WO2022195834A1 - Indoor unit and air conditioning device - Google Patents

Indoor unit and air conditioning device Download PDF

Info

Publication number
WO2022195834A1
WO2022195834A1 PCT/JP2021/011296 JP2021011296W WO2022195834A1 WO 2022195834 A1 WO2022195834 A1 WO 2022195834A1 JP 2021011296 W JP2021011296 W JP 2021011296W WO 2022195834 A1 WO2022195834 A1 WO 2022195834A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
air
downstream
flow fan
outlet
Prior art date
Application number
PCT/JP2021/011296
Other languages
French (fr)
Japanese (ja)
Inventor
惇司 河野
拓矢 寺本
裕樹 宇賀神
幸治 山口
哲央 山下
尚史 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US18/261,724 priority Critical patent/US20240077214A1/en
Priority to EP21931581.9A priority patent/EP4310404A4/en
Priority to PCT/JP2021/011296 priority patent/WO2022195834A1/en
Priority to CN202180095533.0A priority patent/CN117043517A/en
Priority to JP2023506653A priority patent/JPWO2022195834A1/ja
Publication of WO2022195834A1 publication Critical patent/WO2022195834A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/081Air-flow control members, e.g. louvres, grilles, flaps or guide plates for guiding air around a curve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers

Definitions

  • the present disclosure relates to indoor units and air conditioners equipped with cross-flow fans.
  • the indoor unit of Patent Document 1 includes a cross-flow fan arranged inside a casing, and a stabilizer that forms an air flow path between the cross-flow fan and an air outlet.
  • a rough surface having unevenness is provided on the inclined surface of the protrusion on the downstream side in the blowing direction.
  • the rough surface of the stabilizer makes it difficult for the blown air to separate from the stabilizer at the end of the blowout port, and by suppressing the backflow of air from the blowout port, surging resistance is improved.
  • the present disclosure has been made to solve the above problems, and aims to provide an indoor unit and an air conditioner that suppress a decrease in surging resistance even when the operating load of the cross-flow fan is high. .
  • An indoor unit includes a casing having an air outlet and an air inlet and having an air passage formed therein; A fan, a stabilizer for stabilizing an air circulating vortex generated inside the cross-flow fan when the cross-flow fan rotates, and a guide wall forming one surface of the blow-out side air passage on the downstream side of the cross-flow fan in the air passage. and, the stabilizer has a first surface that constitutes one surface of the blowout-side air passage that faces the guide wall, and a part of the blowout-side air passage becomes the first The distance from the surface to the guide wall in the vertical direction is formed so as to gradually decrease.
  • an air conditioner includes the indoor unit described above, and an outdoor unit that is connected to the indoor unit by pipes and constitutes a refrigerant circuit in which refrigerant circulates.
  • part of the outlet-side air passage is formed such that the distance from the first surface to the vertical guide wall gradually decreases toward the downstream. Therefore, it is possible to make the airflow uniform in the air passage on the blowing side. As a result, even when the operating load of the cross-flow fan is high due to the accumulation of dust on the filter and increased airflow resistance, it is difficult for a low-speed region to form in the air passage on the outlet side, causing the air to flow backwards from the outlet. Therefore, it is possible to suppress a decrease in surging resistance.
  • FIG. 1 is a perspective view showing the appearance of an indoor unit according to Embodiment 1.
  • FIG. 2 is a schematic vertical cross-sectional view of the indoor unit according to Embodiment 1.
  • FIG. Fig. 2 is a schematic vertical cross-sectional view enlarging a main part of the indoor unit according to Embodiment 1;
  • Fig. 10 is a schematic vertical cross-sectional view enlarging a main part of the indoor unit according to Embodiment 2;
  • FIG. 11 is a first schematic vertical cross-sectional view enlarging a main part of an indoor unit according to Embodiment 3;
  • FIG. 11 is a second schematic vertical cross-sectional view enlarging a main part of the indoor unit according to Embodiment 3; 7 is an arrow view of the ZZ section of FIG. 6.
  • FIG. FIG. 11 is a schematic vertical cross-sectional view of an indoor unit according to Embodiment 4;
  • FIG. 10 is a diagram showing a configuration example of an air conditioner according to Embodiment 5;
  • FIG. 1 is a perspective view showing the appearance of an indoor unit 100 according to Embodiment 1.
  • FIG. 2 is a schematic vertical cross-sectional view of the indoor unit 100 according to Embodiment 1.
  • FIG. 1 is a perspective view showing the appearance of an indoor unit 100 according to Embodiment 1.
  • FIG. 2 is a schematic vertical cross-sectional view of the indoor unit 100 according to Embodiment 1.
  • FIG. 1 is a perspective view showing the appearance of an indoor unit 100 according to Embodiment 1.
  • FIG. 2 is a schematic vertical cross-sectional view of the indoor unit 100 according to Embodiment 1.
  • the indoor unit 100 according to Embodiment 1 is a ceiling-embedded type installed in the ceiling. However, it is not limited to this, and the indoor unit 100 may be of a wall-mounted type, for example. As shown in FIGS. 1 and 2, the indoor unit 100 includes a box-shaped casing 1 embedded in the ceiling, a planar decorative panel 2 provided at the bottom of the casing 1 and serving as a design surface, and a decorative panel 2. and a flat plate-shaped intake grille 3 rotatably attached to it.
  • a suction port 1a for sucking indoor air is formed in the lower rear part of the casing 1, and an outlet 1b for blowing conditioned air to the outside is formed in the lower front part of the casing 1.
  • the suction port 1a is covered with the suction grille 3 when the suction grille 3 is closed.
  • the suction port 1a is provided with a filter 7 which is a porous member for removing dust, bacteria, and the like from the air. The room air sucked from the suction port 1 a passes through the filter 7 and is taken into the casing 1 .
  • the outlet 1b is provided with a vertical vane 9a for changing the wind direction within a predetermined range in the vertical direction and a left and right vane 9b for changing the wind direction within a predetermined range in the horizontal direction.
  • a cross-flow fan 6 that is rotatably arranged in the direction indicated by the arrow Y in FIG. It is arranged in a horizontal plane and inclined with respect to the depth direction, and heat exchange is performed between the indoor air sucked into the casing 1 from the suction port 1a by the cross flow fan 6 and the refrigerant to create conditioned air.
  • a vessel 5 is provided inside the casing 1 so that air flows from the inlet 1a through the heat exchanger 5 to the outlet 1b. It is located on the road 20.
  • the heat exchanger 5 is composed of an upper heat exchanger 5a and a lower heat exchanger 5b, and one end of the upper heat exchanger 5a and one end of the lower heat exchanger 5b are connected.
  • the heat exchanger 5 is arranged such that the surface of the upper heat exchanger 5a facing the cross-flow fan 6 and the surface of the lower heat exchanger 5b facing the cross-flow fan 6 form an obtuse angle.
  • the casing 1 Furthermore, inside the casing 1, it is arranged below the heat exchanger 5 so as to face the entire lower heat exchanger 5b and the lower end of the upper heat exchanger 5a, and drain water from the heat exchanger 5 is drained.
  • a guide wall 11 forming one surface of the path 20b is provided.
  • the cross-flow fan 6 connected to the motor rotates, sucking the indoor air from the suction port 1a.
  • Room air sucked from the suction port 1 a passes through the filter 7 and is sucked into the casing 1 .
  • the indoor air drawn into the casing 1 passes through the heat exchanger 5 on the way through the suction-side air passage 20a, where it undergoes heat exchange and becomes conditioned air.
  • the conditioned air flows through the blow-out side air passage 20b and is blown into the room from the blow-out port 1b.
  • the direction of the conditioned air blown from the outlet 1b changes depending on the directions of the upper and lower vanes 9a and the left and right vanes 9b.
  • FIG. 3 is a schematic vertical cross-sectional view showing an enlarged main part of the indoor unit 100 according to Embodiment 1.
  • the stabilizer 10 stabilizes the circulating vortex of air generated inside the cross-flow fan 6 when the cross-flow fan 6 rotates.
  • This stabilizer 10 as shown in FIG. and a tongue 10c provided between 10a and the second surface 10b.
  • the tongue portion 10c is the vertex of the portion of the stabilizer 10 that protrudes toward the cross-flow fan 6 side.
  • the second surface 10b is formed along the outer periphery of the crossflow fan 6, and a gap is formed between the second surface 10b and the crossflow fan 6. As shown in FIG.
  • the gap between the second surface 10b and the crossflow fan 6 is the smallest at the position closest to the downstream side in the rotation direction of the crossflow fan 6 .
  • the first surface 10a has a contraction surface 10d formed so that the blow-out side air passage 20b contracts downstream from the tongue portion 10c.
  • This contraction surface 10d is inclined so as to gradually approach the guide wall 11 as it goes downstream. Specifically, as indicated by the dashed arrow in FIG. 3, the contraction surface 10d is formed so that the distance from the surface to the guide wall 11 in the vertical direction gradually decreases toward the downstream. Further, if the position of the tongue portion 10c in the vertical direction is indicated by a dashed line H1, the position of the lower end of the outlet 1b by a dashed line H2, and the intermediate position thereof by a dashed line H3, the contraction surface 10d is located from the intermediate position (broken line H3). is also formed at a position on the upstream side.
  • the contraction surface 10d is formed at a position downstream of the intermediate position (broken line H3), it becomes difficult for the conditioned air to blow downward from the outlet 1b. As described above, part of the blow-out side air passage 20b is formed to contract downstream by the contraction surface 10d. Note that the contraction surface 10d may have a planar shape that is straight when viewed from the side as shown in FIG.
  • the airflow in the blow-out side air passage 20b can be made uniform, so that the airflow that does not follow the stabilizer 10 is reduced.
  • the blow-out side air passage 20b can create a low-velocity region. Since it becomes difficult for air to flow back from 1b, it is possible to suppress a decrease in surging resistance.
  • the wind speed is low on the downstream side in the rotation direction of the cross flow fan 6, and the wind speed is high on the upstream side in the rotation direction of the cross flow fan 6, but the stabilizer 10 on the side where the wind speed is low
  • a contraction surface 10d is formed on the first surface 10a of the . Therefore, it is possible to suppress an increase in pressure loss compared to forming a contracted flow surface having an inclination in the guide wall 11 on the high wind speed side.
  • the indoor unit 100 includes the casing 1 having the air outlet 1b and the air inlet 1a, and the air passage 20 formed therein, and the air passage 20 arranged in the air passage 20 to draw in air from the air inlet 1a.
  • a cross-flow fan 6 that blows out air from the blow-out port 1b, a stabilizer 10 that stabilizes the circulation vortex of the air generated inside when the cross-flow fan 6 rotates, and an air passage 20 downstream of the cross-flow fan 6. and a guide wall 11 forming one surface of the blow-out side air passage 20b.
  • the stabilizer 10 has a first surface 10a that constitutes one surface of the blowout-side air passage 20b facing the guide wall 11, and a part of the blowout-side air passage 20b extends downstream from the first surface 10a. It is formed so that the distance to the guide wall 11 in the vertical direction is gradually shortened.
  • part of the outlet-side air passage 20b is formed such that the distance from the first surface 10a to the vertical guide wall 11 gradually decreases toward the downstream. Therefore, the airflow in the blow-out side air passage 20b can be made uniform. As a result, even when the operating load of the cross-flow fan 6 becomes high due to the accumulation of dust on the filter 7 and the increased ventilation resistance, a low air velocity region is less likely to occur in the outlet side air passage 20b. Since it becomes difficult for the air to flow back, it is possible to suppress a decrease in surging resistance.
  • the first surface 10a has a contraction surface 10d that is inclined so as to gradually approach the guide wall 11 toward the downstream side.
  • the first surface 10a of the stabilizer 10 has the contraction surface 10d that is inclined so as to gradually approach the guide wall 11 as it goes downstream from the tongue portion 10c. That is, since the flow contraction surface 10d is formed on the first surface 10a of the stabilizer 10 on the low wind speed side, the flow contraction surface 10d is formed on the guide wall 11 on the high wind speed side rather than forming an inclined flow contraction surface. An increase in loss can be suppressed.
  • Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
  • FIG. 4 is a schematic vertical cross-sectional view enlarging a main part of the indoor unit 100 according to Embodiment 2.
  • the first surface 10a of the stabilizer 10 has a downstream surface 10e on the downstream side of the contraction surface 10d, as shown in FIG.
  • the angle between the plane connecting the upstream end and the downstream end of the downstream surface 10e and the vertical plane (dashed line V) is ⁇ 2
  • the plane connecting the upstream end and the downstream end of the contraction surface 10d and the vertical plane (dashed line V) is defined as ⁇ 1, then ⁇ 2 ⁇ 1.
  • the angle between the plane connecting the upstream end and the downstream end of the downstream surface 10e and the vertical plane is the plane connecting the upstream end and the downstream end of the contraction surface 10d and the vertical plane (broken line V) is the plane connecting the upstream end and the downstream end of the contraction surface 10d and the vertical plane (
  • the inclination of the blow-out side air passage 20b becomes gentle on the downstream side of the contraction surface 10d.
  • the airflow in the blow-out side air passage 20b tends to be stabilized toward the blowout port 1b, and the airflow along the stabilizer 10 increases, so that surging resistance can be improved.
  • the contraction surface 10d and the downstream surface 10e are formed so that the difference between ⁇ 2 and ⁇ 1 is 20° or less. This is because if the difference between ⁇ 2 and ⁇ 1 is too large, the airflow tends to separate on the stabilizer 10, and the airflow blown out from the cross-flow fan 6 tends to collide with the stabilizer 10 again after separation. This is because the pressure loss in the air passage 20b tends to increase. If the difference between .theta.2 and .theta.1 is 20.degree.
  • the first surface 10a has the downstream surface 10e on the downstream side of the contraction surface 10d, and is perpendicular to the plane connecting the upstream end and the downstream end of the downstream surface 10e.
  • the angle formed with the surface (broken line V) is smaller than the angle formed between the plane connecting the upstream end and the downstream end of the contraction surface 10d and the vertical plane (broken line V).
  • the angle between the plane connecting the upstream end and the downstream end of the downstream surface 10e and the vertical plane (broken line V) is the upstream end and the downstream end of the contraction surface 10d. and the vertical plane (broken line V).
  • Embodiment 3 will be described below, but the description of the parts that overlap with Embodiments 1 and 2 will be omitted, and the same or corresponding parts as those in Embodiments 1 and 2 will be given the same reference numerals.
  • FIG. 5 is a first vertical cross-sectional schematic diagram enlarging the main part of the indoor unit 100 according to Embodiment 3. As shown in FIG. In FIG. 5, the position of the end of the crossflow fan 6 closest to the outlet in the horizontal direction is indicated by a broken line B, the position of the tongue portion 10c is indicated by a broken line A, and the position of the downstream end of the contraction surface 10d is indicated by a broken line C. showing.
  • the end portion (dashed line B) of the cross flow fan 6 closest to the blowout port side in the horizontal direction is located horizontally between the tongue portion 10c (dashed line A) and the contraction surface 10d. , and the downstream end (dashed line C).
  • the distance from the downstream end of the flow contraction surface 10d to the guide wall 11 differs depending on the rotation axis direction of the cross flow fan 6 (hereinafter simply referred to as the rotation axis direction).
  • the direction of the rotation axis in FIG. 6 is the direction perpendicular to the plane of the paper.
  • the distance from the downstream end of the contraction surface 10d to the guide wall 11 at both ends in the rotation axis direction is Lb1
  • the distance from the downstream end of the contraction surface 10d at the center in the rotation axis direction is Assuming that the distance to the guide wall 11 is Lb2, Lb1 ⁇ Lb2.
  • the speed of the air blown from the blowout port 1b is higher at both ends in the direction of the rotation axis. tend to be slower than the central part of the Low wind speed regions are likely to occur at both ends of the blowout side air passage 20b in the rotation axis direction, and air tends to flow backward from the blowout port 1b, so the surging resistance is likely to decrease. If the blow-out side air passage 20b is narrowed, the surging resistance can be improved because the airflow not along the stabilizer 10 is reduced. pressure loss increases.
  • the distance from the downstream end of the flow contraction surface 10d at both ends in the rotation axis direction to the guide wall 11 is adjusted from the downstream end of the flow contraction surface 10d at the central portion in the rotation axis direction to the guide wall 11. Make it shorter than the distance to the wall 11.
  • the end of the crossflow fan 6 closest to the outlet 1b in the horizontal direction is located between the tongue 10c and the downstream end of the contraction surface 10d in the horizontal direction. positioned.
  • the airflow blown out from the cross-flow fan 6 tends to lean toward the stabilizer 10 when the operating load of the cross-flow fan 6 is normal.
  • the airflow blown out from the cross-flow fan 6 is less likely to shift to the guide wall 11 side, so that a low wind speed region is less likely to occur in the blow-out side air passage 20b. , it is difficult for the air to flow back from the outlet 1b.
  • the distance from the downstream end of the contraction surface 10d to the guide wall 11 varies in the rotation axis direction of the cross flow fan 6, and the distance is the central portion in the rotation axis direction.
  • the end portion in the rotation axis direction is shorter than the .
  • the indoor unit 100 according to Embodiment 3 in this way, while suppressing an increase in pressure loss at the central portion in the rotation axis direction of the blow-out side air passage 20b, the rotation of the blow-out side air passage 20b is suppressed. Airflow not along the stabilizer 10 at both ends in the axial direction can be reduced. As a result, it is possible to suppress a decrease in surging resistance while suppressing an increase in pressure loss in the blow-out side air passage 20b.
  • Embodiment 4 will be described below, but descriptions of the same parts as those in Embodiments 1 to 3 will be omitted, and parts that are the same as or correspond to those in Embodiments 1 to 3 will be given the same reference numerals.
  • FIG. 8 is a schematic vertical cross-sectional view of the indoor unit 100 according to Embodiment 4.
  • FIG. 8 the position of the tongue portion 10c is indicated by a dashed line A, and the end of the heat exchanger 5 closest to the outlet in the horizontal direction is indicated by a dashed line D.
  • the end portion (dashed line D) of the heat exchanger 5 closest to the blowout port side in the horizontal direction is positioned further toward the blowout port 1b than the tongue portion 10c (dashed line A) in the horizontal direction. located on the side.
  • the end portion (dashed line D) of the heat exchanger 5 closest to the outlet in the horizontal direction may be positioned at the same position as the tongue portion 10c (dashed line A) in the horizontal direction.
  • the heat transfer area of the heat exchanger 5 can be increased, and the heat exchange efficiency can be improved.
  • the speed of the air passing through the heat exchanger 5 is reduced, thereby suppressing an increase in pressure loss in the air passage. Since likelihood is generated, it is possible to suppress a decrease in surging resistance.
  • the indoor unit 100 includes the heat exchanger 5 that exchanges heat between the air sucked from the suction port 1a by the cross flow fan 6 and the refrigerant.
  • the end closest to the outlet 1b is located at the same position as the tongue 10c or closer to the outlet 1b than the tongue 10c.
  • the heat transfer area of the heat exchanger 5 can be increased, and the heat exchange efficiency can be improved.
  • the speed of the air passing through the heat exchanger 5 is reduced, thereby suppressing an increase in pressure loss in the air passage. Since likelihood is generated, it is possible to suppress a decrease in surging resistance.
  • Embodiment 5 will be described below, but the description of the parts overlapping those of Embodiments 1 to 4 will be omitted, and the same reference numerals will be given to parts that are the same as or correspond to those of Embodiments 1 to 4.
  • FIG. 9 is a diagram showing a configuration example of an air conditioner according to Embodiment 5.
  • FIG. 9 is a diagram showing a configuration example of an air conditioner according to Embodiment 5.
  • an indoor unit 100 and an outdoor unit 200 are connected by gas refrigerant piping 300 and liquid refrigerant piping 400 to form a refrigerant circuit 500 in which refrigerant circulates.
  • the indoor unit 100 is described in any one of the first to fourth embodiments.
  • the outdoor unit 200 has a compressor 201 , a channel switching device 202 , an outdoor heat exchanger 203 , an outdoor fan 204 and an expansion device 205 .
  • the compressor 201 sucks in a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges a high-temperature, high-pressure refrigerant.
  • the compressor 201 is, for example, an inverter compressor whose capacity, which is the output amount per unit time, is controlled by changing the operating frequency.
  • the flow path switching device 202 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant.
  • a combination of a two-way valve and a three-way valve may be used instead of the four-way valve.
  • the outdoor heat exchanger 203 exchanges heat between the outdoor air and the refrigerant. For example, during heating operation, it functions as an evaporator to evaporate and vaporize the refrigerant. Also, during cooling operation, it functions as a condenser to condense and liquefy the refrigerant.
  • the outdoor fan 204 is provided in the vicinity of the outdoor heat exchanger 203, and supplies outdoor air to the outdoor heat exchanger 203. By controlling the rotation speed, the air blowing amount to the outdoor fan 204 is adjusted. adjusted.
  • a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor or an AC (Alternating Current) fan motor is used.
  • the expansion device 205 reduces the pressure of the refrigerant to expand it.
  • the throttling device 205 is, for example, an electronic expansion valve that can adjust the opening of the throttling. Sometimes it controls the pressure of the refrigerant entering the outdoor heat exchanger 203 .
  • the air conditioner according to Embodiment 5 includes the indoor unit 100 described in any one of Embodiments 1 to 4, and the outdoor unit that constitutes a refrigerant circuit that is connected to the indoor unit 100 by piping and in which the refrigerant circulates. 200 and the like.
  • the air conditioner according to Embodiment 5 includes the indoor unit 100 according to any one of Embodiments 1 to 4, the indoor unit according to any one of Embodiments 1 to 4 is provided. An effect similar to that of 100 can be obtained.
  • 1 Casing 1a Suction port, 1b Air outlet, 2 Decorative panel, 3 Suction grille, 4 Drain pan, 5 Heat exchanger, 5a Upper heat exchanger, 5b Lower heat exchanger, 6 Cross flow fan, 7 Filter, 9a Upper and lower vanes , 9b left and right vanes, 10 stabilizer, 10a first surface, 10b second surface, 10c tongue, 10d contraction surface, 10e downstream surface, 11 guide wall, 20 air passage, 20a suction side air passage, 20b blowout side air passage , 100 Indoor unit, 200 Outdoor unit, 201 Compressor, 202 Flow switching device, 203 Outdoor heat exchanger, 204 Outdoor fan, 205 Expansion device, 300 Gas refrigerant pipe, 400 Liquid refrigerant pipe, 500 Refrigerant circuit.

Abstract

This indoor unit is provided with: a casing that has an air outlet and an air intake, with an airway being formed in the interior thereof; a cross flow fan that is disposed in the airway and blows out, from the air outlet, air that has been taken in from the air intake; a stabilizer for stabilizing a circulating vortex of air produced in the interior during rotation of the cross flow fan; and a guide wall constituting one surface of an outlet-side airway further downstream on the airway than the cross flow fan. The stabilizer has a first surface constituting one surface opposing the guide wall of the outlet-side airway. Part of the outlet-side airway is formed so that the distance from the first surface to the guide wall in the vertical direction gradually decreases going downstream.

Description

室内機および空気調和装置Indoor units and air conditioners
 本開示は、クロスフローファンを備えた室内機および空気調和装置に関するものである。 The present disclosure relates to indoor units and air conditioners equipped with cross-flow fans.
 従来、クロスフローファンを備えた空気調和装置の室内機において、吹出口から空気が逆流しやすくなると、吹出口での空気の吹き出しと吸い込みとが交互に繰り返されるサージングが発生するという課題があった。そこで、サージング耐力を向上させた室内機が提案されている(例えば、特許文献1参照)。 Conventionally, in an indoor unit of an air conditioner equipped with a cross-flow fan, there has been a problem that when air tends to flow back from the blower outlet, surging occurs, in which air is alternately blown out and sucked in from the blower outlet. . Therefore, an indoor unit with improved surging resistance has been proposed (see Patent Document 1, for example).
 特許文献1の室内機は、ケーシングの内部に配置されたクロスフローファンと、クロスフローファンと吹出口との間において空気流路を形成するスタビライザとを備え、スタビライザは、吹出口の長手方向端部に配置された突出部を有し、突出部の吹出方向下流側の傾斜面には、凹凸が形成された粗面が設けられている。そして、このスタビライザの粗面によって吹出口端部において吹き出し空気がスタビライザから剥離しにくくなり、吹出口から空気が逆流するのを抑制することにより、サージング耐力を向上させている。 The indoor unit of Patent Document 1 includes a cross-flow fan arranged inside a casing, and a stabilizer that forms an air flow path between the cross-flow fan and an air outlet. A rough surface having unevenness is provided on the inclined surface of the protrusion on the downstream side in the blowing direction. The rough surface of the stabilizer makes it difficult for the blown air to separate from the stabilizer at the end of the blowout port, and by suppressing the backflow of air from the blowout port, surging resistance is improved.
特開2018-124004号公報JP 2018-124004 A
 しかしながら、特許文献1の室内機では、スタビライザに沿った気流は剥離しにくくなるが、フィルターに埃が堆積して通風抵抗が大きくなることなどによりクロスフローファンの運転負荷が高くなるにつれてスタビライザ側の気流が突出部を超えてしまい、スタビライザに沿う気流が少なくなるため、吹出口からの逆流の抑制効果が十分に得られず、サージング耐力が低下するという課題があった。 However, in the indoor unit of Patent Document 1, although the airflow along the stabilizer is difficult to separate, dust accumulates on the filter and the ventilation resistance increases. Since the airflow exceeds the protruding portion and the airflow along the stabilizer is reduced, the effect of suppressing the backflow from the outlet cannot be sufficiently obtained, and there is a problem that the surging resistance is reduced.
 本開示は、以上のような課題を解決するためになされたもので、クロスフローファンの運転負荷が高い時でもサージング耐力の低下を抑制した室内機および空気調和装置を提供することを目的としている。 The present disclosure has been made to solve the above problems, and aims to provide an indoor unit and an air conditioner that suppress a decrease in surging resistance even when the operating load of the cross-flow fan is high. .
 本開示に係る室内機は、吹出口および吸込口を有し、内部に風路が形成されたケーシングと、前記風路に配置され、前記吸込口から吸い込んだ空気を前記吹出口から吹き出すクロスフローファンと、前記クロスフローファンの回転時にその内部に発生する空気の循環渦を安定させるスタビライザと、前記風路のうち前記クロスフローファンよりも下流側の吹出側風路の一面を構成するガイドウォールと、を備え、前記スタビライザは、前記吹出側風路の前記ガイドウォールに対向する一面を構成する第一面を有し、前記吹出側風路の一部は、下流に向かうにつれて、前記第一面から垂直方向の前記ガイドウォールまでの距離が、漸次短くなるように形成されているものである。 An indoor unit according to the present disclosure includes a casing having an air outlet and an air inlet and having an air passage formed therein; A fan, a stabilizer for stabilizing an air circulating vortex generated inside the cross-flow fan when the cross-flow fan rotates, and a guide wall forming one surface of the blow-out side air passage on the downstream side of the cross-flow fan in the air passage. and, the stabilizer has a first surface that constitutes one surface of the blowout-side air passage that faces the guide wall, and a part of the blowout-side air passage becomes the first The distance from the surface to the guide wall in the vertical direction is formed so as to gradually decrease.
 また、本開示に係る空気調和装置は、上記の室内機と、室内機と配管で接続され冷媒が循環する冷媒回路を構成する室外機と、を備えたものである。 Further, an air conditioner according to the present disclosure includes the indoor unit described above, and an outdoor unit that is connected to the indoor unit by pipes and constitutes a refrigerant circuit in which refrigerant circulates.
 本開示に係る室内機および空気調和装置によれば、吹出側風路の一部は、下流に向かうにつれて、第一面から垂直方向のガイドウォールまでの距離が、漸次短くなるように形成されているため、吹出側風路での気流の均一化が図れる。その結果、フィルターに埃が堆積して通風抵抗が大きくなることなどによりクロスフローファンの運転負荷が高くなった時でも吹出側風路に低風速域ができにくくなり、吹出口から空気が逆流しづらくなることから、サージング耐力の低下を抑制することができる。 According to the indoor unit and the air conditioner according to the present disclosure, part of the outlet-side air passage is formed such that the distance from the first surface to the vertical guide wall gradually decreases toward the downstream. Therefore, it is possible to make the airflow uniform in the air passage on the blowing side. As a result, even when the operating load of the cross-flow fan is high due to the accumulation of dust on the filter and increased airflow resistance, it is difficult for a low-speed region to form in the air passage on the outlet side, causing the air to flow backwards from the outlet. Therefore, it is possible to suppress a decrease in surging resistance.
実施の形態1に係る室内機の外観を示す斜視図である。1 is a perspective view showing the appearance of an indoor unit according to Embodiment 1. FIG. 実施の形態1に係る室内機の縦断面模式図である。2 is a schematic vertical cross-sectional view of the indoor unit according to Embodiment 1. FIG. 実施の形態1に係る室内機の要部を拡大した縦断面模式図である。Fig. 2 is a schematic vertical cross-sectional view enlarging a main part of the indoor unit according to Embodiment 1; 実施の形態2に係る室内機の要部を拡大した縦断面模式図である。Fig. 10 is a schematic vertical cross-sectional view enlarging a main part of the indoor unit according to Embodiment 2; 実施の形態3に係る室内機の要部を拡大した第一の縦断面模式図である。FIG. 11 is a first schematic vertical cross-sectional view enlarging a main part of an indoor unit according to Embodiment 3; 実施の形態3に係る室内機の要部を拡大した第二の縦断面模式図である。FIG. 11 is a second schematic vertical cross-sectional view enlarging a main part of the indoor unit according to Embodiment 3; 図6のZ-Z断面の矢視図である。7 is an arrow view of the ZZ section of FIG. 6. FIG. 実施の形態4に係る室内機の縦断面模式図である。FIG. 11 is a schematic vertical cross-sectional view of an indoor unit according to Embodiment 4; 実施の形態5に係る空気調和装置の構成例を示す図である。FIG. 10 is a diagram showing a configuration example of an air conditioner according to Embodiment 5;
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. Also, in the following drawings, the size relationship of each component may differ from the actual size.
 実施の形態1.
 図1は、実施の形態1に係る室内機100の外観を示す斜視図である。図2は、実施の形態1に係る室内機100の縦断面模式図である。
Embodiment 1.
FIG. 1 is a perspective view showing the appearance of an indoor unit 100 according to Embodiment 1. FIG. FIG. 2 is a schematic vertical cross-sectional view of the indoor unit 100 according to Embodiment 1. FIG.
 以下、実施の形態1に係る室内機100の構成について説明する。以下の説明において、理解を容易にするために方向を表す用語、例えば「上」、「下」、「右」、「左」、「前」、「後」など、を適宜用いるが、これらは説明のためのものであって、これらの用語は実施の形態を限定するものではない。また、実施の形態1では、室内機100を正面視した(図2のX矢視した)状態において、「上」、「下」、「右」、「左」、「前」、「後」などを使用する。 The configuration of the indoor unit 100 according to Embodiment 1 will be described below. In the following description, directional terms such as "up", "down", "right", "left", "front", and "back" are used as appropriate for ease of understanding. These terms are for the purpose of description and are not intended to be limiting of the embodiments. In addition, in the first embodiment, when the indoor unit 100 is viewed from the front (as viewed by the arrow X in FIG. 2), "upper", "lower", "right", "left", "front", and "rear" and so on.
 実施の形態1に係る室内機100は、天井に埋め込まれて設置される天井埋込型である。ただし、それに限定されず、室内機100は、例えば壁掛型などでもよい。室内機100は、図1および図2に示すように、天井に埋め込まれる箱体形状のケーシング1と、ケーシング1の下部に設けられて意匠面となる平板状の化粧パネル2と、化粧パネル2に対して回転自在に取り付けられる平板状の吸込みグリル3と、を備えている。 The indoor unit 100 according to Embodiment 1 is a ceiling-embedded type installed in the ceiling. However, it is not limited to this, and the indoor unit 100 may be of a wall-mounted type, for example. As shown in FIGS. 1 and 2, the indoor unit 100 includes a box-shaped casing 1 embedded in the ceiling, a planar decorative panel 2 provided at the bottom of the casing 1 and serving as a design surface, and a decorative panel 2. and a flat plate-shaped intake grille 3 rotatably attached to it.
 ケーシング1の後方の下部には、内部に室内空気を吸い込む吸込口1aが形成されており、ケーシング1の前方の下部には、外部に空調空気を吹き出す吹出口1bが形成されている。吸込口1aは、吸込みグリル3の閉口時に吸込みグリル3によって覆われている。また、吸込口1aには、空気から粉塵および細菌などを除去する多孔性部材であるフィルター7が設けられている。そして、吸込口1aから吸い込まれた室内空気は、フィルター7を通過してケーシング1の内部に取り込まれる。吹出口1bには、風向を上下方向の所定範囲で変更する上下ベーン9aと、風向を左右方向の所定範囲で変更する左右ベーン9bとが設けられている。 A suction port 1a for sucking indoor air is formed in the lower rear part of the casing 1, and an outlet 1b for blowing conditioned air to the outside is formed in the lower front part of the casing 1. The suction port 1a is covered with the suction grille 3 when the suction grille 3 is closed. In addition, the suction port 1a is provided with a filter 7 which is a porous member for removing dust, bacteria, and the like from the air. The room air sucked from the suction port 1 a passes through the filter 7 and is taken into the casing 1 . The outlet 1b is provided with a vertical vane 9a for changing the wind direction within a predetermined range in the vertical direction and a left and right vane 9b for changing the wind direction within a predetermined range in the horizontal direction.
 ケーシング1の内部には、図2の矢印Yで示す方向に回転自在に配置され、気流を生じさせるクロスフローファン6と、クロスフローファン6に連結され回転駆動するモータ(図示せず)と、水平面かつ奥行き方向に対して傾斜した状態で配置され、クロスフローファン6によって吸込口1aからケーシング1の内部に吸い込まれた室内の空気と冷媒との間で熱交換させ、空調空気を作り出す熱交換器5とが設けられている。また、ケーシング1の内部には、吸込口1aから熱交換器5を通過して吹出口1bに空気が流れるように風路20が形成されており、熱交換器5およびクロスフローファン6は風路20上に配置されている。 Inside the casing 1, a cross-flow fan 6 that is rotatably arranged in the direction indicated by the arrow Y in FIG. It is arranged in a horizontal plane and inclined with respect to the depth direction, and heat exchange is performed between the indoor air sucked into the casing 1 from the suction port 1a by the cross flow fan 6 and the refrigerant to create conditioned air. A vessel 5 is provided. An air passage 20 is formed inside the casing 1 so that air flows from the inlet 1a through the heat exchanger 5 to the outlet 1b. It is located on the road 20.
 熱交換器5は、上部熱交換器5aと下部熱交換器5bとで構成されており、上部熱交換器5aの一端と下部熱交換器5bの一端とが連結されている。また、熱交換器5は、上部熱交換器5aのクロスフローファン6と対向する面と下部熱交換器5bのクロスフローファン6と対向する面とが、鈍角をなすように配置されている。 The heat exchanger 5 is composed of an upper heat exchanger 5a and a lower heat exchanger 5b, and one end of the upper heat exchanger 5a and one end of the lower heat exchanger 5b are connected. The heat exchanger 5 is arranged such that the surface of the upper heat exchanger 5a facing the cross-flow fan 6 and the surface of the lower heat exchanger 5b facing the cross-flow fan 6 form an obtuse angle.
 さらに、ケーシング1の内部には、下部熱交換器5bの全体および上部熱交換器5aの下端部と対向するように、熱交換器5の下方に配置され、熱交換器5からのドレン水を回収するドレンパン4と、風路20をクロスフローファン6よりも上流側の吸込側風路20aとクロスフローファン6よりも下流側の吹出側風路20bとに区画するスタビライザ10と、吹出側風路20bの一面を構成するガイドウォール11と、が設けられている。 Furthermore, inside the casing 1, it is arranged below the heat exchanger 5 so as to face the entire lower heat exchanger 5b and the lower end of the upper heat exchanger 5a, and drain water from the heat exchanger 5 is drained. The drain pan 4 to be collected, the stabilizer 10 that divides the air passage 20 into the suction side air passage 20a on the upstream side of the cross flow fan 6 and the blowing side air passage 20b on the downstream side of the cross flow fan 6, and the blowing side wind A guide wall 11 forming one surface of the path 20b is provided.
 次に、実施の形態1に係る室内機100の動作について説明する。
 モータが回転駆動することによって、モータに連結しているクロスフローファン6は回転し、吸込口1aから室内空気を吸い込む。吸込口1aから吸い込まれた室内空気は、フィルター7を通過して、ケーシング1の内部に吸い込まれる。ケーシング1の内部に吸い込まれた室内空気は、吸込側風路20aを流れる途中で熱交換器5を通過するが、その際に熱交換されて空調空気となる。その後、空調空気は、吹出側風路20bを流れて吹出口1bから室内に向けて吹き出される。このとき、上下ベーン9aおよび左右ベーン9bの向きによって吹出口1bから吹き出される空調空気の向きが変わる。
Next, operation of the indoor unit 100 according to Embodiment 1 will be described.
As the motor rotates, the cross-flow fan 6 connected to the motor rotates, sucking the indoor air from the suction port 1a. Room air sucked from the suction port 1 a passes through the filter 7 and is sucked into the casing 1 . The indoor air drawn into the casing 1 passes through the heat exchanger 5 on the way through the suction-side air passage 20a, where it undergoes heat exchange and becomes conditioned air. After that, the conditioned air flows through the blow-out side air passage 20b and is blown into the room from the blow-out port 1b. At this time, the direction of the conditioned air blown from the outlet 1b changes depending on the directions of the upper and lower vanes 9a and the left and right vanes 9b.
 図3は、実施の形態1に係る室内機100の要部を拡大した縦断面模式図である。
 次に、実施の形態1に係るスタビライザ10の構成の詳細について説明する。
 スタビライザ10は、クロスフローファン6の回転時に、クロスフローファン6の内部に発生する空気の循環渦を安定させるものである。このスタビライザ10は、図3に示すように、吹出側風路20bのガイドウォール11に対向する面を構成する第一面10aと、クロスフローファン6に対向する第二面10bと、第一面10aと第二面10bとの間に設けられた舌部10cと、を有している。ここで、舌部10cは、スタビライザ10のクロスフローファン6側に凸となっている部分の頂点である。また、第二面10bは、クロスフローファン6の外周に沿って形成されており、第二面10bとクロスフローファン6との間には、ギャップが形成されている。なお、第二面10bの最もクロスフローファン6の回転方向の下流側となる位置で、クロスフローファン6とのギャップが最小となっている。
FIG. 3 is a schematic vertical cross-sectional view showing an enlarged main part of the indoor unit 100 according to Embodiment 1. FIG.
Next, the details of the configuration of stabilizer 10 according to Embodiment 1 will be described.
The stabilizer 10 stabilizes the circulating vortex of air generated inside the cross-flow fan 6 when the cross-flow fan 6 rotates. This stabilizer 10, as shown in FIG. and a tongue 10c provided between 10a and the second surface 10b. Here, the tongue portion 10c is the vertex of the portion of the stabilizer 10 that protrudes toward the cross-flow fan 6 side. The second surface 10b is formed along the outer periphery of the crossflow fan 6, and a gap is formed between the second surface 10b and the crossflow fan 6. As shown in FIG. The gap between the second surface 10b and the crossflow fan 6 is the smallest at the position closest to the downstream side in the rotation direction of the crossflow fan 6 .
 第一面10aは、舌部10cから下流に向かって吹出側風路20bが縮小するように形成された縮流面10dを有している。この縮流面10dは、下流に向かうにつれてガイドウォール11に漸次接近するように傾斜している。具体的には、図3の破線で示す矢印のように、縮流面10dは、その面から垂直方向のガイドウォール11までの距離が、下流に向かうにつれて漸次短くなるように形成されている。また、鉛直方向における、舌部10cの位置を破線H1、吹出口1bの下端の位置を破線H2、それらの中間位置を破線H3とすると、縮流面10dは、その中間位置(破線H3)よりも上流側となる位置に形成されている。これは、空調空気を吹出口1bで下向きに吹出しやすくするためである。なお、縮流面10dを中間位置(破線H3)よりも下流側となる位置に形成すると、空調空気が吹出口1bで下向きに吹出しづらくなる。以上のように、縮流面10dによって、吹出側風路20bの一部は、下流に向かって縮小するように形成されている。なお、縮流面10dは、図3に示すように側面視が直線となる平面形状でもよいし、側面視がガイドウォール11側に凸の曲線となる曲面形状でもよい。 The first surface 10a has a contraction surface 10d formed so that the blow-out side air passage 20b contracts downstream from the tongue portion 10c. This contraction surface 10d is inclined so as to gradually approach the guide wall 11 as it goes downstream. Specifically, as indicated by the dashed arrow in FIG. 3, the contraction surface 10d is formed so that the distance from the surface to the guide wall 11 in the vertical direction gradually decreases toward the downstream. Further, if the position of the tongue portion 10c in the vertical direction is indicated by a dashed line H1, the position of the lower end of the outlet 1b by a dashed line H2, and the intermediate position thereof by a dashed line H3, the contraction surface 10d is located from the intermediate position (broken line H3). is also formed at a position on the upstream side. This is to make it easier to blow the conditioned air downward from the blowout port 1b. If the contraction surface 10d is formed at a position downstream of the intermediate position (broken line H3), it becomes difficult for the conditioned air to blow downward from the outlet 1b. As described above, part of the blow-out side air passage 20b is formed to contract downstream by the contraction surface 10d. Note that the contraction surface 10d may have a planar shape that is straight when viewed from the side as shown in FIG.
 このように、スタビライザ10に縮流面10dを設けることで、吹出側風路20bでの気流の均一化が図れるため、スタビライザ10に沿わない気流が低減する。その結果、フィルター7に埃が堆積して通風抵抗が大きくなることなどにより、クロスフローファン6の運転負荷が高くなった時でも、吹出側風路20bに低風速域ができにくくなり、吹出口1bから空気が逆流しづらくなることから、サージング耐力の低下を抑制することができる。また、吹出側風路20bでは、クロスフローファン6の回転方向の下流側で風速が低くなり、クロスフローファン6の回転方向の上流側で風速が高くなるが、風速が低い側となるスタビライザ10の第一面10aに縮流面10dが形成されている。そのため、風速が高い側となるガイドウォール11に傾斜を有する縮流面を形成するよりも圧力損失の増加を抑制することができる。 By providing the flow contraction surface 10d in the stabilizer 10 in this way, the airflow in the blow-out side air passage 20b can be made uniform, so that the airflow that does not follow the stabilizer 10 is reduced. As a result, even when the operating load of the cross-flow fan 6 increases due to the accumulation of dust on the filter 7 and the increase in airflow resistance, it becomes difficult for the blow-out side air passage 20b to create a low-velocity region. Since it becomes difficult for air to flow back from 1b, it is possible to suppress a decrease in surging resistance. In the blow-out side air passage 20b, the wind speed is low on the downstream side in the rotation direction of the cross flow fan 6, and the wind speed is high on the upstream side in the rotation direction of the cross flow fan 6, but the stabilizer 10 on the side where the wind speed is low A contraction surface 10d is formed on the first surface 10a of the . Therefore, it is possible to suppress an increase in pressure loss compared to forming a contracted flow surface having an inclination in the guide wall 11 on the high wind speed side.
 以上、実施の形態1に係る室内機100は、吹出口1bおよび吸込口1aを有し、内部に風路20が形成されたケーシング1と、風路20に配置され、吸込口1aから吸い込んだ空気を吹出口1bから吹き出すクロスフローファン6と、クロスフローファン6の回転時にその内部に発生する空気の循環渦を安定させるスタビライザ10と、風路20のうちクロスフローファン6よりも下流側の吹出側風路20bの一面を構成するガイドウォール11と、を備えている。そして、スタビライザ10は、吹出側風路20bのガイドウォール11に対向する一面を構成する第一面10aを有し、吹出側風路20bの一部は、下流に向かうにつれて、第一面10aから垂直方向のガイドウォール11までの距離が、漸次短くなるように形成されているものである。 As described above, the indoor unit 100 according to Embodiment 1 includes the casing 1 having the air outlet 1b and the air inlet 1a, and the air passage 20 formed therein, and the air passage 20 arranged in the air passage 20 to draw in air from the air inlet 1a. A cross-flow fan 6 that blows out air from the blow-out port 1b, a stabilizer 10 that stabilizes the circulation vortex of the air generated inside when the cross-flow fan 6 rotates, and an air passage 20 downstream of the cross-flow fan 6. and a guide wall 11 forming one surface of the blow-out side air passage 20b. The stabilizer 10 has a first surface 10a that constitutes one surface of the blowout-side air passage 20b facing the guide wall 11, and a part of the blowout-side air passage 20b extends downstream from the first surface 10a. It is formed so that the distance to the guide wall 11 in the vertical direction is gradually shortened.
 実施の形態1に係る室内機100によれば、吹出側風路20bの一部は、下流に向かうにつれて、第一面10aから垂直方向のガイドウォール11までの距離が、漸次短くなるように形成されているため、吹出側風路20bでの気流の均一化が図れる。その結果、フィルター7に埃が堆積して通風抵抗が大きくなることなどによりクロスフローファン6の運転負荷が高くなった時でも吹出側風路20bに低風速域ができにくくなり、吹出口1bから空気が逆流しづらくなることから、サージング耐力の低下を抑制することができる。 According to the indoor unit 100 according to Embodiment 1, part of the outlet-side air passage 20b is formed such that the distance from the first surface 10a to the vertical guide wall 11 gradually decreases toward the downstream. Therefore, the airflow in the blow-out side air passage 20b can be made uniform. As a result, even when the operating load of the cross-flow fan 6 becomes high due to the accumulation of dust on the filter 7 and the increased ventilation resistance, a low air velocity region is less likely to occur in the outlet side air passage 20b. Since it becomes difficult for the air to flow back, it is possible to suppress a decrease in surging resistance.
 また、実施の形態1に係る室内機100において、第一面10aは、下流に向かうにつれて、ガイドウォール11に漸次接近するように傾斜した縮流面10dを有する。 In addition, in the indoor unit 100 according to Embodiment 1, the first surface 10a has a contraction surface 10d that is inclined so as to gradually approach the guide wall 11 toward the downstream side.
 実施の形態1に係る室内機100によれば、スタビライザ10の第一面10aは、舌部10cから下流に向かうにつれて、ガイドウォール11に漸次接近するように傾斜した縮流面10dを有する。つまり、風速が低い側となるスタビライザ10の第一面10aに縮流面10dが形成されているので、風速が高い側となるガイドウォール11に傾斜を有する縮流面を形成するよりも、圧力損失の増加を抑制することができる。 According to the indoor unit 100 according to Embodiment 1, the first surface 10a of the stabilizer 10 has the contraction surface 10d that is inclined so as to gradually approach the guide wall 11 as it goes downstream from the tongue portion 10c. That is, since the flow contraction surface 10d is formed on the first surface 10a of the stabilizer 10 on the low wind speed side, the flow contraction surface 10d is formed on the guide wall 11 on the high wind speed side rather than forming an inclined flow contraction surface. An increase in loss can be suppressed.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
 図4は、実施の形態2に係る室内機100の要部を拡大した縦断面模式図である。
 スタビライザ10の第一面10aは、図4に示すように、縮流面10dの下流側に下流面10eを有している。そして、下流面10eの上流端と下流端とを結んだ平面と鉛直面(破線V)とのなす角をθ2、縮流面10dの上流端と下流端とを結んだ平面と鉛直面(破線V)とのなす角をθ1とすると、θ2<θ1である。なお、図4ではθ2=0°であるため、θ2を図示省略している。
FIG. 4 is a schematic vertical cross-sectional view enlarging a main part of the indoor unit 100 according to Embodiment 2. As shown in FIG.
The first surface 10a of the stabilizer 10 has a downstream surface 10e on the downstream side of the contraction surface 10d, as shown in FIG. The angle between the plane connecting the upstream end and the downstream end of the downstream surface 10e and the vertical plane (dashed line V) is θ2, and the plane connecting the upstream end and the downstream end of the contraction surface 10d and the vertical plane (dashed line V) is defined as θ1, then θ2<θ1. In FIG. 4, θ2 is omitted because θ2=0°.
 このように、下流面10eの上流端と下流端とを結んだ平面と鉛直面(破線V)とのなす角を、縮流面10dの上流端と下流端とを結んだ平面と鉛直面(破線V)とのなす角よりも小さくすることで、吹出側風路20bの傾斜が、縮流面10dの下流側で緩やかになる。その結果、吹出側風路20bの気流が吹出口1bに向かって安定しやすく、スタビライザ10に沿った気流が多くなるため、サージング耐力を向上させることができる。 Thus, the angle between the plane connecting the upstream end and the downstream end of the downstream surface 10e and the vertical plane (broken line V) is the plane connecting the upstream end and the downstream end of the contraction surface 10d and the vertical plane ( By making the angle smaller than the angle with the dashed line V), the inclination of the blow-out side air passage 20b becomes gentle on the downstream side of the contraction surface 10d. As a result, the airflow in the blow-out side air passage 20b tends to be stabilized toward the blowout port 1b, and the airflow along the stabilizer 10 increases, so that surging resistance can be improved.
 また、θ2とθ1との差が20°以下となるように、縮流面10dおよび下流面10eがそれぞれ形成されている。これは、θ2とθ1との差が大きすぎると、スタビライザ10上で気流が剥離しやすくなり、クロスフローファン6から吹き出される気流が剥離後に再びスタビライザ10に衝突しやすくなることで、吹出側風路20bでの圧力損失が増加しやすくなるためである。そして、θ2とθ1との差が20°以下であれば、吹出側風路20bでの圧力損失の増加を許容することができる。 Also, the contraction surface 10d and the downstream surface 10e are formed so that the difference between θ2 and θ1 is 20° or less. This is because if the difference between θ2 and θ1 is too large, the airflow tends to separate on the stabilizer 10, and the airflow blown out from the cross-flow fan 6 tends to collide with the stabilizer 10 again after separation. This is because the pressure loss in the air passage 20b tends to increase. If the difference between .theta.2 and .theta.1 is 20.degree.
 以上、実施の形態2に係る室内機100において、第一面10aは、縮流面10dの下流側に下流面10eを有し、下流面10eの上流端と下流端とを結んだ平面と鉛直面(破線V)とのなす角は、縮流面10dの上流端と下流端とを結んだ平面と鉛直面(破線V)とのなす角よりも小さい。 As described above, in the indoor unit 100 according to Embodiment 2, the first surface 10a has the downstream surface 10e on the downstream side of the contraction surface 10d, and is perpendicular to the plane connecting the upstream end and the downstream end of the downstream surface 10e. The angle formed with the surface (broken line V) is smaller than the angle formed between the plane connecting the upstream end and the downstream end of the contraction surface 10d and the vertical plane (broken line V).
 実施の形態2に係る室内機100によれば、下流面10eの上流端と下流端とを結んだ平面と鉛直面(破線V)とのなす角は、縮流面10dの上流端と下流端とを結んだ平面と鉛直面(破線V)とのなす角よりも小さいため、吹出側風路20bの傾斜が、縮流面10dの下流側で緩やかになる。その結果、吹出側風路20bの気流が吹出口1bに向かって安定しやすく、スタビライザ10に沿った気流が多くなるため、サージング耐力を向上させることができる。 According to the indoor unit 100 according to Embodiment 2, the angle between the plane connecting the upstream end and the downstream end of the downstream surface 10e and the vertical plane (broken line V) is the upstream end and the downstream end of the contraction surface 10d. and the vertical plane (broken line V). As a result, the airflow in the blow-out side air passage 20b tends to be stabilized toward the blowout port 1b, and the airflow along the stabilizer 10 increases, so that surging resistance can be improved.
 実施の形態3.
 以下、実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
Embodiment 3.
Embodiment 3 will be described below, but the description of the parts that overlap with Embodiments 1 and 2 will be omitted, and the same or corresponding parts as those in Embodiments 1 and 2 will be given the same reference numerals.
 図5は、実施の形態3に係る室内機100の要部を拡大した第一の縦断面模式図である。なお、図5では、クロスフローファン6の水平方向で最も吹出口側の端部の位置を破線B、舌部10cの位置を破線A、縮流面10dの下流端の位置を破線Cでそれぞれ示している。 FIG. 5 is a first vertical cross-sectional schematic diagram enlarging the main part of the indoor unit 100 according to Embodiment 3. As shown in FIG. In FIG. 5, the position of the end of the crossflow fan 6 closest to the outlet in the horizontal direction is indicated by a broken line B, the position of the tongue portion 10c is indicated by a broken line A, and the position of the downstream end of the contraction surface 10d is indicated by a broken line C. showing.
 実施の形態3では、図5に示すように、クロスフローファン6の水平方向で最も吹出口側の端部(破線B)は、水平方向において、舌部10c(破線A)と縮流面10dの下流端(破線C)との間に位置している。このようにすることで、クロスフローファン6の運転負荷が通常時に、クロスフローファン6から吹き出される気流がスタビライザ10側に寄りやすくなる。その結果、クロスフローファン6の運転負荷が高くなった時でも、クロスフローファン6から吹き出される気流がガイドウォール11側に寄りにくくなるので、吹出側風路20bに低風速域ができにくくなり、吹出口1bから空気が逆流しづらくなることから、サージング耐力の低下を抑制することができる。 In the third embodiment, as shown in FIG. 5, the end portion (dashed line B) of the cross flow fan 6 closest to the blowout port side in the horizontal direction is located horizontally between the tongue portion 10c (dashed line A) and the contraction surface 10d. , and the downstream end (dashed line C). By doing so, when the operating load of the cross-flow fan 6 is normal, the airflow blown out from the cross-flow fan 6 tends to lean toward the stabilizer 10 side. As a result, even when the operating load of the cross-flow fan 6 becomes high, the airflow blown out from the cross-flow fan 6 is less likely to shift to the guide wall 11 side, so that a low wind speed region is less likely to occur in the blow-out side air passage 20b. , it is difficult for the air to flow back from the outlet 1b.
 なお、舌部10c(破線A)が、水平方向において、クロスフローファン6の水平方向で最も吹出口側の端部(破線B)よりも吹出口1bに近い場合、クロスフローファン6から吹き出される気流がガイドウォール11側に寄りやすくなる。その結果、クロスフローファン6の運転負荷が高くなった時に、クロスフローファン6から吹き出される気流がガイドウォール11側にさらに寄りやすくなるので、吹出側風路20bに低風速域ができやすくなり、吹出口1bから空気が逆流しやすくなることから、サージング耐力の低下を招く。また、クロスフローファン6の水平方向で最も吹出口側の端部(破線B)が、水平方向において、縮流面10dの下流端(破線C)よりも吹出口1bに近い場合、クロスフローファン6から吹き出される気流がスタビライザ10に沿った気流となりづらくなる。その結果、クロスフローファン6から吹き出される気流は、スタビライザ10から剥離を起こし流れが乱れて衝突しやすくなり、吹出側風路20bでの圧力損失が増加し、騒音の悪化およびクロスフローファン6の運転負荷の増加を招く。 When the tongue portion 10c (broken line A) is closer to the outlet 1b in the horizontal direction than the end (broken line B) closest to the outlet of the crossflow fan 6 in the horizontal direction, the tongue 10c is blown out from the crossflow fan 6. This makes it easier for the air current to flow toward the guide wall 11 side. As a result, when the operating load of the cross-flow fan 6 becomes high, the airflow blown out from the cross-flow fan 6 is more likely to move toward the guide wall 11, so that a low wind speed region is likely to be formed in the blow-out side air passage 20b. , air tends to flow back from the outlet 1b, resulting in a decrease in surging resistance. In addition, when the end of the crossflow fan 6 closest to the outlet in the horizontal direction (broken line B) is closer to the outlet 1b than the downstream end (broken line C) of the contraction surface 10d in the horizontal direction, the crossflow fan The airflow blown out from 6 is less likely to flow along the stabilizer 10 . As a result, the airflow blown out from the crossflow fan 6 separates from the stabilizer 10, becomes turbulent, and easily collides with each other. increase the driving load of
 図6は、実施の形態3に係る室内機100の要部を拡大した第二の縦断面模式図である。図7は、図6のZ-Z断面の矢視図である。 FIG. 6 is a second schematic vertical cross-sectional view enlarging the main part of the indoor unit 100 according to Embodiment 3. As shown in FIG. 7 is an arrow view of the ZZ section of FIG. 6. FIG.
 また、図6および図7に示すように、縮流面10dの下流端からガイドウォール11までの距離は、クロスフローファン6の回転軸方向(以下、単に回転軸方向と称する)で異なる。なお、図6の回転軸方向は、紙面直交方向である。そして、吹出側風路20bにおいて、回転軸方向の両端部における、縮流面10dの下流端からガイドウォール11までの距離をLb1、回転軸方向の中央部における、縮流面10dの下流端からガイドウォール11までの距離をLb2とすると、Lb1<Lb2となる。 Also, as shown in FIGS. 6 and 7, the distance from the downstream end of the flow contraction surface 10d to the guide wall 11 differs depending on the rotation axis direction of the cross flow fan 6 (hereinafter simply referred to as the rotation axis direction). Note that the direction of the rotation axis in FIG. 6 is the direction perpendicular to the plane of the paper. In the blow-out side air passage 20b, the distance from the downstream end of the contraction surface 10d to the guide wall 11 at both ends in the rotation axis direction is Lb1, and the distance from the downstream end of the contraction surface 10d at the center in the rotation axis direction is Assuming that the distance to the guide wall 11 is Lb2, Lb1<Lb2.
 ここで、吹出側風路20bの両側面を構成するケーシング1の両側面(図示せず)の影響で、吹出口1bからの吹出空気の速度は、回転軸方向の両端部の方が回転軸の中央部よりも遅くなりやすい。そして、吹出側風路20bの回転軸方向の両端部で低風速域ができやすくなり、吹出口1bから空気が逆流しやすくなることから、サージング耐力が低下しやすい。なお、吹出側風路20bを狭くすれば、スタビライザ10に沿わない気流を低減するためサージング耐力を向上させることができるが、一方で、クロスフローファン6から吹き出される気流がスタビライザ10に衝突しやすくなるため、圧力損失は増加する。 Here, due to the influence of both side surfaces (not shown) of the casing 1 forming both side surfaces of the blowout side air passage 20b, the speed of the air blown from the blowout port 1b is higher at both ends in the direction of the rotation axis. tend to be slower than the central part of the Low wind speed regions are likely to occur at both ends of the blowout side air passage 20b in the rotation axis direction, and air tends to flow backward from the blowout port 1b, so the surging resistance is likely to decrease. If the blow-out side air passage 20b is narrowed, the surging resistance can be improved because the airflow not along the stabilizer 10 is reduced. pressure loss increases.
 そこで、吹出側風路20bにおいて、回転軸方向の両端部での縮流面10dの下流端からガイドウォール11までの距離が、回転軸方向の中央部での縮流面10dの下流端からガイドウォール11までの距離よりも短くなるようにする。このようにすることで、吹出側風路20bの回転軸方向の中央部での圧力損失の増加を抑制しつつ、吹出側風路20bの回転軸方向の両端部でのスタビライザ10に沿わない気流を低減することができる。その結果、吹出側風路20bでの圧力損失の増加を抑制しつつ、サージング耐力の低下を抑制することができる。 Therefore, in the blow-out side air passage 20b, the distance from the downstream end of the flow contraction surface 10d at both ends in the rotation axis direction to the guide wall 11 is adjusted from the downstream end of the flow contraction surface 10d at the central portion in the rotation axis direction to the guide wall 11. Make it shorter than the distance to the wall 11. By doing so, while suppressing an increase in pressure loss at the central portion of the blowout-side air passage 20b in the rotation axis direction, airflow that does not follow the stabilizer 10 at both ends of the blowout-side air passage 20b in the rotation axis direction can be reduced. As a result, it is possible to suppress a decrease in surging resistance while suppressing an increase in pressure loss in the blow-out side air passage 20b.
 以上、実施の形態3に係る室内機100において、クロスフローファン6の水平方向で最も吹出口1b側の端部は、水平方向において、舌部10cと縮流面10dの下流端との間に位置している。 As described above, in the indoor unit 100 according to Embodiment 3, the end of the crossflow fan 6 closest to the outlet 1b in the horizontal direction is located between the tongue 10c and the downstream end of the contraction surface 10d in the horizontal direction. positioned.
 実施の形態3に係る室内機100によれば、このようにすることで、クロスフローファン6の運転負荷が通常時に、クロスフローファン6から吹き出される気流がスタビライザ10側に寄りやすくなる。その結果、クロスフローファン6の運転負荷が高くなった時でも、クロスフローファン6から吹き出される気流がガイドウォール11側に寄りにくくなるので、吹出側風路20bに低風速域ができにくくなり、吹出口1bから空気が逆流しづらくなることから、サージング耐力の低下を抑制することができる。 According to the indoor unit 100 according to Embodiment 3, by doing so, the airflow blown out from the cross-flow fan 6 tends to lean toward the stabilizer 10 when the operating load of the cross-flow fan 6 is normal. As a result, even when the operating load of the cross-flow fan 6 becomes high, the airflow blown out from the cross-flow fan 6 is less likely to shift to the guide wall 11 side, so that a low wind speed region is less likely to occur in the blow-out side air passage 20b. , it is difficult for the air to flow back from the outlet 1b.
 また、実施の形態3に係る室内機100において、縮流面10dの下流端からガイドウォール11までの距離は、クロスフローファン6の回転軸方向で異なり、その距離は、回転軸方向の中央部よりも、回転軸方向の端部の方が短い。 Further, in the indoor unit 100 according to Embodiment 3, the distance from the downstream end of the contraction surface 10d to the guide wall 11 varies in the rotation axis direction of the cross flow fan 6, and the distance is the central portion in the rotation axis direction. The end portion in the rotation axis direction is shorter than the .
 実施の形態3に係る室内機100によれば、このようにすることで、吹出側風路20bの回転軸方向の中央部での圧力損失の増加を抑制しつつ、吹出側風路20bの回転軸方向の両端部でのスタビライザ10に沿わない気流を低減することができる。その結果、吹出側風路20bでの圧力損失の増加を抑制しつつ、サージング耐力の低下を抑制することができる。 According to the indoor unit 100 according to Embodiment 3, in this way, while suppressing an increase in pressure loss at the central portion in the rotation axis direction of the blow-out side air passage 20b, the rotation of the blow-out side air passage 20b is suppressed. Airflow not along the stabilizer 10 at both ends in the axial direction can be reduced. As a result, it is possible to suppress a decrease in surging resistance while suppressing an increase in pressure loss in the blow-out side air passage 20b.
 実施の形態4.
 以下、実施の形態4について説明するが、実施の形態1~3と重複するものについては説明を省略し、実施の形態1~3と同じ部分または相当する部分には同じ符号を付す。
Embodiment 4.
Embodiment 4 will be described below, but descriptions of the same parts as those in Embodiments 1 to 3 will be omitted, and parts that are the same as or correspond to those in Embodiments 1 to 3 will be given the same reference numerals.
 図8は、実施の形態4に係る室内機100の縦断面模式図である。なお、図8では、舌部10cの位置を破線A、熱交換器5の水平方向で最も吹出口側の端部を破線Dでそれぞれ示している。
 実施の形態4では、図8に示すように、熱交換器5の水平方向で最も吹出口側の端部(破線D)が、水平方向において、舌部10c(破線A)よりも吹出口1b側に位置している。なお、熱交換器5の水平方向で最も吹出口側の端部(破線D)が、水平方向において、舌部10c(破線A)と同じ位置に位置していてもよい。このようにすることで、熱交換器5の伝熱面積を拡大させることができ、熱交換効率を向上させることができる。また、熱交換器5の伝熱面積が拡大することによって、熱交換器5を通過する空気の速度が下がるため、風路圧損の増加が抑制され、さらには、クロスフローファン6の失速点まで尤度ができるため、サージング耐力の低下を抑制することができる。
FIG. 8 is a schematic vertical cross-sectional view of the indoor unit 100 according to Embodiment 4. FIG. In FIG. 8, the position of the tongue portion 10c is indicated by a dashed line A, and the end of the heat exchanger 5 closest to the outlet in the horizontal direction is indicated by a dashed line D. As shown in FIG.
In the fourth embodiment, as shown in FIG. 8, the end portion (dashed line D) of the heat exchanger 5 closest to the blowout port side in the horizontal direction is positioned further toward the blowout port 1b than the tongue portion 10c (dashed line A) in the horizontal direction. located on the side. In addition, the end portion (dashed line D) of the heat exchanger 5 closest to the outlet in the horizontal direction may be positioned at the same position as the tongue portion 10c (dashed line A) in the horizontal direction. By doing so, the heat transfer area of the heat exchanger 5 can be increased, and the heat exchange efficiency can be improved. In addition, since the heat transfer area of the heat exchanger 5 is increased, the speed of the air passing through the heat exchanger 5 is reduced, thereby suppressing an increase in pressure loss in the air passage. Since likelihood is generated, it is possible to suppress a decrease in surging resistance.
 以上、実施の形態4に係る室内機100は、クロスフローファン6によって吸込口1aから吸い込まれた空気と冷媒との間で熱交換を行う熱交換器5を備え、熱交換器5の水平方向で最も吹出口1b側の端部は、水平方向において、舌部10cと同じ位置あるいは舌部10cよりも吹出口1b側に位置している。 As described above, the indoor unit 100 according to Embodiment 4 includes the heat exchanger 5 that exchanges heat between the air sucked from the suction port 1a by the cross flow fan 6 and the refrigerant. In the horizontal direction, the end closest to the outlet 1b is located at the same position as the tongue 10c or closer to the outlet 1b than the tongue 10c.
 実施の形態4に係る室内機100によれば、このようにすることで、熱交換器5の伝熱面積を拡大させることができ、熱交換効率を向上させることができる。また、熱交換器5の伝熱面積が拡大することによって、熱交換器5を通過する空気の速度が下がるため、風路圧損の増加が抑制され、さらには、クロスフローファン6の失速点まで尤度ができるため、サージング耐力の低下を抑制することができる。 According to the indoor unit 100 according to Embodiment 4, by doing so, the heat transfer area of the heat exchanger 5 can be increased, and the heat exchange efficiency can be improved. In addition, since the heat transfer area of the heat exchanger 5 is increased, the speed of the air passing through the heat exchanger 5 is reduced, thereby suppressing an increase in pressure loss in the air passage. Since likelihood is generated, it is possible to suppress a decrease in surging resistance.
 実施の形態5.
 以下、実施の形態5について説明するが、実施の形態1~4と重複するものについては説明を省略し、実施の形態1~4と同じ部分または相当する部分には同じ符号を付す。
Embodiment 5.
Embodiment 5 will be described below, but the description of the parts overlapping those of Embodiments 1 to 4 will be omitted, and the same reference numerals will be given to parts that are the same as or correspond to those of Embodiments 1 to 4.
 図9は、実施の形態5に係る空気調和装置の構成例を示す図である。 FIG. 9 is a diagram showing a configuration example of an air conditioner according to Embodiment 5. In FIG.
 図9に示す空気調和装置は、室内機100と室外機200とをガス冷媒配管300、液冷媒配管400により配管接続し、冷媒が循環する冷媒回路500を構成する。室内機100は、実施の形態1~4のいずれかに記載されたものである。室外機200は、圧縮機201、流路切替装置202、室外熱交換器203、室外ファン204、および、絞り装置205を有する。 In the air conditioner shown in FIG. 9, an indoor unit 100 and an outdoor unit 200 are connected by gas refrigerant piping 300 and liquid refrigerant piping 400 to form a refrigerant circuit 500 in which refrigerant circulates. The indoor unit 100 is described in any one of the first to fourth embodiments. The outdoor unit 200 has a compressor 201 , a channel switching device 202 , an outdoor heat exchanger 203 , an outdoor fan 204 and an expansion device 205 .
 圧縮機201は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出するものである。圧縮機201は、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバーター圧縮機などである。 The compressor 201 sucks in a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges a high-temperature, high-pressure refrigerant. The compressor 201 is, for example, an inverter compressor whose capacity, which is the output amount per unit time, is controlled by changing the operating frequency.
 流路切替装置202は、例えば四方弁であり、冷媒の流れ方向を切り替えることで、冷房運転と暖房運転とを切り替えるものである。なお、流路切替装置202として、四方弁に代えて二方弁および三方弁の組み合わせなどを用いてもよい。 The flow path switching device 202 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant. As the channel switching device 202, a combination of a two-way valve and a three-way valve may be used instead of the four-way valve.
 室外熱交換器203は、室外の空気と冷媒との間で熱交換を行うものである。たとえば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。 The outdoor heat exchanger 203 exchanges heat between the outdoor air and the refrigerant. For example, during heating operation, it functions as an evaporator to evaporate and vaporize the refrigerant. Also, during cooling operation, it functions as a condenser to condense and liquefy the refrigerant.
 室外ファン204は、室外熱交換器203の近傍に設けられ、室外熱交換器203に対して室外の空気を供給するものであり、回転数が制御されることにより、室外ファン204に対する送風量が調整される。室外ファン204として、例えば、DC(Direct Current)ファンモータあるいはAC(Alternating Current)ファンモータなどのモータによって駆動される遠心ファンまたは多翼ファンなどが用いられる。 The outdoor fan 204 is provided in the vicinity of the outdoor heat exchanger 203, and supplies outdoor air to the outdoor heat exchanger 203. By controlling the rotation speed, the air blowing amount to the outdoor fan 204 is adjusted. adjusted. As the outdoor fan 204, for example, a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor or an AC (Alternating Current) fan motor is used.
 絞り装置205は、冷媒を減圧して膨張させるものである。絞り装置205は、例えば絞りの開度を調整することができる電子式膨張弁であり、開度を調整することによって、冷房運転時では熱交換器5に流入する冷媒圧力を制御し、暖房運転時では室外熱交換器203に流入する冷媒圧力を制御する。 The expansion device 205 reduces the pressure of the refrigerant to expand it. The throttling device 205 is, for example, an electronic expansion valve that can adjust the opening of the throttling. Sometimes it controls the pressure of the refrigerant entering the outdoor heat exchanger 203 .
 以上、実施の形態5に係る空気調和装置は、実施の形態1~4のいずれかに記載された室内機100と、室内機100と配管で接続され冷媒が循環する冷媒回路を構成する室外機200と、を備えたものである。 As described above, the air conditioner according to Embodiment 5 includes the indoor unit 100 described in any one of Embodiments 1 to 4, and the outdoor unit that constitutes a refrigerant circuit that is connected to the indoor unit 100 by piping and in which the refrigerant circulates. 200 and the like.
 実施の形態5に係る空気調和装置によれば、実施の形態1~4のいずれかに記載された室内機100を備えているので、実施の形態1~4のいずれかに記載された室内機100と同様の効果を得ることができる。 Since the air conditioner according to Embodiment 5 includes the indoor unit 100 according to any one of Embodiments 1 to 4, the indoor unit according to any one of Embodiments 1 to 4 is provided. An effect similar to that of 100 can be obtained.
 1 ケーシング、1a 吸込口、1b 吹出口、2 化粧パネル、3 吸込みグリル、4 ドレンパン、5 熱交換器、5a 上部熱交換器、5b 下部熱交換器、6 クロスフローファン、7 フィルター、9a 上下ベーン、9b 左右ベーン、10 スタビライザ、10a 第一面、10b 第二面、10c 舌部、10d 縮流面、10e 下流面、11 ガイドウォール、20 風路、20a 吸込側風路、20b 吹出側風路、100 室内機、200 室外機、201 圧縮機、202 流路切替装置、203 室外熱交換器、204 室外ファン、205 絞り装置、300 ガス冷媒配管、400 液冷媒配管、500 冷媒回路。 1 Casing, 1a Suction port, 1b Air outlet, 2 Decorative panel, 3 Suction grille, 4 Drain pan, 5 Heat exchanger, 5a Upper heat exchanger, 5b Lower heat exchanger, 6 Cross flow fan, 7 Filter, 9a Upper and lower vanes , 9b left and right vanes, 10 stabilizer, 10a first surface, 10b second surface, 10c tongue, 10d contraction surface, 10e downstream surface, 11 guide wall, 20 air passage, 20a suction side air passage, 20b blowout side air passage , 100 Indoor unit, 200 Outdoor unit, 201 Compressor, 202 Flow switching device, 203 Outdoor heat exchanger, 204 Outdoor fan, 205 Expansion device, 300 Gas refrigerant pipe, 400 Liquid refrigerant pipe, 500 Refrigerant circuit.

Claims (8)

  1.  吹出口および吸込口を有し、内部に風路が形成されたケーシングと、
     前記風路に配置され、前記吸込口から吸い込んだ空気を前記吹出口から吹き出すクロスフローファンと、
     前記クロスフローファンの回転時にその内部に発生する空気の循環渦を安定させるスタビライザと、
     前記風路のうち前記クロスフローファンよりも下流側の吹出側風路の一面を構成するガイドウォールと、を備え、
     前記スタビライザは、
     前記吹出側風路の前記ガイドウォールに対向する一面を構成する第一面を有し、
     前記吹出側風路の一部は、
     下流に向かうにつれて、前記第一面から垂直方向の前記ガイドウォールまでの距離が、漸次短くなるように形成されている
     室内機。
    a casing having an air outlet and an air inlet and having an air passage formed therein;
    a cross-flow fan that is arranged in the air passage and blows out the air sucked from the suction port from the air outlet;
    a stabilizer that stabilizes an air circulation vortex generated inside the cross flow fan when the cross flow fan rotates;
    a guide wall forming one surface of the blowout side air passage downstream of the cross flow fan in the air passage,
    The stabilizer is
    having a first surface that constitutes one surface of the outlet-side air passage facing the guide wall;
    A part of the blow-out side air passage is
    The indoor unit is formed such that the distance from the first surface to the guide wall in the vertical direction gradually decreases toward the downstream side.
  2.  前記第一面は、
     下流に向かうにつれて、前記ガイドウォールに漸次接近するように傾斜した縮流面を有する
     請求項1に記載の室内機。
    The first surface is
    2. The indoor unit according to claim 1, comprising a contraction surface that is inclined so as to gradually approach the guide wall as it goes downstream.
  3.  前記第一面は、前記縮流面の下流側に下流面を有し、
     前記下流面の上流端と下流端とを結んだ平面と鉛直面とのなす角は、前記縮流面の上流端と下流端とを結んだ平面と前記鉛直面とのなす角よりも小さい
     請求項2に記載の室内機。
    The first surface has a downstream surface on the downstream side of the contraction surface,
    The angle formed between the plane connecting the upstream end and the downstream end of the downstream surface and the vertical plane is smaller than the angle formed between the plane connecting the upstream end and the downstream end of the contraction surface and the vertical plane. Item 2. The indoor unit according to Item 2.
  4.  前記縮流面の下流端から前記ガイドウォールまでの距離は、前記クロスフローファンの回転軸方向で異なり、
     該距離は、前記回転軸方向の中央部よりも、前記回転軸方向の端部の方が短い
     請求項2または3に記載の室内機。
    the distance from the downstream end of the contraction surface to the guide wall varies depending on the rotation axis direction of the cross flow fan,
    The indoor unit according to claim 2 or 3, wherein the distance is shorter at the ends in the direction of the rotation axis than in the center part in the direction of the rotation axis.
  5.  前記スタビライザは、
     前記クロスフローファン側に凸となっている部分の頂点である舌部を有している
     請求項2~4のいずれか一項に記載の室内機。
    The stabilizer is
    The indoor unit according to any one of claims 2 to 4, further comprising a tongue portion which is a vertex of a portion projecting toward the cross flow fan.
  6.  前記クロスフローファンの水平方向で最も前記吹出口側の端部は、
     水平方向において、前記舌部と前記縮流面の下流端との間に位置している
     請求項5に記載の室内機。
    The end of the crossflow fan closest to the outlet in the horizontal direction,
    The indoor unit according to claim 5, wherein the tongue is positioned between the tongue and the downstream end of the contraction surface in the horizontal direction.
  7.  前記クロスフローファンによって前記吸込口から吸い込まれた空気と冷媒との間で熱交換を行う熱交換器を備え、
     前記熱交換器の水平方向で最も前記吹出口側の端部は、
     水平方向において、前記舌部と同じ位置あるいは前記舌部よりも前記吹出口側に位置している
     請求項5または6に記載の室内機。
    A heat exchanger that exchanges heat between the air sucked from the suction port by the cross-flow fan and the refrigerant,
    The end of the heat exchanger closest to the outlet in the horizontal direction,
    The indoor unit according to claim 5 or 6, wherein in the horizontal direction, it is located at the same position as the tongue or closer to the outlet side than the tongue.
  8.  請求項1~7のいずれか一項に記載の室内機と、
     前記室内機と配管で接続され冷媒が循環する冷媒回路を構成する室外機と、を備えた
     空気調和装置。
    The indoor unit according to any one of claims 1 to 7;
    An air conditioner comprising: an outdoor unit that is connected to the indoor unit by pipes and forms a refrigerant circuit in which a refrigerant circulates.
PCT/JP2021/011296 2021-03-19 2021-03-19 Indoor unit and air conditioning device WO2022195834A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/261,724 US20240077214A1 (en) 2021-03-19 2021-03-19 Indoor unit and air-conditioning apparatus
EP21931581.9A EP4310404A4 (en) 2021-03-19 2021-03-19 Indoor unit and air conditioning device
PCT/JP2021/011296 WO2022195834A1 (en) 2021-03-19 2021-03-19 Indoor unit and air conditioning device
CN202180095533.0A CN117043517A (en) 2021-03-19 2021-03-19 Indoor unit and air conditioner
JP2023506653A JPWO2022195834A1 (en) 2021-03-19 2021-03-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/011296 WO2022195834A1 (en) 2021-03-19 2021-03-19 Indoor unit and air conditioning device

Publications (1)

Publication Number Publication Date
WO2022195834A1 true WO2022195834A1 (en) 2022-09-22

Family

ID=83320208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011296 WO2022195834A1 (en) 2021-03-19 2021-03-19 Indoor unit and air conditioning device

Country Status (5)

Country Link
US (1) US20240077214A1 (en)
EP (1) EP4310404A4 (en)
JP (1) JPWO2022195834A1 (en)
CN (1) CN117043517A (en)
WO (1) WO2022195834A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195595A (en) * 2000-12-22 2002-07-10 Daikin Ind Ltd Indoor machine for air conditioner
JP2008157530A (en) * 2006-12-22 2008-07-10 Samsung Electronics Co Ltd Indoor unit for air conditioner
JP2018059506A (en) * 2016-09-30 2018-04-12 ダイキン工業株式会社 Cross flow type blower and indoor unit of air conditioning device including the same
JP2018124004A (en) 2017-01-31 2018-08-09 ダイキン工業株式会社 Indoor machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075220A1 (en) * 2001-03-21 2002-09-26 Robert Charles Dwyer Air treatment units
CN1282853C (en) * 2001-03-23 2006-11-01 三菱重工业株式会社 Indoor unit and air conditioner
WO2016063397A1 (en) * 2014-10-23 2016-04-28 三菱電機株式会社 Air conditioner
KR102032192B1 (en) * 2015-10-23 2019-10-15 삼성전자주식회사 Air Conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195595A (en) * 2000-12-22 2002-07-10 Daikin Ind Ltd Indoor machine for air conditioner
JP2008157530A (en) * 2006-12-22 2008-07-10 Samsung Electronics Co Ltd Indoor unit for air conditioner
JP2018059506A (en) * 2016-09-30 2018-04-12 ダイキン工業株式会社 Cross flow type blower and indoor unit of air conditioning device including the same
JP2018124004A (en) 2017-01-31 2018-08-09 ダイキン工業株式会社 Indoor machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4310404A4

Also Published As

Publication number Publication date
EP4310404A4 (en) 2024-04-10
CN117043517A (en) 2023-11-10
EP4310404A1 (en) 2024-01-24
US20240077214A1 (en) 2024-03-07
JPWO2022195834A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
CN109891155B (en) Indoor unit and air conditioning device
JP6434152B2 (en) Centrifugal blower, air conditioner and refrigeration cycle apparatus
CN111279085B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
JP5805214B2 (en) Outdoor unit and refrigeration cycle apparatus including the outdoor unit
JP6304441B1 (en) Cross flow type blower and indoor unit of air conditioner equipped with the blower
CN109247023B (en) Centrifugal blower, air conditioner, and refrigeration cycle device
WO2016063596A1 (en) Air conditioner
TWI714957B (en) Telecentric blower, blower, air conditioning device and refrigeration cycle device
CN111630327B (en) Indoor unit of air conditioner
WO2022195834A1 (en) Indoor unit and air conditioning device
JP6541881B2 (en) Air conditioner, air conditioner and refrigeration cycle device
JP6695403B2 (en) Centrifugal blower and air conditioner
WO2019123743A1 (en) Indoor unit for air conditioner
KR101448304B1 (en) A ceiling-mounted type air conditioner
KR20090041806A (en) A ceiling-mounted type air conditioner
JPWO2018163574A1 (en) Air conditioner
JP2022045824A (en) Air conditioner and blowout port structure of ventilator
WO2020044482A1 (en) Outdoor unit and refrigeration cycle device
KR20090041809A (en) A ceiling-mounted type air conditioner
CN113841015A (en) Blow-out grille, indoor unit, and air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506653

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18261724

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180095533.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021931581

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021931581

Country of ref document: EP

Effective date: 20231019