からなる群より選ばれる少なくとも1種の酸としては、無機酸を用いることが好ましく、硝酸、リン酸、塩酸、硫酸、炭酸を用いることがより好ましく、硝酸またはリン酸を用いることがさらに好ましい。 In step (5), the at least one acid selected from the group consisting of inorganic acids and organic acids is preferably an inorganic acid, more preferably nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, or carbonic acid. More preferably, nitric acid or phosphoric acid is used.
 水溶液に含まれうる無機酸および有機酸からなる群より選ばれる少なくとも1種の酸における水素イオン濃度は、好ましくは0.001mol/L以上20mol/L以下であり、より好ましくは0.01mol/L以上10mol/L以下である。 The hydrogen ion concentration in at least one acid selected from the group consisting of inorganic acids and organic acids that can be contained in the aqueous solution is preferably 0.001 mol/L or more and 20 mol/L or less, more preferably 0.01 mol/L. It is more than 10 mol/L or less.
 工程(5)において、焼成されたゼオライト結晶中のホウ素化合物、ゲルマニウム化合物、マグネシウム化合物、アルミニウム化合物、スズ化合物および鉄化合物からなる群より選ばれる少なくとも1種の化合物(A)の1当量に対し、無機酸および有機酸からなる群より選ばれる少なくとも1種の酸を1当量以上100当量以下含む水溶液を添加して接触処理することが好ましい。 In step (5), per equivalent of at least one compound (A) selected from the group consisting of boron compounds, germanium compounds, magnesium compounds, aluminum compounds, tin compounds and iron compounds in the fired zeolite crystals, It is preferable to carry out the contact treatment by adding an aqueous solution containing 1 equivalent or more and 100 equivalents or less of at least one acid selected from the group consisting of inorganic acids and organic acids.
 また、工程(5)において用いられる水溶液は、無機酸および有機酸からなる群より選ばれる少なくとも1種の酸の他に、硝酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、炭酸アンモニウムなどの塩を含んでいてもよい。 In addition, the aqueous solution used in step (5) may contain at least one acid selected from the group consisting of inorganic acids and organic acids, as well as salts such as ammonium nitrate, ammonium chloride, ammonium sulfate and ammonium carbonate. .
 工程(5)における接触処理にあたり、ゼオライト結晶の温度は、0℃以上100℃以下とすることが好ましく、45℃以上95℃以下とすることがより好ましい。 In the contact treatment in step (5), the temperature of the zeolite crystals is preferably 0°C or higher and 100°C or lower, more preferably 45°C or higher and 95°C or lower.
 工程(5)における接触処理にあたり、ゼオライト結晶の温度を上記範囲内とすることにより、触媒の活性により優れるゼオライトを得ることができ、当該ゼオライトを触媒として用いることにより、シクロヘキサノンオキシムをより高い転化率で反応させ、ε-カプロラクタムをより高い選択率で得ることができ、ε-カプロラクタムをより生産性よく製造することができる。 In the contact treatment in step (5), by setting the temperature of the zeolite crystals within the above range, a zeolite with excellent catalytic activity can be obtained, and by using the zeolite as a catalyst, a higher conversion rate of cyclohexanone oxime can be obtained. can be reacted to obtain ε-caprolactam with higher selectivity, and ε-caprolactam can be produced with higher productivity.
 工程(5)における接触処理にあたり、ゼオライト結晶を加圧条件下で接触処理してもよく、加圧する場合の圧力は、好ましくは0.1MPa以上5MPa以下である。 In the contact treatment in step (5), the zeolite crystals may be subjected to contact treatment under pressurized conditions, and the pressure when pressurized is preferably 0.1 MPa or more and 5 MPa or less.
 工程(5)における接触処理にあたり、処理時間は、好ましくは0.1時間以上100時間以下であり、より好ましくは0.1時間以上10時間以下である。 The treatment time for the contact treatment in step (5) is preferably 0.1 hours or more and 100 hours or less, more preferably 0.1 hours or more and 10 hours or less.
 ここで、工程(5)における接触処理は、回分式で行ってもよいし、連続式で行ってもよい。工程(5)における接触処理は、例えば、焼成されたゼオライト結晶を、攪拌槽中で水溶液に浸漬して攪拌することにより行ってもよく、焼成されたゼオライト結晶を充填した管状容器に水溶液を流通させて行ってもよい。 Here, the contact treatment in step (5) may be performed batchwise or continuously. The contact treatment in step (5) may be carried out, for example, by immersing the calcined zeolite crystals in an aqueous solution in a stirring tank and stirring the aqueous solution in a tubular container filled with the calcined zeolite crystals. You can let me go.
 工程(5)における接触処理を、回分式で行う場合には、一旦固液分離した後に、さらに1回以上、同様の接触処理を繰り返して行ってもよい。接触処理をさらに1回以上繰り返して実施する場合の接触処理の回数は、好ましくは1回以上10回以下である。 When the contact treatment in step (5) is performed batchwise, the same contact treatment may be repeated one or more times after solid-liquid separation. When the contact treatment is further repeated one or more times, the number of contact treatments is preferably 1 or more and 10 or less.
 工程(5)における接触処理にあたり、水溶液の使用量は、焼成されたゼオライト結晶100質量部に対して、好ましくは80質量部以上5000質量部以下である。 In the contact treatment in step (5), the amount of the aqueous solution used is preferably 80 parts by mass or more and 5000 parts by mass or less with respect to 100 parts by mass of the fired zeolite crystals.
 工程(5)における接触処理を実施した処理物は、例えば、濃縮、ろ過、デカンテーションにより固液分離することによって(乾燥工程1)、ゼオライトとして得ることができる。 The treated material subjected to the contact treatment in step (5) can be obtained as zeolite by, for example, concentration, filtration, and solid-liquid separation by decantation (drying step 1).
 工程(5)における接触処理後に固液分離を行うにあたっての処理物の温度は、0℃以上160℃以下とすることが好ましい。 It is preferable that the temperature of the treated material be 0°C or higher and 160°C or lower when performing solid-liquid separation after the contact treatment in step (5).
 工程(5)における接触処理後に固液分離を行うにあたり、固液分離は加圧条件下で実施してもよい。固液分離にあたり処理物に作用させる圧力は、0.1MPa以上5MPa以下とすることが好ましい。固液分離により、処理物中に含まれる水溶液などの不要な成分は、完全には除去されなくともよい。 When performing solid-liquid separation after the contact treatment in step (5), the solid-liquid separation may be performed under pressurized conditions. It is preferable that the pressure applied to the material to be treated in the solid-liquid separation is 0.1 MPa or more and 5 MPa or less. Solid-liquid separation may not completely remove unnecessary components such as an aqueous solution contained in the processed material.
 工程(5)における接触処理および固液分離の実施後、得られたゼオライト中に残留しているゼオライト以外の残留成分を可能な限り除去するために、メタノール、エタノールといった有機溶媒や水を用いてさらなる洗浄処理を行ってもよい。 After the contact treatment and solid-liquid separation in step (5), in order to remove as much as possible residual components other than zeolite remaining in the obtained zeolite, an organic solvent such as methanol or ethanol or water is used. Additional cleaning treatments may be performed.
 さらなる洗浄処理におけるゼオライトの温度は、0℃以上100℃以下とすることが好ましい。 The temperature of the zeolite in the further washing treatment is preferably 0°C or higher and 100°C or lower.
 また、さらなる洗浄処理にあたり、ゼオライトは加圧条件下で洗浄してもよい。加圧条件における圧力は、0.1MPa以上5MPa以下とすることが好ましい。さらなる洗浄処理において、ゼオライトが含有する洗浄液は、完全には除去されなくともよい。 In addition, the zeolite may be washed under pressurized conditions for further washing treatment. It is preferable that the pressure under the pressurization condition is 0.1 MPa or more and 5 MPa or less. In further washing treatments, the zeolite-containing washing liquid may not be completely removed.
 工程(5)を実施することにより得られたゼオライトは、さらに乾燥処理されてもよい(乾燥工程2)。この乾燥処理における乾燥方法は、特に限定されない。当該乾燥方法としては、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法といった従来公知の任意好適な方法が挙げられる。また、この乾燥処理における乾燥条件は、常法に従って適宜設定することができる。
 以上のとおりの工程(1)~(5)を実施することで、本実施形態のゼオライトを製造することができる。
The zeolite obtained by performing step (5) may be further dried (drying step 2). A drying method in this drying treatment is not particularly limited. Examples of the drying method include conventionally known arbitrary and suitable methods such as an evaporation drying method, a spray drying method, a drum drying method, and a flash drying method. Moreover, the drying conditions in this drying treatment can be appropriately set according to a conventional method.
By carrying out the steps (1) to (5) as described above, the zeolite of the present embodiment can be produced.
 本実施形態のゼオライトの製造方法によれば、特に工程(2)において、水熱合成反応の進行中において化合物(A)を供給して、さらに水熱合成反応を進行させることにより、ε-カプロラクタムを極めて高い選択率で得ることができるゼオライトを製造することができる。 According to the method for producing zeolite of the present embodiment, particularly in step (2), the compound (A) is supplied while the hydrothermal synthesis reaction is in progress, and the hydrothermal synthesis reaction is further advanced to obtain ε-caprolactam. can be produced with a very high selectivity.
3.ε-カプロラクタムの製造方法
 本実施形態のε-カプロラクタムの製造方法は、既に説明した工程(1)~(5)を実施し、工程(5)で得られたゼオライトを触媒として用いて、シクロヘキサノンオキシムを気相にてベックマン転位反応させることによりε-カプロラクタムを得る工程(6)を含む。
3. Method for producing ε-caprolactam In the method for producing ε-caprolactam of the present embodiment, the steps (1) to (5) already described are performed, and the zeolite obtained in step (5) is used as a catalyst to produce cyclohexanone oxime. is subjected to a Beckmann rearrangement reaction in the gas phase to obtain ε-caprolactam (6).
 また、本実施形態のε-カプロラクタムの製造方法は、既に説明した工程(1)~(5)を含むゼオライトの製造方法により製造されたゼオライトを用意し、当該ゼオライトを触媒として用いて、シクロヘキサノンオキシムを気相にてベックマン転位反応させることによりε-カプロラクタムを得る、ε-カプロラクタムの製造方法であってもよい。 Further, in the method for producing ε-caprolactam of the present embodiment, zeolite produced by the method for producing zeolite including the steps (1) to (5) already described is prepared, and the zeolite is used as a catalyst to produce cyclohexanone oxime. may be a method for producing ε-caprolactam, in which ε-caprolactam is obtained by Beckmann rearrangement reaction in the gas phase.
 すなわち、工程(6)においては、工程(1)~(5)を含むゼオライトの製造方法により製造されたゼオライトを触媒として用いることで、原料であるシクロヘキサノンオキシムを気相にてベックマン転位反応させることができ、結果としてε-カプロラクタムを製造することができる。 That is, in the step (6), the zeolite produced by the zeolite production method including the steps (1) to (5) is used as a catalyst to cause the Beckmann rearrangement reaction of the raw material cyclohexanone oxime in the gas phase. and as a result, ε-caprolactam can be produced.
 本実施形態のゼオライトは、ε-カプロラクタムを製造するために用いられる反応容器の大きさや形状等に合わせて、所定の大きさおよび形状に成形した成形体として使用することができる。 The zeolite of the present embodiment can be used as a compact molded into a predetermined size and shape according to the size and shape of the reaction vessel used for producing ε-caprolactam.
 本実施形態のゼオライト(以下、ゼオライトという場合には、製造途中のゼオライト結晶も含まれうる。)の成形は、例えば、押出、圧縮、打錠、流動、転動、噴霧といった従来公知の任意好適な成形方法により行うことができる。 The zeolite of the present embodiment (hereinafter, when referred to as zeolite, may also include zeolite crystals in the middle of production) can be formed by any conventionally known suitable method such as extrusion, compression, tableting, flow, tumbling, or spraying. It can be performed by a suitable molding method.
 ゼオライトは、上記例示の成形方法により、例えば球状、円柱状、板状、リング状、クローバー状、顆粒状等の所望の任意好適な形状に成形することができる。 The zeolite can be formed into any desired and suitable shape, such as spherical, cylindrical, plate-like, ring-like, clover-like, and granular shapes, by the forming method exemplified above.
 ゼオライトの成形は、既に説明した工程(3)の実施後に行ってもよく、工程(4)の実施後に行ってもよく、工程(5)の実施後に行ってもよい。 The zeolite molding may be performed after the step (3) already explained, may be performed after the step (4), or may be performed after the step (5).
 また、工程(3)において洗浄処理が実施される場合には、洗浄処理後に成形を行ってもよい。成形された成形体については、成形体の機械的強度を向上させるため、例えば、水蒸気による接触処理をさらに行ってもよい。 Further, when cleaning treatment is performed in step (3), molding may be performed after cleaning treatment. The molded body may be further subjected to a contact treatment with, for example, water vapor in order to improve the mechanical strength of the molded body.
 成形体は、ゼオライトのみから実質的になるものであってもよく、ゼオライトに加えて、他の成分を含んでいてもよい。すなわち、成形体は、例えば、ゼオライトのみを実質的に成形した成形体であってよく、ゼオライトを所定のバインダーや補強材といった他の成分と混合して成形した成形体であってもよく、さらにはゼオライトを所定の担体に担持させた成形体であってもよい。 The compact may consist essentially of zeolite alone, or may contain other components in addition to zeolite. That is, the molded body may be, for example, a molded body obtained by substantially molding only zeolite, or may be a molded body obtained by mixing zeolite with other components such as a predetermined binder and reinforcing material. may be a shaped body in which zeolite is supported on a predetermined carrier.
 工程(6)のベックマン転位反応における反応温度は、好ましくは250℃以上500℃以下であり、より好ましくは300℃以上450℃以下である。 The reaction temperature in the Beckmann rearrangement reaction in step (6) is preferably 250°C or higher and 500°C or lower, more preferably 300°C or higher and 450°C or lower.
 工程(6)のベックマン転位反応における反応圧力は、好ましくは0.005MPa以上0.5MPa以下であり、より好ましくは0.005MPa以上0.2MPa以下である。 The reaction pressure in the Beckmann rearrangement reaction in step (6) is preferably 0.005 MPa or more and 0.5 MPa or less, more preferably 0.005 MPa or more and 0.2 MPa or less.
 工程(6)は、固定床形式で行ってもよいし、流動床形式で行ってもよい。工程(6)において、気化させたシクロヘキサノンオキシムの供給速度は、触媒1gあたりの供給速度(単位:g/h)、すなわち空間速度WHSV(単位:h-1)において、0.1h-1以上20h-1以下とすることが好ましく、0.2h-1以上10h-1以下とすることがより好ましい。 Step (6) may be carried out in a fixed bed format or in a fluidized bed format. In the step (6), the supply rate of the vaporized cyclohexanone oxime is 0.1 h -1 or more for 20 h at the supply rate (unit: g/h) per 1 g of the catalyst, that is, the space velocity WHSV (unit: h -1 ). −1 or less, and more preferably 0.2 h −1 or more and 10 h −1 or less.
 シクロヘキサノンオキシムは、例えば、気相にて単独で反応系内に導入してもよいし、窒素ガス、アルゴンガス、二酸化炭素ガスといった不活性ガスと共に導入してもよい。また、特開平2-250866号公報が開示しているように、シクロヘキサノンオキシムを気相にてエーテルと共存させて導入する方法、特開平2-275850号公報が開示しているように、シクロヘキサノンオキシムを気相にて低級アルコールと共存させて導入する方法、特開平5-201965号公報が開示しているように、シクロヘキサノンオキシムを気相にてアルコールおよび/またはエーテル、さらには水と共存させて導入する方法、特開平5-201966号公報が開示しているように、シクロヘキサノンオキシムをアンモニアと共存させて導入する方法、特開平6-107627号公報が開示しているように、シクロヘキサノンオキシムを気相にてメチルアミンと共存させて導入する方法を用いてもよい。 Cyclohexanone oxime, for example, may be introduced into the reaction system alone in a gas phase, or may be introduced together with an inert gas such as nitrogen gas, argon gas, or carbon dioxide gas. Further, as disclosed in JP-A-2-250866, a method of introducing cyclohexanone oxime in the gas phase in the presence of ether, and as disclosed in JP-A-2-275850, cyclohexanone oxime is introduced in the gas phase in the presence of a lower alcohol, as disclosed in JP-A-5-201965, cyclohexanone oxime in the gas phase in the presence of an alcohol and/or ether, and further water. A method of introducing cyclohexanone oxime in the presence of ammonia as disclosed in JP-A-5-201966, a method of introducing cyclohexanone oxime in the presence of ammonia as disclosed in JP-A-6-107627. A method of coexisting with methylamine in a phase and introducing it may also be used.
 工程(6)において用いられるシクロヘキサノンオキシムは、例えば、シクロヘキサノンをヒドロキシルアミンまたはその塩でオキシム化することにより調製してよく、シクロヘキサノンをチタノシリケート等の触媒の存在下でアンモニアと過酸化水素とでアンモオキシム化することにより調製してもよく、さらにはシクロヘキシルアミンを酸化することにより調製してもよい。 The cyclohexanone oxime used in step (6) may be prepared, for example, by oximating cyclohexanone with hydroxylamine or a salt thereof, by reacting cyclohexanone with ammonia and hydrogen peroxide in the presence of a catalyst such as a titanosilicate. It may be prepared by ammoximation, or may be prepared by oxidation of cyclohexylamine.
 工程(6)は、触媒であるゼオライトを空気などの酸素含有ガス雰囲気下で焼成する処理と組み合わせて実施してもよい。この焼成処理により、ゼオライトの表面に析出した炭素質物質などを燃焼させることによって除去することができるため、シクロヘキサノンオキシムの転化率、さらにはε-カプロラクタムの選択率の持続性を高めることができる。 Step (6) may be carried out in combination with a process of calcining the zeolite catalyst in an oxygen-containing gas atmosphere such as air. By this calcination treatment, the carbonaceous substances deposited on the surface of the zeolite can be removed by burning, so that the conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam can be sustained.
 工程(6)を、例えば、固定床式で行う場合には、触媒であるゼオライトを充填した固定床式反応容器に、シクロヘキサノンオキシムを気相にて、必要に応じて他の成分と共に供給することによりベックマン転位反応を行った後、シクロヘキサノンオキシムの供給を止め、次いで、酸素含有ガスを反応容器内に供給してゼオライトの焼成を行った後、さらに、同様のベックマン転位反応および焼成を繰り返して行う方法とすることが好ましい。 For example, when step (6) is performed in a fixed bed system, cyclohexanone oxime is supplied in a gas phase together with other components as necessary to a fixed bed reactor filled with zeolite as a catalyst. After performing the Beckmann rearrangement reaction by , the supply of cyclohexanone oxime is stopped, and then the oxygen-containing gas is supplied into the reaction vessel to calcine the zeolite, and then the same Beckmann rearrangement reaction and calcination are repeated. It is preferable to set it as a method.
 また、工程(6)を、例えば、流動床式で行う場合には、触媒であるゼオライトが流動している流動床式反応容器に、シクロヘキサノンオキシムを気相にて、必要に応じて他の成分と共に供給してベックマン転位反応を行いつつ、反応容器内からゼオライトを連続的または断続的に抜き出し、抜き出したゼオライトを焼成装置で焼成してから再び反応容器内に戻すことが好ましい。 Further, when the step (6) is carried out, for example, in a fluidized bed system, cyclohexanone oxime is added in a gas phase to a fluidized bed reaction vessel in which the zeolite catalyst is fluidized, and other components are added as necessary. It is preferable that the zeolite is continuously or intermittently withdrawn from the reaction vessel while the Beckmann rearrangement reaction is performed by supplying the zeolite together with the Beckmann rearrangement reaction, and the extracted zeolite is calcined in a calciner and then returned to the reaction vessel.
 なお、工程(6)により得られたε-カプロラクタムを含む生成物は、従来公知の任意好適な後処理工程により処理することができる。後処理工程は、例えば、工程(6)による生成物である反応生成ガスを冷却して凝縮させた後、従来公知の任意好適な抽出処理、蒸留処理、晶析処理などを行って、ε-カプロラクタムを分離する工程とすることができる。 The product containing ε-caprolactam obtained in step (6) can be treated by any suitable conventionally known post-treatment step. In the post-treatment step, for example, after cooling and condensing the reaction product gas, which is the product of step (6), conventionally known arbitrary and suitable extraction treatment, distillation treatment, crystallization treatment, etc. are performed to obtain ε- It can be a step of separating caprolactam.
4.用途
 本実施形態のゼオライトは、例えば、分子ふるい、吸着材といった種々の用途に適用することができる。本実施形態のゼオライトは、有機合成反応において、特に触媒をはじめとする種々の用途に好適に適用することができる。中でも、本実施形態のゼオライトは、シクロヘキサノンオキシムを気相にてベックマン転位反応させることによりε-カプロラクタムを製造するための触媒として好適に用いることができる。
4. Applications The zeolite of the present embodiment can be applied to various applications such as molecular sieves and adsorbents. The zeolite of the present embodiment can be suitably applied to various uses, particularly as a catalyst, in organic synthesis reactions. Among them, the zeolite of the present embodiment can be suitably used as a catalyst for producing ε-caprolactam by Beckmann rearrangement reaction of cyclohexanone oxime in the gas phase.
 以下、本発明の実施例を示す。本発明は以下に示す実施例に限定されない。 Examples of the present invention are shown below. The present invention is not limited to the examples shown below.
 なお、シクロヘキサノンオキシムの空間速度WHSV(単位:h-1)は、シクロヘキサノンオキシムの供給速度(単位:g/h)を触媒重量(単位:g)で除することにより算出した。 The space velocity WHSV (unit: h-1) of cyclohexanone oxime was calculated by dividing the feed rate (unit: g/h) of cyclohexanone oxime by the catalyst weight (unit: g).
 シクロヘキサノンオキシムおよびε-カプロラクタムの分析は、ガスクロマトグラフィーにより行った。シクロヘキサノンオキシムの転化率およびε-カプロラクタムの選択率は、供給したシクロヘキサノンオキシムのモル数をXとし、未反応のシクロヘキサノンオキシムのモル数をYとし、生成したε-カプロラクタムのモル数をZとして、それぞれ下記式により算出した。

   シクロヘキサノンオキシムの転化率(%)=[(X-Y)/X]×100
   ε-カプロラクタムの選択率(%)=[Z/(X-Y)]×100
Analysis of cyclohexanone oxime and ε-caprolactam was performed by gas chromatography. The conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam are obtained by setting the number of moles of supplied cyclohexanone oxime as X, the number of moles of unreacted cyclohexanone oxime as Y, and the number of moles of ε-caprolactam produced as Z, respectively. It was calculated by the following formula.

Conversion rate of cyclohexanone oxime (%) = [(XY) / X] × 100
Selectivity of ε-caprolactam (%) = [Z/(XY)] × 100
 <実施例1>
(a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーにオルトケイ酸テトラエチル[Si(OC]115.00g、39.7質量%水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、および58.4質量%の水を含有している。)68.00g、85質量%の水酸化カリウム(15質量%の水を含有している。)0.72gおよび水128.00gを加え、常温で150分間攪拌して、混合物を得た。
<Example 1>
(a) Production of zeolite [step (1)]
115.00 g of tetraethylorthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight aqueous tetra-n-propylammonium hydroxide (0.9% by weight of potassium, 1.0% by weight of 68.00 g of hydrogen bromide, and 58.4% by weight of water; 0.72 g of 85% by weight of potassium hydroxide (containing 15% by weight of water); 00 g and stirred at room temperature for 150 minutes to obtain a mixture.
[工程(2)]
 工程(1)で得られた混合物を、ステンレス製オートクレーブに加え、105℃で攪拌して水熱合成反応を進行させつつ、6時間経過時において得られた混合物に、ホウ酸(ホウ素化合物)0.68g、硝酸マグネシウム6水和物(マグネシウム化合物)0.32g、60質量%の硝酸(40質量%の水を含有している。)14.20gおよび水6.60gを加え、150℃に昇温して42時間攪拌して水熱合成反応をさらに進行させることによりゼオライト結晶を含む反応混合物を得た。得られた混合物に含まれるケイ素元素の量は、ホウ素元素1モルに対して、50.0モルであった。また、得られた混合物に含まれるケイ素元素の量は、マグネシウム元素1モルに対して、890.0モルであった。
[Step (2)]
The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction. 0.32 g of magnesium nitrate hexahydrate (a magnesium compound), 14.20 g of 60% by weight nitric acid (containing 40% by weight of water) and 6.60 g of water were added and the temperature was raised to 150°C. A reaction mixture containing zeolite crystals was obtained by heating and stirring for 42 hours to further advance the hydrothermal synthesis reaction. The amount of silicon element contained in the obtained mixture was 50.0 mol per 1 mol of boron element. The amount of silicon element contained in the obtained mixture was 890.0 mol per 1 mol of magnesium element.
[工程(3)]
 工程(2)で得られたゼオライト結晶を含む反応混合物を、ろ過することにより固液分離してゼオライト結晶を得た。
[Step (3)]
The reaction mixture containing the zeolite crystals obtained in step (2) was subjected to solid-liquid separation by filtration to obtain zeolite crystals.
[洗浄工程1および乾燥工程1]
 工程(3)で得られたゼオライト結晶をイオン交換水で洗浄ろ過した。洗浄ろ過をろ液のpHが6以上9以下になるまで複数回行った後、洗浄されたゼオライト結晶を100℃以上で乾燥した。
[Washing step 1 and drying step 1]
The zeolite crystals obtained in step (3) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate reached 6 or more and 9 or less, the washed zeolite crystals were dried at 100° C. or more.
[工程(4)]
 乾燥されたゼオライト結晶を、530℃、1時間の条件で、窒素ガス流通下にて焼成した後、530℃、1時間、空気流通下でさらに焼成し、粉末状の白色結晶であるゼオライト結晶を得た。
[Step (4)]
The dried zeolite crystals are calcined at 530° C. for 1 hour under nitrogen gas flow, and then further calcined at 530° C. for 1 hour under air flow to obtain zeolite crystals that are powdery white crystals. Obtained.
[工程(5)]
 工程(4)で得られた粉末状の白色結晶であるゼオライト結晶4.0gをナスフラスコに加え、次いで、6mol/Lの硝酸水溶液280gを加え、90℃で1時間攪拌した後、ろ過してゼオライト結晶を固液分離した。得られたゼオライト結晶に対し、同じ硝酸水溶液を用いた処理および固液分離をさらに2回繰り返した処理物をゼオライトとして得た。
[Step (5)]
Add 4.0 g of powdered white zeolite crystals obtained in step (4) to an eggplant flask, then add 280 g of a 6 mol/L nitric acid aqueous solution, stir at 90° C. for 1 hour, and filter. Zeolite crystals were subjected to solid-liquid separation. The obtained zeolite crystals were treated with the same aqueous nitric acid solution and solid-liquid separation was repeated twice to obtain a treated product as zeolite.
[洗浄工程2および乾燥工程2]
 工程(5)で得られたゼオライトをろ液のpHが5以上になるまでイオン交換水で複数回洗浄した後、100℃以上で乾燥させた。次いで、乾燥させたゼオライトを、粒度0.50~0.85mmの粒子に分級した。こうして得られたゼオライトを、下記(b)にかかる工程(6)において触媒として使用した。
[Washing step 2 and drying step 2]
The zeolite obtained in step (5) was washed several times with ion-exchanged water until the pH of the filtrate reached 5 or higher, and then dried at 100° C. or higher. The dried zeolite was then classified into particles with a particle size of 0.50-0.85 mm. The zeolite thus obtained was used as a catalyst in step (6) of (b) below.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライト0.375gを、内径1cmの石英ガラス製反応管中に充填して触媒層を形成し、窒素ガス4.2L/hの流通下、350℃で1時間予熱処理した。その後、触媒層の温度を、窒素ガス4.2L/hの流通下、316℃まで降温した。その後、気化させたシクロヘキサノンオキシム/メタノール=1/1.8(質量比)の混合物を、8.4g/h(シクロヘキサノンオキシムのWHSV=8h-1)の速度で反応管に供給し、ベックマン転位反応を行った。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーで分析した。
(b) Production of ε-caprolactam [Step (6)]
0.375 g of the zeolite obtained in (a) above was filled in a quartz glass reaction tube with an inner diameter of 1 cm to form a catalyst layer, and was preliminarily heated at 350° C. for 1 hour under a stream of nitrogen gas of 4.2 L/h. heat treated. After that, the temperature of the catalyst layer was lowered to 316° C. under the flow of 4.2 L/h of nitrogen gas. Thereafter, the vaporized mixture of cyclohexanone oxime/methanol = 1/1.8 (mass ratio) was supplied to the reaction tube at a rate of 8.4 g/h (WHSV of cyclohexanone oxime = 8h -1 ), and the Beckmann rearrangement reaction was carried out. did After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は99.8%であり、ε-カプロラクタムの選択率は97.4%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 99.8% and the selectivity of ε-caprolactam was 97.4%. The results are also shown in Table 1 below.
 <実施例2>
(a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーに、オルトケイ酸テトラエチル[Si(OC]115.00g、39.7質量%の水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、58.4質量%の水を含有している。)67.20g、85質量%水酸化カリウム(15質量%の水を含有している。)0.72gおよび水308.20gを加え、常温で150分間攪拌して、混合物を得た。
<Example 2>
(a) Production of zeolite [step (1)]
In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight), 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308.0 g 20 g was added and stirred at room temperature for 150 minutes to obtain a mixture.
[工程(2)]
 工程(1)で得られた混合物を、ステンレス製オートクレーブに加え、105℃で攪拌して水熱合成反応を進行させつつ、6時間経過時において得られた混合物に、ホウ酸0.34g、硝酸マグネシウム6水和物1.41g、60質量%硝酸(40質量%の水を含有している。)9.20gおよび水1.06gを加え、140℃に昇温して42時間攪拌して水熱合成反応をさらに進行させることによりゼオライト結晶を含む反応混合物を得た。得られた混合物に含まれるケイ素元素の量は、ホウ素元素1モルに対して、100.0モルであった。また、得られた混合物に含まれるケイ素元素の量は、マグネシウム元素1モルに対して、100.0モルであった。
[Step (2)]
The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction. 1.41 g of magnesium hexahydrate, 9.20 g of 60% by mass nitric acid (containing 40% by mass of water) and 1.06 g of water are added, heated to 140° C. and stirred for 42 hours to give water A reaction mixture containing zeolite crystals was obtained by allowing the thermal synthesis reaction to proceed further. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of boron element. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
[その他の工程]
 上記工程(1)および(2)以外の工程は、実施例1と同様に実施して、実施例2にかかるゼオライトを得た。
[Other processes]
The steps other than the steps (1) and (2) were carried out in the same manner as in Example 1 to obtain the zeolite of Example 2.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーで分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は99.6%であり、ε-カプロラクタムの選択率は97.1%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 99.6%, and the selectivity of ε-caprolactam was 97.1%. The results are also shown in Table 1 below.
 <実施例3>
(a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーに、オルトケイ酸テトラエチル[Si(OC]115.00g、39.7質量%の水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、58.4質量%の水を含有している。)67.20g、85質量%の水酸化カリウム(15質量%の水を含有している。)0.72gおよび水308.20gを加え、常温で150分間攪拌して、混合物を得た。
<Example 3>
(a) Production of zeolite [step (1)]
In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight) 67.20 g, 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308% water .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
[工程(2)]
 工程(1)で得られた混合物を、ステンレス製オートクレーブに加え、105℃で攪拌して水熱合成反応させつつ、6時間経過時において得られた混合物に、ホウ酸0.34g、硝酸マグネシウム6水和物1.41g、85質量%のリン酸(15質量%の水を含有している。)7.50gおよび水8.77gを加え、140℃に昇温して42時間攪拌して水熱合成反応をさらに進行させることによりゼオライト結晶を含む反応混合物を得た。得られた混合物に含まれるケイ素元素の量は、ホウ素元素1モルに対して、100.0モルであった。また、得られた混合物に含まれるケイ素元素の量は、マグネシウム元素1モルに対して、100.0モルであった。
[Step (2)]
The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. for a hydrothermal synthesis reaction. 1.41 g of the hydrate, 7.50 g of 85% by mass phosphoric acid (containing 15% by mass of water) and 8.77 g of water were added, heated to 140° C. and stirred for 42 hours. A reaction mixture containing zeolite crystals was obtained by allowing the thermal synthesis reaction to proceed further. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of boron element. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
[その他の工程]
 上記工程(1)および(2)以外の工程は、実施例1と同様に実施して、実施例3にかかるゼオライトを得た。
[Other processes]
The steps other than the steps (1) and (2) were carried out in the same manner as in Example 1 to obtain the zeolite of Example 3.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーで分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は99.4%であり、ε-カプロラクタムの選択率は97.2%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 99.4% and the selectivity of ε-caprolactam was 97.2%. The results are also shown in Table 1 below.
 <実施例4>
(a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーに、オルトケイ酸テトラエチル[Si(OC]115.00g、39.7質量%の水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、58.4質量%の水を含有している。)67.20g、85質量%の水酸化カリウム(15質量%の水を含有している。)0.72gおよび水129.20gを加え、常温で150分間攪拌して、混合物を得た。
<Example 4>
(a) Production of zeolite [step (1)]
In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight), 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 129% water. .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
[工程(2)]
 工程(1)で得られた混合物を、ステンレス製オートクレーブに加え、105℃で攪拌して水熱合成反応を進行させつつ、6時間経過時において得られた混合物に、ホウ酸0.34g、硝酸マグネシウム6水和物1.41gおよび水10.8gを加え、140℃に昇温して42時間攪拌して水熱合成反応をさらに進行させることによりゼオライト結晶を含む反応混合物を得た。得られた混合物に含まれるケイ素元素の量は、ホウ素元素1モルに対して、100.0モルであった。また、得られた混合物に含まれるケイ素元素の量は、マグネシウム元素1モルに対して、100.0モルであった。
[Step (2)]
The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction. 1.41 g of magnesium hexahydrate and 10.8 g of water were added, the temperature was raised to 140° C., and the mixture was stirred for 42 hours to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of boron element. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
[その他の工程]
 上記工程(1)および(2)以外の工程は、実施例1と同様に実施して、実施例4にかかるゼオライトを得た。
[Other processes]
The steps other than the steps (1) and (2) were carried out in the same manner as in Example 1 to obtain the zeolite of Example 4.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーで分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は98.8%であり、ε-カプロラクタムの選択率は97.5%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 98.8% and the selectivity of ε-caprolactam was 97.5%. The results are also shown in Table 1 below.
 <実施例5>
(a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーに、オルトケイ酸テトラエチル[Si(OC]115.00g、39.7質量%の水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、58.4質量%の水を含有している。)67.20g、85質量%の水酸化カリウム(15質量%の水を含有している。)0.72gおよび水308.20gを加え、常温で150分間攪拌して、混合物を得た。
<Example 5>
(a) Production of zeolite [step (1)]
In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight) 67.20 g, 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308% water .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
[工程(2)]
 工程(1)で得られた混合物を、ステンレス製オートクレーブに加え、105℃で攪拌して水熱合成反応を進行させつつ、6時間経過時において、得られた混合物に、ホウ酸0.34g、硝酸マグネシウム6水和物1.41gおよび水10.8gを加え、140℃で42時間攪拌して水熱合成反応をさらに行うことにより、ゼオライト結晶を含む反応混合物を得た。得られた混合物に含まれるケイ素元素の量は、ホウ素元素1モルに対して、100.0モルであった。また、得られた混合物に含まれるケイ素元素の量は、マグネシウム元素1モルに対して、100.0モルであった。
[Step (2)]
The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction. After 6 hours, 0.34 g of boric acid, 1.41 g of magnesium nitrate hexahydrate and 10.8 g of water were added and stirred at 140° C. for 42 hours for further hydrothermal synthesis reaction to obtain a reaction mixture containing zeolite crystals. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of boron element. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
[その他の工程]
 上記工程(1)および(2)以外の工程は、実施例1と同様に実施して、実施例5にかかるゼオライトを得た。
[Other processes]
The steps other than the steps (1) and (2) were carried out in the same manner as in Example 1 to obtain the zeolite of Example 5.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーにより分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は99.1%であり、ε-カプロラクタムの選択率は97.6%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 99.1% and the selectivity of ε-caprolactam was 97.6%. The results are also shown in Table 1 below.
 <実施例6>
(a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーに、オルトケイ酸テトラエチル[Si(OC]115.00g、39.7質量%の水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、58.4質量%の水を含有している。)67.20g、85質量%の水酸化カリウム(15質量%の水を含有している。)0.72gおよび水308.20gを加え、常温で150分間攪拌して、混合物を得た。
<Example 6>
(a) Production of zeolite [step (1)]
In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight) 67.20 g, 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308% water .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
[工程(2)]
 工程(1)で得られた混合物をステンレス製オートクレーブに加え、105℃で攪拌して水熱合成反応させつつ、6時間経過時において得られた混合物に、ホウ酸1.70gおよび水9.8gを加え、170℃に昇温して42時間攪拌して水熱合成反応をさらに進行させることによりゼオライト結晶を含む反応混合物を得た。得られた混合物に含まれるケイ素元素の量は、ホウ素元素1モルに対して、20.0モルであった。
[Step (2)]
The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. for a hydrothermal synthesis reaction. After 6 hours, 1.70 g of boric acid and 9.8 g of water are added to the mixture obtained. was added, the temperature was raised to 170° C., and the mixture was stirred for 42 hours to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals. The amount of silicon element contained in the obtained mixture was 20.0 mol per 1 mol of boron element.
[その他の工程]
 上記工程(1)および(2)以外の工程は、実施例1と同様に実施して、実施例6にかかるゼオライトを得た。
[Other processes]
The steps other than the steps (1) and (2) were carried out in the same manner as in Example 1 to obtain the zeolite of Example 6.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーにより分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は99.0%であり、ε-カプロラクタムの選択率は97.3%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 99.0% and the selectivity of ε-caprolactam was 97.3%. The results are also shown in Table 1 below.
 <実施例7>
(a)ゼオライトの製造
 工程(2)において、水熱合成反応の開始から6時間経過時にホウ酸および水を加えるにあたり、温度を140℃に昇温した以外は、実施例6と同様に実施して、実施例7にかかるゼオライトを得た。得られた混合物に含まれるケイ素元素の量は、ホウ素元素1モルに対して、20.0モルであった。
<Example 7>
(a) Production of zeolite In step (2), the procedure was carried out in the same manner as in Example 6, except that the temperature was raised to 140 ° C. when boric acid and water were added 6 hours after the start of the hydrothermal synthesis reaction. Thus, a zeolite according to Example 7 was obtained. The amount of silicon element contained in the obtained mixture was 20.0 mol per 1 mol of boron element.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーにより分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は98.5%であり、ε-カプロラクタムの選択率は97.8%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 98.5%, and the selectivity of ε-caprolactam was 97.8%. The results are also shown in Table 1 below.
 <実施例8>
(a)ゼオライトの製造
 工程(2)において、水熱合成反応の開始から6時間経過時にホウ酸および水を加えるにあたり、温度を105℃に維持した以外は、実施例6と同様に実施して、実施例8にかかるゼオライトを得た。得られた混合物に含まれるケイ素元素の量は、ホウ素元素1モルに対して、20.0モルであった。
<Example 8>
(a) Production of zeolite In step (2), when boric acid and water were added 6 hours after the start of the hydrothermal synthesis reaction, the procedure was carried out in the same manner as in Example 6, except that the temperature was maintained at 105 ° C. , a zeolite according to Example 8 was obtained. The amount of silicon element contained in the obtained mixture was 20.0 mol per 1 mol of boron element.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーにより分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は97.4%であり、ε-カプロラクタムの選択率は97.6%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 97.4%, and the selectivity of ε-caprolactam was 97.6%. The results are also shown in Table 1 below.
 <実施例9>
(a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーにオルトケイ酸テトラエチル[Si(OC]115.00g、39.7質量%水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、58.4質量%の水を含有している。)67.20g、85質量%の水酸化カリウム(15質量%の水を含有している。)0.72gおよび水308.20gを加え、常温で150分間攪拌し、混合物を得た。
<Example 9>
(a) Production of zeolite [step (1)]
115.00 g of tetraethylorthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight aqueous tetra-n-propylammonium hydroxide (0.9% by weight of potassium, 1.0% by weight of 67.20 g of hydrogen bromide, containing 58.4% by weight of water, 0.72 g of 85% by weight of potassium hydroxide (containing 15% by weight of water) and 308.20 g of water was added and stirred at room temperature for 150 minutes to obtain a mixture.
[工程(2)]
 工程(1)で得られた混合物をステンレス製オートクレーブに加え、105℃で攪拌して水熱合成反応を進行させつつ、6時間経過時において得られた反応混合物に、硝酸マグネシウム6水和物1.41gおよび水9.80gを加え、140℃に昇温して42時間攪拌して水熱合成反応をさらに進行させることによりゼオライト結晶を含む反応混合物を得た。得られた混合物に含まれるケイ素元素の量は、マグネシウム元素1モルに対して、100.0モルであった。
[Step (2)]
The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction, and magnesium nitrate hexahydrate 1 is added to the reaction mixture obtained after 6 hours. 0.41 g and 9.80 g of water were added, the temperature was raised to 140° C., and the mixture was stirred for 42 hours to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals. The amount of silicon element contained in the obtained mixture was 100.0 mol per 1 mol of magnesium element.
[その他の工程]
 上記工程(1)および(2)以外の工程は、実施例1と同様にして、実施例9にかかるゼオライトを得た。
[Other processes]
A zeolite according to Example 9 was obtained in the same manner as in Example 1 except for the above steps (1) and (2).
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーにより分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は97.7%であり、ε-カプロラクタムの選択率は97.4%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 97.7%, and the selectivity of ε-caprolactam was 97.4%. The results are also shown in Table 1 below.
 <実施例10>
(a)ゼオライトの製造
 工程(2)において、水熱合成反応の開始から6時間経過時に、硝酸マグネシウム6水和物および水を加えるあたり、温度を105℃に維持した以外は、実施例9と同様にして実施例10にかかるゼオライトを得た。得られた混合物に含まれるケイ素元素の量は、マグネシウム元素1モルに対して、20.0モルであった。
<Example 10>
(a) Production of zeolite In step (2), when magnesium nitrate hexahydrate and water were added 6 hours after the start of the hydrothermal synthesis reaction, the temperature was maintained at 105 ° C., except that the temperature was maintained at 105 ° C. A zeolite according to Example 10 was obtained in the same manner. The amount of silicon element contained in the obtained mixture was 20.0 mol per 1 mol of magnesium element.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーにより分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は97.6%であり、ε-カプロラクタムの選択率は97.4%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 97.6%, and the selectivity of ε-caprolactam was 97.4%. The results are also shown in Table 1 below.
 <実施例11>
 (a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーにオルトケイ酸テトラエチル[Si(OC]115.00g、39.7質量%の水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、58.4質量%の水を含有している。)67.20g、85質量%の水酸化カリウム(15質量%の水を含有している。)0.72gおよび水308.20gを加え、常温で150分間攪拌して、混合物を得た。
<Example 11>
(a) Production of zeolite [step (1)]
115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight aqueous tetra-n-propylammonium hydroxide (0.9% by weight potassium, 1.0% by weight of hydrogen bromide, containing 58.4 wt. 20 g was added and stirred at room temperature for 150 minutes to obtain a mixture.
[工程(2)]
 工程(1)で得られた混合物をステンレス製オートクレーブに加え、105℃で攪拌して水熱合成反応を進行させつつ、6時間経過時において得られた混合物に、硝酸アルミニウム9水和物(アルミニウム化合物)4.15gおよび水8.00gを加え、温度を105℃に維持したまま42時間攪拌して水熱合成反応をさらに進行させることによりゼオライト結晶を含む反応混合物を得た。得られた混合物に含まれるケイ素元素の量は、アルミニウム元素1モルに対して、50.0モルであった。
[Step (2)]
The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to advance the hydrothermal synthesis reaction, and aluminum nitrate nonahydrate (aluminum Compound) 4.15 g and water 8.00 g were added, and the mixture was stirred for 42 hours while maintaining the temperature at 105° C. to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals. The amount of silicon element contained in the obtained mixture was 50.0 mol per 1 mol of aluminum element.
[工程(3)]
 工程(2)で得られた反応混合物をろ過してゼオライト結晶を得た。
[Step (3)]
The reaction mixture obtained in step (2) was filtered to obtain zeolite crystals.
[洗浄工程1および乾燥工程1]
 工程(3)で得られたゼオライト結晶をイオン交換水で洗浄ろ過した。洗浄ろ過をろ液のpHが6以上9以下になるまで複数回行った後、得られたゼオライト結晶を100℃以上に加熱して乾燥した。
[Washing step 1 and drying step 1]
The zeolite crystals obtained in step (3) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate reached 6 or more and 9 or less, the obtained zeolite crystals were dried by heating to 100° C. or more.
[工程(4)]
 得られたゼオライト結晶を、530℃、1時間の条件で、窒素ガス流通下で焼成した後、530℃、1時間の条件で、空気流通下でさらに焼成し、粉末状の白色結晶を得た。
[Step (4)]
The obtained zeolite crystals were calcined at 530°C for 1 hour under nitrogen gas flow, and then further calcined at 530°C for 1 hour under air flow to obtain powdery white crystals. .
[工程(5)]
 工程(4)で得られた粉末状の白色結晶4.0gをナスフラスコに加え、次いで、13mol/L硝酸水溶液280gを加え、115℃(還流条件)で1時間攪拌した後、ろ過して結晶を分離してゼオライト結晶を得た。得られたゼオライト結晶に対し、この硝酸水溶液による処理をさらに2回繰り返した。
[Step (5)]
Add 4.0 g of the powdered white crystals obtained in step (4) to an eggplant flask, then add 280 g of a 13 mol/L nitric acid aqueous solution, stir at 115° C. (reflux conditions) for 1 hour, and then filter to obtain crystals. was separated to obtain zeolite crystals. The treatment with the aqueous nitric acid solution was repeated two more times on the obtained zeolite crystals.
[洗浄工程2および乾燥工程2]
 工程(5)で得られたゼオライト結晶を、イオン交換水で洗浄ろ過した。洗浄ろ過をろ液のpHが5以上になるまで複数回行った後、得られたゼオライト結晶を100℃以上に加熱して乾燥してゼオライトを得た。得られたゼオライトを、粒度0.50~0.85mmの粒子に分級した。こうして得られたゼオライトを、下記(b)で触媒として使用した。
[Washing step 2 and drying step 2]
The zeolite crystals obtained in step (5) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate reached 5 or higher, the resulting zeolite crystals were dried by heating to 100° C. or higher to obtain zeolite. The obtained zeolite was classified into particles with a particle size of 0.50-0.85 mm. The zeolite thus obtained was used as a catalyst in (b) below.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーにより分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は86.3%であり、ε-カプロラクタムの選択率は97.1%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 86.3%, and the selectivity of ε-caprolactam was 97.1%. The results are also shown in Table 1 below.
 <実施例12>
(a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーに、オルトケイ酸テトラエチル[Si(OC]115.00g、39.7質量%の水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、58.4質量%の水を含有している。)67.20g、85質量%の水酸化カリウム(15質量%の水を含有している。)0.72gおよび水308.20gを加え、常温で150分間攪拌して、混合物を得た。
<Example 12>
(a) Production of zeolite [step (1)]
In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC 2 H 5 ) 4 ], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of % hydrogen bromide, 58.4% water by weight) 67.20 g, 0.72 g 85% by weight potassium hydroxide (containing 15% by weight water) and 308% water .20 g was added and stirred at ambient temperature for 150 minutes to obtain a mixture.
[工程(2)]
 工程(1)で得られた混合物を、ステンレス製オートクレーブに加え、105℃で攪拌して水熱合成反応を進行させつつ、6時間経過時において得られた混合物に、硝酸鉄9水和物(鉄化合物)4.50gおよび水8.00gを加え、温度を105℃に維持したまま42時間攪拌して水熱合成反応をさらに進行させることによりゼオライト結晶を含む反応混合物を得た。得られた混合物に含まれるケイ素元素の量は、鉄元素1モルに対して、50.0モルであった。
[Step (2)]
The mixture obtained in step (1) is added to a stainless steel autoclave and stirred at 105 ° C. to proceed with the hydrothermal synthesis reaction. After 6 hours, iron nitrate nonahydrate ( Iron compound) (4.50 g) and water (8.00 g) were added, and the mixture was stirred for 42 hours while maintaining the temperature at 105° C. to further advance the hydrothermal synthesis reaction, thereby obtaining a reaction mixture containing zeolite crystals. The amount of silicon element contained in the obtained mixture was 50.0 mol per 1 mol of iron element.
[その他の工程]
 上記工程(1)および(2)以外の工程は、実施例1と同様に実施して、実施例12にかかるゼオライトを得た。
[Other processes]
The steps other than the steps (1) and (2) were carried out in the same manner as in Example 1 to obtain the zeolite of Example 12.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーにより分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は98.2%であり、ε-カプロラクタムの選択率は97.2%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 98.2% and the selectivity of ε-caprolactam was 97.2%. The results are also shown in Table 1 below.
 <比較例1>
(a)ゼオライトの製造
[工程(1)]
 ガラス製ビーカーに、オルトケイ酸テトラエチル[Si(OC2H5)4]115.00g、39.7質量%の水酸化テトラ-n-プロピルアンモニウム水溶液(0.9質量%のカリウム、1.0質量%の臭化水素、58.4質量%の水を含有している。)153.00g、ホウ酸3.40gおよび水269.00gを加え、常温で120分間攪拌して、混合物を得た。得られた混合物に含まれるケイ素元素の量は、ホウ素元素1モルに対して、10.0モルであった。
<Comparative Example 1>
(a) Production of zeolite [step (1)]
In a glass beaker, 115.00 g of tetraethyl orthosilicate [Si(OC2H5)4], 39.7% by weight of tetra-n-propylammonium hydroxide aqueous solution (0.9% by weight of potassium, 1.0% by weight of odor 153.00 g of hydrogen chloride, containing 58.4% by mass of water, 3.40 g of boric acid and 269.00 g of water were added and stirred at room temperature for 120 minutes to obtain a mixture. The amount of silicon element contained in the obtained mixture was 10.0 mol per 1 mol of boron element.
[工程(2)]
 工程(1)で得られた混合物を、ステンレス製オートクレーブに加え、120℃で24時間攪拌して水熱合成反応を行った。
[Step (2)]
The mixture obtained in step (1) was added to a stainless steel autoclave and stirred at 120° C. for 24 hours to carry out a hydrothermal synthesis reaction.
[工程(3)]
 工程(2)で得られた反応混合物をろ過してゼオライト結晶を得た。
[Step (3)]
The reaction mixture obtained in step (2) was filtered to obtain zeolite crystals.
[洗浄工程1および乾燥工程1]
 工程(3)で得られたゼオライト結晶を、イオン交換水で洗浄ろ過した。洗浄ろ過をろ液のpHが9以下になるまで複数回行った後、得られたゼオライト結晶を100℃以上に加熱して乾燥した。
[Washing step 1 and drying step 1]
The zeolite crystals obtained in step (3) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate became 9 or less, the obtained zeolite crystals were dried by heating to 100° C. or more.
[工程(4)]
 得られたゼオライト結晶を、530℃、1時間の条件で、窒素ガス流通下で焼成した後、530℃、1時間の条件で、空気流通下でさらに焼成し、粉末状の白色結晶を得た。
[Step (4)]
The obtained zeolite crystals were calcined at 530°C for 1 hour under nitrogen gas flow, and then further calcined at 530°C for 1 hour under air flow to obtain powdery white crystals. .
[工程(5)]
 工程(4)で得られた粉末状の白色結晶5.0gをオートクレーブに加え、次いで、0.2mol/L硝酸水溶液150gを加え、90℃で1時間攪拌した後、ろ過してゼオライト結晶を分離した。得られたゼオライト結晶に対し、この硝酸水溶液を用いた処理をさらに2回繰り返した。
[Step (5)]
Add 5.0 g of the powdery white crystals obtained in step (4) to an autoclave, then add 150 g of a 0.2 mol/L nitric acid aqueous solution, stir at 90° C. for 1 hour, and then filter to separate the zeolite crystals. did. The treatment with the aqueous nitric acid solution was repeated two more times on the obtained zeolite crystals.
[洗浄工程2および乾燥工程2]
 工程(5)で得られたゼオライト結晶を、イオン交換水で洗浄ろ過した。洗浄ろ過をろ液のpHが5以上になるまで複数回行った後、得られたゼオライト結晶を100℃以上に加熱して乾燥してゼオライトを得た。乾燥させた粉末状のゼオライトを、粒度0.50~0.85mmの粒子に分級した。こうして得られたゼオライトを、下記(b)で触媒として使用した。
[Washing step 2 and drying step 2]
The zeolite crystals obtained in step (5) were washed with ion-exchanged water and filtered. After washing and filtering was repeated several times until the pH of the filtrate reached 5 or higher, the resulting zeolite crystals were dried by heating to 100° C. or higher to obtain zeolite. The dried powdered zeolite was classified into particles with a particle size of 0.50-0.85 mm. The zeolite thus obtained was used as a catalyst in (b) below.
(b)ε-カプロラクタムの製造[工程(6)]
 上記(a)で得られたゼオライトを用いた以外は、実施例1と同様にして工程(6)を実施した。反応開始から5.5時間後~5.75時間後の反応ガスを捕集し、ガスクロマトグラフィーにより分析した。
(b) Production of ε-caprolactam [Step (6)]
Step (6) was carried out in the same manner as in Example 1, except that the zeolite obtained in (a) above was used. After 5.5 to 5.75 hours from the start of the reaction, the reaction gas was collected and analyzed by gas chromatography.
 結果として、シクロヘキサノンオキシムの転化率は95.5%であり、ε-カプロラクタムの選択率は95.1%であった。結果を下記表1にも示した。 As a result, the conversion of cyclohexanone oxime was 95.5%, and the selectivity of ε-caprolactam was 95.1%. The results are also shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 本発明にかかるゼオライトの製造方法によれば、ε-カプロラクタムを高い選択率で得ることができるゼオライトを効率よく製造することができる。 According to the method for producing zeolite according to the present invention, it is possible to efficiently produce zeolite from which ε-caprolactam can be obtained with high selectivity.

Claims (8)

  1.  下記の工程(1)~(5)を含む、ゼオライトの製造方法。
     工程(1):
     オルトケイ酸テトラアルキルと、水と、水酸化4級アンモニウムとを混合して混合物を得る工程
     工程(2):
     前記工程(1)で得られた混合物を水熱合成反応させつつ、ホウ素化合物、ゲルマニウム化合物、マグネシウム化合物、アルミニウム化合物、スズ化合物および鉄化合物からなる群より選ばれる少なくとも1種の化合物(A)を混合物に供給して、ゼオライト結晶を含む反応混合物を得る工程
     工程(3):
     前記工程(2)で得られたゼオライト結晶を含む反応混合物を固液分離して、ゼオライト結晶を得る工程
     工程(4):
     前記工程(3)で得られたゼオライト結晶を焼成する工程
     工程(5):
     前記工程(4)で焼成されたゼオライト結晶を、無機酸および有機酸からなる群より選ばれる少なくとも1種の酸を含む水溶液で接触処理して、ゼオライトを得る工程
    A method for producing zeolite, comprising the following steps (1) to (5).
    Step (1):
    A step of mixing a tetraalkyl orthosilicate, water, and a quaternary ammonium hydroxide to obtain a mixture Step (2):
    At least one compound (A) selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound is added while the mixture obtained in the step (1) is subjected to a hydrothermal synthesis reaction. supplying to the mixture to obtain a reaction mixture containing zeolite crystals Step (3):
    A step of solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in the step (2) to obtain zeolite crystals Step (4):
    Step (5) of calcining the zeolite crystals obtained in step (3):
    A step of contact-treating the zeolite crystals calcined in the step (4) with an aqueous solution containing at least one acid selected from the group consisting of inorganic acids and organic acids to obtain zeolite.
  2.  前記工程(2)において、無機酸をさらに供給して反応混合物を得る、請求項1に記載のゼオライトの製造方法。 The method for producing zeolite according to claim 1, wherein in the step (2), an inorganic acid is further supplied to obtain a reaction mixture.
  3.  前記工程(2)において、前記化合物(A)と前記無機酸とを同時に供給して反応混合物を得る、請求項2に記載のゼオライトの製造方法。 The method for producing zeolite according to claim 2, wherein in the step (2), the compound (A) and the inorganic acid are supplied simultaneously to obtain a reaction mixture.
  4.  前記工程(2)において、水熱合成反応の開始から1~6時間経過後に、前記混合物に前記化合物(A)を供給する、請求項1~3のいずれか1項に記載のゼオライトの製造方法。 The method for producing a zeolite according to any one of claims 1 to 3, wherein in the step (2), the compound (A) is supplied to the mixture 1 to 6 hours after the start of the hydrothermal synthesis reaction. .
  5.  前記工程(1)において、前記オルトケイ酸テトラアルキルの量に対する、前記水の量のモル比が、18~36である、請求項1~4のいずれか1項に記載のゼオライトの製造方法。 The method for producing a zeolite according to any one of claims 1 to 4, wherein in the step (1), the molar ratio of the amount of water to the amount of the tetraalkyl orthosilicate is 18-36.
  6.  前記工程(2)において、前記混合物を水熱合成反応させる際の反応温度が、105℃~170℃である、請求項1~5のいずれか1項に記載のゼオライトの製造方法。 The method for producing zeolite according to any one of claims 1 to 5, wherein in the step (2), the reaction temperature when hydrothermally synthesizing the mixture is 105°C to 170°C.
  7.  前記工程(2)において、前記化合物(A)を前記混合物に供給した後の反応温度を、前記化合物(A)を供給する前の反応温度からさらに昇温して水熱合成反応を進行させる、請求項6に記載のゼオライトの製造方法。 In the step (2), the reaction temperature after supplying the compound (A) to the mixture is further increased from the reaction temperature before supplying the compound (A) to proceed with the hydrothermal synthesis reaction; A method for producing a zeolite according to claim 6.
  8.  下記の工程(1)~(6)を含む、ε-カプロラクタムの製造方法。
     工程(1):
     オルトケイ酸テトラアルキルと、水と、水酸化4級アンモニウムとを混合して混合物を得る工程
     工程(2):
     工程(1)で得られた混合物を水熱合成反応させつつ、ホウ素化合物、ゲルマニウム化合物、マグネシウム化合物、アルミニウム化合物、スズ化合物および鉄化合物からなる群より選ばれる少なくとも1種の化合物(A)を混合物に供給して、ゼオライト結晶を含む反応混合物を得る工程
     工程(3):
     前記工程(2)で得られたゼオライト結晶を含む反応混合物を固液分離して、ゼオライト結晶を得る工程
     工程(4):
     前記工程(3)で得られたゼオライト結晶を焼成する工程
     工程(5):
     前記工程(4)で焼成されたゼオライト結晶を、無機酸および有機酸からなる群より選ばれる少なくとも1種の酸を含む水溶液で接触処理して、ゼオライトを得る工程
     工程(6):
     前記工程(5)で得られたゼオライトを触媒として用いて、シクロヘキサノンオキシムを気相にてベックマン転位反応させることによりε-カプロラクタムを得る工程
    A method for producing ε-caprolactam, comprising the following steps (1) to (6).
    Step (1):
    A step of mixing a tetraalkyl orthosilicate, water, and a quaternary ammonium hydroxide to obtain a mixture Step (2):
    At least one compound (A) selected from the group consisting of a boron compound, a germanium compound, a magnesium compound, an aluminum compound, a tin compound and an iron compound is added to the mixture while hydrothermally reacting the mixture obtained in step (1). to obtain a reaction mixture containing zeolite crystals Step (3):
    A step of solid-liquid separation of the reaction mixture containing the zeolite crystals obtained in the step (2) to obtain zeolite crystals Step (4):
    Step (5) of calcining the zeolite crystals obtained in step (3):
    A step of contact-treating the zeolite crystals calcined in step (4) with an aqueous solution containing at least one acid selected from the group consisting of inorganic acids and organic acids to obtain zeolite; step (6):
    A step of obtaining ε-caprolactam by Beckmann rearrangement reaction of cyclohexanone oxime in a gas phase using the zeolite obtained in step (5) as a catalyst.
PCT/JP2022/000346 2021-03-17 2022-01-07 Method for producing zeolite WO2022196043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043067A JP2022142840A (en) 2021-03-17 2021-03-17 Method of producing zeolite
JP2021-043067 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196043A1 true WO2022196043A1 (en) 2022-09-22

Family

ID=83320155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000346 WO2022196043A1 (en) 2021-03-17 2022-01-07 Method for producing zeolite

Country Status (3)

Country Link
JP (1) JP2022142840A (en)
TW (1) TW202244003A (en)
WO (1) WO2022196043A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275850A (en) * 1989-01-26 1990-11-09 Sumitomo Chem Co Ltd Production of epsilon-caprolactam
JPH1157483A (en) * 1997-08-22 1999-03-02 Sumitomo Chem Co Ltd Catalyst for preparing epsilon-caprolactam and preparation of epsilon-caprolactam by using the same
WO2018051869A1 (en) * 2016-09-14 2018-03-22 住友化学株式会社 ε-CAPROLACTAM PRODUCTION METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275850A (en) * 1989-01-26 1990-11-09 Sumitomo Chem Co Ltd Production of epsilon-caprolactam
JPH1157483A (en) * 1997-08-22 1999-03-02 Sumitomo Chem Co Ltd Catalyst for preparing epsilon-caprolactam and preparation of epsilon-caprolactam by using the same
WO2018051869A1 (en) * 2016-09-14 2018-03-22 住友化学株式会社 ε-CAPROLACTAM PRODUCTION METHOD

Also Published As

Publication number Publication date
TW202244003A (en) 2022-11-16
JP2022142840A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
US10195598B2 (en) Process for the regeneration of a titanium zeolite catalyst for propylene epoxidation
KR100927668B1 (en) Method for producing crystalline, zeolitic solid matter
US7060645B2 (en) Method for manufacturing zeolite and method for manufacturing ε-caprolactam
JP5875843B2 (en) Method for producing zeolite compact and method for producing ε-caprolactam
CN106395850B (en) Method for producing zeolite and method for producing epsilon-caprolactam
JP2012158501A (en) METHOD FOR PRODUCING ZEOLITE AND METHOD FOR PRODUCING ε-CAPROLACTAM
WO2022196043A1 (en) Method for producing zeolite
CN109689625B (en) Process for producing epsilon-caprolactam
JP2011153047A (en) METHOD FOR PRODUCING ZEOLITE AND METHOD FOR PRODUCING epsi-CAPROLACTAM
JP5827572B2 (en) Method for producing zeolite and method for producing ε-caprolactam
CN110372536B (en) Method for preparing cyclohexanone oxime by cyclohexanone ammoximation
JP3767562B2 (en) Method for producing ε-caprolactam
JP3969078B2 (en) Method for producing pentasil-type zeolite and method for producing ε-caprolactam
JP3849408B2 (en) Method for producing pentasil-type crystalline zeolite and method for producing ε-caprolactam
CN110372535B (en) Modification method of molecular sieve for catalyzing oximation reaction of cyclohexanone
CN107398299B (en) Preparation method and application of modified TS-1 catalyst
JP2009000664A (en) Process for regenerating catalyst for producing e-caprolactam and process for producing e-caprolactam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770805

Country of ref document: EP

Kind code of ref document: A1