WO2022194182A1 - 发光器件的光学补偿方法及装置、补偿设备 - Google Patents

发光器件的光学补偿方法及装置、补偿设备 Download PDF

Info

Publication number
WO2022194182A1
WO2022194182A1 PCT/CN2022/081057 CN2022081057W WO2022194182A1 WO 2022194182 A1 WO2022194182 A1 WO 2022194182A1 CN 2022081057 W CN2022081057 W CN 2022081057W WO 2022194182 A1 WO2022194182 A1 WO 2022194182A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
compensation
emitting units
group
optical data
Prior art date
Application number
PCT/CN2022/081057
Other languages
English (en)
French (fr)
Inventor
刁鸿浩
Original Assignee
北京芯海视界三维科技有限公司
视觉技术创投私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京芯海视界三维科技有限公司, 视觉技术创投私人有限公司 filed Critical 北京芯海视界三维科技有限公司
Publication of WO2022194182A1 publication Critical patent/WO2022194182A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present application relates to the field of optical technology, for example, to an optical compensation method and device for a light-emitting device, and compensation equipment.
  • the light-emitting device is composed of a plurality of light-emitting units, and the light-emitting effect of each light-emitting unit will affect the light-emitting device.
  • the optical uniformity of the light-emitting device when emitting light is poor, which seriously affects the user's viewing experience.
  • Embodiments of the present disclosure provide an optical compensation method for a light-emitting device, an optical compensation device and compensation device for a light-emitting device, a computer-readable storage medium, and a computer program product to solve the technical problem of poor optical uniformity of the light-emitting device.
  • the optical compensation method of the light emitting device includes:
  • optical data of a plurality of light-emitting units of the light-emitting device obtaining optical data of a plurality of light-emitting units of the light-emitting device, and dividing the plurality of light-emitting units into a compensation group and a non-compensation group based on the optical data;
  • the optical data of the light-emitting units in the non-compensated group determine the compensation coefficients of the light-emitting units in the compensation group
  • the light-emitting units in the compensation group are optically compensated according to the compensation coefficient.
  • a light emitting unit detection apparatus includes a processor and a memory storing program instructions, the processor is configured to execute the optical compensation method for a light emitting device as described above when the program instructions are executed.
  • the optical compensation device of the light emitting device includes:
  • a first grouping module configured to obtain optical data of a plurality of light-emitting units of the light-emitting device, and divide the plurality of light-emitting units into a compensation group and a non-compensation group based on the optical data;
  • a coefficient determination module configured to determine compensation coefficients of the light-emitting units in the compensation group according to optical data of the light-emitting units in the non-compensation group
  • the unit compensation module is configured to perform optical compensation on the light-emitting units in the compensation group according to the compensation coefficient.
  • the compensation apparatus comprises an optical compensation device of a light emitting device as described above.
  • a computer-readable storage medium stores computer-executable instructions configured to perform the optical compensation method described above.
  • a computer program product includes a computer program stored on a computer-readable storage medium, the computer program including program instructions that, when executed by a computer, cause the computer to perform the optical compensation method described above.
  • optical compensation method for a light-emitting device an optical compensation device and compensation device for a light-emitting device, and a computer-readable storage medium and a computer program product provided by the embodiments of the present disclosure can achieve the following technical effects:
  • FIG. 1 is a schematic flowchart of an optical compensation method for a light-emitting device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a light-emitting device provided by an embodiment of the present disclosure
  • 3A is a schematic diagram of a compensation group and a non-compensation group group of a light-emitting device provided by an embodiment of the present disclosure
  • 3B is a schematic diagram of another compensation group and a non-compensation group group of the light emitting device provided by the embodiment of the present disclosure
  • 3C is a schematic diagram of another compensation group and a non-compensation group group of the light emitting device provided by the embodiment of the present disclosure.
  • FIG. 4A is a schematic diagram of sub-component grouping of a light-emitting device provided by an embodiment of the present disclosure
  • FIG. 4B is a schematic diagram of a sub-component grouping of another light-emitting device provided by an embodiment of the present disclosure
  • FIG. 4C is a schematic diagram of sub-component grouping of another light-emitting device provided by an embodiment of the present disclosure.
  • 4D is a schematic diagram of a sub-group grouping of another light-emitting device provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of dividing a compensation group and a non-compensation group based on a subgroup according to an embodiment of the present disclosure
  • 6A is a schematic diagram of a light-emitting device with optical data provided by an embodiment of the present disclosure
  • 6B is a schematic diagram of grouping of subgroups based on optical data division provided by an embodiment of the present disclosure
  • 6C is another schematic diagram of dividing a compensation group and a non-compensation group based on subgroups provided by an embodiment of the present disclosure
  • FIG. 7A is a schematic diagram of any subgroup in the light-emitting device provided by an embodiment of the present disclosure.
  • FIG. 7B is a schematic grouping diagram of dividing a subgroup into multiple light-emitting unit blocks based on location according to an embodiment of the present disclosure
  • 7C is a schematic grouping diagram of dividing a subgroup into a plurality of light-emitting unit blocks based on optical data provided by an embodiment of the present disclosure
  • 8A is a schematic diagram of dividing optical data into a compensation group and a non-compensation group according to an embodiment of the present disclosure
  • 8B is another schematic diagram of dividing optical data into a compensation group and a non-compensation group according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of bad pixel division provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an optical compensation device for a light-emitting device provided by an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of another optical compensation device of a light-emitting device provided by an embodiment of the present disclosure.
  • 80 optical compensation device for light emitting device; 801: processor; 802: memory; 803: communication interface; 804: bus;
  • 90 an optical compensation device for a light-emitting device
  • 901 a first grouping module
  • 902 a coefficient determination module
  • 903 a unit compensation module
  • 904 a second grouping module
  • 905 a dead pixel determination module
  • 906 a data storage module.
  • an optical compensation method for a light-emitting device includes:
  • the light emitting device 20 includes a plurality of light emitting units 201 thereon.
  • the light-emitting device may be LED (Light Emitting Diode), Micro LED (LED miniaturization and matrix technology) and Mini Mini LED (LED with a chip size between 50-200 ⁇ m). anyone.
  • the light-emitting unit may be the smallest light-emitting unit on the light-emitting device.
  • the above-mentioned plurality of light-emitting units may be all or part of the light-emitting units in the light-emitting device.
  • the optical data of the plurality of light emitting units on the light emitting device can be acquired by some existing detection means.
  • the optical data of the light-emitting unit may be acquired at a specified time, or may be acquired periodically.
  • the light-emitting unit in the light-emitting device can be a new light-emitting unit or a recycled light-emitting unit
  • the used time of the recycled light-emitting unit may be the same or different. For example, some light-emitting units have been used for several years. , some light-emitting units have been used for several months, resulting in different degrees of change in the decay speed of the light-emitting units in the light-emitting device with time.
  • the light emitting unit of the light emitting device can be detected according to a time period (eg, 6 months, 1 year, etc.), and optical data of the light emitting unit can be acquired, so as to perform dynamic optical compensation on the light emitting device. For example, taking 1 year as a time period, in the first time period, the optical data of the detected light-emitting unit is 100. If the light-emitting unit is divided into a compensation group, the compensation coefficient r1 is obtained for the current optical data (100).
  • the optical data of the light-emitting unit is detected as 90, and if the light-emitting unit is divided into a compensation group, a compensation coefficient is obtained for the current optical data (90). r2, so that the light-emitting unit is optically compensated based on r2. Therefore, at different times, the optical data of the same light-emitting unit may be different, and the compensation coefficient may also be different, and the dynamic compensation of the light-emitting unit can be realized by periodic detection.
  • the optical data may be a set of optical data corresponding to multiple light-emitting units acquired at one time, or an average value of multiple sets of optical data corresponding to multiple light-emitting units acquired multiple times.
  • the plurality of light emitting units 201 on the light emitting device 20 can be divided into a compensation group (gray background area in the figure) and a non-compensation group (white background in the figure) area).
  • the division form of the compensation group and the non-compensation group may be a continuous area or a discontinuous area, and the shape and size of the area of the compensation group and the non-compensation group are not limited.
  • the names of the compensation group and the non-compensation group in FIGS. 3A to 3C may also be interchanged.
  • the present disclosure can improve the optical uniformity of the light emitting device by performing optical compensation on the light emitting units of the compensation group.
  • the number of light-emitting units in the compensation group is smaller than the number of light-emitting units in the non-compensation group.
  • the number of light-emitting units in the compensation group is set to be smaller than the number of light-emitting units in the non-compensation group, when performing optical compensation on the light-emitting units of the compensation group, a relatively small number of light-emitting units on the light-emitting device can be compensated, thereby improving optical uniformity. while reducing the workload of compensation.
  • the plurality of light-emitting units may also be divided into a plurality of subgroups according to the optical data, and each subgroup includes at least one light-emitting unit Then calculate the proportion of the number of light-emitting units in each subgroup in the above-mentioned multiple light-emitting units; based on the proportion, the above-mentioned multiple subgroups are divided into a compensation group and a non-compensation group, wherein, the proportion of the total number of the compensation group less than the total number of shares in the uncompensated group.
  • the plurality of light-emitting units on the light-emitting device 40 may be divided into a plurality of subgroups 41 according to optical data, and each subgroup includes at least one light-emitting unit .
  • the subgroup can be a regular area or an irregular area.
  • the subgroup 41 includes a subgroup A, a subgroup B, a subgroup C, and a subgroup D.
  • Each subgroup It can be a regular area; as shown in FIG.
  • the subgroup 41 includes subgroup A, subgroup B, subgroup C and subgroup D, and each subgroup can be an irregular area.
  • the subgroups may be contiguous regions or discontinuous regions.
  • the subgroup 41 includes subgroup A, subgroup B, subgroup C and subgroup D, wherein subgroup C is an irregular and discontinuous area, and other subgroups may also be discontinuous areas .
  • a subgroup may include one light-emitting unit, or a plurality of light-emitting units, and as shown in FIG. 4D , each light-emitting unit may be a subgroup 41 . Since the subgroups are divided based on optical data, the area size and shape of the subgroups are not limited by the positions of the light emitting units.
  • the number a of light-emitting units in each subgroup may be counted, and then the calculated number a and the number of the above-mentioned plurality of light-emitting units may be calculated.
  • the proportion of the subgroup is:
  • the non-compensation group when a plurality of subgroups are divided into a compensation group and a non-compensation group based on the ratio, the non-compensation group includes the subgroup with the largest ratio among the above-mentioned subgroups.
  • the plurality of light-emitting units on the light-emitting device 40 are divided into a plurality of subgroups 41 , and the subgroups 41 include subgroups A, B, C and D, and each subgroup is calculated separately.
  • the four subgroups are then divided into compensated and non-compensated groups.
  • subgroup A and subgroup D are non-compensated groups (gray background area in the figure)
  • subgroup B and subgroup C are compensated groups (white background area in the figure)
  • the total proportion of light-emitting units in the non-compensated group is greater than the total proportion of light-emitting units in the compensation group, wherein the non-compensation group includes the subgroup A corresponding to a with the largest proportion.
  • the grouping manner may further include other schemes, for example, subgroup A and subgroup B are non-compensated groups, and subgroup C and subgroup D are compensated groups; or, subgroup A and subgroup C are non-compensated groups group, subgroup B and subgroup D are compensation groups; or, subgroup A, subgroup B and subgroup C are non-compensated groups, subgroup D is compensation group, and so on.
  • the grouping scheme only needs to satisfy that the total number of light-emitting units in the non-compensated group is greater than the total number of light-emitting units in the compensation group and the non-compensated group includes the subgroup with the largest proportion, and the grouping scheme is not limited.
  • the consistency of the light-emitting units in the non-compensated group can be relatively increased, and the uniformity compensation effect can be better optimized.
  • the method for dividing the plurality of light-emitting units into a plurality of subgroups according to the optical data may be to divide the light-emitting units whose optical data difference values are within a first range into a subgroup, so as to obtain the above-mentioned plurality of subgroups.
  • the light-emitting unit A with the smallest optical data on the light-emitting device can be selected as the starting point, all light-emitting units whose optical data is greater than the light-emitting unit A and whose deviation is within the first range can be selected, and these light-emitting units are regarded as the first subset; Outside the first subgroup, select the light-emitting unit B with the smallest optical data as a new starting point, continue to select all light-emitting units whose optical data is greater than the light-emitting unit B and whose deviation is within the first range, and use these light-emitting units as the second subgroup; And so on, until all the above-mentioned light-emitting units are divided.
  • Other grouping methods may also be used, which are not limited here.
  • the grouping manner of the subgroups may be as shown in FIG. 6A , FIG. 6B , and FIG. 6C .
  • the light-emitting device 40 includes a plurality of light-emitting units, each small cell represents a light-emitting unit, and the data in the small cell may be optical data corresponding to the light-emitting unit.
  • the light-emitting unit corresponding to the minimum optical data 90 can be used as the starting point, and assuming that the first range is 9, then the light-emitting units with optical data from 90 to 99 can be divided into a subgroup, denoted as subgroup A;
  • the second starting point is the light-emitting unit with optical data of 100, and the first range is 9, then the light-emitting unit with optical data from 100 to 109 can be divided into a subgroup, denoted as subgroup B;
  • the third starting point is the optical data of The light-emitting unit of 110, the first range is 9, then the light-emitting units with optical data from 110 to 119 can be divided into a subgroup, denoted as subgroup C;
  • the fourth starting point is the light-emitting unit with optical data of 120, the first range is 9, then the light-emitting units with optical data from 120 to 129 can be divided into a subgroup, denoted as subgroup D; the grouping result of the sub
  • the compensation group and the non-compensation group can be divided, and the division result is shown in FIG. 6C , wherein the sub-group B and the sub-group C can be regarded as the non-compensated group (the gray background area in the figure) , subgroup A and subgroup D are used as compensation groups (white background area in the figure), wherein subgroup B may be the subgroup with the largest proportion of light-emitting units.
  • the compensation coefficients for each subgroup in the compensation group may be determined.
  • the compensation coefficients of the light emitting units in the same subgroup are the same or different.
  • the compensation coefficients of subgroup A and subgroup D in the compensation group are determined, wherein subgroup A may correspond to compensation coefficient r1 and subgroup D may correspond to compensation coefficient r2, then the The compensation coefficient may be r1, and the compensation coefficient of each light emitting unit in the subgroup D may be r2.
  • any subgroup when determining the compensation coefficient of each subgroup in the compensation group, for any subgroup in each subgroup described above, any subgroup may be divided into a plurality of light-emitting unit blocks; then determine the Compensation coefficient for each light-emitting unit block in any subgroup.
  • the compensation coefficients of the light emitting units in the same light emitting unit block may be the same or different.
  • the light emitting unit block may include at least one light emitting unit in the subgroup.
  • the light-emitting units in the subgroup may be divided according to their positions in the light-emitting device, for example, according to the position information of the light-emitting units, the light-emitting units in the subgroup whose position information satisfies a certain condition are divided into one light-emitting unit block, so that the positions of all light-emitting units in the light-emitting unit block can be determined by recording a small amount of position information of the light-emitting unit block.
  • the continuous light-emitting units in the same column or row in the subgroup may be divided into a light-emitting unit block, and the position information of the light-emitting units at the first two end points of the row or column is used as the light-emitting unit block.
  • the position information of the light-emitting unit in the corner is used as the position information of the light-emitting unit block, so that the positions of all light-emitting units in the light-emitting unit block can be determined through four position information;
  • the unit is divided into a light-emitting unit block, and the center and radius of the circle are used as the position information of the light-emitting unit block, so that the positions of all light-emitting units in the light-emitting unit block can be determined through the two position information.
  • the light-emitting device 70 includes a plurality of light-emitting units, each small cell represents a light-emitting unit, and the data in the small cell may be optical data corresponding to the light-emitting unit.
  • the light emitting devices 70 may be divided into a plurality of subgroups. Taking the first subgroup (the gray background area in the figure) in the light-emitting device 70 as an example, the first subgroup is divided into a plurality of light-emitting unit blocks according to the position information. As shown in FIG.
  • the first subgroup can be divided into two light-emitting unit blocks, namely, light-emitting unit block A (the diagonal background area in the figure) and light-emitting unit block B (in the figure grid background area).
  • the position information of the light-emitting units at the four corners of the light-emitting unit block can be used as the position information of the light-emitting unit block, so that the position information and compensation coefficient of the light-emitting unit block can be recorded to obtain the position information and compensation of all light-emitting units in the light-emitting unit block. coefficient.
  • the light-emitting units whose optical data differences in any subgroup are within the second range may be divided into one light-emitting unit block, thereby Get multiple light-emitting unit blocks.
  • the light-emitting unit A with the smallest optical data in the subgroup can be selected as the starting point, all light-emitting units whose optical data is larger than the light-emitting unit A and whose deviation is within the second range can be selected, and these light-emitting units are regarded as the light-emitting unit block A; Outside the light-emitting unit block A, select the light-emitting unit B with the smallest optical data as a new starting point, continue to select all light-emitting units whose optical data is greater than the light-emitting unit B and whose deviation is within the second range, and use these light-emitting units as the light-emitting unit block B; And so on, until all the light-emitting units in the subgroup are divided.
  • the second range may be smaller than the first range.
  • the light-emitting device 70 is divided into a plurality of sub-groups according to the above-mentioned method for dividing the sub-groups, taking the first sub-group (the gray background area in the figure) of the light-emitting device 70 as an example , the first subset is divided into a plurality of light-emitting unit blocks according to the optical data. Based on the above subgroup division method, the light-emitting unit corresponding to the minimum optical data 100 can be used as the starting point.
  • the light-emitting units with optical data from 100 to 104 can be divided into a light-emitting unit block , denoted as light-emitting unit block A; the second starting point is the light-emitting unit with optical data of 105, and the second range is 4, then the light-emitting unit with optical data from 105 to 109 can be divided into a light-emitting unit block, denoted as light-emitting unit block B, thereby obtaining the grouping result shown in FIG. 7C.
  • the average value of the optical data of all light-emitting units in any light-emitting unit block in the any subgroup may be used as the optical data of the light emitting unit block; and then determine the compensation coefficient of the light emitting unit block based on the optical data of the light emitting unit block.
  • the compensation coefficients of light-emitting unit blocks with different optical data may be the same or different.
  • the above method of dividing light-emitting unit blocks based on the optical data of the light-emitting units can make the optical data of the light-emitting units in the same light-emitting unit block have a smaller difference. Therefore, setting a compensation coefficient for the same light-emitting unit block can make the compensation effect of the same light-emitting unit block more effective. good uniformity.
  • At least one reference data may be determined according to the optical data in the non-compensated group; and then the compensation coefficients of the light emitting units in the compensation group are determined based on the reference data .
  • the figure may be a distribution curve of optical data, wherein the abscissa is the value of the optical data, and the ordinate is the proportion of the optical data, that is, the optical data is the same or The proportion of the number of light-emitting units that are close (eg, the difference is within a preset range) in the total number of light-emitting units. From the figure, we can see the division results of the compensation group and the non-compensation group based on the optical data.
  • a reference data (eg, the optical data with the largest proportion) can be determined from the non-compensated group, so as to determine the compensation coefficient of the light-emitting unit of the compensation group based on the reference data.
  • the distribution curve of the optical data may be shown in the figure, wherein the abscissa is the value of the optical data, and the ordinate is the proportion of the optical data, that is, the optical data are the same or similar (for example, the difference is in The proportion of the number of light-emitting units in the preset range) in the total number of light-emitting units.
  • the same compensation group may correspond to at least one reference data, for example, each subgroup in the compensation group corresponds to one reference data.
  • each light-emitting unit block in the same subgroup may also correspond to one reference data.
  • the reference data may include at least one of the following data: the maximum value of the optical data in the non-compensated group, the minimum value of the optical data in the non-compensated group, the average value of the optical data in the non-compensated group .
  • the above-mentioned optical data may include at least one of luminance data and chrominance data.
  • the compensation coefficient of the light emitting unit in the compensation group when the compensation coefficient of the light emitting unit in the compensation group is determined according to the optical data of the light emitting unit in the non-compensated group, when the optical data is luminance data, the compensation coefficient may be determined as the luminance compensation coefficient; or, when the optical data is chrominance data, the compensation coefficient is determined to be a chrominance compensation coefficient; or, when the optical data is luminance data and chrominance data, the compensation coefficient may be a combination of the luminance compensation coefficient and the chrominance compensation coefficient compensation factor.
  • the optical data when the optical data is luminance data, it can also be determined that the light-emitting units whose luminance data is lower than the luminance threshold are dead pixels; then when optical compensation is performed on the light-emitting units in the compensation group according to the compensation coefficient, the light-emitting units in the compensation group can be optically compensated according to the compensation coefficient.
  • the coefficient performs optical compensation on the light-emitting units other than the dead pixels in the compensation group.
  • the figure may be a distribution curve of brightness, wherein the abscissa is the brightness value, and the ordinate is the proportion of the brightness value, that is, the brightness value is the same or similar (such as The proportion of the number of light-emitting units whose difference is within a preset range) in the total number of all light-emitting units. Assuming that the brightness threshold is 10, the light-emitting unit with the brightness value lower than 10 is a dead pixel.
  • the position information and compensation coefficients of the light-emitting units in the compensation area may also be stored in a preset storage space; when performing optical compensation on the light-emitting units in the compensation group according to the compensation coefficients, the compensation coefficients of the light-emitting units in the compensation group may be obtained from the preset storage space, and the light-emitting units are optically compensated according to the compensation coefficients.
  • optical compensation is performed on the light-emitting units in the compensation group according to the compensation coefficient.
  • the power supply voltage and power supply of the light-emitting units may be adjusted according to the compensation coefficient corresponding to the light-emitting units. At least one of the currents is used to achieve optical compensation of the light-emitting unit.
  • the optical compensation may include positive compensation and negative compensation.
  • the light-emitting unit corresponding to the optical data less than 100 needs to perform positive compensation, that is, increase the value of the optical data; the light-emitting unit corresponding to the optical data greater than 100 needs to perform negative compensation, that is, reduce the optical data. numerical value.
  • An embodiment of the present disclosure provides an optical compensation device for a light emitting device, including a processor and a memory storing program instructions, where the processor is configured to execute the above-mentioned optical compensation method for a light emitting device when executing the program instructions.
  • the optical compensation apparatus 80 of the light emitting device may include: a processor (processor) 801 and a memory (memory) 802 , and may also include a communication interface (Communication Interface) 803 and a bus 804 .
  • the processor 801 , the communication interface 802 , and the memory 802 can communicate with each other through the bus 804 .
  • the communication interface 803 may be used for information transfer.
  • the processor 801 can call the logic instructions in the memory 802 to execute the optical compensation method of the light emitting device of the above-mentioned embodiment.
  • logic instructions in the memory 802 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 802 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 801 executes the function application and data processing by executing the program instructions/modules stored in the memory 802, that is, implements the optical compensation method of the light emitting device in the above method embodiments.
  • the memory 802 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal device, and the like. Additionally, memory 802 may include high-speed random access memory, and may also include non-volatile memory.
  • Embodiments of the present disclosure provide another optical compensation apparatus for a light emitting device.
  • the optical compensation apparatus 90 for a light emitting device may include:
  • a first grouping module 901 configured to obtain optical data of a plurality of light-emitting units of a light-emitting device, and divide the plurality of light-emitting units into a compensation group and a non-compensation group based on the optical data;
  • the coefficient determination module 902 is configured to determine the compensation coefficient of the light-emitting unit in the compensation group according to the optical data of the light-emitting unit in the non-compensation group;
  • the unit compensation module 903 is configured to perform optical compensation on the light-emitting units in the compensation group according to the compensation coefficient.
  • the optical compensation device 90 of the light-emitting device may be a control chip, and the control chip includes, but is not limited to, one or more of a central processing unit, a microprocessor or a single-chip microcomputer.
  • the optical compensation device 90 of the light emitting device may be electrically connected to each light emitting unit in the light emitting device.
  • the light emitting device 20 includes a plurality of light emitting units 201 thereon.
  • the light-emitting device can be any one of LED, Micro LED and Mini LED.
  • the light-emitting unit may be the smallest light-emitting unit on the light-emitting device.
  • the first grouping module 901 may acquire optical data of a plurality of light-emitting units on the light-emitting device through some existing detection means.
  • the above-mentioned plurality of light-emitting units may be all of the light-emitting units in the light-emitting device, or may be part of the light-emitting units.
  • the time for acquiring the optical data of the light-emitting unit may be acquired within a specified time, or may be acquired periodically.
  • the optical data may be optical data acquired once, or an average value of a plurality of optical data acquired multiple times.
  • the first grouping module 901 may divide the plurality of light emitting units 201 on the light emitting device 20 into a compensation group (gray background area in the figure) and a non-compensation group (the figure in the figure). white background area).
  • the division form of the compensation group and the non-compensation group may be a continuous area or a discontinuous area, and the shape and size of the area of the compensation group and the non-compensation group are not limited.
  • the names of the compensation group and the non-compensation group in FIGS. 3A to 3C may also be interchanged.
  • the number of light-emitting units in the compensation group is smaller than the number of light-emitting units in the non-compensation group .
  • the optical compensation device 90 of the light-emitting device before the first grouping module 901 divides the plurality of light-emitting units into a compensation group and a non-compensation group based on the optical data, the optical compensation device 90 of the light-emitting device further includes:
  • the second grouping module 904 is configured to divide the plurality of light-emitting units into a plurality of subgroups according to the optical data, and each subgroup includes at least one light-emitting unit.
  • the first grouping module 901 is configured to calculate the ratio of the number of light-emitting units in each subgroup to the plurality of light-emitting units when dividing the plurality of light-emitting units into compensation groups and non-compensation groups based on optical data; The above-mentioned multiple subgroups are divided into a compensation group and a non-compensation group based on the proportion, wherein the total proportion of the compensation group is smaller than the total proportion of the non-compensation group.
  • the non-compensation group when the first grouping module 901 divides the plurality of subgroups into a compensation group and a non-compensation group based on the ratio, the non-compensation group includes the subgroup with the largest ratio among the plurality of subgroups.
  • the second grouping module 904 when the second grouping module 904 divides the plurality of light-emitting units into a plurality of subgroups according to the optical data, the second grouping module 904 is configured to divide the light-emitting units whose optical data difference values are within the first range into one subgroup , to get the above multiple subgroups.
  • the coefficient determination module 902 may be configured to determine the compensation coefficients of each subgroup in the compensation group, the compensation coefficients of the light-emitting units in the same subgroup same.
  • the coefficient determination module 902 may be configured to, for any subgroup of each subgroup described above, divide the any subgroup into a plurality of light-emitting groups unit block; determine the compensation coefficient of each light-emitting unit block in any subgroup, and the compensation coefficients of the light-emitting units in the same light-emitting unit block are the same.
  • the coefficient determination module 902 when the coefficient determination module 902 divides any of the foregoing subgroups into a plurality of light-emitting unit blocks, it may be configured to be a light-emitting unit whose optical data difference in any subgroup is within the second range Divided into one light-emitting unit block to obtain the above-mentioned plurality of light-emitting unit blocks.
  • the coefficient determination module 902 determines the compensation coefficient of each light-emitting unit block in any of the above-mentioned subgroups, it may be configured to be all the light-emitting unit blocks in any of the subgroups.
  • the average value of the optical data of the light-emitting unit is used as the optical data of the light-emitting unit block; the compensation coefficient of the light-emitting unit block is determined based on the optical data of the light-emitting unit block, and the compensation coefficient of the light-emitting unit block with different optical data is different.
  • the coefficient determination module 903 may be configured to determine at least one reference data according to the optical data in the non-compensated group; The compensation coefficient of the light-emitting unit.
  • the above-mentioned reference data may include at least one of the following data: the maximum value of the optical data in the non-compensated group; the minimum value of the optical data in the non-compensated group; the average of the optical data in the non-compensated group value.
  • the above-mentioned optical data may include at least one of luminance data and chrominance data.
  • the coefficient determination module 902 may be configured to determine the compensation coefficient when the optical data is luminance data is the luminance compensation coefficient; or, when the optical data is chromaticity data, the compensation coefficient is determined to be the chromaticity compensation coefficient; or, when the optical data is luminance data and chromaticity data, the compensation coefficient is determined to be the luminance compensation coefficient and the chromaticity data.
  • the comprehensive compensation coefficient combined with the compensation coefficient.
  • the optical compensation device 90 of the light-emitting device further includes:
  • the dead pixel determination module 905 is configured to determine that the light-emitting unit whose luminance data is lower than the luminance threshold is a dead pixel.
  • the above-mentioned unit compensation module 903 may be configured to perform optical compensation on the light-emitting units in the compensation group except for dead pixels according to the compensation coefficient.
  • the optical compensation device 90 of the light-emitting device further includes:
  • the data storage module 906 is configured to store the position information and the compensation coefficients of the light emitting units in the compensation area into a preset storage space.
  • the unit compensation module 903 When the above-mentioned unit compensation module 903 performs optical compensation on the light-emitting units in the compensation group according to the compensation coefficients, it may be configured to obtain the compensation coefficients of the light-emitting units in the compensation group from the preset storage space, and perform optical compensation on the light-emitting units according to the compensation coefficients. compensate.
  • the above-mentioned unit compensation module 903 when the above-mentioned unit compensation module 903 performs optical compensation on the light-emitting units in the compensation group according to the compensation coefficients, it may be configured to control the light-emitting units in the compensation group to light up according to the compensation corresponding to the light-emitting units. coefficient to adjust at least one of the supply voltage and the supply current of the light-emitting unit.
  • each module in the optical compensation device 90 of the light emitting device may be a virtual function module or logical hardware, and each module has a logical connection relationship.
  • Embodiments of the present disclosure provide an optical compensation device for a light-emitting device, including the above-mentioned optical compensation device for a light-emitting device.
  • the optical compensation method for a light-emitting device, the optical compensation device for the light-emitting device, and the optical compensation device provided in the embodiments of the present disclosure can improve the optical uniformity of the light-emitting device.
  • Embodiments of the present disclosure provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are configured to execute the optical compensation method for the light-emitting device.
  • An embodiment of the present disclosure provides a computer program product, including a computer program stored on a computer-readable storage medium, where the computer program includes program instructions that, when the program instructions are executed by a computer, cause the computer to execute the optical method of the light-emitting device. compensation method.
  • the above-mentioned computer-readable storage medium may be a transient computer-readable storage medium, and may also be a non-transitory computer-readable storage medium.
  • the computer-readable storage medium and the computer program product provided by the embodiments of the present disclosure can improve the optical uniformity of the light-emitting device.
  • the technical solutions of the embodiments of the present disclosure may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes at least one instruction to enable a computer device (which may be a personal computer, a server, or a network device, etc. ) to execute all or part of the steps of the methods of the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, removable hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • a first element could be termed a second element, and similarly, a second element could be termed a first element, so long as all occurrences of "the first element” were consistently renamed and all occurrences of "the first element” were named consistently
  • the “second element” can be renamed consistently.
  • the first element and the second element are both elements, but may not be the same element.
  • the terms used in this application are used to describe the embodiments only and not to limit the claims. As used in the description of the embodiments and the claims, the singular forms "a” (a), “an” (an) and “the” (the) are intended to include the plural forms as well, unless the context clearly dictates otherwise. .
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listings.
  • the term “comprise” and its variations “comprises” and/or including and/or the like refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in the process, method, or device that includes the element.
  • each embodiment may focus on the differences from other embodiments, and the same and similar parts between the various embodiments may refer to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method section disclosed in the embodiments, reference may be made to the description of the method section for relevant parts.
  • the disclosed methods and products may be implemented in other ways.
  • the apparatus embodiments described above are only illustrative.
  • the division of units may only be a logical function division.
  • multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. This embodiment may be implemented by selecting some or all of the units according to actual needs.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains at least one executable instruction for implementing the specified logical function .
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two or more blocks may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Communication System (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Holo Graphy (AREA)
  • Led Devices (AREA)

Abstract

本申请涉及光学技术领域,公开了一种发光器件的光学补偿方法,可以获得发光器件的多个发光单元的光学数据,基于光学数据将多个发光单元划分为补偿组和非补偿组;根据非补偿组中的发光单元的光学数据,确定补偿组中的发光单元的补偿系数;根据补偿系数对补偿组中的发光单元进行光学补偿。本申请提供的发光器件的光学补偿方法可以提高发光器件的光学均匀性。本申请还公开了一种发光器件的光学补偿装置和补偿设备、以及计算机可读存储介质、计算机程序产品。

Description

发光器件的光学补偿方法及装置、补偿设备
本申请要求在2021年03月19日提交中国知识产权局、申请号为202110294083.X、发明名称为“发光器件的光学补偿方法及装置、补偿设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,例如涉及发光器件的光学补偿方法及装置、补偿设备。
背景技术
发光器件由多个发光单元组成,每个发光单元的发光效果都会对发光器件产生影响。
目前由于发光器件的晶化工艺和制作水平的限制,导致发光器件发光时的光学均匀性较差,严重影响了用户的观感体验。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。该概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种发光器件的光学补偿方法、发光器件的光学补偿装置和补偿设备、以及计算机可读存储介质、计算机程序产品,以解决发光器件的光学均匀性较差的技术问题。
在一些实施例中,发光器件的光学补偿方法包括:
获得发光器件的多个发光单元的光学数据,基于光学数据将多个发光单元划分为补偿组和非补偿组;
根据非补偿组中的发光单元的光学数据,确定补偿组中的发光单元的补偿系数;
根据补偿系数对补偿组中的发光单元进行光学补偿。
在一些实施例中,发光单元检测装置,包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行如上所述的发光器件的光学补偿方法。
在一些实施例中,发光器件的光学补偿装置包括:
第一分组模块,被配置为获得发光器件的多个发光单元的光学数据,基于光学数据将多个发光单元划分为补偿组和非补偿组;
系数确定模块,被配置为根据非补偿组中的发光单元的光学数据,确定补偿组中的发光单元的补偿系数;
单元补偿模块,被配置为根据补偿系数对补偿组中的发光单元进行光学补偿。
在一些实施例中,补偿设备包括如上所述的发光器件的光学补偿装置。
在一些实施例中,计算机可读存储介质,存储有计算机可执行指令,该计算机可执行指令设置为执行上述的光学补偿方法。
在一些实施例中,计算机程序产品,包括存储在计算机可读存储介质上的计算机程序,该计算机程序包括程序指令,当该程序指令被计算机执行时,使计算机执行上述的光学补偿方法。
本公开实施例提供的发光器件的光学补偿方法、发光器件的光学补偿装置和补偿设备、以及计算机可读存储介质、计算机程序产品,可以实现以下技术效果:
提升发光器件的光学均匀性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
至少一个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的发光器件的光学补偿方法的流程示意图;
图2是本公开实施例提供的发光器件示意图;
图3A是本公开实施例提供的发光器件的一种补偿组和非补偿组分组示意图;
图3B是本公开实施例提供的发光器件的另一种补偿组和非补偿组分组示意图;
图3C是本公开实施例提供的发光器件的另一种补偿组和非补偿组分组示意图;
图4A是本公开实施例提供的一种发光器件的子组分组示意图;
图4B是本公开实施例提供的另一种发光器件的子组分组示意图;
图4C是本公开实施例提供的另一种发光器件的子组分组示意图;
图4D是本公开实施例提供的另一种发光器件的子组分组示意图;
图5是本公开实施例提供的一种基于子组划分补偿组和非补偿组的示意图;
图6A是本公开实施例提供的带有光学数据的发光器件示意图;
图6B是本公开实施例提供的基于光学数据划分子组的分组示意图;
图6C是本公开实施例提供的另一种基于子组划分补偿组和非补偿组的示意图;
图7A是本公开实施例提供的发光器件中的任一子组示意图;
图7B是本公开实施例提供的基于位置将子组划分为多个发光单元块的分组示意图;
图7C是本公开实施例提供的基于光学数据将子组划分为多个发光单元块的分组示意图;
图8A是本公开实施例提供的一种对光学数据划分补偿组和非补偿组的示意图;
图8B是本公开实施例提供的另一种对光学数据划分补偿组和非补偿组的示意图;
图9是本公开实施例提供的坏点划分的示意图;
图10是本公开实施例提供的一种发光器件的光学补偿装置的结构示意图;
图11是本公开实施例提供的另一种发光器件的光学补偿装置的结构示意图。
附图标记:
20:发光器件;201:发光单元;
40:发光器件;41:子组;
70:发光器件;
80:发光器件的光学补偿装置;801:处理器;802:存储器;803:通信接口;804:总线;
90:发光器件的光学补偿装置;901:第一分组模块;902:系数确定模块;903:单元补偿模块;904:第二分组模块;905:坏点确定模块;906:数据存储模块。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,至少一个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
如图1所示,本公开实施例提供的发光器件的光学补偿方法,包括:
S101、获得发光器件的多个发光单元的光学数据,基于光学数据将多个发光单元划分为补偿组和非补偿组;
S102、根据非补偿组中的发光单元的光学数据,确定补偿组中的发光单元的补偿系数;
S103、根据补偿系数对补偿组中的发光单元进行光学补偿。
在一些实施例中,如图2所示,发光器件20上包括多个发光单元201。可选地,该发 光器件可以是LED(Light Emitting Diode,发光二极管)、微Micro LED(LED微缩化和矩阵化技术)及迷你Mini LED(芯片尺寸介于50~200μm之间的LED)中的任意一个。该发光单元可以是该发光器件上的最小发光单位。
在一些实施例中,上述多个发光单元可以是发光器件中的全部的发光单元,也可以是部分的发光单元。可以通过一些现有的检测手段获取发光器件上的多个发光单元的光学数据。
可选地,获取发光单元的光学数据可以是在指定时间获取的,也可以是周期性获取的。由于发光器件中的发光单元可以是新的发光单元,也可以是回收的已使用过的发光单元,回收的发光单元的已使用时长可能相同也可能不同,例如有的发光单元已使用了几年,有的发光单元已使用了几个月,从而导致发光器件中的这些发光单元的发光的衰减速度随时间的变化程度是不同的。因此可以按照时间周期(例如6个月、1年,等)对发光器件的发光单元进行检测,获取发光单元的光学数据,以便对发光器件进行动态光学补偿。举例来讲,以1年为一个时间周期,在第一时间周期内,检测发光单元的光学数据为100,若该发光单元被划分为补偿组,则针对当前光学数据(100)得到补偿系数r1,从而基于r1对该发光单元进行光学补偿;在第二时间周期内,检测该发光单元的光学数据为90,若该发光单元被划分为补偿组,则针对当前光学数据(90)得到补偿系数r2,从而基于r2对该发光单元进行光学补偿。因此在不同时间,同一发光单元的光学数据可能不同,补偿系数也可能不同,通过周期性检测可以实现对发光单元的动态补偿。
可选地,该光学数据可以是一次获取的多个发光单元对应的一组光学数据,或者是多次获取的多个发光单元对应的多组光学数据的平均值。
在一些实施例中,如图3A、图3B、图3C所示,可以将发光器件20上的多个发光单元201划分成补偿组(图中灰色背景区域)和非补偿组(图中白色背景区域)。可选地,补偿组和非补偿组的划分形式可以是连续的区域或者不连续的区域,补偿组和非补偿组的区域形状和大小没有限定。可选地,图3A至图3C中的补偿组和非补偿组的名称还可以互换。
本公开通过对补偿组的发光单元进行光学补偿,可以提高发光器件的光学均匀性。
在一些实施例中,在基于光学数据将上述多个发光单元划分为补偿组和非补偿组时,该补偿组中的发光单元数量小于该非补偿组中的发光单元数量。
本公开通过设置补偿组的发光单元数量小于非补偿组的发光单元的数量,可以实现在对补偿组的发光单元进行光学补偿时,补偿该发光器件上相对少量的发光单元,从而可以提高光学均匀性,同时减少补偿工作量。
在一些实施例中,在基于光学数据将多个发光单元划分为补偿组和非补偿组之前,还可以根据光学数据将上述多个发光单元分为多个子组,每个子组至少包括一个发光单元;然后计算每个子组中的发光单元数量在上述多个发光单元中的占比;基于该占比将上述多个子组划分为补偿组和非补偿组,其中,该补偿组中的占比总数小于该非补偿组中的占比总数。
在一些实施例中,如图4A、图4B、图4C、图4D所示,可以根据光学数据将发光器件40上的多个发光单元划分成多个子组41,每个子组包括至少一个发光单元。可选地,子组可以是规则的区域,也可以是不规则的区域,如图4A所示,子组41中包括子组A、子组B、子组C及子组D,每个子组可以是规则的区域;如图4B所示,子组41中包括子组A、子组B、子组C及子组D,每个子组可以是不规则的区域。可选地,子组可以是连续的区域或不连续的区域。如图4C所示,子组41中包括子组A、子组B、子组C及子组D,其中子组C是不规则且不连续的区域,其他子组也可以是不连续的区域。如可选地,子组中可以包括一个发光单元,或者多个发光单元,还可以如图4D所示,每个发光单元可以是一个子组41。由于子组是基于光学数据划分,因此子组的区域大小和形状不受发光单元的位置限制。
在一些实施例中,计算每个子组中的发光单元数量在上述多个发光单元中的占比,可以统计每个子组的发光单元数量a,然后将计算数量a与上述多个发光单元的数量b的比值,计算公式可以是:(a/b)*100%=占比。
例如,子组的发光单元数量a=1000,上述多个发光单元的数量b=10000,则该子组的占比为:
占比=(a/b)*100%=(1000/10000)*100%=10%。
在一些实施例中,在基于占比将多个子组划分为补偿组和非补偿组时,该非补偿组中包括上述多个子组中占比最大的子组。
如图5所示,先将发光器件40上的多个发光单元划分成多个子组41,子组41中包括子组A、子组B、子组C及子组D,分别计算每个子组的发光单元数量在上述多个发光单元中的占比,得到子组A的占比a、子组B的占比b、子组C的占比c及子组D的占比d,其中各个占比从大到小的排序为:a>d>b>c。再将这四个子组划分成补偿组和非补偿组。如图所示,子组A和子组D为非补偿组(图中灰色背景区域),子组B和子组C为补偿组(图中白色背景区域),非补偿组的发光单元的总占比大于补偿组的发光单元总占比,其中,非补偿组中包括占比最大的a所对应的子组A。在可选的实施例中,分组方式还可以包括其他方案,例如,子组A和子组B为非补偿组,子组C和子组D为补偿组;或者,子组 A和子组C为非补偿组,子组B和子组D为补偿组;又或者,子组A、子组B和子组C为非补偿组,子组D为补偿组,等。分组方案只要满足非补偿组的发光单元总数大于补偿组的发光单元总数并且非补偿组包括占比最大的子组即可,分组方案不做限定。
本公开通过将占比最大的子组划分到非补偿组,可以使非补偿组中的发光单元的一致性相对增高,使均匀性补偿效果更佳优化。
在一些实施例中,根据光学数据将多个发光单元分为多个子组的方法可以是将光学数据差值在第一范围内的发光单元分为一个子组,从而得到上述多个子组。例如,可以选择发光器件上的光学数据最小的发光单元A为起点,选择光学数据大于该发光单元A且偏差在第一范围内的全部发光单元,将这些发光单元作为第一子组;然后在第一子组外,选择光学数据最小的发光单元B为新的起点,继续选择光学数据大于该发光单元B且偏差在第一范围内的全部发光单元,将这些发光单元作为第二子组;以此类推,直至将上述多个发光单元全部划分完成。还可以采用其他分组方式,此处不做限定。
在一些实施例中,子组的分组方式可以如图6A、图6B、图6C所示。其中,如图6A所示,发光器件40包括多个发光单元,每个小格代表一个发光单元,小格里的数据可以为该发光单元对应的光学数据。基于上述子组划分方法,可以将最小光学数据90对应的发光单元为起点,假设第一范围为9,那么光学数据从90到99的发光单元可以分为一个子组,记为子组A;第二个起点是光学数据为100的发光单元,第一范围为9,那么光学数据从100到109的发光单元可以分为一个子组,记为子组B;第三个起点是光学数据为110的发光单元,第一范围为9,那么光学数据从110到119的发光单元可以分为一个子组,记为子组C;第四个起点是光学数据为120的发光单元,第一范围为9,那么光学数据从120到129的发光单元可以分为一个子组,记为子组D;子组的分组结果如图6B所示,其中背景图案相同的发光单元为一个子组,子组A和子组B在发光器件中的区域不连续,子组C和子组D在发光器件中的区域连续。
在一些实施例中,子组划分完成后,可以划分补偿组和非补偿组,划分结果如图6C所示,其中,可以将子组B和子组C作为非补偿组(图中灰色背景区域),子组A和子组D作为补偿组(图中白色背景区域),其中,子组B可以是发光单元占比最多的子组。
在一些实施例中,在确定补偿组中的发光单元的补偿系数时,可以确定该补偿组中的每个子组的补偿系数。可选地,同一子组中的发光单元的补偿系数相同或不同。如图6C所示,确定补偿组中的子组A和子组D的补偿系数,其中子组A可以对应补偿系数r1和子组D可以对应补偿系数r2,则子组A中的每个发光单元的补偿系数可以是r1,子组D中的每个发光单元的补偿系数可以是r2。
在一些实施例中,在确定该补偿组中的每个子组的补偿系数时,可以针对上述每个子组中的任一子组,将该任一子组分成多个发光单元块;然后确定该任一子组中的每个发光单元块的补偿系数。可选地,同一发光单元块中的发光单元的补偿系数可以相同或不同。可选地,发光单元块可以包括该子组中的至少一个发光单元。
在一些实施例中,可以将子组中的发光单元按照在发光器件中的位置划分,例如,根据发光单元的位置信息,将子组中的位置信息满足一定条件的发光单元分为一个发光单元块,以使可以通过记录该发光单元块的少量位置信息来确定该发光单元块中全部发光单元的位置。
在一些实施例中,可以将子组中同一列或同一行的连续的发光单元分为一个发光单元块,以该行或列的首位两个端点的发光单元的位置信息作为该发光单元块的位置信息,从而可以通过两个位置信息就确定该发光单元块中全部发光单元的位置;或者,可以将子组中位于一个矩形中的发光单元划分为一个发光单元块,以该矩形的四个角的发光单元的位置信息作为发光单元块的位置信息,从而可以通过四个位置信息就确定该发光单元块中全部发光单元的位置;又或者,可以将子组中位于一个圆形中的发光单元划分为一个发光单元块,以该圆形的圆心和半径作为发光单元块的位置信息,从而可以通过两个位置信息就确定该发光单元块中全部发光单元的位置。
如图7A所示,发光器件70包括多个发光单元,每个小格代表一个发光单元,小格里的数据可以为该发光单元对应的光学数据。基于上述子组划分方法,可以将发光器件70划分为多个子组。以发光器件70中的第一子组(图中灰色背景区域)为例,将第一子组按照位置信息划分为多个发光单元块。如图7B所示,以上述矩形划分方式为例,可以将该第一子组划分为两个发光单元块,即发光单元块A(图中斜线背景区域)和发光单元块B(图中网格背景区域)。可以将发光单元块四个角的发光单元的位置信息作为发光单元块的位置信息,从而可以记录发光单元块的位置信息及补偿系数即可得到发光单元块中的全部发光单元的位置信息和补偿系数。例如图7B中,可以记录发光单元块A的四个角对应的4个位置信息及补偿系数,从而得到发光单元块A中的12个发光单元的位置信息,因此可以减少位置信息的存储数量。
这样在记录发光单元的补偿系数时,可以只记录发光单元块的位置信息,以及发光单元块对应的补偿系数,可以避免记录发光单元块中的每个发光单元的位置信息及补偿系数,从而节省存储空间。
在一些实施例中,在将上述任一子组分成多个发光单元块时,可以将该任一子组中的光学数据差值在第二范围内的发光单元分为一个发光单元块,从而得到多个发光单元块。 例如,可以选择子组中的光学数据最小的发光单元A为起点,选择光学数据大于该发光单元A且偏差在第二范围内的全部发光单元,将这些发光单元作为发光单元块A;然后在发光单元块A外,选择光学数据最小的发光单元B为新的起点,继续选择光学数据大于该发光单元B且偏差在第二范围内的全部发光单元,将这些发光单元作为发光单元块B;以此类推,直至将该子组中的发光单元全部划分完成。
可选地,如果子组是按照上述实施例中的第一范围进行划分,则该第二范围可以小于该第一范围。
如图7A所示,假设,第一范围为9,依据上述划分子组的方法将发光器件70划分为多个子组,以光器件70中的第一子组(图中灰色背景区域)为例,将第一子组按照光学数据划分为多个发光单元块。基于上述子组划分方法,可以将最小光学数据100对应的发光单元为起点,假设第二范围为4(小于第一范围),那么光学数据从100到104的发光单元可以分为一个发光单元块,记为发光单元块A;第二个起点是光学数据为105的发光单元,第二范围为4,那么光学数据从105到109的发光单元可以分为一个发光单元块,记为发光单元块B,从而得到如图7C所示的分组结果。
在一些实施例中,在确定上述任一子组中的每个发光单元块的补偿系数时,可以将该任一子组中的任一发光单元块中的全部发光单元的光学数据的平均值作为该发光单元块的光学数据;然后基于该发光单元块的光学数据确定该发光单元块的补偿系数。可选地,光学数据不同的发光单元块的补偿系数可以相同或不同。
上述基于发光单元的光学数据划分发光单元块的方式可以使同一发光单元块中的发光单元的光学数据相差较小,因此针对同一发光单元块设置一个补偿系数可以使得同一发光单元块的补偿效果更佳均匀。
在一些实施例中,在确定补偿组中的发光单元的补偿系数时,可以根据非补偿组中的光学数据确定至少一个基准数据;然后基于该基准数据确定该补偿组中的发光单元的补偿系数。
在一些实施例中,如图8A所示,该图中所示可以是光学数据的分布曲线,其中,横坐标为光学数据的数值,纵坐标为光学数据的占比,也就是光学数据相同或相近(如差值在预设范围内)的发光单元数量在发光单元总数中的占比。从图中可以看到基于光学数据的补偿组和非补偿组的划分结果。由于非补偿组是连续的,因此可以从非补偿组中确定一个基准数据(例如占比最大的光学数据),从而基于该基准数据确定补偿组的发光单元的补偿系数。如图8B所示,该图中所示可以是光学数据的分布曲线,其中,横坐标为光学数据的数值,纵坐标为光学数据的占比,也就是光学数据相同或相近(如差值在预设范围内) 的发光单元数量在发光单元总数中的占比。从图中可以看到基于光学数据的补偿组和非补偿组的划分结果。由于非补偿组是不连续的,因此可以从非补偿组的两部分中,基于每个部分确定一个基准数据(例如每个部分中占比最大的光学数据),从而基于这两个基准数据确定补偿组的发光单元的补偿系数。
在一些实施例中,同一个补偿组可以对应至少一个的基准数据,例如补偿组中的每个子组对应一个基准数据。可选地,同一子组中的每个发光单元块也可以对应一个基准数据。
在一些实施例中,基准数据可以包括以下数据中的至少之一:非补偿组中的光学数据的最大值、非补偿组中的光学数据的最小值、非补偿组中的光学数据的平均值。
在一些实施例中,上述光学数据,可以包括:亮度数据和色度数据至少之一。
在一些实施例中,在根据非补偿组中的发光单元的光学数据确定补偿组中的发光单元的补偿系数时,可以在光学数据为亮度数据时,确定该补偿系数为亮度补偿系数;或,在光学数据为色度数据时,确定该补偿系数为色度补偿系数;或,在光学数据为亮度数据和色度数据时,该补偿系数可以是由亮度补偿系数和色度补偿系数结合的综合补偿系数。
在一些实施例中,当光学数据为亮度数据时,还可以确定亮度数据低于亮度阈值的发光单元为坏点;然后在根据补偿系数对补偿组中的发光单元进行光学补偿时,可以根据补偿系数对该补偿组中的除坏点以外的发光单元进行光学补偿。
在一些实施例中,如图9所示,该图中所示可以是亮度的分布曲线,其中,横坐标为亮度值,纵坐标为亮度值的占比,也就是亮度值相同或相近(如差值在预设范围内)的发光单元的数量在全部发光单元总数中的占比。假设亮度阈值为10,则亮度值低于10的发光单元则为坏点。
在一些实施例中,在根据非补偿组中的发光单元的光学数据确定补偿组中的发光单元的补偿系数之后,还可以将补偿区中的发光单元的位置信息及补偿系数存储至预设存储空间;在根据补偿系数对补偿组中的发光单元进行光学补偿时,可以从该预设存储空间中获取补偿组中的发光单元的补偿系数,根据该补偿系数对发光单元进行光学补偿。
在一些实施例中,根据补偿系数对补偿组中的发光单元进行光学补偿,可以在控制该补偿组中的发光单元点亮时,根据发光单元对应的补偿系数,调整发光单元的供电电压和供电电流中的至少一种,从而实现发光单元的光学补偿。
在一些实施例中,光学补偿可以包括正补偿和负补偿。例如,基准数据为100时,小于100的光学数据对应的发光单元需进行正补偿,即增大光学数据的数值;大于100的光学数据对应的发光单元需进行负补偿,即减小光学数据的数值。
本公开实施例提供了一种发光器件的光学补偿装置,包括处理器和存储有程序指令的 存储器,处理器被配置为在执行程序指令时,执行上述的发光器件的光学补偿方法。
参见图10,在一些实施例中,发光器件的光学补偿装置80可以包括:处理器(processor)801和存储器(memory)802,还可以包括通信接口(Communication Interface)803和总线804。其中,处理器801、通信接口802、存储器802可以通过总线804完成相互间的通信。通信接口803可以用于信息传输。处理器801可以调用存储器802中的逻辑指令,以执行上述实施例的发光器件的光学补偿方法。
此外,上述的存储器802中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器802作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器801通过运行存储在存储器802中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的发光器件的光学补偿方法。
存储器802可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器802可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了另一种发光器件的光学补偿装置,参见图11,在一些实施例中,发光器件的光学补偿装置90可以包括:
第一分组模块901,被配置为获得发光器件的多个发光单元的光学数据,基于光学数据将多个发光单元划分为补偿组和非补偿组;
系数确定模块902,被配置为根据非补偿组中的发光单元的光学数据,确定补偿组中的发光单元的补偿系数;
单元补偿模块903,被配置为根据补偿系数对补偿组中的发光单元进行光学补偿。
在一些实施例中,发光器件的光学补偿装置90可以是控制芯片,该控制芯片包括但不限于:中央处理器、微处理器或单片机中的一种或多种。该发光器件的光学补偿装置90可以与发光器件中的每个发光单元电连接。
在一些实施例中,如图2所示,发光器件20上包括多个发光单元201。可选地,该发光器件可以是LED、Micro LED及Mini LED中的任意一个。该发光单元可以是该发光器件上的最小发光单位。
在一些实施例中,第一分组模块901可以通过一些现有的检测手段获取发光器件上的多个发光单元的光学数据。可选地,上述多个发光单元可以是发光器件中的全部的发光单元,也可以是部分的发光单元。可选地,获取发光单元的光学数据的时间可以是在指定时 间内获取的,也可以是周期性获取的。可选地,该光学数据可以是一次获取的光学数据,或者是多次获取的多个光学数据的平均值。
在一些实施例中,如图3A至图3C所示,第一分组模块901可以将发光器件20上的多个发光单元201划分成补偿组(图中灰色背景区域)和非补偿组(图中白色背景区域)。可选地,补偿组和非补偿组的划分形式可以是连续的区域或者不连续的区域,补偿组和非补偿组的区域形状和大小没有限定。可选地,图3A至图3C中的补偿组和非补偿组的名称还可以互换。
在一些实施例中,该第一分组模块901在基于光学数据将上述多个发光单元划分为补偿组和非补偿组时,该补偿组中的发光单元数量小于该非补偿组中的发光单元数量。
在一些实施例中,在第一分组模块901基于光学数据将上述多个发光单元划分为补偿组和非补偿组之前,发光器件的光学补偿装置90还包括:
第二分组模块904,被配置为根据光学数据将上述多个发光单元分为多个子组,每个子组至少包括一个发光单元。
该第一分组模块901在基于光学数据将上述多个发光单元划分为补偿组和非补偿组时,被配置为计算上述每个子组中的发光单元数量在上述多个发光单元中的占比;基于该占比将上述多个子组划分为补偿组和非补偿组,其中,补偿组中的占比总数小于非补偿组中的占比总数。
在一些实施例中,该第一分组模块901在基于该占比将上述多个子组划分为补偿组和非补偿组时,非补偿组中包括上述多个子组中占比最大的子组。
在一些实施例中,该第二分组模块904在根据光学数据将上述多个发光单元分为多个子组时,被配置为将光学数据差值在第一范围内的发光单元分为一个子组,得到上述多个子组。
在一些实施例中,该系数确定模块902在确定补偿组中的发光单元的补偿系数时,可以被配置为确定补偿组中的每个子组的补偿系数,同一子组中的发光单元的补偿系数相同。
在一些实施例中,该系数确定模块902在确定补偿组中的每个子组的补偿系数时,可以被配置为针对上述每个子组的任一子组,将该任一子组分成多个发光单元块;确定该任一子组中的每个发光单元块的补偿系数,同一发光单元块中的发光单元的补偿系数相同。
在一些实施例中,该系数确定模块902在将上述任一子组分成多个发光单元块时,可以被配置为将该任一子组中的光学数据差值在第二范围内的发光单元分为一个发光单元块,得到上述多个发光单元块。
在一些实施例中,该系数确定模块902在确定上述任一子组中的每个发光单元块的补 偿系数时,可以被配置为将该任一子组中的任一发光单元块中的全部发光单元的光学数据的平均值作为该发光单元块的光学数据;基于该发光单元块的光学数据确定该发光单元块的补偿系数,光学数据不同的发光单元块的补偿系数不同。
在一些实施例中,该系数确定模块903在确定补偿组中的发光单元的补偿系数时,可以被配置为根据非补偿组中的光学数据确定至少一个基准数据;基于该基准数据确定补偿组中的发光单元的补偿系数。
在一些实施例中,上述基准数据可以包括以下数据中的至少之一:非补偿组中的光学数据的最大值;非补偿组中的光学数据的最小值;非补偿组中的光学数据的平均值。
在一些实施例中,上述光学数据,可以包括亮度数据和色度数据至少之一。
在一些实施例中,该系数确定模块902在根据非补偿组中的发光单元的光学数据确定补偿组中的发光单元的补偿系数时,可以被配置为在光学数据为亮度数据时,确定补偿系数为亮度补偿系数;或,在光学数据为色度数据时,确定补偿系数为色度补偿系数;或,在光学数据为亮度数据和色度数据时,确定补偿系数是由亮度补偿系数和色度补偿系数结合的综合补偿系数。
在一些实施例中,在光学数据为亮度数据时,上述发光器件的光学补偿装置90还包括:
坏点确定模块905,被配置为确定亮度数据低于亮度阈值的发光单元为坏点。
上述单元补偿模块903在根据补偿系数对补偿组中的发光单元进行光学补偿时,可以被配置为根据补偿系数对该补偿组中的除坏点以外的发光单元进行光学补偿。
在一些实施例中,上述发光器件的光学补偿装置90还包括:
数据存储模块906,被配置为将补偿区中的发光单元的位置信息及补偿系数存储至预设存储空间。
上述单元补偿模块903在根据补偿系数对补偿组中的发光单元进行光学补偿时,可以被配置为从预设存储空间中获取补偿组中的发光单元的补偿系数,根据补偿系数对发光单元进行光学补偿。
在一些实施例中,上述单元补偿模块903在根据补偿系数对补偿组中的发光单元进行光学补偿时,可以被配置为在控制该补偿组中的发光单元点亮时,根据发光单元对应的补偿系数,调整发光单元的供电电压和供电电流中的至少一种。
在一些实施例中,发光器件的光学补偿装置90中的各个模块可以是虚拟的功能模块或者是逻辑硬件,各个模块之间具有逻辑连接关系。
本公开实施例提供了一种发光器件的光学补偿设备,包含上述的发光器件的光学补偿 装置。
本公开实施例提供的发光器件的光学补偿方法、发光器件的光学补偿装置和光学补偿设备,可以提高发光器件的光学均匀性。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,该计算机可执行指令设置为执行上述发光器件的光学补偿方法。
本公开实施例提供了一种计算机程序产品,包括存储在计算机可读存储介质上的计算机程序,该计算机程序包括程序指令,当该程序指令被计算机执行时,使上述计算机执行上述发光器件的光学补偿方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例提供的计算机可读存储介质和计算机程序产品,可以提高发光器件的光学均匀性。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括至少一个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例的方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样地,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联 的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括该要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。本领域技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在附图中,考虑到清楚性和描述性,可以夸大元件或层等结构的宽度、长度、厚度等。当元件或层等结构被称为“设置在”(或“安装在”、“铺设在”、“贴合在”、“涂布在”等类似描述)另一元件或层“上方”或“上”时,该元件或层等结构可以直接“设置在”上述的另一元件或层“上方”或“上”,或者可以存在与上述的另一元件或层之间的中间元件或层等结构,甚至有一部分嵌入上述的另一元件或层。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可 能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,上述模块、程序段或代码的一部分包含至少一个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个或更多的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个或更多的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。以上所述方式可以应用于附图及其对应的描述,也可以应用于不与附图对应的描述。

Claims (36)

  1. 一种发光器件的光学补偿方法,包括:
    获得发光器件的多个发光单元的光学数据,基于所述光学数据将所述多个发光单元划分为补偿组和非补偿组;
    根据非补偿组中的发光单元的光学数据,确定所述补偿组中的发光单元的补偿系数;
    根据所述补偿系数对所述补偿组中的发光单元进行光学补偿。
  2. 根据权利要求1所述的方法,其中,基于所述光学数据将所述多个发光单元划分为补偿组和非补偿组,包括:
    所述补偿组中的发光单元数量小于所述非补偿组中的发光单元数量。
  3. 根据权利要求2所述的方法,在基于所述光学数据将所述多个发光单元划分为补偿组和非补偿组之前,还包括:
    根据所述光学数据将所述多个发光单元分为多个子组,每个子组至少包括一个发光单元;
    基于所述光学数据将所述多个发光单元划分为补偿组和非补偿组,包括:
    计算所述每个子组中的发光单元数量在所述多个发光单元中的占比;
    基于所述占比将所述多个子组划分为补偿组和非补偿组,其中,所述补偿组中的占比总数小于所述非补偿组中的占比总数。
  4. 根据权利要求3所述的方法,其中,基于所述占比将所述多个子组划分为补偿组和非补偿组,包括:
    所述非补偿组中包括所述多个子组中占比最大的子组。
  5. 根据权利要求3所述的方法,其中,根据所述光学数据将所述多个发光单元分为多个子组,包括:
    将光学数据差值在第一范围内的发光单元分为一个子组,得到所述多个子组。
  6. 根据权利要求3所述的方法,其中,确定所述补偿组中的发光单元的补偿系数,包括;
    确定所述补偿组中的每个子组的补偿系数。
  7. 根据权利要求6所述的方法,其中,确定所述补偿组中的每个子组的补偿系数,包括;
    针对所述每个子组的任一子组,将所述任一子组分成多个发光单元块;
    确定所述任一子组中的每个发光单元块的补偿系数。
  8. 根据权利要求7所述的方法,其中,将所述任一子组分成多个发光单元块,包括:
    将所述任一子组中的光学数据差值在第二范围内的发光单元分为一个发光单元块,得到所述多个发光单元块。
  9. 根据权利要求7所述的方法,其中,确定所述任一子组中的每个发光单元块的补偿系数,包括:
    将所述任一子组中的任一发光单元块中的全部发光单元的光学数据的平均值作为该发光单元块的光学数据;
    基于所述发光单元块的光学数据确定所述发光单元块的补偿系数。
  10. 根据权利要求1至9中任一项所述的方法,其中,确定所述补偿组中的发光单元的补偿系数,包括:
    根据所述非补偿组中的光学数据确定至少一个基准数据;
    基于所述基准数据确定所述补偿组中的发光单元的补偿系数。
  11. 根据权利要求10所述的方法,其中,所述基准数据包括以下数据中的至少之一:
    所述非补偿组中的光学数据的最大值;
    所述非补偿组中的光学数据的最小值;
    所述非补偿组中的光学数据的平均值。
  12. 根据权利要求1所述的方法,其中,所述光学数据,包括:
    亮度数据和色度数据至少之一。
  13. 根据权利要求12所述的方法,其中,根据非补偿组中的发光单元的光学数据确定所述补偿组中的发光单元的补偿系数,包括:
    在所述光学数据为亮度数据时,确定所述补偿系数为亮度补偿系数;或,
    在所述光学数据为色度数据时,确定所述补偿系数为色度补偿系数;或,
    在所述光学数据为亮度数据和色度数据时,确定所述补偿系数是由亮度补偿系数和色度补偿系数结合的综合补偿系数。
  14. 根据权利要求12所述的方法,在所述光学数据为亮度数据时,还包括:
    确定亮度数据低于亮度阈值的发光单元为坏点;
    根据所述补偿系数对所述补偿组中的发光单元进行光学补偿,包括:
    根据所述补偿系数对所述补偿组中的除坏点以外的发光单元进行光学补偿。
  15. 根据权利要求1所述的方法,在根据非补偿组中的发光单元的光学数据确定所述补偿组中的发光单元的补偿系数之后,还包括:
    将所述补偿区中的发光单元的位置信息及补偿系数存储至预设存储空间;
    根据所述补偿系数对所述补偿组中的发光单元进行光学补偿,包括:
    从所述预设存储空间中获取补偿组中的发光单元的补偿系数,根据所述补偿系数对所述发光单元进行光学补偿。
  16. 根据权利要求1所述的方法,其中,根据所述补偿系数对所述补偿组中的发光单元进行光学补偿,包括:
    在控制所述补偿组中的发光单元点亮时,根据发光单元对应的补偿系数,调整发光单元的供电电压和供电电流中的至少一种。
  17. 一种发光器件的补偿装置,包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至16任一项所述的方法。
  18. 一种发光器件的光学补偿装置,包括:
    第一分组模块,被配置为获得发光器件的多个发光单元的光学数据,基于所述光学数据将所述多个发光单元划分为补偿组和非补偿组;
    系数确定模块,被配置为根据非补偿组中的发光单元的光学数据,确定所述补偿组中的发光单元的补偿系数;
    单元补偿模块,被配置为根据所述补偿系数对所述补偿组中的发光单元进行光学补偿。
  19. 根据权利要求18所述的装置,其中,所述第一分组模块在基于所述光学数据将所述多个发光单元划分为补偿组和非补偿组时,被配置为:
    所述补偿组中的发光单元数量小于所述非补偿组中的发光单元数量。
  20. 根据权利要求19所述的装置,在所述第一分组模块基于所述光学数据将所述多个发光单元划分为补偿组和非补偿组之前,还包括:
    第二分组模块,被配置为根据所述光学数据将所述多个发光单元分为多个子组,每个子组至少包括一个发光单元;
    所述第一分组模块在基于所述光学数据将所述多个发光单元划分为补偿组和非补偿组时,被配置为:
    计算所述每个子组中的发光单元数量在所述多个发光单元中的占比;
    基于所述占比将所述多个子组划分为补偿组和非补偿组,其中,所述补偿组中的占比总数小于所述非补偿组中的占比总数。
  21. 根据权利要求20所述的装置,其中,所述第一分组模块在基于所述占比将所述多个子组划分为补偿组和非补偿组时,被配置为:
    所述非补偿组中包括所述多个子组中占比最大的子组。
  22. 根据权利要求20所述的装置,其中,所述第二分组模块在根据所述光学数据将所述多个发光单元分为多个子组时,被配置为:
    将光学数据差值在第一范围内的发光单元分为一个子组,得到所述多个子组。
  23. 根据权利要求20所述的装置,其中,所述系数确定模块在确定所述补偿组中的发光单元的补偿系数时,被配置为;
    确定所述补偿组中的每个子组的补偿系数。
  24. 根据权利要求23所述的装置,其中,所述系数确定模块在确定所述补偿组中的每个子组的补偿系数时,被配置为;
    针对所述每个子组的任一子组,将所述任一子组分成多个发光单元块;
    确定所述任一子组中的每个发光单元块的补偿系数。
  25. 根据权利要求24所述的装置,其中,所述系数确定模块在将所述任一子组分成多个发光单元块时,被配置为:
    将所述任一子组中的光学数据差值在第二范围内的发光单元分为一个发光单元块,得到所述多个发光单元块。
  26. 根据权利要求24所述的装置,其中,所述系数确定模块在确定所述任一子组中的每个发光单元块的补偿系数时,被配置为:
    将所述任一子组中的任一发光单元块中的全部发光单元的光学数据的平均值作为该发光单元块的光学数据;
    基于所述发光单元块的光学数据确定所述发光单元块的补偿系数。
  27. 根据权利要求18至26中任一项所述的装置,其中,所述系数确定模块在确定所述补偿组中的发光单元的补偿系数时,被配置为:
    根据所述非补偿组中的光学数据确定至少一个基准数据;
    基于所述基准数据确定所述补偿组中的发光单元的补偿系数。
  28. 根据权利要求27所述的装置,其中,所述基准数据包括以下数据中的至少之一:
    所述非补偿组中的光学数据的最大值;
    所述非补偿组中的光学数据的最小值;
    所述非补偿组中的光学数据的平均值。
  29. 根据权利要求18所述的装置,其中,所述光学数据,包括:
    亮度数据和色度数据至少之一。
  30. 根据权利要求29所述的装置,其中,所述系数确定模块在根据非补偿组中的发光单元的光学数据确定所述补偿组中的发光单元的补偿系数时,被配置为:
    在所述光学数据为亮度数据时,确定所述补偿系数为亮度补偿系数;或,
    在所述光学数据为色度数据时,确定所述补偿系数为色度补偿系数;或,
    在所述光学数据为亮度数据和色度数据时,确定所述补偿系数是由亮度补偿系数和色度补偿系数结合的综合补偿系数。
  31. 根据权利要求29所述的装置,在所述光学数据为亮度数据时,所述装置还包括:
    坏点确定模块,被配置为确定亮度数据低于亮度阈值的发光单元为坏点;
    所述单元补偿模块在根据所述补偿系数对所述补偿组中的发光单元进行光学补偿时,被配置为:
    根据所述补偿系数对所述补偿组中的除坏点以外的发光单元进行光学补偿。
  32. 根据权利要求18所述的装置,还包括:
    数据存储模块,被配置为将所述补偿区中的发光单元的位置信息及补偿系数存储至预设存储空间;
    所述单元补偿模块在根据所述补偿系数对所述补偿组中的发光单元进行光学补偿时,被配置为:
    从所述预设存储空间中获取补偿组中的发光单元的补偿系数,根据所述补偿系数对所述发光单元进行光学补偿。
  33. 根据权利要求18所述的装置,其中,所述单元补偿模块在根据所述补偿系数对所述补偿组中的发光单元进行光学补偿时,被配置为:
    在控制所述补偿组中的发光单元点亮时,根据发光单元对应的补偿系数,调整发光单元的供电电压和供电电流中的至少一种。
  34. 一种发光器件的补偿设备,包括如权利要求17或18至33任一项所述的装置。
  35. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行如权利要求1至16任一项所述的方法。
  36. 一种计算机程序产品,包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当该程序指令被计算机执行时,使所述计算机执行如权利要求1至16任一项所述的方法。
PCT/CN2022/081057 2021-03-19 2022-03-16 发光器件的光学补偿方法及装置、补偿设备 WO2022194182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110294083.XA CN115116381A (zh) 2021-03-19 2021-03-19 发光器件的光学补偿方法及装置、补偿设备
CN202110294083.X 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022194182A1 true WO2022194182A1 (zh) 2022-09-22

Family

ID=83321728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081057 WO2022194182A1 (zh) 2021-03-19 2022-03-16 发光器件的光学补偿方法及装置、补偿设备

Country Status (3)

Country Link
CN (1) CN115116381A (zh)
TW (1) TWI800311B (zh)
WO (1) WO2022194182A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127198A (zh) * 2006-08-16 2008-02-20 三星电子株式会社 显示设备和调整显示设备的亮度的方法
US20110012908A1 (en) * 2009-07-20 2011-01-20 Sharp Laboratories Of America, Inc. System for compensation of differential aging mura of displays
CN107180605A (zh) * 2016-03-11 2017-09-19 青岛海信电器股份有限公司 一种消除显示设备Mura的方法、消除显示设备Mura装置和显示设备
CN107203056A (zh) * 2017-05-22 2017-09-26 深圳市华星光电技术有限公司 针对超高分辨率面板的mura处理方法
CN107591120A (zh) * 2017-10-09 2018-01-16 深圳市华星光电技术有限公司 一种显示面板的补偿方法及其补偿设备、存储设备
CN108694912A (zh) * 2018-05-03 2018-10-23 深圳市华星光电技术有限公司 消除背光Mura的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127198A (zh) * 2006-08-16 2008-02-20 三星电子株式会社 显示设备和调整显示设备的亮度的方法
US20110012908A1 (en) * 2009-07-20 2011-01-20 Sharp Laboratories Of America, Inc. System for compensation of differential aging mura of displays
CN107180605A (zh) * 2016-03-11 2017-09-19 青岛海信电器股份有限公司 一种消除显示设备Mura的方法、消除显示设备Mura装置和显示设备
CN107203056A (zh) * 2017-05-22 2017-09-26 深圳市华星光电技术有限公司 针对超高分辨率面板的mura处理方法
CN107591120A (zh) * 2017-10-09 2018-01-16 深圳市华星光电技术有限公司 一种显示面板的补偿方法及其补偿设备、存储设备
CN108694912A (zh) * 2018-05-03 2018-10-23 深圳市华星光电技术有限公司 消除背光Mura的方法

Also Published As

Publication number Publication date
TWI800311B (zh) 2023-04-21
CN115116381A (zh) 2022-09-27
TW202238418A (zh) 2022-10-01

Similar Documents

Publication Publication Date Title
US8065541B2 (en) Server power consumption controller, and method and computer program for controlling server power consumption
US9235441B2 (en) Optimizing energy use in a data center by workload scheduling and management
US20100146513A1 (en) Software-based Thread Remapping for power Savings
US20100332883A1 (en) Method and system for event-based management of resources
Gu et al. Energy efficient scheduling of servers with multi-sleep modes for cloud data center
US9274585B2 (en) Combined dynamic and static power and performance optimization on data centers
EP3284076A1 (en) Display defect compensation with localized backlighting
CN101740004A (zh) 采用混合系统架构的图片处理
CN105074612A (zh) 通过对空闲部件断电来在显示管道中节省电力的方法和设备
CN103295485B (zh) 一种led显示屏的显示方法及系统
WO2022194182A1 (zh) 发光器件的光学补偿方法及装置、补偿设备
WO2020206974A1 (zh) 有机发光器件的补偿系统及其补偿方法
WO2020107511A1 (zh) 影像色温的获取方法
CN103369415B (zh) 基于微环谐振器的全光片上网络
US10303241B2 (en) System and method for fine-grained power control management in a high capacity computer cluster
CN114787751A (zh) 分配在加速处理单元和离散图形处理单元之间共享的功率
US9195514B2 (en) System and method for managing P-states and C-states of a system
JP2022135937A (ja) 計算ノードにおける個別のコンポーネント間の電力バランシング
CN111785222A (zh) 一种对比度提升算法及双面板显示装置
CN110968180B (zh) 一种通过减少数据传输实现gpu降耗的方法及系统
TW201435586A (zh) 快閃記憶體儲存設備及其資料管理之方法與裝置
CN101943944A (zh) 一种基于空闲历史信息的计算阵列节能方法
WO2023273965A1 (zh) 节能架构及其控制方法、网络设备、计算机可读存储介质
Xie et al. An energy-aware online task mapping algorithm in NoC-based system
Mittal A cache reconfiguration approach for saving leakage and refresh energy in embedded dram caches

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770535

Country of ref document: EP

Kind code of ref document: A1